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Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for
solving binary optimization problems. Hardware implementations of quantum annealing,
such as the quantum processing units (QPUs) produced by D-Wave Systems, have
been subject to multiple analyses in research, with the aim of characterizing the tech-
nology’s usefulness for optimization and sampling tasks. In this paper, we present a
real-world application that uses quantum technologies. Specifically, we show how to
map certain parts of a real-world traffic flow optimization problem to be suitable for
quantum annealing. We show that time-critical optimization tasks, such as continuous
redistribution of position data for cars in dense road networks, are suitable candidates
for quantum computing. Due to the limited size and connectivity of current-generation
D-Wave QPUs, we use a hybrid quantum and classical approach to solve the traffic flow
problem.
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1. INTRODUCTION

Quantum annealing technologies such as the quantum processing units (QPUs) made by D-Wave
Systems are designed to solve complex combinatorial optimization problems (Johnson et al., 2011).
Previous experiments have shown how these QPUs implement quantum annealing and that the
quantum bits (qubits) in the QPU remain coherent and entangled during the annealing process
(Lanting et al., 2014). It has also been shown how the quantum properties of qubits play a role
in the computation of solutions in both sampling and optimization tasks (O’Gorman et al., 2015;
Perdomo-Ortiz et al., 2015; Rieffel et al., 2015; Venturelli et al., 2015a,b; Denchev et al., 2016; Los
Alamos National Laboratory, 2016; Raymond et al., 2016). The QPU is designed to solve quadratic
unconstrained binary optimization (QUBO) problems, where each qubit represents a variable,
and couplers between qubits represent the costs associated with qubit pairs. The QPU is a physical
implementation of an undirected graph with qubits as vertices and couplers as edges between them.
The functional form of the QUBO that the QPU is designed to minimize is:

Obj(x,Q) =x"-Q-x, (1)

where x is a vector of binary variables of size N, and Q is an N X N real-valued matrix describing
the relationship between the variables. Given the matrix Q, finding binary variable assignments to
minimize the objective function in equation (1) is equivalent to minimizing an Ising model, a known
NP-hard problem (Lucas, 2014).
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In this paper, we will introduce the traffic flow optimization
problem. We start with the T-Drive trajectory data set’ of cars’ GPS
coordinates and develop a workflow to mimic a system that aims
to optimize traffic flow in real time. We show how to transform
key elements of the problem to QUBO form, for optimization on
the D-Wave system (including both the machine and software
tools that use it). We treat the D-Wave system as an optimizer
and show that it is possible to integrate D-Wave QPU calls into
a workflow that resembles a real-world application. The method
presented here is a novel approach to mapping this real-world
problem onto a quantum computer.

2. FORMULATION OF THE TRAFFIC FLOW
PROBLEM

The objective of the traffic flow optimization problem is to
minimize the time for a given set of cars to travel between their
individual sources and destinations. We used the simplifying
assumption that time to traverse a street is proportional to a
function of the number of cars currently occupying the street.
Thus, we minimize total time for all cars by minimizing total
congestion over all road segments. Congestion on an individual
segment is determined by a quadratic function of the num-
ber of cars traversing it in a specific time interval. To ensure
reproducibility, we used the publicly available T-Drive trajec-
tory data set containing trajectories of 10,357 taxis recorded
over 1 week. The data set features 15 million data points, and
the total distance of the trajectories makes up about 9 million
kilometers (Yuan et al., 2011, 2013; Zheng, 2011). We required
every car to transmit its GPS coordinates in intervals of 1-5 s.
Because not all cars in the data set provide transmission data
at this rate, we enriched the data set by interpolating between
GPS points. We split the problem into a step-by-step workflow,
outlined below. “Classical” refers to calculations on classical
machines, and “quantum” refers to calculation on the D-Wave
system:

1. Classical: preprocess map and GPS data.

2. Classical: identify areas where traffic congestion occurs.

3. Classical: determine spatially and temporally valid alternative
routes for each car in the data set, if possible.

4. Classical: formulate the minimization problem as a QUBO
(to minimize congestion in road segments on overlapping
routes).

5. Hybrid quantum/classical: find a solution that reduces con-
gestion among route assignments in the whole traffic graph.

6. Classical: redistribute the cars based on the results.

7. Iterate over steps 2-6 until no traffic congestion is identified.

A visualization of the input graph is shown in Figure 1. This
visualization was generated using the OSMnx API, which is
based on OpenStreetMap and allows for retrieving, constructing,

!'This open source data set provided by Microsoft can be found at: https://www.
microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/.
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FIGURE 1 | OSMnx graph for the downtown area of Beijing.

analyzing, and visualizing street networks from OpenStreetMap
(Boeing, 2017).

