

Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening

Rohan Chandraghatgi ¹, Hai-Feng Ji ^{2,*}, Gail L. Rosen ^{3,*}, Bahrad A. Sokhansanj ^{3,*}

¹Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA 19104 ²Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA 19104 ³Department of Electrical and Computing Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA 19104

*Correspondence: hj56@drexel.edu, glr26@drexel.edu, bahrad@molhealtheng.com

ABSTRACT

Recent advancements in computational methods provide the promise of dramatically accelerating drug discovery. While mathematical modeling and machine learning have become vital in predicting drug-target interactions and properties, there is untapped potential in computational drug discovery due to the vast and complex chemical space. This paper advances a novel computational fragment-based drug discovery (FBDD) method called Fragments from Ligands Drug Discovery (FDSL-DD), which aims to streamline drug design by applying a two-stage optimization process informed by machine learning and evolutionary principles. In this approach, *in silico* screening identifies ligands from a vast library, which are then fragmentized while attaching specific attributes based on predicted binding affinity and interaction with the target sub-domain. This process both shrinks the search space and focuses on promising regions within it. The first optimization stage assembles these fragments into larger compounds using evolutionary strategies, and the second stage iteratively refines resulting compounds for enhanced bioactivity. The methodology is validated across three diverse protein targets involved in human solid cancers, bacterial antimicrobial resistance, and SARS-CoV-2 viral entry, demonstrating the approach's broad applicability. Using the proposed FDSL-DD and two-stage optimization approach yields high-affinity ligand candidates more efficiently than other state-of-the-art computational methods. Furthermore, a multiobjective optimization is presented that accounts for druglikeness while still producing potential candidate ligands with high binding affinity. In conclusion, the results demonstrate that integrating detailed chemical information with a constrained search framework can markedly optimize the initial drug discovery process, offering a more precise and efficient route to developing new therapeutics.

INTRODUCTION

Advances in computational methodologies have revolutionized drug discovery. Mathematical modeling and machine learning techniques have emerged as vital tools to predict drug-target interactions and drug properties.^{14,30,57,65,68,71,76} However, computation has yet to be employed to its full potential in the drug discovery process. One key area for innovation is computational drug discovery.^{34,66,84} As the low-hanging fruit for novel drugs has been harvested, it is increasingly difficult to find promising lead compounds.^{18,19,32} The now-conventional approach to drug design relies on high-throughput screening of large compound libraries, which is often time consuming and resource intensive.^{50,51,59,79} Computational drug discovery has the potential to leverage the power of *in silico* screening by using machine learning and optimization techniques to predict the bioactivity of potential compounds and, thereby, accelerate drug discovery.

Recently, "fragment-based drug discovery" (or "design") (FBDD) has emerged as a potentially promising approach.^{10,22,37,40,63,64} Unlike other drug design strategies (i.e., structure-based drug discovery, SBDD, or ligand-based drug discovery, LBDD), which usually involve designing or testing full-sized drug molecules, works by identifying smaller chemical fragments that bind effectively to target biomolecules. These small fragments serve as building blocks, which can be grown, linked, or merged to create new drug molecules. FBDD offers a flexible and efficient way to explore the vast potential space of drug-like molecules. However, despite the potential advantages of FBDD, a significant challenge remains: the scale of the chemical space to be explored. Given the enormous diversity of possible chemical fragments and the ways they can be combined, the number of potential drug candidates is effectively infinite. This massive combinatorial problem can become a stumbling block, slowing down the drug discovery process and making

35 it difficult to identify promising candidates. This paper proposes a solution to this challenge, centered around computational gener-
36 ation of potential drug molecules.

37 Computational *de novo* drug design involves the use of techniques such as genetic algorithms^{3,39,47,53,72}, reinforcement learning,
38 including deep reinforcement learning^{56,60,62,73,85}, generative deep learning models^{5,6,9,35,41,43,54}, or other deep learning meth-
39 ods, e.g., graph transformers^{46,70}, models that blend deep learning and evolutionary algorithms^{1,26,53}, and string-based transform-
40 ers (i.e. operating on a SMILES string representation of molecules)^{27,33}. The algorithms “computationally synthesize” novel drug
41 molecules, either by starting from scratch and adding atoms to form a novel molecule or modifying or adding atoms on an existing
42 chemical structure (“scaffold”). The result is the creation of novel molecules by a) simulating chemical modifications that optimize
43 for the single objective of improving binding efficiency to a target or b) multiobjective optimization including druglikeness objec-
44 tives, e.g., solubility and other drug-likeness factors.^{11,17,24,25,38,42,47,52,83}

45 In computational FBDD, various *in silico* computational techniques are utilized to construct fragment libraries for Fragment-Based
46 Drug Discovery (FBDD). The conventional approach to computational FBDD involves either computationally fragmentizing a com-
47 pound (ligand) library or self-generating fragments using computational techniques, followed by computationally docking target
48 fragments to a protein binding pocket and computationally “growing” or synthesizing a candidate ligand by modifying the frag-
49 ment within that pocket.⁷ Methods like FastGrow emphasize identifying fragment growth points rather than the specifics of frag-
50 ment expansion, often comparing to other structural docking tools⁵⁸. In the realm of docking, ultra-large scale docking techniques,
51 such as those by Lyu et al., identify potential molecules based on docking scores, with a breadth possibly surpassing human intu-
52 ition⁴⁹. On a similar note, Allen et al. present iterative fragment growth relying on docking scores, yet distinctively using prescreen-
53 ing information to navigate their search⁴. The advent of “deep evolutionary learning” for FBDD introduced the employment of a
54 latent space grounded in SMILES, as seen in methods like FragVAE, which incorporates evolutionary operators and data augmenta-
55 tion in the process²⁶. Subsequent techniques, such as Podda et al.’s encoder-decoder generative model, also employ the SMILES
56 structure to produce fragments⁶¹. More advanced strategies integrate graph-based and evolutionary operators on a molecule’s
57 latent representation, focusing on multi-objective optimization⁵². While some approaches start from a template and deploy gen-
58 erative methods for modification based on Structure-Activity Relationship (SAR)⁸², others like Cortes-Cabrera et al. use a fragment
59 approach, progressively constructing a molecule and utilizing the ligand efficiency index (LEI) for guidance¹². A notable method in-
60 troduced by Kerstjens et al. applies new genetic operators to fragment- and graph-based evolutionary designs, emphasizing atom
61 compatibility rules³⁶. Many of these methods, including those that utilize reaction rules or grow rules, emphasize the growth of
62 fragments within 3D binding pockets, a feature that resembles this research’s approach⁴⁸. Advanced techniques, such as those by
63 Tang et al., combine Deep Reinforcement Learning with chemistry to sculpt fragment libraries⁷⁴. In the wake of these innovations,
64 researchers are also capitalizing on SMILES using transformers to decorate scaffolds, iterating on their multi-objective techniques as
65 seen in the advancements from Liu et al.^{45,46}.

66 Despite the sophistication of current algorithms, the vastness of the exploration space and the plethora of potential optima remain
67 daunting challenges. Leveraging either heuristic (evolutionary) approaches or learning techniques, these methods aim to identify
68 superior optima. However, given the expansive nature of the chemical space, any strategy will fail to be a universally optimal so-
69 lution to all possible problems and chemical configurations.⁸¹ In addition to the limits on heuristic optimization methods, deep
70 learning methods are limited because training typically probes only a minute subspace of the chemical structure landscape. The
71 pivotal question that emerges is: Can we harness problem-specific chemical information to effectively curtail the massively com-
72 plex search space of potential chemical structures?

73 To reduce the combinatorial search space and achieve more targeted drug designs, we leverage a pipeline for computational FBDD
74 recently developed by our group called Fragments from Ligands Drug Discovery (FDSL-DD).⁸⁰ The FDSL pipeline involves an initial
75 *in silico* screening step of a large ligand database against a protein target, utilizing computational docking software, e.g., Autodock
76 VINA. The ligands are then computationally fragmentized, and the fragments are assigned information (i.e., fragment attributes)
77 based on the predicted binding affinity (docking score) and amino acids that are predicted to interact with atoms in the compu-
78 tational fragment. The information output from the FDSL pipeline can then be used to resynthesize the fragments in novel com-

79 binations and generate synthetic ligands which could form the basis for potential candidate lead compounds. The FDSL approach
80 thereby contrasts with conventional computational FDBB, which, even when based on predetermined ligand libraries, do not retain
81 information about protein-ligand binding based on initial virtual library screening. For that reason, FDSL constrains the optimiza-
82 tion space to identify the best possible trajectories for fragment growth and virtual compound synthesis, and thus can more readily
83 identify promising lead designs.

84 Here, we expand our FDSL framework introduced in Wilson et al.⁸⁰ to develop a novel computational drug design methodology
85 that employs two stages of optimization based on applying the fragments as well as the associated fragment attributes derived
86 from ligand prescreening. The two optimization stages proceed as follows: 1) Evolutionary optimization uses principles of natural
87 selection and genetic variation in a computational method for strategically guiding the assembly of synthetic fragments to gener-
88 ate larger compounds. 2) Iterative optimization refines the resulting compounds by adding small fragments to improve bioactiv-
89 ity. At both stages, the fragment information obtained from the FDSL pipeline narrows down the vast chemical space by imposing
90 constraints that limit the search to areas with higher potential for success. Using fragment attributes will both reduce the combina-
91 torial size of the search space and focus the search for ligands on potentially more favorable parts of the space. The resulting com-
92 putational drug design process not only becomes more efficient, but also more likely to yield compounds with high binding affini-
93 ties and desirable drug-like properties.

94 In this paper, we demonstrate the two-staged computational drug design methodology on three distinct protein targets found in
95 different kinds of organisms, i.e., human, bacterial, and viral, and which are in turn implicated in very different kinds of diseases and
96 contexts: 1) Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2), a transport protein that can induce leukocyte polariza-
97 tion, sustaining chronic inflammation and ultimately supporting solid cancer tumorigenesis;²³ TIPE2 inhibition would provide a
98 therapeutic option for solid tumor cancers. 2) Bacterial protein relA, which plays a role in detecting amino acid starvation, activat-
99 ing a stringent response in bacteria that leads to persister cell formation. Persister cells can withstand upwards of 1000 times the
100 antibiotic concentrations of their normal cell counterparts; accordingly, inhibiting RelA can allow antibiotics to eradicate bacteria
101 in biofilms.³¹ 3) the receptor binding domain (RBD) of the S1 subunit of the spike protein (S-protein) of severe acute respiratory
102 syndrome coronavirus 2 (SARS-CoV-2) and the SARS-CoV-2 spike protein receptor binding domain (RBD), which binds to human
103 angiotensin-converting enzyme (ACE-2), thereby facilitating viral entry and representing potential target for antiviral therapeutics
104 for COVID-19.⁷⁷

105 The computational studies herein demonstrate the potential of the methods to significantly enhance the efficiency and effective-
106 ness of computational drug design. First, we assess the utility of information about fragments obtained through the initial virtual
107 screening step in FDSL by showing that FDSL with two-stage optimization results can computationally generate candidate ligands
108 that have high predicting binding affinity, with substantially improved performance as compared to not using virtual screening
109 step (i.e., the “naive” approach of conventional computational FBDD). Second, we compare computational ligands generated by
110 FDSL and two-stage optimization to those generated by highly cited and well-documented conventional FBDD methods: 1) Au-
111 toGrow,^{20,72} which utilizes genetic algorithms, like the first stage optimization of our method; and 2) DeepFrag,^{28,29} which utilizes
112 deep learning to optimize computational fragment selection and growth based on characteristics of the protein binding pocket,
113 which contrasts to the use of virtual ligand screening based on specific protein targets in our approach. The source code for the op-
114 timization methods described in this paper has been made publicly available at https://github.com/EESI/FDSL_Evo.

