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ABSTRACT

Background: Alterations in brain connectivity occur early during psychosis and underlie the clinical
manifestations of the illness as well as patient functioning and outcome. After a first episode of
psychosis (FEP), different trajectories are possible and best described by the clinical-staging model
that places the patient along a continuum of conditions: from non-remitting chronic symptoms to full-
remission, often followed by relapses. However, little is known about the differences in brain
connectivity that could underlie these differences in clinical outcome.

Methods: In this study, we included resting-state fMRI and DSI data from a cohort of 128 healthy
controls (HC) and 88 patients with early psychosis (EP) stratified based on their ability to remit after
the FEP. In particular we focused on differences between stage IlIb,c remitting-relapsing (EP3R) and
stage Illa non-remitting (EP3NR) patients. We investigated alterations in resting-state functional
connectivity (FC), and combined information derived from fMRI and DSI into generative whole-
brain models of each condition to explore the underlying mechanisms.

Results: Opposite alterations in FC could be found in patients as compared to HC, depending on their
stage. In non-remitting patients (EP3NR), we observed a reduction of FC, aligned with the reduced
structural connectivity found in previous studies, while remitting-relapsing patients (EP3R) showed
increased FC, potentially indicating a relevant compensatory mechanism. By means of a whole-brain
network model, we showed that in HC a subset of areas is characterized by increased stability to
prevent an oversynchronisation of the network, while in EP3 patients such property is lost. This
alteration was more relevant in the EP3R than in EP3NR patients, probably indicating a
compensatory response to the reduced effective conductivity (global coupling) highlighted by the
model in both EP3 conditions as compared to controls.

Conclusions: These findings highlight the significance of categorizing patients into subgroups based
on the progression of their psychotic disorders, providing insights into the factors contributing to
heterogeneity in functional alterations. They enhance our understanding of the interplay between
structural and functional properties, shedding light on the mechanisms of psychosis emergence,
remission and progression, with potential implications for future therapeutic advancements.
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1. Introduction

Clinical presentation and trajectory in early-stages psychotic disorders can vary widely among
patients. Following a first episode of psychosis (FEP), approximately one-third of patients achieve
full recovery !, while the remainder progress to chronic illness, characterized by either a lack of

remission, partial remission, or a cycle of complete remission followed by relapses °.

From a clinical perspective, it is extremely important to better discriminate into different groups of
patients based on clinical trajectory. To this aim, clinical staging —introduced to psychiatry by Fava
and Kellner *, and applied to psychotic disorders by McGorry and colleagues— is a fundamental tool
5 Additionally, mapping neurobiological markers, such as brain imaging features, onto clinical
stages could further allow us to validate the boundaries of the clinical groups, broadening our

understanding of psychotic disorder pathophysiology '*!!.

To date, most studies on early psychosis have primarily focused on discriminating patients with the
aim of predicting their long-term recovery prospects following a first episode of psychosis, crucial
for early intervention '>~'7. However, from the neural perspective, equally important is understanding
the distinctions among patients based on their ability to achieve short-term remission from FEP,
regardless of prognosis. In fact, within the non-recovering patients, during the first years of treatment
following a FEP, a noteworthy differentiation emerges between two distinct clinical profiles: those
experiencing periods of complete remission between relapses and those who either do not remit or

3. This distinction holds the key to comprehending the neural

achieve only partial remission
mechanisms enabling a subset of patients to effectively overcome the acute symptomatic crisis and
temporarily restore healthy functioning '®. Delving deeply into this phenomenon is crucial, as it could
unveil compensatory mechanisms and might facilitate the identification of biomarkers associated
with clinical staging, providing valuable insights into the mechanisms underlying disease
progression. Moreover, it could help explain the heterogeneity of brain alterations in the literature. In
fact, while studies investigating anatomical alterations in psychotic disorders are fairly coherent in
reporting decreased structural connectivity (SC) 1°2, the way such changes translate into functional
alteration remains unclear 2. Findings on functional alterations are indeed less consistent >*?°, with a
significant portion of studies describing reductions in functional connectivity (FC), and others

reporting increases 22,

However, neurofunctional differences between remitting-relapsing and non-remitting patients have
been scarcely studied and underlying correlates remain unclear. Moreover, we still lack a thorough
comprehension of how local alterations translate into global network changes, and how these in turn

translate into clinical manifestations.
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The purpose of this study is to address these gaps by employing connectivity analyses and
computational approaches to explore the neural processes that enable a subgroup of patients to
compensate for the alterations that lead to psychotic episodes and to achieve temporary remission, in
contrast to other patients who fail to do so. Specifically, we aim to disentangle the underlying
functional compensation mechanism into global and local components given the structural properties

of the network.

To this aim, we included resting-state functional magnetic resonance imaging (fMRI) and diffusion
spectrum MRI (DSI) data from a cohort of 128 healthy controls and 88 patients with early psychosis
(within the first 3 years following a treated FEP in an early intervention service) stratified into
distinct groups based on their clinical stage. Patients were classified into stage II (first-episode),
stage IlIb,c remitting-relapsing (remission with one or more relapse), and stage Illa non-remitting
(incomplete remission), according to the course of the illness until the time of scanning . While a
previous study on an overlapping sample of the same dataset showed a progressive decrease in
structural connectivity across stages, it didn't explore differences in functional connectivity or
distinguish between remitting-relapsing and non-remitting patients 3°. This current work focuses
specifically on these questions, examining whether global and local FC measures significantly differ
between remitting-relapsing and non-remitting patients compared to healthy controls. Moreover, we
combined information derived from both fMRI and DSI to build a generative whole-brain model that
could optimally fit the empirical data of the controls. Complementing it with an additional toy-model,
we used it to extract hidden properties of the network that cannot be directly measured. This
approach allowed us to investigate how brain dynamics interact with connectomes in the healthy
brain. Finally, we built models to explain the empirical data of each subgroup of patients,
investigating potential damaging and compensatory mechanisms underlying their pathological

alterations.

2. Materials and methods

2.1. Participants

We included 216 subjects (88 EP patients, 128 HC) aged 18-35 years [26.3 £ 0.6]. EP patients were
recruited from the Treatment and Early Intervention in Psychosis (Tipp) program of the Lausanne
University Hospital, Switzerland 3!, meeting psychosis threshold and specific criteria (see

supplementary materials). HC were age, gender, and handedness-matched, without mood or
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substance use disorders, and no family history of psychosis. Exclusion criteria included
neurological disorder, severe head trauma, or mental disability (IQ<70). Informed written consent

was obtained, and the study was approved by the local ethics Committee.

2.2. Diagnosis, clinical variables, and staging

A consensus diagnosis procedure was elaborated in the framework of the TIPP program and is
described in supplementary material. The clinical stage was rated as the highest stage achieved at
the time of imaging, therefore cross-sectionally. The patients were initially stratified into four
distinct groups (Fig. 1) based on a consensus assessment by two experienced psychiatrists,

according to the clinical staging model proposed by McGorry et al. 2006.
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Fig.1: Schematic representation of the analysis workflow, featuring clinical staging model, empirical
connectivity analyses and whole-brain model fitting

(A) Stage I: early or late prodromal patients with mild or subthreshold symptoms; Stage II: first-episode of
psychosis (i.e., ‘discrete disorder’); Stage Illa: incomplete remission; Stage IlIb: one relapse; Stage Illc: multiple
relapses; Stage IV: chronic outcome with severe, persistent illness. This study includes resting state fMRI data
from patients with early psychosis (EP) classified in stage 2, stage3 non-remitting (Illa), stage3 remitting-
relapsing (IIIb or lllc), as well as from healthy controls (HC). Figure adapted from *°, Copyright © 2019 Griffa et
al., under CC BY 4.0. (B) Functional connectivity (FC) matrices were obtained for each subject by computing the
Pearson correlation of the BOLD signals between each pair of nodes across time. Global and local measures of
connectivity were computed to investigate significant alterations between condition. (C) Structural and functional
information from the empirical data was used to build a whole-brain dynamical model and fit it to reproduce the
empirical FC features of the HC and the different EP groups independently in order to investigate the
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mechanisms underlying pathological alterations. Figure adapted from Deco et al., 2019, Copyright © 2017 Deco
et al., under CC BY 4.0.