2.1. Determination of Alternate Routes

To illustrate how we formulate the problem, we focus on a
subset of the T-Drive data set. Of the 10,357 cars in the data
set, we select 418 of those that are traveling to or from the city
center and the Beijing airport. In this specific scenario, the goal
was to maximize traffic flow by redirecting a subset of the 418
cars to alternative routes such that the number of intersecting
road segments is minimized. For this, optimizing over all cars
simultaneously is required, which means that any redistribu-
tion of cars that resolves the original congestion must not cause
a traffic jam anywhere else in the map. We used the OSMnx
package to split the map of Beijing into segments and nodes and
assign a unique ID to each. Our procedure can be summarized
as follows:

1. Extract the road graph from the Beijing city map using
OSMnx. This returns lists of segments and nodes with IDs.
Nodes represent connections between segments, and seg-
ments are edges connecting the nodes, representing the streets
(Figure 1).

2. Map the T-Drive trajectory data set cars’ GPS coordinates
onto street segments in the graph, to determine the routes
taken by the cars.

3. For each car, and each source and destination node, we extract
all simple paths from source to destination and obtain 3 candi-
date alternative routes.” We use these 3 candidates as proposed
alternative routes to redistribute traffic.

2A simple path can traverse several nodes from source to destination, but without
returning to nodes which were already visited (no cycles). Several thousands of
simple paths from source to destination (per car) may exist. We selected two simple
paths that are most dissimilar to the original route, and to each other, and proposed
these as alternates, along with the original route. To do this we used the Jaccard
similarity index.
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2.2. Formulating the Traffic Flow

Optimization in QUBO Form

The definition of variables for the QUBO (equation (1)) requires
some classical preprocessing on the input. In rare cases, it may
not be possible to switch a car to different routes. For example,
if there is no intersection or ramp near the car, it will not be
considered for rerouting and will remain on its original path.
Nevertheless, this car will still affect possible routings of other
cars, so it is included in the QUBO. Figure 2 shows an exam-
ple with road segments assigned to a car, as it is used in our
workflow.

To optimize the traffic flow, we minimize the number of
overlapping segments between assigned routes for each car.
Thus, we formulate the optimization problem as follows: “Given
3 possible routes per car, which assignment of cars to routes
minimizes the overall congestion on all road segments?” We
require that every car should be assigned one of the 3 possible
routes, while simultaneously minimizing total congestion over
all assigned routes. It is important to emphasize that in this
example each car was proposed 3 possible alternative routes—
not the same set of 3 routes for all cars. This need not be the case
in general; cars can have many possible routes. For simplicity,
we take (maximum) 3 routes per car, because the mathematical
description of the problem is identical regardless of the number
of routes.

For every possible assignment of car to route, we define a
binary variable g; representing car i taking route j. Because each
car can only occupy one route at a time, exactly one variable per
car must be true in the minimum of the QUBO. We define a con-
straint such that every car is required to take exactly one route.
This can be formulated as the following constraint (assuming 3
possible routes):

2
jeil2.3}
=Gy~ 9 ~ 95 + 2449, + 29,95 + 29495 + 1, @)

simplified using the binary rule x* = x. As stated previously,
routes are described by lists of street segments (S being the set
of all street segments in the graph). Therefore, for every street
segment seS, we identify all binary variables g; associated with
routes that share street segment s (call this set B) and formulate
the occupancy cost function:

cost(s) = thy . 3)

{10012: [[30888192,146612995,25006941,342687925,190
375162,1903751,175388762, 146612956,169587517],
[30888192,169707874,146612995,25006941,169707825, 34
2687925,190375162,190375161, 175388762,146612956,169
oSBT ETY )

FIGURE 2 | An example of a single car (with ID 10012) and its assigned
routes, split into segments.

For example, if route j; of car i), route j, of car i, and route
Js of car is share street segment s, then B, ={g,, N7 R and
equation (3) takes the form:

2
2
cost(s) =| D, 4 :{qim 4, +qzsj3]
qi]ele
=4y Y49, 9, T24,9,, 7299, T29,,9,,- 4

In general, there can be many car/route variables g; that share
some street segment s. equation (3) will then give a linear term
for each of the binary variables (with a coeflicient of +1) and
a quadratic mixed term for every combination of two binary
variables (with a coefficient of + 2). The global cost function for
the QUBO problem, Obj from equation (1), can now be simply
described by summing the cost functions for each street segment
and the constraint from equation (2):

Obj = ZCOSt(s)+kZ(Z q; —1] . (5)

ses i

When summing components of the global cost function, the
scaling parameter 4 must be introduced. This ensures that equa-
tion (2) is satisfied for all cars in the minimum of the QUBO. To
find this scaling factor, we find the maximum number of times
some car i is present in cost functions of the form equation (3)
and use this value as 1. This makes the cost of violating equa-
tion (2) greater than the cost of increasing the segment occupancy
in every route by 1.

