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The quantification of covariance between neuronal activities (functional connectivity) requires the observation

of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself

undergo moment-by-moment fluctuations, which might e.g. lead to fluctuations in single-trial metrics such as

reaction time (RT), or may co-fluctuate with the correlation betwe'en activity in other brain areas. Yet, quantify-

ing the relation between moment-by-moment co-fluctuations in neuronal correlations is precluded by the fact

that neuronal correlations are not defined per single observation. The proposed solution quantifies this relation

by first calculating neuronal correlations for all leave-one-out subsamples (i.e. the jackknife replications of all

observations) and then correlating these values. Because the correlation is calculated between jackknife replica-

tions, we address this approach as jackknife correlation (JC). First, we demonstrate the equivalence of JC to

conventional correlation for simulated paired data that are defined per observation and therefore allow the

calculation of conventional correlation. While the JC recovers the conventional correlation precisely, alternative

approaches, like sorting-and-binning, result in detrimental effects of the analysis parameters. We then explore

the case of relating two spectral correlation metrics, like coherence, that require multiple observation epochs,

where the only viable alternative analysis approaches are based on some formof epoch subdivision,which results

in reduced spectral resolution and poor spectral estimators. We show that JC outperforms these approaches,

particularly for short epoch lengths, without sacrificing any spectral resolution. Finally, we note that the JC can

be applied to relate fluctuations in any smooth metric that is not defined on single observations.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

Brain activity exhibits a very high degree of moment-to-moment

variability. Activity fluctuations in one brain area are often correlated

to fluctuations in other areas. These inter-areal correlations themselves

most likely also undergo moment-to-moment fluctuations in strength,

and it is an intriguing question whether those fluctuations are related

to fluctuations in behavior, in the activity of other brain areas, or in

the strength of correlation between other brain areas. Consider the fol-

lowing example: Areas A and B might show beta-band coherence, and

at the same time areas B and C might show gamma-band coherence.

This might lead us to wonder if the interaction between areas A and B

is related to the interaction between B and C. Determining such a rela-

tion is highly desirable for neuroimaging applications where the

correlation between elements of large-scale networks is an issue of

great interest (Park and Friston, 2013; Turk-Browne, 2013). Yet, this is

difficult to achieve, because determining the strength of correlation al-

ready entails the observation of changes in one signal and related changes

in another signal. Thus, determining correlation requires multiple obser-

vations and therefore, the strength of correlation cannot be determined

on a single observation, i.e. it cannot be determined on a moment-by-

moment basis. So, is it impossible to relate fluctuations in the correlation

strength between two areas to fluctuations in other parameters?

Here, we present an approach that achieves this: The Jackknife Cor-

relation (JC). JC builds on the work of Stahl and Gibbons (2004), which

extended the jackknife method of Miller et al. (1998) to the case of

quantifying correlations between brain potentials and behavioral vari-

ables. They demonstrate that correlating jackknife estimates of the

lateralized readiness potential to personality metrics is superior to

single-subject based approaches. JC transfers this rationale to the case

of correlations involving covariance-based metrics, which are strictly

not defined for single observations. JC enables the correlation of these
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metrics to other metrics, like RT (that are defined on single observa-

tions), but crucially, JC also allows the correlation of these metrics to

each other like in the above example of correlating the A–B beta-band

coherence to the B–C gamma-band coherence. Thereby, it is an impor-

tant new tool for the investigation of functional connectivity.

The jackknife technique successively leaves out each observation

once. Each time one observation is left out, this results in an all-but-

one ensemble of observations, called a jackknife replication. Thereby,

for N observations, there are N jackknife replications. Each jackknife

replication contains N-1 observations, and thereby allows quantifying

the correlation strength across those N-1 observations. These correla-

tion strengths fluctuate across the N jackknife replications. Because

each jackknife replication leaves out only one observation, the variance

across jackknife replications is small. Yet because each jackknife replica-

tion leaves out precisely one observation, the variance across jackknife

replications is a precise transform of the variance across the original ob-

servations. Because correlation is driven solely by covariance and nor-

malized for the variances of the correlated signals, the correlation

between jackknife replications is in fact identical to the correlation be-

tween the original observations. We will demonstrate this first for sim-

ulated data that are defined for each single observation. We propose

that this is an answer to the abovementioned question, namely that

the same approach can be taken for testingwhether fluctuations in cor-

relation are related to other parameters, even though it may not be pos-

sible to determine the value of either variable on amoment-by-moment

basis, as is the case for ensemblemetrics such as coherence.We support

the proposal by simulating data with an autoregressivemodel such that

the correlation was dependent on a fluctuating pre-determined control

parameter. This pre-specified relation between the control parameter

and the correlation was then successfully recovered through JC.

