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ABSTRACT

In recent years, nanopore direct RNA sequencing (DRS) has established itself as a valuable tool for

studying the epitranscriptome, due to its ability to detect multiple modifications within the same full-length

native RNA molecules. While RNA modifications can be identified in the form of systematic basecalling

‘errors’ in DRS datasets, N6-methyladenosine (m6A) modifications produce relatively low ‘errors’

compared to other RNA modifications, limiting the applicability of this approach to m6A sites that are

modified at high stoichiometries. Here, we demonstrate that the use of alternative RNA basecalling

models, trained with fully unmodified sequences, increases the ‘error’ signal of m6A, leading to enhanced

detection and improved sensitivity even at low stoichiometries. Moreover, we find that high-accuracy

alternative RNA basecalling models can show up to 97% median basecalling accuracy, outperforming

currently available RNA basecalling models, which show 91% median basecalling accuracy. Notably, the

use of high-accuracy basecalling models is accompanied by a significant increase in the number of

mapped reads –especially in shorter RNA fractions– and increased basecalling error signatures at

pseudouridine (Ψ) and N1-methylpseudouridine (m1Ψ) modified sites. Overall, our work demonstrates

that alternative RNA basecalling models can be used to improve the detection of RNA modifications, read

mappability and basecalling accuracy in nanopore DRS datasets.
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INTRODUCTION

RNA modifications play a crucial role in a wide variety of biological processes, including gene expression

regulation, RNA stability, splicing and translation (1–3). Our understanding of RNA modifications has

vastly increased in the past years with the development of novel methods that can chart the modification

landscape in a transcriptome-wide fashion (4–6). Next-generation sequencing (NGS)-based methods

were the first to revolutionize the field of RNA modification detection by providing high-accuracy maps for

N6-methyladenosine (m6A), 2′-O-methylations (Nm), N4-acetylcytosine (ac4C) and pseudouridine (Ψ),

among others (7–13). More recently, nanopore direct RNA sequencing (DRS) has emerged as a

promising alternative to NGS for RNA modification detection due to its ability to directly detect RNA

modifications in native RNA reads without the need of additional chemical labeling steps (14–17) and in

full-length RNA reads, thus permitting isoform-specific RNA modification analyses.

Nanopore direct RNA sequencing works by threading single-stranded RNA molecules through a protein

pore, which can distinguish between different RNA nucleotides based on the change in electrical current

caused by the passage of the nucleotides through the nanopores. In the last few years, DRS has been

successfully applied to detect diverse RNA modification types, including N6-methyladenosine (m6A)

(18–23), pseudouridine (Ψ) (24–26), 2′-O-methylation (Nm) (25, 27), N7-methylguanosine (m7G) (28, 29)

and inosine (I) (30), and in a variety of RNA species, such as long non-coding RNAs, viral RNAs, mRNAs

and tRNAs (18, 20, 31–33). Identification of modified RNA bases has been typically achieved by either: i)

measuring changes in the current signal caused by the presence of modified nucleotides (20, 21, 34, 35),

and/or ii) by identifying non-random basecalling ‘errors’ that occur at positions where the RNA is modified

(36–39).

A central step in nanopore sequencing is the basecalling process, which involves converting the raw

electrical signal data generated by the nanopore into a string of nucleotide bases that represents the RNA

sequence. To convert the current intensity signal into a nucleotide sequence, the basecalling algorithm

requires a basecalling model. These models are typically trained with synthetic and/or in vivo native RNA

reads, and can predict the four canonical bases (A, C, G and U in the case of RNA). Current basecalling

models, available through the Guppy basecalling software, are not specifically trained to predict RNA

modifications, and therefore, when the model encounters a modified RNA nucleotide, it may call the

wrong base (mismatch error), not call any base (deletion error) or insert a small piece of sequence

(insertion error) at the modified site (18, 25, 38). Several softwares exploit this feature and use these

basecalling ‘errors’ to identify RNA modifications in DRS datasets (37–41). The use of basecalling errors

to detect RNA modifications is well-suited to detect certain RNA modification types, such as

pseudouridine (Ψ), which causes a very strong U-to-C mismatch signature at the modified site (24–26).

By contrast, other RNA modification types, such as m6A, yield relatively modest basecalling ‘error’
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signatures (25), leading to a relatively high number of false positives and false negatives when predicting

them in a transcriptome-wide fashion (18).

Basecalling errors in nanopore sequencing data can arise due to various factors, such as homopolymeric

regions, RNA secondary structures or helicase mis-steps (42–44). However, a major factor affecting the

basecalling ‘error’ patterns is the RNA basecalling model of choice, and more specifically, the data that

was used to train this model. For example, the ‘default’ RNA basecalling model (rna_r9.4.1_70bps_hac)

used in Guppy was trained with native mRNA sequences from diverse species, and thus contains a

significant number of m6A modified sites in the reads that were used to train the model. Consequently, this

basecalling model learnt to predict both “m6A'' and “A” as “A”, leading to low frequencies in basecalling

‘errors’ when an m6A modification is encountered, compared to when the model encounters other RNA

modification types that were not included in the training data.

Here, we hypothesized that the detection of m6A RNA modifications in DRS datasets would significantly

improve if a RNA basecalling model trained only with unmodified bases was used. To test this, we trained

novel RNA basecalling models, and then examined their performance in terms of read basecalling

accuracy (i.e. sequence identity), read mappability and RNA modification detection ability. We found that

an RNA basecalling model trained with fully unmodified reads, which we refer to as ‘IVT’, showed

improved sensitivity for detecting m6A modifications. Notably, the basecalling error was mainly increased

in naturally occurring m6A sequence contexts (DRACH, where D denotes A, G or U, R denotes A and G,

and H denotes A, C or U), in agreement with our hypothesis. By contrast, other RNA modifications were

detected with similar accuracy when using this model.