Now the cost function can be formulated as a quadratic, upper-
triangular matrix, as required for the QUBO problem. We keep
a mapping of binary variable g; to index in the QUBO matrix Q
(as defined in equation (1)), given by I(g;). These indices are the
diagonals of the QUBO matrix. The elements of the matrix are
the coefficients of the g; terms in equation (5). To find these terms
explicitly, whenever two routes j and j’ share a street segment s:

1. Weadda (+1) at diagonal index I(gy) for every car i proposed
with route j containing segment s.

2. We add a (42) for every pair of cars i, and i, taking route
j containing segment s at the off-diagonal element given by
indices I(q; ;) and I(q, ).

We then add the constraints to enforce that every car has only
one route, as per equation (2):

1. For every car i with possible route j, we add (—1) to the diago-
nal of Q given by index I(g;).

2. For every cross-term arising from equation (2), we add (21) to
the corresponding oft-diagonal term.

A special case occurs if a car is proposed only one route,
meaning g; = 1. As stated previously, despite car i being assigned
to route j, this assignment still affects other cars. This forces the
quadratic constraint terms from equation (3) to be turned into
additional linear terms: 2¢,q,,, — 2q,,. Additionally, by keeping a

i 1i'j
record of which routes every segment appears in, we can remove
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the redundant constraints, as some routes may overlap in more
than one segment.
This results in a QUBO matrix as shown in Figure 3.

2.3. Summary of the Traffic Flow
Optimization Algorithm

Expressed as pseudo-code, the important high-level steps of the
traffic flow optimization algorithm are as follows:

1. For each car i:
a. Determine the current route.
2. For each car i’s current route:
a. Map the source and destination to their nearest nodes in
the road graph.
3. For each with source/destination pair:
a. Determine all simple paths from source to destination.
b. Find two alternative paths that are maximally dissimilar to
the original route and to each other.
4. For each car i, define the set of possible routes needed to form
the QUBO.
5. Define the matrix Q with binary variables g; as described in
Section 2.2.
6. Solve the QUBO problem.
7. Update cars with the selected routes.

3. D-WAVE SOLVERS AND
ARCHITECTURE

Here, we briefly introduce the solvers and tools provided by
D-Wave, to help understand how the problem was solved using
the QPU.

3.1. Connectivity and Topology
The topology of the D-Wave 2X QPU is based on a C;, Chimera
graph containing 1,152 vertices (qubits) and over 3,000 edges
(couplers). A Chimera graph of size Cy is an N X N grid of
Chimera cells (also called unit tiles or unit cells), each containing
a complete bipartite graph of 8 vertices (Ki.). Each vertex is con-
nected to its four neighbors inside the cell as well as two neighbors
(north/south or east/west) outside the cell; therefore, every vertex
has degree 6 excluding boundary vertices (King et al., 2015).
The 418-car example used 1,254 logical variables to represent
the problem. A challenge in this scenario is the restricted connec-
tivity between qubits on a D-Wave QPU, which limits the ability
to directly solve arbitrarily structured problems. When using

[[-2918 5864 A2 i 0 0 0]
[ 0 -2908 - AR 0 0 0]
[ 0 052920t 0 0 0]
[ 0 0 0 , —2925 5854 5854]
[ 0 0 0 > 0 -2924 5856]
[ 0 0 0 ’ 0 0 -2924]]

FIGURE 3 | QUBO matrix describing the traffic flow problem.

the D-Wave QPU directly, an interaction between two problem
variables can only occur when there is a physical connection
(coupler) between the qubits representing these variables. For
most problems, the interactions between variables do not match
the QPU connectivity. This limitation can be circumvented using
minor embedding, a technique that maps one graph structure to
another. The QPU we used has 1,135 functional qubits, thus it was
not possible to embed the 1,254 logical variables on the QPU at
once. Therefore, the problem was solved using the hybrid classi-
cal/quantum tool gbsolv (described in the next section).

3.2. The gbsolv Algorithm
In January 2017, D-Wave Systems open-sourced the software
tool gbsolv (D-Wave Systems, 2017).* The purpose of this algo-
rithm is to provide the ability to solve larger QUBO problems,
and with higher connectivity, than is currently possible on the
QPU. Given a large QUBO input, gbsolv partitions the input
into important components and then solves the components
independently using queries to the QPU. This process iterates
(with different components found by Tabu search) until no
improvement in the solution is found. The gbsolv algorithm can
optimize subproblems using either a classical Tabu solver or via
submission to a D-Wave QPU. In this paper, we run gbsolv in
the hybrid classical/quantum mode of submitting subproblems
to the D-Wave 2X QPU.

