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Abstract—We present a generalization of the binary paint shop
problem (BPSP) to tackle an automotive industry application,
the multi-car paint shop (MCPS) problem. The objective of
the optimization is to minimize the number of color switches
between cars in a paint shop queue during manufacturing, a
known NP-hard problem. We distinguish between different sub-
classes of paint shop problems, and show how to formulate the
basic MCPS problem as an Ising model. The problem instances
used in this study are generated using real-world data from a
factory in Wolfsburg, Germany. We compare the performance
of the D-Wave 2000Q and Advantage quantum processors to
other classical solvers and a hybrid quantum-classical algorithm
offered by D-Wave Systems. We observe that the quantum
processors are well-suited for smaller problems, and the hybrid
algorithm for intermediate sizes. However, we find that the
performance of these algorithms quickly approaches that of a
simple greedy algorithm in the large size limit.

Index Terms—quantum annealing, quantum computing, opti-
mization, sequencing

I. INTRODUCTION

Quantum computing has the potential to significantly impact

both research and industry in a variety of disciplines. Quantum

algorithms developed expressly for fully error-corrected quan-

tum computers are among the most promising, specifically

Shor’s algorithm for factoring [1] and Grover’s algorithm

for unstructured search [2], which are both asymptotically

faster than their classical counterparts. Without error cor-

recting schemes, the advantages of quantum computing are

more difficult to discern. Recently, a significant milestone

of quantum supremacy was reached by Google’s quantum

computer, when it was shown to sample from random quantum

circuits faster than any classical algorithm [3]. In the near

term, specific focus has been dedicated to developing useful

algorithms for so-called Noisy Intermediate-Scale Quantum

(NISQ [4]) processors. Various companies such as Google,

IBM, and others have built gate-based NISQ computers with

up to dozens of qubits [3], [5]. Companies such as D-

Wave Systems have adopted an alternative approach, pursuing

instead the physical implementation of quantum annealing

algorithms, an adaptation of Adiabatic Quantum Optimization.

Originally proposed as a heuristic optimization algorithm [6],

the field of quantum annealing has grown significantly over

time, with many potential applications being showcased in

fields such as quantum simulation [7], [8], [9], quantum

machine learning [10], [11], [12], optimization [13], [14],

[15], and more [16], [17]. The majority of both gate-model

and quantum annealing applications currently involve solving

an optimization problem, typically formulated as either an

Ising Model using spin variables s ∈ {−1, 1}, or a Quadratic

Unconstrained Binary Optimization (QUBO) problem with

binary variables x ∈ {0, 1}. These two models are equivalent

under a simple change of basis, and are known to be NP-hard

to minimize in the worst case [18]. As such, many interesting

and complex optimization problems can be posed in one of

these models [19]. Ising Models are formulated as a system

of interacting spins:

H(s) =
∑

i

hisi +
∑

i<j

Jijsisj , (1)

where hi and Jij are real-valued numbers defining the strength

of interactions between neighboring spins si, sj . For QUBOs,

we define:

Obj(x,Q) = xT ·Q · x, (2)

where x is a vector of binary variables, and here Q is an upper-

triangular matrix defining the relationships between them. The

initial work of constructing an optimization problem suitable

for quantum computers is finding a valid representation in
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either Ising or QUBO form. In quantum annealers, these

optimization problems are encoded by programming sets of

qubits and couplers. The quantum processor then initializes the

system of qubits in an easy-to-prepare ground state, and slowly

transitions the Hamiltonian to represent the optimization prob-

lem as specified by the user. The physical and mathematical

background motivating the algorithm is beyond the scope of

this work, and we refer the reader to [20].

Despite the proof-of-concept projects presented above

which have been tested on quantum processors, a large-scale

application has yet to be shown. Partly, this can be attributed

to the mismatch between the core optimization problem and

the limited scope of quantum optimization algorithms. Many

industry problems involve a mix of integer, discrete, and

continuous variables and constraints, while NISQ processors

solve small-scale binary optimization problems. Therefore, it

is important to find candidate problems that not only benefit

from quantum computing theoretically, but also are amenable

to the technology practically. We therefore present an auto-

motive industry problem, the multi-car paint shop (MCPS)

problem. This optimization problem is an extension of the

binary paint shop problem (BPSP) which has been studied

in the context of other quantum algorithms [21]. The MCPS

problem represents the real-world version of the BPSP, and is a

crucial step in the process of car manufacturing at Volkswagen.

