

1 **Stability of Oral and Fecal Microbiome at Room Temperature: Impact on Diversity**

2 **Blanca Rius-Sansalvador^{1,2,3}, David Bars-Cortina^{1,2}, Olfat Khannous-Lleiffe^{4,5}, Ainhoa Garcia-
3 Serrano^{1,2}, Elisabet Guinó^{1,2,6}, Ester Saus^{4,5}, Toni Gabaldón^{4,5,7,8}, Victor Moreno^{1,2,6,9,*} and
4 Mireia Obón-Santacana^{1,2,6,*}**

5 ¹Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan
6 Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain

7 ²ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de
8 Llobregat, 08908 Barcelona, Spain

9 ³Doctoral Programme in Biomedicine. University of Barcelona (UB), 08907 Barcelona, Spain

10 ⁴Barcelona Supercomputing Centre (BSC-CNS), 08034 Barcelona, Spain.

11 ⁵Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and
12 Technology, 08028 Barcelona, Spain

13 ⁶Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029
14 Madrid, Spain

15 ⁷Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain

16 ⁸Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), 08028
17 Barcelona, Spain

18 ⁹Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de
19 Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de
20 Llobregat, 08908 Barcelona, Spain

21 *** Correspondence:**

22 Victor Moreno v.moreno@iconcologia.net

23 Mireia Obón-Santacana mireiaobon@iconcologia.net

24 **Keywords: oral microbiome, fecal microbiome, stability study, GCAT, 16S, pilot study**

25

26 **Abstract**

27 When collecting oral and fecal samples for large epidemiological microbiome studies, optimal storage
28 conditions such as immediate freezing, are not always feasible. It is fundamental to study the impact
29 of temporary room temperature (RT) storage and shipping on the microbiome diversity obtained in
30 different types of samples. We performed a pilot study aimed at validating the sampling protocol based
31 on the viability of the 16S rRNA gene sequencing in microbiome samples.

32 Fecal and oral samples from five participants were collected and preserved in different conditions: a)
33 70% ethanol; b) in a FIT tube for stool samples; and c) in a chlorhexidine solution for oral wash
34 samples. Four aliquots were prepared per sample, which were stored at RT, and frozen at days 0, 5, 10
35 and 15, respectively. In terms of alpha diversity, the maximum average decrease in 5 days was 0.3%,
36 1.6% and 1.7% for oral, stool in ethanol and stool in FIT, respectively. Furthermore, the relative
37 abundances of the most important phyla and orders remained stable over the two weeks.

38 The stability of fecal and oral samples for microbiome studies preserved at RT with 70% ethanol,
39 chlorhexidine and in FIT tubes was verified for a 15-day window, with no substantial changes in terms
40 of alpha diversity and relative abundances.

41 1 Introduction

42 Gut and oral dysbiosis has been associated with the development and progression of some diseases in
43 recent years. For instance, a role of the microbiota has been suggested in an enormous variety of
44 diseases, including metabolic disorders (Bull and Plummer, 2014; Durack and Lynch, 2019; Lu, Xuan
45 and Wang, 2019; Chen, Zhou and Wang, 2021; Fan and Pedersen, 2021; Peng *et al.*, 2022), systemic
46 (Willis and Gabaldón, 2020; Martínez *et al.*, 2022; Peng *et al.*, 2022), cardiovascular (Willis and
47 Gabaldón, 2020; Chen, Zhou and Wang, 2021), liver (Fan and Pedersen, 2021), psychological or
48 mental (Martínez *et al.*, 2022), and neurodegenerative diseases (Durack and Lynch, 2019; Chen, Zhou
49 and Wang, 2021; Tuganbaev, Yoshida and Honda, 2022), arthritis (Lu, Xuan and Wang, 2019;
50 Tuganbaev, Yoshida and Honda, 2022), and cancer, such as gastrointestinal cancers (Lu, Xuan and
51 Wang, 2019; Willis and Gabaldón, 2020; Tuganbaev, Yoshida and Honda, 2022), among others.

52 As many aspects of the relationship between the microbiome and diverse diseases are still unknown
53 (Malla *et al.*, 2019), the study of microbiota is an emerging field that is enhancing its knowledge. When
54 collecting samples for microbiome analysis, several procedures and methodologies are used, hindering
55 comparisons across studies. Immediate freezing has been considered the best practice for microbiome
56 preservation (Ilett *et al.*, 2019; Moossavi *et al.*, 2019; Song *et al.*, no date); however, this approach is
57 not feasible for large epidemiological studies that aim to obtain samples shipped by postal mail. In
58 these cases, the samples use to remain for a few days at room temperature until they arrive at their
59 destination (McDonald *et al.*, 2018; Williams *et al.*, 2019; Young *et al.*, 2021; Soriano *et al.*, 2022).

60 Previous research has studied the stability of fecal and oral 16S rRNA gene sequencing microbiome
61 samples (Nechvatal *et al.*, 2008; Cardona *et al.*, 2012; Carroll *et al.*, 2012; Dominianni *et al.*, 2014;
62 Choo, Leong and Rogers, 2015; Gorzelak *et al.*, 2015; Roberto Flores *et al.*, 2015; Tedjo *et al.*, 2015;
63 Voigt *et al.*, 2015; Sinha *et al.*, 2016; Gudra *et al.*, 2017; Byrd *et al.*, 2019; Bescos *et al.*, 2020; Park
64 *et al.*, 2020; Krigul *et al.*, 2021; Marotz *et al.*, 2021; Song *et al.*, no date). Regarding fecal microbiome
65 collection methods, 70%-99% ethanol has historically been the most popular stabilization media (Park
66 *et al.*, 2020). However, there are fewer studies about the storage of the samples at room temperature
67 compared to other collection methods, such as the Flinders Technology Associates (FTA) or the Fecal
68 Occult Blood Test (FOBT) (Byrd *et al.*, 2019).

69 Furthermore, a widely used collection technique for cancer screening is the Fecal Immunochemical
70 Test (FIT) (Gudra *et al.*, 2017). Some metagenomic studies recommend the use of FIT in cohort studies
71 since the microbial profile stability of the samples stored for one week at room temperature has been
72 validated (Gudra *et al.*, 2017; Byrd *et al.*, 2019; Krigul *et al.*, 2021).

73 The room temperature stability of other fecal microbiome collection methods has been proven for FTA
74 cards at 8 weeks (Song *et al.*, no date), OMNIgene Gut Kit for 3 days (Choo, Leong and Rogers, 2015)
75 and 8 weeks (Park *et al.*, 2020; Song *et al.*, no date), FOBT for 3 (Dominianni *et al.*, 2014) and 4 days
76 (Sinha *et al.*, 2016; Wu *et al.*, 2021) and 1 week (Gudra *et al.*, 2017; Byrd *et al.*, 2019), RNAlater for
77 3 (Choo, Leong and Rogers, 2015; Roberto Flores *et al.*, 2015), 4 (Sinha *et al.*, 2016; Wu *et al.*, 2021)
78 and 7 days (Roberto Flores *et al.*, 2015; Byrd *et al.*, 2019) and 8 weeks (Park *et al.*, 2020).

79 Regarding the oral microbiome, previous studies used Scope® oral wash (mainly composed of
80 Alcohol, Domiphen Bromide and Cetylpyridinium Chloride) to preserve oral microbiome samples
81 (Vogtmann *et al.*, 2019; Yano *et al.*, 2020), as it has been demonstrated that samples preserved with
82 Scope are stable in terms of alpha and beta diversity up to 4 days at RT (Vogtmann *et al.*, 2019; Wu *et
83 al.*, 2021). However, as this solution is not easily found in Europe, Chlorhexidine oral wash (Lacer®)

84 was used. Chlorhexidine has been commonly used in many clinical trials where effective results have
85 been proven in reducing the proliferation of bacterial species (Eick *et al.*, 2011; James *et al.*, 2017;
86 Ben-Knaz Wakshlak, Pedahzur and Avnir, 2019; Brookes *et al.*, 2020; Sedghi *et al.*, 2021; Xiang, Rojo
87 and Prados-Frutos, 2021). Furthermore, the effect of daily use of chlorhexidine oral wash on the oral
88 microbiome has been studied, showing significant differences in the abundance of some phyla (Bescos
89 *et al.*, 2020) and a decrease in terms of alpha diversity compared with sputum samples
90 (Chatzigiannidou *et al.*, 2020; Pragman *et al.*, 2020). Despite demonstrating that oral washes containing
91 chlorhexidine are related to a major shift in the oral microbiome, the stability of the samples for
92 microbiome analyses, when preserved at RT has not already been studied.

93 The long-term prospective cohort study of the Genomes for Life (GCAT) aims to facilitate the
94 prediction and treatment of frequent chronic diseases as well as gauge the role of epidemiological,
95 genomic and epigenomic factors (Obón-Santacana *et al.*, 2018). In the framework of GCAT, oral and
96 fecal samples for microbiome studies need to be collected throughout the Catalan territory, a northeast
97 region of Spain. Prior to proceeding to its general collection, a validation of the sampling protocol
98 based on the viability of the samples is considered necessary. The main objective of the present study
99 was to investigate the short-term stability at room temperature in both alpha and beta diversity and the
100 distribution of the main bacterial genera of fecal (collected in 70% ethanol and FIT tubes) and oral
101 samples (collected from an oral wash with 0.12% chlorhexidine).

