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1 Abstract 
 

Since the emergence of SARS-CoV-2 in Wuhan in 2019 its host reservoir has not been established. 
Phylogenetic analysis was performed on whole genome sequences (WGS) of 71 coronaviruses and a Breda 

virus.  A subset comprising two SARS-CoV-2 Wuhan viruses and 8 of the most closely related coronavirus 
sequences were used for host reservoir analysis using Bayesian Evolutionary Analysis Sampling Trees 

(BEAST). Within these genomes, 20 core genome fragments were combined into 2 groups each with similar 
clock rates (5.9×10−3 and 1.1×10−3 subs/site/year). Pooling the results from these fragment groups yielded a 

most recent common ancestor (MRCA) shared between SARS-COV-2 and the bat isolate RaTG13 around 

2007 (95% HPD: 2003, 2011). Further, the host of the MRCA was most likely a bat (probability 0.64 - 0.87). 
Hence, the spillover into humans must have occurred at some point between 2007 and 2019 and bats may have 

been the most likely host reservoir.  
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2 Introduction 
 
Emerging and re-emerging infectious diseases caused by viruses (e.g. severe acute respiratory syndrome 
(SARS), Middle East respiratory syndrome (MERS) 1, Influenza 2,3), bacteria (e.g. Lyme disease 4, Cholera 5, 
Plague 6, Escherichia coli O157:H7 (E. coli) 7–9), fungi (e.g. Cryptococcus gatti infection 10) and parasites 
(e.g.  malaria 11) are still the leading causes of death globally 12. They also raise concerns about global health, 
biosecurity and economic disruption 13,14. Zoonoses comprise 60% of total infectious diseases whose agent is 
transmitted from animal hosts to humans 15. 
 

Coronaviruses belong to the sub-family Coronavirinae and can be zoonotic 16–18. They have caused two major 
human epidemics in the two decades preceding the SARS-CoV-2 pandemic: severe acute respiratory 
syndrome (SARS) in 2002-2003 and Middle East respiratory syndrome (MERS) in 2012. Research indicates 
SARS-CoV are closely related to viruses isolated from Chinese horseshoe bats (Rhinolophus sp.) which are 
considered to be the likely reservoir host 19–21. Vespertilio superans bats are also thought to be the primary 
reservoir for MERS 22. Intermediate hosts have been postulated for both of these epidemics. For example, 
coronavirus isolates from Himalayan palm civet cats were highly homologous to human SARS-CoV  17,23,24  
as were dromedary camels for MERS-CoV 25–27. However, whether civet-cats/dromedary camels were actually 
intermediate hosts remains an open question. 

 
A human outbreak of Novel Coronavirus (SARS-CoV-2) with cases presenting symptoms of pneumonia was 
reported on December 8th 2019 in Wuhan, China. These cases were epidemiologically associated with a fresh 
seafood and wild animal market in Wuhan 28–30. By January 7th 2020, the agent of this pneumonia was isolated 
from the respiratory epithelium of patients 31,32 and on 11th February WHO named this new coronavirus as 
severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) 33,34. Subsequently, there was worldwide 
human transmission resulting in a global pandemic 35 and as of  4th October 2023, there has been 771,151,224 
infections and 6,960,783 deaths reported 36. The International Monetary Fund estimates cumulative output loss 
from the pandemic through to 2024 at $13.8 trillion 37.  
 
 
Coronaviruses comprise four genera: alpha, beta, gamma and delta. Alpha and Betacoronaviruses are 
frequently found in bats and are mainly associated with infections in mammals 38. The Betacoronavirus genus 
includes SARS-CoV-2, SARS CoV and MERS 34 which can cause respiratory, gastrointestinal, hepatic and 
central nervous system infections in humans 39. Host species for the Gammacoronavirus genus include birds 
and Beluga whales. Deltacoronaviruses have been found in birds and mammals 40,41.  
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Studies utilizing whole genome sequencing have enabled an understanding of the phylogenies, transmission, 
genetic diversity and outbreak dynamics of zoonotic viruses including: SARS CoV 14,39; MERS CoV 18,42; 
Ebola 43; HIV 44 and influenza 45,46. These studies utilised Bayesian phylodynamic methods 47 to determine 
molecular clock rate(s) and likely host reservoirs as well as elucidating the temporal and geographical patterns 
of transmission. 
 
Identification of the temporal signal between genome sequences is crucial to obtain timed phylogenies.  The 
analysis of SARS-CoV-2 has proven challenging in this respect and no evidence of a temporal signal was 
obtained in previous studies 48. This might have affected the accuracy of former estimates for the time to the 
most recent common ancestor. The lack of a temporal signal may be due to recombination and/or different 
molecular clock rates in different parts of the genome. To circumvent this problem, new methods need to be 
developed to identify genome fragments that exhibit a similar molecular clock rate across coronavirus 
genomes. 
 
Bats have been postulated as a likely reservoir from which SARS-CoV-2 originated. Evidence pointing in this 
direction includes the close genetic relationship between a coronavirus isolated from Rhinolophus bats in 
Yunnan, Southern China 49 and SARS-CoV 50. At the whole genome sequence level, the closest available 
sequence to SARS-CoV-2 to date is the RaTG13 virus sampled from a Rhinolophus affinis bat (96.2% 
similarity 32,51). Also, serological surveillance of people living in villages close to the natural habitat of bats in 
caves revealed 2.9% bat coronavirus seroprevalence in humans. This indicates that human exposure to bat- 
CoVs may be relatively common in China and that there is an opportunity for these viruses to spill over directly 
into humans without the need for an intermediate host 50. However, there is the possibility of an intermediate 
host reservoir between bats and humans51. Several have been hypothesised for SARS-CoV-2. These include 
rodents 52, racoon dogs  53, pangolin 54,55 and other animals 56.  Despite significant efforts to identify an 
intermediate host, none has been clearly identified so far.  
 