In this study we only solve problem instances obtained from

a factory in Wolfsburg, Germany. We employ a variety of

classical solvers as competition benchmarks, and compare the

results to D-Wave quantum processing units (QPUs) and a

hybrid quantum-classical algorithm.

The rest of the paper is structured as follows: in Section II

we review the relevant existing literature for the paint shop

problem. Section III motivates and defines the multi-car paint

shop problem, and derives the Ising model for the problem.

In Section IV we outline the experimental setup and data

preparation, and Section V presents the results of our analysis.

Lastly, Section VI discusses the conclusions of the scientific

analysis and the lessons learned from this study.

II. PREVIOUS WORKS

The paint shop problem refers to a set of combinatorial

optimization problems in the automotive industry. The objec-

tive is to color a given sequence of cars with a fixed number

of colors such that the total number of color switches is

minimized. This simple problem poses interesting scientific

complexity-theoretic questions, which in turn have real impact

for solving such problems in practice. The paint shop problem

was originally posed by Epping et. al [22] as a form of coloring

problem. Some clarification on nomenclature: the given car

sequence can also be referred to as a word, where each car

is denoted by a character. In [22], it was shown that the

paint shop problem is NP-complete in both the number of

colors and cars in the sequence. Furthermore, results show

that, for bounded numbers of colors and unique cars, there

exists a polynomial-time dynamic programming solution to

these instances. Subsequent work [23] extended these results,

proving that even the simplest coloring version, with only two

colors, is both NP-complete and APX-hard. Additional results

show that a subset of problems meeting specific conditions

can be solved in polynomial time.

Streif et. al [21] investigated solving the restricted problem,

where each ensemble of cars is exactly one pair and only two

colors are used (binary paint shop problem, BPSP), using a

quantum algorithm. Specifically it was shown that a Quantum

Approximate Optimization Algorithm (QAOA) of fixed depth

can outperform classical heuristics for solving the BPSP in the

infinite size limit. The authors investigate multiple classical

heuristics for solving the BPSP and give bounds on the

asymptotic performance of each to show this result.

III. MULTI-CAR PAINT SHOP OPTIMIZATION

One of the steps in car production at Volkswagen is painting

the car body before assembly. In general, this can be viewed

as a queue of car bodies that enter the paint shop, undergo

the painting procedure, and exit the paint shop. It is important

to note that the area of the factory immediately proceeding

the paint shop is typically assembly, where car components

are assembled into the car bodies. Because of the many

different models and configurations being produced, designing

a sequence of cars to be assembled that is optimal (also known

as the car sequencing problem) is a known NP-hard problem in

itself [24]. In practice it is imperative to solve the sequencing

problem because of worker safety and regulatory issues, and

we therefore treat the sequence of cars entering the paint shop

as a fixed queue. However, the colors assigned to the cars

within a given sequence are still randomly distributed, and

thus we can focus on optimizing them.

Each car body entering the paint shop is painted indepen-

dently in two steps: the first layer is called the filler, which

covers the car body with an initial coat of paint, and the

final color layer is the base coat, which is painted on top

of the filler. The base coat is the color that matches the final

customer order: blue, green, etc. However, the filler has only

two possible colors: white for the lighter base coats colors,

and black for darker colors. We define a customer order as

the number of cars of each configuration to be painted one

of the color choices. We associate each coating step (filler or

base coat) with a unique class of paint shop problems, each

of which are NP-complete [22], [23]. The filler optimization

is referred to as the multi-car paint shop problem, where

the cardinality of each set of unique cars in the sequence is

unconstrained, but the cardinality of the color set is restricted

to two (e.g., black or white). The base coat optimization

is therefore an extension of the MCPS problem, where the

cardinality of the color set is also unconstrained– we call this

version of the problem the multi-car multi-color paint shop

problem. In our work we focus on the filler optimization,

the MCPS problem, which can be formulated natively as a

binary optimization problem. We formally define the problem

as follows:



Given: a word w defining the fixed sequence of N cars (wi denotes
the ith character in w),

set of C = {C1, . . . , CM} unique car ensembles,

binary choice of colors {W,B},

function k(Ci) which defines the number of Ci to be pain-
ted B in w,

function f(w) to count the number of color switches in w,

such that: #Ci|B = k(Ci), ∀Ci ∈ C,
minimize: f(w).

