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Abstract

In recent years, blending mechanistic knowledge with machine learning has had a major
impact in digital healthcare. In this work, we introduce a computational pipeline to build cer-
tified digital replicas of cardiac electrophysiology in pediatric patients with congenital heart
disease. We construct the patient-specific geometry by means of semi-automatic segmentation
and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-
organ level model parameters and utilizing rigorous mathematical models based on differential
equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate
and efficient means to recapitulate complex physical processes in a neural network. Here, we
employ BLNMs to encode the parametrized temporal dynamics of in silico 12-lead electrocar-
diograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for
fast and robust parameter estimation to match clinical ECGs in pediatric patients. Identifiabil-
ity and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and
uncertainty quantification.

Keywords: Single Ventricle Physiology, Numerical Simulations, Neural Maps, Parameter Estima-
tion, Uncertainty Quantification

1 Introduction

The combination of physics-based and statistical modeling in cardiovascular medicine has the po-
tential to shape the future of cardiology [9]. In this framework, a synergistic use of multiphysics
and multiscale mathematical models for cardiac function [13, 18, 39, 41, 57] and machine learning-
based methods, such as Gaussian processes emulators [30, 37, 59] and Neural Networks (NNs) [35,
47], enables the design of efficient computational tools that are compatible with the computer re-
sources and time frames required in clinical applications. In the foreseeable future, a continuous,
bi-directional interaction between patient-specific data and Artificial Intelligence-enriched computer
models incorporating biophysically detailed and anatomically accurate knowledge would enable the
vision of precision medicine [34, 38, 44]. Personalized treatment and surgical planning may be deliv-
ered by leveraging different mathematical methods, such as sensitivity analysis, parameter inference
and uncertainty quantification [19, 25, 49, 54].
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Several mathematical tools have been proposed to better understand and treat different groups
of adult cardiac pathologies [34]. Electrophysiology simulations play an important role in the as-
sessment of rhythm disorders. They are used for cardiac resynchronization therapy [58], arrhythmia
risk stratification [2, 50], and definition of optimal ablation strategies [43]. Nevertheless, in silico
numerical simulations and treatment modalities in pediatrics and congenital heart disease are less
common or even not established [8, 24, 62].

Congenital heart defects (CHDs) are the most common birth defects and are characterized by
cardiac anatomical abnormalities that can severely impact cardiac function [29]. Patients with CHDs
often have a unique and peculiar combination of cardiac defects that warrant personalized treatment
planning in clinically-relevant time frames. Digital twinning of cardiac function thus holds particular
promise for these patients [62].

In this work we introduce a novel digital twin of a pediatric patient with hypoplastic left heart
syndrome (HLHS), a complex form of CHD where the left ventricle of the patient is severely under-
developed, leading to a number of morbidities and elevated mortality risk. Our pipeline seamlessly
combines:

• Semi-automatic segmentation and mesh generation tools suited for pediatric patients with
CHD [27]

• A physiologically-based mathematical formulation of cardiac electrophysiology deriving from
the monodomain equation [44, 51] coupled with the ten Tusscher-Panfilov [63] ionic model

• A recently proposed scientific machine learning method, namely Branched Latent Neural Maps
(BLNMs) [53], to build an accurate and efficient dynamic surrogate model of cardiac function

• Shapley effects [56] and Hamiltonian Monte Carlo (HMC) [5, 21] to perform patient-specific
sensitivity analysis, fast and robust parameter estimation with uncertainty quantification while
matching clinical 12-lead electrocardiograms (ECGs)

This digital twin can be employed to simulate different scenarios of clinical interest in silico, as
HLHS patients may experience different forms of electrophysiological comorbidities [14], including
ventricular arrhythmias and dyssynchrony [62]. Therefore, personalized electrophysiology simula-
tions may provide virtual pre- and post-operative guidance in this understudied patient cohort [32].

2 Results

In Figure 1 we depict our computational pipeline to build digital twins of cardiac electrophysiology for
congenital heart disease patients. This pipeline covers all the relevant aspects of digital twinning:
image segmentation and mesh generation, mathematical and numerical physics-based modeling,
surrogate model training, sensitivity analysis and robust parameter calibration with uncertainty
quantification.