Stage II (EP2) included first-episode psychosis patients with one episode. Stage III (EP3) included
three subgroups: Illa (incomplete remission), IIIb (relapse), and Illc (multiple relapses). Due to the
study's goal of investigating neural mechanisms in remission, and to the elevated heterogeneity of
EP2 patients, we focused on EP3 patients. Stage IlIb and Illc were aggregated in a remitting-
relapsing (EP3R) subgroup with 31 patients, while stage Illa formed the non-remitting (EP3NR)
subgroup with 20 patients. EP2 patients, being a more diverse group with various recovery
durations and outcomes, were not included in the primary analysis, but their results were examined
separately in the supplementary materials for completeness. Additional information can be found in

supplementary materials.

2.3. Neuroimaging data acquisition and processing

MRI data was acquired from two 3-Tesla scanners, the Magnetom TrioTim and PRISMA from
Siemens Medical Solutions. The MRI sessions included a T1-weighted MPRAGE sequence (TR =
2300 ms, voxel size = 1 x 1 x 1.2 mm3), a diffusion spectrum imaging (DSI) sequence with 1 b0
acquisition and 128 diffusion weighted directions (TR = 5900 ms, voxel size = 2.2 x 2.2 x 3 mm3),
and a resting-state functional MRI (rs-fMRI) sequence with TR = 1920 ms, and 3.3mm isotropic.
The acquisition times for the MPRAGE-T1w, DSI and rs-fMRI sequences were approximately 7,
13 and 9 minutes. Image quality assessment, including visual inspection and quality control metrics,
ensured dataset quality. More details can be found in a previous work®> and in supplementary
materials.

Image processing involved grey matter parcellation with skull-stripping using CAT12 and
FreeSurfer for cortical surface reconstruction and subcortical parcellation. These regions were
combined with the hippocampus subfields,*® the thalamic nuclei®* and a parcellation of the
brainstem > to create a final subdivision of grey matter in 115 regions of interest. For DSI
preprocessing, fiber tracking and structural connectivity computation, the images were processed
using the image processing packages Mrtrix3 and FSL. rs-fMRI preprocessing was conducted with
fMRIPrep, including motion correction, co-registration with anatomical images, spatial
normalization, slice-timing correction, smoothing, and nuisance signal regression. Neuroimaging

procedures are described in full detail in supplementary materials.
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2.4. Measures of connectivity

The structural connectivity (SC) between each pair of grey matter regions of interest was quantified
as the density of streamlines connecting the two regions, accounting for the differences in region
sizes. This resulted in 115-nodes, weighted undirected brain-networks. To ensure consistency and
minimize biases, connections present in less than 50% of subjects (both controls and patients) were

excluded.

Functional connectivity (FC) was measured as the Pearson correlation between filtered BOLD
signals (0.04-0.07 Hz) 3 of each pair of brain areas over the entire recording period, resulting in a
115x115 undirected matrix per subject. To validate our findings, we repeated all analyses using an
independent FC measure -instantaneous phase coherence (iFC)-, which assesses the consistency of
phase relationships across time. Node strength (FCs;) were computed as the sum over columns of
the pairwise FC matrix and represents the overall level of connectivity of each individual node i.
Significant differences in group averaged pairwise connectivity and in node strength were
investigated between each EP group (EP3NR, EP3R) and HC. Next, we evaluated whether there
were consistent changes in functional strength across all nodes between each EP group and HCs by

Spondition
i

comparing group average strength (FC ) distributions. Finally, we compared the mean

difference of strength in each area between the pathological conditions and HCs:

AFCSPHC = FCSEP — FCSHE [1]

and tested whether the obtained global difference of strength between conditions was large enough
to reject the null hypothesis that the two conditions had the same mean value (HO: A=0).

Moreover, global network-level analysis involved calculating overall level of coupling through
mean FC values, and computing root-mean-square signal amplitude, segregation, and integration.
Wilcoxon ranksum test was used to investigate differences between groups. A threshold of a = 0.05
was applied.

We additionally explored the relationship between structural and functional connectivity by
computing the Pearson correlation between the upper triangular elements of the FC and SC
matrixes, as well as between global values of FC and SC in each condition. All connectivity

analyses are described in full detail in supplementary materials.
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2.5. Modelling whole-brain dynamics in patient groups and controls

For each condition, we created a whole-brain model using structural and functional connectivity
data, adjusting parameters to replicate empirical data (Fig. 1C), as described in supplementary
materials. The model's differential equations describe how local and global brain dynamics are

influenced by structural connectivity, using the normal form of a supercritical Hopf bifurcation:

N

dx;

d_tl = [a; —xf —yflxi — 0y + GZ Cij(xj — x;) + Bn;(t), 2]
=

dyl' 2 2 S 3

P la; —x7 —y{lyi + wiy; + GZ Cii(yj — yi) + Bmi(0). (3]
=1

The connectivity between the different nodes was set to be equal to the empirical anatomical
structural connectivity matrix C = (C;;) derived from corresponding DSI (N= 115 areas) for each
condition, and the strength of these connections was scaled by the global coupling parameter G,
which is believed to reflect the effectiveness of conductivity of the structural connections. The local
dynamics were represented by bifurcation parameters (a;). According to this model, a bifurcation
occurs at a; = 0 (edge of criticality), so that when a; assumes negative values (subcriticality) the
activity of the node is described as noise, while when it assumes positive values (supercriticality),
the behaviour becomes oscillatory with an intrinsic frequency determined by the parameter f; =
w;/2m. In the current work, we set the frequency within the 0.04-0.07 Hz range, and we derived it
from the empirical data, as given by the averaged peak frequency of the narrowband BOLD signals

of each brain region.

We optimized G and a; iteratively, and we ran 300 simulations for each parameter combination.
We assessed model goodness of fit using functional connectivity (FC) and functional connectivity
dynamics (FCD) and selected the combination of parameters for which the mean Kolmogorov-
Smirnov (KS) distance was minimised as the optimal working point of the model. Next, we

compared optimal global and local parameters between conditions.

2.5.1. Additional statistical analyses

We then explored the relation of optimal values of a; with functional and structural node strengths

in HC, by means of a generalised linear model. We also investigated how the change in the optimal

EP,HC

value of bifurcation parameters in each pathological condition as compared to HC (Aaq; ) relates
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with the corresponding values of FCS l-HC and SC SiHC. Additionally, we investigated how changes in
optimal a; (Aa?P’HC) correlated with changes in empirical FC strength in pathological

conditions (AF CSiEP 'HC). More detailed description of the methods can be found in supplementary

materials.

2.6. The impact of local alterations on the network dynamics

Additionally, we aimed to explore how local bifurcation parameters influenced global network
dynamics by constructing a simplified network of coupled Hopf oscillators (two communities
connected through a single node) and altering the bifurcation parameters of nodes, examining their

impact on both spontaneous dynamics and responses to external stimuli (Fig. 4).

3. Results

3.1. Subjects and clinical staging

We investigated alterations in fMRI data among young adults in the early phases of psychosis
(EPPs) classified into stage II (37 subjects), stage Il remitting-relapsing (31 subjects), and stage III
non-remitting (20 subject) subgroups, primarily focusing on exploring differences between the
subgroups within stage III and comparing them with healthy controls (HCs).

Supplementary Table 1 provides details on the demographics and clinical scores, and
Supplementary Table 2 the corresponding statistical comparisons computed through unpaired t-
test. No significant differences in age, gender, or handedness were observed between EPPs and
HCs. Stage III patients were, on average, older and had significantly longer durations of illness
compared to stage II patients. It is important to acknowledge that the differences in the duration of
illness between groups are inherent to the clinical-staging criteria used in this study. No difference
in age or duration of illness was instead observed within stage III between remitting-relapsing
(EP3R) and non-remitting patients (EP3NR), reducing confounding variables and making them
more directly comparable.

Overall, EPPs had significant lower GAF scores compared to the HCs. Among patients, stage Il and
stage III showed no significant differences in GAF scores, PANSS scores, or medication doses at
the time of fMRI. However, within stage III, EP3NR patients had higher PANSS general and total

scores and lower GAF values than EP3R. PANSS negative and positive scores were also notably
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higher in EP3NR, though not statistically significant. No difference in medication dose was found
between EP3R and EP3NR patients. The difference in symptom severity at the time of scanning
serves as the basis for this alternative subdivision (EP3R vs EP3NR). It allows us to investigate
neurological distinctions between two groups with equivalent disease progression stages (age,

illness duration, and medication level) but significantly different clinical manifestations.

3.2. Empirical functional connectivity alterations (FC)

The first step in our analysis consisted of searching for alterations in network synchronisation
between conditions (HC, EP3R, EP3NR), as measured by the FC measures computed from pairwise
coupling of BOLD signals between all regions of interest.

