

When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation

Troitsky TS¹, Laine VN¹, Lilley TM¹

1. BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
Corresponding author: Thomas Lilley (thomas.lilley@helsinki.fi)

ABSTRACT

The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiont theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen *Pseudogymnoascus destructans*, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30,4 % of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7,8 % of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the *Pseudogymnoascus destructans* -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.

KEY WORDS: skin microbiome, hibernation, symbiosis, wildlife disease, probiotics, holobiont, chiroptera, amphibian, white-nose syndrome, chytridiomycosis

34 INTRODUCTION

35 Animals are constantly under attack from a plethora of microorganisms that have the potential to cause disease
36 and even mortality. However, to infect an animal, these microbes have to first permeate the skin, which is the
37 primary barrier between the host and the environment [1, 2]. The skin is a cool, acidic environment that is covered
38 by sebaceous glands that secrete an antimicrobial substance, sebum. Sebum lubricates the skin and facilitates the
39 growth of commensal microbes such as archaea, bacteria, viruses, and fungi. Together these microbes form a
40 mutualistic community referred to as the skin microbiome [1, 3]. The host provides the symbionts with a
41 favorable environment to propagate in and the microbes contribute by helping the host heal wounds, educating the
42 immune system and preventing colonization of new microbes, which may have pathogenic properties [1, 2, 4, 5].

43 Microbiome research has increased in popularity in recent years with studies focusing mainly on the beneficial
44 role of the gut, oral and skin microbiome of organisms, notably in humans [6, 7]. These studies give support to the
45 holobiome theory, which suggests the host and its microbiome can be viewed together as a single evolutionary
46 unit instead of separate entities [8, 9]. This perspective changes the definition of an individual to include the
47 microorganisms living in and on the host. In many regards, the host cannot survive without its microbial
48 symbionts, which also outnumber the cells of the host [10, 11]. This obligatory symbiosis also exists in animals,
49 plants, and various other organisms [8]. Since the genomes of the microbes contributing to the microbiome evolve
50 faster than the genome of the host, it can play a fundamental role in the host's ability to rapidly adapt to
51 environmental disturbances and new potentially pathogenic microbes [12]. This may be an important adaptation
52 as climate change exposes species to novel pathogens.

53 The skin microbiome in particular is very sensitive to changes both in the environment and the host [1], which
54 affects the holobiont's ability to respond to changes. *Dysbiosis* or disruption in the composition of the skin
55 microbiome can cause an imbalance that has a negative effect on host survival [2]. Dysbiosis often occurs when
56 the amount of commensal microbes is reduced due to factors like immune deficiencies or exposure to pathogens,
57 resulting in the microbiome losing its ability to protect the host [13]. For example, the diversity of the sheep (*Ovis*
58 *aries*) skin microbiome is known to decrease preceding the onset of foot rot [14]. In addition, the artificial
59 reduction of skin microbiome richness in salamanders before exposure to the deadly fungal pathogen that causes
60 chytridiomycosis (*Batrachochytrium dendrobatidis*, hereafter *Bd*) leads to higher mortality [15]. In general,
61 tropical amphibian species threatened by chytridiomycosis have lower skin bacterial diversity than non-threatened
62 species [16].

63 On the other hand, the enrichment of certain microbes can be beneficial to the holobiont. Antimicrobial bacteria
64 that inhibit pathogen growth *in vitro* have been found on the skin of amphibians, reptiles, fish, and mammals [17–
65 20]. These bacteria, along with other protective microbes, are often referred to as probiotics. Testing the inhibition
66 ability of these bacteria is becoming exceedingly popular in amphibians [21–23], because chytridiomycosis has

67 caused major population declines in both the Americas and Eastern Australia [24, 25]. Mutualistic bacteria living
68 on amphibian skin are known to produce antimicrobial agents, such as violacein and prodigiosin, that can inhibit
69 the growth of *Bd* and suppress inflammation [13, 26, 27]. Thus, both positive and negative changes in skin
70 microbiome composition seem to have a direct effect on the fitness of the host organism.

71 Due to its warm and moist nature, the skin provides an ideal environment for fungi to grow on, simultaneously
72 making the skin more susceptible to fungal infections [28]. Over the past three decades, wildlife populations have
73 experienced unprecedented, high-profile declines due to emerging infectious fungal diseases such as
74 chytridiomycosis [29]. Another example of a deadly, skin-infecting mycosis that could potentially be treated with
75 probiotics is white-nose syndrome (WNS) in insectivorous, hibernatory bats. WNS is caused by the psychrophilic
76 fungus *Pseudogymnoascus destructans* (hereafter *Pd*), which invades and infects the skin causing a distinct fungal
77 growth on the wings and muzzle of hibernating bats during winter [30, 31]. The fungal propagation arouses bats
78 from torpor depleting their fat reserves, and eventually leading to starvation during a period when minimal insect-
79 food is available. The disease was first discovered in the winter of 2006-2007 in New York and it has devastated
80 Nearctic bat populations ever since, endangering once abundant species, such as the little brown bat (*Myotis*
81 *lucifugus*) [32, 33].

82 The reason WNS has had such a calamitous effect on Nearctic bat populations can be attributed to the pathogen
83 infecting bats when they are most vulnerable, during hibernation. The body temperature of hibernating bats drops
84 drastically to resemble that of the ambient temperature in the hibernacula (2-14 °C) [30, 34]. Bats are, therefore,
85 heterothermic, meaning they switch between an endothermic active state to an exothermic torpor state [35]. This
86 radical change in thermoregulation is comparable to the ectothermic strategy of amphibians since both bats and
87 their skin microbiome must tolerate substantial temperature fluctuations. This poses an added burden to both the
88 host and its skin microbiome.

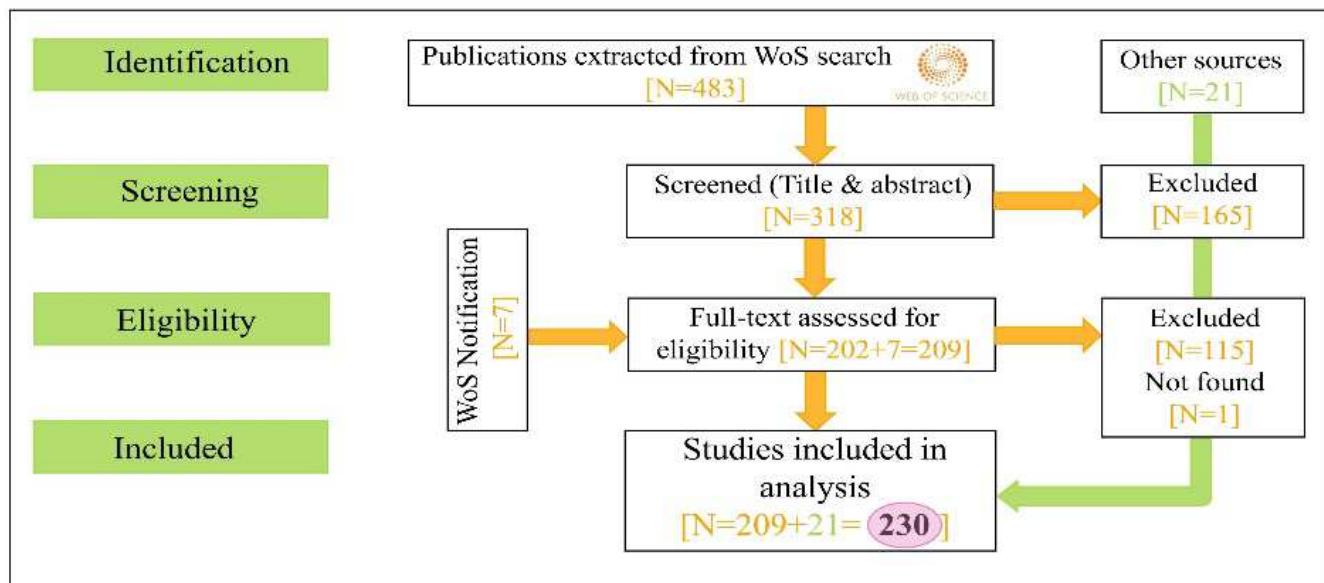
89 In addition, the metabolism and immune system of a bat become suppressed during hibernation, because they are
90 energetically costly [36, 37]. This is exemplified by a significant decrease in the number of circulating leukocytes
91 in the bloodstream during torpor [37]. Hibernation is an optimal strategy for insectivorous bats to save energy
92 when food is scarce, and bats can remain torpid from days to months without eating [35]. However, the ability of
93 the bat to defend itself against pathogens during this time becomes reduced due to its down-regulated immune
94 system. Although most microscopic pathogens do not propagate well in cold temperatures [37], *Pd* thrives in the
95 approximate temperature bats hibernate in, posing a significant threat [34].

