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Abstract. Quantum annealing devices have been subject to various
analyses in order to classify their usefulness for practical applications.
While it has been successfully proven that such systems can in general be
used for solving combinatorial optimization problems, they have not been
used to solve chemistry applications. In this paper we apply a mapping,
put forward by Xia et al. [25], from a quantum chemistry Hamiltonian
to an Ising spin glass formulation and find the ground state energy with
a quantum annealer. Additionally we investigate the scaling in terms of
needed physical qubits on a quantum annealer with limited connectiv-
ity. To the best of our knowledge, this is the first experimental study
of quantum chemistry problems on quantum annealing devices. We find
that current quantum annealing technologies result in an exponential
scaling for such inherently quantum problems and that new couplers are
necessary to make quantum annealers attractive for quantum chemistry.

Keywords: Quantum computing ·Quantum annealing ·Quantum chem-
istry

1 Introduction

Since the seminal talk by Richard Feynman [9] that jumpstarted the race for
practical quantum computers, scientist have been dreaming of machines that
can solve highly complicated quantum mechanical problems, which are inacces-
sible with classical resources. Molecules, such as caffeine, are already of such
great complexity, that classical computers are incapable of simulating the full
dynamics. Similar problems arise in the search for more efficient batteries, which
is an important task for the upcoming electrification of traffic. Another promi-
nent example is the simulation of photosynthesis processes in organic materials,
which might lead to more efficient solar cells but is impossible to simulate due
to the highly complex structure of the problem. The common ingredient which
makes these problems so incredible hard to simulate is the exponentially growing
Hilbert space. However a quantum computer, being a complicated quantum me-
chanical system itself, harnesses the power of the exponentially growing Hilbert
space. Therefore, quantum computing is generally believed to be able to find
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solutions to these complex and important problems. An important class of such
quantum problems are electronic structure problems [15,24]. There, the goal is
to find the ground state energy of a quantum system consisting of electrons and
stationary nuclei. To simulate these systems one has to solve the Schrödinger
equation, H |Φ〉 = E |Φ〉, where H is the Hamiltonian describing the dynamics
of the electrons in presence of stationary cores. Solving the Schrödinger equa-
tion can get unfeasible already when adding just another single electron to the
system. Due to this exponentially increasing complexity of the problem solving
this type of problem belongs to the most difficult calculations in both science
and industry. State-of-the-art classical computers are able to solve such problems
exactly for smaller molecules only. Various numerical methods such as Hartree-
Fock (HF), quantum Monte Carlo (qMC), density functional theory (DFT) or
configuration interaction methods (CI) were developed to give an approximate
solution to these kinds of problems. In the future, quantum computers will be
able to find exact solutions to these problems and thereby obtaining a deeper
insight into nature.

In recent years early industrial incarnations of gate based quantum computers
are appearing [6,8,7,22] and small quantum chemistry algorithms have already
been executed on these machines, such as the Variational Quantum Eigensolver
(VQE) [21] or the Phase Estimation Algorithm (PEA) [13], which utilize the
possibility to represent electrons in atomic orbitals as qubits on the quantum
processor. Kandala et al. used transmon qubits to simulate molecular hydro-
gen, lithium hydride and beryllium oxide [12]. Hempel et al. used a trapped ion
quantum computer to simulate molecular hydrogen and lithium hydride [10].
However, current gate model devices suffer from various shortcomings, e.g. a
small number of qubits, errors caused by imperfect gates and qubits, and de-
coherence effects. These effects limit the coherence time and consequently the
total number of gates which can be applied before decoherence effects destroy
the potential for any quantum speedup. Research is therefore focusing on finding
hardware-efficient, i.e. shallow circuits for solving electronic structure problems
[12,14,3,5].