- Global network-level differences:
No significant differences in global functional connectivity, integration, or mean amplitude were
observed between conditions. However, trends indicated that remitting-relapsing patients tended
toward increased connectivity, while non-remitting patients leaned toward decreased values
compared to healthy controls (Supplementary Fig. S1).

- Pairwise connectivity differences:
We calculated functional connectivity differences between each EP group (EP3R, EP3NR) and HCs
for each pair of brain areas. Fig. 2A shows the difference matrices. To enhance clarity, we only
display pairs with p<0.01 significance, masking others. No differences survived multiple
comparison correction, but distinct condition-specific trends emerged. EP3R patients exhibited
increased connectivity in the majority of altered pairs, while EP3NR patients showed decreased
connectivity in most of affected pairs.

- Node strength differences:
In each condition we assessed the connectivity strength of each area with the rest of the brain (Fig.
2B and Supplementary Fig. S2). When compared to those of controls, the strength of a few
selected areas resulted to be different in patients, following the same trend observed with pairwise
FC in groups (EP3R, EP3NR) when compared to HC. However, no individual difference was
significant after multiple comparison correction. Notably, no discernible trend was found in EP2
patients (Supplementary Fig. SSA and B).
To assess whether these trends reflected a globally consistent change in functional strength, we
compared the distributions of group average values of strength in each area between conditions.
EP3R patients exhibited a significantly increased mean strength compared to healthy controls,

indicating higher functional connectivity [FCS H¢= 39.45+0.14, FCS EP3R= 41.97+0.32 (mean + SE,
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across areas and subjects), p<0.001]. On the other hand, EP3NR patients, exhibited a strongly
significantly decreased mean strength compared to healthy controls, indicating lower functional
connectivity [FCS H¢= 39.45+0.14, FCS EP3NR= 37 40+0.35 (mean + SE, across areas and subjects),
p<0.001] (Fig. 2C).
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Fig.2: Empirical functional connectivity alterations: (A) Differences in group mean pairwise functional
connectivity for each pair of brain areas between the pathological conditions and controls. Only the areas with a
significant difference with p<0.01 are shown, while all the other areas have been masked. No significance
survived multiple comparison correction. (B) Group mean connectivity strength for each of the 115 regions,
ordered by mean regional strength in healthy controls. Solid lines and shaded areas represent the median and the
standard error across subjects, respectively. None of the comparisons survived multiple comparison analysis in
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any of the conditions. Both in (A) and (B) it is possible to notice opposite trends of alteration in the two condition
as compared to controls (increased FC in EP3R vs decreased FC in EP3NR). (C) Distributions of mean FC
strength across subjects in pathological and healthy condition. Lines connect the value of mean strength in each
area in healthy condition (central, blue) to the value of strength in the corresponding area in the two pathological
conditions, showing the two opposite directions of change. (D) Mean strength difference across areas resulted
significantly increased in EP3R in patients compared to healthy controls, and significantly decreased in EP3NR
patients. *** stands for p<0.001. (E) To improve visualization, optimal values of A FC strength have been
projected on brain surface. It is possible to notice the consistency of the opposite changes, with the majority of
areas shifting in the same direction within each condition as compared to controls.

For both conditions this change was consistent across areas, with the majority of nodes showing the
same direction of change as compared to controls (Fig. 2E). Moreover, an overall strength
difference was tested for significance by computing the mean functional strength difference across
brain areas (AFCSEPHC) (Fig. 2D). EP3R patients exhibited a strongly significantly positive
difference [AFCSEP3RHC=2 52 + (.02 (mean + SE, across areas), p<0.001, Cohen’s d=1. 3]. On the
other hand, EP3NR patients, exhibited a strongly significantly negative difference, indicating lower
functional connectivity [AFCSEP3NRHC — 3 05 + 0.02 (mean + SE, across areas), p <0.001,

Cohen’s d=0.75].

3.3. Model healthy controls

The second step in our analysis consisted of fitting a whole-brain computational model to the
healthy resting-state BOLD dynamics to investigate the interplay between structural and functional
properties on the healthy brain network. We therefore looked for the optimal combinations of
parameters (global coupling G and bifurcation parameters aq, ..., ay) that, given the network’s
structure C = (Cjj), could best reproduce the functional dynamics observed in the empirical data.

In Fig. 3A, we can see how the optimal combination of parameters allowed to reproduce pretty
accurately the empirical functional dynamics of the healthy condition, as indicated by a minimal KS
distance of KS = 0.3 + 0.1 (median * interquartile range, across 300 simulations). In particular, the
optimal value of global coupling was found to be G = 1.38% 0.07 (mean + SEM, across 300

simulations).
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Fig.3: Whole-brain model of HC: Structural and functional information from the empirical data were used to
build a whole-brain dynamical model optimised to reproduce HC functional connectivity properties by adjusting
one global parameter (the global coupling G) and N local parameters (the bifurcation parameters a4, ..., Ay ), one
per node). (A) Fitting curve of the model as a function of G, measured with the Kolmogorov-Smirnov (KS)
distance between the empirical and the simulated FCD distributions. For each value of G, we used the bifurcation
parameters Q, ..., y, which optimized the power spectral density (PSD) of the simulated BOLD signals in the
range 0.04-0.07 Hz to that of the empirical signals. The solid line and the shaded area represent the median and
the inter-quartile range, respectively, across N=300 simulations. The optimal combination of parameters (optimal
G with its associated optimal a = (a4, ..., ay)) was the one that minimised the mean KS distance between the
empirical and the model FCD distributions. (B) Optimal value of a for each brain area as the global coupling G
varies from 0 to 2.5 (top panel) and at the optimal value of G (bottom panel). (C) Fitting curve of the model as a
function of G, measured with the Pearson correlation between the empirical and simulated functional connectivity
(FC) matrices with the heterogeneous (left panel) and the homogeneous models. In the heterogeneous model,
bifurcation parameters aq, ..., ay were optimized based on the power spectral density of the BOLD signals. In the
homogeneous model, all bifurcation parameters were set to a; = -+ = ay = 0. The solid line and the shaded
area represent the median and the inter-quartile range, respectively, across N=300 simulations. (D) Group
averaged FC matrices comparing empirical data (left panel), simulated data generated from the heterogeneous
(central panel) or homogeneous (right panel) model at the respective optimal value of G. (E) Correlation between
simulated FC matrix and empirical SC of healthy controls in the homogeneous and heterogeneous model. We can
see how the correlation is significantly decreased wen heterogeneity is included in the model, showing how it
allows to escape structural constraints in the generation of functional pattern. (F) Relation between the optimal
bifurcation parameter af'® (average across 300 simulations), the mean functional strength FCS[!“and the mean
structural strength S CSiH ¢ of each node i (average across subjects). Each dot represents one of the 115 areas. In
the right panel the 3 variables are represented in a 3D plot with aiHC on the x axis, F CSL-HC on the y axis and
S CSL-H € on the z axis. To improve visualization, areas associated to a negative value between one and two median
absolute deviation from the median (-0.07< aiH €<-0.15) are plotted in black, while areas associated to a negative
value more than two median absolute deviations from the median are plotted in red ( aiHC< - 0.15). In the left
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panel the relation is illustrated in a 2D plot with F CSiH ¢ and F CSiH € variables on the x and y axes, respectively,
and values of optimal a represented as a gradient of colors. Blue indicates negative values and yellow positive
values.

The optimal value of (aq, ..., ay) is expressed in a vector represented in Fig. 3B. It is interesting to
notice that the optimal values of a; are not homogeneously distributed across different ROIs. In
particular, while most regions are associated with optimal a; parameters around the bifurcation
point (a; = 0), a subset of ROIs showed instead subcritical (i.e.<0) values of optimal a;. These
results are in line with a previous work, where the model was applied to a different dataset of
healthy controls resting state, indicating the robustness and generatability of the findings *’. The
median optimal bifurcation parameter for the optimal value of global coupling was found to be a =
0.00 + 0.08 = (median + MAD, MAD= median absolute deviation, across N=115 areas). To
define the subset of areas associated with strong negative values of bifurcation and investigate
relevant connectivity properties, we defined a threshold and selected areas associated with a

bifurcation parameter more than two MADs away from the median (Supplementary Table 3).

3.3.1 Local-global structural-functional interplay and the role of heterogeneity

To explore the interaction between global and local network properties, we examined the
relationship between the global coupling parameter G and the local bifurcation parameters a;. In the
top panel of Fig. 3B, it's evident that -along the range of G values that we explored- optimal values
of a tend to scale proportionally with the associated value of global coupling. This suggests a
compensatory mechanism for states of over or under connectivity. In particular, to higher coupling
values correspond greater heterogeneity in the values of parameter a across nodes, with values
progressively further from the bifurcation point.