102 As the samples will be sent by postal mail from different places over the Catalan territory, the logistic
103 challenge regarding the difference in the duration of sample storage at RT is the main point of this
104 study. There is a need to ensure that the quality of the samples in terms of the analysis of microbial
105 diversity is going to be maintained for a few days.

106

107 2 Materials and Methods

108 2.1 Sample Collection

109 In this study, 5 volunteer individuals (3 women and 2 men, median age 37) provided three different
110 types of samples for microbiome analysis: one oral wash, preserved in 0.12% chlorhexidine and two
111 fecal samples, one preserved in a FIT tube (FIT, OCSensor, Eiken Chemical Co., Tokyo, Japan) and
112 another in a 5 ml tube with 1 ml of 70% ethanol. Samples were collected at home. Participants were
113 instructed to obtain oral samples in the morning, before any food or tooth brushing, by doing an oral
114 rinse for 1 minute with Lacer® oral wash and then spitting the content in a tube. Stool samples, if
115 obtained the night before, were kept at 4°C before transport to the lab. For the three collection methods,
116 a total of 4 aliquots of each sample were prepared and one aliquot was immediately frozen at -80°C
117 until processing. The rest were consecutively frozen after remaining at room temperature for 5, 10 and
118 15 days, resulting in a total of 60 samples from 5 individuals at 4 time points (**Figure 1**;
119 **Supplementary Table S1**). None of the participants took oral antibiotics, injected antibiotics, stomach
120 protectors, or acid-lowering medication in the last 3 months. All individuals agreed to participate in
121 the study and provided written informed consent. The University Hospital of Bellvitge ethics
122 committee approved the protocol of the study (PR084/16).

123

124 2.2 DNA Extraction and Sequencing

125 DNA was extracted using the DNeasy PowerLyzer PowerSoil Kit (Qiagen, ref. QIA12855) following
126 the manufacturer's instructions with slight modifications depending on the initial sample type (FIT,
127 oral wash and stool samples). Two negative controls of the DNA extraction process (with no initial
128 sample) were also included. Briefly, for FIT samples, a pre-enrichment step was added by centrifuging
129 the samples at 20,000 g for 5 min at 4°C. The supernatant was removed, and the pellet was resuspended
130 in 750 µl of PowerBead Solution, mixed and transferred to a Bead tube with beads. Stool samples were
131 already frozen in 2 ml tubes, where 750 µl of PowerBead Solution and the beads were directly added.
132 For oral wash samples, pellets were resuspended in 750 µl of PowerBead Solution, mixed and
133 transferred to a Bead tube with beads. From here on all samples were processed in the same way: 60
134 µl of Solution C1 was added, and samples were vortexed briefly and incubated at 70°C with shaking
135 (700 rpm) for 10 min. The extraction tubes were then agitated in a horizontal vortex (Genie2) for 20
136 min at maximum speed. Tubes were centrifuged at 10,000 g for 3 min and the supernatant was
137 transferred to a clean tube. Then, 250 µl of Solution C2 was added, and the samples were vortexed for
138 5 s and incubated on ice for 5 min. After 1 min of centrifugation at 10,000 g, 600 µl of the supernatant
139 was transferred to a clean tube, 200 µl of Solution C3 was added, and the samples were vortexed for 5
140 s and incubated on ice for 5 min again. A total of 750 µl of the supernatant was transferred into a clean
141 tube after 1 min centrifugation at 10,000 g. Then, 1,200 µl of Solution C4 was added to the supernatant,
142 samples were blended by pipetting up and down, and 675 µl was loaded onto a spin column and
143 centrifuged at 10,000 g for 1 min, discarding the flow through. This step was repeated three times until
144 all samples had passed through the column. 500 µl of Solution C5 was added onto the column, and the
145 samples were centrifuged at 10,000 g for 1 min. The flow through was discarded, and one extra minute
146 of centrifugation at 10,000 g was performed to dry the column. Finally, the column was placed into a
147 new 2 ml tube for final elution with 50 µl of Solution C6 and centrifugation at 10,000 g during 30s.
148 For DNA quality control, two serial dilutions of the DNA samples were used. Genomic DNA was
149 quantified using SYBRGreen I (Sigma–Aldrich, Merck) and the total bacterial load in the DNA sample
150 was estimated by a real-time PCR assay with primers described in Nadkarni *et al.* 2002 (Nadkarni *et*
151 *al.*, 2002) (forward 5'- TCCTACGGGAGGCAGCACT- 3' and reverse primer 5'-
152 GGAATACCAGGGTATCTAATCCTGTT- 3'), using a 7900 HT Fast Real-Time PCR System
153 (Applied Biosystems).

154 For library preparation, the DNA samples were normalized according to their bacterial DNA content
155 to be used as a template to prepare 16S rRNA libraries (region V3-V4). The 16S rRNA V3-V4 region
156 was amplified with primers previously described (Willis *et al.*, 2018), but the library preparation
157 protocol was slightly modified. First, normalized DNA samples were used to amplify the V3–V4
158 regions of the 16S ribosomal RNA gene, in a limited cycle PCR. The PCR was performed in a 25 µl
159 volume with 0.08 µM primer concentration and NEBNext Q5 Hot Start HiFi PCR Master Mix (ref.
160 M0543L, New England Biolabs). The cycling conditions were an initial denaturation of 30 s at 98°C
161 followed by 5 cycles of 98°C for 10 s, 55°C for 5 min, and 65°C for 45 s. After this first PCR, a second
162 PCR was performed in a total volume of 50 µl. The reactions comprised NEBNext Q5 Hot Start HiFi
163 PCR Master Mix and Nextera XT v2 adaptor primers. PCR was carried out to add full-length Nextera
164 adapters: initial denaturation of 30 s at 98°C followed by 17 cycles of 98°C for 10 s, 55°C for 30 s, and
165 65°C for 45 s, ending with a final elongation step of 5 min at 65°C. Libraries were purified using
166 AgenCourt AMPure XP beads (ref. A63882, Beckman Coulter) with a 0.9X ratio according to the
167 manufacturer's instructions and were analyzed using Fragment Analyzer (ref. DNF-915, Agilent
168 Biosystems) to estimate the quantity and check size distribution. A pool of normalized libraries was
169 prepared for subsequent sequencing. Final pools were quantified by qPCR using the Kapa library
170 quantification kit for Illumina Platforms (Kapa Biosystems) on an ABI 7900HT real-time cycler
171 (Applied Biosystems). Sequencing was performed on an Illumina MiSeq with 2 × 300 bp reads using

172 v3 chemistry with a loading concentration of 18 pM. To increase the diversity of the sequenced, 10%
173 of PhIX control libraries were spiked in.

174 Negative controls of the PCR amplification steps were routinely performed in parallel using the same
175 conditions and reagents. Our control samples systematically provided no visible band or quantifiable
176 DNA amounts. The ZymoBIOMICS™ Microbial Community DNA Standard (ref. D6306, Zymo) was
177 amplified and sequenced in the same manner as all other experimental samples.

178

179 **2.3 Bioinformatics and statistical analysis**

180 Raw data were processed by using the Dada2 pipeline (v. 1.12.1) (Callahan *et al.*, 2015). Low-quality
181 reads were filtered and trimmed out based on the observed quality profiles by using the *filterAndTrim*
182 function, truncating forward and reverse reads below 290 and 230, respectively, and considering a
183 value of 2 as the maximum expected error. Furthermore, 10 reads from the start of each read were
184 removed. We combined identical sequencing reads into unique sequences, made a sample inference
185 from a matrix of estimated learning errors and merged paired reads. Chimeric sequences were removed
186 by using the *removeBimeraDenovo* function, and taxonomy was assigned utilizing the SILVA 16S
187 rRNA database (v.138) (Quast *et al.*, 2013).

188 Two negative controls from DNA extraction were analyzed to assess possible sources of contamination
189 and removed for further analysis. The resulting Amplicon Sequence Variant (ASV) table was merged
190 with the metadata creating a *phyloseq* (v. 1.26.1) (McMurdie and Holmes, 2013) object. We filtered
191 out taxa with fewer than 100 reads and with a relative abundance less than 0.1% or present in less than
192 5% of the samples.

193 Statistical analyses were performed using the 4.1.2 R version. In order to adjust for differences in the
194 number of reads across samples and allow a proper alpha diversity comparison (Willis, 2019), the data
195 were sampled at a value of 42,321 (rarefaction efficiency index = 0.99 (Hong *et al.*, 2022), the
196 minimum number of reads (**Supplementary Figure S2**).

197 To assess the alpha diversity of the samples four indexes were calculated (Thukral, 2017; Datta and
198 Guha, 2021) (Chao, Simpson, Inverse Simpson and Shannon). However, since analogous results were
199 obtained, only the Shannon index is reported in this study, which considers the differences in the
200 abundance of each species and is the most commonly used diversity metric (Reese and Dunn, 2018).
201 In addition, the mean and range richness of the samples at all taxonomical levels were plotted for each
202 time point. Furthermore, the OTUs found in immediately frozen samples and not found anymore were
203 listed.

204 For the purpose of studying beta diversity, Bray–Curtis, Jaccard, unweighted UniFrac and weighted
205 UniFrac dissimilarity distances were considered (Plantinga and Wu, 2021; By IMPACTT investigators,
206 2022), but since similar results were obtained, only the Bray–Curtis dissimilarity is reported. The
207 projections of the individuals were plotted in one of the three plots depending on the collection method
208 (**Figure 2**). Furthermore, the shapes were plotted according to the days staying at room temperature
209 and colored according to the sample number.

