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Abstract

In recent years, the development of three-dimensional engineered heart tissue (EHT) has made
large strides forward due to advances in stem cell biology, materials science, pre-vascularization
strategies and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative
medicine has become multi-faceted as new applications become feasible. Cardiac tissue
engineering has long been established to have the potential to partially or fully restore cardiac
function following cardiac injury. However, EHTS may also serve as surrogate human cardiac
tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal
in the pharmaceutical industry. Unsafe drugs reach the market because pre-clinical evaluation is
insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could

provide functional and mature human myocardial tissues, i.e. physiologically relevant platforms,
for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new
therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific
EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an
overview of the present state of the art in cardiac tissue engineering, the challenges to the field and
future perspectives.
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1. Introduction

Cardiovascular disease is responsible for greater mortality than all cancers combined in the
Western world (1). Myocardial infarction (M) causes irreversible damage to the
myocardium, because the adult heart has minimal intrinsic ability to regenerate lost
cardiomyocytes (CMs). After the initial insult, fibroblasts (FBs) and endothelial cells (ECs)
form a dense collagenous scar that maintains wall structure but is inflexible and non-
contractile, often leading to heart failure (2). The most effective present therapy to restore
heart function, cardiac transplantation, is limited by insufficient availability of donor organs
and the requirement for life-long immunosuppression. Left ventricular assist devices require
invasive surgeries and long-term anti-coagulation.

Cardiotoxicity is a major concern for the pharmaceutical industry since differences in the
electrophysiological properties of animal and human CMs limit the relevance of pre-clinical
animal studies (3). Additionally, human clinical trials are limited by small sample pools and
at times skewed genetic and phenotypic diversity.

Cardiac tissue engineering—based on human CMs, biomimetic scaffolds and integrated
bioengineering concepts—possesses the potential to partially or fully restore cardiac
function and serve as a surrogate human cardiac tissue for drug toxicity screening and
personalized medicine. However, there are still many challenges to be overcome before
these techniques can move toward clinical applications. This paper aims to review the
present state of the art, challenges to the field and future perspectives. We will focus on
tissue engineering methods that provide means of constructing human tissne#rfor

modelling of disease and drug discovery as well as functional cardiac patches for restoration
of contractile functionn vivo (Figure 1).

2. Cell source considerations

The objective of cardiac regenerative medicine is to repopulate the injured site with
functional cells to replenish the lost cells and regenerate the damaged cardiac tissue.
However, adult CMs are terminally differentiated and have a minute capacity for expansion
invitro from biopsies of patient’'s heart tissue. Therefore, alternative cell sources with
abundant availability are necessary. The discovery of human induced pluripotent stem cells
(hiPSCs) (4) has enabled the generation of potentially unlimited numbers of autologous
CMs (5) for cell therapy and for the development of personalized drug therapies, without the
ethical concerns raised by the use of human embryonic stem cells (hESCs). iPSC-derived
CMs (iPSC-CMs) are additionally attractive because they can recapitulate some genetic
cardiac disorders in standard monolayer cultures (e.g. Long Q-T syndrome (6)) and can also
potentially be used to assess patient-specific responses to drugs prior to their use in the
body. CM differentiation protocols rely on timed application of growth factors or small
molecules that modulate pathways important for cardiogenesis during embryonic
development. These molecules are applied to iPSCs or ESCs grown in embryoid body
format (7, 8) or in monolayers (9).
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In recent years, strong evidence of hESC-CM integration into the recipient heart has been
found (10). Most oftenin vivo integration of hESC-CMs into the recipient hearts has been
studied using rodent models (11-13), often criticized as unsuitable due to the large
difference in the heart rate between human ventricular CMs (60—-120 bpm) and rodent
ventricular CMs (350-600 bpm). Studies in a more comparable guinea pig model (200-250
bpm) (14) and recent non-human primate model (100—130 bpm) (15) were able to
demonstrate conclusively that hESC-CMs can electrically couple with the recipient hearts
post-MI, remuscularize the heart tissue (Figure 2A) and induce ingrowth of perfusable blood
vessels (Figure 2B). However, the primate study indicated transient occurrences of
disturbances in the heart rhythm such as: ventricular tachycardia (Figure 2C), accelerated
idioventricular rhythm (Figure 2D), non-sustained ventricular tachycardia (Figure 2E) and
non-sustained accelerated idioventricular rhythm (Figure 2F). These recent findings have
motivated the development of new and improved approaches for selecting CMs of an
appropriate maturity level in hopes of improving graft-host coupling, and the development
of safe and effective methods for delivering the cells to the heart using biomaterials (15) and
engineered tissues (16). Additionally, hESC-CMs are allogeneic, thus they could give rise to
an immune response upomvivo application; and although unlikely, the presence of

residual undifferentiated cells could give rise to the formation of undesired tissue structures
in the recipient hearts. Therefore, hESC- and iPSC-CMs have not progressed towards
clinical trials yet.

Instead, a large number of current clinical trials focus on cell replacement through the
application of bone marrow mesenchymal stem cells (17, 18), mononuclear cells (18-21)
and more recently, cardiosphere-derived cardiac progenitor cells (CADUCEUS (22)).
Although most of these cell types have no intrinsic ability to give rise to large numbers of
beating CMsn vitro, they improve functiomn vivo mostly through paracrine effects as
delineated in mechanistic pre-clinical studies (23, 24).

