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ABSTRACT

Brain age has emerged as a powerful tool to understand neuroanatomical aging and its link to health
outcomes like cognition. However, most brain age models are trained and tested on cross-sectional data from
primarily Caucasian, adult participants. It is thus unclear how well these models generalize to non-Caucasian
participants, especially children. Furthermore, there is a lack of studies investigating the longitudinal change
in brain age gap and its relationship to cognition. Here, we tested a previously published deep learning model
on Singaporean elderly participants (55 — 88 years old) and children (4 — 11 years old). We found that the
model directly generalized to the elderly participants, but model finetuning was necessary for children. After
finetuning, we found that the longitudinal change in brain age gap was associated with future executive
function performance in both elderly participants and children. We further found that lateral ventricles and
frontal areas contributed to brain age prediction in elderly participants, while white matter and posterior
brain regions were more important in predicting brain age of children. Taken together, our results suggest
that there is potential for generalizing brain age models to diverse populations. Moreover, the longitudinal
change in brain age gap reflects developing and aging processes in the brain, relating to future cognitive
function.

1 INTRODUCTION

The human brain undergoes coordinated, multidimensional anatomical changes throughout the lifespan,
which can be measured noninvasively by magnetic resonance imaging (MRI) [1]. These anatomical changes
occur in parallel with age-related changes to other measurable phenotypes, such as cognition [2], [3]. Ab-
normal aging in late life and abnormal development in early life have both been implicated with increased
risk of neuropsychiatric disorders [4], [5]. Thus, efforts have been made to quantify the heterogenous effects
of aging/development on the brain through the concept of “brain age.” Brain age uses machine learning to
predict age from neuroimaging data. A higher brain age suggests more advanced aging/development relative
to one’s chronological age. This helps summarize complex patterns into a single number that preserves
individual variations [6].

Historically, most brain age studies first use specialized software to preprocess MRI data and extract
features such as gray matter volume, cortical thickness, or surface area. A machine learning model is then
trained to predict age from the extracted features. The model is typically trained using cognitively normal
participants, with chronological age acting as the ground truth. The model is then applied to new participants
to predict their brain age [7]-[10].

More recently, deep learning models have gained popularity over traditional machine learning models for
brain age prediction [11]-[16]. Unlike previous machine learning methods, deep learning models can learn
relevant features directly from the unprocessed (or minimally processed) MRI scan. This reduces the need
for specialized preprocessing to extract features, which is time-consuming, requires expert knowledge, and
involves laborious quality control. This also allows deep learning models to train on increasingly numerous
and heterogeneous data. Some of these pretrained models have been made publicly available and shown
impressive generalization performance on completely unseen test data [14], [15]. However, both training
and testing data still primarily consist of Caucasian participants, which could bias the models [17], [18].
Deep learning models can use finetuning (i.e. transfer learning) to help overcome this bias and achieve
good performance even in small datasets [16]. But to our knowledge, previous work has not examined the
performance, with and without finetuning, of a Caucasian-centric model on non-Caucasian children and
elderly participants, such as Asian children and elderly participants. This generalization is important to
establish as the prevalence of developmental disorders [19] and dementia [20] are on the rise in Asia.

In addition to being able to predict age, predictions made by the model should show utility in relating
to other phenotypes of interest [21]. The deviation from expected aging is often quantified as the brain age
gap (BAG; also referred to as brainPAD, brainAGE, etc.), which is calculated by subtracting chronological
age from brain age. The BAG has shown broad associations with brain disorders [9], risk of mortality [§],
and cognitive function [22], to name a few (see [23], [24] for recent reviews). However, there are relatively
few longitudinal studies in healthy participants. Previous work found associations with early life or cross-
sectional measures [22], [25]-]27], but there was only a weak link to future age-related cognitive decline, which
did not survive multiple comparison correction [22]. Notably, these studies only used brain age measured at
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Elderly

EDIS (N = 694)

SLABS (N = 215)

Children
GUSTO (N = 678)

Age (years)

69.91 + 6.46 (60 — 88)

68.17 & 6.77 (55 — 85)

5.85+1.68 (4.2—11.3)

Sex (M/F) 340/354 101/114 346/332
Ethnicity (C/M/I/O) 276/184/234/0 215/0/0/0 370/187/120/1%
Education (years) 6.18 £4.63 (0 — 22) 12.02 +3.45 (0 — 21) N/A
MMSE score 24.13+£3.59 (10 — 30) | 28.29 4+ 1.27 (26 — 30) N/A
Imaging follow up N/A 4.00 £ 3.33 (0 — 9.59) 3.49 £2.41 (0 — 6.69)
(years)
Cognition sample size N =694 N = 81 to 212 N = 217 to 239

Table 1: Participant characteristics at baseline. EDIS was cross-sectional, while SLABS and GUSTO were
longitudinal. Reported as mean + standard deviation (range). *: GUSTO ethnicities were based on the
mother. Key: M/F - Male/Female; C/M/I/O - Chinese/Malay/Indian/Other; MMSE — Mini-Mental State
Examination; EDIS — Epidemiology of Dementia in Singapore; SLABS — Singapore Longitudinal Aging Brain
Study; GUSTO - Growing Up in Singapore Towards healthy Outcomes

one time point. There is evidence that cross-sectional and longitudinal brain measures may reflect different
factors and predispositions of individuals [28], suggesting combining them could provide more predictive
power. However, to our knowledge, the additional utility of longitudinal changes in brain age has not been
tested in healthy participants.

Thus, in this work, we leverage a state-of-the-art deep learning brain age model trained on over 30,000
individuals across the lifespan [14] to test generalizability to Asian elderly participants and children. We
also finetune the model to explore how much predictions improve. We then examine the longitudinal util-
ity of brain age in associating with future cognition. Finally, we investigate model interpretability using
guided backpropagation. Our findings provide insight into the generalizability of brain age models and the
importance of longitudinal measurements.

