
 

 

Brain network connectivity underlying remission in early psychosis:  

a whole brain model approach 

 

Ludovica Mana (1), Ane López-González (1), Yasser Alemán-Gómez (2), Philipp Baumann (4), 
Raoul Jenni (3), Luis Alameda (4,5,6), Lilith Abrahamyan Empson (2,4), Paul Klauser (3,7), Conus 
Philippe (2,4), Patric Hagmann (2), Manel Vila-Vidal (1,8)*, Gustavo Deco (1,9)* 

1) Center for Brain and Cognition, Computational Neuroscience Group, Department of 
Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, 
Barcelona 08018, Spain.  
2) “Department of Radiology, Lausanne University Hospital and University of Lausanne 
(CHUV-UNIL), Lausanne, Switzerland” Department of Radiology, Lausanne University 
Hospital  
3) Center for psychiatric neuroscience, Department of psychiatry, Lausanne university hospital 
and the University of Lausanne, Lausanne, Switzerland. 
4) Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program, 
Lausanne. University Hospital (CHUV), Lausanne, Switzerland 
5) Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience. 
King's College of London, London, UK.  
6) Centro Investigación      Biomédica en Red de Salud Mental (CIBERSAM); Instituto de 
Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Departamento de 
Psiquiatría, Universidad de Sevilla, Sevilla, Spain. 
7) Service of child and adolescent psychiatry, Department of psychiatry, Lausanne university 
hospital and the University of Lausanne, Lausanne, Switzerland. 
8) Computational Biology and Complex Systems Group, Department of Physics, Universitat 
Politècnica de Catalunya, Barcelona, Spain 
9) Institució Catalana de la Recerca i Estudis Avancats (ICREA), Passeig Lluis Companys 23, 
Barcelona 08010, Spain. 

 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568844doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568844
http://creativecommons.org/licenses/by-nc/4.0/


 

ABSTRACT 

Background: Alterations in brain connectivity occur early during psychosis and underlie the clinical 
manifestations of the illness as well as patient functioning and outcome. After a first episode of 
psychosis (FEP), different trajectories are possible and best described by the clinical-staging model 
that places the patient along a continuum of conditions: from non-remitting chronic symptoms to full-
remission, often followed by relapses. However, little is known about the differences in brain 
connectivity that could underlie these differences in clinical outcome.  

Methods: In this study, we included resting-state fMRI and DSI data from a cohort of 128 healthy 
controls (HC) and 88 patients with early psychosis (EP) stratified based on their ability to remit after 
the FEP. In particular we focused on differences between stage IIIb,c remitting-relapsing (EP3R) and 
stage IIIa non-remitting (EP3NR) patients. We investigated alterations in resting-state functional 
connectivity (FC), and combined information derived from fMRI and DSI into generative whole-
brain models of each condition to explore the underlying mechanisms.  

Results: Opposite alterations in FC could be found in patients as compared to HC, depending on their 
stage. In non-remitting patients (EP3NR), we observed a reduction of FC, aligned with the reduced 
structural connectivity found in previous studies, while remitting-relapsing patients (EP3R) showed 
increased FC, potentially indicating a relevant compensatory mechanism. By means of a whole-brain 
network model, we showed that in HC a subset of areas is characterized by increased stability to 
prevent an oversynchronisation of the network, while in EP3 patients such property is lost. This 
alteration was more relevant in the EP3R than in EP3NR patients, probably indicating a 
compensatory response to the reduced effective conductivity (global coupling) highlighted by the 
model in both EP3 conditions as compared to controls. 

Conclusions: These findings highlight the significance of categorizing patients into subgroups based 
on the progression of their psychotic disorders, providing insights into the factors contributing to 
heterogeneity in functional alterations. They enhance our understanding of the interplay between 
structural and functional properties, shedding light on the mechanisms of psychosis emergence, 
remission and progression, with potential implications for future therapeutic advancements.   
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1. Introduction  
 

Clinical presentation and trajectory in early-stages psychotic disorders can vary widely among 

patients. Following a first episode of psychosis (FEP), approximately one-third of patients achieve 

full recovery 1,2, while the remainder progress to chronic illness, characterized by either a lack of 

remission, partial remission, or a cycle of complete remission followed by relapses 3.  

From a clinical perspective, it is extremely important to better discriminate into different groups of 

patients based on clinical trajectory. To this aim, clinical staging –introduced to psychiatry by Fava 

and Kellner 4, and applied to psychotic disorders by McGorry and colleagues– is a fundamental tool 
5–9. Additionally, mapping neurobiological markers, such as brain imaging features, onto clinical 

stages could further allow us to validate the boundaries of the clinical groups, broadening our 

understanding of psychotic disorder pathophysiology 10,11.   

To date, most studies on early psychosis have primarily focused on discriminating patients with the 

aim of predicting their long-term recovery prospects following a first episode of psychosis, crucial 

for early intervention 12–17. However, from the neural perspective, equally important is understanding 

the distinctions among patients based on their ability to achieve short-term remission from FEP, 

regardless of prognosis. In fact, within the non-recovering patients, during the first years of treatment 

following a FEP, a noteworthy differentiation emerges between two distinct clinical profiles: those 

experiencing periods of complete remission between relapses and those who either do not remit or 

achieve only partial remission 5. This distinction holds the key to comprehending the neural 

mechanisms enabling a subset of patients to effectively overcome the acute symptomatic crisis and 

temporarily restore healthy functioning 18. Delving deeply into this phenomenon is crucial, as it could 

unveil compensatory mechanisms and might facilitate the identification of biomarkers associated 

with clinical staging, providing valuable insights into the mechanisms underlying disease 

progression. Moreover, it could help explain the heterogeneity of brain alterations in the literature. In 

fact, while studies investigating anatomical alterations in psychotic disorders are fairly coherent in 

reporting decreased structural connectivity (SC) 19–22, the way such changes translate into functional 

alteration remains unclear 23. Findings on functional alterations are indeed less consistent 24,25, with a 

significant portion of studies describing reductions in functional connectivity (FC), and others 

reporting increases 26–29.  

However, neurofunctional differences between remitting-relapsing and non-remitting patients have 

been scarcely studied and underlying correlates remain unclear. Moreover, we still lack a thorough 

comprehension of how local alterations translate into global network changes, and how these in turn 

translate into clinical manifestations.   
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The purpose of this study is to address these gaps by employing connectivity analyses and 

computational approaches to explore the neural processes that enable a subgroup of patients to 

compensate for the alterations that lead to psychotic episodes and to achieve temporary remission, in 

contrast to other patients who fail to do so. Specifically, we aim to disentangle the underlying 

functional compensation mechanism into global and local components given the structural properties 

of the network.  