The zoonotic reservoir of SARS-CoV-2, the length of time the SARS-CoV-2 lineage has circulated in the host 
reservoir and the time when the first transmission occurred into humans remain unclear. This paper aims to: 
(1) identify the host reservoir of SARS-CoV-2, (2) to determine when SARS-CoV-2 spilled over from the host 
reservoir to humans and (3) to determine the phylogenetic relationship between SARS-CoV-2 and other 
coronaviruses. This will be achieved by conducting phylogenetic and Bayesian phylodynamic analysis 
utilizing a database of 71 coronavirus genomes and identification of core genome fragments with 
indistinguishable molecular clock rates. 
 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.568670doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.25.568670
http://creativecommons.org/licenses/by/4.0/


 4 

3 Methods 
 
Data 

 
Coronavirus whole genome sequences (n = 71) and a Breda virus genome sequence were obtained from 
Genbank, the National Centre for Biotechnology Information (NCBI) and  the Global Initiative on Sharing All 
Influenza Data (GISAID) for phylogenetic analysis (see Table S1). Metadata including year of isolation, host 
and country were also collected. Three sub-samples (selections) of these sequences were used to address the 
aims of this paper (Figure 1). 
 

 
 

Figure 1: Genomes used in this study. Three selections of the 72 genomes in the original dataset were used for 
phylogenetic and phylodynamic analyses. Details on the genomes within each selection are given in Table S1. 
 
3.1 Phylogeny of coronavirus 

A selection of 35 whole genome sequences representative of the Alpha, Beta, Gamma and Delta coronavirus 
genera and a Breda virus genome were used to determine the location of SARS-CoV-2 Wuhan viruses within 
the coronavirus genus (Table S1, Selection 1). 
 
A subset of 40 sequences (Table S1, Selection 2) was used to determine the potential origin of the outbreak of 
SARS-CoV-2. These sequences comprise Betacoronaviruses (n=38, SARS-CoV-2, SARS-CoV, MERS- CoV, 
and viruses from a wide range of hosts) along with Alphacoronaviruses (n=2) as the outgroup.  
 
Genome selections 1 and 2 were aligned using ClustalW 57,58.The alignment was used to generate phylogenies 
with MEGA X59 using the neighbour-joining method with bootstrapping (1000 replications). 
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3.2 Identification of temporal signal from coronavirus genomic data 

3.2.1 Whole Genome Sequences 

 
40 WGS (Table S1, Selection 2) and 10 WGS (Table S1, Selection 3) were used to assess the temporal signal 
utilising root-to-tip regression by TempEST60. 
 

3.2.2 Core genome fragments  

 

3.2.2.1 Identification of core genome fragments 

 
Identification of core genome fragments was performed on a subset of the coronavirus genome sequences 
(n=10) (Table S1, Selection 3). Multiple sequence alignments for the 10 genomes were again obtained using 
ClustalW.  Contiguous fragments with more than 200 consecutive nucleotide base positions (bp) across the 10 
WGS were identified (Figure 2(a)). The identified core genome fragments were mapped to the reference 
sequence of SARS-CoV-2 (Gen Bank -NC-045512.2) to determine the non-structural proteins present. 
 

3.2.2.2 Identification of core genome fragment groups with indistinguishable molecular clock rates 

 

3.2.2.2.1 Pairs of fragments 

 

The pairwise genetic distance between sequences ÿ and Ā in a fragment � was measured by the number ��(ÿ,Ā)
 

of nucleotide differences between them. Figure 2(b) shows the pairwise genetic distance, �ý(1,2)
 and �þ(1,2)

 
between sequence 1 and sequence 2, for fragments ý and þ respectively. 
 

The pairwise genetic distance ��(ÿ,Ā)
 was normalized to account for the fact that every fragment identified 

across 10 WGS had a different number of nucleotides. More explicitly, the pairwise distance between two 
sequences ÿ and Ā corresponding to a fragment � was estimated by the proportion of sites that differ between 
the two sequences in this fragment, i.e.  ��(ÿ,Ā) = ��(ÿ,Ā)��  . 
Here, �� ≥ 200 is the length of fragment �. 
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(a) 

 
(b) 
                                       Fragment A                                                      Fragment B 
 

               

                          

   
(c) 

  
Figure 2: Method to identify genome fragment groups with indistinguishable molecular clock rates exemplified for three 
whole genome sequences. (a) Identification of contiguous DNA core fragments with more than 200 consecutive 
nucleotide base positions (rectangles with solid border indicate nucleotide fragments; dashed lines indicate genome 
gaps). This example identifies two fragments (ý and þ) from the three genomes. (b) Calculation of normalised pairwise 
genetic distance �ý(1,2) and �þ(1,2) between sequence 1 and sequence 2 in terms of fragment ý and fragment þ respectively. 
(c) Virtual example of linear regression analysis using normalized pairwise distances between fragments ý and þ across 
the three sequences. The dashed line indicates the ideal case in which fragments ý and þ have identical molecular clock 
rates.   
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3.2.2.2.2 Identifying groups of fragments with indistinguishable clock rates 

 
The normalized pairwise distance between pairs of fragments was used to identify groups of fragments with 
statistically indistinguishable molecular clock rates. In a hypothetical scenario in which two fragments ý and þ follow the same molecular clock for a pair of sequences ÿ and Ā, it would be expected that �ý(ÿ,Ā) = �þ(ÿ,Ā)