2 RESULTS

Figure 1 shows the study design. For the brain age model, we used the publicly available Simple Fully
Convolutional Network (SFCN) pretrained on 34,285 T1 MRI scans from 21 non-overlapping datasets across
the lifespan [14]. This pretrained model (a.k.a. pyment) was found to have the highest accuracy and
test-retest reliability in a recent comparison of publicly available brain age models [29]. While featuring
an unusually large and heterogenous training set for brain age prediction, there was still a relative lack of
training data from very young and/or non-Caucasian participants.

Thus, to test generalizability to Asian elderly participants and children, we used three datasets from
Singapore: 1) the cross-sectional Epidemiology of Dementia in Singapore (EDIS) study [30]-[32], consisting
of 694 non-demented elderly (226 with no cognitive impairment (NCI) and 468 with cognitive impairment no
dementia (CIND)); 2) the longitudinal Singapore Longitudinal Aging Brain Study (SLABS) [33], consisting
of 215 healthy elderly participants; and 3) the longitudinal Growing Up in Singapore Towards healthy
Outcomes (GUSTO) study [34], consisting of 678 healthy children. These datasets are detailed in the
Methods (Section 5). Table 1 and Supplementary Table S1 summarize the participant demographic and
cognitive characteristics.

2.1 Brain age predictions

We first input minimally preprocessed T1 scans directly to the pretrained model (all baseline and follow-up
data). We also finetuned the model for our local datasets using 10-fold cross-validation (Figure 1A,B; Section
5.2). Figure 2 shows the brain age predictions for the pretrained and finetuned models on all datasets.
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Figure 1: Study design schematic. (A, B) T1 MRI scans were minimally preprocessed according to the
SFCN pipeline [14]. These were a) directly input into the pretrained brain age model, or b) split into
10 cross-validation folds to finetune the model. The finetuned model transferred the weights from the
pretrained model for initialization. All layers were then retrained. Age predictions were obtained on the test
folds. BAG was calculated by subtracting chronological age from predicted age. Model interpretability was
interrogated using guided backpropagation. (C) Cross-sectional and longitudinal association of BAG and
cognitive performance were tested using multiple linear regression models in both elderly and children. Time
intervals for BAG and cognition, based on data availability, are shown schematically. Annual rate of change
was calculated from a linear regression with time for each participant. All models included chronological age
and sex as covariates. ”: models for elderly also included years of education as a covariate; *: models with
(annual rate of) change in BAG also included baseline BAG as a covariate. Key: EDIS — Epidemiology
of Dementia in Singapore; SLABS — Singapore-Longitudinal Aging Brain Study; GUSTO - Growing Up in
Singapore Towards healthy Outcomes; BAG — brain age gap
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In EDIS and SLABS (elderly), the pretrained model performed well, as evidenced by the high correlation
(r = 0.7389 for EDIS and r = 0.8136 for SLABS) and low MAE (MAE = 3.9895 for EDIS and MAE
= 3.4668 for SLABS; Figure 2A, first two rows). After finetuning, correlations and MAEs slightly improved
(r = 0.7445 for EDIS and r = 0.8138 for SLABS; MAE = 3.3232 for EDIS and MAE = 3.2653 for SLABS;
Figure 2B, first two rows), but the predictions were generally similar to those made by the pretrained model
(correlation between finetuned and pretrained predictions = 0.9143 for EDIS and 0.9231 for SLABS).

In contrast, the pretrained model did not perform as well in GUSTO (children). The MAE was lower
than in elderly (MAE = 2.57), but the age range of GUSTO was also much smaller. Importantly, predictions
did not distinguish among younger ages, leading to a low correlation (r = 0.5426; Figure 2A, last row).
After finetuning, the correlation and MAE drastically improved (r = 0.9411; MAE = 0.6286; Figure 2B, last
row). The variance in predicted ages also increased as chronological age increased (Supplementary Figure
S1). Unlike EDIS and SLABS, the finetuned predictions were not similar to the pretrained predictions
(correlation = 0.5732).

2.2 Associations with cognition
2.2.1 Elderly

To validate the brain age model with a large and cognitively heterogeneous sample, we first tested cross-
sectional associations in EDIS (N = 694) using multiple linear regression models (Figure 1C). We included
chronological age, sex, and years of education as covariates. Higher baseline BAG was broadly associated with
lower baseline cognitive performance (i.e. negative associations; Supplementary Table S4). The associations
were significant after multiple comparison correction for global cognition (peer = 0.0006), executive function
(peorr = 0.0076, Figure 3A), language (peorr = 0.0047), visuomotor speed (peorr = 0.0136), visuoconstruction
(Peorr = 0.0136), verbal memory (peorr = 0.0034), and visual memory (peor = 0.0002). The association was
not significant for attention (peorr = 0.2461). These results were consistent after finetuning (Supplementary
Figure S2A and Supplementary Table S5). Similar broad negative associations were also observed in SLABS
at baseline (N = 212), but these were not significant (Supplementary Tables S6 & S7).

To investigate longitudinal utility of brain age in healthy elderly, we tested associations in a longitudinal
subset of SLABS (N = 81) using similar multiple linear regression models. We first related baseline BAG
and early change in BAG to long-term cognitive change (Figure 1C; Methods Section 5.3). Baseline BAG
generally failed to show associations with longitudinal cognitive changes (Supplementary Table S8). While
higher baseline BAG was associated with faster long-term decline in executive function, it was not significant
after multiple comparison correction (p = 0.0406, peorr = 0.2433, Figure 3B). On the other hand, the early
rate of BAG change was negatively associated with long-term rate of executive function change (p = 0.0017,
Peorr = 0.0100, Figure 3C). This negative association held after removing the temporal overlap between BAG
and cognition, looking only at the future rate of executive function change (p = 0.0033, Figure 3D). Notably,
these associations were independent of baseline BAG, chronological age, sex, and years of education. The
associations were also specific to executive function (Supplementary Table S10). Results were again consistent
after finetuning (Supplementary Figure S2B-D and Supplementary Tables S9 & S11).