To assess the role of heterogeneous negative values of bifurcation parameters, we attempted to
model healthy brain functional dynamics by imposing a homogeneous value of a; = 0 (edge of
criticality) in all regions of interest (ROIs) and compared it to the previous model with
heterogeneous parameters. The model with homogeneous parameters resulted in significantly worse
FC fit. It failed to reproduce essential spatial connectivity properties of the functional network, as
indicated by a significantly lower Pearson correlation between empirical and simulated FC
compared to the heterogeneous model (Fig. 3C). Specifically, the homogeneous model struggled to
replicate the hierarchical organization of the network into communities (Fig. 3D). Moreover, when
homogeneous bifurcation parameter values were imposed, the correlation between optimal
simulated FC and the underlying empirical structural connectivity (SC) significantly increased

compared to when heterogeneity was allowed (Fig. 3E). This, along with earlier observations,
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suggests that local heterogeneities may enable the network to sustain more complex spatial patterns
of FC while (1) avoiding constraints imposed by SC and (2) preventing states of under or over
synchronization as structural connectivity strengthens®.

Furthermore, using a generalized linear model, we explored the relation between optimal values of
parameter a; in each area and their corresponding structural and functional strength. The
combination of F CSl-HC, S CSiHcand the interactions between them, explained 64.2% of the variance
in optimal a;, values, as shown in Fig. 3F. Specifically, the optimal bifurcation parameter value was
positively correlated with functional strength (r=1.06, p<0.01), which explained 44.0% of its
variance across regions, and negatively correlated with structural strength (r=-5.83, p<0.01), which
explained 15.7% of its variance across regions. In particular, strong negative values can be
associated with either 1) areas characterised by low functional strength and low structural strength,
indicating disconnection from the rest of the network, or 2) areas with very high structural strength,

often referred to as connectivity hubs (Fig. 3F right panel).

3.4 The role of local negative bifurcation parameter in a network

To better understand the effect of the local bifurcation parameter on network dynamics and how this
effect is modulated by the structural strength of the node, we built a simplified model with realistic
parameters and tested a number of different scenarios. We hypothesised that a negative value of the
bifurcation would decrease node's sensitivity to incoming stimuli, thereby altering signal
propagation and reducing global synchronization. To assess our hypothesis, we created a network
consisting of two interconnected communities linked through a central hub. We manipulated the
bifurcation parameter associated to this hub and applied gradually increasing synchronization
stimuli to it.

We found that as the hub's a value became more negative (subcritical), it required stronger

perturbations to achieve the same global synchronization observed at a=0 (Fig. 4A).
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Fig.4: Toy model: Simplified network of coupled Hopf oscillators. (A, B). Effect of a negative value of a
associated to a structural hub. The left panel shows a network organised into two communities connected through
a single node (hub). The strength of structural connection of each node toward the other nodes within the same
community was set to 0.12 (grey lines), while that of the hub with other nodes was set to 0.2 with all nodes in the
network (red lines). The bifurcation parameter was initially set to be equal to a = 0 in all nodes. Subsequently,
the bifurcation parameter assigned to the hub was modified to be increasingly negative (green dot). (A) Effect of
an external perturbation on the hub. For each value of bifurcation parameter, we connected to the hub an
increasing number (1 to 8) of synchronised external nodes. We then computed the global functional connectivity
at each iteration (right panel). (B) Effect of an external perturbation on one network community. For each value
of bifurcation parameter, we connected to a node either in the first (top right panels) or second (bottom right
panels) community an increasing number of synchronised external nodes. We then computed the pairwise
functional connectivity at each iteration and plot the connectivity pattern resulting at maximum perturbation. (C,
D, E). Effect of a negative value of a associated to very disconnected nodes. We included an additional node
weakly connected to the original network, whose strength of structural connectivity with the rest of the network
was set to 0.01. The bifurcation parameter was initially set to a = 0 in all nodes (left panel). Subsequently, we
evaluated tree different scenarios: the bifurcation parameter assigned to the hub (C), to the disconnected node
(D), or to both (E) was modified to be increasingly negative (green dot). For each scenario, we then computed
pairwise functional connectivity at each iteration in absence of perturbation (spontaneous dynamics). To highlight
the heterogeneous influence of the bifurcation parameter on network dynamics, we additionally plot the difference
in pairwise connectivity between the condition were a was set to extremely negative values as compared to a = 0
(central panels). Finally, for each value of the bifurcation parameter, we connected to the hub (C, E) or to the
disconnected node (D) an increasing number of external synchronised nodes (perturbed dynamics), and we
computed the global functional connectivity at each iteration (right panel).

We then applied the perturbation to a node within a community and observed its spread through the
network. At a=0, the synchronization wave spread throughout the entire network. However, with
more negative a values, the synchronization wave remained more confined to the perturbed

community, affecting the rest of the network less (Fig. 4B).
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We also examined the effect of a negative a value on very weakly connected nodes. We added such

a node to the network, (Fig. 4C-E), and tested three scenarios:

1. We assigned progressively more negative values of a to the hub. As a result, the hub
progressively disconnected from the network, and leaded to a homogeneous reduction in
pairwise functional connectivity among the other nodes. The disconnected node remained
unaffected (Fig. 4C). To compare it to the previous case, we also added a progressively
increasing number of synchronized perturbations to the hub and computed the mean FC of
the network, obtaining similar results as before.

2. We assigned progressively more negative values of a to the disconnected node. This caused
the node to progressively disconnect from the rest of the network. However, this had
minimal impact on the rest of the network, and even increasing the perturbations applied to
the disconnected node, its influence remained limited.

3. We assigned progressively more negative values of a to both the hub and the disconnected
node. In this case, the network's response to synchronization perturbations applied to the hub
was similar to scenario 1. However, in the spontaneous regime, the pairwise dynamics were
significantly altered by the additional manipulation of @ in the disconnected node. In
particular, connections between communities were more reduced than connections within
each community, resulting in a more defined segregation of the network compared to

scenario 1 (Fig. 4E).

Overall, these findings suggest that negative bifurcation parameters in key network nodes, whether
highly connected or disconnected, play a crucial role in a) filtering out irrelevant stimuli and
preventing excessive network synchronization, b) regulating the flow of stimulus waves within and
between structured communities, and c) facilitating the emergence of intricate patterns of functional

connectivity with an appropriate degree of segregation.

3.5 Model EP patients
To gain insights into the possible mechanisms underlying the empirical changes in functional

connectivity reported in the previous sections, we built independent whole brain models to
reproduce the spatiotemporal dynamics observed in the resting brain activity of the two subgroups
of EP subjects (EP3R, EP3NR). We observed a significant reduction in the optimal global coupling
parameter (G) in patients from stage III, both remitting-relapsing and non-remitting, compared to
controls (HC optimal G = 1.38 £ 0.07; mean = SEM across 300 simulations), as indicated by the
shift in the KS distance curve (Fig. 5A).
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Fig.5: Whole-brain model of patient groups EP3R and EP3NR compared to HC: Structural and functional
information from the empirical data were used to build two whole-brain dynamical models optimised to
reproduce functional connectivity properties of EP3R and EP3NR, respectively, by adjusting the global parameter
G and the bifurcation parameters. In all panels, HCs are represented in blue, EP3R in red, and EP3NR in yellow.
Differences between groups were assessed using Wilcoxon rank-sum test followed by Bonferroni p-value
correction (p<0.001). (A) Fitting curve of the model as a function of G, measured with the Kolmogorov-Smirnov
(KS) distance between the empirical and the simulated FCD distributions. The solid line and the shaded area
represent the median and the inter-quartile range, respectively, across N=300 simulations. The optimal
combination of parameters (optimal G with its associated optimal a = (a,, ..., ay)) was the one that minimised
the mean KS distance between the empirical and the model FCD distributions. (B) Optimal global coupling G
distribution. Each dot represents a simulation, and boxplots represent the mean of the measures' values with a
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95% confidence interval of the mean (dark) and 1 SD (light). (C) Mean optimal value of a for each of the 115
nodes at the optimal value of G in HC and in each EP group (average across 300 simulations). (D) Distribution
of mean optimal bifurcation parameters across brain regions at optimal global coupling G. Each dot represents a
simulation. Boxplots represent the mean of the measures' values with a 95% confidence interval of the mean
(dark) and 1 SD (light). (E) Comparison of mean and median values of optimal bifurcation across brain regions
between conditions. Violin plots on the left show optimal bifurcation parameters distribution across brain regions.
Mean is plotted as a black line, while median is plotted as solid coloured line. Boxplots on the right represent the
difference between mean and median in each condition. Each dot represents a simulation. Boxes represent the
mean of the difference across simulations with a 95% confidence interval of the mean (dark) and 1 SD (light). (F)
Left panel: optimal value of parameter a across simulations for each of the 115 nodes sorted by node’s optimal a
in each condition, at the optimal value of G (solid and shaded lines represent mean and SEM across N=300
simulations). Right panel: distribution of areas under the curve of optimal a in each condition, illustrating loss of
heterogeneity and the shrink toward values around zero in patients. *** stands for p<0.001. (G) To improve
visualization, optimal values of bifurcation parameters in ROI’s originally associated with negative have been
projected on brain surface. It is possible to notice a decrease of highly negative values (dark blue) in patients,
especially in EP3R, as compared to controls.