210 Since the sample size of this stability study was small, the statistical analysis was focused on the
211 estimation of changes and their 95% confidence intervals. Linear mixed models (LMM) were used to
212 estimate the change in alpha diversity over the time points 0, 5, 10 and 15 days. LMMs account for the

213 correlations between data including the subject as a random effect. Estimated marginal means (EMMs)
214 were used to estimate differences among time points.

215 Multiple analysis of variance (MANOVA) was conducted to compare the abundance of the top 5 phyla
216 and the top 20 orders with the number of days that the sample remained at room temperature before
217 being frozen.

218 A sensitivity analysis was performed, removing one subject that showed a pattern considerably
219 different from others.

220 The dataset that was generated and analyzed in our study is available at the Zenodo repository (DOI:
221 10.5281/zenodo.7684999, accessed on 28th February 2023).

222

223 3 Results

224 3.1 Comparing Alpha and Beta Diversity between Methods

225 The 70% ethanol and FIT collection methods for stool showed small differences in terms of the
226 Shannon index of diversity at time 0 (difference = 0.23, 95% CI 0.18 to 0.65). We observed a larger
227 dispersion of diversity values for 70% ethanol. The alpha diversity of stool samples measured by the
228 Shannon index was similar to that of oral wash (OW-CH), although these samples had a different
229 overall composition (**Figure 3**).

230 In terms of the richness of the OTUs it was not possible to see a significant decrease or trend among
231 the days at room temperature (**Figure 4**). Nevertheless, we found a few OTUs present in the
232 immediately frozen samples that were no longer present in the samples stored at room temperature
233 (**Supplementary Table S3**).

234 Regarding beta diversity, it can be noticed that oral microbiota (**Figure 1**) has a different distribution from stool microbiota (**Figure 2b** and **2c**).
235 **Figure 2a**) has a different distribution from stool microbiota (**Figure 2b** and **2c**), but both preservation methods for stool samples
236 show very good agreement when accounting for Bray–Curtis dissimilarity distance. In addition, it can
237 be observed that the projections of the individuals are grouped by individual, not by time. Therefore,
238 there cannot be observed differences or patterns to do with the days stored at room temperature. On
239 the second axis, subject 5 was more distant than others for stool samples. This subject also showed
240 lower alpha diversity (**Figure 5**).

242 3.2 Stability of the Samples

243 The Shannon index for oral samples preserved in chlorhexidine was stable over the 15 days at RT, with
244 no substantial trend (**Table 1**; **Figure 1**). However, the
245 alpha diversity index decreased over time for stool samples. Nevertheless, although the shipment of
246 the samples is not expected to take so long, the Shannon Index variation over the 15 days was only -
247 3.68% for the FIT collection method (**Figure 1**). For the 70%
248 ethanol and oral wash collection methods, the shifts were -2.12% and -0.59%, respectively. The
249 pairwise comparison of time points 0 and 5 did not show a major change.

250 The results remained unchanged when we performed the sensitivity analysis excluding subject 5 since
251 it was found apart from the rest in the Principal Coordinates Analysis plot, both with Jaccard and Bray–
252 Curtis dissimilarity matrices.

253 **3.3 Top 5 Phyla Stability over Time**

254 The results from the MANOVA (**Supplementary Table S4**) indicated no differences regarding the
255 days that the samples were stored at room temperature in the relative abundances of the most common
256 phyla (*Firmicutes*, *Bacteroidota*, *Actinobacteriota*, *Proteobacteriota* and *Campylobacterota*)

257 **3.4 Top 20 Orders Stability over Time**

258 MANOVA comparisons between the top 20 orders and the days at room temperature (**Supplementary**
259 **Table S5**) only showed differences in a few low-frequency orders. At 15 days, *Burkholderiales*
260 decreased by 7.8% and 15.1% in the oral wash and FIT samples, respectively, and *Synergistales*
261 decreased by 57.3% in the FIT samples. No major shifts were found.

262 The fecal microbiome at the order level of sample 5 was different from the others; however, it showed
263 similar stability patterns (**Figure 7**).

264 **4 Discussion**

265 The stability of microbiome samples at room temperature for 15 days was investigated for oral wash
266 samples preserved in chlorohexidine and two fecal collection methods (FIT and 70% ethanol). We
267 found that oral microbiome diversity and composition were, in general, very stable during the 15 days
268 at room temperature. For both fecal preservation methods, however, a small decrease in diversity was
269 observed, mainly after day 5, with the samples stored in ethanol showing more heterogeneity. Between
270 subjects, variability was of similar magnitude to the fluctuations in alpha diversity observed over time.

271 Although the microbial profile stability has previously been validated for 95% ethanol (Byrd *et al.*,
272 2019; Marotz *et al.*, 2021; Song *et al.*, no date), several studies caution against the use of 70% ethanol
273 since it is found to be less stable than other collection methods stored for 4 days (Sinha *et al.*, 2016;
274 Byrd *et al.*, 2019), 1 week (Sinha *et al.*, 2016; Marotz *et al.*, 2021) and 8 weeks (Song *et al.*, no date).
275 Other works do not report significant changes between immediately frozen samples and the 70%
276 ethanol microbiome samples stored for 8 weeks at room temperature (Park *et al.*, 2020). Our results
277 are in agreement with previous works that reported no significant changes between immediately frozen
278 samples and 70% ethanol samples for microbiome studies, at least for 5 days at room temperature,
279 which is the usual shipment time.

280 Regarding the FIT collection method, several studies recommend its use in epidemiological studies. It
281 has been proved that, in terms of alpha diversity, FIT samples remain stable for one week at RT (Gudra
282 *et al.*, 2017; Byrd *et al.*, 2019; Krigul *et al.*, 2021). Our work agrees with previous research, not
283 showing significant changes in the composition of the samples.

284 Previous studies used Scope® oral wash to preserve oral microbiome samples (Vogtmann *et al.*, 2019;
285 Yano *et al.*, 2020), and its stability at room temperature was already verified (Vogtmann *et al.*, 2019;
286 Wu *et al.*, 2021); however, it is not easily found in Europe. As chlorhexidine has been commonly used
287 in many clinical trials where effective results have been proven in reducing the proliferation of bacterial
288 species (Eick *et al.*, 2011; James *et al.*, 2017; Ben-Knaz Wakshlak, Pedahzur and Avnir, 2019; Brookes
289 *et al.*, 2020; Sedghi *et al.*, 2021; Xiang, Rojo and Prados-Frutos, 2021), we opted for Lacer®
290 Chlorhexidine oral wash to preserve the samples. To the best of our knowledge, the stability of Lacer®
291 oral wash samples at room temperature has not been previously studied. Our results sustain that the
292 alpha diversity of the samples remained stable for 15 days at RT with no major shifts.

293 Although we are aware that the small sample size of the present study is not powered to perform
294 statistical tests, the estimates of change and 95% confidence intervals allow a reasonable assessment
295 of the quality of the sample preservation methods. On average, the magnitude of the changes in alpha
296 diversity was smaller than 2%, allowing a reasonable assessment of the quality of the sample
297 preservation methods. Phylum compositions showed good temporal stability, except for fecal samples
298 preserved in ethanol in subject number 5, which had a different microbiome pattern. Furthermore, a
299 shift was observed in individual 1 for the 70% ethanol samples, while *Actinobacteriota* increased and
300 *Firmicutes* and *Bacteroidota* decreased. Regarding order compositions, although slight relative
301 abundance differences could be found in a few of the low-abundance orders, the main ones remained
302 stable during the time of the study.

303 **5 Conclusion**

304 To conclude, the stability of the samples regarding diversity and composition was verified for the
305 chlorohexidine oral wash and two fecal methods (FIT and 70% ethanol). Alpha diversity was
306 maintained over 15 days at room temperature for the chlorohexidine oral wash. For fecal samples, both
307 70% ethanol and FIT showed a decrease in diversity over time but a small decrease during the first 5
308 days. The relative abundance of the top 5 phyla and the top 20 orders was verified to be consistent for
309 the three methods.

310 **6 Author Contributions**

311 VM, MOS and EG conceptualization. VM, MOS, EG and BRS data curation. VM, MOS, BRS, AGS,
312 OKL, ES and TG formal analysis. BRS, MOS and VM writing – original draft. DBC, AGS, EG, OKL,
313 ES and TG Writing – review & editing. All authors have read and agreed to the published version of
314 the manuscript.

315 **7 Funding**

316 B.R.-S received a pre-doctoral grant from Instituto de Salud Carlos III -grant PFIS FI21/00056 (co-
317 founded by the European Union). D.B.-C received a post-doctoral fellowship from Instituto de Salud
318 Carlos III-grant CD21/00094 (co-funded by European Social Fund. ESF investing in your future). O.K-
319 S is supported by the Formación de profesorado universitario (FPU) program from the Spanish
320 Ministerio de Universidades (c).