We also trained a second basecalling model, referred to as ‘SUP’, which we found yields 97% basecalling

accuracy, compared to the 91% observed with the current RNA model. This increased accuracy was

reflected in improved read mapping, especially in short RNA populations (50% increase). Moreover, we

found that this model showed enhanced signal-to-noise ratio at modified bases, thus improving the

detection of m1Ψ modifications in synthetic mRNA vaccines. In addition to its applicability for mRNA

vaccine quality control purposes (45), this model could also be used to improve SNP detection,

identification of splice sites, and transcript annotation when using DRS data.
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MATERIALS AND METHODS

In vitro transcription
This study used synthetic RNAs known as ‘curlcakes’, which were designed to include all possible 5-mer

sequences while minimizing RNA secondary structures (18), and consist of four in-vitro transcribed

constructs: (1) Curlcake 1, 2,244 bp; (2) Curlcake 2, 2,459 bp; (3) Curlcake 3, 2,595 bp and (4) Curlcake

4, 2,709 bp. To generate ‘curlcake’ synthetic RNAs, the plasmids were digested with BamHI-HF (NEB,

R3136L) and EcoRV-HF (NEB, R3195L) followed by a clean-up using phenol/chloroform/isoamyl-alcohol

25/24/1, v/v, pH = 8.05 (Sigma Aldrich, P3803). Linearized plasmids were used for in vitro transcription

with the AmpliScribe T7-Flash Transcription Kit (Lucigen, ASF3507) using

5-Methyluridine-5'-Triphosphate (5-mUTP, Trilink, N-1024-1) instead of UTP,

N1-Methylpseudouridine-5'-Triphosphate (m1meΨTP, Jena Bioscience, NU-890S) instead of UTP or

N4-Acetyl-cytidine-5'-triphosphate (N4-Acetyl-CTP, Jena Bioscience, NU-988S) instead of CTP. Products

were treated with Turbo DNAse (Thermo Fisher, AM2238) to remove the template plasmid and cleaned

up using the RNeasy MinElute Kit (Qiagen, 74204). All constructs were polyadenylated using Escherichia

coli poly(A) polymerase (NEB, M0276S) according to manufacturer's instructions followed by a clean up

using the RNA Clean & Concentrator-5 kit (Zymo Research, R1013). Concentrations were determined

using the Qubit 2.0 Fluorometer. Transcript integrity, as well as polyadenylation success, were determined

using an Agilent 4200 TapeStation. For previously sequenced curlcakes used in this study, including

unmodified NTPs (UNM), N6-methyladenosine triphosphate (m6ATP), 5-methylcytosine triphosphate

(m5CTP), 5-hydroxymethylcytosine triphosphate (hm5CTP) and pseudouridine triphosphate (ΨTP),

publicly available raw fast5 files were used as input for the analysis (18, 25) (see Table S2).

Direct RNA sequencing of in vitro transcribed RNA
The RNA libraries for direct RNA sequencing of ac4C, m5U, m1Ψ-containing curlcake constructs and

UNM-S (which included Bacillus subtilis guanine riboswitch, B. subtilis lysine riboswitch and Tetrahymena

ribozyme) were prepared following the ONT Direct RNA Sequencing protocol version

DRS_9080_v2_revR_14Aug2019-minion. Briefly, 800 ng of poly(A)-tailed RNA (200 ng per curlcake

construct and 250 ng per riboswitch) was ligated to ONT RT Adaptor (RTA) using concentrated T4 DNA

Ligase (NEB, M0202T). The optional reverse transcription step was performed using SuperScript III

(Thermo Fisher Scientific, 18080044) in the case of ac4C, m5U-containing curlcake constructs and

UNM-S, and Superscript IV (Thermo Fisher Scientific, 18090010) in the case of m1Ψ. The products were

purified using 1.8x Agencourt RNAClean XP beads (Thermo Fisher Scientific, NC0068576) and washed

with 70% freshly prepared ethanol. RNA Adapter (RMX) was ligated onto the RNA:DNA hybrid, and the

mix was purified using 1× Agencourt RNAClean XP beads, followed by washing with wash buffer (WSB)

twice. The sample was then eluted in elution buffer (ELB) and mixed with RNA running buffer before

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568965doi: bioRxiv preprint 

https://paperpile.com/c/kxhtMg/iTvQ
https://paperpile.com/c/kxhtMg/iTvQ+TTTz
https://doi.org/10.1101/2023.11.28.568965
http://creativecommons.org/licenses/by-nc-nd/4.0/


loading onto a primed R9.4.1 flowcell. The samples were run on a MinION sequencer for 24-72h. The

sequencing runs were performed on independent days and using a different flowcell for each sample.

Training a high-accuracy RNA basecallers (SUP model)
We trained a new RNA basecalling model (SUP) using bonito v0.5.1

(https://github.com/nanoporetech/bonito). SUP model is based on the latest CTC-CRF (bonito) DNA

model architecture, which achieves 96% accuracy for DNA basecalling with chemistry R9.4.1. DNA

CTC-CRF models use a window of 19 and stride of 5. For our RNA models, we used a window of 31 and

stride of 10 (similar to RNA flip-flop models).

Bonito model training requires chunks of fixed length (10,000 samples) and underlying sequences. We

kept only chunks that corresponded to 30-270 bases. Chunks from each read were generated by stepping

every 50 bases in the sequence space. Training was performed using bonito by keeping 3% of randomly

selected chunks for validation. The SUP model was trained using publicly available human datasets

containing triplicates of wildtype and Mettl3 KO cells (21). We kept the 5 longest reads per transcript and

run in order to balance highly and lowly expressed transcripts. In total, 158,413 reads were used for

training. The training was stopped after 5 epochs. We selected the model with the lowest validation error

as the final one from each training, corresponding to epoch 5 for the SUP model. The resulting model was

calibrated using the calibrate_qscores_byread.py script from taiyaki, and reached 97% median accuracy

on native human RNA (Fig 1B).

Training an RNA basecaller using in vitro sequences (IVT model)
The IVT model was trained using publicly available IVT direct RNA data obtained from CEPH1463 cells

(UCSC_Run1_IVT_RNA). RNA model training procedure was performed for 50,000 iterations with

following taiyaki hyperparameters: --size 256 --stride 10 --winlen 31 --chunk_len 4000 --batch_size 50.