96 However, not all bats get infected when exposed to *Pd*. In the Palearctic, where the fungus originates, bats tolerate
97 exposure to the pathogen without infection or mortality [38, 39]. Species such as the greater mouse-eared bat
98 (*Myotis myotis*) can tolerate high pathogen loads without apparent negative consequences [39, 40], suggesting the
99 parasitic relationship has evolved into something that more resembles commensalism [41, 42]. One hypothesis to

100 explain this phenomenon is that Palearctic bats have evolved a tolerance due to their longer history of exposure to
101 the pathogen [43]. Molecular evidence implies Palearctic bats have been exposed to *Pd* for an extensive period of
102 time, while Nearctic bats have had a mere 20-year bout with the pathogen since it was introduced from Europe
103 [44, 45]. The protective skin microbiome could have enabled bat populations in the Palearctic to endure *Pd*
104 exposure until the host develops tolerance.

105 Hibernation offers a unique setting in which to study the protective role of the skin microbiome because as the bat
106 is in a torpid state, the microbiome may remain active. The symbiotic bacteria living on the skin of bats benefit
107 from host survival, thus, it is not surprising that several of these bacterial strains have been found to have
108 antifungal properties that may inhibit the growth of *Pd* [19, 46, 47]. For example, the bacterial genus
109 *Pseudomonas* that is commonly found on bat skin has been shown to inhibit the growth of *Pd* both *in vitro* [46–
110 49] and *in vivo* [50, 51]. Viewing Palearctic bats as holobionts that have coevolved together with *Pd* can help
111 explain how selection might have favored bats harboring these antifungal bacteria in abundance on their skin. It is
112 also noteworthy to mention that many other animals, such as some frogs, snakes, bears, rodents, birds, and fish
113 possess the ability to hibernate, exposing them to similar risks as bats [52–57]. Therefore, studying the
114 composition and antifungal potential of the skin microbiome during hibernation is an exclusive opportunity to
115 better understand disease dynamics and the protective role of the skin microbiome in animals.

116 The aims of this review are to determine: (i) whether the protective skin microbiome of hibernating animals has
117 been studied; (ii) whether experimental research studying pathogen inhibition of the skin microbiome has
118 increased in the past years; and (iii) which antifungal microbes have been identified and studied the most? We
119 emphasize the importance of experimental research because without inhibition assays and probiotic trials, the
120 protective capacity of the microbiome remains speculative at best. To address these questions, we conducted a
121 systematic review encompassing a range of publications examining the protective function of the skin
122 microbiome in animals (Fig 1).


123 MATERIALS AND METHODS

124 1) Systematic literature search

125 We performed a comprehensive keyword search on the *Web of Science* on the 13th of June 2023. Before defining
126 the final search terms, we did multiple exploratory trials using different search words to determine which string of
127 words would maximize the number of relevant references without adding an excessive number of irrelevant ones.
128 For example, adding the words “probiotic” and “bioaugmentation” as a separate and obligatory search clause
129 captured only 81 publications. Therefore, we added the words to the previous clause, making them facultative. We
130 conducted the final optimized search using the following terms:

131 ALL=("microbiota" OR "microbiome") AND ALL=("skin" OR "cutaneous" OR "epidermis" OR "dermal") AND
132 ALL=("resistance" OR "inhibit" OR "antifungal" OR "pathogen" OR "fungal" OR "bioaugmentation" OR
133 "probiotic") AND ALL=("vertebrate" OR "invertebrate" OR "animal" OR "mammal" OR "reptile" OR
134 "amphibian" OR "fish" OR "bird" OR "bat")

135 This yielded 483 publications ranging from the years 2005-2023 that were screened by TST according to the
136 PRISMA diagram (Fig 1.). Articles were found suitable for this review based on the following inclusion criteria:
137 (i) they studied the skin microbiome (as opposed to just gut or oral microbiome); (ii) they mentioned skin-
138 infecting pathogens and antimicrobial symbionts living on the skin of the host; (iii) they studied non-human
139 animals. Reviews and publications that did not meet these criteria were excluded, including one publication that
140 was not accessible. In addition to this, we added 21 publications found elsewhere that fit the search criteria and
141 seven publications that we were notified about by *Web of Science* alert, resulting in the final data set (N=230).

142
143 **Figure 1.** PRISMA diagram [99] explaining screening process of publications.
144

145 **2) Metadata extraction**

146 We extracted metadata from all relevant references for the final database. We documented the geographical and
147 taxonomic range of the studies, the host's captivity status, whether the study solely examined microbiome
148 composition (descriptive) or also assessed the microbiome's response to pathogens (experimental), as well as how
149 the microbiome's response was tested and whether pathogens were known to infect hosts during hibernation. This
150 was done by cross referencing literature and/or checking pathogen propagation temperatures (if optimal pathogen
151 propagation temperature was not similar to the temperature in hibernacula, the pathogen was not considered a
152 threat during hibernation). For studies that experimentally tested microbes against pathogens we also determined

153 the type of pathogen and antimicrobial genera detected on skin and whether the microbes were successful in
154 inhibiting the pathogens.