Alternative approaches to computing correlation upon covariance-

based metrics

Approaches to this problem can be divided into two classes. The first

seeks to determine a value for the covariance-based metric or each sin-

gle trial. The second approach estimates the ensemble metric over sub-

groups of trials formed by decomposing the total number of trials into

subensembles. Consider the following example: Supposewewish to in-

vestigate the trial-by-trial correlation between reaction time (RT) and

inter-areal gamma-band coherence. While RT is defined on each trial,

coherence is not. Coherence quantifies the consistency of phase rela-

tions across multiple trials, which renders it undefined at the level of a

single trial. The first approach would attempt to determine the coher-

ence of each single trial by subdividing each trial into multiple epochs

and computing the coherence over each of these sub-segments

(Welch, 1967; Lachaux et al., 2000). Alternatively, one could achieve

the same single-trial estimate by applying multiple data tapers over

the single epoch (Mitra and Pesaran, 1999). Yet, both methods are lim-

ited by the nature of brain dynamics in general, where periods of inter-

est are often present for only brief instances, such that single trials are

typically too short to derive multiple spectral estimators, or apply

large numbers of tapers. Another approach to estimating coherence on

a single-trial basis, which is in fact closely related to JC, is the use of

jackknife pseudovalues (Womelsdorf et al., 2006). The jackknife

pseudovalue is an estimate of the single-trial value of a statistic that is

based on the difference between 1) the statistic calculated across all tri-

als (weighted by n) and 2) the statistic calculated on all-but-one trial

(weighted by n-1). A problem with the pseudovalue approach can

arise e.g. from the following combination of facts: 1) the difference be-

tween the all-trial and the leave-one-out estimate is very small, and

2)many interestingmetrics, like coherence, carry a sample-size depen-

dent bias (Maris et al., 2007), i.e. the coherence biaswill be slightly larg-

er for the leave-one-out estimate than for the complete estimate. While

the bias from point 2) is small, also the difference from point 1) is small,

and this combination can lead to problems with the single-trial

estimate, that necessitate complicated solutions. These problems are

fully avoided by JC, because it calculates the correlation directly be-

tween the jackknife replications of the statistic without attempting to

estimate the statistic on a single trial. If one nevertheless wants to esti-

mate coherence on the single trial level, e.g. for illustration purposes,

then the pseudovalue approach might be used together with a bias-

freemetric of interaction strength, like the recently introduced pairwise

phase consistency metric, PPC (Vinck et al., 2010). To summarize,

single-trial estimation approaches all suffer from either reduced accura-

cy of the estimate, or excessive computational complexity, thus it is

most desirable toworkwith coherence estimates computed overmulti-

ple trials.

The second approach does just this andwe address it as sorting-and-

binning. Sorting-and-binning can only be used if one of the variables is

defined on the basis of single observations. The observations are sorted

and binned according to this (single-observation-defined) variable. For

this variable, the mean per bin is computed. For the other variable,

which is not defined on a single observation, the covariance-basedmet-

ric is calculated separately per bin, across the multiple observations

within each bin. Finally, the correlation between the two metrics is

computed across the bins. This approach can be found in a large

number of studies ranging beyond neuroscience. See Liang et al.

(2002),Hanslmayr et al. (2007),Womelsdorf et al. (2007) andvan

Elswijk et al. (2010) as examples of the technique. It's important to

note that if neither quantity over which we wish to perform the corre-

lation is defined on a single-observation basis, then this method cannot

be applied, since sorting cannot be performed. JC is not limited in this

way since neither variable need be defined for a single trial. We will

further investigate the process of sorting-and-binning to illustrate

some often overlooked statistical pitfalls of this technique while in par-

allel developing the mechanics of JC.

The sorting-and-binning approach

The sorting-and-binning approach proceeds in the following man-

ner: Suppose we have 1000 trials. We can sort these according to RT,

bin them into 20 bins of 50 trials, calculate the mean RT per bin, calcu-

late coherence per bin across the 50 trials in the bin, andfinally calculate

the correlation between RT and coherence across the 20 bins. With this

approach, the coherence per bin can be computed, because each bin

comprises 50 trials. We will demonstrate below that such a binning

strategy carries substantial statistical costs. Suppose we have only 200

trials. We do not want to bin them into 20 non-overlapping bins of 10

trials each, because 10 trials will result in poor coherence estimates.

On the other hand, non-overlapping 50-trial bins will result in only 4

bins, which is a very low n for useful correlation. Thus, wemight consid-

er overlapping our bins. If the 50-trial bins are overlapped by 40 trials,

this furnishes us with 16 bins. We will demonstrate that the combina-

tion of binning with overlap incurs further costs.

To simplify this demonstration, we begin with two correlated ran-

dom variables, of 1000 trials, that are both defined on a single-trial

basis, such as e.g. the gamma-band power of two brain areas. We use

themean as the statistical operation we apply to each bin. The variables

were generatedwith a covariance of 0.1, which leads to a Pearson corre-

lation coefficient of r(998) = 0.1, p b 0.0018. The r-value and p-value

surfaces (Fig. 1) were computed using a grid of combinations between

overlap percentages and bin sizes, which was selected so as to include

only those combinations that used all of the data with no remainder,

i.e. the final bin terminated on the final data sample. This grid is irregu-

larly spaced. For a maximum bin size of 250 trials, this resulted in 1286

bin/overlap combinations, which each resulted in a Pearson product

moment-correlation coefficient r and significance level p. To establish

statistical stability, these values were evaluated 10,000 times and aver-

aged. Correlation coefficients were converted to t-values and assessed

for significance using Student's t-distribution (Rahman, 1968). The

resulting irregular grid of r- and p-values was interpolated to an even
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grid with a spacing of 5 trials using Delaunay triangulation. All simula-

tions were performed using MATLAB (The MathWorks, Inc.).

We can now examine the various binning/overlap parameteriza-

tions (Fig. 1). For the case of zero overlap, Fig. 1 demonstrates that an in-

creasing number of trials per bin results in a correlation coefficient that

increases from the true trial-by-trial value of 0.1 to a value close to 1

(blue curve in Fig. 1A). This can be explained by examining the scatter

plots in Fig. 2(E, F, I, and J), which show that the residuals (the distance

of each point from the line of best fit) decrease as the bin size increases.

This effect is due to the averaging out of random variation in the data.

While the large r is not incorrect if considered in the context of its calcu-

lation, and it might appeal to a scientist looking for a clear effect, there

are several points that have to be considered: 1) When the r-value is

computed between the single-trial variables, then the squared r-value
gives the variance in one variable explained by the variance in the

other, i.e. r and r-squared can be used directly as metrics of an effect

size (Cohen, 1988). After binning, the (squared) r-value cannot any-

more be interpreted in this way. Readers need to take this into account

when interpreting r-values obtained with binning. 2) The resulting r-
valuewill depend on the original r-value and also on the amount of bin-

ning. When binning differs, e.g. between different studies, this renders

the r-values incomparable. 3) The amount of binning affects the p-

value. Fig. 1 reveals that the increase in the correlation coefficient ismir-

rored by an increase in the p-value,which is simply explained by the de-

crease in n (the number of bins) as the bin size increases. As a

consequence, with increasing bin size, more and more tests will fail to

reach significance. We illustrate this with the power analysis shown in

Fig. 3. The curve in Fig. 3 corresponds to the zero-overlap tests shown

by the blue curves in Figs. 1 and 2. Statistical power is the probability

of correctly identifying an experimental effect, and thus quantifies the

sensitivity of a test. To establish the statistical power as a function of

bin size we performed the following Monte-Carlo simulation (keeping

the type I error rate fixed at 0.05). We first simulated (using the

MATLAB function mvnrnd) two random variables of sample size n and

expected correlation r, and computed the observed correlation r in

that sample. This was repeated 1000 times, leading to a randomization

distribution for r. Second,we generated two randomvariables of sample

size n and correlation r of zero, and computed the correlation r0, again
1000 times, leading to a randomization distribution for r0. From this lat-