To this aim, we included resting-state functional magnetic resonance imaging (fMRI) and diffusion 

spectrum MRI (DSI) data from a cohort of 128 healthy controls and 88 patients with early psychosis 

(within the first 3 years following a treated FEP in an early intervention service) stratified into 

distinct groups based on their clinical stage.  Patients were classified into stage II (first-episode), 

stage IIIb,c remitting-relapsing (remission with one or more relapse), and stage IIIa non-remitting 

(incomplete remission), according to the course of the illness until the time of scanning 5. While a 

previous study on an overlapping sample of the same dataset showed a progressive decrease in 

structural connectivity across stages, it didn't explore differences in functional connectivity or 

distinguish between remitting-relapsing and non-remitting patients 30. This current work focuses 

specifically on these questions, examining whether global and local FC measures significantly differ 

between remitting-relapsing and non-remitting patients compared to healthy controls.  Moreover, we 

combined information derived from both fMRI and DSI to build a generative whole-brain model that 

could optimally fit the empirical data of the controls. Complementing it with an additional toy-model, 

we used it to extract hidden properties of the network that cannot be directly measured. This 

approach allowed us to investigate how brain dynamics interact with connectomes in the healthy 

brain. Finally, we built models to explain the empirical data of each subgroup of patients, 

investigating potential damaging and compensatory mechanisms underlying their pathological 

alterations. 

 

2. Materials and methods 
 

2.1. Participants 
 

We included 216 subjects (88 EP patients, 128 HC) aged 18-35 years [26.3 ± 0.6]. EP patients were 

recruited from the Treatment and Early Intervention in Psychosis (Tipp) program of the Lausanne 

University Hospital, Switzerland 31, meeting psychosis threshold and specific criteria (see 

supplementary materials). HC were age, gender, and handedness-matched, without mood or 
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substance use disorders, and no family history of psychosis. Exclusion criteria included 

neurological disorder, severe head trauma, or mental disability (IQ<70). Informed written consent 

was obtained, and the study was approved by the local ethics Committee. 

 

2.2. Diagnosis, clinical variables, and staging 
 

A consensus diagnosis procedure was elaborated in the framework of the TIPP program and is 

described in supplementary material. The clinical stage was rated as the highest stage achieved at 

the time of imaging, therefore cross-sectionally. The patients were initially stratified into four 

distinct groups (Fig. 1) based on a consensus assessment by two experienced psychiatrists, 

according to the clinical staging model proposed by McGorry et al. 2006. 

 

 

Fig.1: Schematic representation of the analysis workflow, featuring clinical staging model, empirical 

connectivity analyses and whole-brain model fitting  

(A) Stage I: early or late prodromal patients with mild or subthreshold symptoms; Stage II: first-episode of 

psychosis (i.e., ‘discrete disorder’); Stage IIIa: incomplete remission; Stage IIIb: one relapse; Stage IIIc: multiple 

relapses; Stage IV: chronic outcome with severe, persistent illness. This study includes resting state fMRI data 

from patients with early psychosis (EP) classified in stage 2, stage3 non-remitting (IIIa), stage3 remitting-

relapsing (IIIb or IIIc), as well as from healthy controls (HC). Figure adapted from 30, Copyright © 2019 Griffa et 

al., under CC BY 4.0. (B) Functional connectivity (FC) matrices were obtained for each subject by computing the 

Pearson correlation of the BOLD signals between each pair of nodes across time. Global and local measures of 

connectivity were computed to investigate significant alterations between condition. (C) Structural and functional 

information from the empirical data was used to build a whole-brain dynamical model and fit it to reproduce the 

empirical FC features of the HC and the different EP groups independently in order to investigate the 
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mechanisms underlying pathological alterations. Figure adapted from Deco et al., 2019, Copyright © 2017 Deco 

et al., under CC BY 4.0. 

 

Stage II (EP2) included first-episode psychosis patients with one episode. Stage III (EP3) included 

three subgroups: IIIa (incomplete remission), IIIb (relapse), and IIIc (multiple relapses). Due to the 

study's goal of investigating neural mechanisms in remission, and to the elevated heterogeneity of 

EP2   patients, we focused on EP3 patients. Stage IIIb and IIIc were aggregated in a remitting-

relapsing (EP3R) subgroup with 31 patients, while stage IIIa formed the non-remitting (EP3NR) 

subgroup with 20 patients. EP2 patients, being a more diverse group with various recovery 

durations and outcomes, were not included in the primary analysis, but their results were examined 

separately in the supplementary materials for completeness. Additional information can be found in 

supplementary materials. 

 

2.3. Neuroimaging data acquisition and processing 
 

MRI data was acquired from two 3-Tesla scanners, the Magnetom TrioTim and PRISMA from 

Siemens Medical Solutions. The MRI sessions included a T1-weighted MPRAGE sequence (TR = 

2300 ms, voxel size = 1 x 1 x 1.2 mm³), a diffusion spectrum imaging (DSI) sequence with 1 b0 

acquisition and 128 diffusion weighted directions (TR = 5900 ms, voxel size = 2.2 x 2.2 x 3 mm³), 

and a resting-state functional MRI (rs-fMRI) sequence with TR = 1920 ms, and 3.3mm isotropic. 

The acquisition times for the MPRAGE-T1w, DSI and rs-fMRI sequences were approximately 7, 

13 and 9 minutes. Image quality assessment, including visual inspection and quality control metrics, 

ensured dataset quality. More details can be found in a previous work32 and in supplementary 

materials. 

Image processing involved grey matter parcellation with skull-stripping using CAT12 and 

FreeSurfer for cortical surface reconstruction and subcortical parcellation. These regions were 

combined with the hippocampus subfields,33 the thalamic nuclei34 and a parcellation of the 

brainstem 35 to create a final subdivision of grey matter in 115 regions of interest. For DSI 

preprocessing, fiber tracking and structural connectivity computation, the images were processed 

using the image processing packages Mrtrix3 and FSL. rs-fMRI preprocessing was conducted with 

fMRIPrep, including motion correction, co-registration with anatomical images, spatial 

normalization, slice-timing correction, smoothing, and nuisance signal regression. Neuroimaging 

procedures are described in full detail in supplementary materials. 
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2.4.  Measures of connectivity 

 
The structural connectivity (SC) between each pair of grey matter regions of interest was quantified 

as the density of streamlines connecting the two regions, accounting for the differences in region 

sizes. This resulted in 115-nodes, weighted undirected brain-networks. To ensure consistency and 

minimize biases, connections present in less than 50% of subjects (both controls and patients) were 

excluded. 

 

Functional connectivity (FC) was measured as the Pearson correlation between filtered BOLD 

signals (0.04-0.07 Hz) 36 of each pair of brain areas over the entire recording period, resulting in a 

115x115 undirected matrix per subject. To validate our findings, we repeated all analyses using an 

independent FC measure -instantaneous phase coherence (iFC)-, which assesses the consistency of 

phase relationships across time. Node strength (끫歲끫歲끫歲끫殬) were computed as the sum over columns of 

the pairwise FC matrix and represents the overall level of connectivity of each individual node i. 