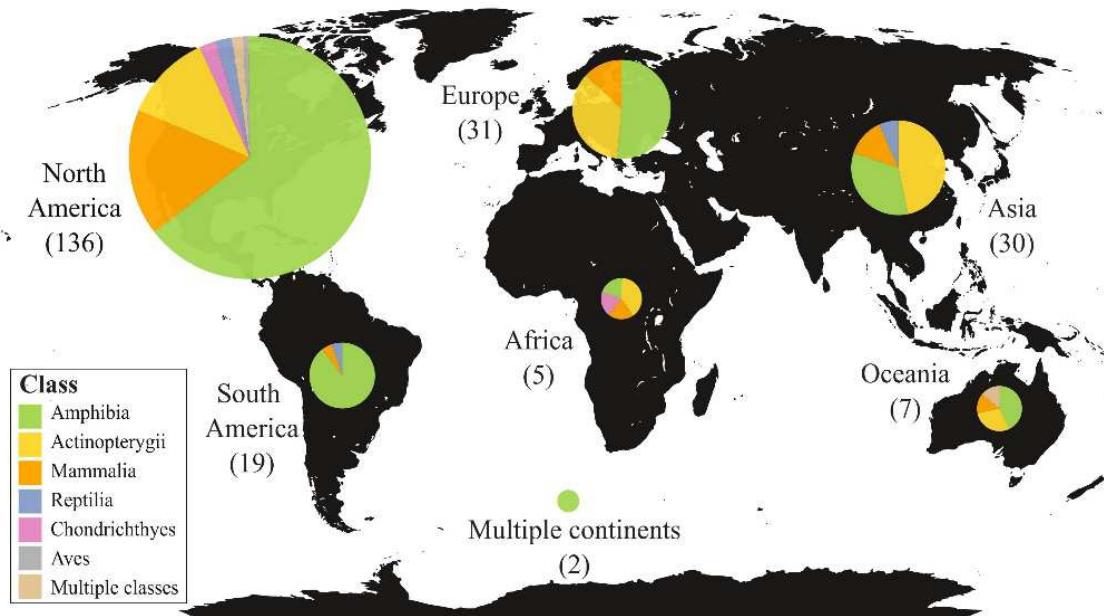
155

156 **3) Data visualization and statistical analyses**

157 We performed data analysis and visualizations using R version 4.2.2 [58] using packages ‘ggplot2’ version 3.4.2
158 [59] and ‘bipartite’ version 2.18 [60]. Additionally, we used Inkscape version 1.3 [61] to edit the visualizations.
159 We used a binomial generalized linear model to analyze how many of the publications actually experimentally
160 tested the pathogen inhibition ability of the microbiome, in proportion to all published studies over the past years
161 (glm(formula = cbind(experimental, descriptive) ~ year, family = “binomial”)). We excluded the year 2023 from
162 the analysis, since the year is not over, and more studies are likely to be published before the end of the year.

163 **RESULTS**

164 **General summary of literature**


165 In our initial *Web of Science* search, we identified 483 publications. Following the screening of titles and
166 abstracts, 318 were considered relevant and underwent full text inspection. Among these, 202 met our inclusion
167 criteria and seven publications were added after a *Web of Science* alert. An additional 21 studies were added from
168 other sources, resulting in 230 publications (Supplementary file 1).

169 The majority of skin microbiome studies were conducted in the Western Hemisphere, with 59,1 % of studies
170 taking place in North America and 8,3 % in South America (Fig 2). The remaining 32,6 % of studies were spread
171 between Europe (13,5 %), Asia (13,0 %), Africa (2,2 %), and Oceania (3,0 %). Additionally, two studies (0,9 %)
172 sampled animals from multiple continents.

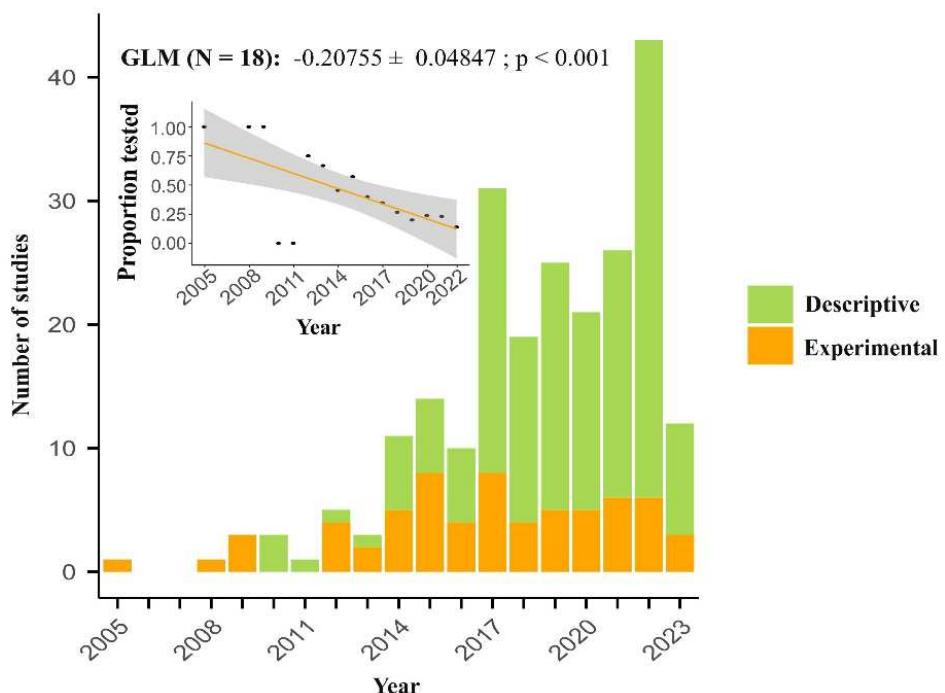
173 Predictably, the most studied animal class was amphibians (59,6 %), followed by ray-finned fishes (19,6 %), and
174 mammals (14,8 %). The remaining 6,0 % of studied species were divided into reptiles (2,6 %), cartilaginous
175 fishes (1,7 %), and birds (0,4 %) with three studies investigating multiple classes (1,3 %). About half (52,0 %) of
176 the publications studied the skin microbiome of wild animals, while 42,3 % focused on captive animals, and 5,7%
177 considered both.

178 Despite the search set to contain at least one word regarding pathogen inhibition (“antifungal”, “pathogen”,
179 “resistance”, “inhibit”, “fungal”, “bioaugmentation” or “probiotic”), most of the publications (69,6 %) only
180 described the skin microbiome composition of the host, without testing the inhibition ability of potentially
181 antifungal bacteria found on the skin. Altogether, only 30,4 % of publications tested inhibition ability by either
182 conducting inhibition assays *in vitro* or testing probiotic treatments *in vivo*. Out of these studies 65,2 % tested
183 inhibitory ability using inhibition assays, 24,2 % used probiotic treatment, and 10,6 % used both. Among these

184 studies 60,6 % experimented on antifungal amphibian symbionts, 21,2 % on mammalian symbionts, 16,7 % on
185 fish symbionts, and 1,5 % on reptile symbionts. The majority (54,7 %) of experimentally studied host species
186 were captive, while 37,5 % of publications studied wild animals, and 7,8 % studied both.

187
188 **Figure 2. Summary of literature. The proportion of skin microbiome studies conducted on different animal classes on all**
189 **continents. Number of studies in parentheses.**

190
191 *i) Has the protective skin microbiome of hibernating animals been studied?*


192 Only 18 publications (7,8 % of all articles) studied the protective microbiome during hibernation. Six of these
193 studies were solely descriptive and 12 were experimental. Although many amphibian and reptilian species are
194 capable of hibernation, no studies were conducted on the protective role of their skin microbiome during
195 hibernation. In fact, all studies that sampled the skin microbiomes of hibernating animals involved bats and *Pd*.

196 Among the 12 experimental publications that focused specifically on a pathogen that infects hosts during
197 hibernation, nine studies tested antifungal microbes against *Pd* using inhibition assays *in vitro* and three studies
198 tested probiotic treatments *in vivo*. Only two of these studies were conducted in the Palearctic (Germany and
199 China), where bats survive exposure to *Pd* without infection [49, 62]. Both studies used bacteria in inhibition
200 assays to successfully suppress the growth of *Pd*. The remaining ten studies were conducted in North America.