Parallel to the development of gate based quantum computers there have
been efforts to build quantum annealers on an industrial scale since the turn of
the century [11] and the number of qubits in such devices have rapidly increased
over the last few years. Quantum annealers use a quantum enhanced heuristic
to find solutions to combinatorial optimization problems, such as traffic flow op-
timization [18] or cluster analysis [19]. In more recent time, quantum annealing
systems were utilized to sample from a classical or quantum Boltzmann distribu-
tion, which enabled using such machines for machine learning purposes such as
the training of deep neural networks [2] or reinforcement learning [16]. Despite
their higher maturity with respect to gate based quantum computers, quantum
annealers have, to the best of our knowledge not been used to solve quantum
chemistry problems yet. In this present contribution, we follow an approach put
forward by Xia et al. [25] to map electronic structure Hamiltonians to a classical
spin glass and subsequently find the ground state with quantum annealing.
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We start in Sec. 2 with a short introduction into quantum annealing followed
by a general presentation of the electronic structure problem and a recapitulation
of the approach proposed by [25] in Sec. 3. In Sec. 4, we present first results
obtained with the D-Wave 2000Q machine for molecular hydrogen (H2) and
lithium hydride (LiH). In Sec. 5, we give technical details of the obtained results
and, finally, in Sec. 6, we conclude with a summary of our findings and an outlook
of possible future research directions.

2 Quantum Annealing in a nutshell

Quantum annealing belongs to a class of meta-heuristic algorithms suitable
for solving combinatorial optimization problems. The quantum processing unit
(QPU) is designed to find the lowest energy state of a spin glass system, described
by an Ising Hamiltonian,

HSG =
∑

i

hiσ
i
z +

∑

i,j

Jijσ
i
zσ

j
z, (1)

where hi is the on-site energy of qubit i, Jij are the interaction energies of two
qubits i and j, and σi

z is the Pauli matrix acting on the i-th qubit. Finding the
ground state of such a spin glass system, i.e. the state with lowest energy, is
a NP problem. Thus, by mapping other NP problems onto spin glass systems,
quantum annealing is able to find the solution of them. The idea of quantum
annealing is to prepare the system in the ground state of a Hamiltonian which is
known and easy to prepare, e.g. HX =

∑

i σ
i
x. Then we change the Hamiltonian

slowly such that it is the spin glass Hamiltonian at time T,

H(t) =

(

1−
t

T

)

HX +

(

t

T

)

HSG. (2)

If T is long enough, according to the adiabatic theorem, the system will be in
the ground state of the spin glass Hamiltonian HSG.

3 The electronic structure problem and its mapping on

an Ising Hamiltonian

3.1 The electronic structure problem

The behaviour of electrons inside molecules is determined by their mutual in-
teraction and the interaction with the positively charged nuclei. To describe the
dynamics of the electrons or to find their optimal energetic configuration one
has to solve the Schrödinger equation of this many-body quantum system. The
Hamiltonian for a system consisting of M nuclei and N electrons can be written
in first quantization as

H =−
∑

i

∇2
i

2
−
∑

A

∇2

A

2MA

−
∑

i,A

ZA

|ri −RA|
+
∑

i,j

1

|ri − rj |
+

M
∑

A,B

ZAZB

|RA −RB |
,

(3)
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where ri are the positions of the electrons, MA, RA and ZA are the mass, po-
sition and charge in atomic units of the nuclei respectively. Using the second
quantization, i.e. writing Eq. 3 in terms of fermionic creation and annihilation
operators a†i and aj of a specific fermionic mode i and j with {ai, a

†
j} = δij and

applying the Born-Oppenheimer approximation, which assumes that the nuclei
do not move due to their much greater mass (MA � 1), we get the following
Hamiltonian

H =
∑

i,j

hija
†
jai +

1

2

∑

i,j,k,l

hijkla
†
ia

†
jakal. (4)

The parameters hij and hijkl are the one- and two-particle integrals for a specific,
problem-dependent basis set |ψi〉, which has to be appropriately chosen,

hij = 〈ψi|

(

−
∇2

i

2
−
∑

A

ZA

|ri −RA|

)

|ψj〉 ,

hijkl = 〈ψiψj |
1

|ri − rj |
|ψkψl〉 . (5)

Quantum devices utilize qubits, i.e. we have to find a qubit representation of
the fermionic Hamiltonian. The Jordan-Wigner or Bravyi-Kitaev transformation
[23] are the most prominent examples achieving this task and map the fermionic
creation and annihilation operators to Pauli matrices, both leading to a qubit
Hamiltonian of the form

H =
∑

i,α

hiασ
i
α +

∑

i,j,α,β

h
ij
αβσ

i
ασ

j
β +

∑

i,j,k,α,β,γ

h
ijk
αβγσ

i
ασ

j
βσ

k
γ + . . . (6)

where σi
α=x,y,z are the Pauli matrices acting on a single qubit at site i. This

qubit Hamiltonian now encodes the electronic structure problem we would like
to solve by using a quantum annealer.