In practice (i.e., in the paint shop), the information required

to formulate this optimization problem is always available, as

it is a necessary part of fulfilling customer orders. Therefore,

this MCPS problem representation above corresponds exactly

to the industrial use-case of paint shop optimization on the

filler line. In Fig. 1 we show a simple example of the MCPS

problem with three car ensembles.

Fig. 1. Simple example of a multi-car paint shop problem with three
car ensembles (C1, C2, C3). The three corresponding orders are k(C1) =
3, k(C2) = 2, and k(C3) = 3. Top: The fixed sequence of cars in the
paint shop queue. Middle: Sub-optimal solution to the problem with 3 color
switches. Bottom: Optimal solution to the problem with 2 color switches.

Despite the focus of our work on the filler, we briefly

address the optimization of the base coat. Although the filler

and base coat are painted independently in separate loca-

tions, computationally the two problems are not separable.

Abstractly, optimizing the base coat line (i.e., solving the

multi-car multi-color paint shop problem) is a straightforward

generalization of the MCPS problem: we can extend the

binary color variables to discrete color variables, where k(Ci)
denotes the number of times each color appears in a car

ensemble. In practice, it is useful to consider solving the multi-

color problem after solving the MCPS problem. Due to the

aforementioned one-to-one mapping between base coat and

filler color, it is still possible to permute the order of base coat

colors within a contiguous sequence of filler colors to reduce

the base coat color switches. Although discrete optimization

problems can be represented as binary optimization problems,

we do not solve the multi-color version of the problem and

leave this work for future studies.

A. Ising model representation

In principle, the formulation of the MCPS as an Ising model

is straightforward: we start by representing every car in the

sequence w (wi) with a single spin variable (si). The spin up

state denotes if the car is painted black, and the spin down

state denotes if it is white. The Ising model which represents

our problem can be divided into a hard constraint component

and an optimization component. The optimization component

is a simple Ising ferromagnet with J = −1 couplings between

adjacent cars in the sequence:

HA = −

N−2
∑

i=0

sisi+1. (3)

This incentivizes adjacent cars to have the same color. The sec-

ond component of our Ising model is the hard constraint, en-

suring that the correct number of cars are colored white/black

per customer orders. This is encoded in a second energy

function, as a sum over independent k-hot constraint for each

ensemble of cars Ci:

HB(Ci) = (#Ci − 2k(Ci))
∑

i

si +
∑

i<j

sisj . (4)

Therefore, the final Ising model is the sum of the two

components, HMCPS = HA + λHB :

HMCPS = −

N−2
∑

i=0

sisi+1

+ λ
∑

Ci∈C



(#Ci − 2k(Ci))
∑

i

si +
∑

i<j

sisj



 , (5)

with terms as previously defined in the MCPS problem state-

ment. In order to ensure only valid configurations of spins are

encoded in the ground state, it is necessary to scale HB by

the factor λ [19]. This enforces that it is never energetically

favorable to violate a constraint to reduce the energy of the

system. In our study we set λ = N , the total number of cars

in our sequence, which guarantees this condition.

IV. EXPERIMENTAL METHODS

A. Data sources

The MCPS problem instances we used were generated from

real data taken from a Volkswagen paint shop in Wolfsburg,

Germany. The reason for this is two-fold: firstly, the main

goal of this work is to test the viability of quantum annealing

methods in solving industrial optimization problems. It is our

goal to accurately capture the complexity of the industrial use-

case without relying on simplifications or randomly-generated

problem instances. Secondly, the paint shop currently operates

on a first-come-first-served basis, where customer orders are

entered into the queue as soon as they arrive. This guarantees

a certain amount of randomness (although not uniformity) in

the problem instances we solve: different car models, configu-

rations, and base coat colors appear throughout the sequences

in ways we do not control. Therefore, these conditions are

suitable for our analysis.

