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1 Volkswagen Data:Lab, Munich, Germany
sheir.yarkoni@volkswagen.de

2 LIACS, Leiden University, Leiden, The Netherlands
3 Deutsche Bahn AG, Berlin, Germany

Abstract. In this work we develop methods to optimize an industrially-
relevant logistics problem using quantum computing. We consider the
scenario of partially ûlled trucks transporting shipments between a net-
work of hubs. By selecting alternative routes for some shipment paths,
we optimize the trade-off between merging partially ûlled trucks using
fewer trucks in total and the increase in distance associated with ship-
ment rerouting. The goal of the optimization is thus to minimize the total
distance travelled for all trucks transporting shipments. The problem
instances and techniques used to model the optimization are drawn from
real-world data describing an existing shipment network in Europe. We
show how to construct this optimization problem as a quadratic uncon-
strained binary optimization (QUBO) problem. We then solve these
QUBOs using classical and hybrid quantum-classical algorithms, and
explore the viability of these algorithms for this logistics problem.

1 Introduction

Quantum computing has garnered increased interest in recent years in both
research and industrial settings. This novel technology holds the promise of solv-
ing computationally intractable problems asymptotically faster than their clas-
sical counterparts in a variety of application areas [1–3]. The public availability
of quantum devices from commercial entities such as D-Wave Systems, Google,
and IBM have produced a variety of results showcasing novel algorithms and
potential use-cases for quantum computing in fields such as quantum machine
learning [4,5], logistics/scheduling [6,7], quantum chemistry [8,9], and more [10].
Of particular interest is the potential of quantum processing units (QPUs) to
affect the field of optimization, making the technology attractive to both research
and industry experts. Currently, variational quantum optimization techniques
are the main targets of promising research, and hold the highest potential of
gaining advantage using quantum processors. For more details about the differ-
ent paradigms of quantum computing and their mathematical backgrounds we
refer the reader to [11–13].
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Optimization problems for quantum algorithms and other similar heuristics
are typically formulated as either Ising Hamiltonians (posed in a {−1, 1} basis)
or quadratic unconstrained binary optimization (QUBO) problems (in a {0, 1}
basis). Finding the minimum of an Ising Hamiltonian, or its equivalent QUBO, is
known to be an NP-hard problem in the worst case [14], meaning many difficult
and well-known optimization problems have such representations [15]. For our
work, we focus on the QUBO formulation of optimization problems:

Obj(Q,b) = b · Q · bT . (1)

Here, Q is an N × N matrix representing interaction terms between variables in
the binary vector b with N variables. Therefore, the first step in using quantum
optimization algorithms is finding a valid QUBO representation of the problem
to be solved. In this paper we focus on designing a QUBO representation for an
industrially motivated logistics optimization problem, and attempt to optimize
the QUBOs using both hybrid quantum-classical and purely classical QUBO
solvers. Additionally, we consider a representation by a mixed integer program
(MIP) which we optimize by the standard solver Gurobi.

We investigate a problem motivated by an application in logistics: the less-
than-truckload network service design. Less-than-truckload (LTL) denotes ship-
ments not exceeding a maximum weight significantly below a full truck load.
The transport of a single shipment follows the sequence of (a) a collecting truck
run, followed by (b) one or several linehaul truck runs (including handling of the
shipment) and ending with (c) a distributing truck run to the shipment’s final
destination. Our work focuses on the design of the linehaul network, step (b).
The linehaul network for LTL is made up by the set of terminals and timetable
based truck runs, connecting the terminals and thereby producing the long-hauls
of all the shipments entering the network. Taking limitations on transport times
into account, the forwarding of the shipments shall be as cost efficient as possi-
ble. One key factor for cost efficiency is the consolidation of multiple shipments
in jointly utilized trucks, at least regarding parts of their individual linehaul
paths through the network. This measure targets an increase of truck utiliza-
tion. However, the consolidation of multiple shipments with different origins and
destinations in jointly utilized trucks requires detours of shipments. As detours
come at a cost, the network design searches for an optimal trade-off between
detour costs and the benefit of increased truck utilization. We focus on this
central trade-off decision and call the reduced problem the shipment rerouting

problem (SRP). We provide an illustrative example with two shipments in Fig. 1.
The input to the SRP includes a set of terminals, their distances to each other,