Significant differences in group averaged pairwise connectivity and in node strength were 

investigated between each EP group (EP3NR, EP3R) and HC. Next, we evaluated whether there 

were consistent changes in functional strength across all nodes between each EP group and HCs by 

comparing group average strength (끫歲끫歲끫歲끫殬끫殠끫殠끫殠끫殠끫殬끫殠끫殬끫殠끫殠 ) distributions. Finally, we compared the mean 

difference of strength in each area between the pathological conditions and HCs: 

 

 

and tested whether the obtained global difference of strength between conditions was large enough 

to reject the null hypothesis that the two conditions had the same mean value (H0: Δ=0).  

Moreover, global network-level analysis involved calculating overall level of coupling through 

mean FC values, and computing root-mean-square signal amplitude, segregation, and integration. 

Wilcoxon ranksum test was used to investigate differences between groups. A threshold of α = 0.05 

was applied. 

We additionally explored the relationship between structural and functional connectivity by 

computing the Pearson correlation between the upper triangular elements of the FC and SC 

matrixes, as well as between global values of FC and SC in each condition. All connectivity 

analyses are described in full detail in supplementary materials. 

 

∆끫歲끫歲끫歲끫殬EP,HC
= 끫歲끫歲끫歲끫殬EP − 끫歲끫歲끫歲끫殬HC [1] 
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2.5. Modelling whole-brain dynamics in patient groups and controls 
 

For each condition, we created a whole-brain model using structural and functional connectivity 

data, adjusting parameters to replicate empirical data (Fig. 1C), as described in supplementary 

materials.  The model's differential equations describe how local and global brain dynamics are 

influenced by structural connectivity, using the normal form of a supercritical Hopf bifurcation:  끫殢끫殢끫殬끫殢끫殢 = [끫殜끫殬 − 끫殢끫殬2 − 끫毌끫殬2]끫殢끫殬 − 끫欨끫殬끫毌끫殬 + G�끫歲끫殬끫殬(끫殢끫殬 − 끫殢끫殬) + 끫毺끫毺끫殬(끫殢),

끫殂
끫殬=1  [2] 

끫殢끫毌끫殬끫殢끫殢 = [끫殜끫殬 − 끫殢끫殬2 − 끫毌끫殬2]끫毌끫殬 + 끫欨끫殬끫毌끫殬 + G�끫歲끫殬끫殬�끫毌끫殬 − 끫毌끫殬� + 끫毺끫毺끫殬(끫殢).

끫殂
끫殬=1  [3] 

 

The connectivity between the different nodes was set to be equal to the empirical anatomical 

structural connectivity matrix 끫歲 = (끫歲끫殬끫殬) derived from corresponding DSI (N= 115 areas) for each 

condition, and the strength of these connections was scaled by the global coupling parameter G, 

which is believed to reflect the effectiveness of conductivity of the structural connections. The local 

dynamics were represented by bifurcation parameters (끫殜끫殬). According to this model, a bifurcation 

occurs at 끫殜끫殬 = 0 (edge of criticality), so that when 끫殜끫殬 assumes negative values (subcriticality) the 

activity of the node is described as noise, while when it assumes positive values (supercriticality), 

the behaviour becomes oscillatory with an intrinsic frequency determined by the parameter 끫殦끫殬 =끫欨끫殬/2끫欖. In the current work, we set the frequency within the 0.04-0.07 Hz range, and we derived it 

from the empirical data, as given by the averaged peak frequency of the narrowband BOLD signals 

of each brain region. 

  

We optimized G and 끫殜끫殬 iteratively, and we ran 300 simulations for each parameter combination.  

We assessed model goodness of fit using functional connectivity (FC) and functional connectivity 

dynamics (FCD) and selected the combination of parameters for which the mean Kolmogorov-

Smirnov (KS) distance was minimised as the optimal working point of the model.  Next, we 

compared optimal global and local parameters between conditions.  

 

2.5.1. Additional statistical analyses 

 

We then explored the relation of optimal values of 끫殜끫殬  with functional and structural node strengths 

in HC, by means of a generalised linear model. We also investigated how the change in the optimal 

value of bifurcation parameters in each pathological condition as compared to HC (∆끫殜끫殬EP,HC) relates 
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with the corresponding values of 끫歲끫歲끫歲끫殬HC 끫殜끫殜끫殢  끫歲끫歲끫歲끫殬HC. Additionally, we investigated how changes in 

optimal 끫殜끫殬 (∆끫殜끫殬EP,HC
) correlated with changes in empirical FC strength in pathological 

conditions (∆끫歲끫歲끫歲끫殬EP,HC
). More detailed description of the methods can be found in supplementary 

materials. 

2.6. The impact of local alterations on the network dynamics 

Additionally, we aimed to explore how local bifurcation parameters influenced global network 

dynamics by constructing a simplified network of coupled Hopf oscillators (two communities 

connected through a single node) and altering the bifurcation parameters of nodes, examining their 

impact on both spontaneous dynamics and responses to external stimuli (Fig. 4).   

3. Results

3.1. Subjects and clinical staging 

We investigated alterations in fMRI data among young adults in the early phases of psychosis 

(EPPs) classified into stage II (37 subjects), stage III remitting-relapsing (31 subjects), and stage III 

non-remitting (20 subject) subgroups, primarily focusing on exploring differences between the 

subgroups within stage III and comparing them with healthy controls (HCs). 

Supplementary Table 1 provides details on the demographics and clinical scores, and 

Supplementary Table 2 the corresponding statistical comparisons computed through unpaired t-

test. No significant differences in age, gender, or handedness were observed between EPPs and 

HCs. Stage III patients were, on average, older and had significantly longer durations of illness 

compared to stage II patients. It is important to acknowledge that the differences in the duration of 

illness between groups are inherent to the clinical-staging criteria used in this study.  No difference 

in age or duration of illness was instead observed within stage III between remitting-relapsing 

(EP3R) and non-remitting patients (EP3NR), reducing confounding variables and making them 

more directly comparable.  

Overall, EPPs had significant lower GAF scores compared to the HCs. Among patients, stage II and 

stage III showed no significant differences in GAF scores, PANSS scores, or medication doses at 

the time of fMRI. However, within stage III, EP3NR patients had higher PANSS general and total 

scores and lower GAF values than EP3R. PANSS negative and positive scores were also notably 
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higher in EP3NR, though not statistically significant. No difference in medication dose was found 

between EP3R and EP3NR patients. The difference in symptom severity at the time of scanning 

serves as the basis for this alternative subdivision (EP3R vs EP3NR). It allows us to investigate 

neurological distinctions between two groups with equivalent disease progression stages (age, 

illness duration, and medication level) but significantly different clinical manifestations. 

3.2. Empirical functional connectivity alterations (FC) 

The first step in our analysis consisted of searching for alterations in network synchronisation 

between conditions (HC, EP3R, EP3NR), as measured by the FC measures computed from pairwise 

coupling of BOLD signals between all regions of interest. 

- Global network-level differences:

No significant differences in global functional connectivity, integration, or mean amplitude were 

observed between conditions. However, trends indicated that remitting-relapsing patients tended 

toward increased connectivity, while non-remitting patients leaned toward decreased values 

compared to healthy controls (Supplementary Fig. S1). 