321 This research was partially funded by public grants from the Instituto de Salud Carlos III, co-funded
322 by FEDER funds –a way to build Europe– (FIS PI20/01439 and FI19/00221).
323 We acknowledge support from the European COST (Cooperation in Science and Technology) Action:
324 ML4MB-Statistical and machine learning techniques in human Microbiome studies (CA18131).
325 The TG group acknowledges support from the Spanish Ministry of Science and Innovation for grant
326 PGC2018-099921-B-I00, cofounded by the European Regional Development Fund (ERDF); from the
327 Catalan Research Agency (AGAUR) SGR423; from the European Union’s Horizon 2020 research and
328 innovation program (ERC-2016-724173); from the Gordon and Betty Moore Foundation (Grant
329 GBMF9742); from the “La Caixa” foundation (Grant LCF/PR/HR21/00737), and the Instituto de Salud
330 Carlos III (IMPACT Grant IMP/00019 and CIBERINFEC CB21/13/00061- ISCIII-SGEFI/ERDF).

331 **8 Acknowledgments**

332 We gratefully thank all volunteers and staff for their time and commitment to the study. The Lacer
333 company freely provided Chlorhexidine mouthwash to carry out this study. The authors thank the

334 CERCA Program/Generalitat de Catalunya for their institutional support and the Genomics Unit at the
335 CRG (Centre for Genomic Regulation, Barcelona, Spain) for assistance with 16S sequencing.

336 **9 References**

337 Ben-Knaz Wakshlak, R., Pedahzur, R. and Avnir, D. (2019) ‘Antibacterial Activity of Chlorhexidine-Killed
338 Bacteria: The Zombie Cell Effect’, *ACS Omega*, 4(25), pp. 20868–20872. Available at:
339 <https://doi.org/10.1021/acsomega.9b00297>.

340 Bescos, R. *et al.* (2020) ‘Effects of Chlorhexidine mouthwash on the oral microbiome’, *Scientific Reports*,
341 10(1), p. 5254. Available at: <https://doi.org/10.1038/s41598-020-61912-4>.

342 Brookes, Z.L.S. *et al.* (2020) ‘Current uses of chlorhexidine for management of oral disease: a narrative
343 review’, *Journal of Dentistry*, 103, p. 103497. Available at: <https://doi.org/10.1016/j.jdent.2020.103497>.

344 Bull, M.J. and Plummer, N.T. (2014) ‘Part 1: The Human Gut Microbiome in Health and Disease’, *Integrative
345 Medicine: A Clinician’s Journal*, 13(6), pp. 17–22.

346 By IMPACTT investigators (2022) ‘Beta-diversity distance matrices for microbiome sample size and power
347 calculations - How to obtain good estimates’, *Computational and Structural Biotechnology Journal*, 20, pp.
348 2259–2267. Available at: <https://doi.org/10.1016/j.csbj.2022.04.032>.

349 Byrd, D.A. *et al.* (2019) ‘Reproducibility, stability, and accuracy of microbial profiles by fecal sample
350 collection method in three distinct populations’, *PLOS ONE*, 14(11), p. e0224757. Available at:
351 <https://doi.org/10.1371/journal.pone.0224757>.

352 Callahan, B. *et al.* (2015) *DADA2: High resolution sample inference from amplicon data*. Available at:
353 <https://doi.org/10.1101/024034>.

354 Cardona, S. *et al.* (2012) ‘Storage conditions of intestinal microbiota matter in metagenomic analysis’, *BMC
355 Microbiology*, 12(1), p. 158. Available at: <https://doi.org/10.1186/1471-2180-12-158>.

356 Carroll, I. *et al.* (2012) ‘Characterization of the Fecal Microbiota Using High-Throughput Sequencing Reveals
357 a Stable Microbial Community during Storage’, *PloS one*, 7, p. e46953. Available at:
358 <https://doi.org/10.1371/journal.pone.0046953>.

359 Chatzigiannidou, I. *et al.* (2020) ‘Oral biofilms exposure to chlorhexidine results in altered microbial
360 composition and metabolic profile’, *npj Biofilms and Microbiomes*, 6(1), pp. 1–8. Available at:
361 <https://doi.org/10.1038/s41522-020-0124-3>.

362 Chen, Y., Zhou, J. and Wang, L. (2021) ‘Role and Mechanism of Gut Microbiota in Human Disease’,
363 *Frontiers in Cellular and Infection Microbiology*, 11. Available at:
364 <https://www.frontiersin.org/articles/10.3389/fcimb.2021.625913> (Accessed: 28 July 2022).

365 Choo, J.M., Leong, L.E. and Rogers, G.B. (2015) ‘Sample storage conditions significantly influence faecal
366 microbiome profiles’, *Scientific Reports*, 5(1), p. 16350. Available at: <https://doi.org/10.1038/srep16350>.

367 Datta, S. and Guha, S. (eds) (2021) *Statistical Analysis of Microbiome Data*. Cham: Springer International
368 Publishing (Frontiers in Probability and the Statistical Sciences). Available at: [https://doi.org/10.1007/978-3-030-73351-3](https://doi.org/10.1007/978-3-
369 030-73351-3).

370 Dominianni, C. *et al.* (2014) ‘Comparison of methods for fecal microbiome biospecimen collection’, *BMC
371 microbiology*, 14, p. 103. Available at: <https://doi.org/10.1186/1471-2180-14-103>.

- 372 Durack, J. and Lynch, S.V. (2019) 'The gut microbiome: Relationships with disease and opportunities for
373 therapy', *The Journal of Experimental Medicine*, 216(1), pp. 20–40. Available at:
374 <https://doi.org/10.1084/jem.20180448>.
- 375 Eick, S. *et al.* (2011) 'Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses
376 against periodontopathogenic microorganisms', *Quintessence International* (Berlin, Germany: 1985), 42(8),
377 pp. 687–700.
- 378 Fan, Y. and Pedersen, O. (2021) 'Gut microbiota in human metabolic health and disease', *Nature Reviews.
379 Microbiology*, 19(1), pp. 55–71. Available at: <https://doi.org/10.1038/s41579-020-0433-9>.
- 380 Gorzelak, M.A. *et al.* (2015) 'Methods for Improving Human Gut Microbiome Data by Reducing Variability
381 through Sample Processing and Storage of Stool', *PLOS ONE*, 10(8), p. e0134802. Available at:
382 <https://doi.org/10.1371/journal.pone.0134802>.
- 383 Gudra, D. *et al.* (2017) 'FIT test-systems for mega-scale gut microbiome testing', *Annals of Oncology*, 28, p.
384 iii22. Available at: <https://doi.org/10.1093/annonc/mdx261.032>.
- 385 Hong, J. *et al.* (2022) 'To rarefy or not to rarefy: robustness and efficiency trade-offs of rarefying microbiome
386 data', *Bioinformatics* (Oxford, England), p. btac127. Available at:
387 <https://doi.org/10.1093/bioinformatics/btac127>.
- 388 Illett, E.E. *et al.* (2019) 'Gut microbiome comparability of fresh-frozen versus stabilized-frozen samples from
389 hospitalized patients using 16S rRNA gene and shotgun metagenomic sequencing', *Scientific Reports*, 9(1), p.
390 13351. Available at: <https://doi.org/10.1038/s41598-019-49956-7>.
- 391 James, P. *et al.* (2017) 'Chlorhexidine mouthrinse as an adjunctive treatment for gingival health', *The
392 Cochrane Database of Systematic Reviews*, 3, p. CD008676. Available at:
393 <https://doi.org/10.1002/14651858.CD008676.pub2>.
- 394 Krigul, K.L. *et al.* (2021) 'Using fecal immunochemical tubes for the analysis of the gut microbiome has the
395 potential to improve colorectal cancer screening', *Scientific Reports*, 11(1), p. 19603. Available at:
396 <https://doi.org/10.1038/s41598-021-99046-w>.
- 397 Lu, M., Xuan, S. and Wang, Z. (2019) 'Oral microbiota: A new view of body health', *Food Science and
398 Human Wellness*, 8(1), pp. 8–15. Available at: <https://doi.org/10.1016/j.fshw.2018.12.001>.
- 399 Malla, M.A. *et al.* (2019) 'Exploring the Human Microbiome: The Potential Future Role of Next-Generation
400 Sequencing in Disease Diagnosis and Treatment', *Frontiers in Immunology*, 9. Available at:
401 <https://www.frontiersin.org/articles/10.3389/fimmu.2018.02868> (Accessed: 15 February 2023).
- 402 Marotz, C. *et al.* (2021) 'Evaluation of the Effect of Storage Methods on Fecal, Saliva, and Skin Microbiome
403 Composition', *mSystems*, 6(2), pp. e01329-20. Available at: <https://doi.org/10.1128/mSystems.01329-20>.
- 404 Martínez, M. *et al.* (2022) 'The Role of the Oral Microbiota Related to Periodontal Diseases in Anxiety, Mood
405 and Trauma- and Stress-Related Disorders', *Frontiers in Psychiatry*, 12. Available at:
406 <https://www.frontiersin.org/articles/10.3389/fpsyg.2021.814177> (Accessed: 28 July 2022).
- 407 McDonald, D. *et al.* (2018) 'American Gut: an Open Platform for Citizen Science Microbiome Research',
408 *mSystems*, 3(3), p. 10.1128/msystems.00031-18. Available at: <https://doi.org/10.1128/msystems.00031-18>.
- 409 McMurdie, P.J. and Holmes, S. (2013) 'phyloseq: An R Package for Reproducible Interactive Analysis and
410 Graphics of Microbiome Census Data', *PLOS ONE*, 8(4), p. e61217. Available at:
411 <https://doi.org/10.1371/journal.pone.0061217>.