and the numbers of available trucks connecting the terminals. Moreover, we have
a set of shipments, each with a set of possible routes of intermediate terminals.
These possible routes already comply with constraints like maximum transport
time or maximum detour factor. They include the direct route from the origin to
the destination of the shipment, which are the default for all shipments. Other
candidate routes for rerouting are constructed in a pre-processing step based
on the graphical structure of the terminals and the distances between them.
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Fig. 1. An example of the SRP with two shipments. The default routing (Trucks 1 and
2 carrying their respective shipments at 50% capacity each) is optimized by replacing
Trucks 1 and 2 with a single truck (Truck 3) which can be fully utilized. The cost of
rerouting each shipment to the route serviced by Truck 3 is offset by the removal of
Trucks 1 and 2, thereby reducing the overall distance travelled to deliver the shipments.

Thus, a subset of shipments may be rerouted through alternate routes in order
to reduce the overall distance all trucks travel to deliver the shipments. Each
shipment has a size (volume, weight, etc.), and each truck has a corresponding
capacity, i.e. an upper bound for the total shipment size that can be loaded. For
our purposes, we denote the shipment sizes and truck capacities with respect to
volume, and refer to them as such throughout the rest of this work. We note
that our mathematical formulations equally admit other quantities.

A shipment cannot be split across different routes. However, for transporting
a shipment between two terminals, we may split it to distribute it on multiple
trucks (this is necessary especially for shipments with a large volume). Given
the input, the task is to decide on a route for each of the given shipments, which
may include overlaps between shipments. Consequently, the result includes the
number of required trucks in the network and which terminals are connected by
truck runs in which frequency.

The rest of this paper is organized as follows: Sect. 2 discusses previous lit-
erature relevant to this analysis, and Sect. 3 motivates the QUBO construction
for this problem based on a MIP representation and details the specifics of the
QUBO construction used throughout this work. Section 4 outlines the input data,
solvers, and experimental design of our analysis. Section 5 presents the results
from those experiments, and Sect. 6 summarizes the conclusions derived from
our work.

2 Previous Works

In [16], Ding et al. solve a network design problem with a quantum annealing
approach. However, this problem is different as it searches for the best terminal
locations while the arc costs are linear (a hub location problem). In [6] it is shown
how to form QUBO representation of a simple traffic flow combinatorial opti-
mization problem. In that work, individual vehicles are given multiple candidate
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routes whose intersection needs to be minimized. This route-generation proce-
dure is used in our work, but with opposite intent, our objective is to consolidate
as many routes as possible.

Other examples of logistics and scheduling applications in quantum comput-
ing include flight-path conflict resolution [17] and railway train rescheduling [18].
Both examples use elements from a generic job-shop scheduling formulation for
quantum annealing [7]. While these applications are qualitatively similar to some
aspects of our work, the shipment rerouting problem is unique for quantum
annealing as not only the selection of routes for each shipment is variable, but
also the number of trucks used on each edge along the path is selected by the opti-
mization. Typically, for example in job-shop scheduling, the number of machines
and jobs are inputs to the QUBO construction. Our formulation thus incorpo-
rates elements from both scheduling (route selection in [6] and [18]) and packing
problems (canonical problems in NP [15]).

Because of its cost structure, the SRP problem is closely related to the fixed-
charge multi-commodity network design (FCMND) problem which has not been
investigated in the field of quantum computing. However, it has been studied
extensively in the past. Exact algorithms are usually based on branch-and-cut
approaches and Bender’s decomposition– see [19] for an overview. A particu-
lar problem for exact algorithms is that the lower bound is hard to improve.
There are also heuristic approaches to solve this problem, using evolutionary
algorithms [20] and simulated annealing [21], among others.

3 Constructing MIP and QUBO Representations

The MIP representation of the SRP is straightforward to formulate, as we can
use multiple kinds of variables (binary, integer, real) and constrain the solu-
tions explicitly. Therefore, we start with a MIP representation which we then
transform to a QUBO.