In particular, the optimal G was 1.06 = 0.05 for the EP3R subgroup and 0.72 + 0.03 for the EP3NR
subgroup, with a significant difference from controls (unpaired t-test, p<0.001). Notably, the

reduction of optimal global coupling, was significantly larger in magnitude in EP3NR than in EP3R
(unpaired t-test, p<0.001) (Fig. 5B).

We then compared the optimal bifurcation parameters across nodes within and between conditions
and observed a complex pattern of alterations (Fig. SC). EP3 patients displayed less heterogeneity
across areas and tended to have bifurcation parameters closer to criticality (a = 0) compared to HCs.
This, according to results presented in previous sections, implies that ROIs’ activity in EP3 patients
is less stable and more sensible to incoming stimuli than in HC. It also implies increased constraints
imposed by structural connectivity on the emergence of functional patterns. This was especially the
case for the dynamics of ROIs associated with strong negative values of a in HC, whose role in
regulating network dynamics was established in section 3.4. To quantify this change, we computed
the mean of optimal bifurcation parameters across brain regions and compared it between
conditions, observing a significant shift toward less negative values associated with a reduction in
heterogeneity across areas in EP3R [-0.0126 * 2e-4] (grand mean + SE across repetitions, p<0.001)
and EP3NR [-0.0126 + 2e-4] (grand mean + SE across repetitions, p<0.001) as compared to healthy
controls [-0.0225 + 2e-4] (grand mean + SE across repetitions). This alteration was more extensive
in EP3R than in EP3NR (p<0.001) (Fig. 5D).

Since the change affected mainly ROIs originally associated with extremely negative values, we
compared the mean and median values of bifurcation parameters across brain regions in each
condition, knowing that the median is less influenced by extreme values. As expected, in HC we
observed a consistent difference between the two measures, with the mean being considerably

shifted toward negative values [-0.030 £+ 0.004] (mean A £ STD across repetitions). In EP3R, where
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negative values were less extreme, the difference between these two statistics was significantly
reduced [-0.015 £ 0.003] (mean A = STD across repetitions p<0.001). The same alteration could be
seen in EP3NR, [-0.025 + 0.002] (mean A = STD across repetitions p<0.001), but it was
significantly less consistent than in EP3R (p<0.001), as can be observed in Fig. 5E.

The loss of heterogeneity and the shrink towards criticality (a=0) can also be observed by the
reduction of the area under the curve of the optimal bifurcation parameter across brain regions
illustrated in Fig. SF. This area was in fact significantly smaller in both EP3R [7.02 + 0.02] (mean +
SEM across repetitions, p<0.001) and EP3NR [8.44 + 0.02] (mean = SEM across repetitions,
p<0.001), as compared to HC [8,67 £ 0.03] (mean £ SEM across repetitions). Consistent with our
previous findings, the reduction was significantly more consistent in EP3R than in EP3NR
(p<0.001). To improve visualization, for each condition optimal values of bifurcation parameters of
ROI’s originally associated with negative values have been projected on brain surface (Fig. 5G).
Furthermore, in line with previously discussed results indicating how a loss in heterogeneity
corresponds to increased SC constraints imposed on the emerging FC patterns (Fig. 3E), we
observed that in EP3R patients’ empirical FC and SC tend to correlate more as compared to HC,
even though not sufficiently to reach significance Supplementary Fig. S7. Additionally, in
Supplementary Fig. S3, we show how the change in the optimal value of bifurcation parameter in

each node is related to its functional and structural strength. As a further step we investigated

EP,HC
)

whether the change in the optimal value of the bifurcation parameter across areas (Aa;

correlated with the change in functional strength (AF CSL-EP HCY reported in section 3.2 and illustrated
in Fig. 2. In EP3R, but not in the other two subgroups, we found a significant correlation between
these two metrics (r=0.33; p=0.02) (Supplementary Fig. S4).

Finally, in Supplementary Fig. S5, we show that empirical differences in FC measures between
conditions were replicated in simulated data, validating the model's ability to capture relevant

properties of the data.

3.6 Additional analysis on EP2

Despite not including patients from stage II in the main analysis due to heterogeneity of the group
that would complicate interpretation of the results, we repeated the whole pipeline of analysis with
this subgroup in order to assess whether the findings observed in EP3R and EP3NR could be
generalised to all early psychotic patients. None of the alterations found in any of the two EP3
subgroups could be detected in EP2, proving once more the importance of clinical staging to

address heterogeneity within psychotic patients.
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4. Discussion (1718 to 1350)

In this work we propose to classify patients according to their ability to remit from a first psychotic
episode, aiming to investigate the neural correlates underlying these different clinical profiles and
outcomes (Fig. 1A). In fact, while neither of these patients have fully recovered, stage III psychosis
patients present different clinical pictures at the moment of the scan (i.e., temporary reduction of
symptoms for the remitting-relapsing patients or residual symptoms for the non-remitting ones).

We therefore analysed fMRI data of remitting-relapsing and non-remitting stage III patients and
compared their respective functional connectivity profiles with those of healthy controls (Fig. 1B),
highlighting two opposite trends of alteration, which suggests the existence of a compensatory
mechanism. A whole brain model (Fig. 1C) allowed us to investigate hidden correlates underlying
these alterations, highlighting some crucial properties of the healthy network and how those are

affected in the two subgroups of patients.

4.1 Opposite functional connectivity impairments in remitting-relapsing and non-remitting

patients

We hypothesized that different functional neural patterns underlie distinct clinical profiles in two
subgroups of stage III patients. Consistent with our expectations, significant differences in
functional strength were observed, with opposite alterations were found when comparing brain
activity in these two subgroups with that of healthy controls. Patients with residual symptoms after
the FEP, who had therefore not completely remitted at the moment of the scan (EP3NR), exhibited
a significant reduction of mean functional strength across areas (Fig. 2C, D), aligning with previous
findings of reduced structural strength °. In contrast, patients from stage III that were able to remit
after their psychotic episode, despite potentially having subsequent relapses (EP3R), showed
increased mean functional strength, indicating a potential compensatory mechanism (Fig. 2C, D).
These opposing patterns of alterations were not only observed in mean values of functional strength
across brain areas, where statistical significance was reached, but were also evident as a trend in
pairwise connectivity (Fig. 2A) and individual area strength (Fig. 2B). The majority of areas
showed consistent shifts within each patient subgroup and these shifts were in opposite directions
between the two subgroups as compared to controls (Fig. 2E).

The significant differences observed between remitting-relapsing and non-remitting patients, often
analysed as a combined group, could contribute to the heterogeneity in functional connectivity
studies of psychotic disorders 2*. We therefore suggest that further investigations on this topic

should take into account this source of intra-patient variability. Moreover, our findings suggest the
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presence of a potential compensatory mechanism in patients who achieve remission. The increased

26,39,40

functional connectivity observed, previously reported in psychotic disorders , especially in

early stages, may represent an over compensatory attempt to restore clinical functioning by

rebalancing the structural-functional interplay *'*2.

As discussed by Fornito and Bullmore, the
dissociation between reduced structural connectivity and increased functional connectivity can be
interpreted as a neural activity differentiation, involving a disruption of the typical segregation of
neural functions or as a compensatory process. It is also possible that both mechanisms contribute to

this phenomenon .

4.2 Properties of structural-functional interplay in the healthy brain

We investigated our hypothesis exploring the interplay between structural, dynamical, local, and
network properties of the healthy brain with a computational whole brain model (Fig. 1C, Fig. 3).
This model incorporates empirical structural information obtained from DSI measures and
replicates the functional dynamics observed in healthy individuals by adjusting two key factors: (1)
the global coupling parameter (G), controlling overall effective strength of connections, and (ii)
regional bifurcation parameters (a), describing each brain region’s local behaviour.