- 412 Moossavi, S. *et al.* (2019) 'Assessment of the impact of different fecal storage protocols on the microbiota
413 diversity and composition: a pilot study', *BMC Microbiology*, 19, p. 145. Available at:
414 <https://doi.org/10.1186/s12866-019-1519-2>.
- 415 Nadkarni, M.A. *et al.* (2002) 'Determination of bacterial load by real-time PCR using a broad-range
416 (universal) probe and primers set', *Microbiology (Reading, England)*, 148(Pt 1), pp. 257–266. Available at:
417 <https://doi.org/10.1099/00221287-148-1-257>.
- 418 Nechvatal, J.M. *et al.* (2008) 'Fecal collection, ambient preservation, and DNA extraction for PCR
419 amplification of bacterial and human markers from human feces', *Journal of Microbiological Methods*, 72(2),
420 pp. 124–132. Available at: <https://doi.org/10.1016/j.mimet.2007.11.007>.
- 421 Obón-Santacana, M. *et al.* (2018) 'GCAT|Genomes for life: a prospective cohort study of the genomes of
422 Catalonia', *BMJ open*, 8(3), p. e018324. Available at: <https://doi.org/10.1136/bmjopen-2017-018324>.
- 423 Park, C. *et al.* (2020) 'Performance comparison of fecal preservative and stock solutions for gut microbiome
424 storage at room temperature', *Journal of Microbiology*, 58(8), pp. 703–710. Available at:
425 <https://doi.org/10.1007/s12275-020-0092-6>.
- 426 Peng, X. *et al.* (2022) 'Oral microbiota in human systematic diseases', *International Journal of Oral Science*,
427 14(1), pp. 1–11. Available at: <https://doi.org/10.1038/s41368-022-00163-7>.
- 428 Plantinga, A.M. and Wu, M.C. (2021) 'Beta Diversity and Distance-Based Analysis of Microbiome Data', in
429 S. Datta and S. Guha (eds) *Statistical Analysis of Microbiome Data*. Cham: Springer International Publishing
430 (Frontiers in Probability and the Statistical Sciences), pp. 101–127. Available at: https://doi.org/10.1007/978-3-030-73351-3_5.
- 432 Pragman, A. *et al.* (2020) '634. Chlorhexidine Oral Rinses to Alter the Oral and Sputum Microbiota in COPD
433 (CLIMB): a Randomized, Double-blinded, Placebo-controlled, Parallel-group Pilot Study', *Open Forum
434 Infectious Diseases*, 7(Suppl 1), p. S377. Available at: <https://doi.org/10.1093/ofid/ofaa439.828>.
- 435 Quast, C. *et al.* (2013) 'The SILVA ribosomal RNA gene database project: improved data processing and
436 web-based tools', *Nucleic Acids Research*, 41(Database issue), pp. D590–596. Available at:
437 <https://doi.org/10.1093/nar/gks1219>.
- 438 Reese, A.T. and Dunn, R.R. (2018) 'Drivers of Microbiome Biodiversity: A Review of General Rules, Feces,
439 and Ignorance', *mBio*, 9(4), pp. e01294-18. Available at: <https://doi.org/10.1128/mBio.01294-18>.
- 440 Roberto Flores *et al.* (2015) 'Collection media and delayed freezing effects on microbial composition of
441 human stool', *Microbiome*, 3(1), p. 33. Available at: <https://doi.org/10.1186/s40168-015-0092-7>.
- 442 Sedghi, L. *et al.* (2021) 'The oral microbiome: Role of key organisms and complex networks in oral health and
443 disease', *Periodontology 2000*, 87(1), pp. 107–131. Available at: <https://doi.org/10.1111/prd.12393>.
- 444 Sinha, R. *et al.* (2016) 'Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies', *Cancer
445 Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research,
446 Cosponsored by the American Society of Preventive Oncology*, 25(2), pp. 407–416. Available at:
447 <https://doi.org/10.1158/1055-9965.EPI-15-0951>.
- 448 Song, S.J. *et al.* (no date) 'Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability
449 for Field Studies', *mSystems*, 1(3), pp. e00021-16. Available at: <https://doi.org/10.1128/mSystems.00021-16>.

- 450 Soriano, S. *et al.* (2022) ‘Alterations to the gut microbiome after sport-related concussion in a collegiate
451 football players cohort: A pilot study’, *Brain, Behavior, & Immunity - Health*, 21, p. 100438. Available at:
452 <https://doi.org/10.1016/j.bbih.2022.100438>.
- 453 Tedjo, D.I. *et al.* (2015) ‘The effect of sampling and storage on the fecal microbiota composition in healthy
454 and diseased subjects’, *PLoS One*, 10(5), p. e0126685. Available at:
455 <https://doi.org/10.1371/journal.pone.0126685>.
- 456 Thukral, A. (2017) ‘A review on measurement of Alpha diversity in biology’, *Agricultural Research Journal*,
457 54, p. 1. Available at: <https://doi.org/10.5958/2395-146X.2017.00001.1>.
- 458 Tuganbaev, T., Yoshida, K. and Honda, K. (2022) ‘The effects of oral microbiota on health’, *Science*,
459 376(6596), pp. 934–936. Available at: <https://doi.org/10.1126/science.abn1890>.
- 460 Vogtmann, E. *et al.* (2019) ‘Comparison of oral collection methods for studies of microbiota’, *Cancer
461 epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research,
462 cosponsored by the American Society of Preventive Oncology*, 28(1), pp. 137–143. Available at:
463 <https://doi.org/10.1158/1055-9965.EPI-18-0312>.
- 464 Voigt, A.Y. *et al.* (2015) ‘Temporal and technical variability of human gut metagenomes’, *Genome Biology*,
465 16, p. 73. Available at: <https://doi.org/10.1186/s13059-015-0639-8>.
- 466 Williams, G.M. *et al.* (2019) ‘Gut microbiome analysis by post: Evaluation of the optimal method to collect
467 stool samples from infants within a national cohort study’, *PLoS ONE*, 14(6), p. e0216557. Available at:
468 <https://doi.org/10.1371/journal.pone.0216557>.
- 469 Willis, A.D. (2019) ‘Rarefaction, Alpha Diversity, and Statistics’, *Frontiers in Microbiology*, 10. Available at:
470 <https://www.frontiersin.org/article/10.3389/fmicb.2019.02407> (Accessed: 12 May 2022).
- 471 Willis, J.R. *et al.* (2018) ‘Citizen science charts two major “stomatotypes” in the oral microbiome of
472 adolescents and reveals links with habits and drinking water composition’, *Microbiome*, 6(1), p. 218.
473 Available at: <https://doi.org/10.1186/s40168-018-0592-3>.
- 474 Willis, J.R. and Gabaldón, T. (2020) ‘The Human Oral Microbiome in Health and Disease: From Sequences to
475 Ecosystems’, *Microorganisms*, 8(2), p. 308. Available at: <https://doi.org/10.3390/microorganisms8020308>.
- 476 Wu, Z. *et al.* (2021) ‘Comparison of fecal and oral collection methods for studies of the human microbiota in
477 two Iranian cohorts’, *BMC Microbiology*, 21. Available at: <https://doi.org/10.1186/s12866-021-02387-9>.
- 478 Xiang, L., Rojo, R. and Prados-Frutos, J.C. (2021) ‘Evaluation of the Efficacy of Lacer HaliTM Treatment on
479 the Management of Halitosis: A Randomized Double-Blind Clinical Trial’, *Journal of Clinical Medicine*,
480 10(11), p. 2256. Available at: <https://doi.org/10.3390/jcm10112256>.
- 481 Yano, Y. *et al.* (2020) ‘Comparison of Oral Microbiota Collected Using Multiple Methods and
482 Recommendations for New Epidemiologic Studies’, *mSystems*, 5(4), pp. e00156-20. Available at:
483 <https://doi.org/10.1128/mSystems.00156-20>.
- 484 Young, C. *et al.* (2021) ‘Microbiome Analysis of More Than 2,000 NHS Bowel Cancer Screening Programme
485 Samples Shows the Potential to Improve Screening Accuracy’, *Clinical Cancer Research: An Official Journal
486 of the American Association for Cancer Research*, 27(8), pp. 2246–2254. Available at:
487 <https://doi.org/10.1158/1078-0432.CCR-20-3807>.

488 10 Data Availability Statement

489 The dataset supporting the conclusions of this article is available in the Zenodo repository,
490 <https://zenodo.org/records/7684999> (DOI: c, accessed on 28th February 2023). Raw data is available
491 in ENA with project accession PRJEB67775 (<https://www.ebi.ac.uk/ena/browser/view/PRJEB67775>),
492 accessed on 27th October 2023.

493 **11 Conflict of interest**

494 The authors declare that they have no competing interests. The funders and the Lacer company had no
495 role in the design, collection, analyses, or interpretation of data; in the writing of the manuscript, or in
496 the decision to publish.

497 **12 Ethics declarations**

498 No animal studies are presented in this manuscript.

499 The studies involving humans were approved by University Hospital of Bellvitge (PR084/16). The
500 studies were conducted in accordance with the local legislation and institutional requirements. The
501 participants provided their written informed consent to participate in this study.

502 No potentially identifiable images or data are presented in this study.

503 **13 Tables**

504 **Table 1** Slopes of the Generalized Linear Mixed Models for Shannon Index with 95% confidence
505 intervals and 5-day percentage mean decrease.