115 METHODS

116 Ligand Prescreening and Fragmentation Pipeline

117 The computational drug design procedure begins with prescreening of a ligand library with protein targets. Fig. 1 shows a schematic
118 of the prescreening workflow. The workflow is detailed in previous work, and described in brief here.⁸⁰ The results presented in this
119 paper used Autodock VINA for prescreening. The crystal structures of the protein files; TIPE2 (PDB ID: TIPE2), RelA (PDB ID: 5IQR),
120 and S-protein (PDB ID: 6M0J); were retrieved from the RCSB Protein Data Bank. The structures were pre-processed by removing
121 waters, co-crystallized proteins, and co-crystallized atoms. Protein structures were prepared in AutoDockTools-1.5.6⁶⁷, including

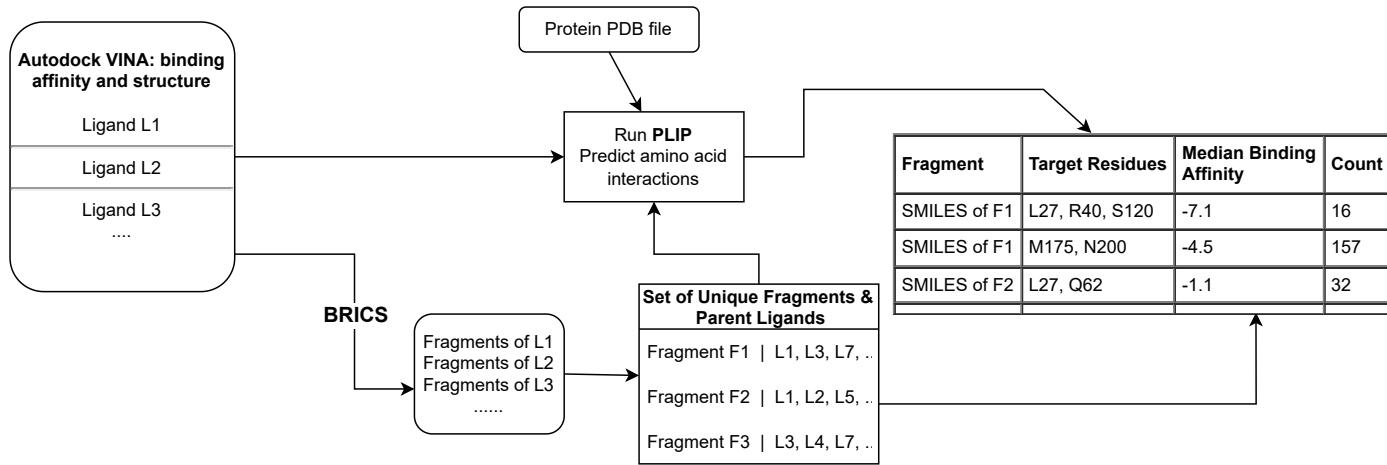


Figure 1: Processing of prescreened ligands begins with the output from prescreening a library of ligands with Autodock VINA, selecting the minimum binding affinity structure. PLIP (Protein-Ligand Interaction Profiler) predicts the binding residues based on the docked ligand-protein complex using a rules-based heuristic algorithm. The ligands are computationally fragmented using the BRICS algorithm. The output from this workflow is a table fragments, identified by their SMILES representation, associated with the binding pocket residues identified by PLIP, as well as the median binding affinity of the parent ligands and the frequency in which the combination is found in the prescreened library. Notably, a fragment will appear multiple times if it is found to bind to different residues (i.e., binding pocket subdomains) in the context of different prescreened ligands.

122 addition of polar hydrogens and calculation of Gasteiger charges. Ligands from an Enamine Ltd. "drug-like" library consisting of
 123 around 250,000 molecules were retrieved and optimized using OpenBabel⁵⁵, generating 3D structures, adding charges and mini-
 124 mizing with the MMFF94 force field.
 125 High throughput molecular docking calculations of mass libraries were performed using AutoDock Vina 1.1.2²¹ on Drexel University
 126 Research Computing Facility's Picotte high performance computing cluster of Intel Xeon Platinum 8268 CPUs. As required
 127 for Autodock VINA, grid boxes for ligand docking were generated for each protein targeting known binding sites. The grid box for
 128 RelA is centered at x = 297.894, y = 163.593, and z = 219.301 with dimensions of 25.000 Å. For the S-protein the box of dimensions
 129 22.000 Å × 42.000 Å × 22.000 Å were centered at x = -27.878, y = 25.205, and z = 5.514. TIPE2 has a particularly large binding cavity; therefore, 4 grid boxes were generated to span the pocket entrance, thereby occluding the cavity. Consequently, docking with TIPE2 generated 4 times the output, as every ligand was docked in each quadrant grid box. All grid box quadrants are of 12.000 Å dimensions with quadrant 1 centered at x = 60.677, y = 5.646, and z = 17.000; quadrant 2 centered at x = 62.636, y = 11.365, and z = 19.959; quadrant 3 centered at x = 68.067, y = 10.738, and z = 18.594; and quadrant 4 centered at x = 67.024, y = 5.362, and z = 17.113.
 135 As shown in Fig. 1, Autodock VINA outputs a PBDQT-formatted file with multiple binding solutions, each with a predicted protein-ligand binding affinity. The lowest binding affinity bound ligand structure is extracted and associated with its binding affinity value.
 136 The docked ligand structure is PBDQT-format file is input to the Protein Ligand Interaction Profiler (PLIP).² PLIP performs a rule-based prediction of interactions between ligand atoms and protein amino acids, including the bond type and atom-residue pairs.
 137 The ligand is also broken into fragments using BRICS,¹⁵ an algorithm designed to break bonds in a chemically realistic manner.
 138 The fragmentation algorithm is implemented in Python 3.8 using the RDKit open source chemoinformatics software package,
 139 available at <http://www.rdkit.org>. The fragments are then associated with their "parent" ligands (the ligands that were fragmented). Many fragments will have multiple parent ligands, i.e., they will have appeared as the fragments of multiple ligands. The location of the fragment in the binding pocket is then identified for each parent ligand by finding the maximum common substructure (MCS) between the fragment and ligand.⁷⁵ Each distinct fragment-subregion combination is then stored, with the fragment stored in a SMILES format⁷⁸ along with the median binding affinity, the protein residues with bonds identified by PLIP, and the frequency it is found in the prescreened ligand population (i.e., "Count" in Fig. 1).

147 **Genetic Algorithm (Phase 1 of Fragment Synthesis)**

148 The genetic algorithm requires the target receptor's PDB (Protein Data Bank) file, an Autodock VINA configuration file (as described
149 in the previous subsection for ligand prescreening), and the output of the fragmentation and analysis pipeline described in the pre-
150 ceding subsection, as shown in Fig. 1. The resulting table is sorted based on the binding affinity to the receptor without considering
151 target residues (i.e. the overall median binding affinity for each fragment). In the current version of the code, BRICS fragments are
152 required, although some modification can make it compatible with any fragmentation protocol.

153 **Genetic Algorithm Overview**

154 An individual is defined as a collection of fragments used to generate a ligand. Each fragment within this collection is a gene and
155 is represented by its unique index within the source table of library fragments. A rank weighting is calculated and assigned for each
156 index within the source (parent) ligands. These are calculated by the index of the fragments within the input table, and a rank weight-
157 ing function is described below:

158
$$\text{Weight(index)} = \frac{n-\text{index}}{n(n+1)} \times 200$$

159 where n is the length of the table (number of fragments). The weight index provides larger fractional weights to higher ranked frag-
160 ments towards the top of the list, which are expected to produce ligands of a lower binding affinity because they were generated
161 from ligands with lower binding affinity. These ranked weights are used to define a categorical distribution using the `random.choices()`
162 function, which is used to select indexes when new fragments are being incorporated.

163 Fig. 2 shows an overview of the genetic algorithm procedure. To start, a random selection of fragments is chosen to seed the first
164 generation. Hydrogens are added to unfilled valences (see Clean Valences block in Fig. 2), and they are run through Autodock VINA
165 to evaluate them (see Autodock Vina block in Fig. 2). In addition, QED scores can be optionally calculated to determine drug like-
166 ness, and a combined QED and VINA score can be used for evaluating candidate ligands in the population instead of VINA score
167 alone in the procedures described below.

168 The next generation is determined based off three operators: mutation, crossing over, and elitism. To start, the population is sorted
169 by VINA score (the Sort Population by VINA Score block in Fig. 2), and the top 5/8th of the population are chosen to be ran through
170 the mutation operator (the Mutation block in Fig. 2). These ligands, whether mutated or not, are added to the next generation.
171 Next, a tournament selection takes place (the Tournament block in Fig. 2), where each individual is compared against two other
172 randomly chosen individuals, and the individual with the lowest binding affinity is chosen to be a parent used in the crossing over
173 operator. Two unique individuals who won a tournament are run through the operator at a time, and the operator returns two chil-
174 dren, which will both be included in the next generation. The crossing over operator accounts for 1/4th of the following generation.
175 The last 1/8th of the next generation is developed using elitism, where the individuals with the lowest binding affinity in the parent
176 population are added without alteration.

177 The children to be used in the next generation are next screened to determine whether they have hit their max molecular weight
178 of 500 g/mol. If not, or the number of fragment ends (unfilled valences) are an odd number, an additional fragment selected based
179 off the rank weighting function described above is added to the ligand (the Add Fragment to Constituent Fragment List block in
180 Fig. 2). If the maximum weight has been reached or the number of fragment ends are even, the ligands remain unaltered and are
181 added to the fragment constituent list and progress to the Clean Ligands phase of the cycle.

182 To ensure that every fragment included in an individual is incorporated into the resultant ligand, each ligand is ran through a clean-
183 ing function (the Clean Ligands of Accessory Fragments block in Fig. 2) to ensure there are enough fragments ends to accommo-
184 date all fragments. The `BRICS.BUILD` module in RDKit, which is used to generate each ligand from its constituent fragments, will not
185 accommodate a fragment if there is not an end for it to bind to. Therefore, fragments which exceed the number of ends available to
186 attach fragments are pruned, to avoid including it as a gene in future generations when it did not contribute to the evaluated struc-
187 ture. After running through the cleaning function, the `BRICS.BUILD` module generates ligands from the fragments (see BRICS.Build
188 Generates Ligands from Fragments block in Fig. 2), and the children replace the parents as the new population. Then, the next gen-
189 eration begins.