2.2.2 Children

To extend our analyses to healthy children, we tested cross-sectional and longitudinal associations in GUSTO
using multiple linear regression models similar to above (Figure 1C; Methods Section 5.3). Since longitudinal
cognitive data was not available for GUSTO, we used the cognitive scores themselves instead of the change.
Furthermore, since finetuning the model drastically improved prediction accuracy in GUSTO, we used the
finetuned predictions for our main analyses. We did not find a significant association between baseline
BAG and baseline IQ score (p = 0.3809, Supplementary Figure S3B). Similarly, we did not find significant
associations between baseline BAG and future cognitive scores (at 8.5 years old; p > 0.4086, Figure 4A,
Supplementary Table S13). However, the early rate of BAG change (from 4.5 to 7.5 years old) was positively
associated with future inhibition (at 8.5 years old; p = 0.0103, peorr = 0.0411, Figure 4B). The early rate of
BAG change was also positively associated with future switching, but it was not significant after correcting
for multiple comparisons (p = 0.0221, peorr = 0.0663, Supplementary Table S15). These associations were
independent of baseline BAG, chronological age, and sex. Notably, in contrast to older adults, the direction
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Figure 2: The pretrained brain age model performs well in elderly, while the finetuned model performs well
in both elderly and children. Black identity lines representing perfect prediction are included for reference.
(A) Predicted brain ages from the pretrained model are plotted against chronological age. They are highly
correlated for EDIS and SLABS (elderly), but not GUSTO (children). (B) Predicted brain ages from the
finetuned model are plotted against chronological age. They are highly correlated in all three datasets.
Key: EDIS — Epidemiology of Dementia in Singapore; SLABS — Singapore-Longitudinal Aging Brain Study;
GUSTO - Growing Up in Singapore Towards healthy Outcomes; N — Number of participants; r — Pearson’s
correlation coefficient; MAE — Mean Absolute Error; NCI — No Cognitive Impairment; CIND — Cognitive
Impairment No Dementia
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Figure 3: Brain age gap from the pretrained model is negatively associated with executive function in
elderly. Bolded p-values indicate significance after Holm-Bonferroni correction (peorr < 0.05). AR? di
indicates the change in adjusted R? after adding the variable of interest. All models include chronological
age, sex, and years of education as covariates. Models with change in BAG also include baseline BAG as a
covariate. Results are similar after finetuning (Supplementary Figure S2) (A) Partial regression plot between
baseline BAG and executive function in EDIS, colored by cognitive status. A significant negative association
is observed. (B) Partial regression plot between baseline BAG and long-term rate of change in executive
function (mean follow-up time = 7.8 £ 1.0 years) in SLABS. A negative association is observed, but it is not
significant after correcting for multiple comparisons. (C) Partial regression plot of early longitudinal rate
of change in BAG (mean follow-up time = 3.6 £ 0.8 years) when added to the model in (B). A significant
negative association and increase in R? is observed. (D) Partial regression plot as in (C), but with future
rate of change in executive function (mean follow-up time = 4.2+ 1.1 years), removing the overlap with early
change in BAG. A significant negative association is again observed. Key: N — number of participants; p
— p-value for variable of interest (x-axis); ARZdj - change in adjusted R? when adding variable of interest;
BAG — Brain Age Gap; NCI — No Cognitive Impairment; CIND — Cognitive Impairment No Dementia; EDIS
— Epidemiology of Dementia in Singapore; SLABS — Singapore-Longitudinal Aging Brain Study
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Figure 4: Longitudinal brain age gap from the finetuned model is positively associated with inhibition
in children. Bolded p-values indicate significance after Holm-Bonferroni correction (peorr < 0.05). ARi di
indicates the change in adjusted R? after adding the variable of interest. All models include chronological
age and sex as covariates. Models with change in BAG also include baseline BAG as a covariate. (A) Partial
regression plot between baseline BAG (calculated from 4.5 or 6.0 years old) and future NEPSY-II inhibition
scaled subscore (measured at 8.5 years old). No significant association is observed. (B) Partial regression
plot of early longitudinal rate of change in BAG calculated from 4.5 to 7.5 years old (mean follow-up time
= 2.4 £ 0.7 years) when added to the model in (A). A significant positive association and increase in R? is
observed. Key: N — number of participants; p — p-value for variable of interest (x-axis); ARidj - change in
adjusted R? when adding variable of interest; BAG — Brain Age Gap; GUSTO - Growing Up in Singapore
Towards healthy Outcomes

of association was now positive, meaning increased early rate of BAG change was associated with better
future executive function performance. There were no significant associations using the pretrained model
(Supplementary Figures S3A & S4 and Supplementary Tables S12 & S14).

2.3 Model interpretability

Finally, to investigate model interpretability, we used guided backpropagation [35] to derive group-level
saliency maps for brain age prediction (Methods Section 5.4). Figure 5 shows the top 10% of contributing
voxels to age prediction in four representative slices (left) for all datasets. Full 3D maps will also be made
available online. Relative contributions of white and gray matter features across the whole brain are shown
on the right. Areas near the lateral ventricles are labeled in red, while areas more prominent in elderly than
children are labeled in magenta, and areas more prominent in children than elderly are labeled in blue.

Both EDIS and SLABS show similar profiles (Figure 5A&B), suggesting important features are stable
across the elderly datasets. Regions near the lateral ventricles all make strong contributions, making up
7 of the 15 highest ranking features. Substantial contributions can also be seen in frontal/association
areas corresponding to the default mode, control, and salience/ventral attention networks. Areas near
the hippocampus/fornix, thalamus, and somatomotor network also contribute. These findings are consistent
when using the pretrained model for EDIS and SLABS (Supplementary Figure S5A&B).