3.1 Constructing the MIP Representation

We assume that the connectivity of the terminals can be represented as a
weighted directed graph G where the vertices V are the terminals and the edges
E between them represent the ability to transport shipments from any single
terminal to another; in other words, we have an edge e ∈ E from a terminal a
to a terminal b if there are trucks available driving from a to b. These trucks are
called the trucks on e and their number is denoted by tmax(e). The weight of e is
the distance from a to b and is denoted by d(e). For each shipment s, v(s) denotes
its volume and R(s) denotes the set of all routes that can be used to transport s
(candidate routes of s). For each edge e, R(e) denotes the set of all candidate
routes containing e. A shipment s is scheduled on some edge e if s is transported
using an associated candidate route r containing e, i.e. r ∈ R(s) ∩ R(e).

In our scenarios, all trucks have the same volume capacity, denoted by cvol.
Moreover, all shipments have different origin-destination pairs so that no two
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different shipments have common candidate routes (however, their candidate
routes may overlap). Therefore, for each candidate route r, we have a unique
shipment s(r) that can be transported using r.

We want to transport each shipment on an associated candidate route such
that the total distance of all used trucks in the network is minimized. To represent
this problem by a MIP, we introduce a binary decision variable yr for each
candidate route r that is 1 if r is used to transport s(r), and 0 otherwise. For
each edge e, we introduce a non-negative integer variable te with maximal value
tmax(e) representing the number of used trucks on e. We represent the problem
by the following MIP:

Objective: Minimize the total truck distance

∑

e∈E

d(e) · te (2)

with respect to the following constraints:
Route-shipment constraints: For each shipment s, exactly one associated
candidate route is used, i.e.

∑

r∈R(s)

yr = 1. (3)

Capacity constraints: For each edge e, the total volume of all shipments
scheduled on e does not exceed the total volume capacity of the used trucks
on e, i.e.

∑

r∈R(e)

v(s(r)) · yr ≤ cvol · te. (4)

The capacity constraints ensure that on each edge e, enough trucks are used
to transport all shipments scheduled on e because we can split shipments to
optimally exploit the truck capacities. Note that in an optimal solution, each

truck number te is as small as possible, namely
⌈

∑

r∈R(e) v(s(r)) · yr/cvol

⌉

. In

that case, for each edge e, we can completely fill all used trucks on e except
possibly one truck that is partially filled.

3.2 Constructing the QUBO Representation

Contrary to a MIP, a QUBO only contains binary variables and an objective
function to be minimized without explicit constraints. However, the quadratic
summands arising from Eq. (1) allow us to include penalty terms that emulate
the MIP constraints.

Our QUBO formulation uses the binary variables yr for the candidate
routes r. In replacement of the integer variables te for the edges e, we use mod-
ified binary representations of their values in the QUBO based on a concept
in [15]: for each edge e, we define T (e) to be the set of all powers of two less than
or equal tmax(e), and for each n ∈ T (e), we introduce a binary variable te,n in
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order to represent the number of used trucks on e by
∑

n∈T (e) n·te,n. In this way,

we can represent at least each number up to tmax(e), i.e. each allowed truck num-
ber. However, the maximal representable number is 2nmax −1 where nmax is the
maximal value in T (e). Therefore, to avoid representations of numbers greater
than tmax(e), we reduce the coefficient nmax in

∑

n∈T (e) n · te,n by the surplus

s := 2nmax − 1 − tmax(e). The new expression is denoted by

∑

n∈T (e)

n · te,n, (5)

i.e. we have nmax = nmax − s = 1+ tmax(e)−nmax and n = n for each n �= nmax.
Now we can still represent each number up to tmax(e) but no other numbers. In
our QUBO, we reformulate the total truck distance (2) as

∑

e∈E

d(e) ·
∑

n∈T (e)

n · te,n. (6)

To encode the route-shipment constraints (3), note that they are linear equa-
lities of the form A = B where only binary variables occur. Each such constraint
is implemented in our QUBO by adding the summand M · (A − B)2 where M
is a large penalty factor ensuring that the constraint is fulfilled at least in all
optimal solutions of our QUBO. We will later discuss how to define a suitable
penalty factor.

The capacity constraints (4) cannot be implemented in that way (after refor-
mulation using the representations (5)) because they are inequalities of the form
A ≤ B. However, such a constraint can be transformed into an equality A+� = B
by using a non-negative slack variable �. Note that the slack of the capacity con-
straint for each edge e is the wasted volume in the used trucks on e (volume

capacity slack on e). Unfortunately, contrary to the numbers of used trucks,
these slacks might be large or fractional values so that their representations
might require many binary variables, making our QUBO intractable.

