



# NIH Public Access

## Author Manuscript

*Can J Cardiol.* Author manuscript; available in PMC 2015 November 01.

Published in final edited form as:

*Can J Cardiol.* 2014 November ; 30(11): 1307–1322. doi:10.1016/j.cjca.2014.08.027.

## The role of tissue engineering and biomaterials in cardiac regenerative medicine

**Yimu Zhao, MSc<sup>1</sup>, Nicole T. Feric, PhD<sup>2</sup>, Nimalan Thavandiran, MSc<sup>1,2</sup>, Sara S. Nunes, PhD<sup>3</sup>, and Milica Radisic, PhD<sup>1,2</sup>**

<sup>1</sup>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada

<sup>2</sup>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada

<sup>3</sup>Toronto General Research Institute, University Health Network and IBBME, University of Toronto, Toronto, ON, Canada

### Abstract

In recent years, the development of three-dimensional engineered heart tissue (EHT) has made large strides forward due to advances in stem cell biology, materials science, pre-vascularization strategies and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multi-faceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function following cardiac injury. However, EHTs may also serve as surrogate human cardiac tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal in the pharmaceutical industry. Unsafe drugs reach the market because pre-clinical evaluation is insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could provide functional and mature human myocardial tissues, i.e. physiologically relevant platforms, for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an overview of the present state of the art in cardiac tissue engineering, the challenges to the field and future perspectives.

### Keywords

Engineered heart tissue; hPSC-derived cardiomyocytes; cardiac functional restoration; drug screening and discovery; personalized medicine

---

© 2014 Canadian Cardiovascular Society. Elsevier Inc. All rights reserved.

Correspondence to: Milica Radisic, Ph.D., P. Eng., Professor and Canada Research Chair (Tier 2), Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 164 College St, Rm. 407, Toronto, Ontario, M5S 3G9, m.radisic@utoronto.ca, Phone: 416-946-5295, Fax: 416-978-4317.

**Publisher's Disclaimer:** This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## 1. Introduction

Cardiovascular disease is responsible for greater mortality than all cancers combined in the Western world (1). Myocardial infarction (MI) causes irreversible damage to the myocardium, because the adult heart has minimal intrinsic ability to regenerate lost cardiomyocytes (CMs). After the initial insult, fibroblasts (FBs) and endothelial cells (ECs) form a dense collagenous scar that maintains wall structure but is inflexible and non-contractile, often leading to heart failure (2). The most effective present therapy to restore heart function, cardiac transplantation, is limited by insufficient availability of donor organs and the requirement for life-long immunosuppression. Left ventricular assist devices require invasive surgeries and long-term anti-coagulation.

Cardiotoxicity is a major concern for the pharmaceutical industry since differences in the electrophysiological properties of animal and human CMs limit the relevance of pre-clinical animal studies (3). Additionally, human clinical trials are limited by small sample pools and at times skewed genetic and phenotypic diversity.

Cardiac tissue engineering—based on human CMs, biomimetic scaffolds and integrated bioengineering concepts—possesses the potential to partially or fully restore cardiac function and serve as a surrogate human cardiac tissue for drug toxicity screening and personalized medicine. However, there are still many challenges to be overcome before these techniques can move toward clinical applications. This paper aims to review the present state of the art, challenges to the field and future perspectives. We will focus on tissue engineering methods that provide means of constructing human tissues for *in vitro* modelling of disease and drug discovery as well as functional cardiac patches for restoration of contractile function *in vivo* (Figure 1).

## 2. Cell source considerations

The objective of cardiac regenerative medicine is to repopulate the injured site with functional cells to replenish the lost cells and regenerate the damaged cardiac tissue. However, adult CMs are terminally differentiated and have a minute capacity for expansion *in vitro* from biopsies of patient's heart tissue. Therefore, alternative cell sources with abundant availability are necessary. The discovery of human induced pluripotent stem cells (hiPSCs) (4) has enabled the generation of potentially unlimited numbers of autologous CMs (5) for cell therapy and for the development of personalized drug therapies, without the ethical concerns raised by the use of human embryonic stem cells (hESCs). iPSC-derived CMs (iPSC-CMs) are additionally attractive because they can recapitulate some genetic cardiac disorders in standard monolayer cultures (e.g. Long Q-T syndrome (6)) and can also potentially be used to assess patient-specific responses to drugs prior to their use in the body. CM differentiation protocols rely on timed application of growth factors or small molecules that modulate pathways important for cardiogenesis during embryonic development. These molecules are applied to iPSCs or ESCs grown in embryoid body format (7, 8) or in monolayers (9).

In recent years, strong evidence of hESC-CM integration into the recipient heart has been found (10). Most often, *in vivo* integration of hESC-CMs into the recipient hearts has been studied using rodent models (11–13), often criticized as unsuitable due to the large difference in the heart rate between human ventricular CMs (60–120 bpm) and rodent ventricular CMs (350–600 bpm). Studies in a more comparable guinea pig model (200–250 bpm) (14) and recent non-human primate model (100–130 bpm) (15) were able to demonstrate conclusively that hESC-CMs can electrically couple with the recipient hearts post-MI, remuscularize the heart tissue (Figure 2A) and induce ingrowth of perfusable blood vessels (Figure 2B). However, the primate study indicated transient occurrences of disturbances in the heart rhythm such as: ventricular tachycardia (Figure 2C), accelerated idioventricular rhythm (Figure 2D), non-sustained ventricular tachycardia (Figure 2E) and non-sustained accelerated idioventricular rhythm (Figure 2F). These recent findings have motivated the development of new and improved approaches for selecting CMs of an appropriate maturity level in hopes of improving graft-host coupling, and the development of safe and effective methods for delivering the cells to the heart using biomaterials (15) and engineered tissues (16). Additionally, hESC-CMs are allogeneic, thus they could give rise to an immune response upon *in vivo* application; and although unlikely, the presence of residual undifferentiated cells could give rise to the formation of undesired tissue structures in the recipient hearts. Therefore, hESC- and iPSC-CMs have not progressed towards clinical trials yet.

Instead, a large number of current clinical trials focus on cell replacement through the application of bone marrow mesenchymal stem cells (17, 18), mononuclear cells (18–21) and more recently, cardiosphere-derived cardiac progenitor cells (CADUCEUS (22)). Although most of these cell types have no intrinsic ability to give rise to large numbers of beating CMs *in vitro*, they improve function *in vivo* mostly through paracrine effects as delineated in mechanistic pre-clinical studies (23, 24).

Despite showing improvements in cardiac function in both pre-clinical and clinical studies, the wide range of tested cell injection strategies (25–32) have been plagued by excessive cell death after delivery (33) and challenges with functional integration (34–36), motivating the development of biomaterial strategies to improve cell survival *in vitro* and *in vivo*. For example, Matrigel was mixed with molecules that prevent anoikis and apoptosis, successfully delivering hESC-CMs into the ventricles of infarcted rat hearts (37). Although readily available, Matrigel is not clinically relevant because it is derived from the basement membrane of a mouse sarcoma, motivating the development and use of other natural and synthetic hydrogels, such as alginate (38), polyethylene glycol (39), self-assembling peptide hydrogels (40), fibrin gels (41, 42) and collagen:chitosan blends (43).

Another important aspect of cell-based therapy is the demand for large cell quantities. Typically,  $10^6$  cells are transplanted in mouse MI models (44) (0.15 g heart) (15),  $10^7$  in rat (37, 45) (1 g),  $10^8$  in guinea pig (14) (3 g) and  $10^9$  for non-human primates (37–52 g) (15). Based on this scaling, clinical application in humans (300 g) (15) would require  $10^{10–11}$  cells for sufficient engraftment of the infarct area. The expense and time required for such extensive cell expansion and differentiation are prohibitive and therefore unlikely to be undertaken for a large sample pool. Extremely low cell retention and survival are the

primary causes for the large cell requirements, and if addressed could significantly reduce the cell demand (42, 46). For significant improvements in both cell survival and retention, the solution may be a graft with tissue-level connections and a high-level of vascular organization for immediate perfusion, thus motivating studies in cardiac tissue engineering and the development of biomaterials that can promote cell survival both *in vitro* and *in vivo*.

Overall, current consensus in the field is that due to potentially unlimited cell quantities and the ability to give rise to bona fide CMs *in vitro*, hESC- and iPSC-CMs are a preferred cell source for *in vitro* modelling of cardiac physiology and disease, while adult cell sources remain highly explored in clinical studies due to demonstrated safety.

### **3. Tissue engineering and biomaterials for the restoration of cardiac function *in vivo***

Tissue engineering methods have the potential to provide the means of delivering appropriate cells, by co-injection with a biomaterial or as a lab-grown tissue, to the damaged heart for the purpose of restoring cardiac function lost due to injury from MI or disease (Figure 1). Ideally, both the beating CMs and the vasculature should be restored upon intervention, which should be minimally invasive. Below, we review recent bioengineering advances related to the development of supportive matrices and fully functional engineered cardiac tissues. We specifically focus on myocardial regeneration as an alternative to bioengineering methods for heart valve replacement, highlighting animal models and clinical studies. We will also focus on the vascularization of engineered myocardial tissues, a requirement for both *in vitro* and *in vivo* survival.

#### **3.1 Acellular biomaterial implants**

Application of biomaterials alone to the myocardium has been shown to reduce adverse changes in the heart geometry (cardiac remodeling) post-MI in both small and large animal models (47–49), presumably due to the ability of the biomaterials to stabilize the mechanical properties of a thinning ventricular wall. Natural biomaterials—e.g. alginate, collagen, gelatin, chitosan, decellularized extracellular matrices (ECMs) and fibrin glue—have been used to enhance the mechanical strength of the ventricular wall, with or without growth factors (VEGF, bFGF, HGF) immobilized to improve wound healing and cell survival (50–52).

Cohen's group developed a minimally invasive method of delivering alginate into the infarct site, which was demonstrated to reduce left ventricle enlargement in a swine MI model (38). In this study, biotin-labeled alginate was injected into the coronary artery through a catheter without open heart surgery. The alginate solution diffused out of the infarcted leaky vessels into the damaged myocardium where a high concentration of calcium ions, released due to cell damage, induced the alginate to undergo a liquid to gel transition (53). Because the method is simple and minimally invasive, and the material requires few manipulations *in vitro*, the treatment was approved by the FDA for clinical trials. Currently, there are two Phase II clinical trials with alginate biomaterials for treatment of acute MI (54, 55).

VentriGel, a hydrogel composed of decellularized porcine ECM, is also progressing towards clinical trials following successful pre-clinical study in pigs that demonstrated attenuated pathological remodelling and improvements in contractile function with gel injection into the heart upon MI (56).

However, acellular biomaterial treatments do not provide a long-term regenerative solution because they do not supply a means of replacing the millions of lost cells, the hallmark of cardiac regeneration. In addition, biomaterials with long degradation cycles could cause adverse remodelling due to the presence of non-contractile or poorly contractile heart wall regions.

### 3.2 Engineering heart tissues

Engineered heart tissue (EHT) has the potential to restore cardiac function (57) based on proof-of-concept studies that demonstrated implanted EHTs could be functionally integrated with the host heart (58, 59) and improve heart function post-MI (57, 58, 60). This was first demonstrated 10 years ago, in the landmark study by Zimmermann *et al*<sup>43</sup> wherein implantation of EHTs on the epicardial surface of the heart was clearly shown to result in functional improvement post-MI. Since *in vitro* approaches aim to organize cells into functional tissues, common functionality bench-marks include the ability to generate a contraction force (25 mN/mm<sup>2</sup> for healthy human adult tissue (61)) and propagate electrical signals (~43 cm/s for healthy human adult tissue (62)). According to a classic tissue engineering paradigm, cells and scaffolds in combination are cultivated in a bioreactor in order to achieve a desired degree of functionality. Neonatal rat CMs are commonly used as a model system (63) but the use of hESC-CMs has been gaining momentum, as the differentiation protocols are improved (64–66). Porous or fibrous scaffolds made from synthetic materials (PGA/PLLA, PGS (67, 68)) as well as natural materials (alginate (69), collagen (70), chitosan (71)) are often used (72). The use of hydrogels has also been reported (38), (73). In recent years, decellularized heart emerged as an attractive scaffold in the form of a porous material (74, 75) or hydrogel (76) for CM cultivation since the main components of the cardiac ECM and architecture were preserved during the decellularization process. Additionally, advances in microfabrication and patterning of synthetic materials have enabled the creation of tissues with a high degree of anisotropy (77–80).