- Pairwise connectivity differences:

We calculated functional connectivity differences between each EP group (EP3R, EP3NR) and HCs 

for each pair of brain areas. Fig. 2A shows the difference matrices. To enhance clarity, we only 

display pairs with p<0.01 significance, masking others. No differences survived multiple 

comparison correction, but distinct condition-specific trends emerged. EP3R patients exhibited 

increased connectivity in the majority of altered pairs, while EP3NR patients showed decreased 

connectivity in most of affected pairs. 

- Node strength differences:

In each condition we assessed the connectivity strength of each area with the rest of the brain (Fig. 

2B and Supplementary Fig. S2). When compared to those of controls, the strength of a few 

selected areas resulted to be different in patients, following the same trend observed with pairwise 

FC in groups (EP3R, EP3NR) when compared to HC. However, no individual difference was 

significant after multiple comparison correction. Notably, no discernible trend was found in EP2 

patients (Supplementary Fig. S5A and B). 

To assess whether these trends reflected a globally consistent change in functional strength, we 

compared the distributions of group average values of strength in each area between conditions. 

EP3R patients exhibited a significantly increased mean strength compared to healthy controls, 

indicating higher functional connectivity [끫歲끫歲끫歲  HC= 39.45±0.14, 끫歲끫歲끫歲  EP3R= 41.97±0.32 (mean ± SE, 
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across areas and subjects), p<0.001]. On the other hand, EP3NR patients, exhibited a strongly 

significantly decreased mean strength compared to healthy controls, indicating lower functional 

connectivity [끫歲끫歲끫歲  HC= 39.45±0.14, 끫歲끫歲끫歲  EP3NR= 37.40±0.35 (mean ± SE, across areas and subjects), 

p<0.001] (Fig. 2C). 

Fig.2: Empirical functional connectivity alterations: (A) Differences in group mean pairwise functional 

connectivity for each pair of brain areas between the pathological conditions and controls. Only the areas with a 

significant difference with p<0.01 are shown, while all the other areas have been masked. No significance 

survived multiple comparison correction. (B) Group mean connectivity strength for each of the 115 regions, 

ordered by mean regional strength in healthy controls. Solid lines and shaded areas represent the median and the 

standard error across subjects, respectively. None of the comparisons survived multiple comparison analysis in 
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any of the conditions. Both in (A) and (B) it is possible to notice opposite trends of alteration in the two condition 

as compared to controls (increased FC in EP3R vs decreased FC in EP3NR).  (C) Distributions of mean FC 

strength across subjects in pathological and healthy condition. Lines connect the value of mean strength in each 

area in healthy condition (central, blue) to the value of strength in the corresponding area in the two pathological 

conditions, showing the two opposite directions of change. (D) Mean strength difference across areas resulted 

significantly increased in EP3R in patients compared to healthy controls, and significantly decreased in EP3NR 

patients. *** stands for p<0.001. (E) To improve visualization, optimal values of Δ FC strength have been 
projected on brain surface. It is possible to notice the consistency of the opposite changes, with the majority of 

areas shifting in the same direction within each condition as compared to controls. 

For both conditions this change was consistent across areas, with the majority of nodes showing the 

same direction of change as compared to controls (Fig. 2E). Moreover, an overall strength 

difference was tested for significance by computing the mean functional strength difference across 

brain areas (∆끫歲끫歲끫歲EP,HC) (Fig. 2D). EP3R patients exhibited a strongly significantly positive 

difference [∆끫歲끫歲끫歲EP3R,HC= 2.52 ± 0.02 (mean ± SE, across areas), p<0.001, Cohen’s d=1. 3]. On the 

other hand, EP3NR patients, exhibited a strongly significantly negative difference, indicating lower 

functional connectivity [∆끫歲끫歲끫歲EP3NR,HC = -2.05 ± 0.02 (mean ± SE, across areas), p <0.001, 

Cohen’s d=0.75].  

3.3. Model healthy controls 

The second step in our analysis consisted of fitting a whole-brain computational model to the 

healthy resting-state BOLD dynamics to investigate the interplay between structural and functional 

properties on the healthy brain network. We therefore looked for the optimal combinations of 

parameters (global coupling G and bifurcation parameters 끫殜1, … , 끫殜끫殂) that, given the network’s 

structure 끫歲 = (끫歲끫殬끫殬), could best reproduce the functional dynamics observed in the empirical data. 

In Fig. 3A, we can see how the optimal combination of parameters allowed to reproduce pretty 

accurately the empirical functional dynamics of the healthy condition, as indicated by a minimal KS 

distance of KS = 0.3 ± 0.1 (median ± interquartile range, across 300 simulations). In particular, the 

optimal value of global coupling was found to be G = 1.38± 0.07 (mean ± SEM, across 300 

simulations). 
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Fig.3: Whole-brain model of HC: Structural and functional information from the empirical data were used to 

build a whole-brain dynamical model optimised to reproduce HC functional connectivity properties by adjusting 

one global parameter (the global coupling G) and N local parameters (the bifurcation parameters 끫殜1, … , 끫殜끫殂), one 

per node). (A) Fitting curve of the model as a function of G, measured with the Kolmogorov-Smirnov (KS) 

distance between the empirical and the simulated FCD distributions. For each value of G, we used the bifurcation 

parameters 끫殜1, … ,끫殜끫殂, which optimized the power spectral density (PSD) of the simulated BOLD signals in the 

range 0.04-0.07 Hz to that of the empirical signals. The solid line and the shaded area represent the median and 

the inter-quartile range, respectively, across N=300 simulations. The optimal combination of parameters (optimal 

G with its associated optimal 끫殜 = (끫殜1, … , 끫殜끫殂)) was the one that minimised the mean KS distance between the 

empirical and the model FCD distributions. (B) Optimal value of a for each brain area as the global coupling G 

varies from 0 to 2.5 (top panel) and at the optimal value of G (bottom panel). (C) Fitting curve of the model as a 

function of G, measured with the Pearson correlation between the empirical and simulated functional connectivity 

(FC) matrices with the heterogeneous (left panel) and the homogeneous models. In the heterogeneous model, 

bifurcation parameters 끫殜1, … ,끫殜끫殂 were optimized based on the power spectral density of the BOLD signals. In the 

homogeneous model, all bifurcation parameters were set to 끫殜1 = ⋯ =  끫殜끫殂 = 0. The solid line and the shaded 

area represent the median and the inter-quartile range, respectively, across N=300 simulations. (D) Group 

averaged FC matrices comparing empirical data (left panel), simulated data generated from the heterogeneous 