3.2 Formulation as an Ising spin glass

To find the ground state energy of an electronic structure problem with a quan-
tum annealing device, it is necessary to find a representation of the problem, cf.
Eq. 6, in the form of a classical spin glass system described by the Ising Hamil-
tonian, cf. Eq. 1. To accomplish this, we use the method proposed by Xia et al.
[25]. In this section, we shortly recapitulate the method, for a detailed overview,
cf. [25].

Terms containing σx and σy in the electronic structure Hamiltonian prohibit
a direct embedding on a quantum annealer. To overcome this problem, the idea
is to introduce r ancillary qubits for all n qubits of the original Hamiltonian re-
spectively. Each Pauli operator is mapped to a diagonal operator in the classical
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subspace of the larger (r × n)-qubit Hilbert space using the following relations:

σi
x →

1− σ
ij
z σ

ik
z

2
S(j)S(k) σi

y → i
σik
z − σ

ij
z

2
S(j)S(k)

σi
z →

σ
ij
z + σik

z

2
S(j)S(k) 1 →

1 + σ
ij
z σ

ik
z

2
S(j)S(k) (7)

In these mappings, σ
ij
α=x,y,z denote the Pauli matrices acting on the j-th ancillary

qubit of the i-th original qubit. The mapped operators then reproduce the action
of the former operators on the wavefunction in the original Hilbert space. The
function S(j) takes care of the sign of the state in the original Hilbert space. By
increasing r, we are able to grasp more quantum effects and therefore are able to
get a more precise estimation of the true ground state energy. In the following,
we use this mapping and the proposed algorithm in [25] to find a classical spin
glass approximation of our electronic structure Hamiltonian, which we then solve
by using the methods of quantum annealing.

4 Results from the D-Wave 2000Q

In this section, we present first examples of electronic structure calculations done
on a physical quantum annealing device, namely the D-Wave 2000Q machine.
This quantum annealing device has 2048 qubits and 6016 couplers, arranged in a
Chimera-type structure. Further information about the precise architecture and
technical details can be found in [1].

We calculate the ground state energies of molecular hydrogen (H2) and
lithium hydride (LiH) for various interatomic distances. Moreover, we calcu-
late the number of required qubits when using a quantum annealing device with
limited connectivity. For an overview of our used methods, we refer to Sec. 5.

4.1 Molecular hydrogen - H2

We start with molecular hydrogen, H2, which has already been the testbed for
first electronic structure calculations on gate model devices [12,10]. With the two
electrons of molecular hydrogen we have to account for 4 atomic orbitals. After
calculating the fermionic Hamiltonian, a Bravyi-Kitaev transformation yields
the qubit Hamiltonian,

HH2
=g11+ g2σ

0

zσ
2

zσ
3

z + g3σ
0

zσ
2

z + g4σ
2

z + g5σ
0

yσ
1

zσ
2

yσ
3

z + g6σ
0

zσ
1

zσ
2

z + g7σ
0

zσ
1

z

+ g8σ
1

zσ
3

z + g8σ
1

zσ
2

zσ
3

z + g10σ
0

zσ
1

zσ
2

zσ
3

z + g11σ
1

z + g12σ
0

z + g13σ
0

xσ
1

zσ
2

x

+ g14σ
0

xσ
1

zσ
2

xσ
3

z + g15σ
0

yσ
1

zσ
2

y. (8)

In this expression, gi are parameters calculated from the one- and two-particle
integrals, i.e. Eq. 5. These parameters depend on the interatomic distance R
between both hydrogen atoms, gi = gi(R). As shown in [20], the first and third
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Fig. 1. Ground state energies of molecular hydrogen H2 for various interatomic dis-
tances and different values of the scaling factor r. The red asterisks show the results
from D-Wave 2000Q, the blue line shows the Hartree-Fock energy of the Hamiltonian,
the black line the ground state energy obtained by the exact diagonalization of the
molecular Hamiltonian, and the green circles show the simulated results of the classi-
cal (r × n)-qubit Hamiltonian. As expected, by increasing the value of r, we increase
the accuracy of the results. The D-Wave quantum annealing device closely reproduces
the simulated results, meaning that it was able to find the right ground state energy
for the given problem. For r = 16 we are very close to the exact results, where in
this case we were not able to do the numerical calculation, thus we show experimental
results only. In Fig. 2 we show the required qubits on the quantum processor for each
of these plots. For all the experiments presented in this plot, we used an annealing time
of τ = 100µs and 1000 annealing runs.
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Fig. 2. Here we show the number of required qubits after embedding the classical
(r × n)-qubit Hamiltonian of molecular hydrogen on the real device for increasing
scaling factors r.