2.1 Pre-processing

Figure 1 (first row) shows the heart-torso model of a 7-year-old female pediatric patient with HLHS
constructed from the computerized tomography (CT) scan of the patient using our semi-automatic
model construction pipeline [27].
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z(t) = BLNM (t,θEP;w)
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Figure 1: Sketch of the computational pipeline. We reconstruct the patient-specific geometry with
HLHS from imaging. We generate a dataset of electrophysiology simulations encompassing cell-to-
organ variability in model parameters. We train a BLNM that effectively reproduces 12-lead ECGs
while covering model variability. We employ the BLNM for digital twinning.
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Parameter Description Range Units

GCaL Maximal Ca2+ current conductance [1.99e-5, 7.96e-5] cm ms−1 µF−1

GNa Maximal Na+ current conductance [7.42, 29.68] nS pF−1

GKr Maximal rapid delayed rectifier current conductance [0.08, 0.31] nS pF−1

Dani Anisotropic conductivity [0.008298, 0.033192] mm2 ms−1

Diso Isotropic conductivity [0.002766, 0.011064] mm2 ms−1

Dpurk Purkinje conductivity [1.0, 3.5] mm2 ms−1

tstimLV Purkinje left bundle stimulation time [0, 100] ms

Table 1: Parameter space for cardiac electrophysiology sampled via latin hypercube for the numerical
simulations performed with the physics-based mathematical model.

2.2 Cardiac electrophysiology modeling

We run 200 numerical simulations on the patient-specific heart-torso geometry (see Figure 1, sec-
ond row), spanning seven relevant electrophysiology parameters of the physics-based model at the
microscopic scale and organ level. We collect the corresponding in silico 12-lead ECGs. In Table 1
we report descriptions, ranges, and units for the seven model parameters that we explore via latin
hypercube sampling for the dataset generation.

In Figure 2 we depict the ensemble of the resulting in silico 12-lead ECGs together with the
clinical recordings. We point out that the patient-specific 12-lead ECGs are contained within the
pseudopotentials variability spanned by the electrophysiology simulations, manifesting various mor-
phologies in the QRS complex, that is ventricular depolarization, and T wave, that is ventricular
repolarization. The patient diagnosis reports rhythm disorders, atrial enlargement, left and right
ventricular hypertrophy, along with severe abnormalities in the ECGs. Specifically, there are signs
of prolonged PR interval, ST segment depression and T wave inversion.

In Figure 3 we show the simulated spatio-temporal transmembrane potential evolution on the
patient-specific pediatric model for a single instance of model parameters. Specifically, we always
simulate the sinus rhythm behavior over a cardiac cycle. Figure 3 focuses on the ventricular de-
polarization phase, where the electric signal propagates from the 1D Purkinje network at the two
endocardia towards the myocardium, as well as the ventricular repolarization phase, when the trans-
membrane potential comes back to its resting state (i.e. approximately -90 mV).

2.3 Branched Latent Neural Maps

BLNM
Hyperparameters Trainable parameters

layers neurons number of states disentanglement level # parameters

tuning {1 ... 8} {10 ... 30} {9 ... 12} {1 ... Nlayers}
final 7 19 10 2 2,398

Table 2: Branched Latent Neural Map hyperparameter tuning. Original hyperparameter ranges and
optimized hyperparameter values for the final training stage.

We train BLNMs, which are represented by feedforward partially-connected NNs, to encode the
temporal dynamics of the 12-lead pseudo-ECGs computed with the physics-based mathematical
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Figure 2: Physics-based electrophysiological modeling dataset generation. Full dataset containing
200 in silico precordial and limb leads recordings (blue, solid) and patient-specific 12-lead ECGs
(black, dashed).

model while also covering model variability from the cellular to the tissue level (see Figure 1, third
row). Once trained, BLNMs act as a surrogate model for cardiac electrophysiology function that
can be queried on new parameter instances to provide faster than real-time in silico 12-lead ECGs.