Previous research has established that the brain operates optimally in a criticality regime, where it
teeters on the edge of a bifurcation point between noisy and oscillatory behaviours *. This regime
fosters the emergence of diverse and complex metastable activity patterns, ensuring a balance
between stability and flexibility ***°. However, recent studies emphasized the importance of local
heterogeneity in node behaviours for maintaining global criticality level*®. Our study supports this
idea by showing that the healthy brain's dynamics are best represented when specific brain regions
are assigned negative values for the bifurcation parameter, indicating locally stable yet noisy
behaviour (Fig. 3B).

To investigate these nodes’ properties, we applied a threshold to identify areas with bifurcation
parameters deviating by more than two absolute deviations from the median and extracted their
values of structural and functional strength. Our results reveal a strong correlation between
bifurcation parameter values across nodes and combined functional-structural properties (Fig. 3F).
This suggests that the bifurcation parameter is influenced by both dimensions, hinting at its role in
regulating their interplay. Additionally, using a toy model, we shed light on the role of negative
bifurcation parameters in enhancing node stability by dampening incoming stimuli, both internal
and external. This property is especially relevant in nodes with prominent network characteristics
like connectivity hubs and isolated nodes, as it prevents excessive network synchronization while

allowing optimal segregation and the emergence of complex functional connectivity patterns (Fig.
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4). Moreover, heterogeneity in bifurcation parameters can relax structural constraints and promote

greater variety and flexibility in functional dynamics

, as evidenced by the increased functional-
structural correlation observed when homogeneous values of bifurcation parameters are imposed on

the model (Fig. 3C-E).

4.3 Alterations in network properties and potential compensatory mechanisms in EP patients

Our investigation then delved into how these properties were altered in patients and whether they
could account for the observed shifts in functional dynamics. To do this, we independently
constructed whole-brain models using the structural connectivity matrices of both remitting-
relapsing and non-remitting patients (Fig. 5).

Firstly, we found that all stage III patients exhibited significantly lower optimal coupling strength
(G) compared to controls (Fig. SA,B), indicating reduced structural strength, typically associated
with diminished conductivity effectiveness. This reduction was significantly more pronounced in
non-remitting-relapsing patients (EP3NR), suggesting a more severe initial impairment. This
alteration might signify a global decrease in long-range excitatory connectivity (E-E), in line with
the structural dysconnectivity hypothesis °. Possible contributors to this decrease could include
alterations in myelination, global changes in synaptic density or strength, and/or widespread
modifications in receptors 4743,

Furthermore, stage III patients displayed a loss of heterogeneity in optimal local bifurcation
parameters compared to controls, converging toward values around zero (Fig. SC-G). According to
our toy-model study, this implies heightened sensitivity to incoming stimuli and reduced stability.
Notably, this alteration was more prominent in remitting-relapsing patients (EP3R). The less
pronounced reduction in connectivity coupling in this subgroup, combined with a more extensive
alteration of local node properties, may account for the observed over-compensatory increase in
functional connectivity among remitting-relapsing patients, as opposed to non-remitting patients.
Intriguingly, only in the EP3R group these alterations in bifurcation parameters significantly
correlate with changes in empirical functional strength (Supplementary Fig. S4), suggesting their
potential role in underlying connectivity changes in this condition. Bifurcation parameters can be
interpreted as encoding the local responsiveness (or resilience) ¥’ of brain regions to incoming
stimuli, as shown with the toy-model study. The loss of heterogeneity observed in patients,
particularly in the remitting-relapsing group, could reflect a loss of functional flexibility due to
increased structural constraints *°, which may have clinical implications, particularly in the long
term. In particular, as discussed in previous works, this could contribute to impairments in cognitive

flexibility reported in patients™.
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We hypothesize that these changes may reflect heterogeneous local imbalances between excitatory
and inhibitory activity, aligning with the disinhibition hypothesis >!>2. Moreover, this aligns with
the hypothesis proposed by Krystal et al. in a recent insightful review *>. The review suggests that
increased intrinsic excitability or reduced inhibitory tone may serve as allostatic adaptive
compensatory mechanisms in response to NMDAR related connectivity alterations, potentially
leading to functional and structural consequences. Further empirical investigations are needed to
test the validity of this hypothesis and provide a deeper understanding of the underlying
mechanism. In line with our results, Horne et al. observed differentially disrupted connectivity in
treatment-resistant and -responsive patients with schizophrenia. In particular, they found that
responsive patients display effective compensatory increased top-down connectivity from ACC to
sensory regions serving to reduce sensory input to the striatum (control of sensory precision during

the task) and an absence of this compensatory cognitive control mechanism in resistant patients >.

Critically, brain data from patients in stage 1I, who also experience remission from the first episode
similar to EP3R but have not relapsed at the time of the scan, did not exhibit any of the alterations
observed in the EP3R group (Supplementary Fig. S6). They did not show significant differences
compared to healthy controls in terms of empirical measures, and most importantly, they did not
demonstrate the changes in the parameters observed in stage III patients. Interestingly, even when
some parameter alterations were detected in this group, they consistently displayed an opposite
trend in both global coupling and bifurcation parameters. This suggests a disease progression
component within this compensatory mechanism. However, the heterogeneity of patients in group
II, comprising individuals who have not yet relapsed but may do so in the future, as well as those

who will maintain full recovery, complicates further interpretation.

Taken together, these findings suggest that imbalances in the interplay between structural and
functional components may contribute to the underlying pathophysiological processes of early
psychosis, providing insights into their clinical implications. Additionally, these findings highlight
how heterogeneous alterations in local node properties can manifest as global network changes,
emphasizing the significance of maintaining local and global equilibria. Importantly, the observed
heterogeneity in local alterations may also arise from the preferential vulnerability of specific nodes
or networks to global alterations, such as changes in synaptic NMDAR function, as suggested by

Yang et al. >*

4.4 Limitations and future perspectives

One limitation of this study is the small sample size, especially when dividing patients into

subgroups, although it is comparable to similar studies. To ensure the generalizability of the
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findings, replication on larger datasets is necessary. Future research should adopt patient-level
analysis and simulations for valuable clinical predictions, and incorporate biologically-constrained
models with finer details of network properties, for a more accurate interpretation of results.
Mesoscopic or microscopic models of connectivity and synaptic plasticity can provide deeper

3-8 Furthermore,

insights into underlying processes driving the compensatory mechanism
longitudinal approaches will be essential to comprehend alterations' long-term evolution, disease
progression, and prognosis, and results validation through machine learning predictions can offer
clinical relevance insights for personalized care. Finally, consideration of medication's influence on
brain dynamics is crucial; however, our analysis primarily focuses on differences between

remitting-relapsing and non-remitting patients, with comparable medication levels to mitigate

confounding effects.

Funding

The project that gave rise to these results received the support of a fellowship from “la Caixa”
foundation “(ID 100010434)”. The fellowship code is: “(LCF/BQ/DI19/11730048)”, and financed
L.M work. In addition, G.D., M.V.V. and L.M. were supported by the Human Brain Project
Specific Grant Agreement 3 Grant agreement no. “(945539)” financed by the European
Commission and by the Spanish Research Project ref. “(PID2019-105772GB-
100/AEI/10.13039/501100011033)”, financed by the Spanish Ministry of Science, Innovation and
Universities (MCIU), State Research Agency (AEI). This last institution also financed M.V.V
trough the Grant/Award Number: PID2020-119072RA-I00/AEI/10.13039/501100011033. A.L.G.
was supported by Swiss National Science Foundation Sinergia grant no. 170873. L.A.E. was
supported by a research grant of University of Lausanne, Switzerland. L.A. was supported by a
fellowship of the Adrian and Simone Frutiger Foundation and from Carigest Foundation. P.K. was
supported by a fellowship from the Adrian and Simone Frutiger Foundation. Y.A.G. and P.H. were
financially supported by Swiss National Science Foundation grant #320030-197787.