Despite showing improvements in cardiac function in both pre-clinical and clinical studies,

the wide range of tested cell injection strategies (25—32) have been plagued by excessive cell
death after delivery (33) and challenges with functional integration (34—36), motivating the
development of biomaterial strategies to improve cell surinvégtro andin vivo. For

example, Matrigel was mixed with molecules that prevent anoikis and apoptosis,

successfully delivering hESC-CMs into the ventricles of infarcted rat hearts (37). Although
readily available, Matrigel is not clinically relevant because it is derived from the basement
membrane of a mouse sarcoma, motivating the development and use of other natural and
synthetic hydrogels, such as alginate (38), polyethylene glycol (39), self-assembling peptide
hydrogels (40), fibrin gels (41, 42) and collagen:chitosan blends (43).

Another important aspect of cell-based therapy is the demand for large cell quantities.
Typically, 18 cells are transplanted in mouse MI models (44) (0.15 g heart) (¥5)

(37, 45) (1 g), 1®in guinea pig (14) (3 g) and 16r non-human primates (37-52 g) (15).
Based on this scaling, clinical application in humans (300 g) (15) would reqéfe-10

cells for sufficient engraftment of the infarct area. The expense and time required for such
extensive cell expansion and differentiation are prohibitive and therefore unlikely to be
undertaken for a large sample pool. Extremely low cell retention and survival are the
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primary causes for the large cell requirements, and if addressed could significantly reduce
the cell demand (42, 46). For significant improvements in both cell survival and retention,
the solution may be a graft with tissue-level connections and a high-level of vascular
organization for immediate perfusion, thus motivating studies in cardiac tissue engineering
and the development of biomaterials that can promote cell survivairbatho andin vivo.

Overall, current consensus in the field is that due to potentially unlimited cell quantities and
the ability to give rise to bona fide CMsuiitro, hESC- and iPSC-CMs are a preferred cell
source foiin vitro modelling of cardiac physiology and disease, while adult cell sources
remain highly explored in clinical studies due to demonstrated safety.

3. Tissue engineering and biomaterials for the restoration of cardiac

function in vivo

Tissue engineering methods have the potential to provide the means of delivering
appropriate cells, by co-injection with a biomaterial or as a lab-grown tissue, to the damaged
heart for the purpose of restoring cardiac function lost due to injury from Ml or disease
(Figure 1). Ideally, both the beating CMs and the vasculature should be restored upon
intervention, which should be minimally invasive. Below, we review recent bioengineering
advances related to the development of supportive matrices and fully functional engineered
cardiac tissues. We specifically focus on myocardial regeneration as an alternative to
bioengineering methods for heart valve replacement, highlighting animal models and

clinical studies. We will also focus on the vascularization of engineered myocardial tissues,
a requirement for botim vitro andin vivo survival.

3.1 Acellular biomaterial implants

Application of biomaterials alone to the myocardium has been shown to reduce adverse
changes in the heart geometry (cardiac remodeling) post-Ml in both small and large animal
models (47-49), presumably due to the ability of the biomaterials to stabilize the mechanical
properties of a thinning ventricular wall. Natural biomaterials—e.g. alginate, collagen,
gelatin, chitosan, decellularized extracellular matrices (ECMs) and fibrin glue—have been
used to enhance the mechanical strength of the ventricular wall, with or without growth
factors (VEGF, bFGF, HGF) immobilized to improve wound healing and cell survival (50—
52).

Cohen’s group developed a minimally invasive method of delivering alginate into the infarct
site, which was demonstrated to reduce left ventricle enlargement in a swine MI model (38).
In this study, biotin-labeled alginate was injected into the coronary artery through a catheter
without open heart surgery. The alginate solution diffused out of the infarcted leaky vessels
into the damaged myocardium where a high concentration of calcium ions, released due to
cell damage, induced the alginate to undergo a liquid to gel transition (53). Because the
method is simple and minimally invasive, and the material requires few manipulations

vitro, the treatment was approved by the FDA for clinical trials. Currently, there are two
Phase Il clinical trials with alginate biomaterials for treatment of acute Ml (54, 55).

Can J Cardiol. Author manuscript; available in PMC 2015 November 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Zhao et al.

Page 5

VentriGel, a hydrogel composed of decellularized porcine ECM, is also progressing towards
clinical trials following successful pre-clinical study in pigs that demonstrated attenuated
pathological remodelling and improvements in contractile function with gel injection into

the heart upon Ml (56).

However, acellular biomaterial treatments do not provide a long-term regenerative solution
because they do not supply a means of replacing the millions of lost cells, the hallmark of
cardiac regeneration. In addition, biomaterials with long degradation cycles could cause
adverse remodelling due to the presence of non-contractile or poorly contractile heart wall
regions.

3.2 Engineering heart tissues

Engineered heart tissue (EHT) has the potential to restore cardiac function (57) based on
proof-of-concept studies that demonstrated implanted EHTs could be functionally integrated
with the host heart (58, 59) and improve heart function post-MlI (57, 58, 60). This was first
demonstrated 10 years ago, in the landmark study by Zimmerehalid wherein

implantation of EHTs on the epicardial surface of the heart was clearly shown to result in
functional improvement post-MlI. Sin¢e vitro approaches aim to organize cells into

functional tissues, common functionality bench-marks include the ability to generate a
contraction force (25 mN/mfrfor healthy human adult tissue (61)) and propagate electrical
signals (~43 cm/s for healthy human adult tissue (62)). According to a classic tissue
engineering paradigm, cells and scaffolds in combination are cultivated in a bioreactor in
order to achieve a desired degree of functionality. Neonatal rat CMs are commonly used as a
model system (63) but the use of hESC-CMs has been gaining momentum, as the
differentiation protocols are improved (64—66). Porous or fibrous scaffolds made from
synthetic materials (PGA/PLLA, PGS (67, 68)) as well as natural materials (alginate (69),
collagen (70), chitosan (71)) are often used (72). The use of hydrogels has also been
reported (38), (73). In recent years, decellularized heart emerged as an attractive scaffold in
the form of a porous material (74, 75) or hydrogel (76) for CM cultivation since the main
components of the cardiac ECM and architecture were preserved during the decellularization
process. Additionally, advances in microfabrication and patterning of synthetic materials
have enabled the creation of tissues with a high degree of anisotropy (77-80).