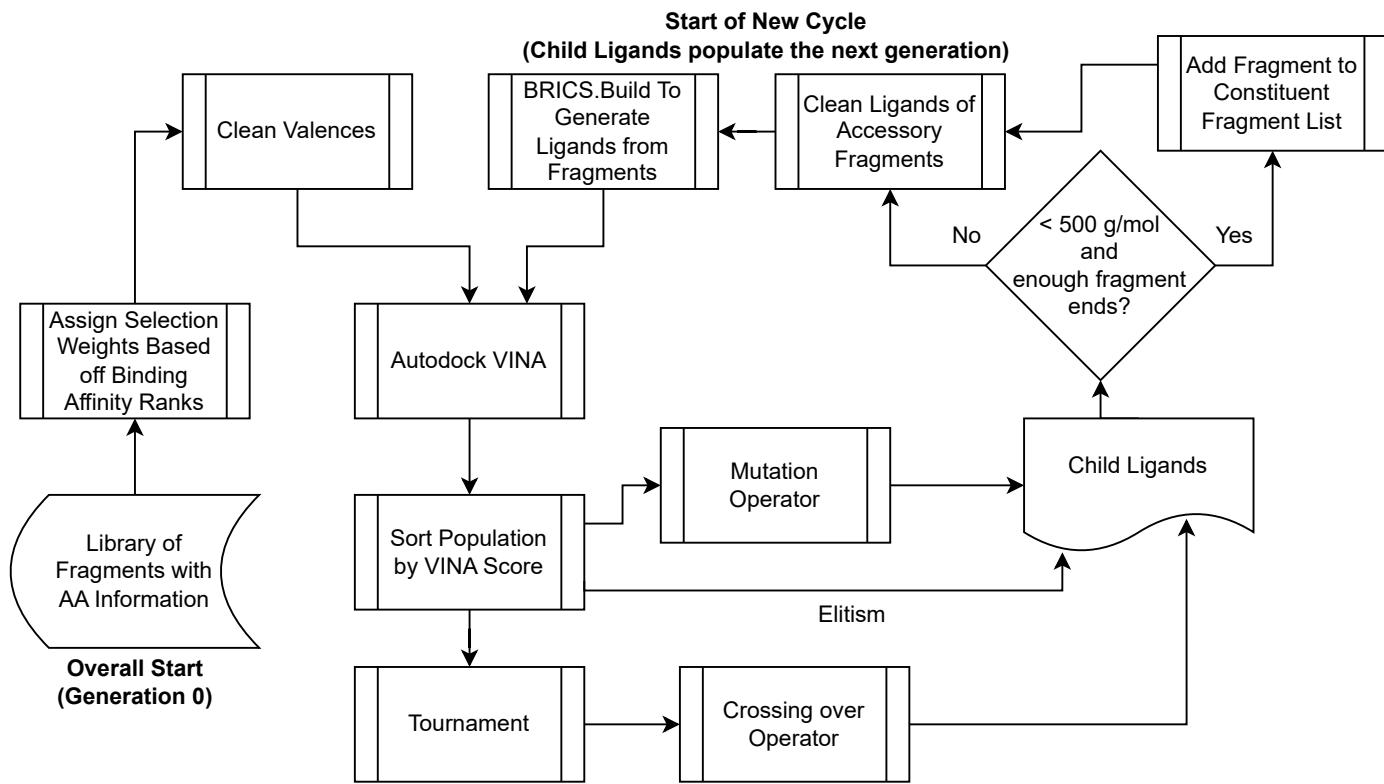


Figure 2: In the first phase of ligand optimization, a genetic algorithm is used to create ligands from the fragments produced by the prescreening and fragmentation pipeline shown in Fig. 1. Fragments are represented like genes and assigned a weighted rank to determine selection probability. Initially, fragments are randomly chosen and evaluated using Autodock VINA (see "Autodock Vina" block) and optionally analyzed for drug likeness via QED scores. Subsequent ligand generations are crafted using mutation ("Mutation" block), crossover, and elitism strategies, abiding by specific molecular weight and fragment use rules. The ligands are further cleaned to ensure all fragments are utilized in the resultant ligand ("Clean Ligands" block) and constructed into new generations using the BRICS.BUILD module in RDKit ("BRICS.Build Generates Ligands" block).

190 Algorithm Components

191 **Mutation Operator:** Based off the mutation rate supplied by the user, each fragment has a chance of mutating. In the event of
192 a mutation, another fragment is substituted for the existing fragment, which is selected based off the categorical distribution cal-
193 culated at the beginning using the `random.choices()` function. The ligands, whether mutated or not, are incorporated into the next
194 generation.

195 **Crossing Over Operator:** The crossing over operator requires two parents to be inputted as well as a user-supplied crossing over
196 rate. If a crossing over occurs, then a random index is selected between both individuals, and the fragments (indexes) between both
197 individuals are swapped after that point. For instance, assume an instance where two individuals with four corresponding frag-
198 ments each are selected as parents:

199 Parent 1: [314, 132, 4813, 192] Parent 2: [102, 8512, 591, 5123]

200 The indexes correspond to fragments in the original source CSV. If a crossing over event occurs, a random index is chosen as the in-
201 dex to perform the switch. Suppose the index 2 is selected. The following child ligands will be generated:

202 Child 1: [314, 132, 591, 5123] Child 2: [102, 8512, 4831, 192]

203 These individuals will be incorporated into the next generation.

204 **Generating Ligands from Fragments** The Build function from the BRICS package of RDKIT is used to generate ligands. The func-
205 tion is setup to only output complete SMILES, negating the need to manually add hydrogens to unfilled valences.

206 **Iterative Fragment Addition (Phase 2 of Fragment Synthesis)**

207 The second stage of optimization is iterative fragment addition, which is effectively a hill-climbing algorithm for maximizing the
208 drug design objective. In this study, we considered both binding affinity alone, as predicted by AutoDock VINA, as well as binding
209 affinity in combination with the Quantitative Effectiveness of Druglikeness (QED) score. The QED score was developed by Bickerton
210 et al.⁸ as an improvement over rules, such as Lipinski's Rule of Five⁴⁴, which combine different thresholds and properties of ligands
211 that tend to be associated with successful drugs. The QED score is calculated by a formula based on a weighted sum of "desirabil-
212 ity functions," i.e., molecular properties associated with desirability for a particular class of drugs. In this paper, we use the default
213 definition of QED from Bickerton et al., i.e., including molecular weight (MW), octanol-water partition coefficient (ALOGP)²⁴, num-
214 ber of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), molecular polar surface area (PSA), number of
215 rotatable bonds (ROTB), the number of aromatic rings (AROM) and number of structural alerts (ALERTS).⁸ The QED score is com-
216 puted using RDKit's `qed()` module (<https://www.rdkit.org/docs/source/rdkit.Chem.QED.html>). The algorithm proceeds the same in
217 either the QED + binding affinity or affinity-only, except that for QED + binding affinity, the optimization criterion is a sum of the two
218 scores.

219 The iterative fragment addition methodology requires a list of premade starter ligands and a dataset including fragments asso-
220 ciated with amino acids of the target protein. The list of premade starter ligands is the output of the genetic algorithm, while the
221 dataset of ligands and associated amino acids is the output of the initial prescreening and fragmentation pipeline. Before running
222 the fragment addition, the fragment dataset is converted to a dictionary, where each amino acid is a key with at maximum 100 as-
223 sociated fragments based on the mean binding affinity of parent ligands.

224 Fig. 3 shows an overview of the iterative fragment addition stage. At the start of each iteration, each ligand in the population is eval-
225 uated using Autodock VINA, using the same grid box and seeding as described above for the ligand prescreening stage. Next, the
226 first model in the PDB output file of Autodock VINA is merged with the receptor protein PDB file. This step is in preparation for eval-
227 uation of the space using the Protein-Ligand Interaction Profiler (PLIP). Before running PLIP, each ligand in the population is com-
228 pared against its predecessor to determine if the fragment addition was successful at decreasing binding affinity. If the binding
229 affinity decreased, then the ligand is ready for another attempt at addition. If binding affinity increased, then the addition was un-
230 successful at decreasing binding affinity, and the predecessor replaces the current ligand before the addition of a new fragment.

231 Next, all the merged ligand-protein PDB files with molecular weights less than 700 g/mol are ran through PLIP. Ligands with molec-
232 ular weights greater than 700 g/mol are deemed too large for addition, as larger ligands take increasingly longer to evaluate using
233 VINA and tend to make for worse drug targets. (Notably, this paper shows results for molecular weights based on lower thresholds
234 as well.) PLIP outputs an XML file containing information about relevant amino acids in the binding pocket of the protein. It also
235 includes distances of the ligand to each of these amino acids. These distances are compared against distances between ligand car-
236 bons and protein carbons in the merged ligand-protein PDB, and the closest ligand carbon to an amino acid is selected as the tar-
237 get region to add a fragment.

238 After the target carbon is identified, the ligand and fragment are merged into one MOL object. A bond is formed between the tar-
239 get carbon in the ligand and the atom bound to a dummy atom (indicating a fragment end). All dummy atoms in the fragment are
240 converted to hydrogens to fill the valence of the ligand. The new molecule is embedded into a 3D structure and MMFF94-optimized.
241 In the event RDKit is unable to optimize the newly generated ligand, the next best target carbon is selected, and another fragment
242 addition is attempted. This is repeated multiple times until an optimizable ligand is generated, or the number of iteration attempts
243 reaches ten. If the iteration counter limit is reached, the loop ends, and the SMILES of every ligand and associated VINA and QED
244 score is written to a CSV file. If the iteration counter limit is not reached, the new ligands are evaluated using Autodock VINA and the
245 cycle repeats.

246 Occasionally, RDKit will be embed and optimize the combined ligand and fragment MOL object but will be unable to embed and
247 optimize the SMILES generated from the MOL object. For this reason, a filter is included every generation that tests to make sure
248 that each ligand can be converted from its SMILES to an optimized 3D ligand. SMILES which cannot be converted will not be in-
249 cluded in the final CSV file. This prevents including invalid ligands in the final output which cannot be converted to 3D MOL objects.