. If 
all the sequences evolve with the same molecular clock according to fragment ý and þ, the distances (�ý(ÿ,Ā), �þ(ÿ,Ā)) between any pair of sequences (ÿ, Ā) should fall along the line with zero intercept and slope 1 in 

the space (�ý, �þ). In general, the points (�ý(ÿ,Ā), �þ(ÿ,Ā)) for all pairs of sequences will not exactly fall along the 

ideal straight line (see an example in Figure 2 (c)). In practice, a line was fitted to the points (�ý(ÿ,Ā), �þ(ÿ,Ā)) for 
all pairs of sequences and the fragments ý and þ were assumed to follow the same molecular clock if the fitted 
line is close enough to the ideal line. More specifically, the fitted line was considered to agree with the ideal 
line if (i) the slope was statistically consistent with 1, (ii) the intercept was statistically compatible with 0 and 
(iii) the p-value for the correlation coefficient was smaller than 0.05.  Only pairs of fragments satisfying these 
conditions were assumed to follow indistinguishable molecular clock rates. From a statistical viewpoint, these 
pairs of fragments are considered evolutionary synchronous. The statistical significance of the hypotheses 
slope = 1 and intercept = 0 were tested in terms of a 95% confidence interval. The fragment groups identified 
by this method were used in the BEAST analysis described below. 
 
 
3.3 Bayesian phylodynamic analysis by BEAST  

3.3.1 Bayesian phylodynamic analysis to estimate clock rate and timed phylogeny 

 
Datasets comprising 10 WGS, all core genome fragments and the fragment groups with indistinguishable 
molecular clocks were used to conduct Bayesian phylodynamic analyses with BEAST (v.2.6.2)47,61. This 
involved three sub-models. The First is the DNA substitution sub-model which has 2 options: (1) Hasegawa-
Kishino-Yano (HKY) and (2) General Time Reversible (GTR) model. The second is the population sub-model 
which has 4 options: (1) Coalescent Constant Population (CCP); (2) Coalescent Exponential Population 
(CEP); (3) Coalescent Bayesian Skyline (CBS) and (4) Yule Model.  The third is the molecular clock sub-
model with 2 options: (1) strict (SC) and (2) relaxed (RC) molecular clock. Both SC and RC had uninformed 
prior distributions. The clock rates obtained  from this analysis were used to specify the clock rate priors in 
the subsequent host probability calculations 62–64 of section 3.3.3. 
 
Models were run using the Markov Chain Monte Carlo (MCMC) method with 108 iterations after 10% burn-
in and sampled once every 1000 iterations. All permutations of substitution, population and clock models 
(n=16) for each dataset (n=4) were performed. Hence, in total 64 runs were carried out in the BEAST analysis. 
Convergence was assessed using the effective sample size (ESS) criterion (ESS>100) implemented on Tracer 
v.1.7165. Tree Annotator was used to produce a Maximum Clade Credibility (MCC) tree and from this tMRCA 
of SARS-CoV-2 Wuhan, with 95% HPD was obtained. The timed phylogeny was visualized using Fig Tree v 
1.4.466,67. 
 
 

3.3.2 Model selection using Nested sampling 

 
Nested sampling (NS) was used to identify the best fitting parsimonious models68,69. This method uses two 
tuning parameters: The number of points sampled from the prior (number of particles, set to n=32) and chain 
length set to 20,000 steps with sub-chain length of 10,000 steps. Only model runs that converged in the 
previous section were used in this analysis.  
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3.3.3  Determination of host reservoir probability, molecular clock rate and time to most recent common 

ancestor  

 

To estimate the most probable host reservoir of SARS-CoV-2 and the time period of spill over from animal 
reservoirs to humans, host transition and evolutionary dynamics was performed using BEAST (v1.10.4) which 
implements a method to estimate cross-species transmission 70. Models selected by NS together with priors 
using the clock rate obtained as described above were used in the analysis. Posterior distributions were 
obtained through MCMC analysis runs with chain lengths of 1 x 108 generations and convergence was 
assumed to be achieved when ESS >100. If ESS >100 was not achieved, the MCMC chain length was 
increased to 2 x 108 generations and the ESS was checked.  
 

3.3.3.1 Determination of pooled estimate of tMRCA and associated uncertainty 

 
All the estimates for the time to most recent common ancestor (tMRCA) and their associated uncertainties, 
obtained by the selected models with NS, were pooled using propagation of errors 71. 
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4 Results and discussion  
4.1 Phylogenetic analysis  

4.1.1 Classification of SARS-CoV-2 within Coronavirus  

The phylogenetic analysis of coronavirus showed that the four different genera of coronavirus (alpha, beta, 
gamma and delta) belong to four distinct clades (Figure 3(a)). SARS-CoV-2 belongs to the Betacoronavirus 
clade as reported previously 34.  

4.1.2 Phylogenetic relationship between SARS-CoV-2 Wuhan and other beta coronaviruses 

 
Phylogenetic analysis (Figure 3 (b)) showed that all SARS-CoV-2 Wuhan genomes grouped together and that 
Bat CoV RaTG13 (obtained from bat Rhinolophus affinis) 23 was the most closely genetically related to SARS-
CoV-2 . The next most closely related to SARS-CoV-2 was a virus sampled from Pangolin (Manis javanica – 
MP789)72. This agrees with previous research which found that RaTG13  48,54 was the most closely related 
virus to SARS-CoV-2 with 96.2% whole genome homology 32,51. These authors also found Pangolin-CoV as 
the next most closely related with 91.02% WGS similarity54. SARS-CoV are the next closest group to the 
SARS-CoV-2 clade with 79.5% WGS similarity, see Figure 3(b) 32,73.  
 