Nanotechnology technigues have been adopted into cardiac tissue engineering to enable the
production of scaffolds that aid in functional cardiac tissue formation. For example, gold
nanowires were incorporated into porous alginate scaffolds to improve scaffold conductivity
for cardiac cell culture (81). To mimic the coiled fibers of the native heart matrix as well as
high electrical conductivity, neonatal rat CMs were cultivated on scaffolds generated from
electrospun polyfcaprolactone) micro-fibers doped with gold nanoparticles (82). Tough,

yet flexible scaffolds with enhanced electrical properties were created by incorporating
carbon nanotubes (CNTSs) into aligned poly(glycerol sebacate):gelatin electrospun
nanofibers (83). To form biohybrid actuators, carbon nanotubes were incorporated into
gelatin methacrylate for cardiac cell culture (84). Nanotechnology techniques can also be
used to help monitor the function of engineered cardiac tissues, e.g. a mesh of silicone
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nanowires was incorporated into fibrous PLGA scaffolds to enable real-time monitoring of
electrical activity of cardiac constructs (85).

EHTs can also be created without a scaffold using stacked CM monolayers. The cells are
first grown on polyl-isopropylacrylamide)-grafted polystyrene dishes. Lowering the
temperature from 37 °C to 20 °C resulted in a hydrophobic to hydrophilic transition of the
surface, which released the cell monolayer. Transplantation of these cell sheets onto the
epicardial surface of infarcted rat hearts (86) or failing human hearts (87) improved cardiac
performance.

External biophysical stimulation can be used to enhance the maturation levels of hLESC-CMs
or hiPSC-CMs that are generally considered immature compared to the terminally-
differentiated adult human CMs (88, 89). Long-term (up to 6 months) monolayer culture has
been demonstrated to push hESC-CMs and hiPSC-CMs toward higher maturation levels as
assessed by morphology and subcellular organization, including myofibril density,

alignment and Z-disk registration (90). In terms of function, studies clearly demonstrated
that physical stimuli, such as mechanical (73) or electrical (91-93), are important to the
morphology and function of EHTSs.

Hirt et al (94) presented similar results in a recent study demonstrating the beneficial effects
of long-term electrical stimulation. Stimulated hydrogel-based EHTs exhibited an improved
cardiac tissue structure and function, including higher contraction force, denser CM
networks, better gap junction coupling, a physiological response to external calcium ion
stimulation and an increased inotropic response to isoprenaline.

The fetal heart experiences mechanical stress very early and mechanical stimuli may trigger
sarcomere development in CMs resulting in maturation and physiological hypertrophy. To
simulate then vivo maturation condition, Tulloc# al (95) carried out both static and

cyclic mechanical stimulation using a FLEX Cell device, demonstrating an improved cell

and matrix alignment approximating a native cardiac muscle.

Because of the interconnected nature of electrical and mechanical gigmets it has been
postulated that a combination of both electrical and mechanical stimulation could provide a
better isovolumetric contractian vitro by triggering the appropriate dynamics between
stretch and contraction (96). Recently, Morgan and Black (97) built a bioreactor platform
with integrated electrodes and mechanical stretching driven by compressed air that enabled
controlled electrical and cyclic mechanical stimulation. It was observed that electrical or
cyclic stretching alone had similar effects on the tissue, but the most impressive effects were
observed with delayed combined stimulation (electrical pacing starting 0.49 s after
mechanical stretching) and resulted in an increase in the expression of SERCA2a and
cardiac troponin-T, proteins responsible for calcium handling and contractility. The results
indicate the importance of combined electromechanical simulation and the selection of
appropriate timing for stimulation (97). Similarly, Miklassal (98) combined electrical

pacing with static stretching and found improved sarcomere structure and increased
contractile force.
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The optimal level of maturation that EHTs should achieve before implantation is still to be
determined. While a more mature cell population is clearly desired in terms of
electrophysiological matching with the native adult human tissue, maintaining the viability
of fully matured CMs or cardiac tissues during handling and implantation may be more
challenging due to their higher metabolic demands. In contrast, a tissue composed of less
mature cells may be more robust and due to its higher plasticity may aid in survival upon
implantation. However, the risk of improper functional coupling after implantation and
therefore the incidence of arrhythmias may be higher with EHTs composed of less mature
cells.

3.3 Vascularization

One important factor for EHT implant survival is rapid vascularization and the

establishment of a mature, fully functional vasculature that is integrated with the host tissue.
Upon MI, the infarcted area can cover as little as several mm to as much as 50% of the left
ventricle, a fatal scenario (99). In the case of reparable damage, the required EHT would
preferably be of equivalent size or larger. For repair of infarcts that span the entire thickness
of the ventricular wall, EHTs up to 1 cm in thickness would be required. However,
engineered tissue thicker than 500 um will suffer from insufficient transfer (mainly by
diffusion) of oxygen (100) and nutrients for the high volumetric consumption rate (67). CMs
require a particularly high level of oxygen supply to support their continuous beating action
(67, 100, 101). Based on the average oxygen consumption rate of CMs of 26.7 nmol/min/mg
protein, engineered tissues containing a high cell density (& gell§/n?) can be expected

to consume oxygen at the rate as high as 10 pM/s (102). Coupled with low oxygen solubility
in an aqueous solution (220 uM at normoxia and 37 °C) devoid of oxygen carriers (e.g.
hemoglobin in blood), without perfusion, constant media oxygenation or a means to increase
total oxygen concentration in the culture media, all oxygen would be depleted in a mere 22
S.