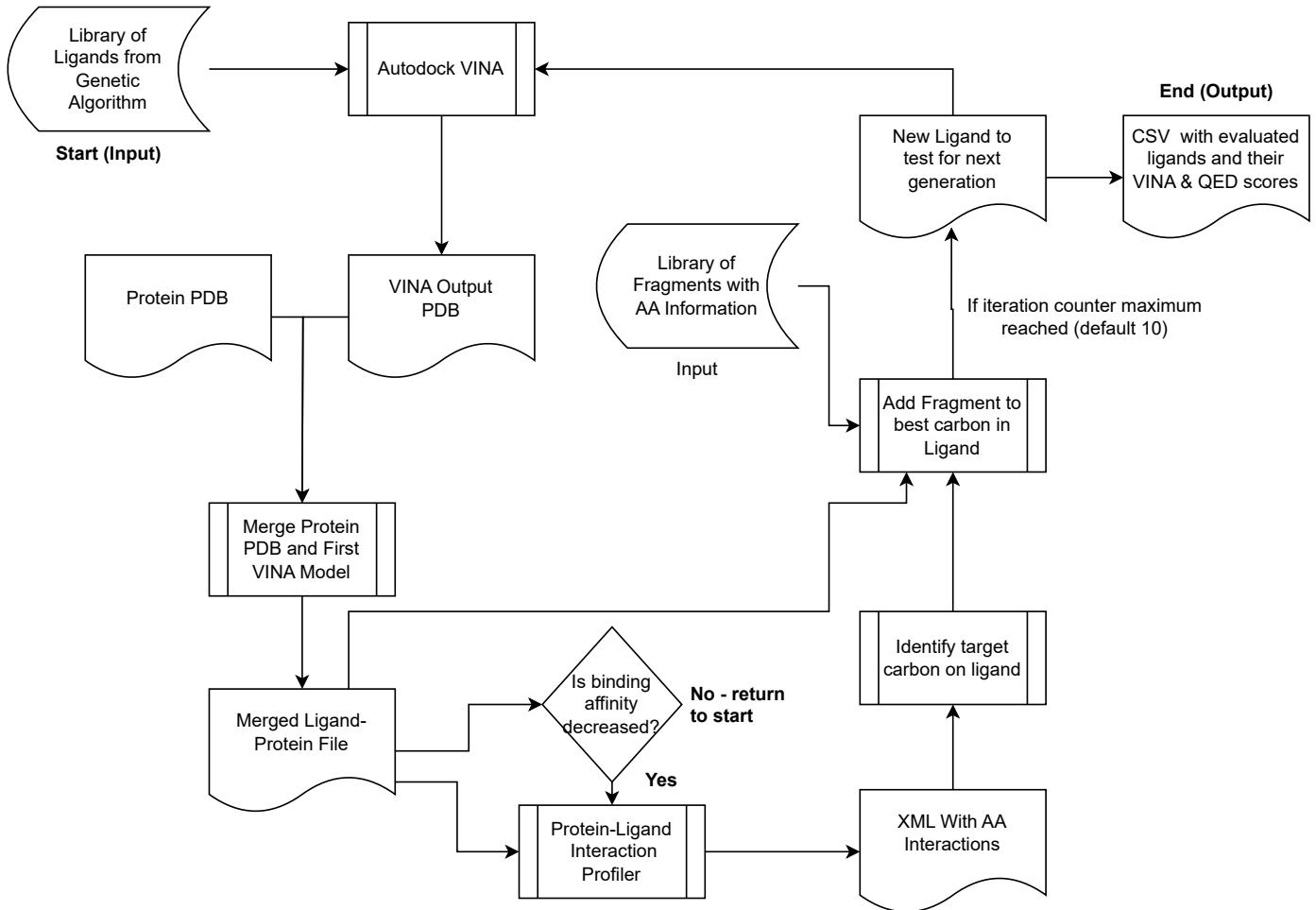


Figure 3: The iterative fragment addition stage, shown schematically here, can begin with any kind of starting ligand but in our method begins with candidate ligands synthesized through the previous genetic algorithm-based ligand synthesis phase (see Fig. 2) and fragments obtained from the initial ligand prescreening and fragmentation phase (see Fig. 1). The optimization objective of this phase is the binding affinity score predicted by AutoDock VINA, alone or in a sum with the Quantitative Effectiveness of Druglikeness (QED) score, which evaluates beneficial molecular properties beneficial for drug design. The methodology begins with premade starter ligands and an amino acid-associated fragment dataset. Through successive iterations, each ligand is evaluated and possibly merged with a protein PDB file for further assessment by the Protein-Ligand Interaction Profiler (PLIP). Fragments are strategically added to target regions of the ligand, ensuring optimal binding affinity and maintaining molecular weights under 700 g/mol to ensure viable drug targets. This process cyclically refines ligand structures, using tools like RDKit for optimization and 3D structuring, continuing to a prescribed iteration limit or until an optimizable ligand is generated.

250 RESULTS

251 Assessing Performance of Genetic and Iterative Optimization Ligand Designs Based on prescreening Information

252 To determine the effect of fragment quality on the iterative algorithm results, four pools of fragments are created to be fed into the
253 iterative algorithm for each protein target. Each pool is collected from the same prescreening dataset sourced from the fragmentation
254 pipeline illustrated in Fig. 1. The Worst Pool (WP) runs use the worst 1000 fragments by ligand binding affinity. The Large Pool
255 (LP) runs use all fragments, regardless of binding affinity. The Unprioritized (U) and Prioritized (P) runs use the same dataset of frag-
256 ments, where up to 1000 of the best fragments per unique amino acid are included in the pool. The distinction between the two
257 runs is that the P runs pair fragments with interacting amino acids sourced from PLIP. This difference tests the effect of matching
258 fragments with associated amino acids rather than randomly assigning fragments. The WP, LP, and U runs all add random frag-
259 ments within the pool, while the P runs target fragments towards specific amino acids.

260 The histograms in Fig. 4 highlight the final run results for each protein target. The max ligand size producible by the algorithm is
261 700 g/mol. Percentile scores and top median pools are highlighted because they tend to be where leads are chosen from. The per-
262 centile scores describe how good the distribution of ligands is towards the top of the results, while the top median scores describe
263 how improved the very best ligands are.

264 The P and U plots are shifted left relative to LP and WP runs, indicating a bias towards producing ligands with better binding affin-
265 ties. For all protein targets, the median and mean VINA scores improve in order of WP, LP, U, and P. In addition, the 95th, 97th, and
266 99th percentile scores highlight a significant decrease in VINA scores at the top end of each dataset, with significant improvements
267 in VINA scores in the P and U runs relative to the LP and WP runs. However, the P and U runs tend to have percentile scores within
268 ± 0.01 kcal/mol of each other, indicating negligible differences in score between one another. The Top 50 to 10 Median scores for
269 RelA and Spike RBD show a similar pattern, where median scores improve from WP to LP to U/P. Interestingly, the ligands gen-
270 erated for the TIPE2 target did not show a similar trend in score, with LP, U, and P Top 50 to 10 median scores demonstrating no
271 clear trend between runs. The Top 10 Median LP run even outperformed the U and P runs at -14.21 kcal/mol compared to -14.04
272 kcal/mol and -13.98 kcal/mol respectively. Outlier ligands are often produced by chance. Addition of a fragment to a given carbon
273 may on rare occasions significantly improve binding affinity over targeted efforts to improve the overall distribution of ligands. There-
274 fore, ligands towards the top of the results do not follow the trend of improving binding affinities in the order of WP, LP, and U/P.

275 Although the Large Pool and Worst Pool runs have lower median binding affinities, they overall produce significantly more ligands
276 relative to the Prioritized and Unprioritized runs, as per the Counts column of each run in Table 1 for each of the protein targets. This
277 is expected as fragments towards the top of the fragment dataset tend to have larger molecular weights. Each addition in the U
278 and P runs increases the molecular weight higher than an addition in the WP and LP runs, which causes the U and P runs to reach the
279 max molecular weight of 700 g/mol more rapidly. This causes the U and P runs to produce fewer unique ligands than the LP and
280 WP runs.

281 Comparison of prescreening and Optimization Methodology with Other Genetic and Deep Learning Methods

282 In addition to the above experiments, trials of other ligand optimization packages are shown here to compare the effectiveness of
283 the described state-of-art genetic and iterative (machine learning) methodologies. One exemplary package that takes a genetic
284 approach is Autogrow4. Due to limitations in ligand pool size, for the trials shown here, Autogrow4 is fed a random sample of 1000
285 source ligands from the top 10000 ligands used by the fragmentation pipeline and was run 10 times. All default variables and pack-
286 ages were used, and the file conversion package selected is **obabel**. Each run is allowed to run for 30 generations, at which scores
287 between generations tend to plateau. The same receptors and search boxes used by the genetic and iterative code are supplied to
288 Autogrow4.

289 The histograms in Fig. 5 highlight significantly higher binding affinities for ligands generated by Autogrow4 relative to binding
290 affinities generated by the iterative methodology. This is further highlighted in the tables, which show significant improvements
291 in binding affinity in the percentile score columns and the top ligand median score columns. Interestingly, Autogrow4 appeared to
292 generate a better overall median score in the RelA trial. The best ligands produced by Autogrow4 in all 10 runs for each target pro-

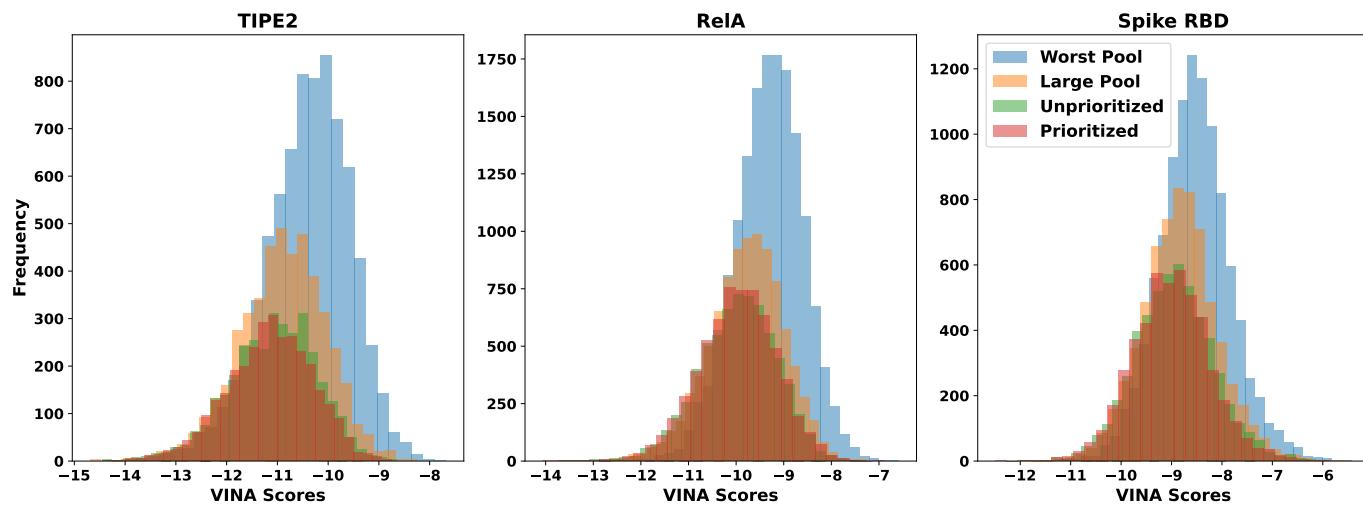


Figure 4: Histogram comparing fragment pool generation methodologies. The top three graphs include comprehensive results of each iterative run. The “Worst Pool” trial used the worst 1000 fragments by VINA score from the source fragment dataset. The “Large Pool” included all fragments. The “Unprioritized” and “Prioritized” trials used the same subset of fragments generated with priority of VINA score and top 1000 fragments associated with a given amino acid. Unprioritized trials use randomly assigned fragments in the pool to bind to the ligands, while Prioritized trials use sub-pools for each amino acid. For a given target amino acid, the Prioritized suggested a fragment known to have interacted with that amino acid in the past based off the PLIP screening.

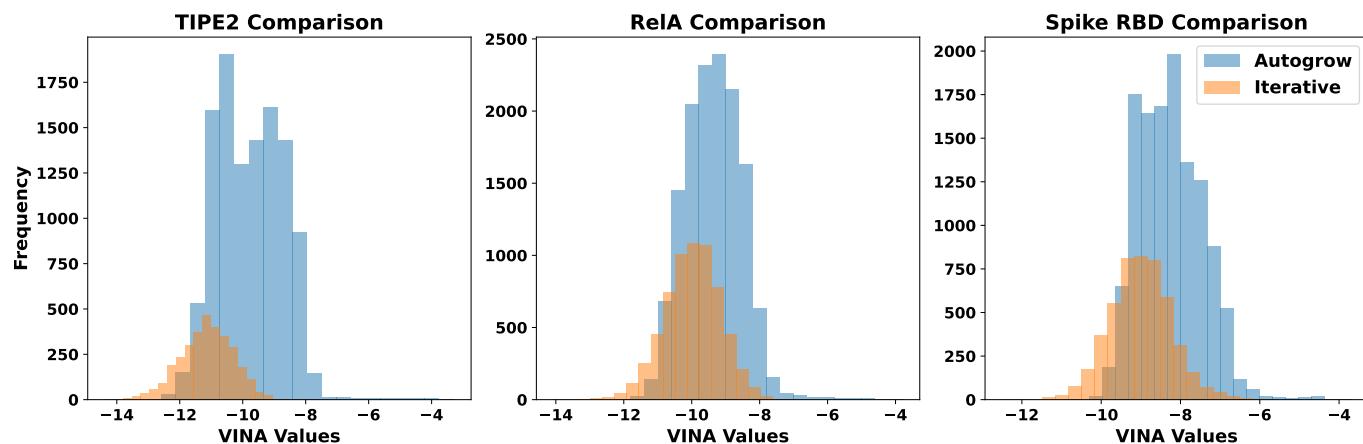


Figure 5: Comparison of Autogrow4 and Iterative generated ligands. The proposed method’s histogram data was selected from Prioritized run described in Section 1.

293 tein had VINA scores of -12.6, -11.8, and -10.3 kcal/mol for TIPE2, RelA, and Spike RBD respectively, while the best iterative ligands
 294 from the Prioritized runs were -14.37, -14.06, and -12.49 kcal/mol.

295 The second-stage iterative optimization of the proposed approach appears to produce significantly fewer ligands than Autogrow4,
 296 as indicated by the counts in Table 2. This is attributable to the iterative approach only being able to add fragments onto ligands,
 297 which means it will hit the molecular weight ceiling faster than an exclusively genetic approach like Autogrow4. Autogrow4 can
 298 mix and match substructures within a given population of molecules, allowing for more combinations and hence more unique lig-
 299 ands.