MERS-CoV is phylogenetically more distant from the SARS-CoV-2 Wuhan clade than SARS-CoV and only 
shares 50% sequence identity, see Figure 3(b)73,74. The Alphacoronavirus samples are clustered together at the 
root of the tree as an outgroup, as expected. 
 
(a)                                                                                    (b) 

   
Figure 3: Phylogenetic analyses. (a) Neighbour-joining tree of 36 WGS representative of coronavirus (Alpha – maroon; 
Beta – purple; Gamma – blue and Delta – green). The tree is rooted with Breda virus (peach). Three genome sequences 
of SARS-CoV-2 (purple) cluster within the Betacoronavirus clade (see Table S1 - Data Selection 1) (b) Neighbour-
joining tree of Betacoronavirus (n=38) with Alphacoronavirus samples (n=2, maroon) as root (see Table S1 - Data 
Selection 2); SARS-CoV-2 (purple); SARS-CoV (red), MERS-CoV (black), other Betacoronaviruses (Beta CoV, pink). 
BatCoV RaTG13 (indigo) is the 1st MRCA and Pangolin coronavirus (brown) is the 2nd MRCA to SARS-CoV-2 (purple). 
The scale bars provide 1000 bootstraps in the MEGA X.  
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4.2 Identification of temporal signal from coronavirus genomic data 

4.2.1 Whole Genome Sequences 

Temporal analysis using TempEst utilising 40 WGS and 10 WGS (see Table S1 - Selections 2 and 3, 
respectively) failed to find a statistically significant correlation coefficient in terms of the root-to-tip 
divergence (Supplementary Figure 1, Table S2).  This suggests a lack of temporal signal for both datasets, in 
agreement with other studies 48. This may be due to the fact that these viruses are from a diverse coronavirus 
population with deep evolutionary histories.         
 

4.2.2 Core genome fragments 

 

4.2.2.1 Identification of core genome fragments 

Twenty fragments with �� ≥ 200 were identified from the 10 WGS alignment of 32794 base pairs (bp) (Figure 

4). The genomic location of the identified 20 fragments was found to be within a 266 to 21555 bp region which 
corresponds to two open reading frames 1ab (ORF9s)75–77. The ORF1ab gene encodes non-structural proteins 
(nsps): nsp 1 to 11 and nsp 12 to 16, respectively (Table S3).  
 
 
(a) 

 
 
 
 
Figure 4: Scale diagram of the core genome fragments (n=20) with more than 200bp from the 10 WGS multiple sequence 

alignment (Tables S1, Selection 3 and S3).  
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4.2.2.2 Identification of core genome fragment groups with indistinguishable molecular clock rates 

 

The 20 core genome fragments obtained above were analysed to form groups of fragments with 
indistinguishable molecular clock rates using the criteria in Section 3.2.2.2.2. Two groups of three fragments 
were identified with a mutually consistent temporal signal: {1,5,16} and {8,11,12} (Table 1). Scatterplots for 
the normalised pairwise distances for these fragments are presented in Supplementary Figures 2 and 3. 
 

Table 1: Regression analysis parameters for core genome fragment groups which satisfy the conditions of 
indistinguishable molecular clock rate.  

Fragment 

Group 

Fragment 

number 

Fragment 

number 

p-value Slope Slope (95% 

CI) 

Intercept Intercept (95% 

CI) 

1 Frag 1 Frag 5 1.64E-16 0.89 (0.75,     1.02) 1.25 (-1.18, 3.69) 

Frag 1 Frag 16 3.74E-24 0.92 (0.83,     1.01) 0.35 (-1.23, 1.93) 

Frag 5 Frag 16 3.46E-19 0.90 (0.78,     1.01) 1.25 (-0.77, 3.26) 

               

2 Frag 8 Frag 11 9.55E-33 0.98 (0.92,     1.03) 0.04 (-0.76, 0.84) 

Frag 8 Frag 12 4.13E-25 0.94 (0.86,     1.03) -0.43 (-1.62, 0.77) 

Frag 11 Frag 12 1.52E-31 0.97 (0.91,     1.03) -0.50 (-1.34, 0.33) 
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4.3 Bayesian Phylodynamic analysis by BEAST 

 

4.3.1 Model selection using Nested Sampling  

 
Nested sampling found that the HKY substitution model provided the best fits for all the datasets. In contrast, 
the best combination of population and molecular clock models was found to be data specific. This resulted in 
six evolutionary models being selected (Table 2). For the 10 WGS dataset, the best fitting model was one with 
coalescent exponential population and relaxed molecular clock (CEP-RC). Nested sampling was unable to 
discriminate between the fits of two combinations of models when using the 20 core fragments dataset: 
Coalescent constant population with relaxed clock (CCP-RC) and coalescent exponential population with 
relaxed clock (CEP-RC). Both model combinations are taken as the best fits for this dataset. The best fit to the 
evolution of the fragment group {8,11,12} was also obtained for two combinations of models which are 
statistically indistinguishable: the coalescent population model combined with a strict clock model (CCP-SC) 
and a coalescent constant population model combined with a relaxed clock model (CCP-RC). The combination 
CCP-SC also provided the best fit to the evolution of the fragment group {1,5,16}. By estimating maximum 
Effective Sample Size (Max ESS) using Nested sampling, increasing the number of particles to 32 in the 
parameter space at each iteration, yields more precision to reach better convergence. This provides higher 
values of Max ESS estimate for six evolutionary models (Supplementary Figure 4). 
 