Therefore, one of the great challenges to engineering healthy and functional EHTs is
supplying CMs in the tissue with adequate oxygen and nutrients via vascularization. The
high metabolic rate of CMs is supported by a high capillary density in the native
myocardium (103). In addition, the presence of a vasculature along with supporting cells
such as fibroblasts, may support CM survival indirectly through paracrine signaling and gap
junctional coupling (104—106). We focus here on reviewing vascularization approaches
relevant to the production and implantation of EHTs and refer the reader to other excellent
reviews on the general topic of cardiac revascularization (107-109).

Initial solutions to the problem of vascularization were derived from biological methods (i.e.
growth factor delivery, gene therapy, cell therapy, etc.) that attempted to stimulate
endogenous blood vessel growth into the infarcted myocardium but these approaches met
with only limited success (110-113). For example, the delivery of angiogenic growth
factors, such as vascular endothelial growth factor (VEGF), by protein or gene therapy was
found to cause the formation of a highly disorganized and leaky vasculature (114). These
methods are further limited by complicated pharmacokinetics, the high cost of factor levels,
the requirement for localized effects and in the case of gene therapy,Jiwe transfection
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rates (115, 116). MicroRNAs, small non-coding RNAs, were recently successfully
employed to direct myocardial angiogenesis (117), (118). However, it seems unlikely that
endogenous endothelial repair alone can regenerate a major infarct or a fully-formed scar
tissue (119).

In a pre-vascularization approach, cardiac patches with angiogenic factors were placed on
the omentum for one week prior to inducing an MI, and then transferred to the heart post-Mi
(69). While improved cardiac function was demonstrated 4 weeks post-MI in the omentum-
generated cardiac patch group, this approach has some disadvantages including the need for
two invasive surgeries (implantation and removal from the omentum) and the temporary
cessation of blood flow to the tissue during surgery.

Biomaterial-based vascularization methods have also been investigated and include porous
collagen scaffolds with (50, 120, 121) and without (122) covalently-immobilized angiogenic
factors, alginate with two growth factors (VEGF and PDGF-BB) sequentially released, and
decellularized porcine myocardial matrix (123), all of which were demonstrated to induce
angiogenesis when placed on the myocardium. Additionally, co-culture of ECs and CMs or
tri-culture of ECs, FBs, and CMs are now accepted as viable methods to enhance patch
survival and anastomosis, partly through the cross-talk between ECs and CMs that improve
CM survival and spatial organization (124—-128).

Engineering-based vascularization strategies include the fabrication of branching templates
on which ECs assemble. Borenstetial (129), (130) first fabricated such templates by

silicon etching using polydimethylsiloxane (PDMS) molding.iAnitro perfusable 3D
microtissue cardiac bundle model was also developed using a polytetrafluoroethylene
(PTFE) tubing template (131). However, materials such as PDMS and PTFE are non-
biodegradable and thus have limited usefuliiess/o. Consequently, the field has shifted

to the use of biocompatible and biodegradable materials such as poly(lactide-co-glycolide)
(PLG) and poly(glycerol sebacate) (PGS). The mechanical strength and the biodegradable
properties of PGS allow it to be molded into a vascular network using standard soft
lithography techniques (132). A subtractive method is commonly used to create perfusable
vessels in hydrogels, wherein a sacrificial vascular network is first created from e.g. gelatin
(133, 134) and then embedded within a cell-laden hydrogel. The gelatin is then removed by
increasing the temperature of the construct, leaving behind open channels for
endothelialization. A mechanically stable carbohydrate glass was also used to rapid cast a
patterned vascular network in hydrogels (135). While promising, these hydrogel-based
methods have their own shortcomings, which include the inability to reach physiological cell
density within the gel while preserving the open lumens of the engineered vasculature and
the inability to apply this architecture vivo in a minimally invasive manner.

To address these limitations, biological and engineering methods have been combined in
attempts to design microfabricated scaffolds that can guide tubulogenesist &K{iLE6)

used a collagen-chitosan blend hydrogel to control the release of thpmEREA), and

induced recruitment and differentiation of ECs and smooth muscle 88139 in

epicardial capillary outgrowths vitro and augmented angiogeneisisivo following
subcutaneous injection (136) (137). When administered through intra-myocardial injections
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to infarcted rat hearts, thdZ-encapsulated gel was demonstrated to significantly decrease
viable tissue loss and to maintain wall thickness post-MI (137). A microgroove pattern

coated with B4-encapsulated hydrogel could direct capillary sprouting between an

explanted artery and vein and the addition of VEGF and hepatocyte growth factor (HGF)
accelerated the sprouting processes and resulted in lumen formation (138). Neonatal rat CMs
seeded around the engineered vasculature exhibited improved function and enhanced cross-
striations. However, it remains a challenge to form fully functional vascular beds that can be
injected and can integrate quickly with the host vasculature. Vascular integration is a
necessity to sustain the implanted cells/tissue, which can then allow for the much slower
process of muscle fiber electrical coupling between the implanted cells/tissue and the host
tissue (139).

4. Applications of tissue engineering in modeling of cardiac physiology and

drug discovery

Tissue engineering could also provide a new paradigm for pre-clinical drug development
programs by providing physiologically validated human cardiac substrates (Figure 1).