We selected up to 100 chunks from every read using a step of 25 bases. IVT model was trained using

taiyaki v4.1.0 (https://github.com/nanoporetech/taiyaki).

Demultiplexing direct RNA sequencing
To evaluate the effect of differing m6A-stoichiometries on the sensitivity of each basecalling model we

used publicly available, multiplexed curlcake data (PRJEB61874) containing a range of stoichiometries

(barcode1 = 12.5%, barcode 4 = 25%, barcode 3 = 50% and barcode 2 = 75%, m6ATP). Demultiplexing of

the barcoded direct RNA sequencing libraries was performed using DeePlexiCon (46) keeping reads with

demultiplexing confidence scores above 0.80 (-f multi -m resnet20-final.h5 -s 0.8) .

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568965doi: bioRxiv preprint 

https://github.com/nanoporetech/bonito
https://paperpile.com/c/kxhtMg/zr1y
https://github.com/nanoporetech/taiyaki
https://paperpile.com/c/kxhtMg/7R5F
https://doi.org/10.1101/2023.11.28.568965
http://creativecommons.org/licenses/by-nc-nd/4.0/


Basecalling and mapping of direct RNA sequencing datasets
Publicly available datasets for H. sapiens (21), M. musculus (30), X. laevis (30), S. cerevisiae (18), A.

thaliana (41) and the synthetic eGFP mRNA vaccine (45) were downloaded from their respective data

repositories reported in Table S2. Raw fast5 files were basecalled and mapped using the MasterOfPores

pipeline (version 2.0) (47). For basecalling, Guppy (version 6.0.6) was used with either the default, IVT or

SUP model (Table S4). For highly modified curlcake runs and the eGFP mRNA vaccine, basecalled fastq

files were aligned to the curlcake reference using graphmap (48) (version 0.5.2) with ‘sensitive’ settings

(25) (--rebuild-index -v 1 --double-index --mapq -1 -x sensitive -z 1 -K fastq

--min-read-len 0 -A 7 -k 5). For the in vivo m6A-analysis basecalled fastq files were aligned to

the soft-masked human genome (Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa) using minimap2

(v2.17) with ‘default’ settings (-uf -ax splice -k14) . Uniquely mapped reads were reported with

Samtools (49) (version 1.15.1) using samtools view -c -F 260 (Table S4).

For the cross-species comparison reads were mapped to the respective reference transcriptome (Table
S4) using minimap2 (v2.17) with ‘transcriptome’ settings (-ax map-ont -k14). Aligned reads were first

filtered for uniquely mapped reads with a baseQ > 15 using Samtools (49)(samtools view -q 15 -F

3840 <in.bam> > <out.bam>). To account for the heterogeneous expression profiles of each

transcriptome and to prevent biasing our analysis towards highly expressed genes we sampled the

longest reads per transcript keeping at most 10 reads per transcript (bam2select.py). Per read

identities were calculated using a custom python script (identity_density_v2.py). All scripts required

to reproduce results in this manuscript are provided on the project’s github page

(https://github.com/novoalab/basecalling_models). Silhouettes of model species were downloaded from

PhyloPic (https://www.phylopic.org/).

Comparative analysis of basecalled features in curlcakes
To qualitatively assess the difference in basecalling errors introduced by default, IVT and SUP upon RNA

modifications, the sorted and indexed bam files were visualized using the Integrative Genomics Viewer

(IGV, version 2.13.1) (50). Using EpinanoRMS (25) (version 1.1) basecalled features (mismatch

frequency, deletion frequency and insertion frequency) were extracted from the alignment files on a

per-position basis. To obtain per 5-mer information this output was converted using

epinano_to_kmer.R script which applies a sliding window of a given size to compile the per k-mer

information. These results were further processed to calculate the summed error (Σ(mismatch frequency,

deletion frequency, insertion frequency)) and delta summed error (SumErrMOD - SumErrUNM) on a

per-position basis and visualized using in-house R scripts. To calculate the mismatch directionality the

number of reads corresponding to the correct reference base for that position was divided by the total
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number of reads obtained for that position. All scripts required to reproduce these results are available

under the project’s GitHub repository (https://github.com/novoalab/basecalling_models).

Detection of m6A-modified sites in HEK293T using comparative error analysis.
To determine whether alternative basecalling models can improve the detection of m6A in vivo, the

alignment files of individual replicates for wildtype and Mettl3-/- were merged to obtain greater coverage.

To reduce computational load, only protein-coding genes were considered in the comparison. For this

reason, lines in which the gene biotype corresponds to protein coding were extracted from the genome

annotation file and converted to bed format using bedops gtf2bed (version 2.4.41) (51). The resulting

bed file was split into individual chromosomes which would serve as regions for testing in the pairwise

comparison step. To perform pairwise comparisons, we ran eligos2 (v2.1.0) (38) using the singularity

image provided on the software’s GitLab repository (https://gitlab.com/piroonj/eligos2) with a p-value

cut-off of 1e-5 an odds Ratio of 2.5 and each of the individual chromosome files as regions for testing.

Next, results obtained from individual chromosomes were merged using an in-house shell script and

filtered to remove non-A bases as well as homopolymers to identify putative m6A sites (eligos2

filter -sb A --homopolymer).

Metagene analysis and motif identification
To visualize the transcriptome-wide distribution of putative m6A sites identified with distinct basecalling

models we used the GuitaR package (version 2.12.0) (52). For de novo motif discovery, sites obtained

from eligos2 were converted into fasta format which contained 6bp up and downstream of the modified

site using the table2fa_eligos.mergeextend.sh script. Subsequently, those files were used for de

novo motif prediction using BaMM motif (53) (version 1.4.0) using default settings and a z-score threshold

of 5.