qubit in this Hamiltonian does not affect the population numbers of the Hartree-
Fock state |ΨHF〉. Therefore both qubits are not important for finding the ground
state energy and can be neglected in the remainder of this calculation, yielding
the 2-qubit Hamiltonian

HH2
=g01+ g1σ

0

z + g2σ
1

z + g3σ
0

zσ
1

z + g4σ
0

xσ
1

x + g4σ
0

yσ
1

y (9)

Exact values for gi can be found in [20]. To find the the ground state of this
Hamiltonian, we map it on a (r × n)-qubit Hamiltonian and find a classical 4-
local spin glass representation in this larger Hilbert space. We then reduce the
4-local to 2-local terms by again introducing ancillary qubits and subsequently
find the lowest eigenvalue of this 2-local classical spin glass Hamiltonian by
embedding it on the Chimera graph of the D-Wave 2000Q machine. We repeat
these experiments for different values of the interatomic distance and for different
scaling factors r.

The results of these experiments are shown in Fig. 1. For r = 1, we merely
remove any term in the Hamiltonian that contains σx or σy Pauli operators.
As we start with a Hamiltonian which converged after a classical Hartree-Fock
calculations, see Sec. 5, this case should provides us with Hartree-Fock energies.
For r = 2, we have to account for 20 terms in total and 31 qubits on the QPU
after embedding. For the largest scaling factor we used, r = 16, we have to
use 1359 qubits on the QPU to account for 1490 terms in the 2-local spin glass
version of the Hamiltonian.

In Fig. 2, we show the number of used qubits on the quantum annealing pro-
cessor for different r. These numbers are the result of the mapping to a Hamil-
tonian containing only σz operators, the mapping to two-local terms and the
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embedding on the chimera structure of the D-Wave 2000Q device. The required
number of qubits approximately scales quadratically with the scaling factor. We
note that this does not imply that the whole method scales quadratically when
going to larger systems, as we might need an exponential increasing scaling factor
for reaching an sufficient accuracy.

4.2 Lithium hydride - LiH

To gauge the potential of the presented technique we start considering more
complicated molecules such as lithium hydride. Lithium hydride has four elec-
trons and we have to account for 12 orbitals in the minimal basis. We follow the
same steps as for molecular hydrogen, i.e. we derive the qubit Hamiltonian of
the problem using a Bravyi-Kitaev transformation of the fermionic Hamiltonian.
We again are able to truncate the Hamiltonian to a smaller space by exploiting
the fact that two qubits do not change its population numbers when starting in
a Hartree-Fock state, leaving us with a 10-qubit Hamiltonian. Using the trans-
formation given in Sec. 3.2, we map the Hamiltonian to a classical spin glass. In
contrast to molecular hydrogen, for lithium hydride, due to limited number of
qubits of the quantum hardware and the embedding overhead due to the limited
connectivity, we are not able to take all atomic orbitals into account. Therefore
we use an active space representation, i.e. we freeze orbitals and optimize the
electron configuration in the remaining orbitals. After finding a 2-local represen-
tation of the remaining Hamiltonian and an embedding on the Chimera graph,
we again find the ground state by the use of quantum annealing. For the sake of
brevity, we do not state the full Hamiltonian here. In the following we present
results for both various atomic orbitals and scaling factors.

These results can be found in Fig. 3. The results of all shown plots are very
close to the initial Hartree-Fock energies, meaning that we were not able to
improve from the initial Hartree-Fock energies, which was the starting point of
our calculation. Additionally, as the problem gets more complicated, D-Wave was
in some cases not able to find the true ground state energy of the transformed
Hamiltonian. For a scaling factor r = 4 and 3 orbitals, we have to use 1558
qubits on the QPU. In our experiments, it was not possible to use more orbitals
while r 6= 1.