Competing interests

“The authors report no competing interests.’


mailto:ludovica.mana@upf.edu
https://doi.org/10.1101/2023.11.28.568844
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568844; this version posted November 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

References

1. Catalan A, Richter A, Salazar de Pablo G, et al. Proportion and predictors of remission and
recovery in first-episode psychosis: Systematic review and meta-analysis. Eur Psychiatry.
2021;64(1). doi:10.1192/j.eurpsy.2021.2246

2. Lally J, Ajnakina O, Stubbs B, et al. Remission and recovery from first-episode psychosis in
adults: Systematic review and meta-analysis of long-term outcome studies. Br J Psychiatry.
2017;211(6):350-358. doi:10.1192/bjp.bp.117.201475

3. Alvarez-Jiménez M, Parker AG, Hetrick SE, McGorry PD, Gleeson JF. Preventing the
second episode: A systematic review and meta-analysis of psychosocial and pharmacological
trials in first-episode psychosis. Schizophr Bull. 2011;37(3):619-630.
doi:10.1093/schbul/sbp129

4. Fava GA, Kellner R. Staging: a neglected dimension in psychiatric classification. Acta
Psychiatr Scand. 1993:225-230.

5. McGorry PD, Hickie 1B, Yung AR, Pantelis C, Jackson HJ. Clinical staging of psychiatric
disorders: A heuristic framework for choosing earlier, safer and more effective interventions.
Aust N Z J Psychiatry. 2006;40(8):616-622. doi:10.1111/j.1440-1614.2006.01860.x

6. McGorry PD, Nelson B, Goldstone S, Yung AR. Clinical staging: A heuristic and practical
strategy for new research and better health and social outcomes for psychotic and related
mood disorders. Can J Psychiatry. 2010;55(8):486-497. doi:10.1177/070674371005500803

7. McGorry P, Van Os J. Redeeming diagnosis in psychiatry: Timing versus specifi city.
Lancet. 2013;381(9863):343-345. doi:10.1016/S0140-6736(12)61268-9

8. Baumann PS, Marion-Veyron R, Bardy S, Solida A, Conus P. Beyond clinical staging of
psychiatric disorders. The Lancet Psychiatry. 2015;2(10):e27. doi:10.1016/S2215-
0366(15)00377-6

9. Shah JL, Scott J, McGorry PD, et al. Transdiagnostic clinical staging in youth mental health:
a first international consensus statement. World Psychiatry. 2020;19(2):233-242.
doi:10.1002/wps.20745

10.  Bartholomeusz CF, Cropley VL, Wannan C, Di Biase M, McGorry PD, Pantelis C. Structural
neuroimaging across early-stage psychosis: Aberrations in neurobiological trajectories and
implications for the staging model. Aust N Z J Psychiatry. 2017;51(5):455-476.
doi:10.1177/0004867416670522

11.  McGorry P, Keshavan M, Goldstone S, et al. Biomarkers and clinical staging in psychiatry.
World Psychiatry. 2014;13(3):211-223. doi:10.1002/wps.20144

12.  Peralta V, de Jalon EG, Moreno-Izco L, et al. A clinical staging model of psychotic disorders
based on a long-term follow-up of first-admission psychosis: A validation study. Psychiatry
Res. 2023;322(February). doi:10.1016/j.psychres.2023.115109

13.  Gupta T, Mittal VA. Advances in clinical staging, early intervention, and the prevention of
psychosis. F1000Research. 2019;8. doi:10.12688/f1000research.20346.1


https://doi.org/10.1101/2023.11.28.568844
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568844; this version posted November 28, 2023. The copyright holder for this

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Raballo A, Largi F. Clinical staging: a new scenario for the treatment of psychosis. Lancet.
2009;374(9687):365-367. doi:10.1016/S0140-6736(09)61398-2

Martinuzzi E, Barbosa S, Daoudlarian D, et al. Stratification and prediction of remission in
first-episode psychosis patients: the OPTiMiSE cohort study. Transl Psychiatry. 2019;9(1).
doi:10.1038/s41398-018-0366-5

Yung AR, McGorry PD. Prediction of psychosis: Setting the stage. Br J Psychiatry.
2007;191(SUPPL. 51):1-8. doi:10.1192/bjp.191.51.s1

Golay P, Ramain J, Jenni R, et al. Six months functional response to early psychosis
intervention program best predicts outcome after three years. Schizophr Res.
2021;238(October):62-69. doi: 10.1016/j.schres.2021.09.022

Emsley R, Chiliza B, Asmal L, Harvey BH. The nature of relapse in schizophrenia. BMC
Psychiatry. 2013;13:1-8. doi:10.1186/1471-244X-13-50

Friston KJ, Frith CD. Schizophrenia a disconnection syndrome. Clin Neurosci.
1995;3(2):3(2):89-97. doi:PMID: 7583624

Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dysconnectivity in
schizophrenia: Where are we now? Neurosci Biobehav Rev. 2011;35(5):1110-1124.
doi:10.1016/j.neubiorev.2010.11.004

Kelly S, Jahanshad N, Zalesky A, et al. Widespread white matter microstructural differences
in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI
Working Group. Mol Psychiatry. 2018;23(5):1261-1269. doi:10.1038/mp.2017.170

Klauser P, Cropley VL, Baumann PS, et al. White Matter Alterations between Brain Network
Hubs Underlie Processing Speed Impairment in Patients with Schizophrenia. Schizophr Bull
Open. 2021;2(1):1-11. doi:10.1093/schizbullopen/sgab033

Fornito A, Bullmore ET. Reconciling abnormalities of brain network structure and function
in schizophrenia. Curr Opin Neurobiol. 2015;30:44-50. doi:10.1016/j.conb.2014.08.006

Fitzsimmons J, Kubicki M, Shenton ME. Review of functional and anatomical brain
connectivity findings in schizophrenia. Curr Opin Psychiatry. 2013;26(2):172-187.
doi:10.1097/YCO.0b013e32835d9¢e6a

Fornito A, Zalesky A, Pantelis C, Bullmore ET. Schizophrenia, neuroimaging and
connectomics. Neuroimage. 2012;62(4):2296-2314. doi:10.1016/j.neuroimage.2011.12.090

Yang GJ, Murray JD, Repovs G, et al. Altered global brain signal in schizophrenia. Proc
Natl Acad Sci U S A. 2014;111(20):7438-7443. doi:10.1073/pnas.1405289111

Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network
connectivity among spatially independent resting-state components in schizophrenia.
Neuroimage. 2008;39(4):1666-1681. doi:10.1016/j.neuroimage.2007.11.001

Whitfield-Gabrieli S, Thermenos HW, Milanovic S, et al. Hyperactivity and
hyperconnectivity of the default network in schizophrenia and in first-degree relatives of
persons with schizophrenia. Proc Natl Acad Sci U S A. 2009;106(4):1279-1284.
doi:10.1073/pnas.0809141106

Chopra S, Francey SM, O’Donoghue B, et al. Functional Connectivity in Antipsychotic-
Treated and Antipsychotic-Naive Patients with First-Episode Psychosis and Low Risk of
Self-harm or Aggression: A Secondary Analysis of a Randomized Clinical Trial. JAMA
Psychiatry. 2021;78(9):994-1004. doi:10.1001/jamapsychiatry.2021.1422


https://doi.org/10.1101/2023.11.28.568844
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568844; this version posted November 28, 2023. The copyright holder for this

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Griffa A, Baumann PS, Klauser P, et al. Brain connectivity alterations in early psychosis:
from clinical to neuroimaging staging. Transl Psychiatry. 2019;9(1). doi:10.1038/s41398-
019-0392-y

Baumann PS, Crespi S, Marion-Veyron R, et al. Treatment and early intervention in
psychosis program (TIPP-Lausanne): Implementation of an early intervention programme for
psychosis in Switzerland. Early Interv Psychiatry. 2013;7(3):322-328. doi:10.1111/eip.12037

Aleméan-Gémez Y, Arribas-Gil A, Desco M, Elias A, Romo J. Depthgram: Visualizing
outliers in high-dimensional functional data with application to fMRI data exploration. Stat
Med. 2022;41(11):2005-2024. doi:10.1002/sim.9342

Iglesias JE, Augustinack JC, Nguyen K, et al. A computational atlas of the hippocampal
formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of
in vivo MRI. Neuroimage. 2015;115:117-137. doi:10.1016/j.neuroimage.2015.04.042

Najdenovska E, Aleman-Gémez Y, Battistella G, et al. In-vivo probabilistic atlas of human
thalamic nuclei based on diffusion-weighted magnetic resonance imaging. Sci Data.
2018;5(November):1-11. doi:10.1038/sdata.2018.270

Iglesias JE, Van Leemput K, Bhatt P, et al. Bayesian segmentation of brainstem structures in
MRI. Neuroimage. 2015;113:184-195. doi:10.1016/j.neuroimage.2015.02.065

Glerean E, Salmi J, Lahnakoski JM, Ja IP, Sams M. Functional Magnetic Resonance Imaging
Phase Synchronization as a Measure of Dynamic Functional Connectivity. 2012;2(2).
doi:10.1089/brain.2011.0068