To overcome this problem, we discretize the shipment volumes into bins: We
virtually divide the loading area of each truck into the same number cbin of
equally sized bins. cbin is called the bin capacity of the trucks. Each bin can only
be used for transporting one shipment and has the volume capacity cvol/cbin.
Hence, for each shipment s, the number b(s) of bins needed to transport s is
given by b(s) = �v(s) · cbin/cvol�. Instead of the volume capacity slacks, we now
have to represent the bin capacity slack on each edge e, i.e. the number of unused
bins in the used trucks on e. These slacks are more tractable because they are
integers that can be assumed to be less than cbin (we will see this later).

On the other hand, if cbin is too small, then the bin volume capacity cvol/cbin

is large so that we may obtain several partially filled bins in the trucks, especially
if shipments exist that are smaller than the bin volume capacity (recall that we
cannot use a bin for transporting more than one shipment). Hence, we may not
optimally exploit the truck capacities any more which may increase the number
of used trucks. We can improve the situation by multiplying the bin capacity,
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i.e. by subdividing each bin into the same number of smaller bins.1 Therefore,
cbin is a crucial parameter for the QUBO construction: more bins may lead to a
better exploitation of the truck capacities, but at the cost of larger bin capacity
slacks to be represented. In our experiments, we used the bin capacity 10, which
was an empirically-determined compromise.

For each edge e, we introduce a non-negative integer variable �e representing
the bin capacity slack on e. Then we obtain a new discretized MIP by modifying
the capacity constraints (4) as follows:

Capacity Constraints: For each edge e, we have

∑

r∈R(e)

b(s(r)) · yr + �e = cbin · te. (7)

These constraints imply the former ones (because v(s) ≤ b(s) · cvol/cbin for each
shipment s) and may even be stronger (due to a worse exploitation of the truck
capacities). Similar to the former MIP, in an optimal solution of the new MIP,

each truck number te is as small as possible, namely
⌈

∑

r∈R(e) b(s(r)) · yr/cbin

⌉

.

Therefore, each bin capacity slack �e is less than cbin so that we can represent
these values in the QUBO as follows: we define L to be the set of all powers
of two less than cbin, and for each edge e and for each m ∈ L, we introduce a
binary variable �e,m such that the bin capacity slack of e is

∑

m∈L

m · �e,m. (8)

In this way, we can represent at least each number less than cbin, i.e. each relevant
bin capacity slack (it doesn’t matter if we can represent further numbers).

Using the representations (5) and (8), we can reformulate the capacity con-
straints (7) as follows:

Capacity Constraints: For each edge e, we have

∑

r∈R(e)

b(s(r)) · yr +
∑

m∈L

m · �e,m = cbin ·
∑

n∈T (e)

n · te,n. (9)

Similar to the route-shipment constraints, these capacity constraints are imple-
mented in the standard way by summands of the form M · (A−B)2. Putting all
components together, we obtain the following formulation of the QUBO:

1 Simply increasing the bin capacity may worsen the situation. For instance, suppose
that v(s) = cvol/2 for each shipment s so that b(s) = �cbin/2� . If cbin = 2, then
b(s) = 1 so that we can put two shipments into a truck. But if cbin = 3, then b(s) = 2
so that we can put only one shipment into a truck.
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∑

e∈E

d(e) ·
∑

n∈T (e)

n · te,n + M ·
∑

s∈S

⎛

¿

∑

r∈R(s)

yr − 1

À

⎠

2

+M ·
∑

e∈E

⎛

¿

∑

r∈R(e)

b(s(r)) · yr +
∑

m∈L

m · �e,m − cbin ·
∑

n∈T (e)

n · te,n

À

⎠

2

. (10)

Here, all variables are as before, and S is the set of all shipments in the problem.
We now choose the penalty factor M to ensure that only feasible solutions

are present in the global optimum of the QUBO objective, so that it is never
energetically favorable to violate one of the constraints in favor of minimizing
the total track distance. In general, we may choose any M greater than the total
truck distance d(feas) of any known feasible solution feas (for instance, the solu-
tion transporting each shipment on its direct route). To see the correctness of M ,
consider an optimal solution opt and suppose that opt violates a constraint. Then
the opt-value of the QUBO objective is at least M and thus greater than d(feas).
But since feas is feasible, d(feas) is also the feas-value of the QUBO objective,
contradicting the optimality of opt.