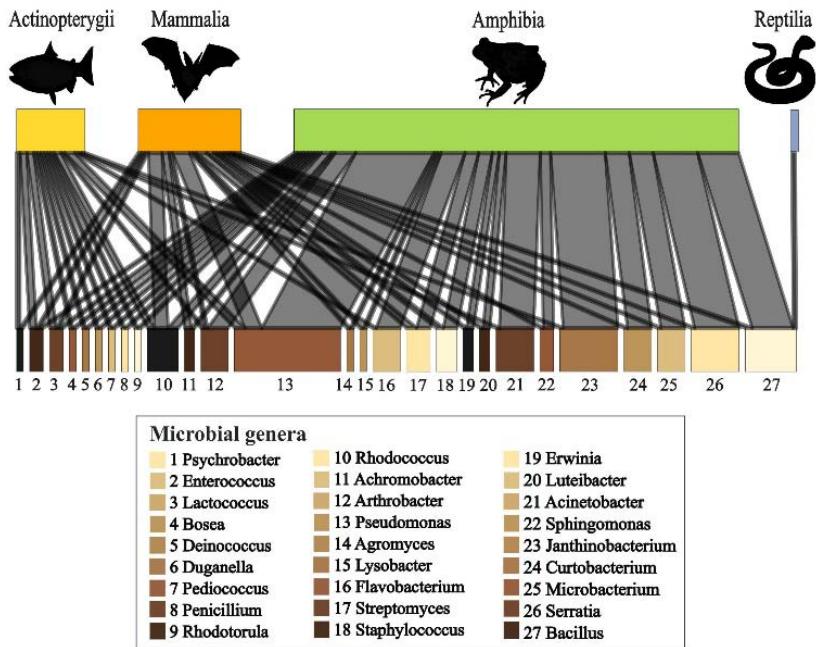
201 Altogether, only seven studies have been published about the skin microbiome of Palearctic bats. Among these,
202 five were descriptive [63–67] and two experimental [49, 62]. Four took place in China [49, 63, 64, 66], while the
203 remaining three were conducted in Germany [62], Poland/Armenia [65], and Belgium [67]. Out of these, only five
204 publications sampled hibernating bats [49, 63–66], while one study sampled active bats and the wall of the
205 hibernacula [67], and one acquired the symbiont tested against *Pd* from the environment (not bat skin) [62].

206 **ii) Has experimental skin microbiome research studying pathogen inhibition increased in recent years?**

207 The overall amount of research on the protective role of the skin microbiome in non-human vertebrates has
208 increased dramatically over the past 18 years, with the first study conducted in 2005 (Fig 3). Regardless of the
209 growing interest in this field, the proportion of experimental studies investigating inhibitory ability of
210 antimicrobial microbes residing on the skin has decreased significantly ($p < 0.001$, -0.20187 ± 0.04862) in
211 proportion to the number of studies published. This might be explained by the fact that the topic is vastly
212 unexplored, and most studies focus on solely describing the skin microbiome composition of animals and whether
213 known antimicrobial taxa are found on the skin. It is, however, noteworthy to mention that the number of all
214 studies published (both descriptive and experimental) has been lower in the year 2023 compared to previous
215 years. It remains to be determined whether more studies will be published by the end of the year.

216
217 **Figure 3. Temporal trends in protective skin microbiome studies in non-human animals. The year 2023 was excluded from**
218 **the GLM and scatter plot since the year is not over.**

219
220 **iii) Which antifungal microbes have been identified and studied the most?**


221 A total of 105 microbial genera were found to show weak to strong pathogen inhibition in the experimental
222 studies. The majority of tested microbes were bacteria (84,8 %), but fungi (13,3 %), and archaea (1,9 %) were
223 also tested successfully. Out of these, 51 genera were experimentally tested more than once, and 27 genera were
224 tested on two or more classes of animals (Fig. 4).

225 The most popular bacterial genus tested against pathogens was *Pseudomonas*. It was tested against multiple
226 pathogens (*Pd*, *Bd*, and others) that infect several classes of animals including mammals, amphibians, and ray-

227 finned fishes. *Pseudomonas* species showed strong to moderate inhibition of pathogens and they are considered
228 one of the primary candidates for *Pd*-inhibition in bats [46, 68]. Altogether, 31 studies testing *Pseudomonas*
229 showed successful pathogen inhibition, however, two studies using *Pseudomonas* as a probiotic were
230 unsuccessful [22, 69]. The authors of one failed trial noted that the skin microbiome still retained a defensive role
231 against *Bd*, but that the antifungal isolates were unable to colonize the skin of the amphibian host. This issue may
232 be addressed in future experiments by reapplying treatment or prolonging exposure to treatment [22].

233 Other microbes successfully tested against pathogens in multiple studies included the genera *Janthinobacterium*,
234 *Bacillus*, *Chryseobacterium*, *Stenotrophomonas*, *Serratia*, *Acinetobacter*, *Rhodococcus*, and *Enterobacter*,
235 indicating these bacteria show promise as probiotics and should be investigated in more detail. However, it is
236 important to mention that *Janthinobacterium*, *Chryseobacterium*, *Stenotrophomonas*, and *Rhodococcus* also failed
237 some trials. For example, while the genus *Rhodococcus* showed strong inhibition of *Pd* *in vitro* [70], a recent *in*
238 *vivo* experiment on bat skin was not successful [71]. These results highlight the need for more trials to determine
239 whether these microbes can, in fact, be used in wildlife disease mitigation. Further experiments will also help
240 assess the microbial mechanisms of inhibition, which provide important information about the conditions that best
241 facilitate pathogen inhibition.

242 Not all experimental publications studied the inhibitory effects of a single microbial strain, six publications (9,1 %
243 of experimental studies) researched the collective effect of a group of inhibiting microbes. Bacterial genera used
244 in the consortium studies were *Pseudomonas*, *Janthinobacterium*, *Bacillus*, *Chryseobacterium*,
245 *Stenotrophomonas*, *Serratia*, *Acinetobacter*, *Enterobacter*, *Microbacterium*, *Staphylococcus*, *Citrobacter*,
246 *Comamonas*, *Pedobacter*, *Chitinophaga*, *Iodobacter*, *Collimonas*, *Curvibacter*, and *Sanguibacter*. Out of these,
247 five publications were successful in inhibiting pathogens [20, 72–75], and one was not [69].

248
249 **Figure 4.** Antifungal microbes found on the skin of two or more classes of animals that successfully inhibited pathogens. Size
250 of block indicates number of studies conducted (larger block = more studies).

251 DISCUSSION

252 In this review, we illustrate that the protective role of the skin microbiome is becoming an increasingly popular
253 topic of research. However, most publications focus on describing the composition of the skin microbiome and
254 identifying known antifungal microbes without testing their pathogen inhibition ability. This phenomenon may be
255 explained by the novelty of the topic, as the majority of publications aim to simply describe the microbial
256 diversity on the skin of hosts, before experimentally testing them against pathogens. Additionally, the knowledge
257 attained so far centers mainly around amphibians in the Nearctic, leaving other animal classes and continents
258 overwhelmingly unexplored. The popularity of protective skin microbiome studies in North American amphibians
259 can be explained by the disastrous emergence of chytridiomycosis in 1993 [24] and the uneven distribution of
260 research funding opportunities that are overly represented in the Nearctic [76].