300 The proposed approach is also compared to DeepFrag, a deep learning approach which aims to predict the best fragment to add to
 301 a ligand within a binding pocket. The default fragments in the DeepFrag library are used in this comparison, and 10 runs are com-
 302 pleted for each target. To create a fair comparison, each iteration, the best ligand proposed by DeepFrag is used as the input ligand
 303 for the next iteration. 10 iterations are completed per run. The intermediate ligands produced by DeepFrag are combined into one
 304 dataset which is sorted by DeepFrag scoring function. Due to computational constraints, a sample of the best ten thousand ligands
 305 from this combined dataset are ran through Autodock VINA. A histogram comparison would be ineffective at comparing the en-
 306 tire population of ligands generated by the proposed methodology to a sample of the DeepFrag results, so a bar plot is used to to

Table 1: Iterative Run Statistics

(a) TIPE2 (in kcal/mol)				
Run	Worst Pool	Large Pool	Unprioritized	Prioritized
Median	-10.34	-10.86	-11.04	-11.12
Mean	-10.41	-10.91	-11.09	-11.15
Mode	-10.19	-10.59	-10.53	-11.3
Count	7480	4605	3318	3188
95th Percentile	-11.89	-12.37	-12.58	-12.59
97th Percentile	-12.18	-12.61	-12.85	-12.84
99th Percentile	-12.78	-13.22	-13.38	-13.33
Top 50 Median	-13.3	-13.43	-13.48	-13.46
Top 20 Median	-13.58	-13.82	-13.84	-13.78
Top 10 Median	-13.86	-14.2	-14.04	-13.98
Best Ligand	-14.45	-14.69	-14.46	-14.37

(b) RelA (in kcal/mol)				
Run	Worst Pool	Large Pool	Unprioritized	Prioritized
Median	-9.28	-9.75	-9.92	-9.94
Mean	-9.31	-9.79	-9.96	-9.97
Mode	-10.05	-10.11	-10.01	-10.19
Count	15328	9218	6710	6356
95th Percentile	-10.53	-11.13	-11.34	-11.33
97th Percentile	-10.72	-11.38	-11.54	-11.55
99th Percentile	-11.05	-11.83	-11.94	-12.02
Top 50 Median	-11.67	-12.26	-12.38	-12.45
Top 20 Median	-11.98	-12.5	-12.78	-12.84
Top 10 Median	-12.28	-12.72	-13.0	-13.2
Best Ligand	-12.74	-13.27	-13.74	-14.06

(c) Spike RBD (in kcal/mol)				
Run	Worst Pool	Large Pool	Unprioritized	Prioritized
Median	-8.54	-8.84	-8.95	-9.01
Mean	-8.53	-8.83	-8.95	-9.0
Mode	-8.525	-10.21	-10.08	-10.02
Count	10148	6629	5362	4845
95th Percentile	-9.66	-10.03	-10.19	-10.23
97th Percentile	-9.84	-10.21	-10.41	-10.41
99th Percentile	-10.17	-10.52	-10.74	-10.78
Top 50 Median	-10.59	-10.77	-10.98	-10.98
Top 20 Median	-10.81	-10.98	-11.3	-11.24
Top 10 Median	-11.0	-11.14	-11.48	-11.46
Best Ligand	-11.17	-11.97	-11.99	-12.49

307 represent the results in Fig. 6.

308 The trend in the bar plots in Fig. 6 show that DeepFrag appears to produce poor ligands for the target binding pockets. Even when
309 comparing best scores, DeepFrag produces significantly worse scores than the best scores of the proposed iterative methodol-
310 ogy, at -14.37, -14.06, and -12.49 kcal/mol for TIPE2, RelA, and Spike RBD respectively. Interestingly, the average scores tend to
311 trend down, indicating that DeepFrag may not be optimized to improve binding affinity generated by Autodock VINA. This may be
312 caused by DeepFrag being over-fitted to the training set used, limiting extension to other protein targets like the ones presented
313 in this study. Because the model is not tuned for the tested protein targets, the ligands generated drift into higher Autodock VINA
314 scores, indicating decreased (poorer) binding affinities.

315 **Evaluating Multi-Objective Optimization for Druglikeness and Binding Affinity Based on Prescreening Information**

316 To show that the proposed method can also account for druglikeness properties in addition to binding affinity, and still produce
317 viable candidate ligands, a straightforward modification can be made to render the optimization multiobjective. Specifically, in ad-
318 dition to evaluating binding affinity using Autodock VINA, the genetic and iterative algorithms contain an optional multi-objective
319 scoring function. The multi-objective scoring function considers QED score, a single metric generated from drug desirability func-
320 tions, in addition to VINA binding scores. This scoring function can be customized depending on a user's optimization interests. The

Table 2: AutoGrow4 Comparison (in kcal/mol)

Run	TIPE2		RelA		Spike RBD	
	Autogrow4	Prioritized	Autogrow4	Prioritized	Autogrow4	Prioritized
Median	-9.8	-11.12	-9.4	-9.94	-8.3	-9.01
Mean	-9.77	-11.15	-9.41	-9.97	-8.25	-9.0
Mode	-10.7	-11.3	-9.1	-10.19	-8.5	-10.02
Count	11142	3188	13760	6356	12215	4845
95th Percentile	-11.3	-12.59	-10.7	-11.33	-9.4	-10.23
97th Percentile	-11.5	-12.84	-10.8	-11.55	-9.5	-10.41
99th Percentile	-11.8	-13.33	-11.1	-12.02	-9.7	-10.78
Top 50 Median	-12.2	-13.46	-11.4	-12.45	-9.9	-10.98
Top 20 Median	-12.4	-13.78	-11.6	-12.84	-10.0	-11.24
Top 10 Median	-12.45	-13.98	-11.7	-13.2	-10.1	-11.46
Best Ligand	-12.6	-14.37	-11.8	-14.06	-10.3	-12.49

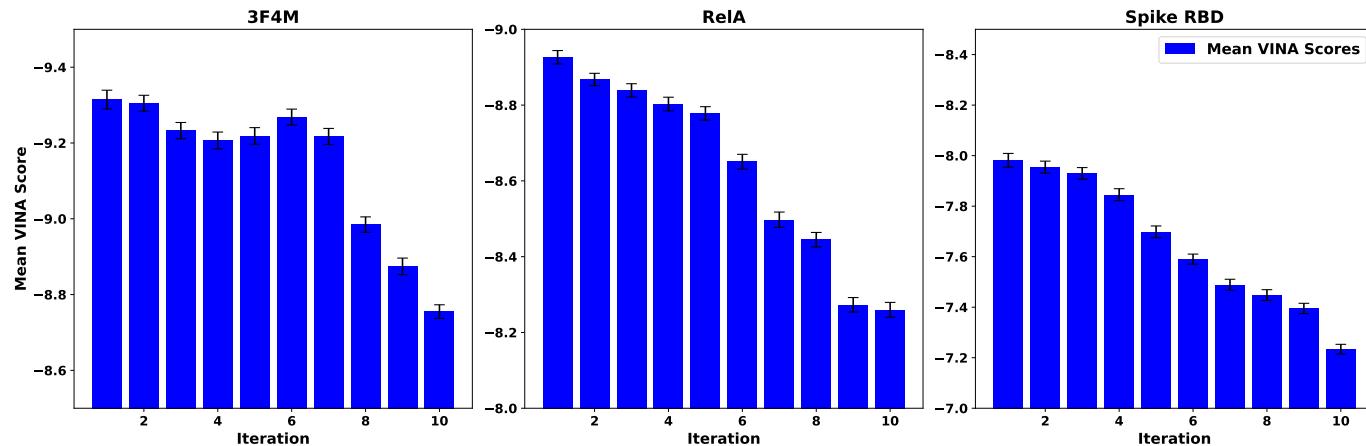


Figure 6: The mean VINA score of each iteration in the Deep Frag runs is plotted. The unbiased standard error of the mean is calculated for each iteration and displayed as error bars. Scores tend to increase per iteration of DeepFrag, indicating worsened binding affinities. The best VINA scores for each protein target are -12.17, -11.47, and -9.895 kcal/mol for TIPE2, RelA, and Spike RBD respectively. The graph is plotted such that the y-axis values decrease from bottom to top to show stronger binding affinities as higher values. Also, the y-axis range differs for each target to illustrate the similarity in trend between the targets differently for each target.

321 algorithm combines a ligand's VINA and QED z-scores into a single value, giving equal weightage to both. The z-scores are calcu-
 322 lated relative to the original ligand data set from which the fragments were sourced from. This methodology ensures that marginal
 323 gains in VINA performance do not significantly reduce drug likeness.
 324 The graphs in Fig. 7 compare the generated ligands using the multi-objective approach compared to a VINA prioritization approach.
 325 Both approaches are ran on the same set of starter ligands generated from the genetic algorithm, which is ran using the multi-
 326 objective evaluation function. Table 3 summarizes the statistics for each run for the respective protein targets.
 327 The plots in Fig. 7 demonstrate that the multi-objective runs produces similar VINA score distributions to the VINA prioritization
 328 runs. Although the multi-objective prioritization produces slightly worse percentile scores, it produced better Top 50, 20, and 10
 329 median scores during the TIPE2 runs and a better Top 10 median score during the Spike RBD run, as shown in Table 3). Fig. 8 indi-
 330 cates that the multi-objective function produces ligands with similar binding affinities to the VINA prioritization, while significantly
 331 improving QED scores, even at the top of the datasets where VINA scores tend to be improved but QED scores tend to be lower.
 332 Similar to the Large Pool and Worst Pool trials described above, the multi-objective runs produced far more ligands than the VINA
 333 prioritization runs, for example, as indicated by the counts in Table 3. However, both trials used the same fragment pools. The rea-
 334 son for this difference is that the multi-objective trials account for drug desirability, which tends to prefer smaller ligands. If a given
 335 iteration produces a marginal gain in VINA score but a large gain in molecular weight, the algorithm will backtrack as the multi-
 336 objective score will not have improved, even if the VINA score did. Therefore, more unique ligands are produced as each iteration
 337 needs to improve VINA score significantly enough to outweigh any decreases in QED score.

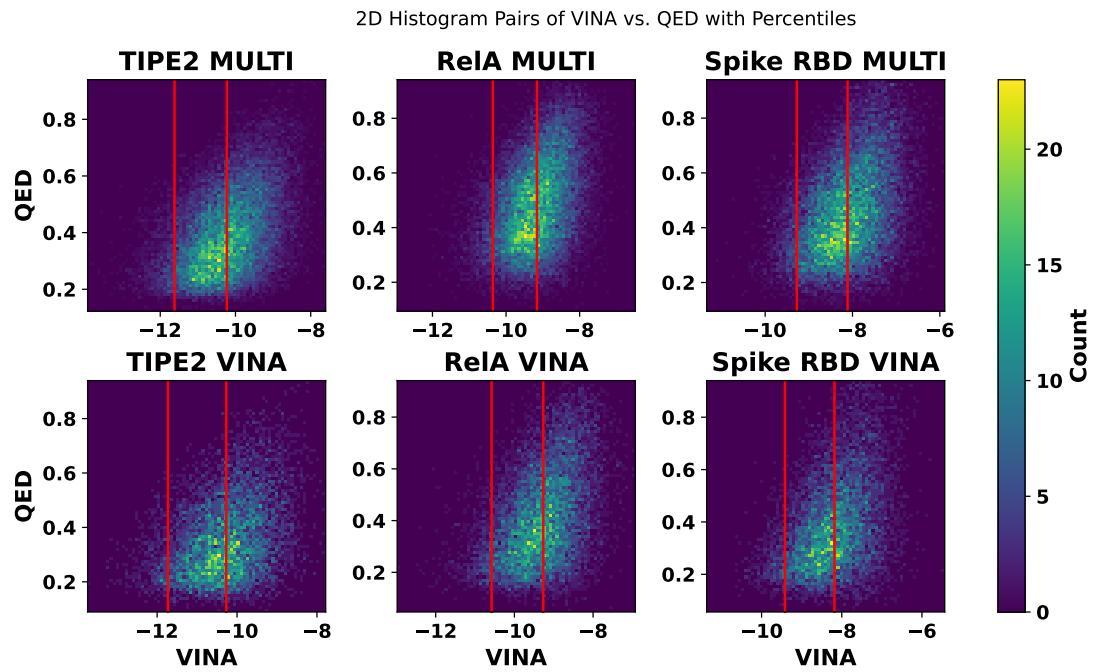


Figure 7: Histograms comparing multi-objective and VINA prioritizations over final VINA and QED scores using iterative approach. Lower VINA scores indicate improved binding affinity and higher QED scores indicate better drug-likeness. Red lines indicate 50th and 95th percentile scores, which are selected to segment regions of each dataset. Both iterative runs are ran on the same set of starting ligands from the genetic algorithm, which is ran with multi-objective prioritization. Starter ligands are selected based on best multi-objective score.