A total of 104,334 cars were used in this study. To repro-

duce real-world conditions as faithfully as possible, the car

sequences used are multiple independent sets of car sequences,

each representing one week of continuous production, which



are stitched together as one continuous block. The data is

collected over a period of one year, roughly once every six

weeks, to avoid seasonal biases in customer order preferences.

There are 121 unique car configurations in the data set. Of

those, 13 of the configurations appeared only once in the data

set, and therefore do not need optimization at all. Typically

this indicates that either a custom configuration was built that

cannot normally be ordered, or a prototype assembled for

testing purposes. Rather than exclude these from the study,

we include them in the optimization, because fixing a color

at one location in the sequence influences the adjacent cars

(and consequently the total number of color switches) in a

non-trivial way. We do, however, eliminate the spin variable

from the Ising model by conditioning on the color.

B. MCPS problem sizes

To generate a variety of input sizes from the full data set,

we partition the data into different sized sequences without

permuting the car order. This is motivated by the amount of

cars that need to be optimized for different purposes. For

example, the paint shop used as a basis for this analysis

has a queue capacity of roughly 300 cars. This is not the

total capacity of the paint shop, but rather the maximum

number of cars that can be physically inside the paint shop

queue before they are painted. We consider this a rough lower

bound on the problem size for industrially-relevant problem

instances. An upper bound is more difficult to establish. From

a theoretical point of view, there is merit in investigating

the behavior of quantum systems in the infinite size limit,

as in [21]. From an industrial perspective, car orders can

be placed weeks to months in advance, which would yield

problem sizes of 103 − 105 variables. In reality, real-time

and last-minute adjustments (due to manufacturing problems,

supply chain issues, or imperfections in painting) can happen

on a daily basis. We limit the analysis to problems of up to

3000 variables, which roughly corresponds to a few days worth

of production. The data partitioning is performed by dividing

the entire data set into equal chunks for each problem size

N . Each partition is considered a candidate instance, yielding

a total of b 104,344
Ncars

c partitions per problem size. We then

mine these partitions and select suitable partitions to generate

problem instances from. This is due to the fact that there could

be little frustration within some partitions. For example, it is

possible that all cars of any one configuration (Ci) all need

to be painted either black or white. While in general this is

an accurate reflection of production, for experimental analyses

this scenario is not useful. Therefore we deem a data partition

to be a usable MCPS instance if the total number of non-fixed

cars is at least 70% of the cars in the partition. Meaning that,

in a 10-car data partition, at least 7 of the cars must have

the freedom of being painted either color. We show the total

number of partitions for the various problem sizes and how

many partitions were valid problem instances in Table I. For

our experiments we randomly selected 50 valid instances to

test at each N , except for the largest problem size of which

we use all 34 valid instances.

TABLE I
PROBLEM SIZES AND NUMBER OF PROBLEM INSTANCES GENERATED

FROM THE DATA SET PARTITIONS.

Problem size Num. partitions Num. instances

(cars) (% of partitions)

10 10,433 172 (1.6%)
30 3,477 418 (12.0%)

100 1,043 756 (72.5%)
300 347 341 (98.3%)
1000 104 102 (98.1%)
3000 34 34 (100%)

C. Classical, quantum, and hybrid solvers

We now review the solvers used in our experiments:

Random. Without optimization, we consider any assignment

of colors to cars in a sequence where the orders are fulfilled to

be a valid, but not necessarily optimal, solution to the problem.

Thus, we can trivially generate random sets of valid solutions

by uniformly assigning the color black to k(Ci) cars for each

car ensemble Ci. While far from optimal, this solution to the

MCPS problem may be preferable if other steps in the car

manufacturing process are valued over the painting step. This

was indeed the case for the data obtained from the paint shop

in Wolfsburg, and thus random valid solutions serves as the

baseline the competition algorithms are tasked with beating.

For our study, we generate 2Ncars random valid solutions at

each problem size to estimate the number of color switches

that would occur naturally in the paint shop.

Black-first. This is the simplest algorithm that is used to solve

the MCPS problem. Starting at the beginning of the sequence,

we greedily assign the color black to every car until a white

color must be assigned to the next car, meaning all orders

k(Ci) have been fulfilled. In greedily obtained solutions the

number of color switches grows linearly with the number of

cars and is sub-optimal except for a minority of cases [23],

[21]. Nonetheless, it serves as a good benchmark for more

sophisticated optimization algorithms, as the improvement

over random grows with the problem size.