ter distribution, we determined the 95th percentile. Finally, we deter-

mined the proportion of the randomization distribution of r that

exceeded the 95th percentile of the randomization distribution of r0.
This proportionwas taken as the power for detecting a significant corre-

lation, given r and n. For a true r of 0.1, Fig. 1A shows the estimates of r
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for different overlap percentages and bin sizes. For zero overlap and a

representative subset of bin sizes, we determined the number of bins

n and the estimate of r (the latter by reading from Fig. 1A). For those

pairs of r and n, we determined the statistical power, as explained

above, 100 times and show the average statistical power across those

100 repetitions in Fig. 3.

As suspected based on the behavior of the p-value with increasing

bin size, the statistical power systematically decreases as the bin size

is increased from 1 trial to 250 trials. As bin size increases, the num-

ber of bins decreases, thus though the correlation coefficients

increase (Figs. 2E, F, I, and J), this increase is countered by a decrease

in the number of observations, which results in a net loss of statistical

power.

To summarize, the binning of data (even without overlap between

bins), results in an increase in the correlation coefficient due to smooth-

ing of the data, and a decrease in the statistical power of the test. Thus

this analysis indicates that the optimal approach is to not use a binning

strategy, such that statistical power ismaximized and the r and r2 values
can directly be taken as metrics of effect size.

Let's now consider the effects of overlapping the bins. It is apparent

from the r surfaces/lines in Figs. 1A, D, and G, that binning with overlap

leads to the same inflation of the correlation coefficient that occurs

without overlap. It is also clear that overlapping the bins also leads to

a marginal decrease in the r-value, but more worrisome is the massive

decrease in the p-value as overlap is increased. Following the colored

curves (red, orange, yellow) in Figs. 1B, C, H, and I, we can see that the

p-value dramatically decreases as overlap is increased. The result ap-

pears attractive, since large r-values are achieved in combination with

impressively small p-values, but these results are false, because the

data points entered into the correlation analysis are not independent

due to the bin overlap. With an increasing degree of overlap, the bins

become less independent, which effectively inflates the degrees of free-

dom (df), such that from the point of view of the test, there are far more

observations thanwere in fact there. This is basic statistics, but the issue

should be kept in mind since in more complex designs, this violation

may be more difficult to spot. If conditions demand that overlap must

be used, the statistical inflation may be corrected by applying the

following Monte Carlo approach to computing the p-value:
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1) Randomly pair the data of the unsorted random variable with the

sorted random variable, such that the first variable remains sorted.

2) Recompute r over the bins as before.

3) Repeat steps 1 and 2 hundreds to thousands of times to produce a

distribution of chance values for r.
4) Determine the p-value from the proportion of the surrogate values

that the empirical correlation coefficient exceeds.

This method should not be confused with another Monte Carlo ap-

proach used for assessing the statistical significance of the correlation

coefficient. In the context of our example, this would involve randomly

re-pairing the bins, and computing a surrogate distribution based on

these random re-pairings. This is a much faster approach since the

bins do not need to be recomputed, as they are in step 2 of the algorithm

above, but because of this, it will fall victim to the same decrease of

the p-value that is shown for the parametric case in Fig. 1. Fig. 1 (H,

I) depicts, for 120 trial bins, the deflated parametric p-values as orange

lines, and the correct non-parametric p-value as dashed orange lines.

These values reveal that when fairly assessed, the slightly increasing

p-values (Figs. 1H and I) parallel the slightly decreasing r-values
(Fig. 1G). Thus it is apparent that, when properly computed, overlap

conveys a disadvantage since the r-value is always decreased relative

to the zero overlap case, so such a procedure should only be employed

when proceeding without overlap is impossible, and great care should

be taken to establish a legitimate assessment of statistical significance.

To summarize, we were initially motivated by the example of deter-

mining the correlation between RT and interareal gamma-band coher-

ence. Since coherence is not defined for a single trial, we postulated a

sorting-and-binning approach, with or without overlap, as a potential

solution. Using simulated data, we then demonstrated the undesirable

properties of binning, with and without overlap, which are deficiencies

that extend to both variables that are defined or undefined on a single-

trial basis. Thus, the sorting-and-binning approach has brought us no

further than where we began, since we now have even more reason

to aim for quantifying correlation at the single-trial level, i.e. 1 trial per

bin, due to the following desirable properties of this approach:

1) It has the maximal statistical power over all binning strategies.

2) The correlation coefficient is most representative of the true under-

lying correlation coefficient and can directly be used as metric of

effect size.

3) It allows for the correct assessment of statistical significance using

conventional methods.

Yet, despite these desirable properties, we are still barred from

performing a single-trial correlation by the lack of definition of coher-

ence on a single trial. In the following section wewill introduce a meth-

od designed to overcome this issue: the jackknife correlation (JC).

Jackknife correlation

We will begin the explanation of JC by reviewing the fundamental

technique underlying the method: the jackknife. The jackknife tech-

nique, originally proposed by Quenouille (1949) and extended by

Tukey (1958), is a method designed to assess the standard error of an

estimator without underlying parametric assumptions (Parr, 1985).

The procedure involves computing a statistic of interest iteratively

over all the combinations of the data where one sample, or trial in our

case, has been left out of the calculation. This is known as the leave-

one-out jackknife replication (or just <jackknife replication=) of the

statistic, and is defined as follows:

Si ¼ S x1; x2;…; xi−1; xiþ1;…; xnð Þ;

where S is the statistic of interest calculated over the samples x. In terms

of our example, xi is a single trial, and S is the coherence. So practically,

this operation entails computing the coherence n times, as each of the

samples x is systematically left out. This results in n jackknife replica-

tions of S, each referred to as Si.
We propose that the jackknife rationale offers an attractive solution

for the single-trial correlation of covariance-basedmetrics. The logic for

this solution beginswith establishing the equivalence between ordinary

correlation and JC.