(central panel) or homogeneous (right panel) model at the respective optimal value of G. (E) Correlation between 

simulated FC matrix and empirical SC of healthy controls in the homogeneous and heterogeneous model. We can 

see how the correlation is significantly decreased wen heterogeneity is included in the model, showing how it 

allows to escape structural constraints in the generation of functional pattern. (F) Relation between the optimal 

bifurcation parameter 끫殜끫殬 끫歶끫歶 (average across 300 simulations), the mean functional strength 끫歲끫歲끫歲끫殬끫歶끫歶and the mean 

structural strength 끫歲끫歲끫歲끫殬끫歶끫歶  of each node i (average across subjects). Each dot represents one of the 115 areas. In 

the right panel the 3 variables are represented in a 3D plot with 끫殜끫殬 끫歶끫歶 on the x axis, 끫歲끫歲끫歲끫殬끫歶끫歶 on the y axis and 끫歲끫歲끫歲끫殬끫歶끫歶 on the z axis. To improve visualization, areas associated to a negative value between one and two median 

absolute deviation from the median (-0.07<끫殜끫殬 끫歶끫歶<-0.15) are plotted in black, while areas associated to a negative 

value more than two median absolute deviations from the median are plotted in red (끫殜끫殬 끫歶끫歶< - 0.15). In the left 
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panel the relation is illustrated in a 2D plot with 끫歲끫歲끫歲끫殬끫歶끫歶 and 끫歲끫歲끫歲끫殬끫歶끫歶 variables on the x and y axes, respectively, 

and values of optimal a represented as a gradient of colors. Blue indicates negative values and yellow positive 

values.  
 

 

The optimal value of (끫殜1, … ,끫殜끫殂)  is expressed in a vector represented in Fig. 3B.  It is interesting to 

notice that the optimal values of 끫殜끫殬 are not homogeneously distributed across different ROIs. In 

particular, while most regions are associated with optimal 끫殜끫殬 parameters around the bifurcation 

point (끫殜끫殬 = 0), a subset of ROIs showed instead subcritical (i.e.<0) values of optimal 끫殜끫殬. These 

results are in line with a previous work, where the model was applied to a different dataset of 

healthy controls resting state, indicating the robustness and generatability of the findings 37. The 

median optimal bifurcation parameter for the optimal value of global coupling was found to be 끫殜 =

 0.00 ±  0.08  = (median ± MAD, MAD= median absolute deviation, across N=115 areas). To 

define the subset of areas associated with strong negative values of bifurcation and investigate 

relevant connectivity properties, we defined a threshold and selected areas associated with a 

bifurcation parameter more than two MADs away from the median (Supplementary Table 3). 

 

3.3.1 Local-global structural-functional interplay and the role of heterogeneity 

To explore the interaction between global and local network properties, we examined the 

relationship between the global coupling parameter G and the local bifurcation parameters 끫殜끫殬. In the 

top panel of Fig. 3B, it's evident that -along the range of G values that we explored- optimal values 

of a tend to scale proportionally with the associated value of global coupling. This suggests a 

compensatory mechanism for states of over or under connectivity. In particular, to higher coupling 

values correspond greater heterogeneity in the values of parameter 끫殜 across nodes, with values 

progressively further from the bifurcation point. 

To assess the role of heterogeneous negative values of bifurcation parameters, we attempted to 

model healthy brain functional dynamics by imposing a homogeneous value of 끫殜끫殬 = 0 (edge of 

criticality) in all regions of interest (ROIs) and compared it to the previous model with 

heterogeneous parameters. The model with homogeneous parameters resulted in significantly worse 

FC fit. It failed to reproduce essential spatial connectivity properties of the functional network, as 

indicated by a significantly lower Pearson correlation between empirical and simulated FC 

compared to the heterogeneous model (Fig. 3C). Specifically, the homogeneous model struggled to 

replicate the hierarchical organization of the network into communities (Fig. 3D). Moreover, when 

homogeneous bifurcation parameter values were imposed, the correlation between optimal 

simulated FC and the underlying empirical structural connectivity (SC) significantly increased 

compared to when heterogeneity was allowed (Fig. 3E). This, along with earlier observations, 
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suggests that local heterogeneities may enable the network to sustain more complex spatial patterns 

of FC while (1) avoiding constraints imposed by SC and (2) preventing states of under or over 

synchronization as structural connectivity strengthens38. 

Furthermore, using a generalized linear model, we explored the relation between optimal values of 

parameter 끫殜끫殬 in each area and their corresponding structural and functional strength. The 

combination of  끫歲끫歲끫歲끫殬HC, 끫歲끫歲끫歲끫殬HCand the interactions between them, explained 64.2% of the variance 

in optimal 끫殜끫殬, values, as shown in Fig. 3F. Specifically, the optimal bifurcation parameter value was 

positively correlated with functional strength (r=1.06, p<0.01), which explained 44.0% of its 

variance across regions, and negatively correlated with structural strength (r=-5.83, p<0.01), which 

explained 15.7% of its variance across regions. In particular, strong negative values can be 

associated with either 1) areas characterised by low functional strength and low structural strength, 

indicating disconnection from the rest of the network, or 2) areas with very high structural strength, 

often referred to as connectivity hubs (Fig. 3F right panel).    

 

3.4 The role of local negative bifurcation parameter in a network 
 

To better understand the effect of the local bifurcation parameter on network dynamics and how this 

effect is modulated by the structural strength of the node, we built a simplified model with realistic 

parameters and tested a number of different scenarios. We hypothesised that a negative value of the 

bifurcation would decrease node's sensitivity to incoming stimuli, thereby altering signal 

propagation and reducing global synchronization. To assess our hypothesis, we created a network 

consisting of two interconnected communities linked through a central hub. We manipulated the 

bifurcation parameter associated to this hub and applied gradually increasing synchronization 

stimuli to it. 

We found that as the hub's a value became more negative (subcritical), it required stronger 

perturbations to achieve the same global synchronization observed at a=0 (Fig. 4A). 
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Fig.4: Toy model: Simplified network of coupled Hopf oscillators. (A, B). Effect of a negative value of a 
associated to a structural hub. The left panel shows a network organised into two communities connected through 

a single node (hub). The strength of structural connection of each node toward the other nodes within the same 

community was set to 0.12 (grey lines), while that of the hub with other nodes was set to 0.2 with all nodes in the 

network (red lines). The bifurcation parameter was initially set to be equal to 끫殜 = 0 in all nodes. Subsequently, 

the bifurcation parameter assigned to the hub was modified to be increasingly negative (green dot). (A) Effect of 

an external perturbation on the hub. For each value of bifurcation parameter, we connected to the hub an 

increasing number (1 to 8) of synchronised external nodes. We then computed the global functional connectivity 

at each iteration (right panel). (B)  Effect of an external perturbation on one network community. For each value 

of bifurcation parameter, we connected to a node either in the first (top right panels) or second (bottom right 

panels) community an increasing number of synchronised external nodes. We then computed the pairwise 

functional connectivity at each iteration and plot the connectivity pattern resulting at maximum perturbation. (C, 

D, E). Effect of a negative value of a associated to very disconnected nodes. We included an additional node 

weakly connected to the original network, whose strength of structural connectivity with the rest of the network 

was set to 0.01. The bifurcation parameter was initially set to 끫殜 = 0 in all nodes (left panel). Subsequently, we 

evaluated tree different scenarios: the bifurcation parameter assigned to the hub (C), to the disconnected node 

(D), or to both (E) was modified to be increasingly negative (green dot). For each scenario, we then computed 

pairwise functional connectivity at each iteration in absence of perturbation (spontaneous dynamics). To highlight 

the heterogeneous influence of the bifurcation parameter on network dynamics, we additionally plot the difference 

in pairwise connectivity between the condition were 끫殜 was set to extremely negative values as compared to 끫殜 = 0 

(central panels). Finally, for each value of the bifurcation parameter, we connected to the hub (C, E) or to the 

disconnected node (D) an increasing number of external synchronised nodes (perturbed dynamics), and we 

computed the global functional connectivity at each iteration (right panel). 