In contrast, with the children of GUSTO, notable differences can be found (Figure 5C). While the
fornix is still the strongest contributor, it and other anterior areas near the ventricles (genu and body
of corpus callosum, caudate) do not contribute as much. The overall prominence of white matter is also
increased, especially in the brainstem (corticospinal tract and pontine crossing tract) and posterior regions
(sagittal stratum, superior longitudinal fasciculus, and posterior limb of internal capsule). Furthermore, gray
matter networks generally decrease in prominence, except the visual and limbic networks, which increase in
prominence. The hippocampus, amygdala, and thalamus continue to make substantial contributions. Unlike
in elderly, these features are not consistent when using the pretrained model (Supplementary Figure S5C).
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3 DISCUSSION

Our findings are the first, to our knowledge, to show the age-dependent generalizability of a pretrained brain
age model to non-Caucasian participants - specifically Singaporean children and elderly. We also present
novel results on the informativeness of longitudinal changes in brain age, independent of baseline brain
age, to future executive function in healthy participants. Finally, we show that accurate models focus on
distinct features in elderly and children, suggesting that the brain age model can extract relevant age-related
information.

3.1 Generalizability of pretrained brain age models to local datasets may be
age-dependent

Overall, our results suggest the pretrained SFCN model could be directly applied to Singaporean elderly
participants, but it needed to be finetuned for Singaporean children. Previous work with the SLABS dataset
showed that aging-related changes in Chinese Singaporean elderly were comparable to previous studies
conducted with primarily Caucasian participants [36]. However, it was not initially clear whether this would
carry over to a multidimensional index like brain age or to elderly datasets that better reflect the ethnic
diversity of Singapore. Encouragingly, we found high accuracy in predicting age (i.e. low MAE and high
correlation) in both EDIS (Chinese, Malay, and Indian participants) and SLABS (Chinese participants only)
using the pretrained model. Furthermore, our results after finetuning were generally consistent with the
original findings in elderly. This suggests that similarities were not specific to the SLABS sample, but
could generalize to Singaporean elderly as a whole. In addition to similar aging patterns, the success of the
pretrained model in this age range can be attributed to the abundance of training data around 60 — 80 years
old, mostly from UKBiobank [14].

However, we found the pretrained model did not perform as well in children (i.e. low correlation). While
the MAE was actually lower in children than elderly, this was likely due to the smaller age range [37]. After
finetuning, the MAE reduced dramatically, further demonstrating the inadequacy of the pretrained model in
this case. Previous work has indicated that brain structural differences between Chinese Singaporeans and
non-Asian Americans may be more pronounced in young adults than elderly [38]. This could conceivably
extend to childhood and other ethnicities. However, another important factor is the model training age
distribution, which only included 147 participants 5 years old or younger and had its earliest (and smallest)
peak around 10 years old [14]. Notably, the pretrained model tended to predict all GUSTO ages around 10

Figure 5 (following page): Finetuned brain age models focus on distinct features in children and elderly.
The top 10% of features are shown for four representative brain slices on the left. Relative contributions
for gray and white matter features across the whole brain are shown on the right. Regions near the lateral
ventricles are labeled in red. Features more prominent in elderly than children are labeled in magenta, while
features more prominent in children than elderly are labeled in blue. Features and relative contributions are
generally consistent between (A) EDIS and (B) SLABS, but key differences can be seen in (C) GUSTO.
Key: EDIS — Epidemiology of Dementia in Singapore; SLABS — Singapore-Longitudinal Aging Brain Study;
GUSTO - Growing Up in Singapore Towards healthy Outcomes; MCP — Middle cerebellar peduncle; PCT —
Pontine crossing tract; gCC — Genu of corpus callosum; bCC — Body of corpus callosum; sCC — Splenium of
corpus callosum; Fx — Fornix (column and body); CST — Corticospinal tract; ML — Medial lemniscus; ICP —
Inferior cerebellar peduncle; SCP — Superior cerebellar peduncle; CP — Cerebral Peduncle; ALIC — Anterior
limb of internal capsule; PLIC — Posterior limb of internal capsule; RLIC — Retrolenticular part of internal
capsule; ACR — Anterior corona radiata; SCR — Superior corona radiata; PCR — Posterior corona radiata;
PTR — Posterior thalamic radiation; SS — Sagittal stratum; EC — External capsule; Cingulum CG — Cingulum
(cingulate gyrus); Cingulum HIP — Cingulum (hippocampus); Fx/ST — Fornix (cres) / Stria terminalis; SLF
— Superior longitudinal fasciculus; SFO — Superior fronto-occipital fasciculus; UF — Uncinate fasciculus; TAP
— Tapetum; Vis — Visual network; SomMot — Somatomotor network; DorsAttn — Dorsal attention network;
SalVentAttn — Salience/Ventral attention network; Limbic — Limbic network; Cont — Control/frontoparietal
network; Default — Default mode network; Hip+Amy — Hippocampus + amygdala; Put4+Cau — Putamen +
caudate; Thal — Thalamus
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years old, suggesting it may have been impacted by this imbalanced distribution.

Fortunately, finetuning the model produced distinct age groups, along with higher correlation and lower
MAE. As discussed below, finetuning the model in children also shifted feature saliency and revealed a
significant association with future executive function that was not found using the pretrained model. This
suggests the model underwent a greater change in children, compared to elderly, to become both more
accurate and meaningful. Furthermore, we found that the variance of finetuned predictions was the lowest
at 4.5 years old and increased steadily with age, consistent with previous reports [39]. This implies the
“brain maintenance” account of aging, where individuals start with the same or similar offsets, and different
slopes result in increased variability over the lifespan [28]. This also suggests that the variance in brain age
predictions at later ages is likely due to stable, lifelong factors as well as ongoing changes. Thus, looking at
longitudinal changes in brain age could help separate these influences.