Table 3: Multiobjective Iterative Run Statistics (in kcal/mol)

Run	TIPE2		RelA		Spike RBD	
	MULTI	VINA	MULTI	VINA	MULTI	VINA
Median	-10.23	-10.27	-9.16	-9.27	-8.12	-8.18
Mean	-10.24	-10.29	-9.17	-9.3	-8.12	-8.19
Mode	-10.22	-10.19	-10.01	-10.07	-8.177	-8.398
Count	24748	7784	24083	11886	19440	9041
95th Percentile	-11.63	-11.73	-10.36	-10.58	-9.28	-9.42
97th Percentile	-11.83	-11.94	-10.55	-10.77	-9.43	-9.62
99th Percentile	-12.25	-12.31	-10.9	-11.17	-9.71	-9.91
Top 50 Median	-13.0	-12.73	-11.57	-11.73	-10.2	-10.28
Top 20 Median	-13.27	-12.99	-11.87	-12.03	-10.39	-10.42
Top 10 Median	-13.5	-13.16	-12.0	-12.29	-10.62	-10.56
Best Ligand	-13.93	-13.74	-12.96	-12.98	-11.34	-11.37

338 Identifying Structures for Potential Candidate Ligands

339 To illustrate the kinds of structures that are produced as a result of the proposed pipeline and optimization methods, three potential candidate ligands for each of the targets analyzed in this paper (TIPE2, RelA, and Spike RBD) are shown in Table 4. These ligands, for example, may be evaluated in future *in vitro* studies for binding affinity and druggability. The candidate structures shown here are selected from the results of both the default-objective and multi-objective functions described in previous sections. The criteria used to select potential exemplary candidates to display in Table 4 are (i) to minimize binding affinity as predicted by Autodock VINA (specifically targeting predicted affinities of less than -13 kcal/mol or as close as possible where targets were not found in that range), (ii) estimated solubility (ESOL) scores indicating moderate solubility or better calculated to be between -4 and -6 using the method described in ¹⁶, and (iii) molecular weights of less than 700 g/mol. Additional quantitative values for drug-likeness properties are predicted by SwissADME ¹³ and shown in Table 4.

348 DISCUSSION

349 As the results presented in this paper illustrate, the Fragments from Ligands Drug Discovery (FDSL) pipeline can significantly improve computational ligand design and optimization by prioritizing fragments based on the results of initial virtual screening. By

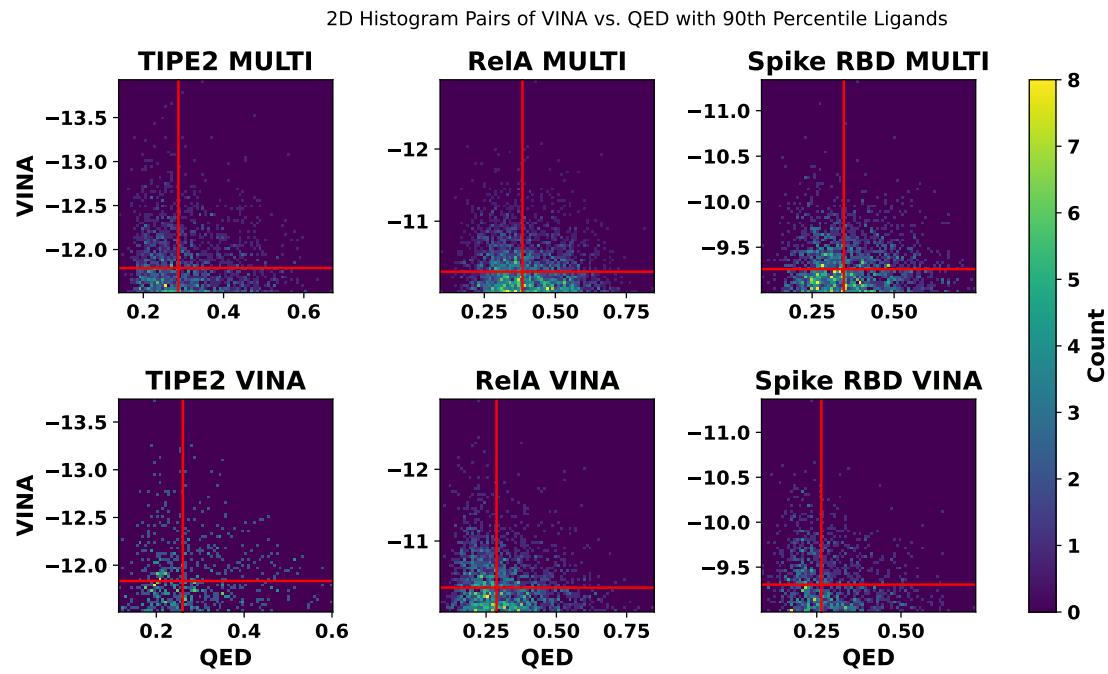


Figure 8: Focusing on the strongest ligand candidates obtained from optimization, the histograms shown here plot the 95th percentile ligands by VINA score with QED score for each of the protein targets. Horizontal line indicates 97.5th percentile VINA score. Vertical line indicates 50th percentile QED score of the 95th percentile ligands by VINA score.

351 prioritizing fragments with higher potentials for success, the FDSL pipeline not only increases the efficiency of the subsequent drug
352 design process but also it towards yielding compounds with optimal binding affinities and drug-like properties. Moreover, the FDSL
353 pipeline includes ligand-binding domain analysis, such that key carbons for binding are identified and prioritized during the itera-
354 tive step, thereby improving optimization as well.

355 Specifically, the results show that fine-tuned fragment pools, including fragments involving ligands with lower binding affinities,
356 produce larger shares of ligands with good binding affinities relative to pools without prioritization. Additionally, the similar perfor-
357 mance of the Prioritized trials (fragment pools associated by amino acid) and Unprioritized trials (Prioritized fragment pools without
358 amino acid association) hints at a minimal influence of specifying fragments to specific amino acids during the fragment addition
359 process. Outlier ligands with significant performance often emerge due to chance, which blurs the observable trends at the top tier
360 of each resulting dataset. This can be attributed to fragments within the Large Pool (pool with all fragments) and Worst Pool (pool
361 with worst 1000 fragments by binding affinity) that significantly improve binding affinity in contexts not apparent in the source lig-
362 and dataset. Furthermore, fragments included in the Prioritized and Unprioritized pools with higher associated binding affinities
363 tend to be heavier, hitting the maximum molecular weight of 700 g/mol in fewer iterations and thus producing fewer unique lig-
364 ands than the Large Pool and Worst Pool runs. This upper limit is selected to avoid limiting max ligand sizes to 500 g/mol according
365 to Lipinski's Rule of Fives, which is demonstrated to be outdated and may filter out potential solid leads⁶⁹. Raising the upper limit
366 beyond 700 g/mol may result in ligands displaying stronger binding affinities. These ligands would be better suited for the large
367 binding pockets of the target proteins under consideration. However, it is important to note that this limit is chosen to enhance
368 computational efficiency. Using larger ligands in Autodock VINA significantly increases the computational time required, which
369 may limit the number of unique ligands screened within a given timeframe.

370 The proposed method is tested on three distinct types of targets, each with its unique challenges. First, we tested protein targets
371 associated with solid cancer tumorigenesis, aiming for better cancer treatments. Our second design target relates to the issue of
372 antimicrobial resistance, a significant concern as rising resistance could render basic infections untreatable. Third, we applied the
373 proposed method to the spike protein Receptor Binding Domain (RBD) of COVID-19; inhibiting this domain might prevent the
374 virus from entering human cells, offering a potential therapeutic avenue. The robustness of this approach is further reinforced by its

375 capacity to handle the varied geometries, binding conditions, and chemical conditions presented by these targets. Navigating dif-
376 ferent geometries means understanding diverse target structures, while adapting to unique binding conditions and varying chemi-
377 cal environments showcases the method's versatility.

378 The methodology yields ligands with enhanced binding affinities when compared to other methods. This improvement may be
379 due to the capability of the genetic and iterative algorithms adapted for the FDSL pipeline in this paper to accommodate larger
380 source ligand datasets. In contrast, Autogrow4 and DeepFrag have limitations in terms of source ligand dataset size. The scalabil-
381 ity of the proposed methodology enables more extensive exploration and analysis of the chemical space within the binding pocket
382 prior to ligand generation. This, in turn, provides the genetic and iterative algorithms with a greater amount of information for con-
383 structing new ligands and fine-tuning them towards improved binding affinities.

384 Balancing optimal binding affinity with favorable drug-likeness properties is essential for successful lead identification in drug dis-
385 covery. The method as currently developed employs Quantitative Estimate of Druglikeness (QED) scores. The results demonstrate
386 that employing a multi-objective evaluation can produce candidate leads that can have superior druglikeness properties, such as
387 solubility, with strong binding affinity. In particular, multi-objective prioritization produces a more diverse pool of ligands compared
388 to VINA prioritization. The generated ligands demonstrate significant improvements in QED scores with minimal losses in bind-
389 ing affinity. Moreover, by prioritizing QED scores, modest improvements in binding affinity do not override significant decreases in
390 drug-likeness, resulting in ligands with *both* improved binding affinities and drug-likeness.

391 Notably, the leads in Table 4 have ESOL scores between -4 and -6, indicating moderate solubility.¹⁶ To prepare for *in vitro* stud-
392 ies, polar groups may be manually added to further improve solubility, though these changes may affect predicted binding affin-
393 ity. Other computational estimations of solubility, such as MLogP, can also be assessed to determine if log P scores are less than 5,
394 which is in agreement with Lipinski's rule of fives.⁴⁴

395 Although the Prioritized runs did not yield significant improvements in binding affinity relative to the Unprioritized runs, further
396 pool screening should be completed in future studies to determine if amino acid matching can yield stronger ligands. For instance,
397 matching fragment properties to amino acid properties instead of exclusively relying on PLIP analysis may yield more optimal fragment-
398 amino acid pairings, improving ligand binding affinity upon addition. Future studies may also consider adding other objectives for
399 optimization.

400 Finally, the proposed method relies on *computationally predicted* rather than actual experimental data on the initial ligand population—
401 while still providing useful information to guide the drug design and optimization process. Not only is the prescreening data gen-
402 erated *in silico*, thereby avoiding costs and complexity of *in vitro* screening, but the prescreening is also done using relatively low
403 computational-cost and scalable computer docking methods, as opposed to more costly and less scalable molecular dynamics
404 methods. Accordingly, the FDSL and optimization methods presented in this paper are highly scalable. To further scalability, the
405 code developed to implement both the genetic and iterative optimization stages herein is fully parallelized, and can be readily exe-
406 cuted across multiple processors in a computing environment as the ligand population and fragment pool increases.