Nanotechnology techniques have been adopted into cardiac tissue engineering to enable the production of scaffolds that aid in functional cardiac tissue formation. For example, gold nanowires were incorporated into porous alginate scaffolds to improve scaffold conductivity for cardiac cell culture (81). To mimic the coiled fibers of the native heart matrix as well as high electrical conductivity, neonatal rat CMs were cultivated on scaffolds generated from electrospun poly( $\epsilon$ -caprolactone) micro-fibers doped with gold nanoparticles (82). Tough, yet flexible scaffolds with enhanced electrical properties were created by incorporating carbon nanotubes (CNTs) into aligned poly(glycerol sebacate):gelatin electrospun nanofibers (83). To form biohybrid actuators, carbon nanotubes were incorporated into gelatin methacrylate for cardiac cell culture (84). Nanotechnology techniques can also be used to help monitor the function of engineered cardiac tissues, e.g. a mesh of silicone

nanowires was incorporated into fibrous PLGA scaffolds to enable real-time monitoring of electrical activity of cardiac constructs (85).

EHTs can also be created without a scaffold using stacked CM monolayers. The cells are first grown on poly(*N*-isopropylacrylamide)-grafted polystyrene dishes. Lowering the temperature from 37 °C to 20 °C resulted in a hydrophobic to hydrophilic transition of the surface, which released the cell monolayer. Transplantation of these cell sheets onto the epicardial surface of infarcted rat hearts (86) or failing human hearts (87) improved cardiac performance.

External biophysical stimulation can be used to enhance the maturation levels of hESC-CMs or hiPSC-CMs that are generally considered immature compared to the terminally-differentiated adult human CMs (88, 89). Long-term (up to 6 months) monolayer culture has been demonstrated to push hESC-CMs and hiPSC-CMs toward higher maturation levels as assessed by morphology and subcellular organization, including myofibril density, alignment and Z-disk registration (90). In terms of function, studies clearly demonstrated that physical stimuli, such as mechanical (73) or electrical (91–93), are important to the morphology and function of EHTs.

Hirt *et al* (94) presented similar results in a recent study demonstrating the beneficial effects of long-term electrical stimulation. Stimulated hydrogel-based EHTs exhibited an improved cardiac tissue structure and function, including higher contraction force, denser CM networks, better gap junction coupling, a physiological response to external calcium ion stimulation and an increased inotropic response to isoprenaline.

The fetal heart experiences mechanical stress very early and mechanical stimuli may trigger sarcomere development in CMs resulting in maturation and physiological hypertrophy. To simulate the *in vivo* maturation condition, Tulloch *et al* (95) carried out both static and cyclic mechanical stimulation using a FLEX Cell device, demonstrating an improved cell and matrix alignment approximating a native cardiac muscle.

Because of the interconnected nature of electrical and mechanical signals *in vivo*, it has been postulated that a combination of both electrical and mechanical stimulation could provide a better isovolumetric contraction *in vitro* by triggering the appropriate dynamics between stretch and contraction (96). Recently, Morgan and Black (97) built a bioreactor platform with integrated electrodes and mechanical stretching driven by compressed air that enabled controlled electrical and cyclic mechanical stimulation. It was observed that electrical or cyclic stretching alone had similar effects on the tissue, but the most impressive effects were observed with delayed combined stimulation (electrical pacing starting 0.49 s after mechanical stretching) and resulted in an increase in the expression of SERCA2a and cardiac troponin-T, proteins responsible for calcium handling and contractility. The results indicate the importance of combined electromechanical simulation and the selection of appropriate timing for stimulation (97). Similarly, Miklas *et al* (98) combined electrical pacing with static stretching and found improved sarcomere structure and increased contractile force.

The optimal level of maturation that EHTs should achieve before implantation is still to be determined. While a more mature cell population is clearly desired in terms of electrophysiological matching with the native adult human tissue, maintaining the viability of fully matured CMs or cardiac tissues during handling and implantation may be more challenging due to their higher metabolic demands. In contrast, a tissue composed of less mature cells may be more robust and due to its higher plasticity may aid in survival upon implantation. However, the risk of improper functional coupling after implantation and therefore the incidence of arrhythmias may be higher with EHTs composed of less mature cells.

### 3.3 Vascularization

One important factor for EHT implant survival is rapid vascularization and the establishment of a mature, fully functional vasculature that is integrated with the host tissue. Upon MI, the infarcted area can cover as little as several mm to as much as 50% of the left ventricle, a fatal scenario (99). In the case of reparable damage, the required EHT would preferably be of equivalent size or larger. For repair of infarcts that span the entire thickness of the ventricular wall, EHTs up to 1 cm in thickness would be required. However, engineered tissue thicker than 500  $\mu$ m will suffer from insufficient transfer (mainly by diffusion) of oxygen (100) and nutrients for the high volumetric consumption rate (67). CMs require a particularly high level of oxygen supply to support their continuous beating action (67, 100, 101). Based on the average oxygen consumption rate of CMs of 26.7 nmol/min/mg protein, engineered tissues containing a high cell density (e.g.  $10^8$  cells/m<sup>3</sup>) can be expected to consume oxygen at the rate as high as 10  $\mu$ M/s (102). Coupled with low oxygen solubility in an aqueous solution (220  $\mu$ M at normoxia and 37 °C) devoid of oxygen carriers (e.g. hemoglobin in blood), without perfusion, constant media oxygenation or a means to increase total oxygen concentration in the culture media, all oxygen would be depleted in a mere 22 s.

Therefore, one of the great challenges to engineering healthy and functional EHTs is supplying CMs in the tissue with adequate oxygen and nutrients via vascularization. The high metabolic rate of CMs is supported by a high capillary density in the native myocardium (103). In addition, the presence of a vasculature along with supporting cells such as fibroblasts, may support CM survival indirectly through paracrine signaling and gap junctional coupling (104–106). We focus here on reviewing vascularization approaches relevant to the production and implantation of EHTs and refer the reader to other excellent reviews on the general topic of cardiac revascularization (107–109).

Initial solutions to the problem of vascularization were derived from biological methods (i.e. growth factor delivery, gene therapy, cell therapy, etc.) that attempted to stimulate endogenous blood vessel growth into the infarcted myocardium but these approaches met with only limited success (110–113). For example, the delivery of angiogenic growth factors, such as vascular endothelial growth factor (VEGF), by protein or gene therapy was found to cause the formation of a highly disorganized and leaky vasculature (114). These methods are further limited by complicated pharmacokinetics, the high cost of factor levels, the requirement for localized effects and in the case of gene therapy, low *in vivo* transfection

rates (115, 116). MicroRNAs, small non-coding RNAs, were recently successfully employed to direct myocardial angiogenesis (117), (118). However, it seems unlikely that endogenous endothelial repair alone can regenerate a major infarct or a fully-formed scar tissue (119).

In a pre-vascularization approach, cardiac patches with angiogenic factors were placed on the omentum for one week prior to inducing an MI, and then transferred to the heart post-MI (69). While improved cardiac function was demonstrated 4 weeks post-MI in the omentum-generated cardiac patch group, this approach has some disadvantages including the need for two invasive surgeries (implantation and removal from the omentum) and the temporary cessation of blood flow to the tissue during surgery.

Biomaterial-based vascularization methods have also been investigated and include porous collagen scaffolds with (50, 120, 121) and without (122) covalently-immobilized angiogenic factors, alginate with two growth factors (VEGF and PDGF-BB) sequentially released, and decellularized porcine myocardial matrix (123), all of which were demonstrated to induce angiogenesis when placed on the myocardium. Additionally, co-culture of ECs and CMs or tri-culture of ECs, FBs, and CMs are now accepted as viable methods to enhance patch survival and anastomosis, partly through the cross-talk between ECs and CMs that improve CM survival and spatial organization (124–128).

Engineering-based vascularization strategies include the fabrication of branching templates on which ECs assemble. Borenstein *et al* (129), (130) first fabricated such templates by silicon etching using polydimethylsiloxane (PDMS) molding. An *in vitro* perfusable 3D microtissue cardiac bundle model was also developed using a polytetrafluoroethylene (PTFE) tubing template (131). However, materials such as PDMS and PTFE are non-biodegradable and thus have limited usefulness *in vivo*. Consequently, the field has shifted to the use of biocompatible and biodegradable materials such as poly(lactide-co-glycolide) (PLG) and poly(glycerol sebacate) (PGS). The mechanical strength and the biodegradable properties of PGS allow it to be molded into a vascular network using standard soft lithography techniques (132). A subtractive method is commonly used to create perfusable vessels in hydrogels, wherein a sacrificial vascular network is first created from e.g. gelatin (133, 134) and then embedded within a cell-laden hydrogel. The gelatin is then removed by increasing the temperature of the construct, leaving behind open channels for endothelialization. A mechanically stable carbohydrate glass was also used to rapid cast a patterned vascular network in hydrogels (135). While promising, these hydrogel-based methods have their own shortcomings, which include the inability to reach physiological cell density within the gel while preserving the open lumens of the engineered vasculature and the inability to apply this architecture *in vivo* in a minimally invasive manner.

To address these limitations, biological and engineering methods have been combined in attempts to design microfabricated scaffolds that can guide tubulogenesis. Chiu *et al* (136) used a collagen-chitosan blend hydrogel to control the release of thymosin $\beta$ 4 (T $\beta$ 4), and induced recruitment and differentiation of ECs and smooth muscle cells (SMCs) in epicardial capillary outgrowths *in vitro* and augmented angiogenesis *in vivo* following subcutaneous injection (136) (137). When administered through intra-myocardial injections

to infarcted rat hearts, the T $\beta$ 4-encapsulated gel was demonstrated to significantly decrease viable tissue loss and to maintain wall thickness post-MI (137). A microgroove pattern coated with T $\beta$ 4-encapsulated hydrogel could direct capillary sprouting between an explanted artery and vein and the addition of VEGF and hepatocyte growth factor (HGF) accelerated the sprouting processes and resulted in lumen formation (138). Neonatal rat CMs seeded around the engineered vasculature exhibited improved function and enhanced cross-striations. However, it remains a challenge to form fully functional vascular beds that can be injected and can integrate quickly with the host vasculature. Vascular integration is a necessity to sustain the implanted cells/tissue, which can then allow for the much slower process of muscle fiber electrical coupling between the implanted cells/tissue and the host tissue (139).

## 4. Applications of tissue engineering in modeling of cardiac physiology and drug discovery

Tissue engineering could also provide a new paradigm for pre-clinical drug development programs by providing physiologically validated human cardiac substrates (Figure 1). Ideally, bioengineering methods can provide arrays of functional and mature human myocardial tissues for screening the side effects of drug candidates and the discovery of new therapeutic agents. Such tissue arrays should be compatible with standard screening practices that use well plates, electrodes to evaluate electrophysiological properties and standardized imaging equipment such as microscopes or high-content imaging instruments. These tissue engineered platforms, may be most useful prior to initiation of animal and clinical studies, in the target validation and lead optimization stages of drug development.

### 4.1 Engineering cardiac microtissues

Thousands of human cardiac tissues may be required per day in order to satisfy the demand of the pharmaceutical industry in the drug screening process. Even with the use of hESCs or iPSCs as a source of CMs, cell production would quickly become an issue in the envisioned approach. Hence, tissue engineers focused on creating miniaturized 3D microtissues (~500  $\mu$ m in width) usually by means of cell-gel compaction in a temperature-curing hydrogel. Zhao *et al* (140) developed a microtissue platform to investigate the mechanical properties of engineered tissues and found that the stiffness of the tissue is mostly contributed by the ECM structure, which is reorganized by the cells. To mimic important cues present during embryonic development such as ECM composition, tension and tri-dimensionality, Nunes *et al* (89) used microfabricated wells (Figure 3A) of constant height and width but variable length to house a surgical suture in a multiwell plate (Figure 3B) that would serve as a template to guide collagen type I gel compaction. Gel compaction (Figure 3C–D) promoted the alignment of the hESC-CMs and hiPSC-CMs in the 3D microtissues (Figure 3F), termed “Biowires”, such that they resembled cardiac myofibers. The platform also permitted electrical pacing to be provided to the cardiac Biowires through electrical field stimulation (Figure 3F) and the study of the effect of applied drugs (e.g. epinephrine) on contractile properties and impulse propagation (Figure 3F). The biomimetic cues provided by the Biowire platform promoted maturation of the CMs, as determined by an improved ultrastructural organization of the myofibrils, significantly increased conduction velocity,

increased cell size and aspect ratio, decreased proliferation rates, improved electrophysiological and  $\text{Ca}^{2+}$  handling properties, and significantly reduced number of CMs with automaticity. The small size of these cardiac Biowires allows for (i) maintenance in culture without the need for perfusion, (ii) the use of low cell number and (iii) compatibility with multiwell plates (Figure 3B), suggesting that Biowires may be used as an *in vitro* platform for drug screening.