Simulated annealing. The simulated annealing (SA) meta-

heuristic is a well-known optimization routine inspired by the

physical annealing of metals [25]. Starting from an initial

random state, potential solutions’ individual variables are

flipped randomly according to an acceptance criterion at every

step (called a sweep) based on a “temperature” parameter. As

this temperature is “cooled”, it becomes increasingly unlikely

that an energetically unfavorable move is accepted, at which

point the search is terminated. This algorithm has been used in

previous quantum computing benchmarking studies [26], [27],

[28]. We use the open-source D-Wave Python library Dimod

implementation of SA [29].

Tabu search. Another metaheuristic used to solve QUBOs

based on individual variable flips is called Tabu search [30],

[31]. In each candidate solution, variables’ states are flipped

based on the likelihood they contribute to the optimality of

the solution, and revisiting the same variables is discouraged,

based on the “tabu tenure” list. Flips which worsen the



solution quality are admissible if no other move is possible,

which provides a trade-off between quality of solution and

globality of the search. The Dimod Python library contains an

implementation of Tabu search as well [29].

D-Wave 2000Q. D-Wave QPUs have been tested extensively

in literature by embedding Ising models directly onto the pro-

cessors using an approach of minor-embedding. This process

maps logical variables in the Ising model to chains of qubits

in the target graph. The maximum size of problems which

can then be solved directly by the QPU is limited by both the

number of qubits in the processor and their connectivity. The

D-Wave 2000Q generation of QPUs have a relatively sparse

connectivity graph, named Chimera, where each qubit has at

most degree 6. The processor used in this study had 2041

functional qubits.

D-Wave Advantage. The newest-generation QPU provided

by D-Wave has a different topology and a significantly higher

qubit count than its predecessor. The new topology, named

Pegasus, has a maximum degree of 15, and the QPU used

in our study contained 5436 functional qubits. For further

information regarding the D-Wave QPU topologies and the

differences between them, we refer the reader to [32].

D-Wave Hybrid Solver. At large instance sizes (300 cars

and higher) it was no longer possible to embed problems

directly onto both D-Wave QPUs. Therefore we employed a

state-of-the-art hybrid quantum-classical algorithm developed

and maintained by D-Wave System called the Hybrid Solver

Service (HSS). This algorithm is designed to solve arbitrarily-

structured QUBOs and Ising models of up to 104 variables,

while also leveraging access to a QPU in its inner loop. It

is accessible via the same API as D-Wave’s QPUs. Despite

the power of such a hybrid algorithm, the QPU it uses cannot

be programmed directly by the user, and thus we treat this

algorithm as an optimization black-box with a single timeout

parameter.

V. RESULTS AND DISCUSSION

We interpret our results relative to two different regimes:

small-scale (10-100 cars) and industrial (300-3000 cars). Each

solver used in these experiments was tuned in good-faith, but

not necessarily optimally. Meaning, considerable effort was

made to ensure solvers were being used to their strengths,

but fully optimizing over all sets of hyperparameters for the

solvers was deemed out of scope. We compared all solvers’

performance in terms of their “improvement” over the random

solver, defined as the difference in f(w) between the best

solution obtained by each solver and the random solver. This

metric is representative of the real-world expected improve-

ment using each of the solvers. In Table. II we report the

median for each solver. We quote the median to be less suscep-

tible to tails of the distribution. The results therefore represent

the typical MCPS case at each problem size, rather than the

expected value of each solver’s overlap with the ground states.

The solutions obtained from all solvers were post-processed

(if needed) to ensure that the k(Ci) constraint was satisfied in

each problem. We show how often this occurred in Table II

as well. We consider this necessary in order to interpret the

solutions relative to the application, since it is trivial to reduce

the number of color switches by ignoring the customer order

constraint. In Fig. 2 we highlight the empirical scaling of our

results in the industrial limit.

Solving problems directly with both QPUs was only possi-

ble for problem sizes 10-100. Embeddings were generated us-

ing the standard D-Wave embedding tool Python package [33].