Comparison of identified m6A-sites against m6ACE-seq, GLORI-seq and miCLIP-seq
To identify high confidence m6A-sites we intersected results obtained by each of the three models

(default, IVT and SUP) with data obtained from orthogonal methods. These datasets included m6ACE-seq

data that was matched with the nanopore results, as well as GLORI-seq and miCLIP-seq results obtained

from the same cell line (21, 54, 55). These datasets were filtered to only retain sites for which we had

sufficient coverage in the nanopore runs (≥ 20x) within protein coding genes

(https://github.com/novoalab/basecalling_models). Overlaps between datasets were visualized using the

ggvenn R package (version 0.1.9).

For stoichiometric analysis, sites overlapping with GLORI-seq were used as this dataset provides

per-nucleotide resolution information as well as an estimated stoichiometry for each identified m6A-site

(54). To this end, results obtained by GLORI-seq were first binned based on their reported stoichiometry

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568965doi: bioRxiv preprint 

https://github.com/novoalab/basecalling_models
https://paperpile.com/c/kxhtMg/Eb65
https://paperpile.com/c/kxhtMg/lEGF
https://gitlab.com/piroonj/eligos2
https://paperpile.com/c/kxhtMg/6eAM
https://paperpile.com/c/kxhtMg/Q5GO
https://paperpile.com/c/kxhtMg/zr1y+KFDz+NpTM
https://github.com/novoalab/basecalling_models
https://paperpile.com/c/kxhtMg/KFDz
https://doi.org/10.1101/2023.11.28.568965
http://creativecommons.org/licenses/by-nc-nd/4.0/


into sites that were either considered HIGH ( ≥0.75 modified), MED-HI ( ≥0.50 and <0.75 modified),

MED-LO ( ≥0.25 and <0.50 modified) or LOW ( ≤0.25 modified). Only those sites were retained in the final

set in which both GLORI-seq replicates were reported within the same bin. This resulted in a total of

47722 high-confidence sites split between HIGH (n=8900), MED-HI (n=7947), MED-LO (n=12697) and

LOW (=18178).

Processing of eGFP mRNA vaccine data and comparative analysis
Aligned reads were filtered to obtain the 20.000 longest reads and matched between default and SUP

(bam2select.py). Mismatch- , deletion- and insertion-frequencies were calculated and extracted on a

per nucleotide basis using EpinanoRMS (18).The per base frequencies were calculated by dividing the

number of each of the four canonical nucleobases (A, C, G or T) for each position by the number of total

observations for that position. To determine differences in sensitivity between the two models, we

extracted the 20 most lowly U>C modified sites in default and compared them to the same positions in

SUP. All scripts available at https://github.com/novoalab/basecalling_models.
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RESULTS

RNA basecalling model choice affects both per-read accuracy and RNA modification ‘errors’
Currently, detection of RNA modifications in DRS datasets is achieved via two different approaches: i)

identification of current signal alterations, or ii) increased basecalling ‘errors’ (36). The latter approach has

been exploited by diverse softwares and algorithms, such as EpiNano (18), DiffErr (41), ELIGOS2 (38),

DRUMMER (56) and JACUSA2 (39), among others. All of these methods are affected by the choice of

RNA basecalling model used, which is responsible for calling these ‘errors’ when it encounters a

modification.

We hypothesized that the use of alternative basecalling models might enhance the detection of RNA

modifications by increasing the ‘error’ signatures observed in the basecalled data. To this end, we trained

novel RNA basecalling models using two different approaches (Fig S1A), to assess their effect on both

basecalling accuracy as well as on basecalling ‘error’ patterns, which can be used as proxy for RNA

modifications (Fig 1A). The first approach consisted in training a model using fully unmodified RNA

sequences generated via in vitro transcription (‘IVT’ model), which we reasoned should lead to increased

‘error’ signatures at modified bases present in mRNAs, compared to the default basecalling model. The

second approach consisted in generating a ‘super-accuracy’ RNA basecalling model (‘SUP’ model) (see

Table S1), which we reasoned would show increased basecalling accuracy (Fig S1B), and consequently,
improved detection of RNA modifications due to a increased signal-to-noise ratio.

Once the models were trained, we first compared the performance of each model on human HEK293T

cells, finding that the SUP model was the most accurate out of the three models tested, reaching a

median read accuracy of 97% on human cells (Fig 1B), while the default and IVT models only showed

91% and 88% accuracy, respectively. We then examined how basecalling ‘error’ signatures produced by

m6A, m5C, hm5C, ac4C, Ψ, m1Ψ, and m5U in synthetic ‘curlcakes’ (18) would vary depending on the RNA

basecalling model choice (default, IVT or SUP) (Fig 1C, see also Fig S1C). Of note, ‘curlcakes’ are
synthetic constructs that contain all possible 5-mers, thus allowing to study the effect in all possible

sequence contexts that affect the basecalling process. To this end, we employed per-position mismatch,

deletion and insertion errors, which we consider jointly as ‘summed errors’ (SumErr) (see Methods). Our

analyses revealed that SumErr values in unmodified reads were significantly decreased when basecalled