 
Table 2. Results of the Bayesian phylodynamic and host probability analyses for the selected 6 best fitting models 
identified by nested sampling. The final row provides the pooled values from the 6 models. 

Data and 

evolutionary 

model 

Molecular clock 

rate [95% CI] 

Year of 1st 

MRCA [95% 

CI]           

1st MRCA host  

probability              

 (human, pangolin, bat) 

Year of 2nd 

MRCA [95% 

CI]  

2nd MRCA host 

probability              

(human, pangolin, bat) 

ESS 

10WGS,  

CEP-RC 

0.0029  

[0.0018, 0.0049] 

2006  

[2000, 2011] 

(0.16, 0.02, 0.82) 1998  

[1987, 2007] 

(0.14, 0.08, 0.79) 445 

20 FG,  

CCP-RC 

0.0039  

[0.0022, 0.0079] 

2009   

[2002, 2013] 

(0.13, 0.01, 0.86) 2003  

[1985, 2011] 

(0.12, 0.07, 0.81) 124 

20 FG,  

CEP-RC 

0.0059  

[0.0041, 0.0095] 

2010  

[2005, 2013] 

(0.11, 0.02, 0.87) 2005  

[1996, 2011] 

(0.10, 0.08, 0.82) 818 

{8,11,12} FG,  

CCP-RC 

0.0058  

[0.0032, 0.0116] 

2010  

[2004, 2013] 

(0.14, 0.02, 0.84) 2006  

[1995, 2012] 

(0.13, 0.06, 0.81) 1651 

{1,5,16} FG,  

CCP-SC 

0.0023  

[0.0020, 0.0030] 

2005  

[2000, 2009] 

(0.28, 0.01, 0.70) 1984  

[1973, 1996] 

(0.26, 0.16, 0.58) 62571 

{8,11,12} FG,  

CCP-SC 

0.0011  

[0.0010, 0.0014] 

1998  

[1992, 2004] 

(0.34, 0.02, 0.64) 1972  

[1959, 1985] 

(0.29, 0.18, 0.52) 62671 

Pooled 

values 

0.0037  

[0.0017, 0.0057] 

2007  

[2003, 2011] 

(0.19 [0.16, 0.23],          

0.02 [0.02, 0.02],        

0.79 [0.75, 0.83]) 

1995  

[1986, 2004] 

(0.17 [0.14, 0.21],     

0.11 [0.08, 0.13],       

0.72 [0.67, 0.78])  

21380 

 

Footnote: The molecular clock rate distribution in Table S5 was used to specify the rate of uniform prior, mean 
with 95% CI, in obtaining the results of Table 2. 
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4.3.2  Clock rate, time to the most recent common ancestor and host reservoir probability 

 
Clock rate 

Clock rates for the six selected evolutionary models range from 1.1 to 5.9× 10−3 subs/site/year (Table 2). The 
clock rate of the two models using a strict clock ({1,5,16}-CCP-SC and {8,11,12}-CCP-SC) tends to be slower 
on average than that of models with a relaxed clock. However, only the model based on the fragment group 
{8,11,12} is statistically slower than the rest (Supplementary Figure 5(a)). Pooling the values of the molecular 
clock rate from the six models yielded 0.0037 (0.0017 - 0.0057) subs/site/year. This estimate is compatible 
with the molecular clock rate of SARS, 0.00169 (0.00131 - 0.00205) subs/site/year found previously by Boni 
et al48. In the same work, however, the authors used a slower estimate of the molecular clock rate, 0.00055 
subs/site/year, for their phylogenetic dating methods. This estimate was obtained for non-recombinant regions 
of a 68-genome sarbecovirus alignment using the molecular clock rate of MERS-CoV (0.00078 subs/site/year) 
and HCoV-OC43 (0.00024 subs/site/year) to define a prior. Such estimates were used to circumvent the lack 
of temporal signal in their dataset.  There are several reasons that could explain the difference between the 
current studies pooled estimate of the molecular clock rate and the estimate obtained by Boni et al.,48. These 
include the selection of genomes and the parts of the genome used. Another possibility is that the estimated 
molecular clock rate is influenced by the relatively slow clock rate of the prior based on MERS-CoV and 
HCoV-OC43. In the current study, by estimating the clock rate distribution for each of the six datasets  (Table 
S5) yields a faster pooled estimate of molecular clock rate. 
 
Time to the most recent common ancestor 

All of the 6 models selected by nested sampling gave statistically compatible estimates for the time to the 1st 
MRCA of SARS-CoV-2 and BatCoV RaTG13 (Table 2 and Supplementary Figure 5(b)). Pooling the results 
from the six models (Table S4(a)), the time to the 1st MRCA was found to be 13.5 ± 4.1 years which 
corresponds to the year 2007 (2003 - 2011) (Supplementary Figure 6). This estimate for the time to the 1st 
MRCA is more recent than the estimates given in Boni et al.,48 : 1948 (1879 – 1999), 1969 (1930 – 2000) and 
1982 (1948 – 2009). This is expected due to the slower molecular clock rate used, as discussed above. 
 
The time to the 2nd MRCA between Pangolin-CoV and the SARS-CoV-2 Wuhan/bat RaTG13 lineage was 
also statistically similar across the six models (Supplementary Figure 5(b)). Pooled results from the six models 
estimated it to be 25.4 ± 8.9 years, i.e., [1995 (1986 - 2004)], (Table 2, Table S4(b)). This estimate is also 
more recent than 1851(1730 - 1958) determined by Boni et al.,48 . 
 