Following the approach of Stahl and Gibbons (2004), correlation can

be expressed as the expectation of the product of the standard scores of

two variables x and y:

rxy ¼ E zxzy
� �

;

where E is the expectation operator. We wish to establish that:

rxy ¼ rx jky jk
;

where xjk and yjk are the jackknife replications of x and y. We thus need

to determine that the following relation is true:

E zxzy
� �

¼ E zx jk
zy jk

� �

:

This can be easily shown, due to the fact that the z-score of a jack-

knife replication is simply the z-score of the original value multiplied

by −1 (Stahl and Gibbons, 2004). If we make this substitution in the

above equation, thenwe can see that the equivalence between ordinary

correlation and JC must be true.

E zxzy
� �

¼ E −zx−zy
� �

Therefore,

E zxzy
� �

≡ E zx jk
zy jk

� �

:

The above relation offers a unique avenue for dealingwith the corre-

lation of covariance-based quantities since even though they cannot be

adequately defined for single trials; covariance-based quantities are de-

fined over jackknife replications. Thus the single-trial correlation of

covariance-based quantities may be determined as the correlation of

their jackknife replications. To illustrate this more intuitively, we may

compare a leave-m-out jackknife strategy to the sorting-and-binning

approach.When sorted data is binned, the statistical operation S is per-
formed on the m samples that compose the n bins. The correlation is

then performed on these n results. For the leave-m-out jackknife, the
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correlation is performed on the n results of the function S applied to the

data remaining after each bin ofm trials has been left out once. The sym-

metry of thesemethods is apparent in Figs. 2A–D, where leave-m-out JC

has been applied to the numerical data used to investigate the conse-

quences of sorting-and-binning, i.e. data forwhich single-trial estimates

are available. Figs. 2A–D show the comparison of correlations based on

binning without overlap (Figs. 2A and C), and leave-m-out JC (Figs. 2B

and D). What is immediately obvious from the topmost panels is that

the correlation functions are mirror symmetric. Comparison of the left-

most point of the binned correlation (Figs. 2A and C), corresponding to a

bin size of 1; with the rightmost point of the leave-m-out JC (Figs. 2B

and D), which corresponds to the leave-one-out JC, reveals precisely

the same r-values and p-values. Thus, as dictated by the mathematical

proof, conventional correlation is equivalent to JC.

JC has a particular strength that should be noted. Since the method

does not require the sorting of any variables, neither variable involved

in the correlation needs to be defined on a single-trial basis. This

means that the method may be used to assess the correlation between

two variables that are both not defined on the level of a single trial.

Note that the JC entails an inversion and compression of the sample

distributions by the jackknife method. This can be seen by comparing

the binned versus the leave-m-out jackknife scatter plots in Figs. 2E–L.

The leave-m-out jackknife scatter plots are up/down and left/right mir-

ror reversals of the scatter plots that result from binning. Furthermore,

the JC scatter plots contain smaller values, because they essentially rep-

resent only the small changes in the function Fwhen a single trial out of

1000 trials is left out. Both the compression and the double inversion are

irrelevant for correlation analysis. The compression is compensated by

the fact that the correlation coefficient normalizes the covariance by

the product of the variances of each of the two variables. The inversion

is irrelevant, because it occurs in both variables, and correlation is in-

variant to the sequence of the paired variables. Yet, if instead of linear

correlationmetrics, non-linearfits are to be performed, or non-linear ef-

fects are qualitatively assessed visually from the data, onemust be care-

ful to provide the correct interpretation. To illustrate this point, Fig. 4

shows the effect of the JC for two example variables with a non-linear

relation. This makes the inversion very apparent and the potential for

misinterpretation quite obvious.

It must also be noted that the jackknife technique in general, and

thereby also the JC, should only be used in combination with statistics

whose underlying distributions are smooth (Miller, 1974; Efron, 1979;

Parr, 1985). An example of a statistic that is not smooth is the median.

The jackknife replications of themedian of a distribution are themiddle

two values of the distribution. These two values do not capture the var-

iance contained in the full distribution, which we attempt to capture

with the jackknife method. Most functional connectivity metrics, such

as coherence, are based on an averaging operation over the trial dimen-

sion, and thus should be suitable for use with the JC.

Numerical investigation of JC and application to simulated data:

methods

Wehave demonstrated in Fig. 2 that, for parameters that are defined

on a single trial, the JC is identical to the conventional single-trial corre-

lation. Ideally, we would want to show that the same holds for metrics

of interactions like coherence. Yet, this is problematic since the coher-

ence is not defined for single spectral estimates, and therefore, the JC

for coherence cannot be compared against a ground-truth estimate.

While we cannot estimate coherence for single spectral estimates, we

may generate simulated data epochs with a coherence that is propor-

tional to a coupling parameter c using a generative model (Brovelli,

2012). If we further vary c across multiple instantiations of this genera-

tive model, we can expect that c will be correlated with the single-trial

coherence. We employ such a setup to test whether trial-by-trial corre-

lation generated in this way can be recovered by the JC technique.