261 The main research gap we want to highlight with this review is the lack of publications about the protective role
262 of the skin microbiome in hibernating animals, specifically studies that experimentally test the inhibition ability of
263 cutaneous microbiota against pathogens. The suppression of the host's immune system during hibernation
264 amplifies the importance of the skin microbiome since it may remain active when the host is not. It would be
265 especially beneficial to study the protective role of the skin microbiome in species of animals that survive
266 exposure to pathogens during hibernation, such as Palearctic bats. So far, the skin microbiomes of only 13 of over
267 100 bat species in the Palearctic have been studied. Most of these studies focused on fungal symbionts and just
268 one study was conducted on the protective mycobiome of *M. myotis*, the flagship species known to tolerate high

269 *Pd* loads in Europe. To our knowledge, there are no published data on the mutualistic bacteria living on the
270 epidermis of *M. myotis*. In fact, the bacterial composition of most Palearctic bat species and possible temporal
271 changes in their microbiome composition (for example during hibernation) remain unknown.

272 ***Are probiotics the solution to lethal skin disease in wildlife?***

273 Describing and experimentally testing microbial species found on host skin are the first steps to developing a non-
274 toxic disease mitigation strategy for lethal skin infections in wild animals. As mentioned earlier, using
275 antimicrobial bacteria as a preventative probiotic treatment on the skin to help mitigate disease has already been
276 explored in some organisms [26, 50, 77]. Results from these studies have varied, however, most studies have
277 found encouraging findings in several classes of animals. For example, the bioaugmentation of a known
278 antifungal bacterium (*Janthinobacterium lividum*) on frog skin successfully prevented mortality due to
279 chytridiomycosis [17]. Moreover, probiotic treatments tested on walleye fish (*Sander vitreus*) were found to have
280 a significant antagonistic effect against a common pathogen (*Flavobacterium columnare*) and increase the
281 survival of fish exposed to the pathogen [78]. In addition, a probiotic bacterium isolated from feline skin
282 successfully reduced the colonization of a pathogen when added to the epidermis of mice, indicating certain
283 probiotics could be effective across multiple species [79]. While this provides compelling evidence for the
284 justification of probiotic use, other publications have reported contradicting results [22, 69, 80], suggesting more
285 information is needed before probiotic treatments can be successfully applied to wildlife disease mitigation.

286 Our results indicate that several microbial species, mostly bacteria, have been shown to exhibit potential as
287 probiotics. Notably, the bacterial genus *Pseudomonas* has demonstrated the inhibition ability of several pathogens
288 infecting multiple classes of animals, including bats and *Pd* [46, 81–83]. However, there are various other
289 microbial genera that have shown inhibition ability but are still overlooked. Fungi are among the often
290 disregarded species that have also shown promise in pathogen inhibition [84–86]. For example, North American
291 bat species resistant to WNS exhibit a more diverse cutaneous mycobiome compared to WNS-susceptible species
292 [86]. Some common fungal genera identified on bat skin, such as *Cutaneotrichosporon*, *Aureobasidium*, and
293 *Holtermanniella*, have also been found to inhibit the growth of *Pd* *in vitro*, albeit weakly [86, 87]. Additionally,
294 gram-positive bacteria may be overlooked in these studies since DNA extraction methods do not always
295 successfully permeate the thick outer layer of the bacteria [88, 89]. These bacteria may also possess the ability to
296 inhibit pathogens, but could be underrepresented in these datasets and, therefore, not tested for inhibition.

297 It is also important to acknowledge that certain mutualistic microbial genera, such as *Pseudomonas*, are known
298 pathogens for certain organisms [20, 90, 91], meaning the effect of the microbial genus is highly dependent on
299 context [21]. For example, *Pseudomonas fluorescens*, a commensal on bat skin [51], can be lethal to fruit flies
300 (*Drosophila melanogaster*) and ladybird beetles (*Henosepilachna vigintioctopunctata*) [92]. Timing of treatment
301 is also of importance since the addition of *P. fluorescens* to bat skin before exposure to *Pd* increased disease

302 severity, while simultaneous treatment and exposure reduced *Pd* invasion [50]. When utilizing probiotics, there is
303 always the risk that the symbionts could spread to and infect non-target species causing more harm than good.
304 Hence, it is advisable that the probiotic is indigenous to the local environment and has been studied adequately
305 before adding treatment to an ecosystem or species [21, 93].

306 In addition to testing the pathogen inhibiting ability of just one microbial strain, there seems to be an emerging
307 trend of testing a consortium of bacteria against pathogens. Multiple studies have found that more diverse
308 communities of bacteria can outperform single strains in inhibiting pathogen growth [73–75]. Bacterial growth
309 rate *in vitro* has also been found to be higher, when bacterial strains were grown together, instead of individually
310 [72]. This is understandable given that a diverse community of organisms is known to be more resistant to
311 invasions on both a macro- [94] and micro-scale [95]. For instance, as an analogous example, grassland plots with
312 higher species diversity are more resistant to colonization by invasive plants than homogenous plots [94]. The
313 interactions of microbial species within the microbiome mirror those of organisms in a macro-level ecosystem
314 (for example a forest), which is why diversity means better pathogen resistance in the skin microbiome as well [1,
315 86].

316

317 ***Future threats and conservation***

318 As climate change progresses and humans encroach further into wildlife habitats, people and wildlife alike will be
319 more regularly exposed to new potential pathogens [96, 97]. Fungi, in particular, should be treated with concern
320 as fungal infections are notoriously difficult to treat due to their resilient nature. Over 600 species of fungi are
321 known to infect vertebrates and many species have been identified as the causal agents of potential emerging
322 infectious diseases (EIDs) in recent years [96, 98]. In fact, fungi are more closely related to animals than bacteria,
323 and therefore, do not respond well to common antimicrobial treatments that work on bacterial infections [98].
324 WNS and chytridiomycosis have demonstrated how rapidly fungal disease outbreaks can devastate wildlife
325 populations and highlight the need for preventative disease mitigation strategies.

326 It is often difficult to manage disease outbreaks in endangered wildlife populations, so captive breeding and
327 reintroduction are occasionally used to attempt to restore declining populations [99]. These attempts are often
328 costly and have varying success rates. In this review, the majority (54,7 %) of experimental skin microbiome
329 studies were conducted on captive animals. However, since the skin microbiome is heavily influenced by the
330 environment [1, 100], the results from these studies may not always be applicable to wild animals. For example,
331 the skin microbiome of captive amphibians is known to be less diverse than that of their wild counterparts, which
332 may become an issue when reintroducing captive animals back into the wild during conservation efforts [101].

333 Considering reduced diversity in the skin microbiome affects the host's ability to resist infection, the holobiont
334 perspective could be beneficial when planning and upgrading conservation methods [99].