The chain strengths required by each QPU was different

depending on the length of the chains in the embeddings.

We calculated the algebraic chain strength chaini = |hi| +
∑

j∈adj(i) |Jij | for every spin in the Ising model, and introduce

an additional scaling parameter s = [0.1, 0.2, . . . , 1]. Thus,

the chain strength is defined as s ·max(chaini), where s was

optimized per problem size using a subset of the instances

(10 per size), and 50 · N samples per instance. Optimal s
was defined as the value which yielded the highest frequency

of valid solutions relative to the constraints of the MCPS

problem in Eq. 5 (not chain breaks). We found that the D-

Wave Advantage QPU had optimal s = 0.3, whereas the D-

Wave 2000Q QPU had optimal s = 0.45. This is consistent

with the fact that the Advantage QPU required shorter chains

to embed the same Ising models as the 2000Q. Each QPU

was then sampled for 500 · N samples per problem size N ,

with annealing time ta = 1µs. We used N spin-reversal

transforms for each sample set, as it has been shown that

there are diminishing returns between 100-1000 samples per

transform [34].

We found that for the 10 car instances both QPUs matched

the consensus best results between all solvers (median of

f(w) = 2), and for the 30 car instances very near the best

results (f(w) = 5 as opposed to SA’s and HSS’s 4). For

the 100 car instances, with 50,000 samples per problem, the

2000Q QPU found valid solutions for 22/50 instances, as

opposed to 37/50 for the Advantage QPU. From this we

conclude that 50,000 samples is insufficient for the QPUs,

but due to limited time availability we could not take more

samples. We note that it was also possible to embed 47/50

of the 300 car instances onto the Advantage QPU. However,

due to the poor performance on smaller sizes with limited

resources, we did not evaluate those problems. Furthermore,

due to the limited problem sizes that could be solved with

the QPUs and the quality of results, we do not include these

results in Fig. 2.

The Tabu solver was given bN/3c seconds per problem as its

timeout parameter, and all other parameters were set to their

default value. This solver struggled to find valid solutions past

the 10 car instances. Due to the post-processing technique,

which greedily corrected each sample to satisfy order k(Ci),
the Tabu results were essentially a worse version of the greedy

algorithm at all problem sizes but the smallest.

Simulated annealing (SA) has many tunable hyperparameters:

number of sweeps (Nsweeps), number of samples (Nsamples),

and (inverse) temperature (β) schedule. In our experiments we

fixed the schedule to β = [0.01, 10], interpolated geometrically

using Nsweeps. We set Nsweeps = 10·N and Nsamples = 20·N ,



where N is the number of cars. The solutions obtained

by SA (shown in Fig. 2) were consistently better than the

greedy algorithm. Using the given parameters SA was able

to provide valid solutions for 50/50, 49/50, and 44/50 for

the 30, 50, and 100 car instances. However, the timescales

necessary to obtain results were prohibitive from extending

the experiments: 300 variable problems were terminated after

running for 24 hours without returning a solution. We include

the SA results in Fig. 2 due to their high quality at small

sizes. Using a single-threaded SA implementation, run-time

of the algorithm was on the order of seconds to minutes for

the 10 and 30 car instances, and between 1-3 hours for the

100 car instances. We note that SA was the only solver which

was allotted quadratically scaling computing resources: both

sweeps and samples scaled with N . This is necessary for SA to

be competitive, and exemplifies the trade-off between results

quality and algorithmic run-time when using heuristics.

The D-Wave HSS was given equal time to the Tabu solver,

given its only parameter is the timeout: bN/3c seconds per

problem. The HSS was the only solver to consistently provide

better solutions than the greedy algorithm for all problem

sizes. The improvement continued to grow with increasing

problem size, shown in Fig. 2. However, the gap between the

HSS and the greedy algorithm shrank with increasing problem

size, performing only slightly better than greedy for the 3000

car instances.

Fig. 2. Number of color switches within the sequence shown as improvement
over random configurations of orders.