We constructed the following autoregressive (AR) model to gener-

ate appropriate data to test the JC technique in a system exhibiting

inter-areal coherence and unidirectional GC:

xt ¼ 0:95xt−1−0:8xt−2 þ εx;t

yt ¼ 0:8yt−1−0:5yt−2 þ cxt−1 þ εy;t ;

where xt and yt represent time series from two brain areas. xt is a func-

tion of its own values at one and two time steps in the past, i.e. xt − 1 and

xt − 2, weighted by some chosen coefficients (0.95 and −0.8), plus εx,t,

i.e. an noise term (also called the innovation). The situation is similar

for yt, except that it is a function not only of its own past values plus

the noise term, but also of yt − 1, weighted by c. This model is a bivariate

(two signals) autoregressive (the signals depend on their own past)

model of order two (they depend on two time steps into the past), i.e.

it is an AR(2) model. We chose an AR(2) model specifically, because it

is the model of minimal complexity that generates synthetic data with

band limited power, coherence, and GC spectra. The crucial aspect of

the model is that it exhibits unidirectional coupling and thereby coher-

ence that is determined by the parameter c. This will allow us to vary c
from trial to trial and thereby generate fluctuations in coherence that

are perfectly rank-correlated with the fluctuations in c. While c might

translate into the coherence magnitude in a non-linear way, it does

translate in a monotonic and smooth way and this guarantees that the

expected rank correlation has a value of one. Fifty time-series pairs

were generated for the bivariate AR(2) process with each time-series

modulated by a unique coupling parameter value c chosen randomly

from a uniform distribution between 0 and 0.1. Each time series was

25,600 samples long at a sampling rate of 500 Hz, resulting in

51.2 second segments. AR models cannot only generate simulated

time series, but they can also be fit to experimental or to simulated

data in order to quantify the spectral properties, like power, coherence

or GC. For all parametric analyses of the generated data, AR modeling

was performed using software developed by Steven Bressler and

Mingzhou Ding. The model parameters were determined using a

vectorized implementation of the algorithmofMorf et al. (1978), gener-

ously provided by Anil Seth and Lionel Barnett (Barnett and Seth, 2014).

Bivariate AR(2) models were fit to the synthetic time-series pairs using

portions of the data truncated to varying lengths (see Fig. 6). In the case

of conventional single-trial correlation,models were fit to the data from

each trial pair, while in the case of JC, models were fit using all trials

minus one for all leave-one-out possibilities. Coherence and Granger

causality spectra (Granger, 1969; Geweke, 1982) were derived from

the fitted AR(2) models, and the max of the spectrum was selected.

For these max values we then determined their correlation with the

coupling coefficient c. This procedure was repeated 1000 times with
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the mean taken over the resulting ensemble of Spearman's rho correla-

tion coefficients to achieve sufficiently smooth estimates. All p-values

were determined parametrically.

Spectral estimates were also obtained using non-parametric analy-

sis. All non-parametric spectral connectivity analyses were performed

using Fieldtrip (Oostenveld, et al., 2011). Spectral estimates were

computed via a Fourier transform using the multi-taper method

(Mitra and Pesaran, 1999; Thomson, 1982) with a spectral smoothing

of +/−10 Hz. We compared the JC approach to a non-JC approach

based on epoch subdivision of single trials. In the subdivision-based ap-

proach, for data windows less than 400 ms in length, the cross-spectral

density (CSD) was computed as the mean of the estimates deriving

from the multiple data tapers. For trial lengths longer than 400 ms,

400 ms windows with 300 ms overlap were employed. In these cases,

the CSD was computed as the mean over tapers and windows. For the

JC-based approach, the CSD was determined via jackknifing, which en-

tails taking the mean CSD resulting from all trials minus one, for each

window, for all leave-one-out combinations. Coherence spectra were

derived from the power and CSD, while GC spectra were determined

using non-parametric spectral factorization, which is a method of

obtaining GC from non-parametric spectral estimates such as the Fouri-

er or wavelet transform (Dhamala et al., 2008a,b; Wilson, 1972). This

procedure was performed for each 400 ms window and following

Welch'smethod (1967) the coherence andGC spectra for each jackknife

replicationwere determined as the average over thewindows. The peak

value of the coherence andGC spectrawas determined, and themean of

the frequency band of +/−30 Hz around this peak was used for subse-

quent JC and conventional single-trial correlations. As for the parametric

case, this procedure was repeated 1000 times to achieve smooth esti-

mates of Spearman's rho and parametrically determined p-values.

Numerical investigation of JC and application to simulated data:

results

We fit an AR(2) model to the first 10 s of the simulated data to

inspect the spectral properties of the simulated data (Fig. 5). The use

of a long 10-second segment allows us to capture the parameters of

themodel almost perfectly, and clearly see the effects ofmodulating pa-

rameter c. It is apparent that in all spectra, where there is spectral ener-

gy, that there is a peak between 70 and 90 Hz, corresponding to the

gamma band, as specified by the model parameters. It is also apparent

that the single-trial power of xt (Fig. 5A) is not modulated by c, which

is evident since the progression of color from the smallest to largest

peak does not follow the color scheme corresponding to parameter c,
whereas the power of yt (Fig. 5B), though lower in overall value,

shows modulation by c based on the color progression. This is due to

the unidirectional flow of power from xt to yt that is modulated by c.
The coherence shown in Fig. 5C shows clear modulation by c, and the