Alternatively, Thavandiran *et al* (141) used a microfabricated platform to engineer cardiac microwires (**CMWs**) composed of 100,000 cells. The 24-well plate platform was designed such that five CMWs could be generated per well providing a total of 120 tissues per plate. Notably, this study closely investigated the cell composition of the cardiac tissue input population. Primary cells are a heterogeneous mixture of native heart cells that can self-assemble, whereas hESC-derived heart cells have undefined "structural" cell types. An understanding of the contributions of these cells to overall tissue organization and function is lacking. A computational model of intra-tissue stress and sarcomere contractility was also developed to biomechanically advise the final tissue mold design (Figure 4A), a model that could be applied in the design of *in vitro* models for other tissue types. Thavandiran *et al* were also able to identify an optimal hPSC-CM: cardiac FB ratio for the input population, as assessed by tissue morphogenesis and cardiac maturation (Figure 4B). The expression of many of the contractile markers of CMs (including MYL2, MYL7, MYH6, and MYH7) reflected improved maturation (142). Furthermore, Thavandiran *et al* (141) used their design criteria to create a disease model, a tachycardic model of arrhythmogenesis, by forming geometrically distinct circular tissue that could be defibrillated by electrical stimulation from a state of arrhythmia to a normal rhythm (Figure 4C).

Similarly, Hirt *et al* (143) reported an *in vitro* model to simulate the pathological cardiac hypertrophy induced by increased afterload by initially casting a fibrin-based EHT between two hollow elastic silicone posts. After 2 weeks, the posts were reinforced with metal braces in order to increase the afterload. This modification was sufficient to induce pathological cardiac hypertrophy, increase collagen type I deposition, reduce contractile function and impair diastolic relaxation. These 3D microtissue platforms therefore present a unique opportunity for creating a controllable microenvironment, healthy or disease-specific, in which to investigate various aspects of cardiac pathophysiology.

The requirements for an EHT used for cardiac-specific toxicity screening differ from those of an EHT used for functional repair *in vivo*. Since the EHTs used in drug toxicity studies require high-fidelity mimicking of the human adult cardiac tissue, the cells should ideally be terminally differentiated and fully mature. Drug testing also requires tissue growth automation, miniaturization and the ability to manufacture it in large quantities with reproducible standard dimensions and physiological properties.

#### 4.2 Personalized medicine and drug discovery

Most of the current studies using iPSC-CMs for disease modelling have been performed in monolayers. Cardiac tissue engineering could potentially offer a new range of readouts and improve the maturity of iPSC-CMs. Using patient-derived iPSC-CMs, Liang *et al* (144) demonstrated that susceptibility to cardiotoxic drugs differed among healthy individuals and

patients with hereditary long QT syndrome (LQTS), familial hypertrophic cardiomyopathy (HCM) and familial dilated cardiomyopathy (DCM), indicating the utility of this method in drug development and screening. Similarly, Wang *et al* (145) used patient-derived iPSC-CMs to investigate the mitochondrial cardiomyopathy underlying Barth syndrome (Figure 5A–C); Carvajal-Vergara *et al* (146) investigated patients with LEOPARD syndrome, a major phenotype of which is hypertrophic cardiomyopathy (Figure 5D–E); Yazawa *et al* (6) investigated LQTS patients with Timothy syndrome (Figure 5F–K); Moretti *et al* (147) investigated a family with LQTS type I caused by a specific missense mutation; and Sun *et al* (148) investigated a family with an inherited form of DCM. In all cases, the patient-derived hiPSC-CMs recapitulated the major disease phenotypes, and in some cases the disease models were used to provide insight into the molecular mechanisms underlying the pathology (6, 145, 146) or as drug testing platforms (6, 148) (Figure 5).

The entire drug development process, from target discovery to FDA approval, takes an average of 15 years and costs the pharmaceutical industry an average of \$1.5 billion. Despite the heavy investment, there are still drugs withdrawn from the market due to serious toxicities and adverse effects on the cardiovascular system, such as Tegaserod (Zelnorm), Sibutramine (Reductil/Meridia), Propoxyphene (Darvocet/Darvon) and Rosiglitazone (Avandia) (3). To weed out unsafe drugs more efficiently, 3D microtissues could be used to screen for the cardiotoxic effects of pharmaceutical agents as well as their liver metabolites *in vitro*. In addition to testing compounds that bind to the hERG channel, which is a major concern in cardiac safety testing due to the ability of hERG-binding compounds to cause fatal arrhythmias (149), engineered tissue substrates could give more integrated contractility readouts and delineate rhythm disturbances due to interference with other ion channels and contractile proteins as well. Importantly, multiple ion currents—sodium ( $I_{Na}$ ), L- and T-type calcium ( $I_{CaL}$  and  $I_{CaT}$ , respectively), inward rectifier potassium ( $I_{K1}$ ), rapid and slow activating components of the delayed rectifier potassium ( $I_{Kr}$  and  $I_{Ks}$ , respectively), transient outward potassium ( $I_{to}$ ), and “funny” pacemaker ( $I_f$ )—were recorded in iPSC-CMs at physiologically relevant levels (150). There is also some evidence that the representative ion currents (e.g. hERG channel and  $I_{K1}$ ) were enhanced using cardiac tissue engineering techniques (89) as compared to cultivation in embryoid body controls.

#### 4.3 Functional readouts enabled by cardiac tissue engineering

The availability of 3D human cardiac tissues motivates the development of novel techniques for non-invasive tracking of tissue function and contractile response. Patch clamping is most accurately used to test individual ion channel conductance, even in a high-throughput manner, with single-cell suspensions (151), therefore it cannot be applied in a non-invasive manner to a 3D tissue. Recently, multi-electrode arrays (MEA) were utilized to detect the action potential (AP) changes in monolayer or 3D aggregates (152). Braam *et al* (153) showed that the field potential measured by an MEA can reveal changes in drug-treated CMs. Clements and Thomas (154) used hESC-CMs in a 48-well format MEA analysis to generate multi-parameter data in order to profile the effects of 21 different compounds targeting key cardiac ion channels. They were able to demonstrate improved risk assessment over single-parametric approaches, indicating the validity of designing multi-parameter screening platforms. However, the drawbacks include the vague resemblance of the self-

aggregated cell spheroid used to the 3D structure of the native ventricle; the complexity of obtaining an integrated AP profile in 3D; and the possibility of tissue damage resulting from inserting the MEA into the tissue after tissue formation.

Velocity of impulse propagation and calcium handling are commonly assessed by optical mapping in 3D cardiac tissues (155–157). Due to the toxicity of either the voltage- or the calcium-sensitive dye and the non-sterile environment, the assessment is a terminal stage evaluation that cannot be used for long-term observation (155). Conversely, the xCelligence RTCA Cardio Instrument is a label-free, real-time system for dynamic monitoring of CM beating and cardiotoxicity assessment. The gold microelectrode plate at the bottom of culture well is used to measure the changes of impedance of the monolayer tissue while beating. The company presented impressive data on toxicity screening of drugs with known effects (158). Unfortunately, their technology can only assess 2D monolayers and the data is an indirect measurement of tissue contractility, which cannot be translated into actual force measurements (158).

Contractile assessment of 3D cardiac tissues includes measurements of contraction force, beating frequency, as well as contraction and relaxation duration. It is hypothesized that these properties of a cardiac microtissue could be related to cardiac output (63, 73). Because of their small size, engineered cardiac microtissues are fragile and easy to damage when handling, and therefore most research groups work with optical tracking to minimize the manipulation during culture and analysis. Measuring changes in cell or tissue area during contraction using image analysis does not provide an absolute value for the force generated (91). However, optical tracking could be used to measure the deflection of posts around which cardiac tissue is grown to obtain an absolute value for the contraction force (141, 159).

Muscular thin films (MTF) are composed of a 2D layer of engineered muscle grown on one side of a PDMS film. The thin film undergoes deformation as a result of contraction when electrically stimulated. Optical recording of MTF contraction is filmed and the contractile forces of the tissue are calculated by analyzing the recording using a mathematical model (160, 161). This platform can be used for both smooth and striated muscle models. However, because the MTFs consist of an oriented monolayer of cardiac cells, they are more representative of 2D cell layers rather than 3D solid tissues.

Eschenhangen *et al* (162) developed a drug screening platform in a 24-well format, in which hPSC-CMs were seeded with fibrin enhanced ECM. Each well included two silicone posts for tissue formation and functional testing. Beating of the tissues resulted in the inward deflection of the posts and the degree of deformation could be correlated to the contractile forces using mathematical models, as the stiffness of the PDMS can be determined by standard mechanical testing protocols. The system was able to realize long-term monitoring of tissue contractile force, contraction and relaxation duration, and beating frequency in a sterile manner (163–165). In terms of drug screening, digoxin toxicity was confirmed at both 100 nM and 1000 nM using force measurements; and repolarization inhibitors, such as chromanol 293B, quinidine and erythromycin, were found to induce significantly prolonged diastolic times at 1000 nM.

Boudou *et al* (159) also used a PDMS post system to study the relationship between EHT quality and the stiffness of the posts and collagen matrix. They miniaturized the posts down to 1 mm in length and were able to produce 200 EHTs with 1 million CMs. Dose response to both isoproterenol and digoxin was tested in this platform. Both ionotropic and toxic effects of digoxin, consistent with the literature, could be demonstrated in this platform (166). Similarly, the effects of isoproterenol were consistent with the literature showing increased contractile forces at a low dosage and decreased forces at a high dosage.

Another study introduced fluorescent microbeads (167, 168) on top of the posts and reduced the scale significantly to the micrometer level to facilitate the image processing strategy. Magnetic beads have also been incorporated into posts to facilitate magnetic stretching and thereby, accelerate tissue maturation (140). Rodriguez *et al* (169) recently designed a PDMS-based micropost array platform for the assessment of CM contractility using optical tracking of the post locations that enabled measurement of twitch force, velocity and power.

The limitation of these contraction-based platforms is that the setup can only measure contractile forces along one dimension. Also PDMS is much stiffer (~1 MPa) than the native myocardium (~10–100 kPa), which may trigger pathological hypotrophy in the EHTs. Another commonly recognized limitation is the high hydrophobicity of PDMS, which is linked to its ability to absorb small hydrophobic molecules motivating the development of novel materials, e.g. polyurethanes to replace PDMS (170).

## 5. Conclusions and Future Challenges

Cardiac regenerative medicine has made significant progress in recent years. Successful pre-clinical studies have demonstrated the integration of cardiac patches to recipient hearts and the ability to improve contractile function. A cellular biomaterials, such as alginate and decellularized ECM, are already in clinical studies and challenges related to cell retention are being addressed using novel biomaterials. In terms of vascularization, EHTs with pre-established, perfusable, 3D, continuous vasculature can be potentially scaled up to clinically relevant size and thickness. In addition, immediate integration into the host circulation by *in situ* anastomosis may be needed to significantly improve the survival of CMs in implants.

Cardiac tissue engineers are also developing human cardiac microtissue platforms that can offer non-invasive readouts of contractile force and use small cell numbers per tissues (e.g. 100,000–500,000 cells). Coupled with iPSC technology, these platforms can offer improved disease modelling tools. Current drug toxicity screening requires microtissues that closely mimic human adult cardiac tissue. To achieve a high level of maturation, a fully established protocol with biochemical, electrical and mechanical stimuli should be designed to push tissue towards a fully mature stage. In addition, due to the fact that the vasculature contributes a great degree to drug distribution *in vivo*, it would be physiologically relevant to have a miniaturized integrated cardiovascular system *in vitro* to facilitate toxicity screening.

## Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

## References

1. Alwan, A.; Armstrong, T.; Bettcher, D.; Branca, F.; Chisholm, D.; Ezzati, M., et al. Global Status Report on noncommunicable Diseases 2010. Geneva: World Health Organization; 2010.
2. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. *Science*. 2009; 324(5923):98–102. PubMed PMID: 19342590. [PubMed: 19342590]
3. Piccini JP, Whellan DJ, Berridge BR, Finkle JK, Pettit SD, Stockbridge N, et al. Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the Critical Path Initiative. *Am Heart J*. 2009; 158(3):317–336. Epub 2009/08/25. doi: S0002-8703(09)00449-9 [pii] 10.1016/j.ahj.2009.06.007. PubMed PMID: 19699852. [PubMed: 19699852]
4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell*. 2007; 131(5):861–872. PubMed PMID: 18035408. [PubMed: 18035408]
5. Zhang J, Wilson GF, Sorens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. *Circulation research*. 2009; 104(4):e30–e41. PubMed PMID: 19213953. [PubMed: 19213953]
6. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. *Nature*. 2011; 471(7337):230–234. PubMed PMID: 21307850. [PubMed: 21307850]
7. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. *Dev Cell*. 2006; 11(5):723–732. PubMed PMID: 17084363. [PubMed: 17084363]
8. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. *Nature*. 2008; 453(7194):524–528. PubMed PMID: 18432194. [PubMed: 18432194]
9. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. *Proceedings of the National Academy of Sciences of the United States of America*. 2012; 109(27):E1848–E1857. PubMed PMID: 22645348. [PubMed: 22645348]
10. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. *Nature*. 2012 PubMed PMID: 22864415.
11. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. *Nat Biotechnol*. 2004; 22(10):1282–1289. PubMed PMID: 15448703. [PubMed: 15448703]
12. Gepstein L, Ding C, Rahmutula D, Wilson EE, Yankelson L, Caspi O, et al. In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. *Stem Cells*. 2010; 28(12):2151–2161. PubMed PMID: 20960511. [PubMed: 20960511]
13. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. *Circulation*. 2005; 111(1):11–20. PubMed PMID: 15611367. [PubMed: 15611367]
14. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. *Nature*. 2012; 489(7415):322–325. Epub 2012/08/07. doi: nature11317 [pii] 10.1038/nature11317. PubMed PMID: 22864415; PubMed Central PMCID: PMC3443324. [PubMed: 22864415]
15. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. *Nature*. 2014 Epub 2014/04/30. doi: nature13233 [pii] 10.1038/nature13233. PubMed PMID: 24776797.
16. Godier-Furnemont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. *Proceedings of the National*

Academy of Sciences of the United States of America. 2011; 108(19):7974–7979. PubMed PMID: 21508321. [PubMed: 21508321]

17. Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. *Circulation research*. 2014; 114(8):1302–1310. doi: 10.1161/CIRCRESAHA.114.303180. PubMed PMID: 24565698; PubMed Central PMCID: PMC4104798. [PubMed: 24565698]
18. Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. *JAMA : the journal of the American Medical Association*. 2014; 311(1):62–73. doi:10.1001/jama.2013.282909. PubMed PMID: 24247587; PubMed Central PMCID: PMC4111133.
19. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. *Circulation*. 2003; 107(18):2294–2302. PubMed PMID: 12707230. [PubMed: 12707230]
20. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. *JAMA : the journal of the American Medical Association*. 2012; 308(22):2380–2389. doi:10.1001/jama.2012.28726. PubMed PMID: 23129008; PubMed Central PMCID: PMC3652242.
21. Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. *JAMA : the journal of the American Medical Association*. 2012; 307(16):1717–1726. doi:10.1001/jama.2012.418. PubMed PMID: 22447880; PubMed Central PMCID: PMC3600947.
22. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. *Lancet*. 2012; 379(9819):895–904. PubMed PMID: 22336189. [PubMed: 22336189]
23. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnechchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. *Journal of molecular and cellular cardiology*. 2011; 50(2):280–289. doi:10.1016/j.jmcc.2010.08.005. PubMed PMID: 20727900; PubMed Central PMCID: PMC3021634. [PubMed: 20727900]
24. Gnechchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. *Nature medicine*. 2005; 11(4):367–368. doi:10.1038/nm0405-367. PubMed PMID: 15812508.
25. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. *Nature*. 2008; 453(7193):322–329. Epub 2008/05/16. doi:10.1038/nature07040. PubMed PMID: 18480813. [PubMed: 18480813]
26. Murry CE, Field LJ, Menasché P. Cell-based cardiac repair reflections at the 10-year point. *Circulation*. 2005; 112(20):3174–3183. [PubMed: 16286608]
27. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. *J Clin Invest*. 1996; 98(11):2512–2523. Epub 1996/12/01. doi: 10.1172/JCI119070. PubMed PMID: 8958214; PubMed Central PMCID: PMC507709. [PubMed: 8958214]
28. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. *Nat Med*. 2003; 9(9):1195–1201. Epub 2003/08/12. doi:10.1038/nm912. PubMed PMID: 12910262. [PubMed: 12910262]
29. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. *Cell*. 2003; 114(6):763–776. PubMed PMID: 14505575. [PubMed: 14505575]

30. Doss MX, Koehler CI, Gissel C, Hescheler J, Sachinidis A. Embryonic stem cells: a promising tool for cell replacement therapy. *Journal of cellular and molecular medicine*. 2004; 8(4):465–473. Epub 2004/12/17. PubMed PMID: 15601575. [PubMed: 15601575]
31. Smits AM, van Vliet P, Hassink RJ, Goumans MJ, Doevedans PA. The role of stem cells in cardiac regeneration. *Journal of cellular and molecular medicine*. 2005; 9(1):25–36. Epub 2005/03/24. PubMed PMID: 15784162. [PubMed: 15784162]
32. He Q, Trindade PT, Stumm M, Li J, Zammaretti P, Bettoli E, et al. Fate of undifferentiated mouse embryonic stem cells within the rat heart: role of myocardial infarction and immune suppression. *Journal of cellular and molecular medicine*. 2009; 13(1):188–201. Epub 2008/04/01. doi:10.1111/j.1582-4934.2008.00323.x. PubMed PMID: 18373734. [PubMed: 18373734]
33. Muller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. *Journal of Molecular Cellular Cardiology*. 2002; 34(2):107–116. PubMed PMID: 11851351. [PubMed: 11851351]
34. Zeng L, Hu Q, Wang X, Mansoor A, Lee J, Feygin J, et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. *Circulation*. 2007; 115(14):1866–1875. Epub 2007/03/29. doi:10.1161/CIRCULATIONAHA.106.659730. PubMed PMID: 17389266. [PubMed: 17389266]
35. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. *Biochemical and biophysical research communications*. 2007; 354(3):700–706. Epub 2007/01/30. doi:10.1016/j.bbrc.2007.01.045. PubMed PMID: 17257581; PubMed Central PMCID: PMC1851899. [PubMed: 17257581]
36. Noiseux N, Gnechi M, Lopez-Illasaca M, Zhang L, Solomon SD, Deb A, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. *Molecular therapy : the journal of the American Society of Gene Therapy*. 2006; 14(6):840–850. Epub 2006/09/13. doi:10.1016/j.ymthe.2006.05.016. PubMed PMID: 16965940. [PubMed: 16965940]
37. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. *Nat Biotechnol*. 2007; 25(9):1015–1024. PubMed PMID: 17721512. [PubMed: 17721512]
38. Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. *Journal of the American College of Cardiology*. 2009; 54(11):1014–1023. PubMed PMID: 19729119. [PubMed: 19729119]
39. Krahenbuehl TP, Ferreira LS, Hayward AM, Nahrendorf M, van der Vlies AJ, Vasile E, et al. Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. *Biomaterials*. 2011; 32(4):1102–1109. doi:10.1016/j.biomaterials.2010.10.005. PubMed PMID: 21035182. [PubMed: 21035182]
40. Davis ME, Motion JP, Narmeneva DA, Takahashi T, Hakuno D, Kamm RD, et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. *Circulation*. 2005; 111(4):442–450. doi:10.1161/01.CIR.0000153847.47301.80. PubMed PMID: 15687132; PubMed Central PMCID: PMC2754569. [PubMed: 15687132]
41. Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. *Tissue Eng*. 2004; 10(3–4): 403–409. PubMed PMID: 15165457. [PubMed: 15165457]
42. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. *Journal of the American College of Cardiology*. 2004; 44(3):654–660. PubMed PMID: 15358036. [PubMed: 15358036]
43. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. *Acta biomaterialia*. 2012; 8(3):1022–1036. doi:10.1016/j.actbio.2011.11.030. PubMed PMID: 22155066. [PubMed: 22155066]

44. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. *J Mol Cell Cardiol*. 2008; 45(4):567–581. Epub 2008/05/10. doi: S0022-2828(08)00353-2 [pii] 10.1016/j.yjmcc.2008.03.009. PubMed PMID: 18466917; PubMed Central PMCID: PMC2587485. [PubMed: 18466917]

45. Fernandes S, Naumova AV, Zhu WZ, Laflamme MA, Gold J, Murry CE. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. *J Mol Cell Cardiol*. 2010; 49(6):941–949. Epub 2010/09/22. doi: S0022-2828(10)00339-1 [pii] 10.1016/j.yjmcc.2010.09.008. PubMed PMID: 20854826; PubMed Central PMCID: PMC2992844. [PubMed: 20854826]

46. Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Source S, et al. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. *PLoS One*. 2012; 7(12):e51991. Epub 2013/01/04. doi: 10.1371/journal.pone.0051991. PubMed PMID: 23284842; PubMed Central PMCID: PMC3527411. [PubMed: 23284842]

47. Serpooshan V, Zhao M, Metzler SA, Wei K, Shah PB, Wang A, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. *Biomaterials*. 2013; 34(36):9048–9055. Epub 2013/09/03. doi: 10.1016/j.biomaterials.2013.08.017. PubMed PMID: 23992980. [PubMed: 23992980]

48. Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stoltz DB, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. *J Am Coll Cardiol*. 2007; 49(23):2292–2300. Epub 2007/06/15. doi: 10.1016/j.jacc.2007.02.050. PubMed PMID: 17560295; PubMed Central PMCID: PMC2857596. [PubMed: 17560295]

49. Hashizume R, Fujimoto KL, Hong Y, Guan J, Toma C, Tobita K, et al. Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: a preclinical study of a porous polyurethane material in a porcine model. *J Thorac Cardiovasc Surg*. 2013; 146(2):391 e1–399 e1. Epub 2012/12/12. doi: 10.1016/j.jtcvs.2012.11.013. PubMed PMID: 23219497; PubMed Central PMCID: PMC3720824. [PubMed: 23219497]

50. Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. *Biomaterials*. 2011; 32(5):1280–1290. PubMed PMID: 21035179. [PubMed: 21035179]

51. Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z, et al. Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. *J Heart Lung Transplant*. 2010; 29(8):881–887. Epub 2010/05/15. doi: S1053-2498(10)00208-1 [pii] 10.1016/j.healun.2010.03.016. PubMed PMID: 20466563. [PubMed: 20466563]

52. Ruvinov E, Leor J, Cohen S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. *Biomaterials*. 2011; 32(2):565–578. Epub 2010/10/05. doi: S0142-9612(10)01135-X [pii] 10.1016/j.biomaterials.2010.08.097. PubMed PMID: 20889201. [PubMed: 20889201]

53. Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, et al. Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. *Circulation*. 2008; 117(11):1388–1396. Epub 2008/03/05. doi: CIRCULATIONAHA.107.727420 [pii] 10.1161/CIRCULATIONAHA.107.727420. PubMed PMID: 18316487. [PubMed: 18316487]

54. Souren JEM, Schneijdenberg C, Verkleij AJ, Van Wijk R. Factors controlling the rhythmic contraction of collagen gels by neonatal heart cells. *In Vitro Cellular & Developmental Biology*. 1992; 28A:199–204. [PubMed: 1582995]

55. BioLineRx, L. Safety and Feasibility of the Injectable BL-1040 Implant. CaA. 2011. Available at: <http://www.ClinicalTrials.gov>. NLM Identifier: NCT00557531.

56. Seif-Naragh SB, Singelyn JM, Salvatore MA, Osborn KG, Wang JJ, Sampat U, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. *Science translational medicine*. 2013; 5(173):173ra125. doi: 10.1126/scitranslmed.3005503. PubMed PMID: 23427245; PubMed Central PMCID: PMC3848875.

57. Zimmermann W-H, Didié M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, et al. Cardiac grafting of engineered heart tissue in syngenic rats. *Circulation*. 2002; 106(12 suppl 1):I151–I157. [PubMed: 12354725]

58. Zimmermann W-H, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. *Nature medicine*. 2006; 12(4):452–458.

59. Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, et al. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, *in vivo*. *Circulation research*. 2006; 98(5):705–712. [PubMed: 16469955]

60. Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, et al. Fabrication of functional three-dimensional tissues by stacking cell sheets *in vitro*. *Nat Protoc*. 2012; 7(5):850–858. Epub 2012/04/07. doi:10.1038/nprot.2012.027. PubMed PMID: 22481530. [PubMed: 22481530]

61. Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR. Altered myocardial force-frequency relation in human heart failure. *Circulation*. 1992; 85(5):1743–1750. Epub 1992/05/01. PubMed PMID: 1572031. [PubMed: 1572031]

62. Rohr S, Kucera JP, Kleber AG. Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction. *Circ Res*. 1998; 83(8): 781–794. Epub 1998/10/20. PubMed PMID: 9776725. [PubMed: 9776725]

63. Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. *Nature medicine*. 2006; 12(4):452–458. PubMed PMID: 16582915.

64. Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M, Muskheli V, et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. *Proceedings of the National Academy of Sciences of the United States of America*. 2009; 106(39): 16568–16573. PubMed PMID: 19805339. [PubMed: 19805339]

65. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. *Circulation research*. 2007; 100(2):263–272. PubMed PMID: 17218605. [PubMed: 17218605]

66. Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. *Tissue engineering Part A*. 2010; 16(1): 115–125. PubMed PMID: 19642856. [PubMed: 19642856]

67. Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y, Dennis R, et al. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. *Tissue Eng*. 2006; 12(8): 2077–2091. PubMed PMID: 16968150. [PubMed: 16968150]

68. Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng W, Wang Y, et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. *Journal of biomedical materials research Part A*. 2007 PubMed PMID: 18041719.

69. Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. *Proceedings of the National Academy of Sciences of the United States of America*. 2009; 106(35):14990–14995. PubMed PMID: 19706385. [PubMed: 19706385]

70. Song H, Yoon C, Kattman SJ, Dengler J, Masse S, Thavaratnam T, et al. Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. *Proceedings of the National Academy of Sciences of the United States of America*. 2010; 107(8): 3329–3334. PubMed PMID: 19846783. [PubMed: 19846783]

71. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. *Acta biomaterialia*. 2011 PubMed PMID: 22155066.

72. Iyer RK, Chiu LL, Reis LA, Radisic M. Engineered cardiac tissues. *Current opinion in biotechnology*. 2011 PubMed PMID: 21530228.

73. Zimmermann WH, Schneiderbanger K, Schubert P, Didié M, Munzel F, Heubach JF, et al. Tissue engineering of a differentiated cardiac muscle construct. *Circ Res*. 2002; 90(2):223–230. Epub 2002/02/09. PubMed PMID: 11834716. [PubMed: 11834716]

74. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. *Nature medicine*. 2008; 14(2):213–221. PubMed PMID: 18193059.
75. Taylor DA. From stem cells and cadaveric matrix to engineered organs. *Current opinion in biotechnology*. 2009; 20(5):598–605. PubMed PMID: 19914057. [PubMed: 19914057]
76. DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. *PLoS One*. 2010; 5(9):e13039. PubMed PMID: 20885963. [PubMed: 20885963]
77. Engelmayr GC Jr, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. *Nature materials*. 2008; 7(12):1003–1010. PubMed PMID: 18978786.
78. Park H, Larson BL, Guillemette MD, Jain SR, Hua C, Engelmayr GC Jr, et al. The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. *Biomaterials*. 2011; 32(7):1856–1864. PubMed PMID: 21144580. [PubMed: 21144580]
79. Liau B, Christoforou N, Leong KW, Bursac N. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. *Biomaterials*. 2011; 32(35):9180–9187. PubMed PMID: 21906802. [PubMed: 21906802]
80. Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML, Grosberg A, et al. A tissue-engineered jellyfish with biomimetic propulsion. *Nat Biotechnol*. 2012 PubMed PMID: 22820316.
81. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three-dimensional cardiac patches. *Nature nanotechnology*. 2011; 6(11):720–725. doi:10.1038/nnano.2011.160. PubMed PMID: 21946708; PubMed Central PMCID: PMC3208725.
82. Fleischer S, Shevach M, Feiner R, Dvir T. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. *Nanoscale*. 2014; 6(16):9410–9414. doi: 10.1039/c4nr00300d. PubMed PMID: 24744098. [PubMed: 24744098]
83. Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, et al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. *Biomaterials*. 2014; 35(26):7346–7354. doi: 10.1016/j.biomaterials.2014.05.014. PubMed PMID: 24927679; PubMed Central PMCID: PMC4114042. [PubMed: 24927679]
84. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. *ACS nano*. 2013; 7(3):2369–2380. doi:10.1021/nn305559j. PubMed PMID: 23363247; PubMed Central PMCID: PMC3609875. [PubMed: 23363247]
85. Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. *Nature materials*. 2012; 11(11):986–994. doi:10.1038/nmat3404. PubMed PMID: 22922448; PubMed Central PMCID: PMC3623694.
86. Miyagawa S, Sawa Y, Sakakida S, Takeda S, Kondoh H, Memon IA, et al. Tissue Cardiomyoplasty Using Bioengineered Contractile Cardiomyocyte Sheets to Repair Damaged Myocardium: Their Integration with Recipient Myocardium. *Transplantation*. 2005; 80:1586–1595. [PubMed: 16371930]
87. Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. *Surg Today*. 2012; 42(2):181–184. PubMed PMID: 22200756. [PubMed: 22200756]
88. Nunes SS, Song H, Chiang CK, Radisic M. Stem cell-based cardiac tissue engineering. *J Cardiovasc Transl Res*. 2011; 4(5):592–602. Epub 2011/07/13. doi: 10.1007/s12265-011-9307-x. PubMed PMID: 21748529. [PubMed: 21748529]
89. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. *Nature methods*. 2013; 10(8):781–787. doi: 10.1038/nmeth.2524. PubMed PMID: 23793239. [PubMed: 23793239]
90. Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. *Stem Cells Dev*. 2013; 22(14):1991–

2002. Epub 2013/03/07. doi: 10.1089/scd.2012.0490. PubMed PMID: 23461462; PubMed Central PMCID: PMC3699903. [PubMed: 23461462]

91. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. *Proceedings of the National Academy of Sciences of the United States of America*. 2004; 101(52): 18129–18134. PubMed PMID: 15604141. [PubMed: 15604141]

92. Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, et al. Electrical stimulation systems for cardiac tissue engineering. *Nat Protoc*. 2009; 4(2):155–173. PubMed PMID: 19180087. [PubMed: 19180087]

93. Chiu LL, Iyer RK, King JP, Radisic M. Biphasic Electrical Field Stimulation Aids in Tissue Engineering of Multicell-Type Cardiac Organoids. *Tissue Eng Part A*. 2008 PubMed PMID: 18783322.

94. Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Bornchen C, Muller C, et al. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. *J Mol Cell Cardiol*. 2014; 74C:151–161. Epub 2014/05/24. doi: S0022-2828(14)00162-X [pii] 10.1016/j.jmcc.2014.05.009. PubMed PMID: 24852842. [PubMed: 24852842]

95. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. *Circulation research*. 2011; 109(1):47–59. PubMed PMID: 21597009. [PubMed: 21597009]

96. Morgan KY, Black LD 3rd. It's all in the timing: Modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system. *Organogenesis*. 2014; 10(3) Epub 2014/05/20. doi: 29207 [pii]. PubMed PMID: 24836721.

97. Morgan KY, Black LD 3rd. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. *Tissue Eng Part A*. 2014; 20(11–12):1654–1667. Epub 2014/01/15. doi: 10.1089/ten.TEA.2013.0355. PubMed PMID: 24410342; PubMed Central PMCID: PMC4029049. [PubMed: 24410342]

98. Miklas JW, Nunes SS, Sofla A, Reis LA, Pahnke A, Xiao Y, et al. Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. *Biofabrication*. 2014; 6(2):024113. Epub 2014/05/31. doi: 10.1088/1758-5082/6/2/024113. PubMed PMID: 24876342. [PubMed: 24876342]

99. Gibbons RJ, Valeti US, Araoz PA, Jaffe AS. The quantification of infarct size. *J Am Coll Cardiol*. 2004; 44(8):1533–1542. Epub 2004/10/19. doi: S0735-1097(04)01514-1 [pii] 10.1016/j.jacc.2004.06.071. PubMed PMID: 15489082. [PubMed: 15489082]

100. Radisic M, Malda J, Epping E, Geng W, Langer R, Vunjak-Novakovic G. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. *Biotechnol Bioeng*. 2006; 93(2):332–343. Epub 2005/11/05. doi: 10.1002/bit.20722. PubMed PMID: 16270298. [PubMed: 16270298]

101. Iyer RK, Radisic M, Cannizzaro C, Vunjak-Novakovic G. Synthetic oxygen carriers in cardiac tissue engineering. *Artif Cells Blood Substit Immobil Biotechnol*. 2007; 35(1):135–148. PubMed PMID: 17364478. [PubMed: 17364478]

102. Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. *Am J Physiol Heart Circ Physiol*. 2004; 286(2):H507–H516. Epub 2003/10/11. doi: 10.1152/ajpheart.00171.2003 00171.2003 [pii]. PubMed PMID: 14551059. [PubMed: 14551059]

103. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. *Physiol Rev*. 2003; 83(1):59–115. Epub 2002/12/31. doi: 10.1152/physrev.00017.2002. PubMed PMID: 12506127. [PubMed: 12506127]

104. Camelliti P, McCulloch AD, Kohl P. Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. *Microsc Microanal*. 2005; 11(3): 249–259. Epub 2005/08/03. doi: S1431927605050506 [pii] 10.1017/S1431927605050506. PubMed PMID: 16060978. [PubMed: 16060978]

105. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. *Circ Res*. 2009; 105(12):1164–1176. Epub 2009/12/05. doi: 105/12/1164 [pii] 10.1161/CIRCRESAHA.

109.209809. PubMed PMID: 19959782; PubMed Central PMCID: PMC3345531. [PubMed: 19959782]

106. Twardowski RL, Black LD 3rd. Cardiac fibroblasts support endothelial cell proliferation and sprout formation but not the development of multicellular sprouts in a fibrin gel co-culture model. *Ann Biomed Eng.* 2014; 42(5):1074–1084. Epub 2014/01/18. doi: 10.1007/s10439-014-0971-2. PubMed PMID: 24435656; PubMed Central PMCID: PMC3969781. [PubMed: 24435656]

107. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. *Circulation research.* 2014; 114(3):565–571. doi: 10.1161/CIRCRESAHA.114.300507. PubMed PMID: 24481846. [PubMed: 24481846]

108. Jaipersad AS, Lip GY, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. *Journal of the American College of Cardiology.* 2014; 63(1):1–11. doi: 10.1016/j.jacc.2013.09.019. PubMed PMID: 24140662. [PubMed: 24140662]

109. Giordano C, Kuraitis D, Beanlands RS, Suuronen EJ, Ruel M. Cell-based vasculogenic studies in preclinical models of chronic myocardial ischaemia and hibernation. *Expert opinion on biological therapy.* 2013; 13(3):411–428. doi: 10.1517/14712598.2013.748739. PubMed PMID: 23256710. [PubMed: 23256710]

110. Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. *Proc Natl Acad Sci U S A.* 2006; 103(42):15546–15551. Epub 2006/10/13. doi: 10.1073/pnas.0607382103. PubMed PMID: 17032753; PubMed Central PMCID: PMC1622860. [PubMed: 17032753]

111. Sasaki T, Fukazawa R, Ogawa S, Kanno S, Nitta T, Ochi M, et al. Stromal cell - derived factor - 1  $\alpha$  improves infarcted heart function through angiogenesis in mice. *Pediatrics International.* 2007; 49(6):966–971. [PubMed: 18045305]

112. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. *Proceedings of the National Academy of Sciences.* 2001; 98(18):10344–10349.

113. McSweeney SJ, Hadoke PW, Kozak AM, Small GR, Khaled H, Walker BR, et al. Improved heart function follows enhanced inflammatory cell recruitment and angiogenesis in 11 $\beta$ HSD1-deficient mice post-MI. *Cardiovascular research.* 2010; 88(1):159–167. [PubMed: 20495186]

114. Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. *Nat Biotechnol.* 2005; 23(7):821–823. Epub 2005/07/09. doi: 10.1038/nbt0705-821. PubMed PMID: 16003365. [PubMed: 16003365]

115. Korpisalo P, Yla-Herttuala S. Stimulation of functional vessel growth by gene therapy. *Integrative biology : quantitative biosciences from nano to macro.* 2010; 2(2–3):102–112. Epub 2010/05/18. doi: 10.1039/b921869f. PubMed PMID: 20473388. [PubMed: 20473388]

116. Melly L, Boccardo S, Eckstein F, Banfi A, Marsano A. Cell and Gene Therapy Approaches for Cardiac Vascularization. *Cells.* 2012; 1(4):961–975. [PubMed: 24710537]

117. Meloni M, Marchetti M, Garner K, Littlejohns B, Sala-Newby G, Xenophontos N, et al. Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. *Molecular therapy : the journal of the American Society of Gene Therapy.* 2013; 21(7):1390–1402. Epub 2013/06/19. doi: 10.1038/mt.2013.89. PubMed PMID: 23774796; PubMed Central PMCID: PMC3702112. [PubMed: 23774796]

118. Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. *Nat Biotechnol.* 2013 Epub 2013/09/10. doi: 10.1038/nbt.2682. PubMed PMID: 24013197.