Despite the simplicity of the Ising model representation

of the MCPS problem, almost all solvers exhibited difficulty

in finding valid solutions. This is particularly evident in the

performance of the two QPU models. The results degrading

rapidly from 30 to 100 cars indicate that the problem became

more difficult to solve disproportionately to the increase in

system size. The SA and Tabu solvers exhibited similar trends,

despite the increase in resources allotted to them. While the

HSS was the best-performing algorithm, it also missed valid

solutions for some problems of intermediate size (100 and

300 car instances). We identify two possible issues: first is

the connectivity of the problem graph. Each order k(Ci)
requires a separate k-hot constraint which is represented using

a fully-connected graph. This yields sub-cliques within each

problem that increase with the problem size. In QPUs, denser

problems create longer chains and higher chain strengths. For

classical solvers, these sub-cliques create rugged landscapes

which make single-flip optimization algorithms significantly

less useful. Therefore, that the maximum sub-clique of the

MCPS problem graph increases as a function of the number

of cars is a bottleneck for performance. Secondly, the nor-

malization terms necessary to encode the MCPS problem as

an Ising model also scale with problem size. In Eq. 5, we set

λ = N to ensure the constraints are valid in the ground state of

the Ising problem. Therefore, we observe that the numerical

precision necessary to formulate the MCPS problem scales

as 1/N . This effect compresses the gaps between the local

(and global) minima, making it harder to differentiate between

them. Using a direct embedding approach for QPUs requires

even higher precision due to chains: the chain strengths scale

with N , and therefore the encoding precision as 1/N2. This

may be prohibitively low in large-scale problems and analog

devices.

VI. CONCLUSIONS

In this paper we presented a potential application for quan-

tum computing, the multi-car paint shop problem. We used

real-world data from a paint shop in Wolfsburg, Germany, to

generate problem instances and benchmark the performance

of competition QUBO and Ising solvers. We found that for

small problems of up to 30 cars the two QPUs tested, the

hybrid algorithm, and simulated annealing were able to sig-

nificantly improve results over production conditions (random

distributions of colors). At intermediate and large problem

sizes (100 cars and up), only the D-Wave HSS was able to

consistently beat the greedy algorithm. Although the improve-

ment over random grew with system size, the performance of

the HSS and the greedy algorithm converged in the large size

limit. We find that our methods demonstrated the potential

of quantum annealing, and specifically the viability of hybrid

quantum-classical approaches in solving industrially relevant

optimization problems. We identified potential bottlenecks in

performance and gave insights into how the formulation of the

MCPS problem– both in terms of problem graph structure and

precision– could affect the performance of the different solvers

we used in our experiments. We note that in our experimental

setup, we only tested whether the presented algorithms were

capable of solving the industrial problems we generated, and

make no claims in regards to the ultimate scaling of these al-

gorithms. We defer a more thorough evaluation of algorithmic

scaling and performance optimality for future work.

Overall, we found that the performance of the HSS, D-Wave

2000Q QPU, and Advantage QPU show the potential of

quantum annealing to solve industrial problems. Specifically,

we note that the instance sizes tested using the QPUs are

approaching the industrially-relevant limit. In the future, we

will work on finding methods to mitigate the bottlenecks

presented in this work, and other potential applications that

lend themselves naturally to quantum optimization.



TABLE II
RESULTS FOR ALL SOLVERS. WE PRESENT THE PERCENTAGE OF PROBLEMS FOR WHICH EACH SOLVER FOUND VALID SOLUTIONS (%valid) AND THE

MEDIAN NUMBER OF COLOR SWITCHES (f(w)) FOR EACH PROBLEM SIZE N CARS.

Greedy HSS Tabu SA 2000Q Advantage Random

%valid f(w) %valid f(w) %valid f(w) %valid f(w) %valid f(w) %valid f(w) %valid f(w)

N = 10
100% 3 100% 2 86% 2 100% 2 100% 2 100% 2 100% 4.325

N = 30
100% 9 100% 4 26% 10 98% 4 100% 5 100% 5 100% 12.367

N = 100
100% 23 92% 10.5 0% 29 88% 15 44% 31 74% 28.5 100% 35.25

N = 300
100% 57 96% 34.5 0% 73 - - - - - - 100% 107.58

N = 1000
100% 160 100% 121 0% 196 - - - - - - 100% 348.35

N = 3000
100% 455 100% 406.5 0% 558.5 - - - - - - 100% 1054.41
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