In order to identify the optimal set of BLNM hyperparameters, which are the number of layers,
number of neurons, number of states, and disentanglement level in the NN structure, we employ a K-
fold (K = 5) cross validation over 150 multiscale physics-based electrophysiology simulations. The
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(a) t = 20 ms (b) t = 50 ms (c) t = 100 ms

(d) t = 300 ms (e) t = 330 ms (f) t = 370 ms

(g) t = 600 ms

Figure 3: Physics-based electrophysiological modeling. Spatio-temporal membrane action potential
evolution for one electrophysiology simulation in the dataset performed on the HLHS pediatric
patient.
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Parameter Value Units

GCaL 2.94e-5 cm ms−1 µF−1

GNa 15.58 nS pF−1

GKr 0.15 nS pF−1

Dani 0.03 mm2 ms−1

Diso 0.01 mm2 ms−1

Dpurk 1.96 mm2 ms−1

tstimLV 43.3 ms

Table 3: Parameter estimation. Calibration with the optimized BLNM for cell-to-organ level model
parameters of the physics-based mathematical model. The MSE between the BLNMs predictions
and the clinical recordings, in non-dimensional form, is 0.16.

hyperparameter search space is given by a four-dimensional hypercube, where we run 50 instances of
Latin Hypercube Sampling and we pick the BLNM configuration providing the lowest generalization
error. For each configuration of hyperparameters, we sample the dataset with a fixed time step of
∆t = 5 ms and we perform 10,000 iterations of the second-order Broyden-Fletcher-Goldfarb-Shanno
(BFGS) optimizer. In Table 2 we report the initial hyperparameters ranges for tuning and the final
optimized values.

Then, we train a final optimized BLNM encompassing the whole dataset of 150 multiscale
physics-based electrophysiology simulations using 50,000 BFGS iterations. The non-dimensional
Mean Square Error (MSE) on a testing set comprised of 50 additional numerical simulations unseen
during the training stage, and Latin Hypercube sampled from the same parameter space in Table 1,
is equal to 5 · 10−4.

2.4 Parameter estimation

We employ the optimized BLNM to find an initial guess for the seven model parameters that results
in a computational pseudo-ECG that best matches the clinically observed 12-lead ECG dynamics
of the CHD patient. The estimated model parameters are reported in Table 3.

Even though the relative heart orientation and lead placements significantly influence ECGs [66],
and as such may require additional parameters to calibrate, the information retrieved from the CT
scan and patient diagnosis allow us to determine these quantities with a small degree of uncertainty.
This motivates our focus in the estimation process on the cell-to-organ level electrophysiology model
parameters which are assessed as important in previous studies [10, 60].

2.5 Sensitivity analysis

Starting from the parameter calibration shown in Table 3, we compute Shapley effects for each
model parameter for cardiac electrophysiology, assuming independence among them as they act in
different terms and equations of the physics-based mathematical model (see Figure 1, third row). In
Figure 4 we show how each parameter contributes in matching electrophysiology simulations with
the clinical 12-lead ECGs, i.e. in the minimization of the MSE between BLNM outputs and our
patient-specific observations. The sodium current conductance GNa plays a dominant role, followed
by the L-type calcium ion channel conductance GCaL and the different conductivities Dani, Diso

and Dpurk. Noteworthy, the interventricular activation dyssynchrony tstimLV plays a minor role in the
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Figure 4: Sensitivity analysis for the seven model parameters encoded in the BLNM via Shapley
effects.

calibration process. This is motivated by the dimension of the right ventricle, which mostly dictates
the activation sequence with respect to the small (underdeveloped) left ventricle.

2.6 Uncertainty quantification

In Figures 5 and 6 we show the results of our inverse uncertainty quantification, where we quantify
how uncertainty in matching 12-lead ECGs propagates to uncertainty in the estimated model pa-
rameters. We account for both BLNM surrogate modeling error, via Gaussian processes (GPs), and
measurement error in the clinical recordings.

From Figure 5, we see that the posterior distributions of all model parameters θEP, along with
the correlation length lGP and amplitude σGP, converged well towards highly similar unimodal
distributions across all chains. The average value of σ2

GP is approximately equal to 0.08, which
is two orders of magnitude higher than the BLNM testing error (5 · 10−4), as the GP encodes
the maximum BLNM uncertainty from each single lead individually and by also considering all
possible correlations among the 12 leads, given the full covariance matrix in the multivariate normal
distribution (see Section 3.6).

In Figure 6 we depict the clinical vs. in silico 12-lead ECGs, generated with the BLNM over
the posterior distribution of model parameters. We see that the numerical simulations are in good
agreement with the patient-specific recordings and show small variability between the five standard
deviations from the average value.
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Figure 5: Inverse uncertainty quantification: parameter uncertainty. One-dimensional views of the
posterior distribution. Different colors represent different HMC chains.