Shannon Index				
Method	Average time 0	Slope coefficient	95% CI	5-day % decrease
OW-CH	3.38	-0.002	(-0.009; 0.005)	-0.32
FIT	3.53	-0.011	(-0.021; -0.001)	-1.58
ETHANOL	3.30	-0.011	(-0.034; 0.012)	-1.67

510 **Table 2** Mean at time 0 (standard error) and absolute difference and percentage of change of pairwise
511 comparisons of the time points with respect to day 0. Average values were derived from the estimated
512 marginal means of the LMM model.

Shannon Index						
		OW-CH		FIT		ETHANOL
Mean time 0 (s.e)		3.38 (0.07)		3.53 (0.16)		3.30 (0.24)
Time point	Absolute difference	% Change	Absolute difference	% Change	Absolute difference	% Change
0-5	-0.07	2.37	-0.04	1.42	-0.05	1.52
0-10	-0.03	0.89	0.12	-3.40	0.27	-8.48
0-15	0.02	-0.59	0.13	-3.68	0.07	-2.12

513

514 **14 Figures**

515 **Figure 1** Sample collection diagram

516 **Figure 2** Principal Coordinates Analysis based on Bray–Curtis dissimilarity matrix stratified by
517 method, sample and days at room temperature representing beta diversity

518 **Figure 3** Shannon index plot for each method in immediately frozen samples, its mean and 95%
519 Confidence Interval

520 **Figure 4** Mean and range richness of the samples at all taxonomy levels among the days at room
521 temperature for each sequencing method

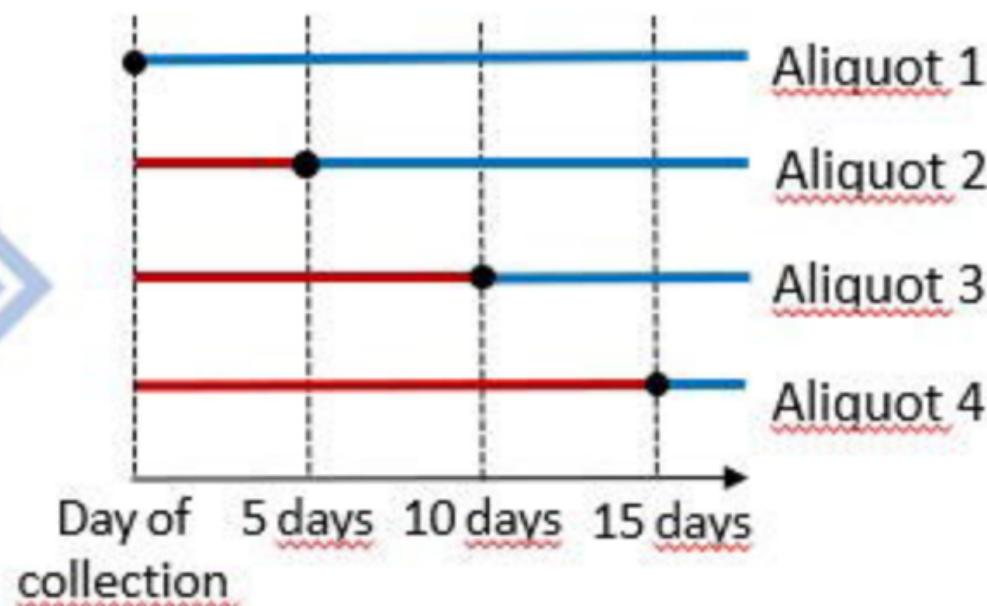
522 **Figure 5** Shannon index at each time point and predicted values based on Generalized Linear Mixed
523 Models for the three methods

524 **Figure 6** Relative abundance plots for the main phyla per method and individual among the time at
525 room temperature

526 **Figure 7** Relative abundance plots for the main order per method and individual among the time at
527 room temperature

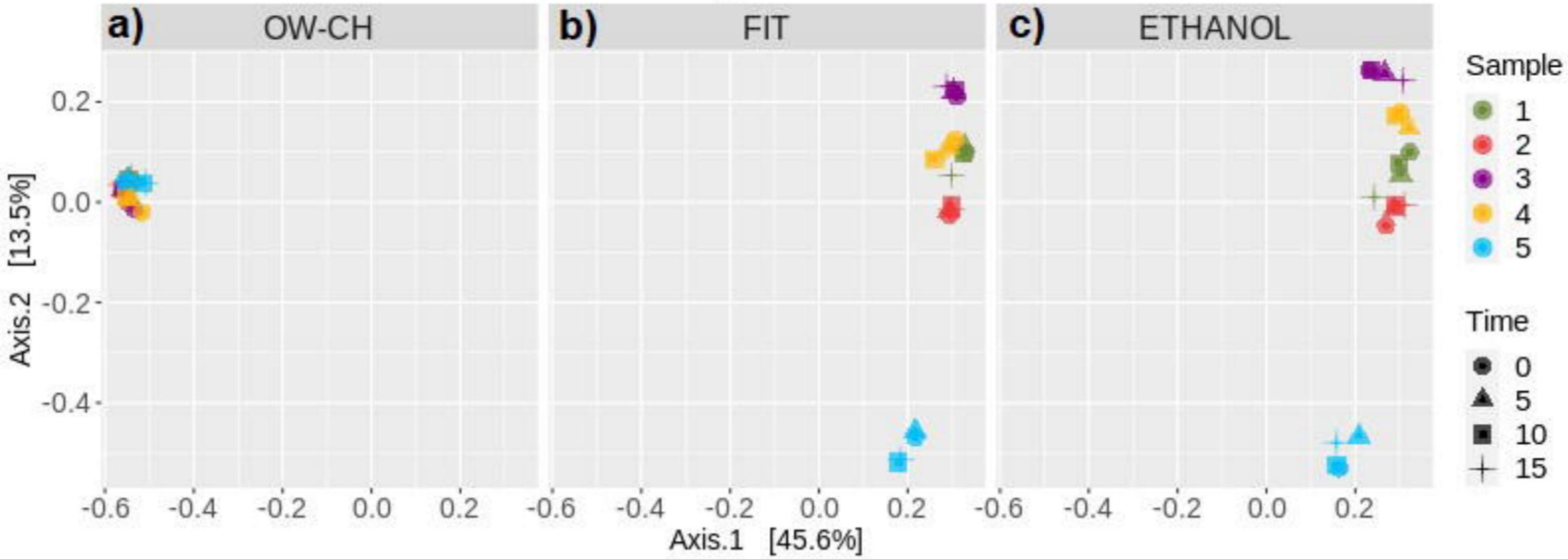
5 Donors

3 collection methods

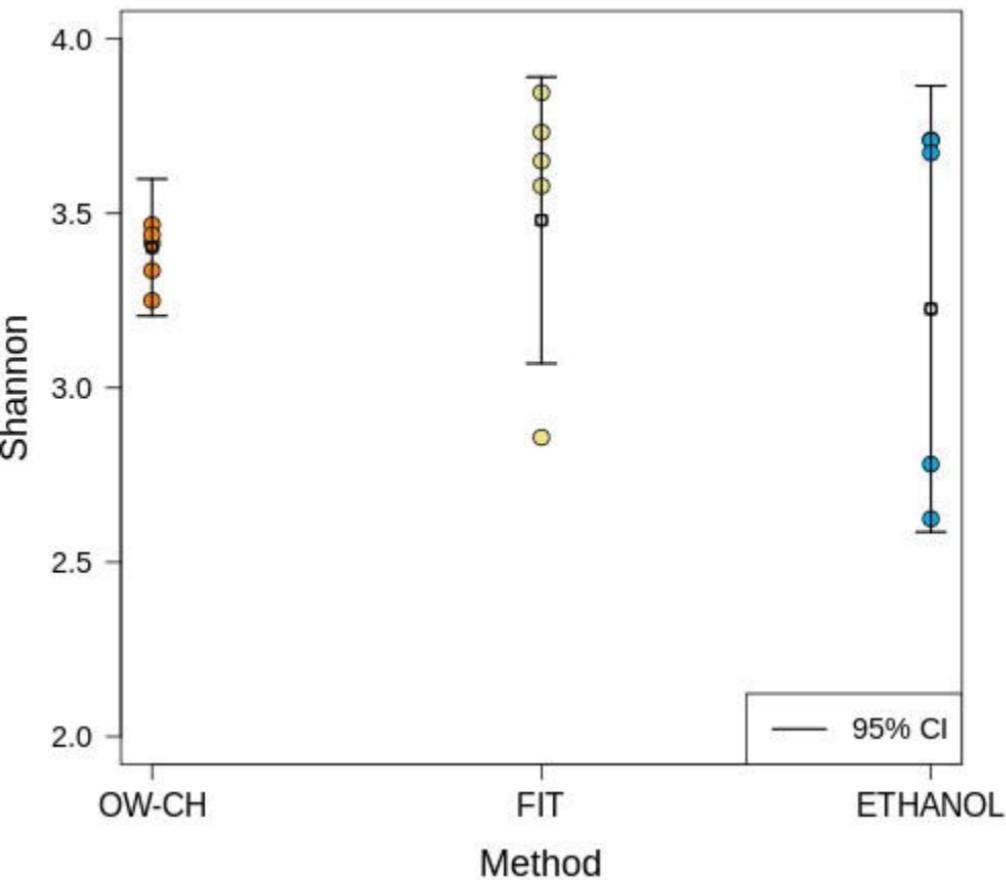

Fit aliquot (FIT)