335 CONCLUSIONS

336 While the skin microbiome holds tremendous potential for disease mitigation, its protective role during
337 hibernation is highly understudied. Not only is there a scarcity of publications describing the microbial diversity
338 inhabiting the skin, but there is also a notable absence of experimental studies determining which microbes
339 effectively inhibit pathogens. Hibernatory bats and WNS provide an exceptional study system for addressing this
340 knowledge gap and we encourage researchers to tackle this subject by exploring the microbial species living on
341 bat skin and their potential as probiotics in WNS mitigation. Specifically, the skin microbiome of Palearctic bats
342 should be studied to determine how they survive exposure to *Pd*, as this information could be beneficial for
343 solving the WNS crisis in North America. In particular, we recommend future research concentrate on testing the
344 anti-pathogen activity of lesser-known symbionts, such as fungi, in addition to testing a consortium of known
345 antifungal bacteria. We emphasize the importance of adopting a holistic approach which incorporates the
346 holobiont perspective into conservation planning for more efficient results in disease mitigation.

347

348

349 LIST OF ABBREVIATIONS

350 *Bd* – *Batrachochytrium dendrobatidis*

351 WNS – White-nose syndrome

352 *Pd* - *Pseudogymnoascus destructans*

353 DECLARATIONS

354 Ethical Approval

355 Not applicable.

356 Competing interests

357 The authors declare that they have no competing interests.

358 Authors' contributions

359 TML, VNL and TST conceived the idea and designed the methodology. TST extracted data from the literature,
360 analyzed the data, prepared the figures, and led the writing of the manuscript. All authors read, contributed to, and
361 approved the final manuscript.

362 Acknowledgements

363 The authors would like to thank Dr. Melissa Meierhofer for her insightful and constructive input in the selection
364 of figures and models used in this review.

365 Funding

366 This work was supported by funding from the Maj & Tor Nessling Foundation and the Academy of Finland.

367 **Availability of data and materials**

368 All data presented in the supplementary material.

369 **Supplementary file 1:** Data set (Review_Data_Troitsky.xlsx)

370 Contains list of chosen publications and data extracted from them that was used in model and figures.

371 **REFERENCES**

372 1. Grice EA, Segre JA. The skin microbiome. *Nat Rev Microbiol.* 2011;9:244–53.

373 2. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. *Nat Rev Microbiol.* 2018;16:143–55.

374 3. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. *Science.* 2014;346:954–9.

375 4. Findley K, Grice EA. The skin microbiome: a focus on pathogens and their association with skin
376 disease. *PLoS Pathog.* 2014;10:e1004436.

377 5. Smythe P, Wilkinson HN. The skin microbiome: current landscape and future opportunities. *Int J Mol
378 Sci.* 2023;24:3950.

379 6. Ross AA, Rodrigues Hoffmann A, Neufeld JD. The skin microbiome of vertebrates. *Microbiome.*
380 2019;7:79.

381 7. Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, et al. Emerging priorities
382 for microbiome research. *Front Microbiol.* 2020;11.

383 8. Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the
384 hologenome theory of evolution. *FEMS Microbiol Rev.* 2008;32:723–35.

385 9. Bordenstein SR, Theis KR. Host biology in light of the microbiome: ten principles of holobionts and
386 hologenomes. *PLOS Biol.* 2015;13:e1002226.

387 10. Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. *Q Rev
388 Biol.* 2012;87:325–41.

389 11. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the
390 body. *PLOS Biol.* 2016;14:e1002533.

391 12. Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. *Microbiome.*
392 2018;6:78.

393 13. Nørreslet LB, Agner T, Clausen M-L. The skin microbiome in inflammatory skin diseases. *Curr
394 Dermatol Rep.* 2020;9:141–51.

395 14. Clifton R, Monaghan EM, Green MJ, Purdy KJ, Green LE. Differences in composition of
396 interdigital skin microbiota predict sheep and feet that develop footrot. *Sci Rep.* 2022;12:8931.

397 15. Becker MH, Harris RN. Cutaneous bacteria of the redback salamander prevent morbidity associated
398 with a lethal disease. *PLOS ONE.* 2010;5:e10957.

399 16. Greenspan SE, Peloso P, Fuentes-González JA, Bletz M, Lyra ML, Machado IF, et al. Low
400 microbiome diversity in threatened amphibians from two biodiversity hotspots. *Anim Microbiome*.
401 2022;4:69.

402 17. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, et al. Skin microbes
403 on frogs prevent morbidity and mortality caused by a lethal skin fungus. *ISME J*. 2009;3:818–24.

404 18. Muñoz-Atienza E, Araújo C, Magadán S, Hernández PE, Herranz C, Santos Y, et al. In vitro and
405 in vivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (*Scophthalmus*
406 *maximus* L.) farming. *Fish Shellfish Immunol*. 2014;41:570–80.

407 19. Lemieux-Labonté V, Simard A, Willis CKR, Lapointe F-J. Enrichment of beneficial bacteria in the
408 skin microbiota of bats persisting with white-nose syndrome. *Microbiome*. 2017;5:115.

409 20. Xiong Y, Wu Q, Qin X, Yang C, Luo S, He J, et al. Identification of *Pseudomonas aeruginosa* from
410 the skin ulcer disease of crocodile lizards (*Shinisaurus crocodilurus*) and probiotics as the control
411 measure. *Front Vet Sci*. 2022;9.

412 21. Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, et al. Interacting
413 symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic
414 effectiveness. *PLOS ONE*. 2014;9:e96375.

415 22. Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CN, et al. Composition of
416 symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. *Proc R
417 Soc B Biol Sci*. 2015;282:20142881.

418 23. Madison JD, Berg EA, Abarca JG, Whitfield SM, Gorbatenko O, Pinto A, et al. Characterization of
419 *Batrachochytrium dendrobatidis* inhibiting bacteria from amphibian populations in Costa Rica. *Front
420 Microbiol*. 2017;8.

421 24. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. Chytridiomycosis
422 causes amphibian mortality associated with population declines in the rain forests of Australia and
423 Central America. *Proc Natl Acad Sci*. 1998;95:9031–6.

424 25. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, et al. Pathogenesis of
425 chytridiomycosis, a cause of catastrophic amphibian declines. *Science*. 2009;326:582–5.

426 26. Becker MH, Brucker RM, Schwantes CR, Harris RN, Minbiole KPC. The bacterially produced
427 metabolite violacein is associated with survival of amphibians infected with a lethal fungus. *Appl
428 Environ Microbiol*. 2009;75:6635–8.

429 27. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, et al.
430 Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of
431 amphibians can inhibit two *Batrachochytrium* fungal pathogens. *Microb Ecol*. 2018;75:1049–62.

432 28. Garber G. An overview of fungal infections. *Drugs*. 2001;61:1–12.

433 29. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal
434 threats to animal, plant and ecosystem health. *Nature*. 2012;484:186–94.

435 30. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, et al. Bat white-nose
436 syndrome: an emerging fungal pathogen? *Science*. 2009;323:227–227.

437 31. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, et al. An emerging
438 disease causes regional population collapse of a common North American bat species. *Science*.
439 2010;329:679–82.

440 32. Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, et al. Inoculation of bats
441 with European *Geomyces destructans* supports the novel pathogen hypothesis for the origin of white-
442 nose syndrome. *Proc Natl Acad Sci U S A*. 2012;109:6999–7003.

443 33. Frick WF, Puechmaille SJ, Willis CKR. White-nose syndrome in bats. In: Voigt CC, Kingston T,
444 editors. *Bats in the Anthropocene: conservation of bats in a changing world*. Cham: Springer
445 International Publishing; 2016. p. 245–62.

446 34. Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V, et al.
447 Histopathologic criteria to confirm white-nose syndrome in bats. *J Vet Diagn Investig Off Publ Am
448 Assoc Vet Lab Diagn Inc*. 2009;21:411–4.