Loépez-Gonzdlez A, Panda R, Ponce-Alvarez A, et al. Loss of consciousness reduces the
stability of brain hubs and the heterogeneity of brain dynamics. Commun Biol. 2021;4(1).
doi:10.1038/s42003-021-02537-9

Cabral J, Hugues E, Kringelbach ML, Deco G. Modeling the outcome of structural
disconnection on resting-state functional connectivity. Neuroimage. 2012;62(3):1342-1353.
doi:10.1016/j.neuroimage.2012.06.007

Yang GJ, Murray JD, Glasser M, et al. Altered Global Signal Topography in Schizophrenia.
Cereb Cortex. 2017;27(11):5156-5169. doi:10.1093/cercor/bhw297

Mana L, Vila-Vidal M, Kockeritz C, et al. Using in silico perturbational approach to identify
critical areas in schizophrenia. Cereb Cortex. 2023:1-17. doi:10.1093/cercor/bhad067

Deserno L, Sterzer P, Wiistenberg T, Heinz A, Schlagenhauf F. Reduced prefrontal-parietal
effective connectivity and working memory deficits in schizophrenia. J Neurosci.
2012;32(1):12-20. doi:10.1523/JNEUROSCI.3405-11.2012

Krystal JH, Anticevic A, Yang GJ, et al. Impaired Tuning of Neural Ensembles and the
Pathophysiology of Schizophrenia: A Translational and Computational Neuroscience
Perspective. Biol Psychiatry. 2017;81(10):874-885. doi:10.1016/j.biopsych.2017.01.004

Deco G, Jirsa VK. Ongoing cortical activity at rest: Criticality, multistability, and ghost
attractors. J Neurosci. 2012;32(10):3366-3375. doi:10.1523/INEUROSCI.2523-11.2012

Werner G. Metastability, criticality and phase transitions in brain and its models. BioSystems.
2007;90(2):496-508. doi:10.1016/j.biosystems.2006.12.001

Muiioz MA. Colloquium: Criticality and dynamical scaling in living systems. Rev Mod Phys.
2018;90(3):31001. doi:10.1103/RevModPhys.90.031001


https://doi.org/10.1101/2023.11.28.568844
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568844; this version posted November 28, 2023. The copyright holder for this

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

38.

59.

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lopez-Gonzalez A. Model-based analyses of spatiotemporal brain activity during resting-
state and low-level states of consciousness. 2021.

Stephan KE, Friston KJ, Frith CD. Dysconnection in Schizophrenia: From abnormal synaptic
plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509-527.
doi:10.1093/schbul/sbn176

Kraguljac N V., McDonald WM, Widge AS, et al. Neuroimaging Biomarkers in
Schizophrenia. Am J Psychiatry. 2021;178(6):509-521. doi:10.1176/appi.ajp.2020.20030340

Cabral J, Kringelbach ML, Deco G. Functional graph alterations in schizophrenia: a result
from a global anatomic decoupling? Pharmacopsychiatry. 2012;45 Suppl 1:57-65.
doi:10.1055/s-0032-1309001

Wang Y, Hu X, Li Y. Investigating cognitive flexibility deficit in schizophrenia using task-
based whole-brain functional connectivity. Front Psychiatry. 2022;13(November):1-9.
doi:10.3389/fpsyt.2022.1069036

Driesen NR, Mccarthy G, Bhagwagar Z, et al. Relationship of resting brain
hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor
antagonist ketamine in humans. Mol Psychiatry. 2013;18:1199-1204.
doi:10.1038/mp.2012.194

Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor
antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm
shift in medication development. Psychopharmacology (Berl). 2003;169(3-4):215-233.
doi:10.1007/s00213-003-1582-z

Horne CM, Vanes LD, Verneuil T, et al. Cognitive control network connectivity
differentially disrupted in treatment resistant schizophrenia. Neurolmage Clin.
2021;30(March):102631. doi:10.1016/j.nicl.2021.102631

Yang GJ, Murray JD, Wang X]J, et al. Functional hierarchy underlies preferential
connectivity disturbances in schizophrenia. Proc Natl Acad Sci U S A. 2016;113(2):E219-
E228. doi:10.1073/pnas.1508436113

Wilson HR, Cowan JD. Excitatory and Inhibitory Interactions in Localized Populations of
Model Neurons. Biophys J. 1972;12(1):1-24. doi:10.1016/S0006-3495(72)86068-5

Montbrié E, Pazé D. Exact Mean-Field Theory Explains the Dual Role of Electrical
Synapses in Collective Synchronization. Phys Rev Lett. 2020;125(24):1-6.
doi:10.1103/PhysRevLett.125.248101

Herzog R, Mediano PAM, Rosas FE, et al. Neural mass modelling for the masses:
Democratising access to whole-brain biophysical modelling with FastDMF. bioRxiv.
2022:2022.04.11.487903.
https://www.biorxiv.org/content/10.1101/2022.04.11.487903v1%0Ahttps://www.biorxiv.org/
content/10.1101/2022.04.11.487903v1.abstract.

Pfeffer T, Ponce-Alvarez A, Tsetsos K, et al. Circuit mechanisms for the chemical
modulation of cortex-wide network interactions and behavioral variability. Sci Adv.
2021;7(29):1-19. doi:10.1126/sciadv.abf5620

Deco G, Cruzat J, Cabral J, et al. Awakening: Predicting external stimulation to force
transitions between different brain states. Proc Natl Acad Sci U S A. 2019;116(36):18088-
18097. doi:10.1073/pnas.1905534116


https://doi.org/10.1101/2023.11.28.568844
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.28.568844; this version posted November 28, 2023. The copyright holder for this

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Yung AR, Yuen HP, McGorry PD, et al. Mapping the onset of psychosis: The
Comprehensive Assessment of At-Risk Mental States. Aust N Z J Psychiatry. 2005;39(11-
12):964-971. doi:10.1111/j.1440-1614.2005.01714.x

Preisig M, Fenton BT, Matthey ML, Berney A, Ferrero F. Diagnostic interview for genetic
studies (DIGS): Inter-rater and test-retest reliability of the French version. Eur Arch
Psychiatry Clin Neurosci. 1999;249(4):174-179. doi:10.1007/s004060050084

Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ. MRIQC:
Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One.
2017;12(9):1-21. doi:10.1371/journal.pone.0184661

Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance
effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063-1078.
doi:10.1016/j.neuroimage.2015.10.019

Bastiani M, Cottaar M, Fitzgibbon SP, et al. Automated quality control for within and
between studies diffusion MRI data using a non-parametric framework for movement and
distortion correction. Neuroimage. 2019;184(May 2018):801-812.
doi:10.1016/j.neuroimage.2018.09.073

Deco G, Tononi G, Boly M, Kringelbach ML. Rethinking segregation and integration:
Contributions of whole-brain modelling. Nat Rev Neurosci. 2015;16(7):430-439.
doi:10.1038/nrn3963

Deco G, Kringelbach ML. Hierarchy of Information Processing in the Brain: A Novel
‘Intrinsic Ignition’ Framework. Neuron. 2017;94(5):961-968.
doi:10.1016/j.neuron.2017.03.028

Deco G, Cabral J, Saenger VM, et al. Perturbation of whole-brain dynamics in silico reveals
mechanistic differences between brain states. Neuroimage. 2018;169(June 2017):46-56.
doi:10.1016/j.neuroimage.2017.12.009

Cohen J. A power primer. In: Methodological Issues and Strategies in Clinical Research. A.
E. Kazd. American Psychological Association.; 2016:279-284.
doi:https://doi.org/10.1037/14805-018

Deco G, Kringelbach ML, Jirsa VK, Ritter P. The dynamics of resting fluctuations in the
brain: Metastability and its dynamical cortical core. Sci Rep. 2017;7(1):1-14.
doi:10.1038/s41598-017-03073-5


https://doi.org/10.1101/2023.11.28.568844
http://creativecommons.org/licenses/by-nc/4.0/

	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Diagnosis, clinical variables, and staging
	2.3. Neuroimaging data acquisition and processing
	2.4.  Measures of connectivity
	2.5. Modelling whole-brain dynamics in patient groups and controls
	2.5.1. Additional statistical analyses
	2.6. The impact of local alterations on the network dynamics

	3. Results
	3.1. Subjects and clinical staging
	3.2. Empirical functional connectivity alterations (FC)
	3.3. Model healthy controls
	3.4 The role of local negative bifurcation parameter in a network
	3.5 Model EP patients

	4. Discussion (1718 to 1350)