The QUBO requires many more variables than the MIP in Sect. 3.1. For
each truck number variable te in the MIP, we have |T (e)| = �log2(tmax(e) + 1)�
variables te,n to represent its values. Additionally, we have |L| · |E| = �log2 cbin� ·
|E| variables �e,m to represent the bin capacity slacks.

3.3 Improvements to the QUBO

To make our QUBO more tractable to a QUBO solver, we now construct
improvements which do not necessarily reduce the QUBO size but the range
of the coefficients for implementing certain capacity constraints. We define the
potential shipments on an edge e to be the shipments with a candidate route
containing e (i.e. these shipments can be scheduled on e) and we denote by S(e)
the set of all these shipments. For each shipment set S, we define tvol(S) to be
the minimal number of trucks that are sufficient to transport all shipments in S
referring to the volume capacity, i.e. tvol(S) =

⌈
∑

s∈S v(s) / cvol

⌉

.
Note that we must use at least one truck on an edge e if at least one shipment

is scheduled on e. Moreover, if tvol(S(e)) = 1, then that truck is sufficient to
transport all that shipments. Therefore, we can replace the corresponding capa-
city constraints in (9) by simpler ones which do not require the bin discretization:

Simple Capacity Constraints : For each edge e with tvol(S(e)) = 1 and for
each r ∈ R(e), we have

yr ≤ te,1. (11)

This constraint can be implemented by adding the summand M · (yr − yr · te,1)
to our QUBO. Note that yr − yr · te,1 = 0 if yr ≤ te,1, and that yr − yr · te,1 = 1
otherwise. Therefore, it is unfavorable to violate the constraint.
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This concept can be generalized to a larger class of edges. To do that, we
define the shipment sets of an edge e to be the subsets of S(e), and we call
a shipment set S n-minimal for some positive integer n if tvol(S) ≥ n and
tvol(S

′) < n for each proper subset S′ of S. Moreover, S is called minimal if it
is n-minimal for some n (n may be not unique if all shipments in S exceed the
volume capacity). We generalize the concept of (11) to all edges that only have a
few minimal shipment sets. These edges we define good and all other edges bad.

Note that the only 1-minimal shipment sets are the singletons {s} with some
shipment s. Therefore, if e is an edge with tvol(S(e)) = 1 (as in (11)), then each
minimal shipment set of e is 1-minimal and thus a singleton. Hence we may
definitely define each such edge to be good. For our scenarios, we obtained the
best results when defining an edge e to be good if tvol(S(e)) ≤ 2 or if there are
at most 8 potential shipments on e. Then most edges in our scenarios are good,
and for all other edges, the number of minimal shipment sets is usually such
huge that applying our approach does not improve our QUBO.

We let Egood and Ebad denote the set of all good and bad edges, respectively.
For each good edge e, we introduce new binary variables: the trucks on e are
numbered by 1, ..., tmax(e) and for each n = 1, ..., tmax(e), we have a binary
decision variable xe,n that is 1 iff truck n on e is used. For technical reasons, we
additionally define xe,tmax(e)+1 to be the constant 0. The total truck distance (6)
is then reformulated as

∑

e∈Ebad

d(e) ·
∑

n∈T (e)

n · te,n +
∑

e∈Egood

d(e) ·

tmax(e)
∑

n=1

xe,n. (12)

As before, our QUBO contains implementations of all route-shipment con-
straints (3) and of the capacity constraints (9) for all bad edges. For the good
edges, we have the following constraints which generalize the concept of (11):

Good Capacity Constraints : Let e be a good edge. Then for each n-minimal
shipment set S of e with n ≤ tmax(e) + 1, we have

∏

s∈S

∑

r∈R(s,e)

yr ≤ xe,n (13)

where R(s, e) denotes the set of all candidate routes of s containing e, i.e.
R(s, e) = R(s)∩R(e). Particularly, if n = tmax(e)+1, we have

∏

s∈S

∑

r∈R(s,e)

yr = 0.