with the SUP model (Fig 1D, Fig S2A), in agreement with the increased accuracy of the model.
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Figure 1 (legend in next page)
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Figure 1. Benchmarking RNA basecalling models and their effect on basecalling accuracy and RNA
modification detection. (A) Schematic overview of the in vitro ‘curlcakes’ used in this work, depicting the 7 different
modification types that were sequenced (m6A, m5C, hm5C, ac4C, Ψ, m1Ψ and m5U) and the three RNA basecalling
models benchmarked (default, IVT, and SUP). To assess the performance of tested RNA basecalling models, error
signatures (mismatch-, deletion-, and insertion frequency) were used. (B) Comparison of basecalling accuracies of
the distinct RNA basecalling models used in this work. The curve represents the density of the per-read identities
obtained from HEK293T wildtype cells (rep1) mapped to the human transcriptome (see Methods). (C) IGV snapshots
showing the effect of using either default, IVT or SUP models on unmodified (UNM) or modified (m6A, Ψ and m1Ψ)
‘curlcake’ sequences. Positions at which the mismatch frequency exceeds 0.2 are colored, while deletions are
visualized as drop in coverage. (D) Comparison of the summed errors (mismatch, deletion, and, insertion frequency)
for all 5-mers with a central modified base for the three tested basecalling models (default, IVT and SUP). (E)
Boxplots showing the delta summed error of modified (position 0) 5-mers for selected modifications (m6A, Ψ and
m1Ψ). See Figure S2B for equivalent plots of the remaining RNA modifications tested (m5C, hm5C, ac4C and m5U).
Statistical analysis was performed using a two-sided non-parametric Wilcoxon test with ‘default’ as the reference
group. Results were corrected for multiple-hypothesis testing using the Benjamini-Hochberg procedure to obtain
adjusted p-values (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). The sample size
reported by n represents the number of 5-mers contributing to each boxplot per panel. For Figures 1D and 1E the box
is limited by the lower quartile Q1 (bottom) and upper quartile Q3 (top). Whiskers are defined as 1.5 * IQR with
outliers represented as individual dots. (F) Comparison of the median delta summed error (= SumErrMOD - SumErrUNM)
for centrally modified (position 0) 5-mers. A z-score normalization per modification (see Methods) was performed to
highlight the effect that different basecalling models have on the obtained delta summed error. Unscaled results are
reported in Figure S2B.
_____________________________________________________________________________________________

We then assessed the ability of each model to detect RNA modifications in the form of basecalling errors.

For this purpose, we computed the delta summed error (ΔSumErr = SumErrMOD-SumerrUNM) for each

position, model and modification type, which corrects for the different background error rates of each

model on a per-5-mer basis. Our results showed that, for most modifications examined –and especially

for m5U, Ψ and m1Ψ–, the ∆SumErr was significantly increased when using the SUP model, relative to

default (Fig 1E, see also Fig S2B), indicating that the signal-to-noise ratio was increased, and thus

confirming the hypothesis that the use of alternative basecalling models can improve our ability to detect

RNA modifications in DRS data. By contrast, the use of the IVT model did not increase the ∆SumErr for

most RNA modifications, with the exception of m6A basecalling errors, which were modestly –yet

significantly– increased when using the IVT model, compared to default (Fig 1E), in agreement with our

hypothesis.

In addition, we noticed that all RNA modifications, regardless of the basecalling model, showed increased

basecalling errors at the modified site (position 0), with the exception of m5C and hm5C, which showed

increased errors at position +1, in agreement with previous reports (25). Moreover, we observed that for

m6A the increase in “error” using the IVT model compared to the default model was mainly due to high

deletion signatures at the modified site (Fig S2C-D). On the other hand, the increased signal in SUP

model to detect Ψ and m1Ψ modifications was caused by an increase in the global U>C mismatch

frequency in SUP, compared to default (Fig S2C-D, see also Fig S3). Taken together, these results show
that SUP and IVT basecalling models achieve a stronger signal-to-noise ratio either via changing the error

signature (IVT model for m6A) or improving previously observed patterns (SUP model for Ψ and m1Ψ).

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568965doi: bioRxiv preprint 

https://paperpile.com/c/kxhtMg/TTTz
https://doi.org/10.1101/2023.11.28.568965
http://creativecommons.org/licenses/by-nc-nd/4.0/


IVT model outperforms other models in detecting m6A modifications in DRACH contexts
N6-methyladenosine is the most prevalent epitranscriptomic mark in mammalian mRNA molecules, with

an average of 1-3 sites per transcript (7, 8). Thus, the use of native RNA molecules as training dataset for

a basecaller (as is the case for both default and SUP models, see Fig S1) will lead to basecalling models
learning to interpret both “m6A” and “A” as “A”, since the training data contains large amounts of

m6A-modified residues while its output is limited to the four canonical nucleobases (A, C, G and U). For

this reason, we speculated that the relative basecalling ‘error’ rates in our IVT model should be

particularly improved in those sites that naturally contain m6A (DRACH, where D denotes A, G or U, R

denotes A and G, and H denotes A, C or U) and are therefore masked in ‘default’.

To confirm this, we independently examined the performance of the 3 models in DRACH and non-DRACH

motifs. Indeed, we observed that the modest increase in IVT model performance at m6A-containing sites

(Fig 1E) was significantly stronger when only DRACH sites were taken into account (Fig 2A), in
agreement with our hypothesis. A detailed examination of which individual 5-mers were contributing to

this phenomenon revealed that certain DRACH 5-mers showed no or only mild improvement while others

were strongly enhanced in their signal-to-noise ratio (Fig 2B, Fig S4A). Notably, the largest improvement
in the signal difference was observed for GGACT (Fig 2B, see also Fig S4B) which is the most prevalent
m6A-motif observed in mammalian species (57), suggesting that mammalian native RNA was most likely

used to train the ‘default’ basecalling model.

Finally, we examined the sensitivity of the different basecalling models with varying modification

stoichiometries. To this end, we generated `curlcake` in vitro transcripts at varying modification levels by

mixing ATP and m6ATP at different ratios (Fig 2C, see also Methods). Our results showed that even at the

lowest modification level (12.5%), the IVT model was able to generate a significantly increased error

signature at DRACH-bearing 5-mers compared to the default model, which was especially evident in the