Ideally, bioengineering methods can provide arrays of functional and mature human
myocardial tissues for screening the side effects of drug candidates and the discovery of new
therapeutic agents. Such tissue arrays should be compatible with standard screening
practices that use well plates, electrodes to evaluate electrophysiological properties and
standardized imaging equipment such as microscopes or high-content imaging instruments.
These tissue engineered platforms, may be most useful prior to initiation of animal and
clinical studies, in the target validation and lead optimization stages of drug development.

4.1 Engineering cardiac microtissues

Thousands of human cardiac tissues may be required per day in order to satisfy the demand
of the pharmaceutical industry in the drug screening process. Even with the use of hESCs or
iPSCs as a source of CMs, cell production would quickly become an issue in the envisioned
approach. Hence, tissue engineers focused on creating miniaturized 3D microtissues (~500
pm in width) usually by means of cell-gel compaction in a temperature-curing hydrogel.
Zhaoet al (140) developed a microtissue platform to investigate the mechanical properties

of engineered tissues and found that the stiffness of the tissue is mostly contributed by the
ECM structure, which is reorganized by the cells. To mimic important cues present during
embryonic development such as ECM composition, tension and tri-dimensionality, élunes

al (89) used microfabricated wells (Figure 3A) of constant height and width but variable
length to house a surgical suture in a multiwell plate (Figure 3B) that would serve as a
template to guide collagen type | gel compaction. Gel compaction (Figure 3C-D) promoted
the alignment of the hESC-CMs and hiPSC-CMs in the 3D microtissues (Figure 3F), termed
“Biowires”, such that they resembled cardiac myofibers. The platform also permitted
electrical pacing to be provided to the cardiac Biowires through electrical field stimulation
(Figure 3F) and the study of the effect of applied drugs (e.g. epinephrine) on contractile
properties and impulse propagation (Figure 3F). The biomimetic cues provided by the
Biowire platform promoted maturation of the CMs, as determined by an improved
ultrastructural organization of the myofibrils, significantly increased conduction velocity,
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increased cell size and aspect ratio, decreased proliferation rates, improved
electrophysiological and Gahandling properties, and significantly reduced number of

CMs with automaticity. The small size of these cardiac Biowires allows for (i) maintenance
in culture without the need for perfusion, (ii) the use of low cell number and (iii)
compatibility with multiwell plates (Figure 3B), suggesting that Biowires may be used as an
in vitro platform for drug screening.

Alternatively, Thavandiraet al (141) used a microfabricated platform to engineer cardiac
microwires CMWs) composed of 100,000 cells. The 24-well plate platform was designed
such that five CMWs could be generated per well providing a total of 120 tissues per plate.
Notably, this study closely investigated the cell composition of the cardiac tissue input
population. Primary cells are a heterogeneous mixture of native heart cells that can self-
assemble, whereas hESC-derived heart cells have undefined "structural” cell types. An
understanding of the contributions of these cells to overall tissue organization and function
is lacking. A computational model of intra-tissue stress and sarcomere contractility was also
developed to biomechanically advise the final tissue mold design (Figure 4A), a model that
could be applied in the designiofvitro models for other tissue types. Thavandigal

were also able to identify an optimal hPSC-CM: cardiac FB ratio for the input population, as
assessed by tissue morphogenesis and cardiac maturation (Figure 4B). The expression of
many of the contractile markers of CMs (including MYL2, MYL7, MYH6, and MYH7)
reflected improved maturation (142). Furthermore, Thavandtrain(141) used their design
criteria to create a disease model, a tachycardic model of arrhythmogenesis, by forming
geometrically distinct circular tissue that could be defibrillated by electrical stimulation from
a state of arrhythmia to a normal rhythm (Figure 4C).

Similarly, Hirt et al (143) reported ain vitro model to simulate the pathological cardiac
hypertrophy induced by increased afterload by initially casting a fibrin-based EHT between
two hollow elastic silicone posts. After 2 weeks, the posts were reinforced with metal braces
in order to increase the afterload. This modification was sufficient to induce pathological
cardiac hypertrophy, increase collagen type | deposition, reduce contractile function and
impair diastolic relaxation. These 3D microtissue platforms therefore present a unique
opportunity for creating a controllable microenvironment, healthy or disease-specific, in
which to investigate various aspects of cardiac pathophysiology.

The requirements for an EHT used for cardiac-specific toxicity screening differ from those
of an EHT used for functional repairvivo. Since the EHTs used in drug toxicity studies
require high-fidelity mimicking of the human adult cardiac tissue, the cells should ideally be
terminally differentiated and fully mature. Drug testing also requires tissue growth
automation, miniaturization and the ability to manufacture it in large quantities with
reproducible standard dimensions and physiological properties.

4.2 Personalized medicine and drug discovery

Most of the current studies using iPSC-CMs for disease modelling have been performed in
monolayers. Cardiac tissue engineering could potentially offer a new range of readouts and
improve the maturity of iPSC-CMs. Using patient-derived iPSC-CMs, Léhag(144)

demonstrated that susceptibility to cardiotoxic drugs differed among healthy individuals and
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patients with hereditary long QT syndrome (LQTS), familial hypertrophic cardiomyopathy
(HCM) and familial dilated cardiomyopathy (DCM), indicating the utility of this method in
drug development and screening. Similarly, Weing (145) used patient-derived iPSC-
CMs to investigate the mitochondrial cardiomyopathy underlying Barth syndrome (Figure
5A—C); Carvajal-Vergarat al (146) investigated patients with LEOPARD syndrome, a
major phenotype of which is hypertrophic cardiomyopathy (Figure 5D-E); Yaataalé6)
investigated LQTS patients with Timothy syndrome (Figure 5F—K); Maatedti (147)
investigated a family with LQTS type | caused by a specific missense mutation; aed Sun
al (148) investigated a family with an inherited form of DCM. In all cases, the patient-
derived hiPSC-CMs recapitulated the major disease phenotypes, and in some cases the
disease models were used to provide insight into the molecular mechanisms underlying the
pathology (6, 145, 146) or as drug testing platforms (6, 148) (Figure 5).