Stool 70% Ethanol
(ETHANOL)

Chlorhexidine oral
wash (OW-CH)



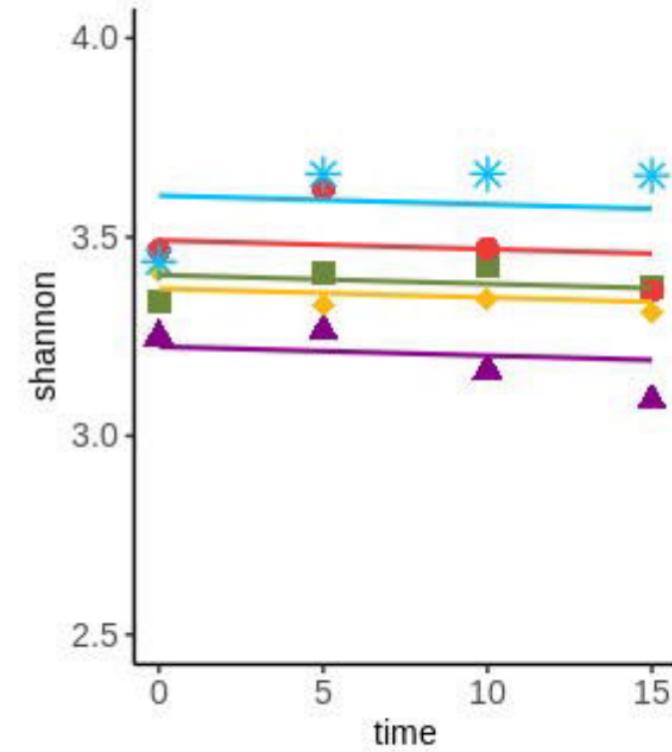
4 aliquots



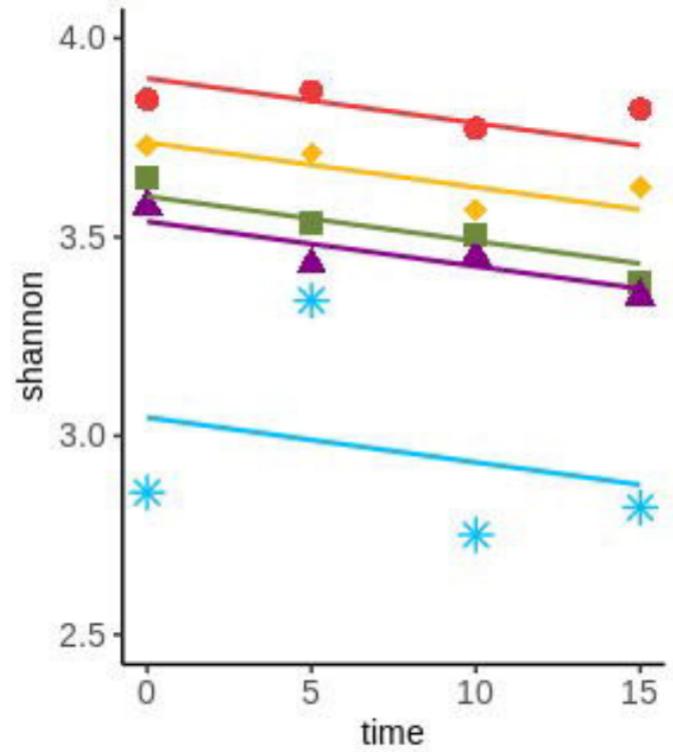
Days at room temperature until
being frozen at -80°C

PCoA of Bray-Curtis distance

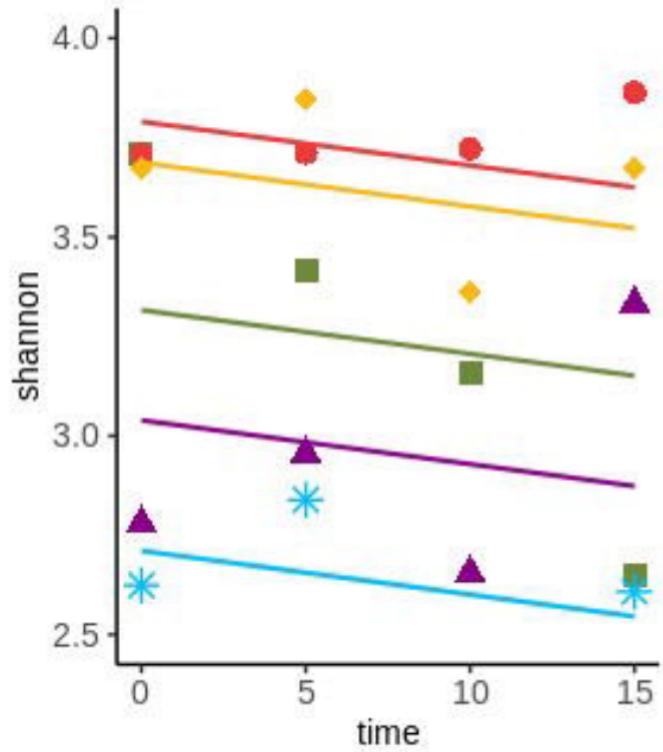
Shannon index per method



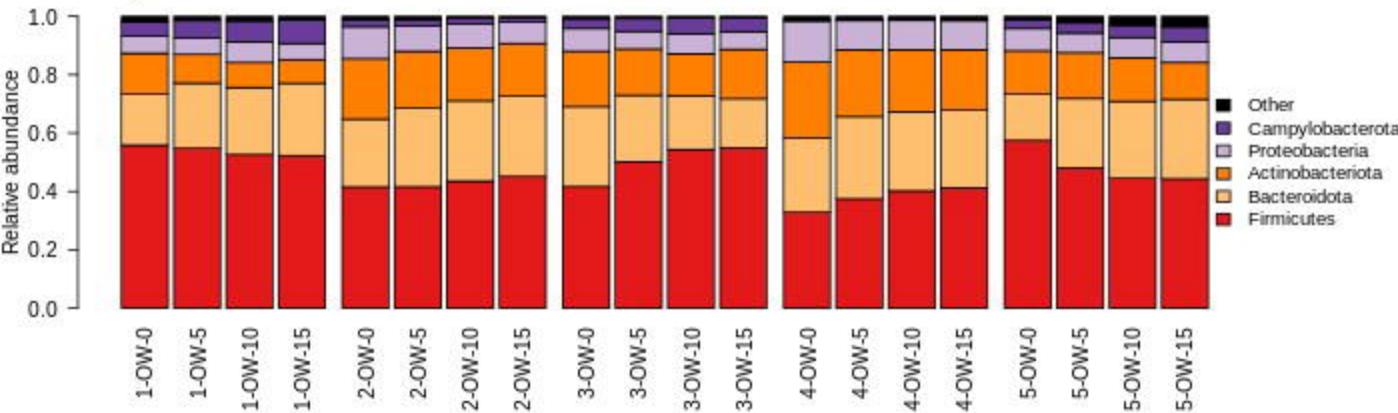
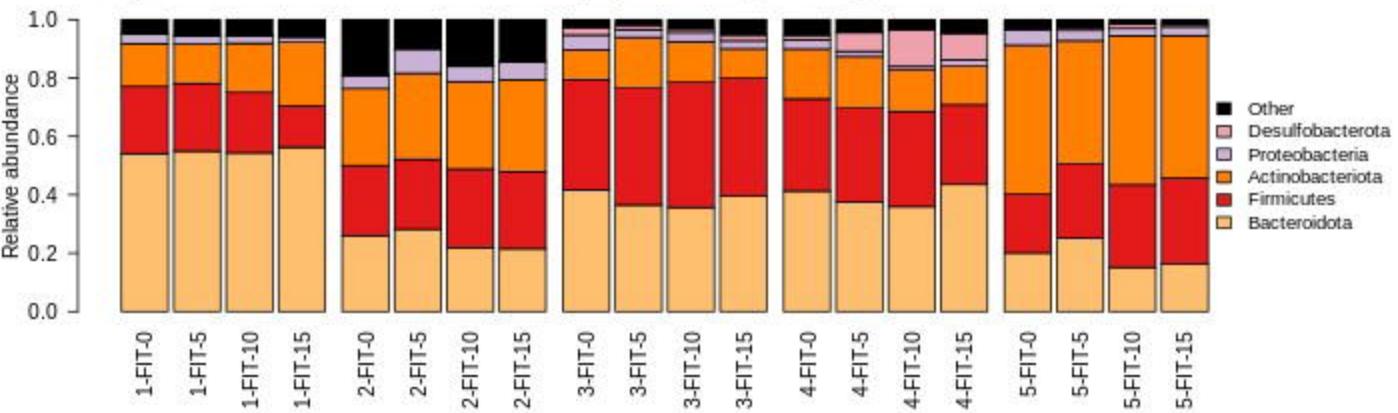
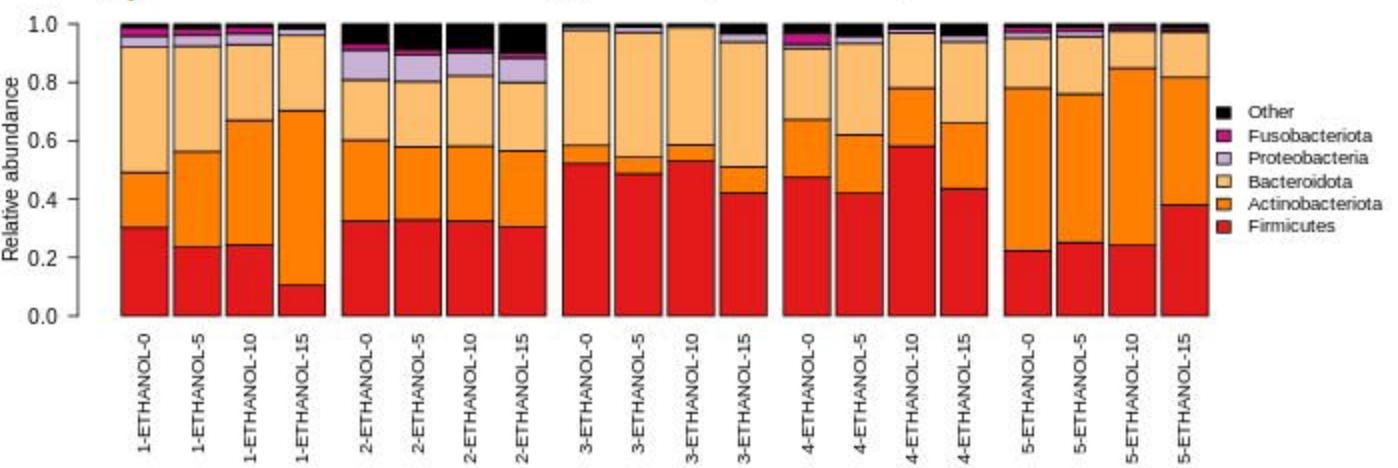
Shannon Index with predicted values