GGACT context (Fig 3D, see also Fig S5A-C).
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Figure 2. The effect of custom basecalling models on biologically relevant m6A motifs and at different m6A
stoichiometries. (A) Comparison of the summed errors (=Σ mismatch-, deletion-, and, insertion frequency) at the
central modified position for 5-mers that fall within the DRACH motif (D=A, G or U; R=G or A; H=A, C or U) and
others (non-DRACH). Statistical analysis was performed using a two-sided non-parametric Wilcoxon test with ‘default’
as the reference group. (B) Comparison of the delta summed errors (= SumErrMOD - SumErrUNM) for individual motifs
that are DRACH and non-DRACH. Each dot represents a single observation of that 5-mer within the ‘curlcake’
sequences. To compare the relationship between individual 5-mers a paired two-sided Wilcoxon test was performed.
(C) Schematic representation of the experimental approach to obtain ‘curlcakes’ at different m6A stoichiometries. ATP
and m6ATP were mixed at different ratios and used for the in-vitro transcription of ‘curlcakes’ with the remaining
NTPs, followed by poly-A-tailing, library preparation, and direct RNA sequencing. (D) Comparison of error-signature
amplitude at different modification stoichiometries between 5-mers that fall within the DRACH motif. The
corresponding plot for non-DRACH motifs is reported in Figure S5B. Lines were fitted using locally estimated
scatterplot smoothing (loess) and lightly shaded areas correspond to the 95% confidence interval. For Figures 3A-B
the box is limited by the lower quartile Q1 (bottom) and upper quartile Q3 (top). Whiskers are defined as 1.5 * IQR
with outliers represented as individual dots. All statistical tests were corrected for multiple hypothesis testing using
Benjamini-Hochberg correction and adjusted p-values are displayed (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01).
_____________________________________________________________________________________________

Improved in vivo detection of m6A-modified sites in human samples using IVT model
Next we examined whether the IVT model would improve the detection of modified sites in vivo using

third-party tools for the detection of differentially modified m6A sites. Therefore we used publicly available

nanopore DRS data from HEK293T wildtype and Mettl3-/- cells (21, 54), basecalled the data using our
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three basecalling models, mapped the reads to the reference genome, and finally used ELIGOS2 (38), a

tool developed to identify RNA modifications through pairwise comparison of error profiles, to detect m6A

sites (Fig 3A). Comparison of control and Mettl3-/- samples using ELIGOS2 revealed a similar amount of

sites detected when basecalling the data using default (4,859 m6A sites) and IVT model (4,979 m6A sites)

(Table S3), showing that the use of the IVT model modestly increased the number of predicted m6A

modified sites.

Figure 3. Detection of m6A-modified sites from HEK293T cells using a pairwise comparison approach and
validation of identified sites with orthogonal methods (A) Schematic representation of the workflow to obtain
m6A-modified sites using direct RNA-sequencing. Samples from HEK293T wildtype and METTL3 -/- knockout cells
were sequenced using direct RNA-sequencing. Raw fast5 files were basecalled using either of the three models
tested (default, IVT and SUP) and mapped to the human reference genome (hg38). To obtain m6A-modified sites.
pairwise comparisons within each model were performed using eligos2 (38). (B) Venn diagrams showing the overlap
in absolute numbers between nanopore used with either default or IVT model and m6ACE-seq, miCLIP and
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GLORI-seq (21, 54). Barplots show the relative amount of sites supported (C) Metagene plot of sites identified by
either default or IVT model show the known pattern of m6A distribution with a strong enrichment around the stop
codon. Corresponding motifs identified de novo using BaMM. (D) Barplot showing the top 5-mers identified by both
models. (E) Sites overlapping with GLORI-seq were binned according to their modification stoichiometry reported by
GLORI-seq (HIGH: ≥0.75 modified; MED-HI: ≥0.50 and <0.75 modified; MED-LO: ≥0.25 and <0.50 modified; LOW:
≤0.25 modified).
_____________________________________________________________________________________________

To further examine this point, we compared the set of ELIGOS2-predicted m6A sites to a list of m6A sites

predicted in HEK293T cells using orthogonal methodologies (m6ACE-seq (21), GLORI-seq (54) and

miCLIP (58)). This analysis revealed that 67.% of the sites reported by ELIGOS2 on reads basecalled

with default model were supported by at least one orthogonal method, whereas 76% of the sites reported

by the IVT model had orthogonal support (Fig 3B, see also Fig S6A-C). Sites that were supported by at
least one orthogonal method demonstrated the typical m6A distribution along the transcript, and motif

enrichment of the identified m6A sites matched the mammalian m6A motif, suggesting that these sites are

likely true m6A sites (Fig 3C, Fig S6D). Furthermore, we noted that m6A sites predicted with IVT model

captured a higher proportion of GGACT sites compared with those predicted when basecalling with

default model (Fig 3D, see also S6E). We then further examined whether the predicted m6A sites

corresponded to high or low stoichiometry m6A sites. To this end, we binned the sites based on the

modification stoichiometry values predicted by GLORI-seq, finding that the IVT model predicted a larger

proportion of high stoichiometry sites, suggesting that sites predicted with IVT-basecalled data contain a

higher proportion of true positives, compared to default (Fig 3E, see also Fig S6E). These results show

that ELIGOS2-predicted m6A sites on IVT basecalled datasets are more accurate at predicting m6A sites

compared to ELIGOS2-predicted m6A sites on default basecalled datasets. In addition, the IVT model was

capable of detecting unique m6A sites that were neither reported by any of the orthogonal methods nor

the other two basecallers tested, although these sites are supported by the most comprehensive m6A

database available (59), suggesting that IVT can identify unique sites (Fig S6F). By contrast, the same

comparison performed with SUP reported only a very small number of m6A sites (97), which lacked

overlap with the ground-truth datasets (Fig S6B-C), suggesting that either SUP is not suited for the

detection of m6A using the pairwise-comparison of error-profiles, or that ELIGOS2 software –or the default

parameters used– are not suited for models that do not show strong ‘error’ patterns.

SUP basecalling model shows 97% read accuracy and up to 50% increase in mapped reads
Nanopore sequencing shows relatively high error rates compared to other sequencing platforms,

especially in the case of direct RNA sequencing, with ~12% per-read error rates (15). This high

background limits the technology's applicability in several areas such as SNP detection, transcript

annotation and RNA modification detection. In addition to changes in pore chemistry that can mitigate

sequencing errors, the introduction of basecalling models with super-high accuracy represents an

alternative approach to enhancing the technology's accuracy.
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To this end, we examined the per-read accuracy of the different models trained, across a wide range of

model species, using previously published DRS datasets (21, 25, 30, 41), and found a significant increase

in median read accuracy of SUP compared to the default model, with the SUP model reaching a median

accuracy of 97% in human samples (Fig 4A, see also Fig S7A).