GC (Figs. 5D and E) shows unidirectional coupling also modulated by

c. We determined the JC between c and coherence or GC influence and

confirmed that it approaches a value of one for long epoch lengths

(Fig. 6A for coherence, B for GC influence). These JCs are shown in

blue for spectral estimates derived from fitting AR models, and in gold

for spectral estimates derived non-parametrically. For shorter epoch

lengths, the JC decays. Short epochs realize the properties of the gener-

ative model only in an imperfect way. Thus, the decay in JC correlation

away from the value of one is not necessarily due to an imperfect esti-

mation of the underlying correlation, but it is likely due to the fact

that the correlation between, on the one hand c, and on the other

hand the short-epoch coherence is actually low. In order to substantiate

this claim,we turn again to a case inwhichwe can quantify themetric of

interest on data epochs of arbitrary length. We generated 50 Gaussian

random signalswith zeromean and unit variance.We then added a ran-

dom offset o to each of these signals, drawn from a uniform randomdis-

tribution between zero and one. We then correlated the o to the means

calculated over data epochs of variable length (randomly subsampled

from the full-length signal). The result is shown in Fig. 7. As the data

epochs get shorter, the correlation between the epochs' means and

the values of r falls off in a way that is very similar to the drop-off in cor-

relation seen in Fig. 6. This effect is solely due to error between the sub-

sample means and the original offsets (which are equal to the full-

length data means). Thus, this is not due to an error in estimating the

mean, but rather it is due to the failure of the shorter data segment to

express the expected mean of the process. With this in mind, we can

go back to Fig. 6. With the imperfect expression of the model parame-

ters in short epochs explaining an overall drop-off, we can turn to the

differences between different approaches to estimating the correlation

between short epochs across single trials. In Figs. 6A and B, we see

that indeed as the trial length decreases, so does the correlation coeffi-

cient. The critical test for JC is to determine if, for a given epoch length,

themethod is providing superior estimates of the correlation coefficient

in comparison to conventional approaches to this problem.We compare

the JC against conventional single-trial correlations, which attempt to

estimate the Fourier transform from single, short data epochs using ei-

ther overlapping data windows (Fig. 6, green lines) or single-trial

AR(2)models (Fig. 6, red lines). We see in Figs. 6A and B that at the lon-

gest epoch length, the correlation coefficient based on either conven-

tional single-trial metrics approached one, like the JC correlations.

Critically, as the epoch length decreased, the JC estimates of the correla-

tion coefficients remained above the correlation coefficients based on

single trial parametric estimates (Fig. 6, red lines) and non-parametric

estimates (Fig. 6, green lines). This is even more evident if we plot the

percentage difference between the estimator with the largest correla-

tion coefficient at each trial length and each of the different metrics, as

shown in Figs. 6C and D, where we see similar performance between

the JC on parametrically and non-parametrically derived estimators

when the trial length exceeds 300ms. The small superiority of paramet-

ric JC versus non-parametric JC, particularly for shortwindow lengths, is

likely due to two effects: 1) data windowing effects in the non-

parametric approach, which are exacerbated at short epoch lengths

and 2) the fact that the data had been generated with a parametric

model and therefore might be fitted particularly well with a parametric

model. As will be shown in the following section, both metrics show
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similar performance on empirical data, with the non-parametric esti-

mator showing moderately increased performance. Panels E and F of

Fig. 6 display the corresponding p-values to demonstrate the average

epoch length necessary before a significant result is obtained. This il-

lustrates that the JC discovers a significant effect with shorter data

epochs, which is of great advantage in neuroimaging analysis. An-

other effect of note is the poor performance of the single-trial non-

parametric window-based method on short epochs. Based on these

simulations and the empirical analyses that will be shown below, it

is advisable that this method be avoided for short data epochs in

favor of JC.

In conclusion, these numerical examples demonstrate the supe-

rior performance of JC in recovering simulated correlations com-

pared to conventional single trial estimates. In the following

section, we will investigate whether this holds for experimental

data.

Application to neurophysiological data: methods

Electrophysiological recordings and experimental paradigm

We compared the JC with single-trial approaches for both paramet-

ric and non-parametric spectral estimators applied to neurophysiologi-

cal data to evaluate the performance of JC. All experimental procedures

were approved by the ethics committee of the Radboud University

Nijmegen (Nijmegen, The Netherlands). For details of the experimental

methods and recording techniques see Bosman et al. (2012), except that

stimuli were positioned in opposite hemifields with only one stimulus

co-activating recording sites in areas V1 and V4.

Two rhesus monkeys (Macaca mulatta) were trained to perform a

covert visual spatial attention task. We show data in this paper from

monkey K. Two grating stimuli were presented, one in the lower right

visual hemifield, and one in the upper left visual hemifield. The gratings
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were isoluminant and iso-eccentric drifting sinusoidal gratings with a

diameter of 3° visual angle, a spatial frequency of 0.66 cycles/degree,

drift velocity of 1.2°/s, with a resulting temporal frequency of 0.8 -

cycles/s and 100% contrast. The two gratings had orientations that

were always 90° away from each other and, when they were moving,

inconsistent with the interpretation of a chevron pattern seen through

two apertures. For a given session, two orientations were chosen, and

on a given trial, the orientation shown contralateral to the ECoG grid

was chosen from those two orientations pseudorandomly. The stimuli

were presented on a CRT monitor with a 120 Hz refresh rate non-

interlaced. For each trial, one stimulus was randomly tinted yellow,

and the other blue. Local field potentials (LFP) were recorded from the

left hemisphere with a subdural electrocorticographic (ECoG) grid

consisting of 252 electrodes (1 mm diameter), spaced 2–3 mm apart.

Signals from immediately neighboring electrodeswere subtracted to re-

move the common recording reference, because otherwise the common

reference leads to artifactual coherence/GC influence. We refer to the

bipolar derivative resulting from the subtraction of two neighboring

electrodes as a <site=. For coherence andGC influence analysis,we inves-

tigated interactions between primary visual cortex (V1) and extrastriate

visual cortex (V4). The assignment of electrodes to brain areas was

based on macaque brain atlases. The current analysis examined 29

sites recorded from area V1 and 17 sites recorded from area V4,

resulting in 493 V1–V4 site pairs.

The covert spatial attention task consisted of three successive

epochs. 1) The prestimulus period where the monkey had achieved fix-

ation. 2) The pre-cue period where the stimulus gratings had appeared

and themonkeywaited for a color cue, and 3) the cue period, where the

fixation point changed color to indicate to which stimulus the monkey

should attend, and respond to (the target).While the stimuli were pres-

ent, either the target or distractor could change shape at any time. The

monkey was rewarded for responses to a change of the shape of target

stimulus.

For the examples presented in this paper, trials were selected from

data segments that spanned at least 2 s from cue onset prior to any stim-

ulus change. The first 0.4 s of this segmentwere discarded to avoid tran-

sients generated by the cue change, leaving 1.6 s for analysis.

Correlations were then assessed for 8 different pairs of data windows

of varying length from 0.1–0.8 s. Each pair consisted of an early and

late segment such that the early windows always terminated one sam-

ple prior to 1.2 s, whereas the later windows always commenced at

1.2 s. 352 trials were selected from 9 sessions. Trials were included

where attention was directed to either visual hemifield, i.e. data were

pooled across attention conditions.