 
Host reservoir probability 

The most likely host reservoir of the 1st MRCA between SARS-CoV-2 and BatCoV RaTG13 was a bat with a 
probability of 0.79 [0.75, 0.83] (pooled over the six selected models, Table 2). This indicates bat as potentially 
the natural zoonotic origin of SARS-CoV-2. The pooled probability of origin for humans was 0.19 [0.16, 0.23] 
and pangolin  0.017 [0.015, 0.019] (Supplementary Figures 7 and 8). From the estimated time for the 1st MRCA 
and the likelihood of bat as a natural reservoir, it can be concluded that the ancestor of SARS-CoV-2 spilled 
over from bats to humans sometime between 2007 and 2019.  It is unclear whether that was directly into 
humans or via an intermediate animal reservoir. 
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Evidence of bats as the natural reservoir 

 

The results (Table 2) agree with the finding that phylogenetically close coronaviruses to SARS-CoV-2 have 
been circulating in bats for many decades48,78. Despite the likelihood of a spill-over of SARS-CoV-2 from the 
bat reservoir to humans, there is a lack of intermediate sequences that prevents a precise understanding of the 
spill over in terms of whether a potential intermediate host exists (WHO, 2021). The first recorded human 
cases with severe pneumonia were at Jin Yin-Tan hospital in Wuhan in December, 2019 and full genomes 
were sequenced at Wuhan Institute of Virology (WIV) (Zhou et al., 2020). However, the high prevalence of 
asymptomatic and unreported cases79 and the low surveillance prior to the Wuhan outbreak make the 
identification of an intermediate host, even if one existed, very challenging. 
 

5 Conclusion 
 
Coronaviruses closely related to SARS-CoV-2 appear to have emerged from bats at some point within the 13 
years before the SARS-CoV-2 outbreak. This is more recent than the estimates from previous studies which 
suggested 40 to 70 years 48. Bat was found to be the most likely natural reservoir for SARS-CoV-2. There may 
be an intermediate host reservoir between bats and humans but there is insufficient information to demonstrate 
this hypothesis. To be more precise about the spillover of SARS-CoV-2 into humans, more sequencing and 
epidemiological evidence would be required. Unfortunately, this is difficult to achieve retrospectively and 
would have required an internationally coordinated surveillance program prior to the pandemic. To prevent 
future zoonotic pandemics, such a surveillance system will be required. This will require collaboration 
between epidemiologists, geneticists, medics, mathematical modelers and social scientists.  
 
 
 
Acknowledgements 

 
FJPR acknowledges funding from a Medical Research Council Fellowship (MR/W021455/1). 
 
For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to 
any Author Accepted Manuscript version arising from this submission. 
 
 
Author contributions  

 
VP contributed to the ideas behind this work, carried out the analysis and led the writing of the paper. 
FJPR and NJCS contributed to the ideas behind the work, advised on the analysis and edited drafts of the 
paper. 
 
 
 
Competing interests 

 

The authors declare no competing interests. 
 
  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.568670doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.25.568670
http://creativecommons.org/licenses/by/4.0/


 15 

6 References 
 

   
1. WHO EMRO | Sixty-first session 2. Current situation in the Region. 
2. Kilbourne, E. D. Influenza pandemics of the 20th century. Emerg Infect Dis 12, 9–14 

(2006). 
3. Yen, H. L. & Webster, R. G. Pandemic influenza as a current threat. Curr Top Microbiol 

Immunol 333, 3–24 (2009). 
4. Feder, H. M. et al. A Critical Appraisal of 8Chronic Lyme Disease9. (2007). 
5. Kaper, J. B., Morris, J. G. & Levine, M. M. Cholera. Clin Microbiol Rev 8, 48–86 (1995). 
6. Zietz, B. P. & Dunkelberg, H. The history of the plague and the research on the causative 

agent Yersinia pestis. Int J Hyg Environ Health 207, 165–178 (2004). 
7. Franz, E. et al. Phylogeographic Analysis Reveals Multiple International transmission 

Events Have Driven the Global Emergence of Escherichia coli O157:H7. Clinical Infectious 

Diseases 69, 428–437 (2019). 
8. Strachan, N. J. C., Doyle, M. P., Kasuga, F., Rotariu, O. & Ogden, I. D. Dose response 

modelling of Escherichia coli O157 incorporating data from foodborne and environmental 
outbreaks. Int J Food Microbiol 103, 35–47 (2005). 

9. Strachan, N. J. C., Dunn, G. M., Locking, M. E., Reid, T. M. S. & Ogden, I. D. Escherichia 
coli O157: burger bug or environmental pathogen? Int J Food Microbiol 112, 129–137 
(2006). 

10. C-A Chen, S., Meyer, W. & Sorrell, T. C. Cryptococcus gattii Infections. (2014) 
doi:10.1128/CMR.00126-13. 

11. McFee, R. B. EMERGING INFECTIOUS DISEASES – OVERVIEW. Disease-a-Month 
64, 163 (2018). 

12. Bloom, D. E., Kuhn, M. & Prettner, K. Modern Infectious Diseases: Macroeconomic 

Impacts and Policy Responses. www.iza.org (2020). 
13. Orellana, C. Laboratory-acquired SARS raises worries on biosafety. Lancet Infect Dis 4, 64 

(2004). 
14. Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y. & Kwok, Y. Y. Severe Acute Respiratory 

Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clin Microbiol 

Rev 20, 660 (2007). 
15. Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease 

emergence. Philosophical Transactions of the Royal Society B: Biological Sciences 356, 
983 (2001). 

16. Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nature 

Medicine 2004 10:12 10, S88–S97 (2004). 
17. Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. 

Microbiol. 17, 181–192 (2019). 
18. Memish, Z. A. et al. Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia. 

Emerg Infect Dis 19, 1819 (2013). 
19. Yin, Y. & Wunderink, R. G. MERS, SARS and other coronaviruses as causes of 

pneumonia. Respirology 23, 130 (2018). 
20. Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science (1979) 310, 

676–679 (2005). 
21. Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new 

insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017). 
22. Yang, L. et al. MERS–Related Betacoronavirus in Vespertilio superans Bats, China. Emerg 

Infect Dis 20, 1260 (2014). 
23. Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the 

ACE2 receptor. Nature 503, 535 (2013). 
24. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus 

from animals in Southern China. Science (1979) 302, 276–278 (2003). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.568670doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.25.568670
http://creativecommons.org/licenses/by/4.0/


 16 

25. Meyer, B. et al. Antibodies against MERS Coronavirus in Dromedary Camels, United Arab 
Emirates, 2003 and 2013. Emerg Infect Dis 20, 552 (2014). 

26. Hemida, M. G. et al. MERS Coronavirus in Dromedary Camel Herd, Saudi Arabia. Emerg 

Infect Dis 20, 1231 (2014). 
27. Stalin Raj, V. et al. Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014. 

Emerg Infect Dis 20, 1339 (2014). 
28. WHO-convened global study of origins of SARS-CoV-2. 

https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-
2-china-part. 

29. Li, X. et al. Transmission dynamics and evolutionary history of 2019‐nCoV. J Med Virol 
92, 501 (2020). 

30. Li, Q. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected 
Pneumonia. New England Journal of Medicine 382, 1199–1207 (2020). 

31. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 
579, 265 (2020). 

32. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat 
origin. Nature 2020 579:7798 579, 270–273 (2020). 

33. Gorbalenya, A. E. et al. Severe acute respiratory syndrome-related coronavirus: The species 
and its viruses-a statement of the Coronavirus Study Group. 
doi:10.1101/2020.02.07.937862. 

34. Gorbalenya, A. E. et al. The species Severe acute respiratory syndrome-related coronavirus: 
classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology 2020 5:4 5, 536–
544 (2020). 

35. Cucinotta, D. & Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Bio Medica : 
Atenei Parmensis 91, 157 (2020). 

36. WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard 
With Vaccination Data. https://covid19.who.int/. 

37. One Health Approach - Prevent the Next Pandemic | World Bank. 
https://www.worldbank.org/en/news/feature/2022/10/24/one-health-approach-can-prevent-
the-next-pandemic. 

38. Zhou, Z., Qiu, Y. & Ge, X. The taxonomy, host range and pathogenicity of coronaviruses 
and other viruses in the Nidovirales order. Animal Diseases 2021 1:1 1, 1–28 (2021). 

39. Wang, L. F. et al. Review of Bats and SARS. Emerg Infect Dis 12, 1834 (2006). 
40. Woo, P. C. Y. et al. Discovery of seven novel Mammalian and avian coronaviruses in the 

genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus 
and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and 
deltacoronavirus. J Virol 86, 3995–4008 (2012). 

41. Woo, P. C. Y. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 
(2006). 

42. Mohd, H. A., Al-Tawfiq, J. A. & Memish, Z. A. Middle East Respiratory Syndrome 
Coronavirus (MERS-CoV) origin and animal reservoir Susanna Lau. Virol J 13, 1–7 (2016). 

43. Gire, S. K. et al. Genomic surveillance elucidates Ebola virus origin and transmission 
during the 2014 outbreak. Science 345, 1369 (2014). 

44. Faria, N. R. et al. The early spread and epidemic ignition of HIV-1 in human populations. 
Science 346, 56 (2014). 

45. Smith, G. J. D. et al. From the Cover: Dating the emergence of pandemic influenza viruses. 
Proc Natl Acad Sci U S A 106, 11709 (2009). 

46. Dos Reis, M., Hay, A. J. & Goldstein, R. A. Using non-homogeneous models of nucleotide 
substitution to identify host shift events: Application to the origin of the 1918 8spanish9 
influenza pandemic virus. J Mol Evol 69, 333–345 (2009). 

47. Drummond, A. J. & Bouckaert, R. R. Bayesian Evolutionary Analysis with BEAST. 
(Cambridge University Press, 2015). doi:10.1017/CBO9781139095112. 

48. Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible 
for the COVID-19 pandemic. Nature Microbiology 2020 5:11 5, 1408–1417 (2020). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.568670doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.25.568670
http://creativecommons.org/licenses/by/4.0/


 17 

49. Ge, X. Y. et al. Coexistence of multiple coronaviruses in several bat colonies in an 
abandoned mineshaft. Virol Sin 31, 31 (2016). 

50. Wang, N. et al. Serological Evidence of Bat SARS-Related Coronavirus Infection in 
Humans, China. Virol Sin 33, 104 (2018). 

51. Zhang, Y. Z. & Holmes, E. C. A Genomic Perspective on the Origin and Emergence of 
SARS-CoV-2. Cell 181, 223 (2020). 

52. Huang, Y. et al. Sars-cov-2: Origin, intermediate host and allergenicity features and 
hypotheses. Healthcare (Switzerland) 9, (2021). 

53. Mallapaty, S. COVID-origins study links raccoon dogs to Wuhan market: what scientists 
think. Nature 615, 771–772 (2023). 

54. Zhang, T., Wu, Q. & Zhang, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with 
the COVID-19 Outbreak. Current Biology 30, 1346 (2020). 