Figure 4. SUP is a super high-accuracy model that leads to improved read accuracy and mapping (A) Cross
species comparison of read accuracies obtained from each model. Reads were aligned to the respective reference
transcriptome (see Table S4). To account for vastly different expression levels that would bias the analysis towards
strongly expressed genes we filtered for the longest reads of each transcript keeping at most 10 reads per transcript.
(B) Comparison of mapped reads obtained from HEK293T wildtype cells (n = 3), across three bins of different read
lengths. Reads were mapped to the human reference transcriptome. Error bars indicate +/- 1 sd. Statistical
significance was determined using two-sided t-test, corrected for multiple hypothesis testing using the Benjamini
Hochberg procedure (ns: p >= 0.05, *: p < 0.05). (C) Effect of basecalling model on the proportion of mapped reads.
Data shown corresponds to publicly available DRS data on polyA-selected HEK293T samples (left) and an
mRNA-short library (mix of three synthetic sequences that were in-vitro polyadenylated, see also Methods). Statistical
significance was determined using one-sided t-test, and results were corrected for multiple hypothesis testing using
the Benjamini Hochberg procedure (ns: p >= 0.05, *: p < 0.05, **: p < 0.01). Boxplots depict the underlying size
distribution of the sequenced libraries. The box is limited by the lower quartile Q1 (bottom) and upper quartile Q3
(top). Whiskers are defined as 1.5 * IQR with outliers being removed.
_____________________________________________________________________________________________

We then examined whether the increase in read accuracy would be reflected in the form of an

improvement in read mappability. We hypothesized that this should particularly impact shorter reads, as

errors in those will be penalized more by most mapping algorithms, and may lead to reads remaining
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unmapped. To test this, we examined the relative proportion of mapped reads compared to default,

binning the reads by their read length. Notably, we found a consistent and significant increase in

mappability for all bins tested when reads were basecalled with the SUP model, with the difference with

default being the largest in the shortest bin (< 750bp category; relative increase compared to default =

117%) (Fig 4B, see also Fig S7B). We then examined whether this phenomenon would become even

more evident in very short RNAs (mRNA-short, median length ≅ 200nt), which are often observed in

highly fragmented samples, such as blood plasma or sperm (60, 61). This analysis revealed that the

increase in mappability was ~5X larger in the short mRNA library (relative increase compared to default =

146%) (Fig 4C, see also Fig S7C).

Enhanced U>C mismatch signature and reduced background error in a vaccine model using a
SUP model
Recently, the need for an improved quality control pipeline to characterize mRNA vaccine production has

been pointed out (45). In this regard, nanopore direct RNA sequencing offers a unique platform as it can

simultaneously provide information about sequence identity, RNA integrity, poly-A-tail length and

modification status. Here, we wondered whether the use of the SUP model, which produced very high

U>C conversions at m1Ψ-modified sites (55 %) in the ‘curlcake’ sequences (Fig S8) and increased

basecalling accuracies (Fig 4A), would be useful to characterize m1Ψ-containing mRNA vaccines, such

as those recently used against COVID-19 (62). More specifically, we wondered whether the use of SUP

could reduce the background error (improve basecalling accuracy and mappability) while at the same

time improving the detection of modified nucleotides in an mRNA vaccine. To this end, we re-examined

publicly available m1Ψ-modified and unmodified matched DRS data, which consisted of a synthetic mRNA

vaccine that contained an alpha-globin 5’ UTR, an enhanced green fluorescent protein coding sequence

and an AES-mtRNR1 3’ UTR (45). Our results revealed that all synthetic sequences showed reduced

background error when basecalled with our SUP model, both in the m1Ψ-modified and unmodified

variants (Fig 5A, see also Fig S9A), while showing a significant increase in the mismatch error (Fig 5B
see also FigS9B), typically in the form of an increased U>C error (Fig S9C). Indeed, out of a total of 170
m1Ψ-modified sites, we observed an increased U>C error for 151 sites (≈ 80%) in SUP over default (Fig
5C). More importantly, for sites that previously showed a very poor signature in default we observed a

global improvement in U>C conversion suggesting that our SUP model is more sensitive towards m1Ψ

(Fig 5D, see also FigS9D). Overall, our results suggest that SUP model can be a preferable basecalling

model for performing quality control on mRNA vaccines and testing the incorporation of modified

nucleotides, due to its reduced background error and increased signal-to-noise ratio at m1Ψ-modified

sites.
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Figure 5. SUP improves the identification of m1Ψ-modified residues in synthetic mRNA vaccines. (A) IGV
screenshots of the synthetic eGFP vaccine in unmodified (U) and modified (m1Ψ) molecules, basecalled with either
default (red) or sup (cyan) basecalling models. The three zoomed regions showcase the increased U>C conversion
rate at m1Ψ sites as well as the reduced background error produced by the sup model. The 20,000 longest, uniquely
mapped reads were selected for this analysis. Positions at which the mismatch frequency exceeds 0.2 are colored
while those with a mismatch frequency below 0.2 are shown in gray. (B) Comparison of mismatch frequency across
all m1Ψ sites (n = 170) found in the synthetic eGPF vaccine. To test for statistical significance the non-parametric
Wilcoxon-test was used and values corrected for multiple hypothesis testing using the Benjamini-Hochberg
procedure.(ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). (C) Comparison of U>C
mismatch frequency for all 170 m1Ψ sites between sup and default. Points located in the upper half of the dotted line
represent sites with higher U>C frequency in sup (n = 151) while points below the dotted line represent sites with
higher U>C frequency in default. (n = 19). Points are colored by the absolute difference between sup and default. (D)
Comparison of U>C mismatch frequency across the most lowly modified sites in default (median = 3.45)
demonstrates the improved sensitivity of sup (median = 19.43) in detecting m1Ψ. To compare the relationship
between individual positions a paired two-sided Wilcoxon test was performed. For Figures 5B and 5D the box is
limited by the lower quartile Q1 (bottom) and upper quartile Q3 (top). Whiskers are defined as 1.5 * IQR with outliers
removed.
_____________________________________________________________________________________________
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DISCUSSION

The last decade has witnessed an unprecedented surge in the field of RNA modifications, propelled by

the advancement in mapping RNA modifications transcriptome-wide through next generation

sequencing-based methods (7, 8). This has allowed researchers to establish intricate connections

between RNA modifications and fundamental molecular processes such as RNA splicing, nuclear export,

RNA stability and translation, unraveling previously elusive aspects of cellular regulation (63–66). Notably,

several years prior to this new-found interest in epitranscriptomics, pioneering works revealed the

immunosuppressive roles of certain RNA modifications, a finding that would eventually pave the way

towards mRNA vaccines (67–69).