Spectral estimation

The spectral properties of the data were determined both paramet-

rically via AR modeling, and non-parametrically via Fourier analysis so

the performance of JC could be compared for both techniques. Paramet-

ric spectral estimates were computed in the following way. Data was

resampled to 250Hz. The coherence, and Granger Causal (GC) influence

in the <bottom-up= direction (V1 to V4) were then obtained by fitting

bivariate autoregressive (AR) models with model order 9, computed

for each V1–V4 pair of sites. The model order was determined via the

minimaof the Bayesian Information Criterion (BIC) andAkaike Informa-

tion Criterion (AIC), between model orders 1 and 25. When the model

was used for more than one data epoch, e.g. for JC on all-but-one trial,

the fit was simultaneously to the ensemble of epochs (Ding et al.,

2000), where a separate model was constructed for each leave-one-

out jackknife replication. For the non-parametric JC analyses, Fourier

transforms were computed using the multi-taper method (Mitra and

Pesaran, 1999; Thomson, 1982) on de-meaned data segments with

+/−10Hz smoothing. For the JC approach, all thedata segments (8 var-

iable lengths from0.1–0.8 s)were zero-padded to 1 s, resulting in a con-

sistent 1 Hz spectral grid, with the CSD for each jackknife replication

derived as the mean CSD over trials after one trial had been left out.

Spectral coherence was computed for each jackknife replication, while

GC was determined via non-parametric spectral factorization of each

replication. Identical to theparametricmethod, coherencewas analyzed

between V1 and V4 channels and the <bottom-up= direction was ana-

lyzed from V1 to V4 for the GC. The single-trial approach followed that

of Brovelli (2012), where a 250 ms window (zero-padded to 1 s), was

moved at 5 ms steps throughout each single trial, to construct multiple

estimates of the CSD, where coherence and GC were determined from

the average of these CSD estimates. To ensure that at least ten CSD esti-

mates were averaged before computing coherence or GC, only trials

with lengths of at least 300 ms were analyzed.

A standardized peak frequencywas employed for all analyses where

activitywas assessed at a single spectralmaximum. To establish this, co-

herence and GC were estimated over the entire 1.6 s of data. This was

done for both parametric and non-parametric implementations. A

Hann taper was used for the non-parametric estimation, otherwise all

the spectral estimation parameters were identical to those outlined

above. The peak GC and coherence were found to lie in the gamma

band at 74 Hz for the parametrically derived estimates and 75 Hz for

the non-parametric technique, whichwere subsequently used through-

out, for the parametric and non-parametric analyses, respectively.

Statistical analysis

We determined the correlation between coherence (or GC influ-

ence) from two neighboring within-trial epochs, across trials, for each

frequency–frequency combination. Correlations were computed either

between conventional single-trial estimates or using the JC. This was

done for all frequency–frequency combinations between 51 and

100 Hz. For the assessment of statistical significance of correlations, a

Monte Carlo approach was employed andwas identical for both the co-

herence and GC, and parametric and non-parametric cases. The test sta-

tistic used was the mean Spearman's rho computed over the jackknife

replications from the early and late epochs for all the possible V1–V4

pairs. To construct the surrogate distribution, the JC between the early

and late epochs was determined after the jackknife replications had

been randomly paired, i.e. the trial order of the early epoch was ran-

domized with respect to the late. Note that the random trial reordering

was identical for each V1–V4 site pair. This was repeated 1000 times to

form a null distribution ofmean Spearman's rho values,which functions
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to disrupt the empirical relationship between the early and late epoch

single trial pairs, so that their empirical degree of correlation can be

comparedwith the distribution of correlation coefficients that occurred

due to chance. When we computed JC on eight neighboring windows

ranging from 0.1 to 0.8 s, this procedure was repeated for each of the

eight epoch lengths, resulting in eight null distributions. When testing

for cross-frequency interactions, the issue of multiple comparisons

needed to be addressed. To correct for the multiple comparisons over

the 50 × 50 frequency combinations, the largest absolute value of the

correlation across all frequency–frequency combinations was selected

for each of the 1000permutations, resulting in a distribution ofmaximal

test statistics (Nichols and Holmes, 2002). Empirical test statistic values

were considered significant at p = 0.05, two-tailed, if their absolute

value was larger than the 975th percentile of the distribution. Where

p-values smaller than 0.05 are shown for visualization purposes, the

tail of the distribution above the 975th value was extrapolated with a

Generalized Pareto distribution function, an appropriate distribution

for modeling the extreme values of a distribution.

A parametric approach was used to assess the statistical significance

of a representative single channel pair over the eight neighboring

epochs. Here we wished to show the precise p-value that corresponded

with each rho-value, whichwas not feasible using a non-parametric ap-

proach since the p-values are sufficiently small that a Monte Carlo

method is not computationally tractable to estimate these values. We

used the standard approach, where the rho-value and number of trials

are used to derive a t-statistic, which in combination with the corre-

sponding degrees of freedom yields the p-value from Student's

t-distribution (Rahman, 1968).

Application to neurophysiological data: results

Bosman et al. (2012) have established that areas V1 and V4 show

robust gamma band coherence and bottom-up GC during sustained

attention. It is well known that the correlation between neighboring

time-points in a trial dissipates as the temporal distance between

them increases (autocorrelation). We capitalize on this property to

compare JC with single-trial methods for both parametric and non-

parametric spectral estimators of the strength of V1–V4 gamma coher-

ence and bottom-up GC influence. The logic is that neighboring

windows should show correlated coherence and GC, which we can as-

sess using JC. To achieve this, we calculated the correlation between

the magnitude of gamma band coherence (and bottom-up GC influ-

ence) from two neighboringwithin-trial analysis windows, across trials.