2.7 In silico clinical trial

In Figure 7 we show the results of three numerical simulations in which we analyze different scenarios
of clinical interest pre-operatively on the HLHS pediatric patient. Specifically, we depict activation
and repolarization times for the electrophysiology simulation with the calibrated model parameters
θEP and by inducing either a left or a right bundle branch block, where the left (respectively, right)
Purkinje fascicles are inhibited. We notice that, for this patient-specific case, the role of the Purkinje
network in the left ventricle is very limited and that the activation sequence is highly similar with
and without a full left bundle branch block.

2.8 Computational costs

In Table 4 we detail the computational costs and resources required by each step of the digital twin-
ning process. The most expensive part resides in the physics-based computational electrophysiology
modeling dataset generation, which makes use of high-performance computing given the stiffness
and complexity of the underlying mathematical model. On the other hand, training a BLNM and
employing it for robust Bayesian parameter estimation and sensitivity analysis are more tractable
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Figure 6: Inverse uncertainty quantification: matching clinical data. Clinical recordings (dashed,
black) and mean estimation (red, solid) of 12-lead ECGs for the HLHS pediatric patient via HMC.
Light red encompasses the variability between mean minus/plus five standard deviations.

tasks that can be carried out within a few hours or minutes on a local machine. Using the physics-
based mathematical model throughout parameter calibration with uncertainty quantification and
sensitivity analysis would be computationally intractable and unaffordable given the extensive num-
ber of queries that Shapley effects and HMC require to show robustness and convergence in the
provided results (see Methods section).

3 Methods

3.1 Pre-processing

We reconstruct the heart-torso model from the CT scan of a 7-year-old female pediatric patient
with HLHS in a semi-automatic manner [27]. Namely, we train a NN based on the classic UNet
architecture [23] to automatically segment the myocardium from CT images. The UNet is trained
using a publicly available dataset [67] that provided CT images and ground truth segmentation
for 110 patients with age between 1 month and 40 years, combined with our private HLHS dataset
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Figure 7: Running an in silico clinical trial. Activation (top) and repolarization (bottom) maps with
personalized model parameters (left), left bundle branch block (center) and right bundle branch block
(right).

Task Computational resources Execution time

Segmentation and mesh generation (one patient) 1 core 10 minutes
200 electrophysiology simulations 336 cores 1 day
BLNM hyperparameter tuning (50 confs, 10,000 iters) 5 cores 20 hours
BLNM final training (50,000 iters) 1 core 2 hours and 30 minutes
Parameter estimation (100 trials) 1 core 2 minutes
Sensitivity analysis (Shapley values) 1 core 20 minutes
Uncertainty quantification (HMC, 4 chains) 4 threads 5 minutes
Total - 2 days

Table 4: Computational resources. Summary of the computational times and resources to generate
the electrophysiology simulations with the physics-based model, to train the BLNM, to compute
Shapley values for sensitivity analysis and to perform Bayesian parameter estimation with uncer-
tainty quantification on 12-lead ECGs.

containing the images and segmentation of 5 patients. Given the intrinsic segmentation challenges of
cardiac structures in both young and CHD patients [40], we subsequently examine and improve the
UNet-produced segmentations to more closely match with the CT scan. We automatically extract
the surface meshes from the segmentations using the marching cube algorithm [31] and truncate
the base myocardium above a manually identified plane to create a biventricular surface mesh. We
subsequently use TetGen [55] to create the tetrahedral volumetric mesh with a maximum edge size
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of 1 mm [53, 62]. The torso model is created semi-automatically from the images using threshold-
and region-growing-based segmentation methods. Images and associated clinical data were obtained
under an IRB-approved protocol at Stanford University.

3.2 Cardiac electrophysiology modeling

We detail the physics-based mathematical model, along with its numerical discretization, that is
employed to perform electrophysiology simulations on the HLHS pediatric patient.

3.2.1 Mathematical model

We consider the monodomain equation [44] coupled with the ten Tusscher-Panfilov ionic model [63]
to describe the electric behavior in the heart-Purkinje system. This system of differential equations
reads:





∂Φ

∂t
+ Iion(Φ,w, z)−∇ · (DM∇Φ) = Iapp(x, t) in Ω× (0, T ],

(DM∇Φ) · n = 0 on ∂Ω× (0, T ],

dw

dt
= H(Φ,w, z) in Ω× (0, T ],

dz

dt
= G(Φ,w, z) in Ω× (0, T ],

Φ(x, 0) = Φ0(x), w(x, 0) = w0(x), z(x, 0) = z0(x) in Ω.