407 ACKNOWLEDGMENTS

408 The work presented here is the result of code developed and run using high performance computing resources through Drexel's
409 University Research Computing Facility. This work was partially supported by the NSF REU supplement to grant #1919691, as well
410 as NSF grants #1936791, #1919691 and #2107108.

REFERENCES

- [1] S. Abouchekeir, A. Vu, M. Mukaidaisi, K. Grantham, A. Tchagang, and Y. Li. Adversarial deep evolutionary learning for drug design. *Bio Systems*, 222:104790, Dec. 2022.
- [2] M. F. Adasme, K. L. Linnemann, S. N. Bolz, F. Kaiser, S. Salentin, V. J. Haupt, and M. Schroeder. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. *Nucleic Acids Research*, 49(W1):W530–W534, July 2021.
- [3] S. Ahn, J. Kim, H. Lee, and J. Shin. Guiding Deep Molecular Optimization with Genetic Exploration. In *Advances in Neural Information Processing Systems*, volume 33, pages 12008–12021. Curran Associates, Inc., 2020.
- [4] W. J. Allen, B. C. Fochtman, T. E. Balius, and R. C. Rizzo. Customizable de novo Design Strategies for DOCK: Application to HIVgp41 and Other Therapeutic Targets. *Journal of computational chemistry*, 38(30):2641–2663, Nov. 2017.
- [5] J. Arús-Pous, A. Patronov, E. J. Bjerrum, C. Tyrchan, J.-L. Reymond, H. Chen, and O. Engkvist. SMILES-based deep generative scaffold decorator for de-novo drug design. *Journal of Cheminformatics*, 12(1):38, May 2020.

- [6] Y. Bian and X.-Q. Xie. Generative chemistry: Drug discovery with deep learning generative models. *Journal of Molecular Modeling*, 27(3):71, Feb. 2021.
- [7] Y. Bian and X.-Q. S. Xie. Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications. *The AAPS journal*, 20(3):59, Apr. 2018.
- [8] G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hopkins. Quantifying the chemical beauty of drugs. *Nature Chemistry*, 4(2):90–98, Jan. 2012.
- [9] T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath, and H. Chen. Application of generative autoencoder in de novo molecular design, Nov. 2017.
- [10] M. Bon, A. Bilsland, J. Bower, and K. McAulay. Fragment-based drug discovery—the importance of high-quality molecule libraries. *Molecular Oncology*, 16(21):3761–3777, Nov. 2022.
- [11] N. Brown, M. Fiscato, M. H. Segler, and A. C. Vaucher. GuacaMol: Benchmarking Models for de Novo Molecular Design. *Journal of Chemical Information and Modeling*, 59(3):1096–1108, Mar. 2019.
- [12] Á. Cortés-Cabrera, F. Gago, and A. Morreale. A computational fragment-based de novo design protocol guided by ligand efficiency indices (LEI). *Methods in Molecular Biology (Clifton, N.J.)*, 1289:89–100, 2015.
- [13] A. Daina, O. Michelin, and V. Zoete. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific Reports*, 7(1):42717, Mar. 2017.
- [14] L. R. de Souza Neto, J. T. Moreira-Filho, B. J. Neves, R. L. B. R. Maidana, A. C. R. Guimarães, N. Furnham, C. H. Andrade, and F. P. Silva. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. *Frontiers in Chemistry*, 8, 2020.
- [15] J. Degen, C. Wegscheid-Gerlach, A. Zaliani, and M. Rarey. On the art of compiling and using 'drug-like' chemical fragment spaces. *ChemMedChem*, 3(10):1503–1507, Oct. 2008.
- [16] J. S. Delaney. ESOL: Estimating aqueous solubility directly from molecular structure. *Journal of Chemical Information and Computer Sciences*, 44(3):1000–1005, 2004.
- [17] F. Dey and A. Caflisch. Fragment-Based de Novo Ligand Design by Multiobjective Evolutionary Optimization. *Journal of Chemical Information and Modeling*, 48(3):679–690, Mar. 2008.
- [18] B. C. Doak and J. Kihlberg. Drug discovery beyond the rule of 5 - Opportunities and challenges. *Expert Opinion on Drug Discovery*, 12(2):115–119, Feb. 2017.
- [19] H. Dowden and J. Munro. Trends in clinical success rates and therapeutic focus. *Nature Reviews Drug Discovery*, 18(7):495–496, May 2019.
- [20] J. D. Durrant, R. E. Amaro, and J. A. McCammon. AutoGrow: A Novel Algorithm for Protein Inhibitor Design. *Chemical Biology & Drug Design*, 73(2):168–178, 2009.
- [21] J. Eberhardt, D. Santos-Martins, A. F. Tillack, and S. Forli. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. *Journal of Chemical Information and Modeling*, 61(8):3891–3898, Aug. 2021.
- [22] D. A. Erlanson, S. W. Fesik, R. E. Hubbard, W. Jahnke, and H. Jhoti. Twenty years on: The impact of fragments on drug discovery. *Nature Reviews Drug Discovery*, 15(9):605–619, Sept. 2016.
- [23] S. A. Fayngerts, Z. Wang, A. Zamani, H. Sun, A. E. Boggs, T. P. Porturas, W. Xie, M. Lin, T. Cathopoulos, J. R. Goldsmith, A. Vourekas, and Y. H. Chen. Direction of leukocyte polarization and migration by the phosphoinositide-transfer protein TIPE2. *Nature Immunology*, 18(12):1353–1360, Dec. 2017.
- [24] N. C. Firth, B. Atrash, N. Brown, and J. Blagg. MOARF, an Integrated Workflow for Multiobjective Optimization: Implementation, Synthesis, and Biological Evaluation. *Journal of Chemical Information and Modeling*, 55(6):1169–1180, June 2015.
- [25] J. C. Fromer and C. W. Coley. Computer-aided multi-objective optimization in small molecule discovery. *Patterns*, 4(2), Feb. 2023.
- [26] K. Grantham, M. Mukaidaisi, H. K. Ooi, M. S. Ghaemi, A. Tchagang, and Y. Li. Deep Evolutionary Learning for Molecular Design. *IEEE Computational Intelligence Magazine*, 17(2):14–28, May 2022.
- [27] D. Grechishnikova. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. *Scientific Reports*, 11(1):321, Jan. 2021.
- [28] H. Green and J. D. Durrant. DeepFrag: An Open-Source Browser App for Deep-Learning Lead Optimization. *Journal of Chemical Information and Modeling*, 61(6):2523–2529, June 2021.
- [29] H. Green, D. R. Koes, and J. D. Durrant. DeepFrag: A deep convolutional neural network for fragment-based lead optimization. *Chemical Science*, 12(23):8036–8047, May 2021.
- [30] R. Gupta, D. Srivastava, M. Sahu, S. Tiwari, R. K. Ambasta, and P. Kumar. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. *Molecular Diversity*, 25(3):1315–1360, Aug. 2021.
- [31] L. Hall-Stoodley, L. Nistico, K. Sambanthamoorthy, B. Dice, D. Nguyen, W. J. Mershon, C. Johnson, F. Z. Hu, P. Stoodley, G. D. Ehrlich, and J. C. Post. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in *Streptococcus pneumoniae* clinical isolates. *BMC microbiology*, 8:173, Oct. 2008.
- [32] R. K. Harrison. Phase II and phase III failures: 2013–2015. *Nature Reviews Drug Discovery*, 15(12):817–818, Dec. 2016.
- [33] S. Honda, S. Shi, and H. R. Ueda. SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery, Nov. 2019.
- [34] C.-L. Hung and C.-C. Chen. Computational Approaches for Drug Discovery. *Drug Development Research*, 75(6):412–418, 2014.
- [35] S. A. Jacobs, T. Moon, K. McLoughlin, D. Jones, D. Hysom, D. H. Ahn, J. Gyllenhaal, P. Watson, F. C. Lightstone, J. E. Allen, I. Karlin, and B. Van Essen. Enabling rapid COVID-19 small molecule drug design through scalable deep learning of generative models. *The International Journal of High Performance Computing Applications*, 35(5):469–482, Sept. 2021.
- [36] A. Kerstjens and H. De Winter. LEADD: Lamarckian evolutionary algorithm for de novo drug design. *Journal of Cheminformatics*, 14(1):3, Jan. 2022.
- [37] P. Kirsch, A. M. Hartman, A. K. H. Hirsch, and M. Empting. Concepts and Core Principles of Fragment-Based Drug Design. *Molecules*, 24(23):4309, Nov. 2019.
- [38] A. Krueel, A. McNaughton, and N. Kumar. Scaffold-Based Multi-Objective Drug Candidate Optimization, Dec. 2022.
- [39] Y. Kwon and J. Lee. MolFinder: An evolutionary algorithm for the global optimization of molecular properties and the extensive exploration of chemical space using SMILES. *Journal of Cheminformatics*, 13(1):24, Mar. 2021.
- [40] Q. Li. Application of Fragment-Based Drug Discovery to Versatile Targets. *Frontiers in Molecular Biosciences*, 7:180, 2020.
- [41] Y. Li, J. Pei, and L. Lai. Structure-based de novo drug design using 3D deep generative models. *Chemical Science*, 12(41):13664–13675, 2021.

[42] Y. Li, L. Zhang, and Z. Liu. Multi-objective de novo drug design with conditional graph generative model. *Journal of Cheminformatics*, 10(1):33, July 2018.

[43] E. Lin, C.-H. Lin, and H.-Y. Lane. Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design. *Molecules*, 25(14):3250, Jan. 2020.

[44] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Advanced Drug Delivery Reviews*, 46(1-3):3-26, Mar. 2001.

[45] X. Liu, K. Ye, H. W. T. van Vlijmen, M. T. M. Emmerich, A. P. IJzerman, and G. J. P. van Westen. DrugEx v2: De novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology. *Journal of Cheminformatics*, 13(1):85, Nov. 2021.

[46] X. Liu, K. Ye, H. W. T. van Vlijmen, A. P. IJzerman, and G. J. P. van Westen. DrugEx v3: Scaffold-constrained drug design with graph transformer-based reinforcement learning. *Journal of Cheminformatics*, 15(1):24, Feb. 2023.

[47] Q. Long, C. Wu, X. Wang, L. Jiang, and J. Li. A Multiobjective Genetic Algorithm Based on a Discrete Selection Procedure. *Mathematical Problems in Engineering*, 2015:e349781, Sept. 2015.

[48] C. Lu, S. Liu, W. Shi, J. Yu, Z. Zhou, X. Zhang, X. Lu, F. Cai, N. Xia, and Y. Wang. Systemic evolutionary chemical space exploration for drug discovery. *Journal of Cheminformatics*, 14:19, Apr. 2022.

[49] J. Lyu, S. Wang, T. E. Balius, I. Singh, A. Levit, Y. S. Moroz, M. J. O'Meara, T. Che, E. Algaa, K. Tolmachova, A. A. Tolmachev, B. K. Shoichet, B. L. Roth, and J. J. Irwin. Ultra-large library docking for discovering new chemotypes. *Nature*, 566(7743):224-229, Feb. 2019.

[50] R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T. Garyantes, D. V. S. Green, R. P. Hertzberg, W. P. Janzen, J. W. Paslay, U. Schopfer, and G. S. Sittampalam. Impact of high-throughput screening in biomedical research. *Nature Reviews Drug Discovery*, 10(3):188-195, Mar. 2011.

[51] L. M. Mayr and D. Bojanic. Novel trends in high-throughput screening. *Current Opinion in Pharmacology*, 9(5):580-588, Oct. 2009.