3.2 Longitudinal changes in brain age are informative of future executive func-
tion

Our results with baseline BAG were largely consistent with previous work in elderly. With a large sample of
community-dwelling, non-demented participants from EDIS, we found significant associations with baseline
cognition across multiple cognitive domains, consistent with a recent review [23]. Furthermore, with a smaller
longitudinal sample of healthy participants from SLABS, we matched previous work finding an association
with future decline in cognition, despite being not significant after multiple comparison correction [22]. In
GUSTO children, we did not find a significant association between baseline BAG and baseline cognition at 4.5
years old or future cognition at 8.5 years old. To our knowledge, while brain age associations with cognition
have been reported in samples spanning 3 — 22 years old [40]-[43], they have not been explored around the
early age of 4.5 years old specifically. This is notable since our generalization analyses revealed that, after
finetuning, brain age variability is lowest at this age and increases with age. Thus, cross-sectional associations
with cognition may only occur at later ages, when there is more variability in brain age. Alternatively, more
complex models may be needed to reveal cross-sectional structure-cognition association at such young ages.

Although we generally did not find associations between baseline BAG and future cognition in healthy
participants, the story was different when including the early rate of change in BAG. Due to the lack of
available longitudinal cognitive data in GUSTO, we could only look at future cognition at a single time
point instead of the rate of change. This likely introduced noise into our analyses as it did not account for
the initial variation in cognition. The future cognitive scores in GUSTO were also all related to executive
function, so we could not investigate other cognitive domains in children. Interestingly, within subdomains of
executive function in children, we found the strongest association with inhibition, which has been proposed
as a primary driver of domain-general executive function [44]. Thus, we found that early longitudinal changes
in BAG associated with future executive function performance in both children and elderly, independent of
baseline BAG. This is notable in light of recent evidence that early-life factors may affect cross-sectional
brain measurements, but not longitudinal changes [45]. While the association was specific to executive
function in elderly, it is presently not clear whether this was biased by the modest sample size of 6- to
10-year longitudinal data or whether brain age is particularly sensitive to this domain [23]. Previous work
found associations between early- or mid-life factors and cross-sectional brain age [25]-[27], but associations
with the longitudinal change of brain age were not investigated.

Our findings thus suggest that early-life factors could influence the cross-sectional brain age, but they
are not the only influence throughout the lifespan. Early life factors may dominate the (relatively low)
inter-individual variability in brain age at 4.5 years old. However, as normal development occurs in the next
several years, children mature at different rates, leading to increasing variability in brain age predictions.
This variance is also related to individual differences in executive function. In late life, these changes have
accumulated to produce more variable brain age predictions. However, baseline brain age predictions do
not associate with future cognitive performance, possibly since they reflect past factors. Information about
ongoing changes in brain aging is needed to reveal associations with future rates of executive function decline.
Taken together, these findings suggest that brain age, when measured longitudinally, can capture ongoing
processes of healthy aging.

While early longitudinal changes in BAG associated with future executive function performance in both
elderly and children, one notable difference lies in the direction of association. In elderly, increases in BAG
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were associated with worse executive function decline. In children, increases in BAG were associated with
better future inhibitory performance. There have been somewhat conflicting reports on the direction of
association between BAG and cognition in youth [40]-[43]. However, our results are unique in examining the
longitudinal change in BAG rather than the cross-sectional BAG. Thus, our results could reflect previously
reported cognitive decline with increasing age in late life [2] and cognitive gains with increasing age in early
life [3]. One of the few longitudinal studies in development related white matter and executive function de-
velopment, and found that white matter growth in adolescence was associated with better inhibitory control,
while growth in adulthood was associated with worse performance [46]. Our brain age paradigm, based on
multivariate features of the brain, further support these findings in children and elderly. Specifically, a faster
increase in BAG may imply that a child is developing ahead of schedule, resulting in more rapidly maturing
cognitive functioning. Conversely, a slower increase in BAG at an older age may reflect mechanisms of brain
maintenance at work, prolonging a more “youthful” brain and sustained optimal cognitive performance.

3.3 Salient features of the brain age model differ between elderly and children

Our work builds on recent efforts to interpret deep learning brain age models in aging [11]-[13]. While
the datasets, brain age models, and interpretability methods all differed among these studies, the most
consistent finding was the importance of the lateral ventricles in elderly. This was evident in our models as
well. Like other popular methods for extracting feature importance from deep learning models, our guided
backpropagation method tended to highlight boundaries between regions and tissue types (i.e. edges). Thus,
strong contributions from white matter areas such as the fornix and corpus callosum were likely at least partly
due to the size of the lateral ventricles. These regions all ranked highly in elderly, suggesting the overall
importance of the lateral ventricles.

Our other findings in elderly also broadly align with prior research in aging. We find important con-
tributions around subcortical regions and frontal/association areas that are observed to degenerate more
prominently in aging [47]. Among areas near the lateral ventricles, the fornix particularly stands out as
the strongest contributor. This could be due to its connections with the hippocampus, suggesting fornix
contributions may also reflect age-related hippocampus atrophy. Fornix was previously the strongest con-
tributor in brain age models focused on white matter derived from diffusion MRI, and it showed the highest
absolute correlations with age [48]. Corpus callosum and cerebellar peduncle were also found to strongly
contribute in a separate white matter brain age model [49]. Additionally, the importance of the thalamus,
putamen and caudate, ventral attention network, and somatomotor network could indicate the importance
of frontostriatal circuits. Frontostriatal changes have been proposed as a hallmark of healthy aging [47],
and the role of these and related regions [50] in supporting executive function could underlie the observed
association between BAG and executive function.