119. Sun L, Bai Y, Du G. Endothelial dysfunction--an obstacle of therapeutic angiogenesis. *Ageing research reviews.* 2009; 8(4):306–313. Epub 2009/04/25. doi: 10.1016/j.arr.2009.04.003. PubMed PMID: 19389489. [PubMed: 19389489]

120. Chiu LL, Weisel RD, Li RK, Radisic M. Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. *J Tissue Eng Regen Med.* 2011; 5(1):69–84. PubMed PMID: 20717888. [PubMed: 20717888]

121. Chiu LL, Janic K, Radisic M. Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel. *Int J Artif Organs*. 2012; 35(4):237–250. Epub 2012/04/17. doi: 40FE9826-FFB6-4E57-87B7-400985A7AABA [pii] 10.5301/ijao.5000084. PubMed PMID: 22505198. [PubMed: 22505198]

122. Callegari A, Bollini S, Iop L, Chiavegato A, Torregrossa G, Pozzobon M, et al. Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. *Biomaterials*. 2007; 28(36):5449–5461. Epub 2007/10/02. doi: 10.1016/j.biomaterials.2007.07.022. PubMed PMID: 17905428. [PubMed: 17905428]

123. Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. *Biomaterials*. 2009; 30(29):5409–5416. [PubMed: 19608268]

124. Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. *Tissue Eng.* 2006; 12(3):499–507. Epub 2006/04/04. doi: 10.1089/ten.2006.12.499. PubMed PMID: 16579683. [PubMed: 16579683]

125. Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T. Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. *Biochem Biophys Res Commun*. 2006; 341(2):573–582. PubMed PMID: 16434025. [PubMed: 16434025]

126. Sekine H, Shimizu T, Yang J, Kobayashi E, Okano T. Pulsatile myocardial tubes fabricated with cell sheet engineering. *Circulation*. 2006; 114(1 Suppl):I87–I93. Epub 2006/07/06. doi: 114/1\_suppl/I-87 [pii] 10.1161/CIRCULATIONAHA.105.000273. PubMed PMID: 16820651. [PubMed: 16820651]

127. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. *Circulation*. 2004; 110(8):962–968. PubMed PMID: 15302801. [PubMed: 15302801]

128. Kelm JM, Djonov V, Hoerstrup SP, Guenter CI, Ittner LM, Greve F, et al. Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. *Tissue Eng.* 2006; 12(9):2541–2553. Epub 2006/09/26. doi: 10.1089/ten.2006.12.2541. PubMed PMID: 16995787. [PubMed: 16995787]

129. Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication technology for vascularized tissue engineering. *Biomed Microdevices*. 2002; 4(3):167–175. PubMed PMID: ISI:00017777600002.

130. Zhang B, Petrone C, Murthy SK, Radisic M. A standalone perfusion platform for drug testing and target validation in micro-vessel networks. *Biomicrofluidics*. 2013; 7:044125.

131. Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, et al. Microfabricated perfusible cardiac biowire: a platform that mimics native cardiac bundle. *Lab Chip*. 2014; 14(5):869–882. Epub 2013/12/20. doi: 10.1039/c3lc51123e. PubMed PMID: 24352498; PubMed Central PMCID: PMC3969269. [PubMed: 24352498]

132. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD. Endothelialized microvasculature based on a biodegradable elastomer. *Tissue Engineering*. 2005; 11(1–2):302–309. PubMed PMID: ISI:000227513600028. [PubMed: 15738683]

133. Golden AP, Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. *Lab on a Chip*. 2007; 7:720–725. [PubMed: 17538713]

134. Tang MD, Golden AP, Tien J. Fabrication of collagen gels that contain patterned, micrometer-scale cavities. *Adv Mater*. 2004; 16:1345–.

135. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusible engineered three-dimensional tissues. *Nature Materials*. 2012 advance on. doi: 10.1038/nmat3357.

136. Chiu LL, Radisic M. Controlled release of thymosin beta4 using collagen-chitosan composite hydrogels promotes epicardial cell migration and angiogenesis. *J Control Release*. 2011; 155(3):376–385. Epub 2011/06/15. doi: 10.1016/j.jconrel.2011.05.026 S0168-3659(11)00384-1 [pii]. PubMed PMID: 21663777. [PubMed: 21663777]

137. Chiu LL, Reis LA, Momen A, Radisic M. Controlled release of thymosin beta4 from injected collagen-chitosan hydrogels promotes angiogenesis and prevents tissue loss after myocardial infarction. *Regen Med*. 2012; 7(4):523–533. PubMed PMID: 22817626. [PubMed: 22817626]

138. Chiu LL, Montgomery M, Liang Y, Liu H, Radisic M. Perfusion branching microvessel bed for vascularization of engineered tissues. *Proceedings of the National Academy of Sciences*. 2012; 109(50):E3414–E3423.

139. Muscari C, Giordano E, Bonafe F, Govoni M, Guarneri C. Strategies Affording Prevascularized Cell-Based Constructs for Myocardial Tissue Engineering. *Stem Cells Int*. 2014; 2014:434169. Epub 2014/02/11. doi: 10.1155/2014/434169. PubMed PMID: 24511317; PubMed Central PMCID: PMC3913389. [PubMed: 24511317]

140. Zhao R, Boudou T, Wang WG, Chen CS, Reich DH. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. *Adv Mater*. 2013; 25(12): 1699–1705. Epub 2013/01/29. doi: 10.1002/adma.201203585. PubMed PMID: 23355085; PubMed Central PMCID: PMC4037409. [PubMed: 23355085]

141. Thavandiran N, Dubois N, Mikryukov A, Masse S, Beca B, Simmons CA, et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. *Proceedings of the National Academy of Sciences of the United States of America*. 2013; 110(49):E4698–E4707. 10.1073/pnas.1311120110. PubMed PMID: 24255110; PubMed Central PMCID: PMC3856835. [PubMed: 24255110]

142. Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. *Circulation*. 1970; 41(6):899–912. Epub 1970/06/01. PubMed PMID: 5482907. [PubMed: 5482907]

143. Hirt MN, Sorensen NA, Bartholdt LM, Boeddinghaus J, Schaaf S, Eder A, et al. Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. *Basic Res Cardiol*. 2012; 107(6):307. Epub 2012/10/27. doi: 10.1007/s00395-012-0307-z. PubMed PMID: 23099820; PubMed Central PMCID: PMC3505530. [PubMed: 23099820]

144. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. *Circulation*. 2013; 127(16):1677–1691. Epub 2013/03/23. doi: CIRCULATIONAHA.113.001883 [pii] 10.1161/CIRCULATIONAHA.113.001883. PubMed PMID: 23519760; PubMed Central PMCID: PMC3870148. [PubMed: 23519760]

145. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. *Nat Med*. 2014; 20(6):616–623. Epub 2014/05/13. doi: nm.3545 [pii] 10.1038/nm.3545. PubMed PMID: 24813252. [PubMed: 24813252]

146. Carvajal-Vergara X, Sevilla A, D'Souza SL, Ang YS, Schaniel C, Lee DF, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. *Nature*. 2010; 465(7299): 808–812. PubMed PMID: 20535210. [PubMed: 20535210]

147. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. *N Engl J Med*. 2010; 363(15):1397–1409. PubMed PMID: 20660394. [PubMed: 20660394]

148. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. *Science translational medicine*. 2012; 4(130):130ra47. PubMed PMID: 22517884.

149. Caspi O, Itzhaki I, Kehat I, Gepstein A, Arbel G, Huber I, et al. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. *Stem Cells Dev*. 2009; 18(1): 161–172. Epub 2008/05/31. doi: 10.1089/scd.2007.0280. PubMed PMID: 18510453. [PubMed: 18510453]

150. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. *American journal of physiology Heart and circulatory physiology*. 2011; 301(5):H2006–H2017. doi: 10.1152/ajpheart.00694.2011. PubMed PMID: 21890694; PubMed Central PMCID: PMC4116414. [PubMed: 21890694]

151. Ionescu-Zanetti C, Shaw RM, Seo J, Jan YN, Jan LY, Lee LP. Mammalian electrophysiology on a microfluidic platform. *Proc Natl Acad Sci U S A*. 2005; 102(26):9112–9117. Epub 2005/06/22.

doi: 0503418102 [pii] 10.1073/pnas.0503418102. PubMed PMID: 15967996; PubMed Central PMCID: PMC1166618. [PubMed: 15967996]

152. Zwi-Dantsis L, Huber I, Habib M, Winterstern A, Gepstein A, Arbel G, et al. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. *Eur Heart J*. 2013; 34(21):1575–1586. Epub 2012/05/25. doi: ehs096 [pii] 10.1093/eurheartj/ehs096. PubMed PMID: 22621821. [PubMed: 22621821]

153. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. *Stem Cell Res*. 2010; 4(2):107–116. PubMed PMID: 20034863. [PubMed: 20034863]

154. Clements M, Thomas N. High-Throughput Multi-Parameter Profiling of Electrophysiological Drug Effects in Human Embryonic Stem Cell Derived Cardiomyocytes Using Multi-Electrode Arrays. *Toxicol Sci*. 2014 Epub 2014/05/09. doi: kfu084 [pii] 10.1093/toxsci/kfu084. PubMed PMID: 24812011.

155. Radisic M, Fast VG, Sharifov OF, Iyer RK, Park H, Vunjak-Novakovic G. Optical mapping of impulse propagation in engineered cardiac tissue. *Tissue engineering Part A*. 2009; 15(4):851–860. PubMed PMID: 18847360. [PubMed: 18847360]

156. Liu J, Fu JD, Siu CW, Li RA. Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. *Stem Cells*. 2007; 25(12):3038–3044. Epub 2007/09/18. doi:2007-0549 [pii] 10.1634/stemcells.2007-0549. PubMed PMID: 17872499. [PubMed: 17872499]

157. Lee P, Klos M, Bollensdorff C, Hou L, Ewart P, Kamp TJ, et al. Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. *Circ Res*. 2012; 110(12):1556–1563. Epub 2012/05/10. doi: CIRCRESAHA.111.262535 [pii] 10.1161/CIRCRESAHA.111.262535. PubMed PMID: 22570367; PubMed Central PMCID: PMC3423450. [PubMed: 22570367]

158. Cellular Dynamics International I. iCell® Cardiomyocytes –xCELLigence RTCA Cardio System Application Protocol. 2012

159. Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, et al. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. *Tissue Eng Part A*. 2012; 18(9–10):910–999. Epub 2011/11/19. doi: 10.1089/ten.TEA.2011.0341. PubMed PMID: 22092279; PubMed Central PMCID: PMC3338105. [PubMed: 22092279]

160. Shim J, Grosberg A, Nawroth JC, Parker KK, Bertoldi K. Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior. *J Biomech*. 2012; 45(5):832–841. Epub 2012/01/13. doi: S0021-9290(11)00706-8 [pii] 10.1016/j.jbiomech.2011.11.024. PubMed PMID: 22236531; PubMed Central PMCID: PMC3294204. [PubMed: 22236531]

161. Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. *J Pharmacol Toxicol Methods*. 2012; 65(3):126–135. Epub 2012/04/24. doi: S1056-8719(12)00041-X [pii] 10.1016/j.vascn.2012.04.001. PubMed PMID: 22521339. [PubMed: 22521339]

162. Eschenhagen T, Zimmermann WH, Kleber AG. Electrical coupling of cardiac myocyte cell sheets to the heart. *Circulation research*. 2006; 98(5):573–575. PubMed PMID: 16543504. [PubMed: 16543504]

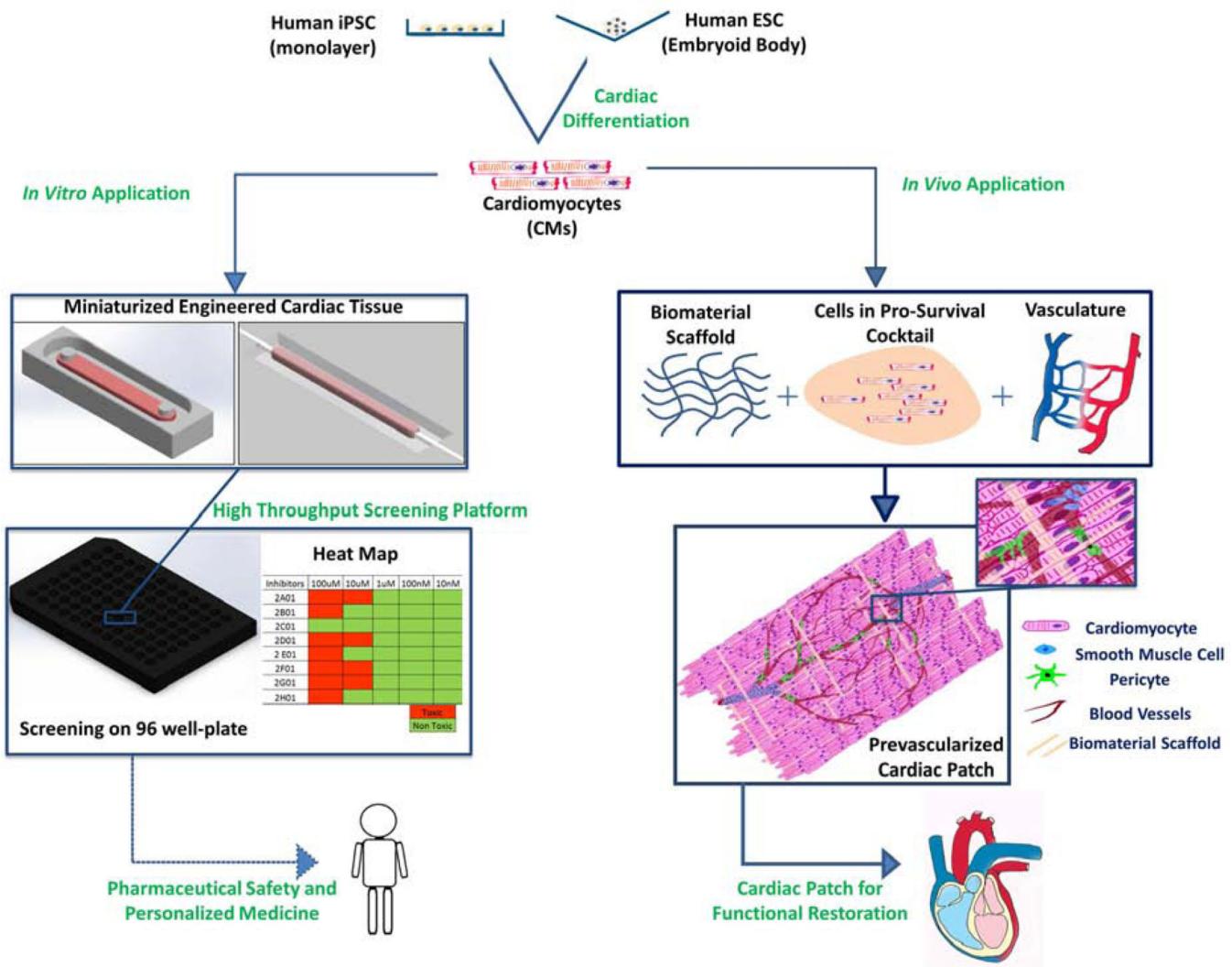
163. Hansen A, Eder A, Bonstrup M, Flato M, Mewe M, Schaaf S, et al. Development of a drug screening platform based on engineered heart tissue. *Circulation research*. 2010; 107(1):35–44. PubMed PMID: 20448218. [PubMed: 20448218]