449 35. Altringham JD. *Bats: from evolution to conservation*. Oxford University Press; 2011.

450 36. Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor. *Annu
451 Rev Physiol*. 2004;66:239–74.

452 37. Bouma HR, Carey HV, Kroese FGM. Hibernation: the immune system at rest? *J Leukoc Biol*.
453 2010;88:619–24.

454 38. Leopardi S, Blake D, Puechmaille SJ. White-nose syndrome fungus introduced from Europe to
455 North America. *Curr Biol*. 2015;25:R217–9.

456 39. Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, et al. White-nose syndrome
457 without borders: *Pseudogymnoascus destructans* infection tolerated in Europe and Palearctic Asia but
458 not in North America. *Sci Rep*. 2016;6:19829.

459 40. Fritze M, Puechmaille SJ. Identifying unusual mortality events in bats: a baseline for bat hibernation
460 monitoring and white-nose syndrome research. *Mammal Rev*. 2018;48:224–8.

461 41. Iliev ID, Underhill DM. Striking a balance: fungal commensalism versus pathogenesis. *Curr Opin
462 Microbiol*. 2013;16:366–73.

463 42. Harazim M, Horáček I, Jakešová L, Luermann K, Moravec JC, Morgan S, et al. Natural selection in
464 bats with historical exposure to white-nose syndrome. *BMC Zool*. 2018;3:8.

465 43. Wibbelt G, Kurth A, Hellmann D, Weishaar M, Barlow A, Veith M, et al. White-nose syndrome
466 fungus (*Geomyces destructans*) in bats, Europe. *Emerg Infect Dis*. 2010;16:1237–43.

467 44. Drees KP, Lorch JM, Puechmaille SJ, Parise KL, Wibbelt G, Hoyt JR, et al. Phylogenetics of a
468 fungal invasion: origins and widespread dispersal of white-nose syndrome. *mBio*.
469 2017;8:10.1128/mbio.01941-17.

470 45. Hoyt JR, Kilpatrick AM, Langwig KE. Ecology and impacts of white-nose syndrome on bats. *Nat*
471 *Rev Microbiol*. 2021;19:196–210.

472 46. Hoyt JR, Cheng TL, Langwig KE, Hee MM, Frick WF, Kilpatrick AM. Bacteria isolated from bats
473 inhibit the growth of *Pseudogymnoascus destructans*, the causative agent of white-nose syndrome.
474 *PLOS ONE*. 2015;10:e0121329.

475 47. Forsythe A, Fontaine N, Bissonnette J, Hayashi B, Insuk C, Ghosh S, et al. Microbial isolates with
476 Anti-*Pseudogymnoascus destructans* activities from Western Canadian bat wings. *Sci Rep*.
477 2022;12:9895.

478 48. Grisnik M, Bowers O, Moore AJ, Jones BF, Campbell JR, Walker DM. The cutaneous microbiota of
479 bats has in vitro antifungal activity against the white nose pathogen. *FEMS Microbiol Ecol*.
480 2020;96:fiz193.

481 49. Li Z, Li A, Hoyt JR, Dai W, Leng H, Li Y, et al. Activity of bacteria isolated from bats against
482 *Pseudogymnoascus destructans* in China. *Microb Biotechnol*. 2021;15:469–81.

483 50. Cheng TL, Mayberry H, McGuire LP, Hoyt JR, Langwig KE, Nguyen H, et al. Efficacy of a
484 probiotic bacterium to treat bats affected by the disease white-nose syndrome. *J Appl Ecol*.
485 2017;54:701–8.

486 51. Hoyt JR, Langwig KE, White JP, Kaarakka HM, Redell JA, Parise KL, et al. Field trial of a
487 probiotic bacteria to protect bats from white-nose syndrome. *Sci Rep*. 2019;9:9158.

488 52. Gillingham JC, Carpenter CC. Snake hibernation: construction of and observations on a man-made
489 hibernaculum (Reptilia, Serpentes). *J Herpetol*. 1978;12:495–8.

490 53. Buck CL, Barnes BM. Annual cycle of body composition and hibernation in free-living arctic
491 ground squirrels. *J Mammal*. 1999;80:430–42.

492 54. McKechnie AE, Ashdown RAM, Christian MB, Brigham RM. Torpor in an African caprimulgid, the
493 freckled nightjar *Caprimulgus tristigma*. *J Avian Biol*. 2007;38:261–6.

494 55. Campbell HA, Fraser KPP, Bishop CM, Peck LS, Egginton S. Hibernation in an Antarctic fish: on
495 ice for winter. *PLoS ONE*. 2008;3:e1743.

496 56. Costanzo JP, do Amaral MCF, Rosendale AJ, Lee RE Jr. Hibernation physiology, freezing
497 adaptation and extreme freeze tolerance in a northern population of the wood frog. *J Exp Biol*.
498 2013;216:3461–73.

499 57. Evans AL, Singh NJ, Friebe A, Arnemo JM, Laske TG, Fröbert O, et al. Drivers of hibernation in
500 the brown bear. *Front Zool*. 2016;13:1–14.

501 58. R Core Team. R: A language and environment for statistical computing. R Found Stat Comput
502 Vienna Austria. 2022.

503 59. Wickham H. *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York; 2016.

504 60. Dormann C, Gruber B, Fründ J. Introducing the bipartite package: analysing ecological networks. *R*
505 *News*. 2008;8:8–11.

506 61. Harrington B. *Inkscape*. 2004.

507 62. Fritze M, Pham TLH. Effekt des bodenbakteriums *Pseudomonas veronii*-like PAZ1 auf das
508 wachstum des white-nose erregers *Geomycetes destructans* in antagonisten-tests. *Nyctalus*. 2012;17:104–
509 7.

510 63. Li Z, Li A, Dai W, Leng H, Liu S, Jin L, et al. Skin microbiota variation among bat species in china
511 and their potential defense against pathogens. *Front Microbiol*. 2022;13.

512 64. Li A, Li Z, Leng H, Jin L, Xiao Y, Sun K, et al. Seasonal assembly of skin microbiota driven by
513 neutral and selective processes in the greater horseshoe bat. *Mol Ecol*. 2023;n/a n/a.

514 65. Seidlova V, Pikula J, Kolarik M, Nováková A, Cmokova A, Ghazaryan A, et al. Higher white-nose
515 syndrome fungal isolate yields from UV-guided wing biopsies compared with skin swabs and optimal
516 culture media. *BMC Vet Res*. 2023;19:40.

517 66. Li A, Li Z, Dai W, Parise KL, Leng H, Jin L, et al. Bacterial community dynamics on bats and the
518 implications for pathogen resistance. *Environ Microbiol*. 2022;24:1484–98.

519 67. Becker P, van den Eynde C, Baert F, D'hooge E, De Pauw R, Normand A-C, et al. Remarkable
520 fungal biodiversity on northern Belgium bats and hibernacula. *Mycologia*. 2023;115:484–98.

521 68. Cheng TL, Mayberry H, McGuire LP, Hoyt JR, Langwig KE, Nguyen H, et al. Efficacy of a
522 probiotic bacterium to treat bats affected by the disease white□nose syndrome. *J Appl Ecol*.
523 2017;54:701–8.