We also show clear differences in feature importance between elderly and children, in line with prior
research in development. The consistency between elderly datasets reinforces that these differences are not
simply artefacts of using a different dataset. Most strikingly, we find evidence of a posterior to anterior
pattern [5], [51] going from childhood to elderly. For instance, posterior areas near the lateral ventricles
(tapetum and splenium of corpus callosum) continue to rank highly, while more anterior areas decrease
in prominence. We also find a general increase in the relative importance of white matter, with greater
increases in posterior regions. This is in line with a previous brain age model showing stronger contributions
of white matter relative to gray matter in youth [39]. The focus on the development of white matter could
also underlie the observed association with executive function development [46], [52], [53]. Finally, we find
increased contributions from the brain stem, which is consistent with its large volume changes in youth [54].

3.4 Limitations

Our study is not without limitations. While we find encouraging signs that the model generalizes to Singa-
porean elderly, we can not completely rule out more subtle issues that may have arisen from applying the
model to these participants. For instance, finetuning the model slightly increased prediction accuracy and
generally strengthened associations with cognition in elderly, suggesting the pretrained model may not have
performed optimally. Furthermore, we have not tested the model in other non-Caucasian participants, which
would be needed for a more comprehensive test of generalizability. The current study also only includes par-
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ticipants from very early and late life. Thus, future work would be needed to extend our results across
the lifespan, with more participants and even longer follow up times, in order to achieve a more complete
picture.

4 Conclusion

Here, we used a previously published brain age model to reveal age-dependent generalization to Asian par-
ticipants, as well as age-dependent associations and interpretability of brain age. Specifically, we found the
brain age model could be directly applied to Singaporean older adults, but it needed to be finetuned for Sin-
gaporean children. Furthermore, longitudinal changes in brain age were related to future executive function
in both children and elderly participants. However, the direction of association was positive in children and
negative in elderly. Combined with the identified salient features for brain age prediction, we conclude that
increased brain age in early life could indicate more mature development, especially in white matter and
posterior areas. Conversely, increased brain age in late life could suggest greater degeneration, especially
around the lateral ventricles and frontal areas. Our results provide early evidence of the generalization capa-
bility of the brain age model and the ability of longitudinal measurements to capture ongoing aging process
in the brain.

5 METHODS

5.1 Sample characteristics

We analyzed three datasets from Singapore, which are detailed in the following.

5.1.1 Participants

EDIS EDIS was a cross-sectional study to measure the prevalence of cognitive impairment and dementia
in Singapore, which has been described previously [30]-[32]. We analyzed T1 MRI and cognitive data from
694 community-dwelling older adults. The same participants were used for all analyses. Ethics approval
for the EDIS study was obtained from the Singapore Eye Research Institute and the National Healthcare
Group Domain Specific Review Board. The study was conducted in accordance with the Declaration of
Helsinki. Written informed consent was obtained, in the preferred language of participants, by bilingual
study coordinators prior to recruitment into the study.

SLABS SLABS was a longitudinal, community-based study to characterize age-related brain changes and
cognitive performance in healthy elderly in Singapore, which has been described previously [33]. Participants
underwent at most 5 phases of neuroimaging and neuropsychological assessments at approximately 2-year
intervals. Neuropsychological assessments were performed within 3 months of neuroimaging. To test pre-
diction accuracy of the brain age model, we first used 598 T1 scans from N = 215 participants with MMSE
score > 26 at baseline (mean follow-up time = 4.0 £ 3.3 years). To investigate longitudinal associations in
healthy elderly, we identified a subset of N = 81 participants with: (1) longitudinal T1 and cognitive data in
the first three phases; (2) additional cognitive data in the last two phases (to study future cognitive decline,
see Figure 1C); and (3) MMSE score > 26 at baseline. Thus, mean follow-up time in this subset was 3.6 +0.8
years for T1 scans (total number = 228), while mean follow-up time was 7.8 £ 1.0 years for cognitive scores
(total number = 355). The study was approved by the Institutional Review Board of the National University
of Singapore. All participants provided written informed consent prior to participation.

GUSTO GUSTO is a longitudinal birth cohort study to characterize early development in Singapore,
which has been described previously [34]. Participants were scanned at 4.5, 6.0, 7.5, and 10.5 years old.
Neuropsychological assessments were taken at 4.5 and 8.5 years old. To test prediction accuracy of the
brain age model in children, we first used 1,702 T1 scans from N = 678 normally developing children (mean
follow-up time = 3.5 4+ 2.4 years). To investigate cross-sectional and longitudinal associations in healthy
children, we identified subsets of participants (N = 217 to 239) with the requisite imaging and cognitive
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data available, similar to SLABS. For the cross-sectional analysis, this included participants with both T1
and cognitive data at 4.5 years old (N = 217). For the longitudinal analyses, this included participants with
longitudinal T1 data from 4.5 to 7.5 years old and cognitive data at 8.5 years old (N = 220 or 239). The
study was approved by the National Healthcare Group Domain Specific Review Board (NHG DSRB) and
the Sing Health Centralized Institutional Review Board (CIRB). Written informed consent was obtained
from mothers. When children reached 6 years of age, children also provided oral consent.

5.1.2 Neuropsychological assessments

EDIS Trained research psychologists administered a neuropsychological battery locally validated for Sin-
gaporean elderly, as described previously [30]. Briefly, the battery assessed the following seven cognitive
domains using the corresponding tests: (1) Executive function: Frontal Assessment Battery and Maze Task;
(2) Attention: Digit Span, Visual Memory Span, and Auditory Detection; (3) Language: Boston Naming
Test and Verbal Fluency; (4) Visuomotor speed: Symbol Digit Modality Test and Digit Cancellation; (5)
Visuoconstruction: Weschler Memory Scale-Revised Visual Reproduction Copy task, Clock Drawing, and
Weschler Adult Intelligence Scale-Revised subtest of Block Design; (6) Verbal memory: Word List Recall and
Story Recall; (7) Visual memory: Picture Recall and Weschler Memory Scale-Revised Visual Reproduction.