164. Vandenburgh H, Shansky J, Benesch-Lee F, Barbata V, Reid J, Thorrez L, et al. Drug-screening platform based on the contractility of tissue-engineered muscle. *Muscle Nerve*. 2008; 37(4):438–447. Epub 2008/02/01. doi: 10.1002/mus.20931. PubMed PMID: 18236465. [PubMed: 18236465]

165. Hinds S, Bian W, Dennis RG, Bursac N. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. *Biomaterials*. 2011; 32(14):3575–3583. Epub 2011/02/18. doi: S0142-9612(11)00108-6 [pii] 10.1016/j.biomaterials.2011.01.062. PubMed PMID: 21324402; PubMed Central PMCID: PMC3057410. [PubMed: 21324402]

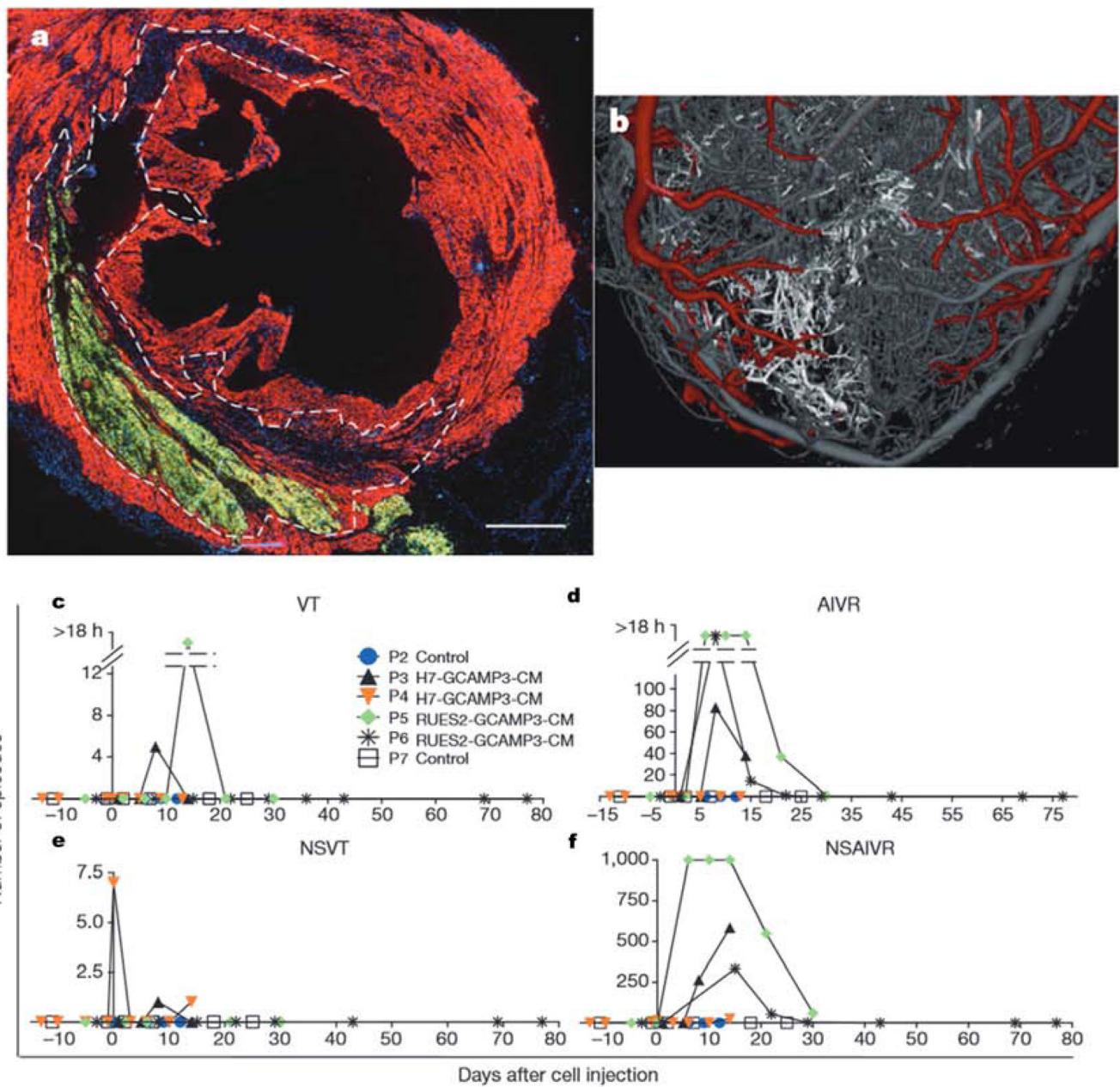
166. McGarry SJ, Williams AJ. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy. *Br J Pharmacol.* 1993; 108(4):1043–1050. Epub 1993/04/01. PubMed PMID: 8387382; PubMed Central PMCID: PMC1908139. [PubMed: 8387382]

167. Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. *Proc Natl Acad Sci U S A.* 2009; 106(25):10097–10102. Epub 2009/06/23. doi:0900174106 [pii] 10.1073/pnas.0900174106. PubMed PMID: 19541627; PubMed Central PMCID: PMC2700905. [PubMed: 19541627]

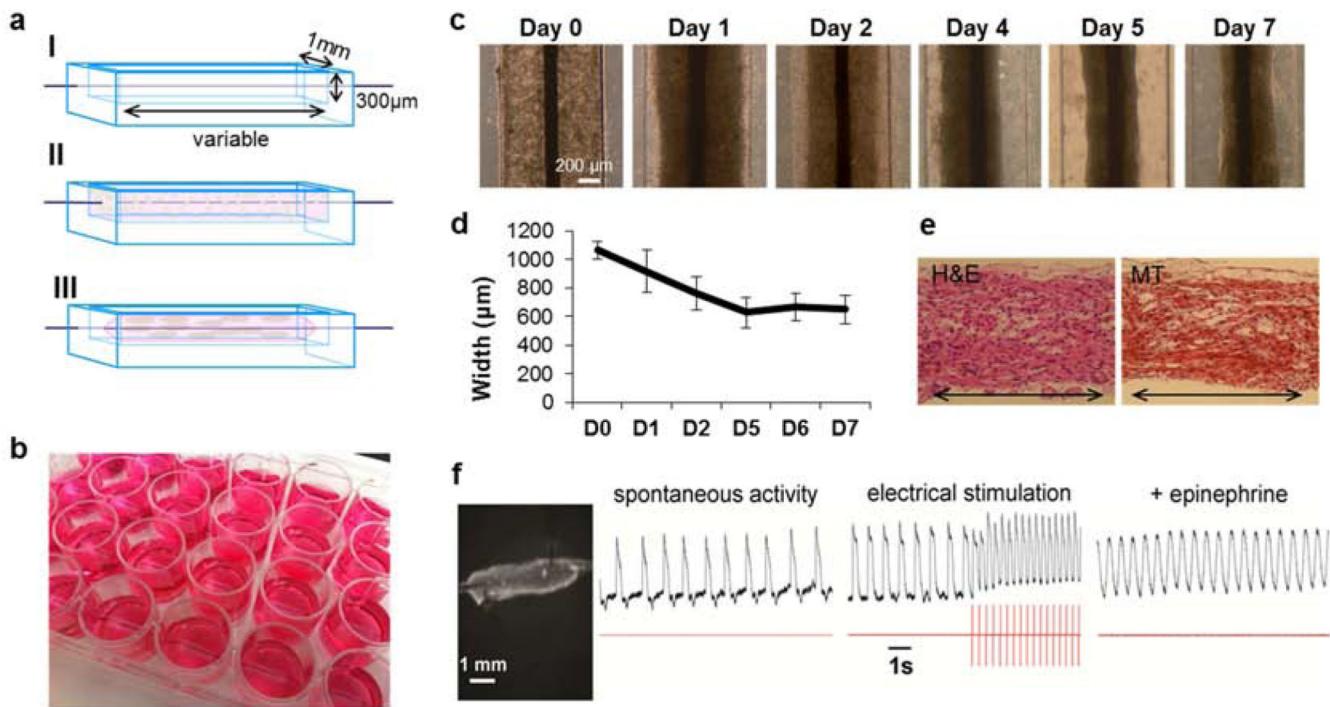

168. Chow MZ, Boheler KR, Li RA. Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. *Stem Cell Res Ther.* 2013; 4(4):97. Epub 2013/08/21. doi: scrt308 [pii] 10.1186/scrt308. PubMed PMID: 23953772. [PubMed: 23953772]

169. Rodriguez M, Graham BT, Pabon LM, Han SJ, Murry CE, Sniadecki N. Measuring the Contractile Forces of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Arrays of Microposts. *J Biomech Eng.* 2014 Epub 2014/03/13. doi:1846556 [pii] 10.1115/1.4027145. PubMed PMID: 24615475.

170. Domansky K, Leslie DC, McKinney J, Fraser JP, Sliz JD, Hamkins-Indik T, et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. *Lab on a Chip.* 2013; 13(19): 3956–3964. doi: Doi 10.1039/C3lc50558h. PubMed PMID: ISI:000323835700021. [PubMed: 23954953]

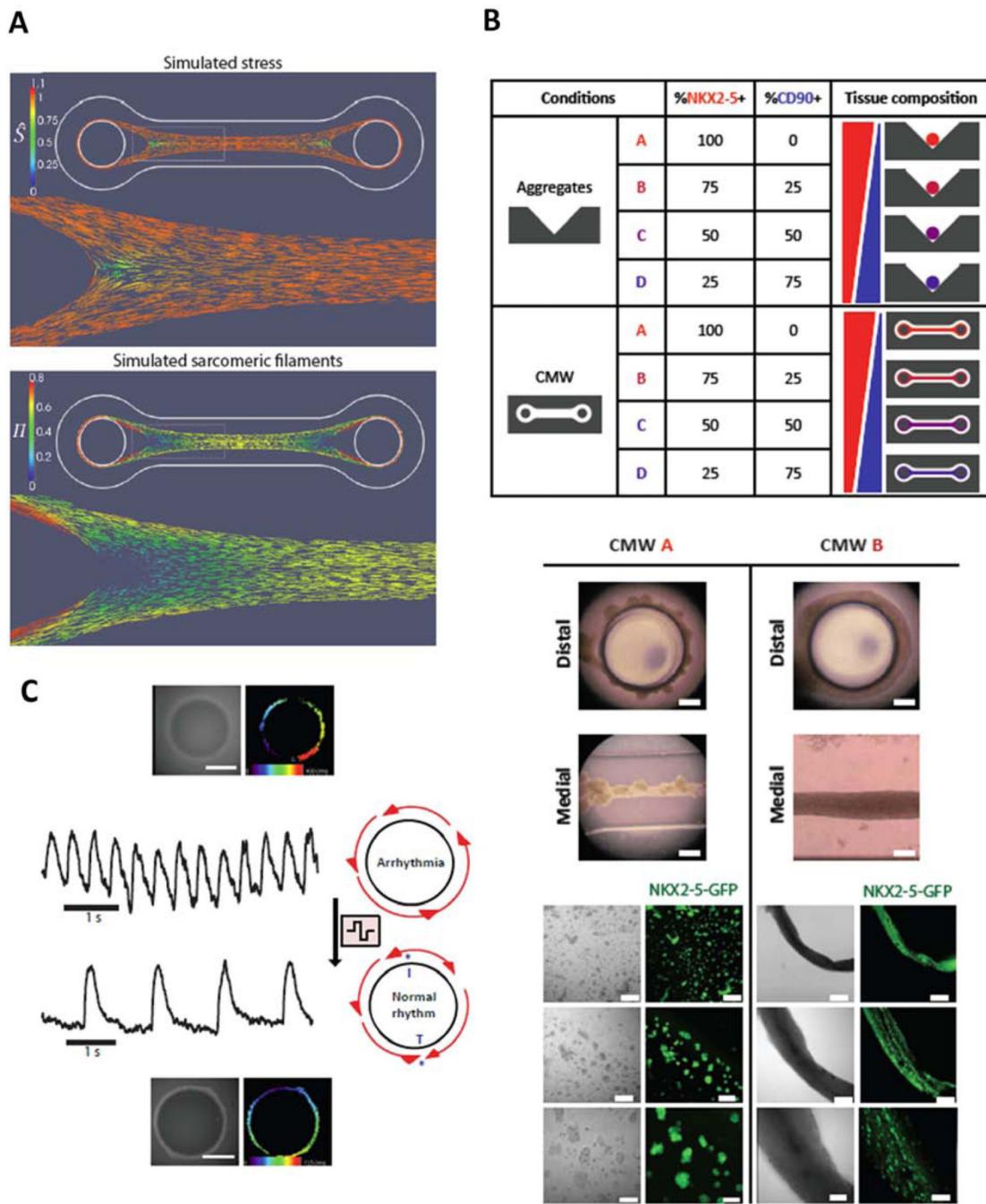

### Summary

Tissue engineering as it relates to cardiac regenerative medicine has made exciting progress in recent years, which has opened up the possibility of more wide-spread applications than previously imagined. It now seems plausible that in the near future bioengineering methods could be used to not only regenerate damaged myocardium but also facilitate drug screening and discovery, as well as to create personalized medicine testing platforms. The state of the art, challenges and perspectives are discussed.