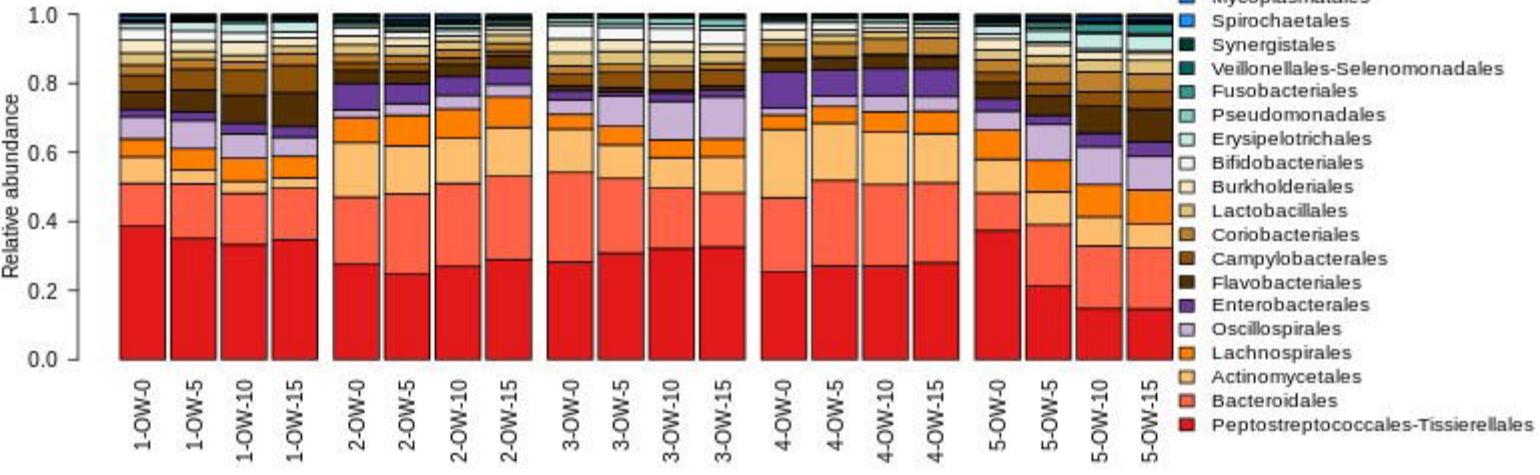
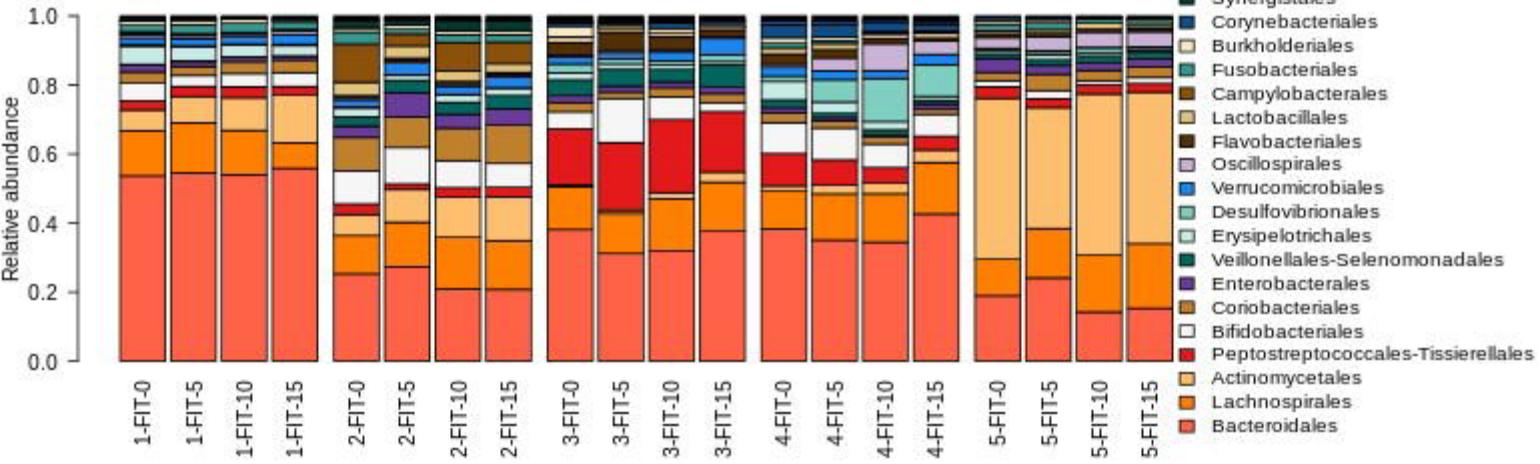
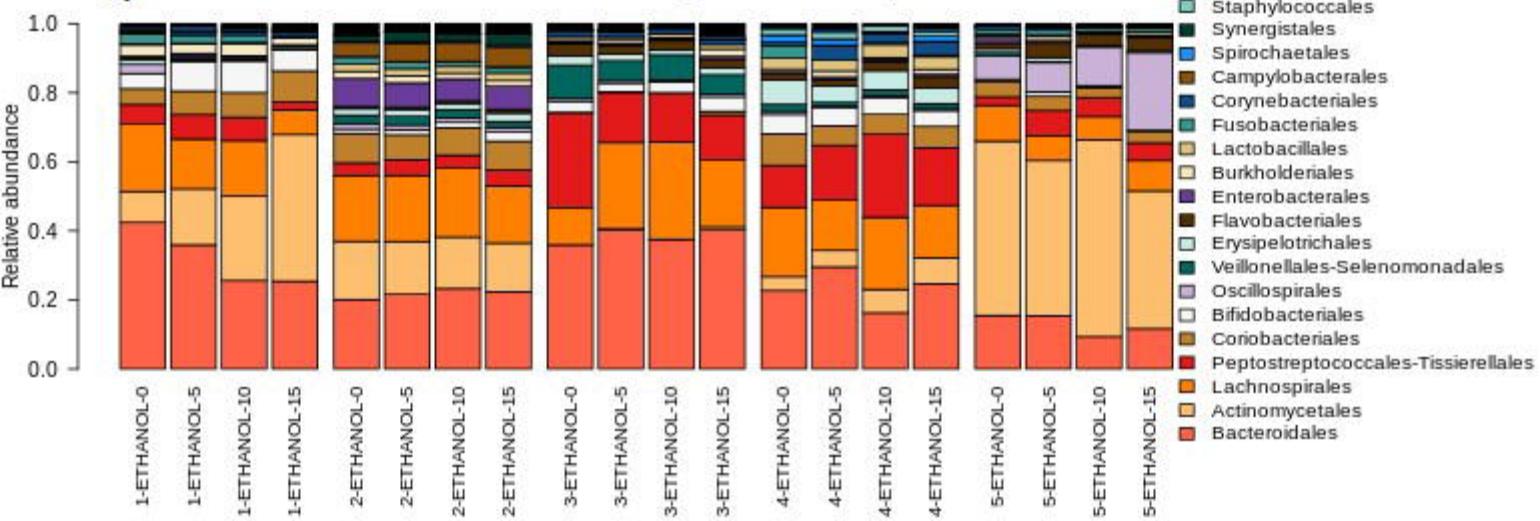

a)

OW-CH


b)

FIT




c)

ETHANOL

sample 1 2 3 4 5

a)**Abundance at phylum level by OW-CH samples****b)****Abundance at phylum level by FIT samples****c)****Abundance at phylum level by ETHANOL samples**

a)**Abundance at order level by OW-CH samples****b)****Abundance at order level by FIT samples****c)****Abundance at order level by ETHANOL samples**