The entire drug development process, from target discovery to FDA approval, takes an
average of 15 years and costs the pharmaceutical industry an average of $1.5 billion. Despite
the heavy investment, there are still drugs withdrawn from the market due to serious
toxicities and adverse effects on the cardiovascular system, such as Tegaserod (Zelnorm),
Sibutramine (Reductil/Meridia), Propoxyphene (Darvocet/Darvon) and Rosiglitazone
(Avandia) (3). To weed out unsafe drugs more efficiently, 3D microtissues could be used to
screen for the cardiotoxic effects of pharmaceutical agents as well as their liver metabolites
invitro. In addition to testing compounds that bind to the hERG channel, which is a major
concern in cardiac safety testing due to the ability of hERG-binding compounds to cause
fatal arrhythmias (149), engineered tissue substrates could give more integrated contractility
readouts and delineate rhythm disturbances due to interference with other ion channels and
contractile proteins as well. Importantly, multiple ion currents—sodlwg),(L- and T-type
calcium (¢4 andlcaT, respectively), inward rectifier potassiutg4), rapid and slow

activating components of the delayed rectifier potassiypafdi s, respectively), transient
outward potassiumg), and “funny” pacemaket{—were recorded in iPSC-CMs at
physiologically relevant levels (150). There is also some evidence that the representative ion
currents (e.g. hERG channel apg)lwere enhanced using cardiac tissue engineering
techniques (89) as compared to cultivation in embryoid body controls.

4.3 Functional readouts enabled by cardiac tissue engineering

The availability of 3D human cardiac tissues motivates the development of novel techniques
for non-invasive tracking of tissue function and contractile response. Patch clamping is most
accurately used to test individual ion channel conductance, even in a high-throughput
manner, with single-cell suspensions (151), therefore it cannot be applied in a non-invasive
manner to a 3D tissue. Recently, multi-electrode arrays (MEA) were utilized to detect the
action potential (AP) changes in monolayer or 3D aggregates (152). Brah(i53)

showed that the field potential measured by an MEA can reveal changes in drug-treated
CMs. Clements and Thomas (154) used hESC-CMs in a 48-well format MEA analysis to
generate multi-parameter data in order to profile the effects of 21 different compounds
targeting key cardiac ion channels. They were able to demonstrate improved risk assessment
over single-parametric approaches, indicating the validity of designing multi-parameter
screening platforms. However, the drawbacks include the vague resemblance of the self-
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aggregated cell spheroid used to the 3D structure of the native ventricle; the complexity of
obtaining an integrated AP profile in 3D; and the possibility of tissue damage resulting from
inserting the MEA into the tissue after tissue formation.

Velocity of impulse propagation and calcium handling are commonly assessed by optical
mapping in 3D cardiac tissues (155-157). Due to the toxicity of either the voltage- or the
calcium-sensitive dye and the non-sterile environment, the assessment is a terminal stage
evaluation that cannot be used for long-term observation (155). Conversely, the xCelligence
RTCA Cardio Instrument is a label-free, real-time system for dynamic monitoring of CM
beating and cardiotoxicity assessment. The gold microelectrode plate at the bottom of
culture well is used to measure the changes of impedance of the monolayer tissue while
beating. The company presented impressive data on toxicity screening of drugs with known
effects (158). Unfortunately, their technology can only assess 2D monolayers and the data is
an indirect measurement of tissue contractility, which cannot be translated into actual force
measurements (158).

Contractile assessment of 3D cardiac tissues includes measurements of contraction force,
beating frequency, as well as contraction and relaxation duration. It is hypothesized that
these properties of a cardiac microtissue could be related to cardiac output (63, 73). Because
of their small size, engineered cardiac microtissues are fragile and easy to damage when
handling, and therefore most research groups work with optical tracking to minimize the
manipulation during culture and analysis. Measuring changes in cell or tissue area during
contraction using image analysis does not provide an absolute value for the force generated
(91). However, optical tracking could be used to measure the deflection of posts around
which cardiac tissue is grown to obtain an absolute value for the contraction force (141,

159).

Muscular thin films (MTF) are composed of a 2D layer of engineered muscle grown on one
side of a PDMS film. The thin film undergoes deformation as a result of contraction when
electrically stimulated. Optical recording of MTF contraction is filmed and the contractile
forces of the tissue are calculated by analyzing the recording using a mathematical model
(160, 161). This platform can be used for both smooth and striated muscle models.

However, because the MTFs consist of an oriented monolayer of cardiac cells, they are more
representative of 2D cell layers rather than 3D solid tissues.

Eschenhangeet al (162) developed a drug screening platform in a 24-well format, in which
hPSC-CMs were seeded with fibrin enhanced ECM. Each well included two silicone posts
for tissue formation and functional testing. Beating of the tissues resulted in the inward
deflection of the posts and the degree of deformation could be correlated to the contractile
forces using mathematical models, as the stiffness of the PDMS can be determined by
standard mechanical testing protocols. The system was able to realize long-term monitoring
of tissue contractile force, contraction and relaxation duration, and beating frequency in a
sterile manner (163-165). In terms of drug screening, digoxin toxicity was confirmed at both
100 nM and 1000 nM using force measurements; and repolarization inhibitors, such as
chromanol 293B, quinidine and erythromycin, were found to induce significantly prolonged
diastolic times at 1000 nM.
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Boudouet al (159) also used a PDMS post system to study the relationship between EHT
guality and the stiffness of the posts and collagen matrix. They miniaturized the posts down
to 1 mm in length and were able to produce 200 EHTs with 1 million CMs. Dose response to
both isoproterenol and digoxin was tested in this platform. Both ionotropic and toxic effects
of digoxin, consistent with the literature, could be demonstrated in this platform (166).
Similarly, the effects of isoproterenol were consistent with the literature showing increased
contractile forces at a low dosage and decreased forces at a high dosage.