 

We then applied the perturbation to a node within a community and observed its spread through the 

network. At a=0, the synchronization wave spread throughout the entire network. However, with 

more negative a values, the synchronization wave remained more confined to the perturbed 

community, affecting the rest of the network less (Fig. 4B). 
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We also examined the effect of a negative a value on very weakly connected nodes. We added such 

a node to the network, (Fig. 4C-E), and tested three scenarios: 

 

1. We assigned progressively more negative values of a to the hub. As a result, the hub 

progressively disconnected from the network, and leaded to a homogeneous reduction in 

pairwise functional connectivity among the other nodes. The disconnected node remained 

unaffected (Fig. 4C). To compare it to the previous case, we also added a progressively 

increasing number of synchronized perturbations to the hub and computed the mean FC of 

the network, obtaining similar results as before.  

2. We assigned progressively more negative values of a to the disconnected node. This caused 

the node to progressively disconnect from the rest of the network. However, this had 

minimal impact on the rest of the network, and even increasing the perturbations applied to 

the disconnected node, its influence remained limited. 

3. We assigned progressively more negative values of a to both the hub and the disconnected 

node. In this case, the network's response to synchronization perturbations applied to the hub 

was similar to scenario 1. However, in the spontaneous regime, the pairwise dynamics were 

significantly altered by the additional manipulation of a in the disconnected node. In 

particular, connections between communities were more reduced than connections within 

each community, resulting in a more defined segregation of the network compared to 

scenario 1 (Fig. 4E). 

Overall, these findings suggest that negative bifurcation parameters in key network nodes, whether 

highly connected or disconnected, play a crucial role in a) filtering out irrelevant stimuli and 

preventing excessive network synchronization, b) regulating the flow of stimulus waves within and 

between structured communities, and c) facilitating the emergence of intricate patterns of functional 

connectivity with an appropriate degree of segregation. 

3.5 Model EP patients 
To gain insights into the possible mechanisms underlying the empirical changes in functional 

connectivity reported in the previous sections, we built independent whole brain models to 

reproduce the spatiotemporal dynamics observed in the resting brain activity of the two subgroups 

of EP subjects (EP3R, EP3NR). We observed a significant reduction in the optimal global coupling 

parameter (G) in patients from stage III, both remitting-relapsing and non-remitting, compared to 

controls (HC optimal G = 1.38 ± 0.07; mean ± SEM across 300 simulations), as indicated by the 

shift in the KS distance curve (Fig. 5A).  
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Fig.5: Whole-brain model of patient groups EP3R and EP3NR compared to HC: Structural and functional 

information from the empirical data were used to build two whole-brain dynamical models optimised to 

reproduce functional connectivity properties of EP3R and EP3NR, respectively, by adjusting the global parameter 

G and the bifurcation parameters. In all panels, HCs are represented in blue, EP3R in red, and EP3NR in yellow. 

Differences between groups were assessed using Wilcoxon rank-sum test followed by Bonferroni p-value 

correction (p<0.001). (A) Fitting curve of the model as a function of G, measured with the Kolmogorov-Smirnov 

(KS) distance between the empirical and the simulated FCD distributions. The solid line and the shaded area 

represent the median and the inter-quartile range, respectively, across N=300 simulations. The optimal 

combination of parameters (optimal G with its associated optimal 끫殜 = (끫殜1, … , 끫殜끫殂)) was the one that minimised 

the mean KS distance between the empirical and the model FCD distributions. (B) Optimal global coupling G 

distribution. Each dot represents a simulation, and boxplots represent the mean of the measures' values with a 
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95% confidence interval of the mean (dark) and 1 SD (light). (C) Mean optimal value of a for each of the 115 
nodes at the optimal value of G in HC and in each EP group (average across 300 simulations). (D) Distribution 

of mean optimal bifurcation parameters across brain regions at optimal global coupling G. Each dot represents a 

simulation. Boxplots represent the mean of the measures' values with a 95% confidence interval of the mean 

(dark) and 1 SD (light). (E) Comparison of mean and median values of optimal bifurcation across brain regions 

between conditions. Violin plots on the left show optimal bifurcation parameters distribution across brain regions. 

Mean is plotted as a black line, while median is plotted as solid coloured line. Boxplots on the right represent the 

difference between mean and median in each condition. Each dot represents a simulation. Boxes represent the 

mean of the difference across simulations with a 95% confidence interval of the mean (dark) and 1 SD (light). (F) 
Left panel: optimal value of parameter a across simulations for each of the 115 nodes sorted by node’s optimal a 

in each condition, at the optimal value of G (solid and shaded lines represent mean and SEM across N=300 
simulations).  Right panel: distribution of areas under the curve of optimal a in each condition, illustrating loss of 

heterogeneity and the shrink toward values around zero in patients. *** stands for p<0.001. (G) To improve 

visualization, optimal values of bifurcation parameters in ROI’s originally associated with negative have been 

projected on brain surface. It is possible to notice a decrease of highly negative values (dark blue) in patients, 

especially in EP3R, as compared to controls.  

 

 

In particular, the optimal G was 1.06 ± 0.05 for the EP3R subgroup and 0.72 ± 0.03 for the EP3NR 

subgroup, with a significant difference from controls (unpaired t-test, p<0.001). Notably, the 

reduction of optimal global coupling, was significantly larger in magnitude in EP3NR than in EP3R 

(unpaired t-test, p<0.001) (Fig. 5B). 

We then compared the optimal bifurcation parameters across nodes within and between conditions 

and observed a complex pattern of alterations (Fig. 5C). EP3 patients displayed less heterogeneity 

across areas and tended to have bifurcation parameters closer to criticality (a = 0) compared to HCs. 

This, according to results presented in previous sections, implies that ROIs’ activity in EP3 patients 

is less stable and more sensible to incoming stimuli than in HC. It also implies increased constraints 

imposed by structural connectivity on the emergence of functional patterns. This was especially the 

case for the dynamics of ROIs associated with strong negative values of a in HC, whose role in 

regulating network dynamics was established in section 3.4. To quantify this change, we computed 

the mean of optimal bifurcation parameters across brain regions and compared it between 

conditions, observing a significant shift toward less negative values associated with a reduction in 

heterogeneity across areas in EP3R [-0.0126 ± 2e-4] (grand mean ± SE across repetitions, p<0.001) 

and EP3NR [-0.0126 ± 2e-4] (grand mean ± SE across repetitions, p<0.001) as compared to healthy 

controls [-0.0225 ± 2e-4] (grand mean ± SE across repetitions). This alteration was more extensive 

in EP3R than in EP3NR (p<0.001) (Fig. 5D). 