(1)

We always simulate a single heartbeat by fixing a final time T = THB = 600 ms. The computational
domain Ω = Ωpurk ∪ Ωmyo is represented by the one-way coupled 1D Purkinje network and 3D
biventricular patient-specific geometry.

Transmembrane potential Φ defines the electric signal at the Purkinje and myocardial level. The
ten Tusscher-Panfilov ionic model is endowed with 18 variables, which are split in two different sub-
sets. First, there is a vector w = (w1, . . . , wM ) (M = 12) of ion channel gating variables, which are
probability density functions representing the fraction of open channels across the membrane of a
single cardiac cell. Then, there is a vector z = (z1, . . . , zP ) (P = 6) of concentration variables repre-
senting relevant ionic species, such as sodium Na+, intracellular calcium Ca2+ and potassium K+,
which all play a major role in the metabolic processes [4], dictating heart rhythmicity or sarcomere
contractility, and are generally targeted by pharmaceutical therapies. The specific mathematical
formulation of the ten Tusscher-Panfilov ionic model defines the ordinary differential equations for
H(Φ,w, z) andG(Φ,w, z), which describe the dynamics of gating variables and ionic concentrations
respectively, along with the ionic current Iion(Φ,w, z) [63]. An external applied current Iapp(x, t)
fires the electric signal in the Purkinje fibers.

The diffusion tensor is expressed as DM = DisoI + Danif0 ¹ f0 in Ωmyo and DM = DpurkI in
Ωpurk, where f0 introduces the biventricular fiber field [42, 51]. Dani, Diso, Dpurk ∈ R

+ dictate the
anisotropic, isotropic and Purkinje conductivities, respectively.

The homogeneous Neumann boundary conditions prescribed at ∂Ω define the condition of an
electrically isolated domain, where n is the outward unit normal vector to the boundary.

Following [51], the extracellular potential Φe defining the ECGs is computed in each lead location
xe as:

Φe(xe) = −

∫

Ω

∇Φ · ∇
1

||x− xe||
dV, (2)
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where e = {V1, V2, V3, V4, V5, V6} and e = {LA,RA,F} define six precordial leads and three limb
leads located on the pediatric patient-specific torso model, shown in colored and black dots in
Figure 1 (second row), respectively. From these lead locations, we computationally reconstruct
three bipolar limb leads as:

I = LA−RA II = F −RA III = F − LA, (3)

and three augmented limb leads as:

aV L = (I − III)/2 aV R = −(I + II)/2 aV F = (II + III)/2. (4)

The resulting set ECG = {V1, V2, V3, V4, V5, V6, I, II, III, aV L, aV R, aV F} of computational pseudo-
potentials defines a comprehensive 12-lead ECG representation of the electrical activity in the
patient-specific heart.

3.2.2 Numerical discretization

We employ linear Finite Elements to discretize the spatial domain Ω in Equation (3.2.2). The
tetrahedral tessellation defining the biventricular mesh has 933,916 cells and 158,277 DOFs, with
a maximum mesh size of h = 1 mm. The left and right Purkinje bundles within the ventricular
endocardia are generated by employing the fractal tree and projection algorithm proposed in [48],
starting from the atrioventricular node. These left and right bundles are endowed with 14,820
elements (14,821 DOFs) and 67,456 elements (67,457 DOFs), respectively. Given the space resolution
of the biventricular mesh, we apply non-Gaussian quadrature rules to recover convergent conduction
velocities [62]. We consider a transmural variation of ionic conductances to differentiate epicardial,
mid-myocardial and endocardial properties [63]. To solve Eq. , we leverage an Implicit-Explicit
time discretization scheme, where we first update the variables of the ionic model and then the
transmembrane potential [13]. Specifically, in the monodomain equation, the diffusion term is treated
implicitly and the ionic term is treated explicitly. The latter is discretized by means of the Ionic
Current Interpolation scheme [28]. We prescribe the fiber distribution according to a Laplace-
Dirichlet Rule-Based algorithm with αepi = −60◦, αendo = 60◦, βepi = 20◦ and βendo = −20◦ [42].