[52] M. Mukaidaisi, A. Vu, K. Grantham, A. Tchagang, and Y. Li. Multi-Objective Drug Design Based on Graph-Fragment Molecular Representation and Deep Evolutionary Learning. *Frontiers in Pharmacology*, 13, 2022.

[53] A. Nigam, P. Friederich, M. Krenn, and A. Aspuru-Guzik. Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space, Jan. 2020.

[54] A. Nigam, R. Pollice, M. Krenn, G. d. P. Gomes, and A. Aspuru-Guzik. Beyond generative models: Superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES. *Chemical Science*, 12(20):7079-7090, May 2021.

[55] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison. Open Babel: An open chemical toolbox. *Journal of Cheminformatics*, 3:33, Oct. 2011.

[56] M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen. Molecular de-novo design through deep reinforcement learning. *Journal of Cheminformatics*, 9(1):48, Sept. 2017.

[57] S.-s. Ou-Yang, J.-y. Lu, X.-q. Kong, Z.-j. Liang, C. Luo, and H. Jiang. Computational drug discovery. *Acta Pharmacologica Sinica*, 33(9):1131-1140, Sept. 2012.

[58] P. Penner, V. Martiny, L. Bellmann, F. Flachsenberg, M. Gastreich, I. Theret, C. Meyer, and M. Rarey. FastGrow: On-the-fly growing and its application to DYRK1A. *Journal of Computer-Aided Molecular Design*, 36(9):639-651, Sept. 2022.

[59] D. A. Pereira and J. A. Williams. Origin and evolution of high throughput screening. *British Journal of Pharmacology*, 152(1):53-61, 2007.

[60] T. Pereira, M. Abbasi, B. Ribeiro, and J. P. Arrais. Diversity oriented Deep Reinforcement Learning for targeted molecule generation. *Journal of Cheminformatics*, 13(1):21, Mar. 2021.

[61] M. Podda, D. Bacciu, and A. Micheli. A Deep Generative Model for Fragment-Based Molecule Generation. In *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, pages 2240-2250. PMLR, June 2020.

[62] M. Popova, O. Isayev, and A. Tropsha. Deep reinforcement learning for de novo drug design. *Science Advances*, 4(7):eaap7885, July 2018.

[63] A. J. Price, S. Howard, and B. D. Cons. Fragment-based drug discovery and its application to challenging drug targets. *Essays in Biochemistry*, 61(5):475-484, Nov. 2017.

[64] D. C. Rees, Congreve, C. W. Murray, and R. Carr. Fragment-based lead discovery. *Nature Reviews Drug Discovery*, 3(8):660-672, Aug. 2004.

[65] S. Ryu and S. Lee. Accurate, reliable and interpretable solubility prediction of druglike molecules with attention pooling and Bayesian learning, Sept. 2022.

[66] A. V. Sadybekov and V. Katritch. Computational approaches streamlining drug discovery. *Nature*, 616(7958):673-685, Apr. 2023.

[67] M. F. Sanner. Python: A programming language for software integration and development. *Journal of Molecular Graphics & Modelling*, 17(1):57-61, Feb. 1999.

[68] B. Shaker, S. Ahmad, J. Lee, C. Jung, and D. Na. In silico methods and tools for drug discovery. *Computers in Biology and Medicine*, 137:104851, Oct. 2021.

[69] M. D. Shultz. Two Decades under the Influence of the Rule of Five and the Changing Properties of Approved Oral Drugs. *Journal of Medicinal Chemistry*, 62(4):1701-1714, Feb. 2019.

[70] M. Šicho, S. Luukkonen, H. W. van den Maagdenberg, L. Schoenmaker, O. J. M. Béquignon, and G. J. P. van Westen. DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space. *Journal of Chemical Information and Modeling*, 63(12):3629-3636, June 2023.

[71] G. Siwoski, S. Kothiwale, J. Meiler, and E. W. Lowe. Computational Methods in Drug Discovery. *Pharmacological Reviews*, 66(1):334-395, Jan. 2014.

[72] J. O. Spiegel and J. D. Durrant. AutoGrow4: An open-source genetic algorithm for de novo drug design and lead optimization. *Journal of Cheminformatics*, 12(1):25, Apr. 2020.

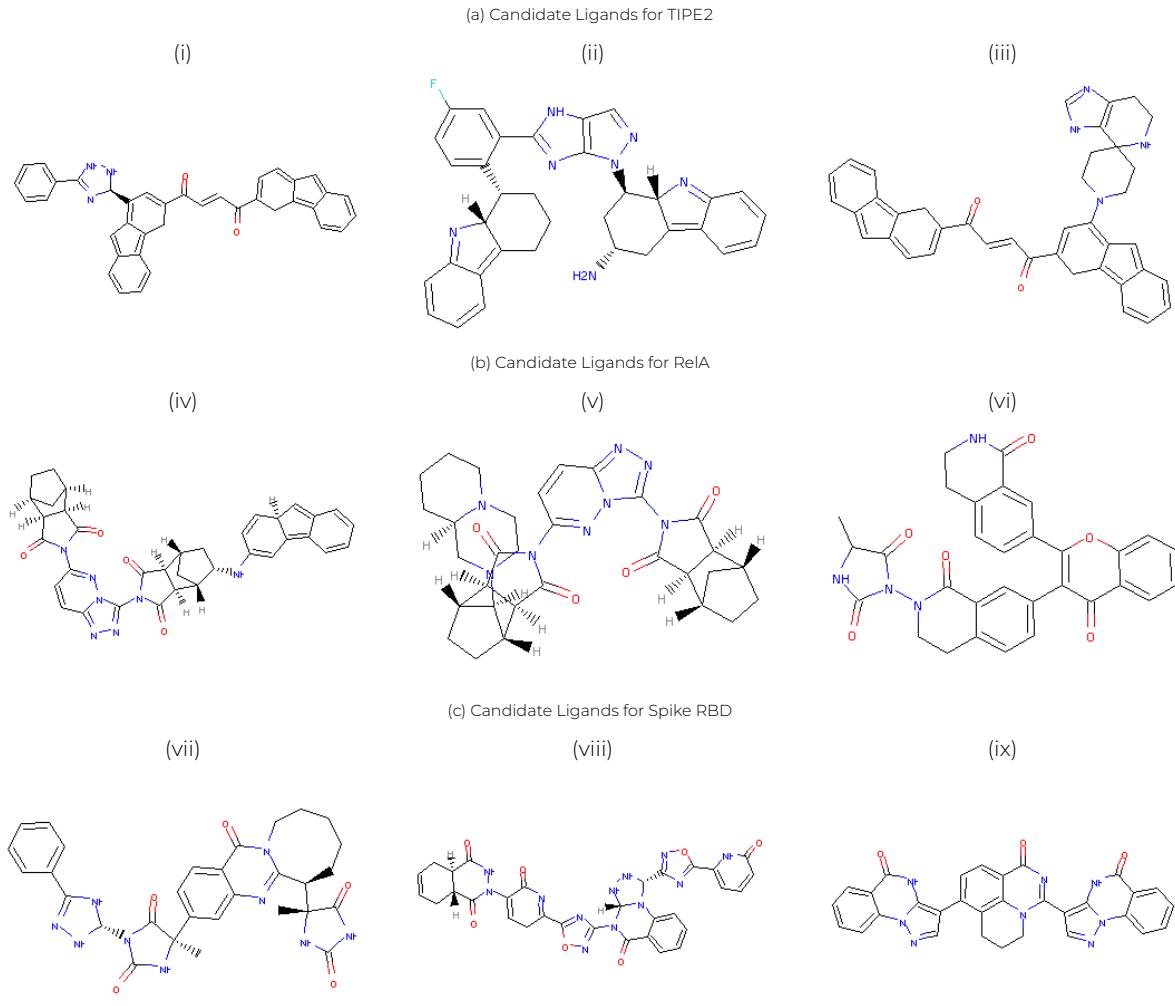
[73] N. Ståhl, G. Falkman, A. Karlsson, G. Mathiason, and J. Boström. Deep Reinforcement Learning for Multiparameter Optimization in de novo Drug Design. *Journal of Chemical Information and Modeling*, 59(7):3166-3176, July 2019.

[74] B. Tang, F. He, D. Liu, F. He, T. Wu, M. Fang, Z. Niu, Z. Wu, and D. Xu. AI-Aided Design of Novel Targeted Covalent Inhibitors against SARS-CoV-2. *Biomolecules*, 12(6):746, May 2022.

[75] G. W. Tang and R. B. Altman. Knowledge-based Fragment Binding Prediction. *PLoS Computational Biology*, 10(4):e1003589, Apr. 2014.

- [76] T. F. Vieira and S. F. Sousa. Comparing AutoDock and Vina in Ligand/Decoy Discrimination for Virtual Screening. *Applied Sciences*, 9(21):4538, Jan. 2019.
- [77] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and D. Veesler. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell*, 181(2):281–292.e6, Apr. 2020.
- [78] D. Weininger. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. *Journal of Chemical Information and Computer Sciences*, 28(1):31–36, Feb. 1988.
- [79] M. J. Wildey, A. Haunso, M. Tudor, M. Webb, and J. H. Connick. Chapter Five - High-Throughput Screening. In R. A. Goodnow, editor, *Annual Reports in Medicinal Chemistry*, volume 50 of *Platform Technologies in Drug Discovery and Validation*, pages 149–195. Academic Press, Jan. 2017.
- [80] J. Wilson, B. A. Sokhansanj, W. C. Chong, R. Chandraghatgi, G. L. Rosen, and H.-F. Ji. Fragment databases from screened ligands for drug discovery (FDSL-DD). *Journal of Molecular Graphics and Modelling*, page 108669, Nov. 2023.
- [81] D. Wolpert and W. Macready. No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1(1):67–82, Apr. 1997.
- [82] A. Yoshimori, F. Miljković, and J. Bajorath. Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling. *Molecules (Basel, Switzerland)*, 27(2):570, Jan. 2022.
- [83] T. Yoshizawa, S. Ishida, T. Sato, M. Ohta, T. Honma, and K. Terayama. Selective Inhibitor Design for Kinase Homologs Using Multi-objective Monte Carlo Tree Search. *Journal of Chemical Information and Modeling*, 62(22):5351–5360, Nov. 2022.
- [84] W. Yu and A. D. Mackerell. Computer-Aided Drug Design Methods. *Methods in molecular biology (Clifton, N.J.)*, 1520:85–106, 2017.
- [85] Z. Zhou, S. Kearnes, L. Li, R. N. Zare, and P. Riley. Optimization of Molecules via Deep Reinforcement Learning. *Scientific Reports*, 9:10752, July 2019.

Table 4: Molecular Structures of Potential Candidate Ligands Generated by the FDSL and Two-Stage Optimization Pipeline



	Binding Affinity (kcal/mol)	MW (g/mol)	ESOL	MLogP	TPSA (Å ²)	Log K _p (cm/s)	GI	BBB
(i)	-13.04	557.64	-5.82	5.28	70.56	-6.76	High	Yes
(ii)	-12.85	555.65	-5.81	4.07	97.24	-7.14	High	No
(iii)	-12.40	602.72	-5.77	3.42	78.09	-7.44	High	No
(iv)	-12.83	625.68	-5.60	4.59	129.87	-7.97	High	No
(v)	-12.29	584.67	-4.30	3.41	124.32	-8.87	High	No
(vi)	-12.18	548.55	-5.41	2.51	129.03	-7.42	High	No
(vii)	-11.40	597.62	-4.61	2.69	178.92	-8.75	Low	No
(viii)	-11.24	676.60	-4.47	0.43	237.15	-9.93	Low	No
(ix)	-11.12	552.54	-5.65	4.94	135.21	-7.55	Low	No