Since the change affected mainly ROIs originally associated with extremely negative values, we 

compared the mean and median values of bifurcation parameters across brain regions in each 

condition, knowing that the median is less influenced by extreme values. As expected, in HC we 

observed a consistent difference between the two measures, with the mean being considerably 

shifted toward negative values [-0.030 ± 0.004] (mean Δ ± STD across repetitions). In EP3R, where 
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negative values were less extreme, the difference between these two statistics was significantly 

reduced [-0.015 ± 0.003] (mean Δ ± STD across repetitions p<0.001). The same alteration could be 

seen in EP3NR, [-0.025 ± 0.002] (mean Δ ± STD across repetitions p<0.001), but it was 

significantly less consistent than in EP3R (p<0.001), as can be observed in Fig. 5E.  

The loss of heterogeneity and the shrink towards criticality (a=0) can also be observed by the 

reduction of the area under the curve of the optimal bifurcation parameter across brain regions 

illustrated in Fig. 5F. This area was in fact significantly smaller in both EP3R [7.02 ± 0.02] (mean ± 

SEM across repetitions, p<0.001) and EP3NR [8.44 ± 0.02] (mean ± SEM across repetitions, 

p<0.001), as compared to HC [8,67 ± 0.03] (mean ± SEM across repetitions). Consistent with our 

previous findings, the reduction was significantly more consistent in EP3R than in EP3NR 

(p<0.001). To improve visualization, for each condition optimal values of bifurcation parameters of 

ROI’s originally associated with negative values have been projected on brain surface (Fig. 5G).  

Furthermore, in line with previously discussed results indicating how a loss in heterogeneity 

corresponds to increased SC constraints imposed on the emerging FC patterns (Fig. 3E), we 

observed that in EP3R patients’ empirical FC and SC tend to correlate more as compared to HC, 

even though not sufficiently to reach significance Supplementary Fig. S7. Additionally, in 

Supplementary Fig. S3, we show how the change in the optimal value of bifurcation parameter in 

each node is related to its functional and structural strength. As a further step we investigated 

whether the change in the optimal value of the bifurcation parameter across areas (∆끫殜끫殬EP,HC) 

correlated with the change in functional strength (∆끫歲끫歲끫歲끫殬끫歰끫歰,끫歶끫歶) reported in section 3.2 and illustrated 

in Fig. 2.  In EP3R, but not in the other two subgroups, we found a significant correlation between 

these two metrics (r=0.33; p=0.02) (Supplementary Fig. S4). 

Finally, in Supplementary Fig. S5, we show that empirical differences in FC measures between 

conditions were replicated in simulated data, validating the model's ability to capture relevant 

properties of the data. 

 

3.6 Additional analysis on EP2 

Despite not including patients from stage II in the main analysis due to heterogeneity of the group 

that would complicate interpretation of the results, we repeated the whole pipeline of analysis with 

this subgroup in order to assess whether the findings observed in EP3R and EP3NR could be 

generalised to all early psychotic patients. None of the alterations found in any of the two EP3 

subgroups could be detected in EP2, proving once more the importance of clinical staging to 

address heterogeneity within psychotic patients.  
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4. Discussion (1718 to 1350) 
 

In this work we propose to classify patients according to their ability to remit from a first psychotic 

episode, aiming to investigate the neural correlates underlying these different clinical profiles and 

outcomes (Fig. 1A). In fact, while neither of these patients have fully recovered, stage III psychosis 

patients present different clinical pictures at the moment of the scan (i.e., temporary reduction of 

symptoms for the remitting-relapsing patients or residual symptoms for the non-remitting ones).  

We therefore analysed fMRI data of remitting-relapsing and non-remitting stage III patients and 

compared their respective functional connectivity profiles with those of healthy controls (Fig. 1B), 

highlighting two opposite trends of alteration, which suggests the existence of a compensatory 

mechanism. A whole brain model (Fig. 1C) allowed us to investigate hidden correlates underlying 

these alterations, highlighting some crucial properties of the healthy network and how those are 

affected in the two subgroups of patients. 

 

4.1 Opposite functional connectivity impairments in remitting-relapsing and non-remitting 

patients  

 

We hypothesized that different functional neural patterns underlie distinct clinical profiles in two 

subgroups of stage III patients. Consistent with our expectations, significant differences in 

functional strength were observed, with opposite alterations were found when comparing brain 

activity in these two subgroups with that of healthy controls. Patients with residual symptoms after 

the FEP, who had therefore not completely remitted at the moment of the scan (EP3NR), exhibited 

a significant reduction of mean functional strength across areas (Fig. 2C, D), aligning with previous 

findings of reduced structural strength 30. In contrast, patients from stage III that were able to remit 

after their psychotic episode, despite potentially having subsequent relapses (EP3R), showed 

increased mean functional strength, indicating a potential compensatory mechanism (Fig. 2C, D). 

These opposing patterns of alterations were not only observed in mean values of functional strength 

across brain areas, where statistical significance was reached, but were also evident as a trend in 

pairwise connectivity (Fig. 2A) and individual area strength (Fig. 2B). The majority of areas 

showed consistent shifts within each patient subgroup and these shifts were in opposite directions 

between the two subgroups as compared to controls (Fig. 2E). 

The significant differences observed between remitting-relapsing and non-remitting patients, often 

analysed as a combined group, could contribute to the heterogeneity in functional connectivity 

studies of psychotic disorders 23. We therefore suggest that further investigations on this topic 

should take into account this source of intra-patient variability. Moreover, our findings suggest the 
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presence of a potential compensatory mechanism in patients who achieve remission. The increased 

functional connectivity observed, previously reported in psychotic disorders 26,39,40, especially in 

early stages, may represent an over compensatory attempt to restore clinical functioning by 

rebalancing the structural-functional interplay 41,42.  As discussed by Fornito and Bullmore, the 

dissociation between reduced structural connectivity and increased functional connectivity can be 

interpreted as a neural activity differentiation, involving a disruption of the typical segregation of 

neural functions or as a compensatory process. It is also possible that both mechanisms contribute to 

this phenomenon 23. 

 

4.2 Properties of structural-functional interplay in the healthy brain  

We investigated our hypothesis exploring the interplay between structural, dynamical, local, and 

network properties of the healthy brain with a computational whole brain model (Fig. 1C, Fig. 3). 

This model incorporates empirical structural information obtained from DSI measures and 

replicates the functional dynamics observed in healthy individuals by adjusting two key factors: (i) 

the global coupling parameter (G), controlling overall effective strength of connections, and (ii) 

regional bifurcation parameters (a), describing each brain region’s local behaviour. 