Recently, nanopore direct RNA sequencing (DRS) has solidified its position as a promising tool for

investigating the epitranscriptome, due to its unique capability of sequencing native RNAs, thus making it

possible to detect multiple modifications within the same native RNA molecule (17, 25, 28). Indeed,

multiple works have already employed this technology to characterize the epitranscriptomic landscape of

mRNAs, rRNAs and tRNAs (29, 32, 41). Early approaches for the detection of modifications using the

nanopore platform have relied on the fact that modified residues will cause an error during the basecalling

process (14). In this regard, several tools such as EpiNano (18), DiffErr (41), ELIGOS2 (38), DRUMMER

(56) and JACUSA2 (39) have been developed to exploit this information and perform

pairwise-comparisons between a modified sample and an unmodified control to identify modified sites

(18, 38, 39, 41, 56). Notably, a critical component of this process is the basecaller, which is trained on a

specific dataset and responsible for converting the raw current intensity signal that is output by the

sequencing machine into a nucleotide sequence. The currently used basecalling model, which we refer to

as ‘default’ (provided with guppy 6.0.6 and upwards), shows overall per-read accuracy of 90% using

ONT’s proprietary basecaller Guppy (42). Previous efforts have been made to develop novel, more

accurate basecalling softwares, such as RODAN for RNA and Chiron and DeepNano for DNA (70–72),

among others. However, the effect of using alternative basecalling models on per-read accuracy and

detection of RNA modifications has so far not been explored.

Here we present two novel basecalling models, IVT and SUP (Table S1), and benchmark their ability to

detect a battery of RNA modification types as well as their basecalling accuracy and effect on read

mapping. We find that using a model that was trained on in vitro transcribed RNA (IVT model) significantly

improves the detection of m6A modifications (Fig 1E-F) by generating a strong deletion signature at the

modified site (Fig S2C-D) and overall increased SumErr and ∆SumErr, leading to a significant increase in
the total number of high-confidence m6A-sites recovered in in vivo samples, compared to the default

model (Fig 4B). We argue that this improvement is due to the fact that the default model was trained on

native RNA from different organisms containing large amounts of m6A, and it learnt to recognize both

unmodified A and m6A as A, especially at naturally modified 5-mers (Fig 3A). We find evidence for this
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hypothesis in the fact that the most improved 5-mer coincides with the most-highly modified 5-mer in

humans GGm6ACT (Fig 3B, Fig S4B).

Our second model SUP was trained with the intention of maximizing read accuracy. Therefore, we

changed the model architecture from flip-flop used in both default and IVT to CTC-CRF (currently used in

ONT DNA-seq, see Methods). We found that SUP reaches a per-read accuracy of 97% on human data

compared to 91% in default, which is a substantial improvement and to our knowledge the most

accurately basecalled direct RNA-sequencing run to date (Fig 4A). We additionally found that this

improved accuracy was accompanied by an increased number of mapped reads, becoming particularly

apparent in short reads, where the increase in read mappability reached ~50% (Fig 4B-C). Similar
performance has been reported regarding yet-to-be-released RNA-004 chemistry (96% accuracy). We

should note that our improvements in basecalling accuracy (up to 97%) were obtained using the RNA-002

chemistry, suggesting that improvements in the accuracy reported for the RNA-004 chemistry are likely

not related to changes in the pore chemistry but rather to improvements in the basecalling models.

DATA AVAILABILITY
Fast5 DRS datasets basecalled with default corresponding to ‘curlcakes’ containing ac4C, m5U and m1Y

as well as UNM-S rep2 and UNM-S rep3 (Table S2) have been deposited in ENA, under accession code
PRJEB67632. The corresponding FASTQ files, basecalled using all three models used in this work, have

been deposited in GEO, under accession code GSE246151. basecalled Fast5 datasets from unmodified

‘curlcakes’, as well as those containing m6A, Ψ, m5C and hm5C were taken from previously published

studies (18, 25), and were already publicly available in ENA, under accession codes PRJNA511582,

PRJNA549001, PRJNA563591 and PRJNA548268.

The following publicly available datasets were also used in this study: (i) raw fast5 from wildtype and

Mettl3-/- HEK293T cells, used to test whether novel basecalling models can improve the detection of m6A

in vivo, were downloaded from ENA (PRJEB40872) (21); (ii) raw fast5 from M. musculus, X. laevis, S.

cervisiae and A. thaliana (18, 30, 41), used to compare basecalling accuracy across several model

species were downloaded from SRA (SRP363295, PRJNA521324) and ENA (PRJEB32782); (iii) raw

fast5 of an unmodified (UTP) and modified (m1ΨTP) synthetic eGFP vaccine (45), were downloaded from

SRA (PRJNA856796). All project and sample accessions of all datasets used in this work are additionally

listed in Table S2.

CODE AVAILABILITY

All code used to build figures shown in this work can be found on GitHub

(https://github.com/novoalab/basecalling_models). All trained basecalling models used in this work are
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available in OSF (https://osf.io/2xgkp/). Processing of raw fast5 files was performed using the

MasterOfPores (version 2.0) nextflow pipeline (https://github.com/biocorecrg/MOP2) (47, 73).
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