3.3 Branched Latent Neural Maps

We construct a geometry-specific surrogate model of cardiac function by building a feedforward
partially-connected NN that explores the variability of our physics-based electrophysiology model
detailed in Section 3.2 while structurally separating the role of temporal t and functional θEP

parameters. This recent scientific machine learning tool, proposed in [53], allows for different levels
of disentanglement between inputs and outputs. The surrogate model reads:

z(t) = BLNM (t,θEP;w) for t ∈ [0, T ]. (5)

Weights and biases w ∈ R
Nw encode the algebraic structures of a feedforward partially-connected

NN, which represents a map BLNM : R1+NP → R
Nz from time t and NP = 7 cell-to-organ scale

electrophysiology parameters θEP = [GCaL, GNa, GKr, Dani, Diso, Dpurk, t
stim
LV ]T ∈ Θ ¢ R

NP to an
output vector z(t) = [zleads(t), zlatent(t)]

T ∈ R
Nz . This vector contains in silico precordial and limb

leads recordings zleads(t) = [V1(t), V2(t), V3(t), V4(t), V5(t), V6(t), LA(t), RA(t), F (t)]T ∈ R
9, where

we use the original LA(t), RA(t) and F (t) limb leads in place of the bipolar and augmented limb
leads in order to reduce the dimensionality of the output. Indeed, we reconstruct I(t), II(t), III(t),
aV L(t), aV R(t) and aV F (t) a posteriori by means of Equations (3) and (4). Furthermore, vector
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z(t) leverages some zlatent(t) latent variables that enhance the learned temporal dynamics by acting
in regions with steep gradients [53].

We perform nonlinear optimization with the BFGS algorithm to tune NN parameters. In partic-
ular, we monitor the MSE of surrogate vs. physics-based ECG pseudopotentials to find an optimal
set of weights and biases w, that is:

L(z̃leads(t), z̃numerical(t); ŵ) = argmin
ŵ

[
||z̃leads(t)− z̃numerical(t)||

2
L2(0,T )

]
, (6)

where z̃leads(t) ∈ [−1, 1]9 represents BLNM outputs and z̃numerical(t) ∈ [−1, 1]9 defines the physics-
based numerical simulations, both in non-dimensional form. Time t̃ ∈ [0, 1] and model parameters

θ̃EP ∈ [−1, 1]NP are also normalized during the training and testing phases. We refer to [53] for
a detailed description of all the properties related to BLNMs that enable them to effectively learn
complex physical processes.

3.4 Parameter estimation

We employ our trained BLNM to find a set of model parameters θ̃EP that matches zECG(t) ∈ R
12

with zclinical(t) ∈ R
12. Here, zECG(t) is the vector of BLNM physical outputs zleads(t) manipulated

according to Equations (3) and (4) to generate the full 12-lead ECGs, and zclinical(t) is the clinically
measured ECG data vector. In particular, we perform derivative-free optimization by employing
the Nelder-Mead method [33], where we specify a loss function given by the MSE of the mismatch
between the trained surrogate vs. clinical ECG potentials, that is:

L(zECG(t), zclinical(t)) = ||zECG(t)− zclinical(t)||
2
L2(0,T ), (7)

which leads to a set of calibrated model parameters θ̃
NM

EP and corresponding 12-lead ECGs zNM
ECG(t).

We initialize our optimization algorithm with a random set of model parameters θ̃init ∈ [−1, 1]NP .
We repeat the optimization process 100 times and we average the model parameters obtained during

the different trials in order to get θ̃
NM

EP .

3.5 Sensitivity analysis

We perform a variance-based sensitivity analysis using Shapley effects [56] in order to quantify the
importance of each model parameter in fitting patient-specific 12-lead ECGs during the inference
process.

Specifically, we employ Sklar’s theorem [12] to define the input multivariate distribution, which
is given by a Gaussian copula and a series of NP marginals defined by standard normal distributions

centered in θ̃
NM

EP , that is N
(
θ̃NM,i
EP , 0.2

)
for i = 1, ..., NP .