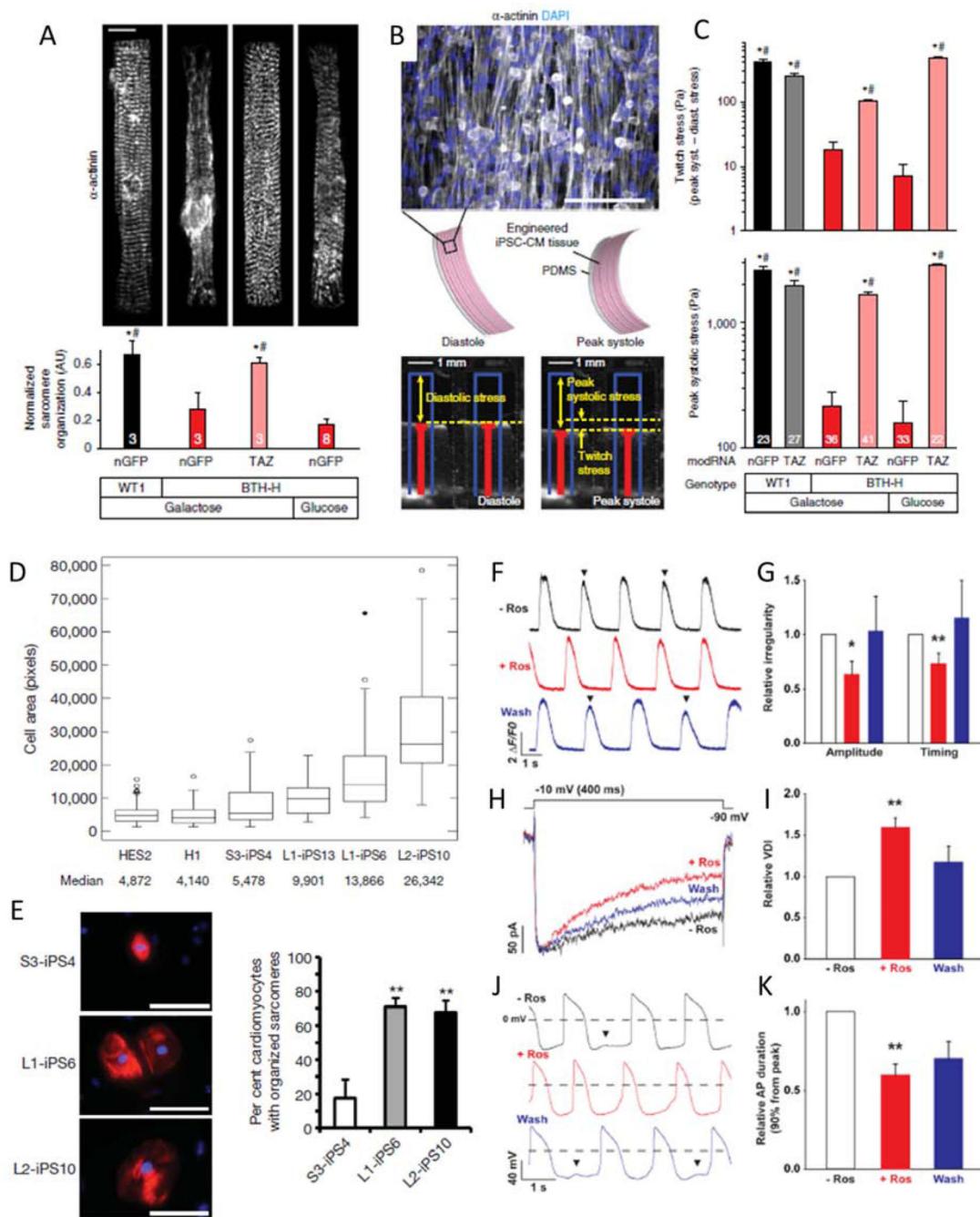

### Figure 1. Overview

Human induced pluripotent stem cells (iPSCs) and human embryonic stem cells (ESCs) are capable of differentiation to produce cardiomyocytes (CMs), which can be applied to both *in vitro* and *in vivo* applications. *In vitro*, miniaturized cardiac tissues are engineered in large numbers using small amounts of cells and reagents. These microtissues are used in platforms such as customized 96-well plates with topographical cues, e.g. wires or posts that guide tissue assembly and enable read-out of contractile force. The data are analyzed to evaluate efficacy and safety as part of the pharmaceutical development process. The same strategy can also be used to optimize therapeutics for personalized medicine. *In vivo*, CMs are combined with a pro-survival cocktail, biomaterial scaffold and pre-established vasculature to generate functional cardiac patches that allow for immediate perfusion and electromechanical coupling between the patch and the host tissue after transplantation for true cardiac functional restoration.




all samples with transplanted hESC-CMs had either long duration (18 h per day) VT or AIVR or multiple episodes of arrhythmia within the first 30 days post-injection. (15)




**Figure 3. Biowire microtissues**

(A) Biowire assembly platform. *I*. Surgical suture (black) is placed in the center of the PDMS channel. *II*. Cardiomyocyte and collagen type I gel suspension is seeded into the main channel around the suture. *III*. Pre-culture of hESC-CMs in the template allows the cells to remodel the collagen and contract around the suture to generate human cardiac “Biowires”. (B) Biowire PDMS platforms assembled in a multiwell culture plate. (C) Brightfield images of hESC-CMs in the Biowire template during pre-culture. (D) Quantification of the compaction of the gel over the pre-culture period. (E) Representative images of hematoxylin and eosin (H&E) and Masson’s trichrome (MT) staining for Biowire sections. Orientation of the suture denoted by the arrows. (F) *Left*. Representative images using a potentiometric fluorophore (DI-4-ANEPPS) of a Biowire indicating spontaneous electrical activity. Representative traces of impulse propagation recording for a Biowire without electrical stimulation (*Left* trace), with electrical stimulation (*Middle*) and in response to epinephrine (*Right*). The stimulation frequency is depicted in red. (89)

**Figure 4. Cardiac Microwires (CMWs)**

(A) A simulation predicting stress (represented by non-dimensional effective stress;  $\hat{S}$ ) and sarcomeric  $\alpha$ -actinin expression in CMWs shows a uniaxial orientation along the longitudinal axis. (B) *Top*, Input population for CMWs and aggregates was controlled by combining sorted NKX2.5-GFP+ (CMs) and CD90+ (FBs) cells in the described ratios. *Middle*, CMW A composed of 100% CMs formed non-integrating colonies of cells (left), whereas CMW B composed of 75% CMs and 25% FBs formed well-integrated and organized tissue. *Bottom*, bright field and fluorescent images of the CMW A and CMW B

tissues. **(C–D)** One cycle and signal tracing of a circular CMW generated to mimic a re-entrant arrhythmic wave. The impulse starting location is blue. **(C)** The non-stimulated circular CMW shows looping cycles of activation propagation. **(D)** Electrical field stimulation of 10 V induced a normal rhythm in the circular CMW. (141)



**Figure 5. Patient-derived iPSCs**

(A) Sarcomeric organization is impaired in patient-derived Barth syndrome iPSC-CMs. Top, representative images of iPSC-CMs seeded on micropatterned fibronectin, cultured in indicated medium, transfected with nuclear-localized GFP or tafazzin (TAZ) modified mRNA (modRNA)—a mutation in which causes mitochondrial functional abnormalities and cardiolipin deficiency resulting in Barth syndrome—and stained with α-actinin. Sarcomeres in control iPSCCMs (WT1) are regularly organized along the entire length of the cell. Sarcomeres in patientderived Barth syndrome (BTH-H) iPSC-CMs are intermittent and

sparse. Transfection with *TAZ* restored sarcomeric organization. Glucose culture of BTH-H iPSC-CMs did not rescue sarcomere formation. *Bottom*, plots quantitating sarcomere organization. Scale bars, 10  $\mu$ m. Data presented as mean  $\pm$  SEM.  $P < 0.05$  versus BTH-H in galactose culture (\*) or BTH-H + nGFP in glucose culture (#). (145)

(B–C) Barth syndrome myocardial tissue constructs recapitulate Barth syndrome myopathy. Human iPSC-CMs were seeded onto thin micropatterned elastomers supported by glass coverslips. After 5 days, the muscular thin films (MTF) were peeled off the glass and allowed to contract and curl away from the coverslip. (B) *Top*,  $\alpha$ -actinin-stained image of a control iPSC-CM tissue demonstrating sarcomere alignment and fibrous structures. *Middle*, iPSC-CMs selforganize into anisotropic myocardial tissues at diastole and peak systole demonstrating a reduction in the radius of curvature of the MTF as it contracts. Scale bar, 100  $\mu$ m. *Bottom*, images of MTFs in diastole and systole wherein red lines indicate automated tracking and blue lines indicate MTF length before peeling from glass. (C) Twitch stress and peak systolic (syst) stress of MTFs paced at 2 Hz. MTFs were generated from BTH-H and control (WT1) iPSC-CMs transfected with the indicated modRNA and cultured in galactose or glucose medium. BTH-H iPSC-CM tissues had significantly lower twitch and peak systolic stress compared to controls, a phenotype that could be rescued by *TAZ* transfection. (145)

(D–E) LEOPARD patient-derived iPSC-CMs have increased cell size and increased sarcomeric assembly indicative of cardiac hypertrophy. Stem cells (hESC cell lines: Hes2 and H1; wild-type hiPSCs: S3-iPSC4; LEOPARD syndrome hiPCs: L1-iPSC13, L1-iPSC6 and L2-iPSC10) were differentiated into CMs. (D) The cell surface area of 50 randomly selected troponin-T-positive cells (CMs) were measured. Boxes span 1<sup>st</sup> to 3<sup>rd</sup> percentile; whiskers 1.5-times median; open circles 1.5-times median; filled circle 3-times median.

(E) Sarcomeric organization was measured in 50 troponin-T-positive CMs (red). Data presented as mean  $\pm$  SD. (146)

(F–K) Roscovitine rescues the cellular phenotype of Timothy Syndrome (TS) patient-derived iPSC-CMs. Roscovitine (Ros), a cycline-dependent kinase inhibitor that increases voltage-dependent inactivation (VDI) of CaV1.2, the main L-type channel in the mammalian heart was investigated as a rescue for the TS phenotype. Black: without treatment; Red: with Ros treatment; and Blue: after wash out. (F) Ros treatment reduced the frequency of irregular Ca<sup>2+</sup> transients in TS iPSC-CMs. Arrowheads denote irregular Ca<sup>2+</sup> peaks. (G) Ros treatment significantly reduced the irregular amplitude and timing of spontaneous Ca<sup>2+</sup> transients in TS iPSC-CMs. (H) Inactive Ba<sup>2+</sup> currents in TS iPSC-CMs were restored by Ros treatment. (I) Ros treatment significantly increased CaV1.2 VDI in TS iPSC-CMs. (J) Ros treatment decreased the frequency of abnormal depolarizing events. Arrowheads denote delays after depolarization. (K) Ros prevented AP prolongation in TS iPSC-CMs. Data presented as mean  $\pm$  SEM. \* $P < 0.05$ , \*\* $P < 0.01$ . (6)