524 69. Woodhams DC, Rollins-Smith LA, Reinert LK, Lam BA, Harris RN, Briggs CJ, et al. Probiotics
525 modulate a novel amphibian skin defense peptide that is antifungal and facilitates growth of antifungal
526 bacteria. *Microb Ecol*. 2020;79:192–202.

527 70. Cornelison CT, Keel MK, Gabriel KT, Barlament CK, Tucker TA, Pierce GE, et al. A preliminary
528 report on the contact-independent antagonism of *Pseudogymnoascus destructans* by *Rhodococcus*
529 *rhodochrous* strain DAP96253. *BMC Microbiol*. 2014;14:246.

530 71. Hooper S, Amelon S. Contact-independent exposure to *Rhodococcus rhodochrous* DAP96253
531 volatiles does not improve the survival rate of *Myotis lucifugus* (little brown bats) affected by White-
532 nose Syndrome. *PeerJ*. 2023;11:e15782.

533 72. Alexiev A, Chen MY, Korpita T, Weier AM, McKenzie VJ. Together or alone: evaluating the
534 pathogen inhibition potential of bacterial cocktails against an amphibian pathogen. *Microbiol Spectr.*
535 2023;11:e01518-22.

536 73. Antwis RE, Harrison XA. Probiotic consortia are not uniformly effective against different amphibian
537 chytrid pathogen isolates. *Mol Ecol.* 2018;27:577–89.

538 74. Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbile KPC, Harris RN. Interactions between
539 amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites. *Front
540 Microbiol.* 2014;5.

541 75. Piovia-Scott J, Rejmanek D, Woodhams DC, Worth SJ, Kenny H, McKenzie V, et al. Greater
542 species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen
543 *Batrachochytrium dendrobatidis*. *Microb Ecol.* 2017;74:217–26.

544 76. Petersen OH. Inequality of research funding between different countries and regions is a serious
545 problem for global science. *Function.* 2021;2:zqab060.

546 77. Boutin S, Audet C, Derome N. Probiotic treatment by indigenous bacteria decreases mortality
547 without disturbing the natural microbiota of *Salvelinus fontinalis*. *Can J Microbiol.* 2013;59:662–70.

548 78. Seghouani H, Garcia-Rangel C-E, Füller J, Gauthier J, Derome N. Walleye autochthonous bacteria
549 as promising probiotic candidates against *Flavobacterium columnare*. *Front Microbiol.* 2017;8.

550 79. O'Neill AM, Worthing KA, Kulkarni N, Li F, Nakatsuji T, McGrosso D, et al. Antimicrobials from
551 a feline commensal bacterium inhibit skin infection by drug-resistant *S. pseudintermedius*. *eLife.*
552 2021;10:e66793.

553 80. Knapp RA, Joseph MB, Smith TC, Hegeman EE, Vredenburg VT, Jr JEE, et al. Effectiveness of
554 antifungal treatments during chytridiomycosis epizootics in populations of an endangered frog. *PeerJ.*
555 2022;10:e12712.

556 81. Lauer A, Simon MA, Banning JL, Lam BA, Harris RN. Diversity of cutaneous bacteria with
557 antifungal activity isolated from female four-toed salamanders. *ISME J.* 2008;2:145–57.

558 82. Harris RN, Lauer A, Simon MA, Banning JL, Alford RA. Addition of antifungal skin bacteria to
559 salamanders ameliorates the effects of chytridiomycosis. *Dis Aquat Organ.* 2009;83:11–6.

560 83. Rosado D, Xavier R, Severino R, Tavares F, Cable J, Pérez-Losada M. Effects of disease, antibiotic
561 treatment and recovery trajectory on the microbiome of farmed seabass (*Dicentrarchus labrax*). *Sci Rep.*
562 2019;9:18946.

563 84. Kearns PJ, Fischer S, Fernández-Beaskoetxea S, Gabor CR, Bosch J, Bowen JL, et al. Fight fungi
564 with fungi: antifungal properties of the amphibian mycobiome. *Front Microbiol.* 2017;8.

565 85. Kearns PJ, Winter AS, Woodhams DC, Northup DE. The mycobiome of bats in the American
566 Southwest is structured by geography, bat species, and behavior. *Microb Ecol.* 2023.
567 <https://doi.org/10.1007/s00248-023-02230-w>.

568 86. Vanderwolf KJ, Campbell LJ, Goldberg TL, Blehert DS, Lorch JM. Skin fungal assemblages of bats
569 vary based on susceptibility to white-nose syndrome. *ISME J.* 2021;15:909–20.

570 87. Vanderwolf KJ, Campbell LJ, Taylor DR, Goldberg TL, Blehert DS, Lorch JM. Mycobiome traits
571 associated with disease tolerance predict many western North American bat species will be susceptible
572 to white-nose syndrome. *Microbiol Spectr.* 2021;9:e0025421.

573 88. Auer GK, Weibel D. Bacterial cell mechanics. *Biochemistry.* 2017;56:3710–24.

574 89. Li X, Bosch-Tijhof CJ, Wei X, de Soet JJ, Crielaard W, Loveren C van, et al. Efficiency of chemical
575 versus mechanical disruption methods of DNA extraction for the identification of oral gram-positive and
576 gram-negative bacteria. *J Int Med Res.* 2020;48:0300060520925594.

577 90. Eissa NME, El-Ghiet ENA, Shaheen AA, Abbass A. Characterization of *Pseudomonas* species
578 isolated from tilapia “*Oreochromis niloticus*” in Qaroun and Wadi-El-Rayyan Lakes, Egypt. *Glob Vet.*
579 2010;5:116–21.

580 91. Wood SJ, Kuzel TM, Shafikhani SH. *Pseudomonas aeruginosa*: infections, animal modeling, and
581 therapeutics. *Cells.* 2023;12:199.

582 92. Teoh M-C, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads
583 and insects: mechanisms and prospects. *Arch Microbiol.* 2021;203:1891–915.

584 93. Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbile KPC, Harris RN. Synergistic inhibition
585 of the lethal fungal pathogen *Batrachochytrium dendrobatidis*: the combined effect of symbiotic
586 bacterial metabolites and antimicrobial peptides of the frog *Rana muscosa*. *J Chem Ecol.* 2012;38:958–
587 65.

588 94. Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P. Biodiversity as a barrier to
589 ecological invasion. *Nature.* 2002;417:636–8.

590 95. Mallon CA, Elsas JD van, Salles JF. Microbial invasions: the process, patterns, and mechanisms.
591 *Trends Microbiol.* 2015;23:719–29.

592 96. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife--threats to
593 biodiversity and human health. *Science.* 2000;287:443–9.

594 97. Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals.
595 *mBio.* 2010;1:10.1128/mbio.00061-10.

596 98. Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, et al. Threats posed by the
597 fungal kingdom to humans, wildlife, and agriculture. *mBio.* 2020;11:e00449-20.

598 99. Carthey AJR, Blumstein DT, Gallagher RV, Tetu SG, Gillings MR. Conserving the holobiont. *Funct*
599 *Ecol.* 2020;34:764–76.

600 100. Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of
601 life: what is known and unknown. *Mol Ecol.* 2016;25:3776–800.

602 101. Kueneman JG, Bletz MC, Becker M, Gratwicke B, Garcés OA, Hertz A, et al. Effects of captivity
603 and rewilding on amphibian skin microbiomes. *Biol Conserv.* 2022;271:109576.

604