Due to the high computational costs associated with testing all the different combinations of
the features, we consider the random (rather than the exact) version of the algorithm to compute
Shapley values. We monitor the expected marginal contribution of each model parameter to the
BLNM prediction with respect to observations, that is the MSE of Equation (7). We fix 2000
permutations, 500 bootstrapped samples, and 50 samples to estimate conditional variance for 3
times.
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3.6 Uncertainty quantification

We employ a BLNM within HMC [5] to calibrate model parameters and to perform inverse uncer-
tainty by matching observed 12-lead ECGs from patient-specific recordings. HMC is a Markov Chain
Monte Carlo (MCMC) method that aims at finding an approximation of the posterior distribution

P(θ̃EP|x), given a certain prior probability distribution P(θ̃EP) with respect to the model parameters

in non-dimensional form θ̃EP ∈ [−1, 1]NP . Specifically, we employ the No-U-Turn Sampler (NUTS)
extension of HMC, which automatically adapts the number of steps to estimate the posterior distri-
bution [21]. This algorithm, which shares and enhances some of the features of sequential [26] and
differential evolution [61] MCMC, works well with high-dimensional target distributions, possibly
presenting correlated dimensions. Moreover, HMC reaches convergence using a reduced amount of
samples with respect to vanilla MCMC [21]. For further details about the mathematical derivation
of HMC and its application to cardiac simulations we refer to [54].

We run 4 chains with 1,000 adaptation samples in the warm-up phase and 1,000 effective samples
to estimate the posterior distribution, with a fixed 90% acceptance rate. For all model parameters,
we consider prior distributions

P(θ̃iEP) ∼ U(θ̃NM,i
EP − ι, θ̃NM,i

EP + ι) for i = 1, ..., NP , (8)

where θ̃
NM

EP ∈ [−1, 1]NP is the initial guess obtained with the Nelder-Mead method. We always make
sure that model parameters reside within the [−1, 1] range. We set ι = 0.2. Even though NUTS
allows for many different initialization protocols, such as maximum a posteriori (MAP) or maximum
likelihood estimation (MLE), we consider an initial random seed for each chain. This is motivated
by the sensitivity of MAP and MLE over multiple runs, especially when several model parameters
are calibrated with respect to noisy or highly varying time-dependent QoIs, which is the case for
ECG recordings.

Several sources of uncertainty can be considered. These include model uncertainties (e.g., the
discrepancy between the actual physical phenomenon and the high-fidelity model), the discretization
error introduced when solving the differential equations, the surrogate modeling error of reduced-
order models, and the measurement errors that intrinsically affect clinical ECG recordings (i.e.,
the sensitivity of the instrument used during the clinical test, variations in lead placement position
by clinicians, and patient-specific factors such as breathing and motion). However, in our inverse
uncertainty quantification process, we only include the measurement error and the approximation
error introduced by the transition from the high-fidelity model to the BLNM-based surrogate model.
In particular, we consider a multivariate normal distribution centered in the BLNM predictions
zECG(t) for the given patient-specific observations zclinical(t), which reads:

zclinical(t) ∼ N
(
zECG(t), σ

2
measI+ k(t̃, t̃

′
;σGP, lGP)

)
. (9)

σmeas = 0.1 is the a priori fixed standard deviation dictating the measurement error [15, 69], whereas

k(t̃, t̃
′
;σGP, lGP) = σ2

GP exp
(

−||t̃−t̃
′
||2

2l2
GP

)
is the exponentiated quadratic kernel of a zero-mean Gaus-

sian process GP(0, k(t̃, t̃
′
;σGP, lGP)) [46]. Amplitude σGP ∼ N (0.01, 1.0) and correlation length

lGP ∼ N (0.01, 1.0) are additional hyperpriors tuned during HMC to quantify the surrogate model-

ing error, which may change according to the specific observation. Vectors t̃ and t̃
′
represent discrete

time points in the [0, 1] interval.
A full covariance matrix in the multivariate normal distribution allows us to model the correlation

among different leads. We evaluate convergence of the HMC chains by checking that the Gelman-
Rubin diagnostic provides a value less than 1.1 for all the model parameters θ̃EP, lGP and σGP [6,
17, 65].
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3.7 Software and hardware

All electrophysiology simulations are performed at the Stanford Research Computing Center using
svFSIplus [70], a C++ high-performance computing multiphysics and multiscale finite element
solver for cardiac and cardiovascular modeling. This solver is part of the SimVascular software suite
for patient-specific cardiovascular modeling [64].

We train the NNs by using BLNM.jl [22, 45], Julia library for scientific machine learning which
is publicly available under MIT License at https://github.com/StanfordCBCL/BLNM.jl. This
library leverages Hyperopt.jl [3] for parallel hyperparameter optimization by combining the Mes-
sage Passing Interface (MPI) with Open Multi-Processing (OpenMP) on physical and virtual cores,
respectively.