For each individual test, raw scores were transformed to standardized z-scores using the mean and stan-
dard deviation (SD) of that test (across all of EDIS, not just the imaging sample included here). Composite
z-scores for each domain were obtained by averaging all individual test z-scores within that domain. These
domain-specific z-scores were then standardized using their own mean and SD. A global cognition z-score
was calculated by averaging over all domain-specific z-scores and standardized using its own mean and SD.
CIND was defined as impairment in at least one cognitive domain using education adjusted cut-off values
of 1.5 SDs below the established normal means on individual tests. Failure in at least half of the tests in a
domain constituted failure in that domain. Note that CIND was not a formal clinical diagnosis.

SLABS Trained researchers administered neuropsychological assessments within 3 months of the neu-
roimaging scan, as described previously [36]. Briefly, the following five cognitive domains were assessed
using the corresponding tests: (1) Executive function: Categorical Verbal Fluency Test and Design Fluency
Test in the Delis-Kaplan Executive Function System!; (2) Attention: Digit Span Test and Spatial Span
Test in Wechsler Memory Scale-Third Edition; (3) Processing speed: Symbol Digit Modalities Test, Symbol
Search Task in the Wechsler Memory Scale-Third Edition, and Trail Making Test A; (4) Verbal Memory: Rey
Auditory Verbal Learning Test; and (5) Visuospatial Memory: Visual Paired Associates Test. Composite
T-scores (T-score = (z-scorex10)+50) were obtained for each domain and for global cognition following a
similar procedure as EDIS.

GUSTO To maintain consistency with EDIS and SLABS, we selected standardized cognitive summary
scores measured at 4.5 (baseline) and 8.5 (future) years old. These included the Kaufman Brief Intelligence
Test Second Edition (KBIT-2) composite IQ standard score, the Wisconsin Card Sorting Test (WCST) total
errors standard score, and the Developmental Neuropsychological Assessment Second Edition (NEPSY-
IT) scaled domain scores. The KBIT-2 was administered at 4.5 years and is a measure of abbreviated
intelligence for children and adults aged 4 years to 90 years of age. The WCST is a lab-based measure of
set-shifting/cognitive flexibility and was administered at age 8.5 years. The NEPSY-II was administered at
8.5 years and consisted of a word interference task requiring working memory recall (i.e. naming) and a
Stroop task requiring predominantly inhibition in one condition and switching in another condition.

5.1.3 Image acquisition and preprocessing

EDIS MRI scans were performed on a 3T Siemens Magnetom Tim Trio System (Siemens, Erlangen,
Germany) at the Clinical Imaging Research Centre, National University of Singapore. High-resolution
T1-weighted structural MRI was acquired using magnetization-prepared rapid gradient echo (MPRAGE)
sequence (192 continuous sagittal slices, TR/TE/TI = 2300/1.9/900 ms, flip angle = 9°, FOV = 256 x 256
mm?, matrix = 256 x 256, isotropic voxel size = 1.0 x 1.0 x 1.0 mm?, bandwidth = 240 Hz/pixel).

1Unlike previous studies, Trail Making Test B was not included in this study due to missing data in later phases.
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SLABS For the first three phases, MRI scans were performed on a 3T Siemens Magnetom Tim Trio System
(Siemens, Erlangen, Germany) at the Centre for Cognitive Neuroscience, Duke-NUS Medical School. High-
resolution T1-weighted structural MRI was acquired using a MPRAGE sequence (192 continuous sagittal
slices, TR/TE/TI = 2300/2.98/900 ms, flip angle = 9°, FOV = 256 x 240 mm?, matrix = 256 x 240,
isotropic voxel size = 1.0 x 1.0 x 1.0 mm?®, bandwidth = 240 Hz/pixel).

For the last two phases, following a scanner upgrade, MRI scans were performed on a 3T Siemens
Magnetom Prisma Fit System (Siemens, Erlangen, Germany). High-resolution T1-weighted structural MRI
was again acquired using a MPRAGE sequence (192 continuous sagittal slices, TR/TE/TI = 2300/2.28/900
ms, flip angle = 8°, FOV = 256 x 240 mm?, matrix = 256 x 240, isotropic voxel size = 1.0 x 1.0 x 1.0
mm?, bandwidth = 200 Hz/pixel).

GUSTO For scans taken at 4.5 and 6.0 years, MRI scans were performed on a 3T Siemens Magnetom
Skyra System (Siemens, Erlangen, Germany) at KK Women’s and Children’s Hospital. High-resolution T1-
weighted structural MRI was acquired using a MPRAGE sequence (192 continuous sagittal slices, TR/TE/TI
= 2000/2.08/877 ms, flip angle = 9°, FOV = 192 x 192 mm?, matrix = 192 x 192, isotropic voxel size =
1.0 x 1.0 x 1.0 mm?).

For scans taken at 7.5 and 10.5 years, MRI scans were performed on a 3T Siemens Magnetom Prisma Fit
System (Siemens, Erlangen, Germany) at the National University of Singapore. The scanning parameters
were the same as for 4.5 and 6.0 years.

Preprocessing For all datasets, we used the minimal preprocessing pipeline performed on the SFCN
training set, as described previously [14]. Briefly, images were first skull-stripped with FreeSurfer [55], then
reoriented to standard FMRIB (Oxford Centre for Functional MRI of the Brain) Software Library (FSL) [56]
orientation and linearly registered to Montreal Neurological Institute (MNI) 152 space using the FSL linear
registration tool (FLIRT) [57]. Images were then cropped to 167 x 212 x 160 voxels, and voxel intensity
values were normalized between 0 and 1. These minimally preprocessed images were input to the SFCN
brain age model (Figure 1A). Similar to the original model [14], we adopted a lenient manual quality control
before conducting analyses, removing scans where a significant portion of the brain was missing or there was
a registration failure. This excluded 2 scans/participants from EDIS and 12 scans from 11 participants from

GUSTO.