Before showing how to implement these constraints, we first verify their cor-
rectness. We show that in a feasible solution of our QUBO, we have enough
used trucks on each good edge e to transport all shipments scheduled on e. Let
U denote the set of these shipments. For each n = 1, 2, ..., tvol(U), we choose a
smallest possible subset Sn of U with tvol(Sn) ≥ n. Then each Sn is n-minimal
and

∏

s∈Sn

∑

r∈R(s,e)

yr is always 1 because each shipment s in Sn is scheduled on e

so that
∑

r∈R(s,e)

yr = 1. Hence if n ≤ tmax(e) + 1, then by (13) applied to Sn, we
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obtain xe,n = 1. Now since xe,tmax(e)+1 = 0, we see that tvol(U) ≤ tmax(e) and
that truck n on e is used for each n = 1, 2, ..., tvol(U). These are enough trucks
to transport all shipments in U . On the other hand, the constraints (13) do not
force xe,n = 1 for some n > tvol(U). To see that, consider an n-minimal shipment
set S of e. Then since tvol(S) > tvol(U), S contains a shipment s that is not in U ,
i.e. s is not scheduled on e. Hence

∑

r∈R(s,e)

yr = 0 and thus
∏

s∈S

∑

r∈R(s,e)

yr = 0.

To implement the constraints (13), we consider an n-minimal shipment set S
of some good edge e with n ≤ tmax(e)+1. Let s1, s2, ..., sk denote the shipments
of S, and for each i = 1, 2, ..., k, let Σi denote the expression

∑

r∈R(si,e)

yr. Hence

we have to implement the constraint Σ1 · Σ2 · ... · Σk ≤ xe,n. We consider a
solution fulfilling all route-shipment constraints (3) so that Σi ≤ 1 for each
i = 1, 2, ..., k. If k = 1, then similarly to (11), we implement the constraint
Σ1 ≤ xe,n by the summand M · (Σ1 − Σ1 · xe,n). Note that since Σ1 ≤ 1, we
obtain Σ1 − Σ1 · xe,n = 0 if Σ1 ≤ xe,n, and Σ1 − Σ1 · xe,n = 1 otherwise. Now
assume k ≥ 2. To emulate the product Σ1 · Σ2 · ... · Σk, we introduce auxiliary
binary variables z2, z3, ..., zk. First, we implement the constraint z2 = Σ1 ·Σ2 by
the summand Ω2 := M ·

(

Σ1 · Σ2 + (3 − 2 · Σ1 − 2 · Σ2) · z2

)

. Note that since
Σ1 ≤ 1 and Σ2 ≤ 1, we obtain Ω2 = 0 if z2 = Σ1 · Σ2, and Ω2 ∈ {M, 3M}
otherwise. Now analogously, for each i = 3, 4, ..., k, we implement the constraint
zi = zi−1 · Σi by the summand Ωi := M ·

(

zi−1 · Σi + (3 − 2 · zi−1 − 2 · Σi) · zi

)

.
This forces zi = Σ1 · Σ2 · ... · Σi for each i = 2, 3, ..., k. Finally, we implement the
constraint zk ≤ xe,n by the summand M · (zk − zk · xe,n).

Note that the summands Ωi may be negative in a solution where Σi ≥ 2 for
some indices i. Therefore, it may be favorable (or at least not unfavorable) to
violate some route-shipment constraints (3). To avoid such violations, we add the
auxiliary summand ∆i := M

2 · Σi · (Σi − 1) to our QUBO for each i = 1, 2, ..., k
which is 0 if all route-shipment constraints are fulfilled. It is straightforward
to verify that in all solutions, Ω2 + ∆1 + ∆2 ≥ 0 and Ωi + ∆i ≥ 0 for each
i = 3, 4, ..., k so that it is unfavorable now to violate any constraint.

4 Experiments and Data

The inputs used in this work were generated from a real-world network of hubs in
Europe belonging to DB Schenker. The specific locations and distances between
hubs have been abstracted to comply with data protection laws, but are rep-
resentative of the real-world network. Connections between hubs correspond to
serviced routes between hubs. We use one graphical model to represent the entire
hub network, and generate multiple inputs based on different numbers of ship-
ments: 30, 50, 80, and 100 shipments. In all inputs, every shipment sij travels
from one hub (vi) to another (vj). The direct route, vi → vj along eij , is always
the first candidate route for sij . The other candidate routes are generated by
a staggered k-shortest path approach: shipments are categorized by their OD-
distance, and for each category the k shortest paths are calculated where k
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increases with respect to the OD-distance of the category. For example, ship-
ments up to 200 km have one alternative route while shipments over 1000 km
have up to 10 routes. The volume of the shipments is randomly generated using
an adapted exponential distribution, resulting in many smaller shipments and
few larger shipments.