Fig. 8 shows the same characteristic pattern that resulted from the nu-

merical simulations (Fig. 7), where the correlation coefficients increase

as the data window is increased in length. Asmentioned above, the two

data windows were neighboring within a given trial, and one might

therefore be concerned that longer windows included data temporally

more adjacent, and therefore more correlated. To counter this potential

effect, the windows were designed such that the end point of the first

window coincided with the starting point of the second window,

which results in longer windows possessing data that are temporally

more distant. In agreement with the simulations, the JC curves for the

average over all V1–V4 site pairs (Figs. 8A and B, parametric: blue

lines, non-parametric gold lines) show a considerable improvement

over conventional single trial approaches (Figs. 8A and B, parametric:

red line, non-parametric: green lines). Fig. 9 shows an example V1–V4
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pair of sites employing the same plotting conventions a Fig. 6. As in the

group average, the JC correlation curves (Figs. 9A and B) show amarked

increase over the conventional single-trial approaches. Figs. 9E and F re-

veal that JC ismuchmore sensitive for revealing correlations.While con-

ventional correlation approaches do not reach significance, JC is

significant forwindow lengths of 200ms and beyond, for both coherence

and GC influence. These results demonstrate that for biologically/behav-

iorally interesting window lengths, the JC method substantially outper-

forms conventional approaches. It is also apparent that the parametric

and non-parametric JC approaches provide similar results. Parametric JC

was slightly superior for coherence on the shortest windows. Non-

parametric JC was slightly superior for coherence at all other window

lengths and considerably superior for GC at all window lengths (Fig. 8D).

For the shortest data window of 100 ms, we now apply the JC ap-

proach for all frequency–frequency combinations. Fig. 10 reveals

significant correlation of the coherence for a range of frequencies

surrounding the gamma band peak, both when determined non-

parametrically (Fig. 10A) and parametrically (Fig. 10C). The precise

spectral extent of the peaks is due to the specific choices of the para-

metric and non-parametric spectral estimation, i.e. the model order

and the number of data tapers. The JCs of GC (Fig. 10B for non-

parametric JC and D for parametric JC) show similar results.

Fig. 10E shows a small significant region for parametrically deter-

mined single-trial coherence, while Fig. 10F shows no significant

cross-frequency correlation for single-trial parametric estimates of

GC, consistent with the numerical simulations (Fig. 6) and single-

frequency analyses (Figs. 8 and 9).

Taken together, the empirical results demonstrate that over all

window lengths tested, JC substantially outperforms conventional

single-trial methods.
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Discussion

To summarize, we presented jackknife correlation (JC) that allows

the relation of moment-by-moment fluctuations in correlation strength

to other parameters, even though either correlation metric may not be

defined on a moment-by-moment basis, i.e. on the basis of a single

observation. We started out by investigating an approach that has

been commonly used in the case of assessing correlation between a

single-trial defined variable and an undefined variable, namely the

sorting-and-binning approach. In this case, the single-observation-

defined variable allows the sorting-and-binning, which in turn allows

the calculation of the single-observation-undefined metric over the
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multiple observations in each bin. The sorting-and-binning approach is

often used with overlapping bins in order to copewith limited numbers

of observations. We demonstrated that the sorting-and-binning ap-

proach leads to correlation coefficients that depend on the choice of

bin size and bin overlap and therefore can only be interpreted with

these parameters in mind, which makes them difficult to compare

across studies. Furthermore, we found that statistical powerwas actual-

ly maximal when correlations were determined across single observa-

tions, rather than across binned data. Since sorting-and-binning may

be considered a form of factorial design, where bin is considered a fac-

tor, our numerical results support the arguments presented by Stahl

and Gibbons (2004), that the correlative framework is indeed the

more powerful approach. Moreover, when overlapping bins are used,

a failure to control for the lack of independence between bins can lead

to erroneous p-values with a dramatic overestimation of statistical sig-

nificance. These difficulties and insights motivated the introduction of

JC, which was shown to optimally address the above concerns.

The JC not only provides a quantitative improvement of estimation

properties in comparison to the sorting-and-binning approach, but

most critically, it allows for the extension of correlation to cases where

neither variable is defined on the level of a single trial. While the

sorting-and-binning approach always requires that one of the correlat-

ed variables be defined for single observations, the JC does not require

this and therefore allows determination of the correlation between

two single-observation-undefined metrics. This allows, for example,

the investigation of whether the functional connectivity between

brain areas A and B depends on the functional connectivity between

brain areas C and D.

In the same vein, we note that the scope of the JC reaches beyond re-

latingfluctuations in correlation strength. The JC can facilitate the inves-

tigation of relations for any metric that is defined only across multiple

observations (or observation epochs) and that is a smooth function of

the observations (i.e. leaving out one of many observations results in a

correspondingly small change). For example, the variance is a smooth

function that is defined only across multiple observations. The JC pro-

vides a straightforward approach to relating e.g. fluctuations in neuro-

nal response variance to stimulus or task parameters, or even relating

fluctuations in neuronal response variances between different brain

areas. Additionally, use of the JC is not limited to electrophysiological

data, but is equally applicable to all time-series analyses, such as that

used in fMRI or in fields outside of neuroscience.

Here, we were particularly interested in frequency-resolved, i.e.

spectral, analyses. The estimation of any spectral estimator, in order to

define frequency, requiresmultiple observations to form an observation

epoch of finite length. The epoch length in turn defines the frequency

resolution of the spectral estimator. Spectrally resolvedmetrics of corre-

lation, like coherence, when estimated at the maximal spectral resolu-

tion allowed by a given epoch length, are strictly not defined on the

basis of a single observation epoch. This can in principle be overcome

by either cutting individual epochs into multiple shorter epochs, by ap-

plying multiple orthogonal taper windows, or by fitting a parametric

model with its typically relatively low order. Yet, all those approaches

reduce the spectral degrees of freedom in some form, either by essen-

tially downsampling the spectral resolution (in the case of cutting

into segments), by rendering neighboring spectral estimates non-

independent through spectral boxcar smoothing (multi-tapering), or

by a reduction of the full spectral complexity of the data to a small num-

ber of model parameters (parametric model). Furthermore, short

epochs cannot be subdivided in many sub-epochs, and metrics that re-

quiremany epochs for a proper estimationwill remain poorly estimated

on the basis of few sub-epochs.We compared these approaches directly

to the JC method. This demonstrated the superior performance of JC on

data generated from a simulated system of coupled brain areas. This

analysis was repeated on empirical data recorded from the macaque

monkey, where again JC showed an enhanced ability to recover corre-

lated trial-by-trial fluctuations in inter-areal connectivity metrics.
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