5.2 Brain age predictions

After preprocessing, we directly applied the pretrained brain age model [14] to each of the datasets (all
baseline and follow-up data) to generate brain age predictions. We used the regression variant of SFCN
due to its superior generalization performance [14]. Performance was assessed using Pearson’s correlation
and mean absolute error (MAE) between brain age and chronological age. The model was considered to
have performed well if both correlation was high and MAE was low. BAG was calculated by subtracting
chronological age from brain age.

We then finetuned the model on each dataset separately to mitigate effects from the domain shift (i.e.
the change in distribution from training data to testing data). We used all scans from each dataset without
any exclusions. We split scans into 10 cross-validation folds, where each participant was included in the
testing set exactly once. Of the remaining data for each fold, 80% was used for training and 20% was used
for validation. In the case of longitudinal data, it was ensured that all scans from the same participant were
kept in either the training, validation or test set to avoid biased estimates. We used the pretrained model
weights as initialization, then retrained all layers (Figure 1B).

We built on the original model code using the Keras [58] interface of Tensorflow 2.11 [59]. We used the
Adam optimizer with mean squared error loss. Upon recommendation of the original study authors, we set
the dropout rate = 0.3 and weight decay = le-3. We selected the initial learning rate from {1e-3, le-4, 1e-5}
using the validation sets of each fold. Supplementary Table S2 shows the optimal initial learning rate for
each study and fold. We used a cosine learning rate decay over 25 epochs and trained the models for 35
epochs total. The final weights were taken from the epoch with the lowest validation MAE. Models were
trained on a NVIDIA RTX 3090 GPU with 24GB RAM on top of cuda 11.0 with a batch size of 4.
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5.3 Associations with cognition

To examine cross-sectional and longitudinal associations with cognition in both elderly and children, we
conducted several analyses, which are shown schematically in Figure 1C. Supplementary Table S3 shows
the model equations. Statistical results were corrected for multiple comparisons across cognitive domains
using the Holm-Bonferroni method [60]. Change in adjusted R? (ARZdj) was calculated from the difference
between a model including the variable of interest and covariates and a model only including covariates.
Variance inflation factors were confirmed to be less than five to rule out multicollinearity among baseline
BAG, change in BAG (when included), and other covariates (especially chronological age). Analyses were
performed in R 4.2.1 [61] with RStudio [62]. Packages dplyr [63] and tidyr [64] were used for data organization

and packages car [65] and scales [66] were used for visualization.

Elderly For each cognitive domain in EDIS, we related baseline BAG to baseline cognitive score, with
chronological age, sex, and years of education as covariates. For the longitudinal analyses in SLABS, we
first calculated annual rates of change in BAG and cognition using linear regressions with time for each
participant. For each cognitive domain in SLABS, we related baseline BAG to long-term rate of cognitive
change (calculated from all five phases). Next, again for each cognitive domain, we related early rate of BAG
change (calculated from the first three phases) to long-term rate of cognitive change (calculated from all five
phases). If this relation was significant for a domain, we lastly related early rate of BAG change (calculated
from the first three phases) to future rate of cognitive change (calculated from the last measurement of BAG
onwards). All models included chronological age, sex, and years of education as covariates. Models with rate
of BAG change also included baseline BAG as a covariate.

Children For cross-sectional analyses, we related baseline BAG to baseline cognition, both at 4.5 years
old. For longitudinal analyses, we again calculated annual rates of change in BAG using linear regressions
with time for each participant. We then related baseline BAG to future cognition and early rate of change in
BAG to future cognition. Here, early rate of BAG change was calculated from 4.5 to 7.5 years, while future
cognition was measured at 8.5 years. Chronological age and sex were included as covariates in all models.
Models with rate of BAG change also included baseline BAG as a covariate.

5.4 Model interpretability

For each dataset, we investigated model interpretability using all scans from the same participants as the
associations with cognition. Guided backpropagation [35] was used to compute individual saliency maps for
both the pretrained and finetuned models. Guided backpropagation was previously shown to give similar
results as occlusion for a brain age model, at a higher resolution and lower computational cost [11]. For
finetuned models, the fold where the participant was included in the test set was used. Maps were registered
to a common space using Advanced Normalization Tools (ANTSs) [67]. Specifically, for each participant, input
(minimally preprocessed) images were nonlinearly registered to MNI 152 space using the default parameters.
This transformation was then applied to each participants’ saliency maps.

To identify brain features that contributed the most to brain age predictions, we first averaged saliency
maps over all participants in a study. We then retained the top 10% of voxels and calculated gray and
white matter network/regional contributions. We used the 400-area Schaefer parcellation [68] assigned to 7
functional networks [69] for cortical gray matter. We averaged over all voxels in all parcels for each network.
For subcortical gray matter, we used the automated anatomical labelling atlas 3 (AAL3) [70] to identify
regions containing the hippocampus and amygdala, the putamen and caudate, and the thalamus. For white
matter, we used the ICBM-DTI-81 atlas [71] with 48 ROIs. For all regions, we averaged over all voxels in
both hemispheres. Contributions were normalized to sum to 1, giving the relative contribution. To visualize
saliency maps in 2D, we set the maximum value to the 99th percentile and overlaid select slices (x = 97, z =
68, z = 89, z = 135) over a MNI 152 template brain. Full 3D saliency maps will be made available online.
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Data and code availability

Custom Python and R code for this study will be made publicly available at https://github. com/susan-cheng/
brain-age-longitudinal. Data that support the findings of this study are available from co-authors
C.L.H.C (EDIS), M\W.L.C. (SLABS), and M.J.M. (GUSTO) upon collaborative request.
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