In this study we use multiple solvers for our SRP instances and gauge the
viability of QUBOs as representations of the problem. We provide a brief intro-
duction and motivation for each solver.

Direct Shipments. We consider the “direct shipment” solution to the SRP as
a simple baseline. The direct solution is computed by routing every shipment
(sij) along its most direct path (eij). Since every shipment origin/destination
is unique in our instances, this equates to using one truck per edge for every
shipment.

Simulated Annealing. Simulated annealing is a well-known heuristic opti-
mization algorithm for combinatorial optimization [22]. The algorithm involves
probabilistically flipping individual variables’ states proportionally to the objec-
tive value change such a flip would induce and the current “temperature” of
the system. Candidate solutions are initialized at random, and the temperature
parameter is initialized to infinity; solutions are slowly “cooled” and the tem-
perature is lowered until the solutions settle in local optima and variable flips no
longer occur. Simulated annealing has been used extensively in benchmarking
studies related to quantum computing [23,24]. The specific implementation of
simulated annealing in this analysis was from the Python package dimod [25].

Tabu Search. This algorithm is another metaheuristic for combinatorial opti-
mization, operating on the principle that searching already-discovered solutions
should be actively discouraged (a “tabu list”). Individual variables’ states are
flipped based on their likelihood of importance in the global optimum [26]. Solu-
tions which worsen the objective function value may be explored by the search
if no other variable flip is possible, which allows for both global and local refine-
ment of solutions. The Python package used for Tabu can be found here [25].

Gurobi. Optimal solutions and optimality bounds were produced by solving the
MIP in Sect. 3.1 using Gurobi, an exact branch-and-bound solver. The benefit of
using Gurobi is that a bound on the optimality of the solutions is provided. Given
that the objective function units are the same for all solvers, this optimality gap
can be used for all solvers in this analysis. The run-time allocated to Gurobi was
24 h per input to obtain good bounds for each instance.

D-Wave Hybrid Solver. The smallest instance in our test set required 787
QUBO variables. While small for the application, this is larger than could be
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solved on D-Wave QPUs at the time of experiments. Instead, a proprietary
hybrid classical-quantum algorithm offered by D-Wave Systems was used, called
the Hybrid Solver Service (HSS), which has been used in previous applica-
tions [27], and admits QUBOs with up to 10k binary variables. The HSS uses
a QPU to optimize clusters of variables, allowing one to leverage the use of a
quantum processor without the overhead of embedding. However, this hybrid
algorithm does not allow direct access to control the QPU in its inner loop.
Therefore, we consider the HSS as a black-box optimizer, and measure the per-
formance as a function of the timeout parameter, similar to Gurobi and other
proprietary solvers.

5 Results

The consolidated results appear in Fig. 2. While the total run-time of Gurobi
was 24 h to obtain good lower bounds, good solutions with an optimality gap
of less than 10 percent were already found after a few minutes for all instances.
For the 30 and 50 shipment instances, we also obtained provably optimal solu-
tions within the first few minutes of optimization. The solutions from Gurobi
were significantly better than those obtained by solving the QUBO formulation.
However, this is possibly due to both the fact that Gurobi is an exact solver
and the way in which the MIP is discretized, as explained in Sect. 3.2. Tabu
search was able to find a near-optimal solution for the 30 shipment instance, but
was unable to find even feasible solutions for any of the other instances. Simu-
lated annealing was able to find feasible solutions, but only in the largest case of
100 shipments was the solution better than the direct shipment approach. The
D-Wave HSS was able to find better-than-direct solutions for the 30, 50, and
80 shipment instances. To attempt a fair comparison, each QUBO solver was
given roughly the same amount of time per test instance. However, the specific
parameter choices corresponding to such times were found and set by hand. We
include the parameter settings chosen in Appendix A.

Table 1. Number of variables and terms needed to describe the problem instances
using binary encoding and good capacity constraints.