Another study introduced fluorescent microbeads (167, 168) on top of the posts and reduced
the scale significantly to the micrometer level to facilitate the image processing strategy.
Magnetic beads have also been incorporated into posts to facilitate magnetic stretching and
thereby, accelerate tissue maturation (140). Rodrigialz(169) recently designed a
PDMS-based micropost array platform for the assessment of CM contractility using optical
tracking of the post locations that enabled measurement of twitch force, velocity and power.

The limitation of these contraction-based platforms is that the setup can only measure
contractile forces along one dimension. Also PDMS is much stiffer (~1 MPa) than the native
myocardium (~10-100 kPa), which may trigger pathological hypotrophy in the EHTSs.
Another commonly recognized limitation is the high hydrophobicity of PDMS, which is
linked to its ability to absorb small hydrophobic molecules motivating the development of
novel materials, e.g. polyurethanes to replace PDMS (170).

5. Conclusions and Future Challenges

Cardiac regenerative medicine has made significant progress in recent years. Successful pre-
clinical studies have demonstrated the integration of cardiac patches to recipient hearts and
the ability to improve contractile function. A cellular biomaterials, such as alginate and
decellularized ECM, are already in clinical studies and challenges related to cell retention
are being addressed using novel biomaterials. In terms of vascularization, EHTs with pre-
established, perfusable, 3D, continuous vasculature can be potentially scaled up to clinically
relevant size and thickness. In addition, immediate integration into the host circulaition by
situ anastomosis may be needed to significantly improve the survival of CMs in implants.

Cardiac tissue engineers are also developing human cardiac microtissue platforms that can
offer non-invasive readouts of contractile force and use small cell numbers per tissues (e.g.
100,000-500,000 cells). Coupled with iPSC technology, these platforms can offer improved
disease modelling tools. Current drug toxicity screening requires microtissues that closely
mimic human adult cardiac tissue. To achieve a high level of maturation, a fully established
protocol with biochemical, electrical and mechanical stimuli should be designed to push
tissue towards a fully mature stage. In addition, due to the fact that the vasculature
contributes a great degree to drug distributiovivo, it would be physiologically relevant to
have a miniaturized integrated cardiovascular systentro to facilitate toxicity screening.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary

Tissue engineering as it relates to cardiac regenerative medicine has made exciting
progress in recent years, which has opened up the possibility of more wide-spread
applications than previously imagined. It now seems plausible that in the near future
bioengineering methods could be used to not only regenerate damaged myocardiun
also facilitate drug screening and discovery, as well as to create personalized medic
testing platforms. The state of the art, challenges and perspectives are discussed.
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Figure 1. Overview
Human induced pluripotent stem cells (iPSCs) and human embryonic stem cells (ESCs) are

capable of differentiation to produce cardiomyocytes (CMs), which can be applied ta both
vitro andin vivo applicationslIn vitro, miniaturized cardiac tissues are engineered in large
numbers using small amounts of cells and reagents. These microtissues are used in platforms
such as customized 96-well plates with topographical cues, e.g. wires or posts that guide
tissue assembly and enable read-out of contractile force. The data are analyzed to evaluate
efficacy and safety as part of the pharmaceutical development process. The same strategy
can also be used to optimize therapeutics for personalized metiicina, CMs are

combined with a pro-survival cocktail, biomaterial scaffold and pre-established vasculature
to generate functional cardiac patches that allow for immediate perfusion and
electromechanical coupling between the patch and the host tissue after transplantation for
true cardiac functional restoration.
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Figure 2.In vivo study of hESC-CM therapy in a non-human primate model
(A) Remuscularization of the infarcted macaque heart with hESC-CMs 14 days after

injection. Dashed line represents the infarct area, including hESC-CMs expressing GFP
signal (green) and contractile proteiractinin (red for both human and monkey). Scale bar:
2000 mm(B) 3D tomography of a heart perfused with Microfil at 3 months post
transplantation. Red indicates perfused vessels in the infarct site; grey indicates vessels in
the host tissue and white indicates new vessels within the @g#entricular tachycardia

(VT). (D) Accelerated idioventricular rhythm (AIVR{E) Non-sustained ventricular

tachycardia (NSVT)(F) Non-sustained accelerated idioventricular rhythm (NSAIVR). P2—7
denote sample names. Control animals (P2 and P7) had no episodes of arrhythmia whereas
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all samples with transplanted hESC-CMs had either long duration (18 h per day) VT or
AIVR or multiple episodes of arrhythmia within the first 30 days post-injection. (15)
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Figure 3. Biowire microtissues
(A) Biowire assembly platform. Surgical suture (black) is placed in the center of the

PDMS channelll. Cardiomyocyte and collagen type | gel suspension is seeded into the
main channel around the sutulid. Pre-culture of hESC-CMs in the template allows the
cells to remodel the collagen and contract around the suture to generate human cardiac
“Biowires”. (B) Biowire PDMS platforms assembled in a multiwell culture plgEg.
Brightfield images of hESC-CMs in the Biowire template during pre-cultine.
Quantification of the compaction of the gel over the pre-culture péE)dRepresentative
images of hematoxylin and eosin (H&E) and Masson'’s trichrome (MT) staining for Biowire
sections. Orientation of the suture denoted by the ar(@y&eft. Representative images
using a potentiometric fluorophore (DI-4-ANEPPS) of a Biowire indicating spontaneous
electrical activity. Representative traces of impulse propagation recording for a Biowire
without electrical stimulationLgft trace), with electrical stimulatiodijddle) and in

response to epinephrinBight). The stimulation frequency is depicted in red. (89)

Can J Cardiol. Author manuscript; available in PMC 2015 November 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

wduasnuel Joyny vd-HIN

Zhao et al.