Previous research has established that the brain operates optimally in a criticality regime, where it 

teeters on the edge of a bifurcation point between noisy and oscillatory behaviours 43. This regime 

fosters the emergence of diverse and complex metastable activity patterns, ensuring a balance 

between stability and flexibility 44,45. However, recent studies emphasized the importance of local 

heterogeneity in node behaviours for maintaining global criticality level46. Our study supports this 

idea by showing that the healthy brain's dynamics are best represented when specific brain regions 

are assigned negative values for the bifurcation parameter, indicating locally stable yet noisy 

behaviour (Fig. 3B). 

To investigate these nodes’ properties, we applied a threshold to identify areas with bifurcation 

parameters deviating by more than two absolute deviations from the median and extracted their 

values of structural and functional strength. Our results reveal a strong correlation between 

bifurcation parameter values across nodes and combined functional-structural properties (Fig. 3F). 

This suggests that the bifurcation parameter is influenced by both dimensions, hinting at its role in 

regulating their interplay. Additionally, using a toy model, we shed light on the role of negative 

bifurcation parameters in enhancing node stability by dampening incoming stimuli, both internal 

and external. This property is especially relevant in nodes with prominent network characteristics 

like connectivity hubs and isolated nodes, as it prevents excessive network synchronization while 

allowing optimal segregation and the emergence of complex functional connectivity patterns (Fig. 
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4). Moreover, heterogeneity in bifurcation parameters can relax structural constraints and promote 

greater variety and flexibility in functional dynamics 38, as evidenced by the increased functional-

structural correlation observed when homogeneous values of bifurcation parameters are imposed on 

the model (Fig. 3C-E).  

 

4.3 Alterations in network properties and potential compensatory mechanisms in EP patients 

Our investigation then delved into how these properties were altered in patients and whether they 

could account for the observed shifts in functional dynamics. To do this, we independently 

constructed whole-brain models using the structural connectivity matrices of both remitting-

relapsing and non-remitting patients (Fig. 5).  

Firstly, we found that all stage III patients exhibited significantly lower optimal coupling strength 

(G) compared to controls (Fig. 5A,B), indicating reduced structural strength, typically associated 

with diminished conductivity effectiveness. This reduction was significantly more pronounced in 

non-remitting-relapsing patients (EP3NR), suggesting a more severe initial impairment. This 

alteration might signify a global decrease in long-range excitatory connectivity (E-E), in line with 

the structural dysconnectivity hypothesis 19. Possible contributors to this decrease could include 

alterations in myelination, global changes in synaptic density or strength, and/or widespread 

modifications in receptors 47,48. 

Furthermore, stage III patients displayed a loss of heterogeneity in optimal local bifurcation 

parameters compared to controls, converging toward values around zero (Fig. 5C-G). According to 

our toy-model study, this implies heightened sensitivity to incoming stimuli and reduced stability. 

Notably, this alteration was more prominent in remitting-relapsing patients (EP3R). The less 

pronounced reduction in connectivity coupling in this subgroup, combined with a more extensive 

alteration of local node properties, may account for the observed over-compensatory increase in 

functional connectivity among remitting-relapsing patients, as opposed to non-remitting patients. 

Intriguingly, only in the EP3R group these alterations in bifurcation parameters significantly 

correlate with changes in empirical functional strength (Supplementary Fig. S4), suggesting their 

potential role in underlying connectivity changes in this condition. Bifurcation parameters can be 

interpreted as encoding the local responsiveness (or resilience) 37 of brain regions to incoming 

stimuli, as shown with the toy-model study. The loss of heterogeneity observed in patients, 

particularly in the remitting-relapsing group, could reflect a loss of functional flexibility due to 

increased structural constraints 49, which may have clinical implications, particularly in the long 

term. In particular, as discussed in previous works, this could contribute to impairments in cognitive 

flexibility reported in patients50. 
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We hypothesize that these changes may reflect heterogeneous local imbalances between excitatory 

and inhibitory activity, aligning with the disinhibition hypothesis 51,52. Moreover, this aligns with 

the hypothesis proposed by Krystal et al. in a recent insightful review 42. The review suggests that 

increased intrinsic excitability or reduced inhibitory tone may serve as allostatic adaptive 

compensatory mechanisms in response to NMDAR related connectivity alterations, potentially 

leading to functional and structural consequences. Further empirical investigations are needed to 

test the validity of this hypothesis and provide a deeper understanding of the underlying 

mechanism. In line with our results, Horne et al. observed differentially disrupted connectivity in 

treatment-resistant and -responsive patients with schizophrenia. In particular, they found that 

responsive patients display effective compensatory increased top-down connectivity from ACC to 

sensory regions serving to reduce sensory input to the striatum (control of sensory precision during 

the task) and an absence of this compensatory cognitive control mechanism in resistant patients 53. 

Critically, brain data from patients in stage II, who also experience remission from the first episode 

similar to EP3R but have not relapsed at the time of the scan, did not exhibit any of the alterations 

observed in the EP3R group (Supplementary Fig. S6). They did not show significant differences 

compared to healthy controls in terms of empirical measures, and most importantly, they did not 

demonstrate the changes in the parameters observed in stage III patients. Interestingly, even when 

some parameter alterations were detected in this group, they consistently displayed an opposite 

trend in both global coupling and bifurcation parameters. This suggests a disease progression 

component within this compensatory mechanism. However, the heterogeneity of patients in group 

II, comprising individuals who have not yet relapsed but may do so in the future, as well as those 

who will maintain full recovery, complicates further interpretation.  

Taken together, these findings suggest that imbalances in the interplay between structural and 

functional components may contribute to the underlying pathophysiological processes of early 

psychosis, providing insights into their clinical implications. Additionally, these findings highlight 

how heterogeneous alterations in local node properties can manifest as global network changes, 

emphasizing the significance of maintaining local and global equilibria. Importantly, the observed 

heterogeneity in local alterations may also arise from the preferential vulnerability of specific nodes 

or networks to global alterations, such as changes in synaptic NMDAR function, as suggested by 

Yang et al. 54 

4.4 Limitations and future perspectives 

One limitation of this study is the small sample size, especially when dividing patients into 

subgroups, although it is comparable to similar studies. To ensure the generalizability of the 
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findings, replication on larger datasets is necessary. Future research should adopt patient-level 

analysis and simulations for valuable clinical predictions, and incorporate biologically-constrained 

models with finer details of network properties, for a more accurate interpretation of results. 

Mesoscopic or microscopic models of connectivity and synaptic plasticity can provide deeper 

insights into underlying processes driving the compensatory mechanism 55–58. Furthermore, 

longitudinal approaches will be essential to comprehend alterations' long-term evolution, disease 

progression, and prognosis, and results validation through machine learning predictions can offer 

clinical relevance insights for personalized care. Finally, consideration of medication's influence on 

brain dynamics is crucial; however, our analysis primarily focuses on differences between 

remitting-relapsing and non-remitting patients, with comparable medication levels to mitigate 

confounding effects. 
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