Shipments Routes QUBO variables QUBO terms

30 223 787 4856

50 428 1526 16315

80 752 2305 40594

100 925 3318 59014

Throughout our initial experiments, we found that increasing the number
of possible routes for each shipment does not directly correlate with improved
solutions to the original problem (lower total truck km). This is due to the fact
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Fig. 2. Performance of all solvers used in the experiments. We display the results in
units of truck kilometers for ease of comparison. Simulated annealing (SA), Tabu, and
the D-Wave HSS are QUBO solvers, Gurobi is a MIP solver, and the direct solutions
are the simple baseline of one truck per shipment (explained in Sect. 4).

that each additional route creates more minima and a more rugged landscape.
It is important to note that given the way we construct the QUBO– no trucks
along an edge is a valid solution– increasing the number of possible routes can
only create additional minima, not remove minima that have already been cre-
ated. Given this insight, it became even more important to consider the number
of QUBO terms (shown in Table 1) and to improve the QUBO as outlined in
Sect. 3.3.

6 Conclusions

In this work we motivated a logistics optimization problem based on a real-world
use-case, the shipment rerouting problem. This problem models the distance
minimization of a simple objective function– total number of truck kilometers
used to send shipments between nodes in a graph. We presented methods to
translate this problem to a QUBO form using both simple minimization objec-
tives (truck kilometers as weights on decision variables), and hard constraints
(knapsack-like constraints on edges in the graph) to test both quantum and
classical optimization algorithms. We further presented methods to optimize the
QUBO representation in attempts to improve the performance of the algorithms
used in our experiments. We found that there was significant amount of work in
finding such valid QUBO representations. Despite the relatively straightforward
description of the problem, to correctly model the solution landscape was more
subtle, and required multiple iterations of derivations, as explained throughout
the text. Nonetheless, we found it an informative exercise, as the lessons learned
can be applied to future work.
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Of the algorithms tested, Gurobi performed the best despite being an exact
branch-and-bound algorithm. Of the heuristics, we found that the D-Wave HSS
was able to find better than greedy solutions for the smaller problem sizes tested.
We stress that given our small test bed we cannot conclude any one solver being
the best relative to the others, nor was this the intention. Furthermore, we find
that the bar we define as “acceptable” (finding solutions that are better than
direct shipments) was surprisingly difficult for the heuristics to beat. This is
important to note since simulated annealing was able to find valid solutions for
all the problem sizes, but better-than-direct for only the largest problem. From
this, together with the long run-times required to find these valid solutions,
we conclude that this type of logistics optimization problem may not benefit
from transformation to a QUBO for the purpose of being solved with heuristics.
The growth in the number of variables required to solve such relatively small
problems was a bottleneck that could not be compensated for. However, with
the advent of error-corrected quantum processors in the future, it is possible
that this bottleneck can be overcome. Until then, our future research will be
dedicated to finding real-world optimization problems that are better-suited for
current quantum technologies.

A Solver Parameters

Here we present the time allocated to each solver in Table 2, and the corre-
sponding parameters in Table 3. For the D-Wave HSS, we limit the 30 and 50
shipment instances to only 5 minutes of run-time. We note that these 5 minutes
were sufficient for the problems tested. Because we could not control the usage of
the QPU in the D-Wave HSS, we report the QPU run-time in the timing results
rather than a parameter. All software solvers were executed using single-threaded
programs.

Table 2. Table of run-time allocated to each solver in the experimental setup.

Instance Simulated annealing Tabu HSS

30 1 h 1 h 5 min (QPU: 3.0 s)

50 1 h 1 h 5 min (QPU: 1.4 s)

80 1 h 1 h 1 h (QPU: 3.61 s)

100 1 h 1 h 1 h (QPU: 4.34 s)
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Table 3. Parameter sets used for each solver. Parameters not mentioned were set to
default values.

Instance Simulated annealing Tabu HSS

30 2500 samples, 50000 sweeps 1 h timeout 5min timeout, use qpu = True

50 1600 samples, 50000 sweeps 1 h timeout 5min timeout, use qpu = True

80 1000 samples, 50000 sweeps 1 h timeout 1 hr timeout, use qpu = True

100 500 samples, 50000 sweeps 1 h timeout 1 hr timeout, use qpu = True
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