55. Lam, T. T. Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. 
Nature 2020 583:7815 583, 282–285 (2020). 

56. Wardeh, M., Baylis, M. & Blagrove, M. S. C. Predicting mammalian hosts in which novel 
coronaviruses can be generated. Nature Communications 2021 12:1 12, 1–12 (2021). 

57. Higgins, D. G., Thompson, J. D. & Gibson, T. J. Using CLUSTAL for multiple sequence 
alignments. Methods Enzymol 266, 383–400 (1996). 

58. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of 
progressive multiple sequence alignment through sequence weighting, position-specific gap 
penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680 (1994). 

59. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary 
Genetics Analysis across Computing Platforms. Mol Biol Evol 35, 1547 (2018). 

60. Rambaut, A., Lam, T. T., Carvalho, L. M. & Pybus, O. G. Exploring the temporal structure 
of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2, (2016). 

61. Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary 
analysis. PLoS Comput Biol 15, e1006650 (2019). 

62. Baele, G. & Lemey, P. Bayesian evolutionary model testing in the phylogenomics era: 
matching model complexity with computational efficiency. Bioinformatics 29, 1970–1979 
(2013). 

63. Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate Model 
Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Mol Biol Evol 30, 239 
(2013). 

64. Duchene, S. et al. Bayesian Evaluation of Temporal Signal in Measurably Evolving 
Populations. Mol Biol Evol 37, 3363–3379 (2020). 

65. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior 
Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol 67, 901–904 (2018). 

66. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. 
67. FigTree v. 1.4.4. (Rambaut 2018). Genetic variation parameters such as... | Download 

Scientific Diagram. https://www.researchgate.net/figure/FigTree-v-144-Rambaut-2018-
Genetic-variation-parameters-such-as-observed-alleles_fig1_354454604. 

68. Skilling, J. Nested sampling for general Bayesian computation. https://doi.org/10.1214/06-

BA127 1, 833–859 (2006). 
69. Russel, P. M., Brewer, B. J., Klaere, S. & Bouckaert, R. R. Model Selection and Parameter 

Inference in Phylogenetics Using Nested Sampling. Syst Biol 68, 219–233 (2019). 
70. Faria, N. R., Suchard, M. A., Rambaut, A., Streicker, D. G. & Lemey, P. Simultaneously 

reconstructing viral cross-species transmission history and identifying the underlying 
constraints. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 
(2013). 

71. Fantner, G. A brief introduction to error analysis and propagation. (2011). 
72. Liu, P. et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-

CoV-2)? PLoS Pathog 16, (2020). 
73. Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: 

implications for virus origins and receptor binding. The Lancet 395, 565–574 (2020). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.568670doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.25.568670
http://creativecommons.org/licenses/by/4.0/


 18 

74. Gralinski, L. E. & Menachery, V. D. Return of the Coronavirus: 2019-nCoV. Viruses 12, 
(2020). 

75. Boopathi, S., Poma, A. B. & Kolandaivel, P. Novel 2019 coronavirus structure, mechanism 
of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 1 
(2020) doi:10.1080/07391102.2020.1758788. 

76. Naqvi, A. A. T. et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis 
and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 1866, 
165878 (2020). 

77. Subissi, L. et al. SARS-CoV ORF1b-encoded nonstructural proteins 12–16: Replicative 
enzymes as antiviral targets. Antiviral Res 101, 122 (2014). 

78. Wang, H., Pipes, L. & Nielsen, R. Synonymous mutations and the molecular evolution of 
SARS-CoV-2 origins. Virus Evol 7, (2021). 

79. Pérez-Reche, F. J., Forbes, K. J. & Strachan, N. J. C. Importance of untested infectious 
individuals for interventions to suppress COVID-19. Scientific Reports 2021 11:1 11, 1–13 
(2021). 

  
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.568670doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.25.568670
http://creativecommons.org/licenses/by/4.0/

	1 Abstract
	2 Introduction
	3 Methods
	3.1 Phylogeny of coronavirus
	3.2 Identification of temporal signal from coronavirus genomic data
	3.2.1 Whole Genome Sequences
	3.2.2 Core genome fragments
	3.2.2.1 Identification of core genome fragments
	3.2.2.2 Identification of core genome fragment groups with indistinguishable molecular clock rates
	3.2.2.2.1 Pairs of fragments
	3.2.2.2.2 Identifying groups of fragments with indistinguishable clock rates



	3.3 Bayesian phylodynamic analysis by BEAST
	3.3.1 Bayesian phylodynamic analysis to estimate clock rate and timed phylogeny
	3.3.2 Model selection using Nested sampling
	3.3.3  Determination of host reservoir probability, molecular clock rate and time to most recent common ancestor
	3.3.3.1 Determination of pooled estimate of tMRCA and associated uncertainty



	4 Results and discussion
	4.1 Phylogenetic analysis
	4.1.1 Classification of SARS-CoV-2 within Coronavirus
	4.1.2 Phylogenetic relationship between SARS-CoV-2 Wuhan and other beta coronaviruses

	4.2 Identification of temporal signal from coronavirus genomic data
	4.2.1 Whole Genome Sequences
	4.2.2 Core genome fragments
	4.2.2.1 Identification of core genome fragments
	4.2.2.2 Identification of core genome fragment groups with indistinguishable molecular clock rates


	4.3  Bayesian Phylodynamic analysis by BEAST
	4.3.1 Model selection using Nested Sampling
	4.3.2   Clock rate, time to the most recent common ancestor and host reservoir probability


	5 Conclusion
	6 References