5 Methods

In this section, we shortly summarize the technical details of our experiments.
For both molecules, H2 and LiH, we start by determining the fermionic Hamil-
tonian by calculating the one- and two-particle integrals, cf. Eq. 5 using the
Psi4 module of Google’s OpenFermion library [17]. We used the molecular wave-
functions from converged Hartree-Fock calculations obtained by using a minimal
basis set, namely STO-3G, which are created from 3 Gaussian orbitals fitted to a
single Slater-type orbital. We then apply a Bravyi-Kitaev transformation to map
the second-quantized fermionic operators onto Pauli matrices to obtain a qubit
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Fig. 3. Ground state energies of lithium hydride, LiH, for different active orbitals, dif-
ferent values of r and various interatomic distances. LiH has 6 orbitals, here numbered
from 0 to 5, plus spin degrees of freedom. The red asterisks show the results from
D-Wave 2000Q, the blue line shows the Hartree-Fock energy of the Hamiltonian and
the black line the exact ground state energy. For the sake of brevity, we do not show
numerical results of the transformed Hamiltonian here. For the experiments with 2
orbitals, we used an annealing time of τ = 100µs and 1000 annealing runs, whereas for
3 orbitals, we used an annealing time of τ = 100µs and 9000 annealing runs.
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representation of the problem. By using the method described in Sec. 3.2, we
map the n-qubit Hamiltonian to a (r × n)-qubit Hamiltonian. As D-Wave’s im-
plementation consists of 2-local terms only, we introduce ancillary qubits to find
a 2-local representation of the Hamiltonian to embed the problem subsequently
onto the Chimera graph structure of the quantum annealing device. To make
sure that the embedding is optimal, we use the heuristic algorithm provided by
D-Wave and generate 100 random embeddings for each bond length and find the
ground state energy for each of these 100 embeddings with the D-Wave 2000Q.
We then only keep the best solution, i.e. the solution with lowest energy. To
compare our results with classical methods, we use the converged Hartree-Fock
energies and the exact results, which we obtained by a numerical diagonalization
of the qubit Hamiltonian.

6 Conclusion & Outlook

In this paper, we did a first examination of quantum chemistry problems on
the D-Wave 2000Q by using an approach proposed by Xia et al. [25]. We were
able to calculate the ground state energies of molecular hydrogen and lithium
hydride with the current generation of the QPU. For molecular hydrogen, H2, our
ground state energy estimations were very close to the exact energies when going
to scaling factor of r = 16. For achieving this accuracy, we already had to use a
large fraction of available qubits on the quantum processor. We moreover showed
a first scaling of this methods under real conditions and overheads of quantum
annealing hardware. For lithium hydride, LiH, we were not able to reproduce
closely the ground state energy with the currently available hardware. When
accounting for 3 orbitals and using a scaling factor of r = 4, we already had
to use 1558 qubits, which is a large fraction of available qubits. To summarize:
the investigated method in general works, but it might be difficult to apply it to
larger systems.

However, we give some further research ideas how quantum annealing devices
could be applied to quantum chemistry problems in the nearer future. Quantum
annealing devices which utilize interactions beyond the standard Ising Hamil-
tonian, i.e. beyond σz ⊗ σz interactions, could be helpful as they would allow
to use a larger fraction of the Hilbert space. When having access to the right
interactions, an efficient embedding onto quantum annealing processors could be
feasible [4]. Another possibility is to use the recently announced new features of
the D-Wave machine, such as the possibility to do reverse annealing or to stop
the annealing process in an intermediate point of the adiabatic evolution, i.e.
between start and final Hamiltonian. This may be utilized for getting access to
terms which are non-diagonal in the computational basis and in the end could
enable to sample from low-lying energy states. Together with a classical subrou-
tine, one could find the solution of the problem. Another possibility could be to
use the D-Wave machine to calculate Hartree-Fock, i.e. approximate energies of
the problem. Together with a classical loop, quantum annealing devices could
be used to estimate the Hartree-Fock energy of large molecules, which would
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be unfeasible with classical resources. Another promising alternative is to use
machine learning to improve the found ground state energies.
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