We perform sensitivity analysis and parameter estimation with uncertainty quantification using
GlobalSensitivity.jl [11] and Turing.jl [16], respectively, which both exploit OpenMP and
vectorized operations to speed-up computations. The code for sensitivity analysis and Bayesian
parameter estimation is available within BLNM.jl as a test case.

Furthermore, this public repository contains the dataset encompassing all the electrophysiology
simulations used for the training and testing phases, along with the patient-specific 12-lead ECGs.

4 Discussion

We present a complete computational pipeline to build digital twins of cardiac electrophysiology for
congenital heart disease in pediatrics. This cohort of patients is understudied in cardiology [32, 62],
as multiphysics and multiscale numerical simulations are mostly focused on adults with certain sets
of pathologies, such as dilated, ischemic and hypertrophic cardiomyopathy, arrhythmias or bundle
branch block [36, 38, 52, 58].

In this pipeline, we leverage biophysically detailed and anatomically accurate computational elec-
trophysiology models, a recently proposed scientific machine learning tool for surrogate modeling,
and robust Bayesian inference methods for personalized calibration of model parameters to match
clinical 12-lead ECGs of an HLHS pediatric patient. We certify the impact and reliability of our
estimation against clinical recordings by integrating fast and effective sensitivity analysis and uncer-
tainty quantification. We run electrophysiology simulations with the estimated model parameters in
order to investigate different scenarios of clinical interest in silico. We conclude that this pediatric
patient presents activation and repolarization patterns similar to a left bundle branch block, where
the interventricular dyssynchrony and the geometrical personalization of the Purkinje network play
a minor role with respect to conductances and conductivities, even for QRS complex calibration.

Image processing allows us to get all the anatomy-specific features of this pediatric patient and
our calibration of cell-to-organ level model parameters enables patient-specific electrophysiology
simulations. Nevertheless, given the non-convexity of the optimization problem, it is important to
stress that the final set of model parameters might not be unique and there could be other choices
that lead to similar approximation errors against clinical recordings. Indeed, we notice that changing
random seeds or trying different optimizers, such as second-order local BFGS or even global Adaptive
Differential Evolution [68], may have an influence on the initial parameter estimation. These options
are available within the BLNM.jl library. However, these effects are accounted for and mitigated by
averaging many different trials and by running uncertainty quantification.

Performing ad-hoc sensitivity analysis for a specific parameter calibration provides individual-
ized information, as these assessments may change on a patient to patient basis. Furthermore, we
underline that sensitivity and practical identifiability (or trustworthiness) of model parameters are
generally correlated. For instance, the maximum rapid delayed rectifier current conductance GKr
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and the level of interventricular dyssynchrony tstimLV have the lowest relative impact on this 12-lead
ECGs personalization (see Figure 4) and present the highest degree of uncertainty, that is a wider
posterior distribution, among all physics-based model parameters (see Figure 5).

While the computational pipeline encompasses several rigorous steps, the physics-based model
still requires high-performance computing and longer computational times compared to other ap-
proaches for digital twinning on adults [19, 20], which rely on more phenomenologically-based models
but do not include robust methods for sensitivity analysis and uncertainty quantification. However,
the monodomain equation, coupled with the ten Tusscher-Panfilov ionic model, provides an accurate
mathematical model, where relevant model parameters with a direct physiological interpretation can
be properly tuned. Moreover, its higher computational costs could be mitigated in future work by
novel numerical methods in the framework of matrix-free [1] and Isogeometric Analysis [7].

A limitation of the presented approach lies in the lack of experimental validation of the parame-
ter calibration process. Indeed, mathematical modeling of congenital heart disease requires several
assumptions due to the current lack of information in pediatric populations regarding fiber orien-
tation, Purkinje structure, ionic current conductances, and conduction velocities. Future studies
should incorporate these data as they become available. Nevertheless, our estimations are robust,
account for uncertainty quantification and are widely contained within the range explored by the
electrophysiology simulations (see Table 1 and 3, along with Figure 5).

In future developments, we aim to encode anatomical variability and different CHDs, such as
Tetralogy of Fallot, transposition of great arteries or atrial and ventricular septal defects within
BLNMs. In this manner, the computationally expensive offline phase dictated by accurate numerical
simulations and the training of the NN can be performed only once before being applied to new
patients. Robust parameter estimation and uncertainty quantification will be then feasible for those
CHDs within minutes, compatible with the time frame required by the clinical practice.
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