The high-level steps performed by gbsolv in hybrid mode are
as follows:

1. Find the largest clique* that can be minor embedded in the
QPU topology, or in the full Chimera graph if using the VFYC
feature.’ This one-time operation can be done in advance.

2. Given a QUBO problem, initialize random bit string repre-
senting a solution to the problem.

3. Useaheuristic method to rank nodes according to importance;
create a subproblem that fits on the QPU using the importance
ranking.

4. Create subproblem using the importance order.

5. Solve subproblem by submitting it to the QPU and update
variable states in the bit string.

6. Iterate steps 3-5 until no improvement in the objective func-
tion is found.

A full description of how the gbsolv algorithm works is
detailed in Booth et al. (2017).

4. RESULTS

The goal of these experiments was to map a real-world problem
to a quantum annealing machine, which we have shown. When

*The source code can be found at: github.com/dwavesystems/qbsolv.

*A clique is a graph where all nodes are connected to each other.

*D-Wave has recently introduced a “virtual full-yield Chimera” (VFYC) solver,
which takes the working QPU and simulates the missing qubits and couplers using
classical software. This allows for some programs to be standardized across the
different QPUs, and within generations of QPUs. This VFYC version of the D-Wave
2X solver was used in our experiments.
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evaluating the solutions produced by the D-Wave QPU, the focus
was on finding good quality solutions within short periods of
calculation. To quantify the quality of a solution, we count the
number of congested roads after optimization. Keeping in mind
that routes are described by sets of road segments, we simply count
the number of segments that appear in routes more than a given
number of times (Nintersections) Here, we assume that a segment that
appears in more than Niyersections routes will become congested. For
this experiment, we chose Ninersections = 10.

180 . ‘
— Original routes

160

140

120

100

Number of congested roads

i%

T T
qbsolv Random

Solver

FIGURE 4 | Results comparing random assignment of cars to routes, and
gbsolv with calls to the D-Wave 2X QPU. The y-axis shows the distribution of
number of congested roads. The red line is the number of congested roads
given the original assignments of routes.

To evaluate the QUBO formulation of the traffic flow problem,
we designed the following experiment: for the 418 car QUBO
problem (as presented in Section 2.2), we solved the problem 50
times using gbsolv. We also generated 50 random assignments of
cars to routes as reference for the results. Intuitively, one would
expect random route assignments to spread traffic across the
alternative routes, thus reducing the number of congested seg-
ments. In Figure 4, we show the distribution of results (measured
as the number of congested segments) after running the experi-
ments using gqbsolv and random assignments.

From the results in Figure 4, we can see that gbsolv redis-
tributes the traffic over possible routes in a way that reduces the
number of congested roads. This is evident both with respect to
random assignment of routes and also shows improvement over
the original assignment of routes. It should be noted that in the
original assignment, there was a relatively small number of streets
that are heavily occupied (meaning above the Ninersections = 10
threshold), as all the cars shared the same route, and that the
average occupancy was much higher than Niyersections = 10. It is
also worth noting that all 50 experiments using gbsolv resolved
the congestion.

Additionally, we measured the performance of gbsolv as a
function of its run time. The gbsolv source code was compiled and
executed on a server in Burnaby, Canada, to minimize the latency
between submitting jobs to the QPU and obtaining the results.
However, since the QPU used was a shared resource via the cloud,
run time of gbsolv varied greatly. Therefore, we consider the run
time of gbsolv to be the minimum of the observed run times, as
this represents most faithfully the algorithm, independent of the
load on the D-Wave system. This run time was observed as 22 s.
There is also no evidence of correlation between the run time of

FIGURE 5 | Left: Unoptimized situation under consideration of cars causing traffic jam in the network. Right: Optimized redistributed cars using gbsolv. Note that
the areas in red, which indicate high traffic density, are mostly absent from the right picture.
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gbsolv and performance (the long run times are due to waiting
in the job submission queue). Given the performance results of
gbsoly, it is reasonable to assume that a dedicated D-Wave QPU
(circumventing the publicjob submission queue) could be suitable
for these kinds of optimization problems. A visual showing the
traffic density on the Beijing road graph before (original routes)
and after optimization (using gbsolv) is shown in Figure 5.

5. CONCLUSION AND FUTURE WORK

The currently presented problem is a simplified version of traffic
flow, as it incorporates only a limited set of cars, no communica-
tion to infrastructure, no other traffic participants, and no other
optimization targets except minimization of road congestion. In
our future work, we intend to consider all of these parameters
and will also need to consider creative ways of formulating these
parameters as part of the QUBO problem. We will continue to
focus on solving real-world problems by means of quantum
machine learning, quantum simulation, and quantum optimiza-
tion. Furthermore, we find that these types of real-time optimiza-
tion problems are well-suited for the D-Wave systems and the
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