Simulated stress

Page 31

Conditions YNKX2-5+

%CD90+ | Tissue composition

100

o

75

25

C S0 50

D 75

A 100 0

MW B 75 25
= - [

CMW A

Figure 4. Cardiac Microwires (CMWSs)

Distal

(A) A simulation predicting stress (represented by non-dimensional effective Sjrasd;
sarcomerici-actinin expression in CMWs shows a uniaxial orientation along the
longitudinal axis(B) Top, Input population for CMWSs and aggregates was controlled by
combining sorted NKX2.5-GFP+ (CMs) and CD90+ (FBs) cells in the described ratios.
Middle, CMW A composed of 100% CMs formed non-integrating colonies of cells (left),
whereas CMW B composed of 75% CMs and 25% FBs formed well-integrated and
organized tissueBottom, bright field and fluorescent images of the CMW A and CMW B
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tissues(C-D) One cycle and signal tracing of a circular CMW generated to mimic a re-
entrant arrhythmic wave. The impulse starting location is IfCleThe non-stimulated
circular CMW shows looping cycles of activation propagat{®).Electrical field
stimulation of 10 V induced a normal rhythm in the circular CMW. (141)
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Figure 5. Patient-derived iPSCs

(A) Sarcomeric organization is impaired in patient-derived Barth syndrome iPSC-CMs.
Top, representative images of iPSC-CMs seeded on micropatterned fibronectin, cultured in
indicated medium, transfected with nuclear-localized GFP or tafae&if) (odified

MmRNA (modRNA)—a mutation in which causes mitochondrial functional abnormalities and
cardiolipin deficiency resulting in Barth syndrome—and stained avitictinin. Sarcomeres

in control iPSCCMs (WT1) are regularly organized along the entire length of the cell.
Sarcomeres in patientderived Barth syndrome (BTH-H) iPSC-CMs are intermittent and
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sparse. Transfection witfAZ restored sarcomeric organization. Glucose culture of BTH-H
iPSC-CMs did not rescue sarcomere formatimitom, plots quantitating sarcomere
organization. Scale bars, 10 um. Data presented as mean #PSEQO5 versus BTH-H in
galactose culture (*) or BTH-H + nGFP in glucose culture (#). (145)

(B—C) Barth syndrome myocardial tissue constructs recapitulate Barth syndrome myopathy.
Human iPSC-CMs were seeded onto thin micropatterned elastomers supported by glass
coverslips. After 5 days, the muscular thin films (MTF) were peeled off the glass and
allowed to contract and curl away from the covergl).Top, a-actinin—stained image of a
control iPSC-CM tissue demonstrating sarcomere alignment and fibrous strudiiaids,
iPSC-CMs selforganize into anisotropic myocardial tissues at diastole and peak systole
demonstrating a reduction in the radius of curvature of the MTF as it contracts. Scale bar,
100 um Bottom, images of MTFs in diastole and systole wherein red lines indicate
automated tracking and blue lines indicate MTF length before peeling from(@ass.

Twitch stress and peak systolic (syst) stress of MTFs paced at 2 Hz. MTFs were generated
from BTH-H and control (WT1) iPSC-CMs transfected with the indicated modRNA and
cultured in galactose or glucose medium. BTH-H iPSC-CM tissues had significantly lower
twitch and peak systolic stress compared to controls, a phenotype that could be rescued by
TAZ transfection. (145)

(D—E) LEOPARD patient-derived iPSC-CMs have increased cell size and increased
sarcomeric assembly indicative of cardiac hypertrophy. Stem cells (hESC cell lines: Hes2
and H1; wild-type hiPSCs: S3-iPSC4; LEOPARD syndrome hiPCs: L1-iPSC13, L1-iPSC6
and L2-iPSC10) were differentiated into CNIB) The cell surface area of 50 randomly
selected troponin-T-positive cells (CMs) were measured. Boxes &par8t percentile;
whiskers 1.5-times median; open circles 2.5-times median; filled circle 3-times median.

(E) Sarcomeric organization was measured in 50 troponin-T-positive CMs (red). Data
presented as mean + SD. (146)

(F—K) Roscovitine rescues the cellular phenotype of Timothy Syndrome (TS) patientderived
iPSC-CMs. Roscovitine (Ros), a cycline-dependent kinase inhibitor that increases voltage-
dependent inactivation (VDI) of CaV1.2, the main L-type channel in the mammalian heart
was investigated as a rescue for the TS phenotype. Black: without treatment; Red: with Ros
treatment; and Blue: after wash ofif) Ros treatment reduced the frequency of irregular

C&* transients in TS iPSC-CMs. Arrowheads denote irregulér feaks(G) Ros

treatment significantly reduced the irregular amplitude and timing of spontanedus Ca
transients in TS iPSC-CM&) Inactive B&*currents in TS iPSC-CMs were restored by

Ros treatmen(l) Ros treatment significantly increased CaV1.2 VDI in TS iPSC-QJJs.

Ros treatment decreased the frequency of abnormal depolarizing events. Arrowheads denote
delays after depolarizatio(K) Ros prevented AP prolongation in TS iPSC-CMs. Data
presented as mean + SEM. *P<0.05, **P<0.01. (6)
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