

1 **Phylogeny-metabolism dual-directed single-cell genomics for dissecting and mining ecosystem
2 function**

3 Xiaoyan Jing^{1,6,7,8,†}, Yanhai Gong^{1,6,7,8,†}, Zhidian Diao^{1,6,7,8,†}, Yan Ma^{1,2,†}, Yu Meng^{1,6,7,8}, Jie Chen^{1,6,7,8},
4 Yishang Ren^{1,6,7,8}, Yinchao Li³, Weihan Sun⁴, Jia Zhang^{1,6,7,8}, Yuetong Ji⁹, Yuting Liang⁵, Zhiqi
5 Cong^{1,6,7,8}, Shengying Li⁴, Bo Ma^{1,6,7,8}, Zhisong Cui^{3,*}, Li Ma^{4,*}, Jian Xu^{1,6,7,8,*}

6 ¹Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess
7 Technology, Chinese Academy of Sciences, Qingdao, China

8 ²Department of Biotechnology, College of Life Science and Technology, Huazhong University of
9 Science and Technology, Wuhan, Hubei, China

10 ³Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-
11 Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural
12 Resources of China, Qingdao, Shandong, China

13 ⁴State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China

14 ⁵State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy
15 of Science, Nanjing, Jiangsu, China

16 ⁶University of Chinese Academy of Sciences, Beijing, China

17 ⁷Shandong Energy Institute, Qingdao, Shandong, China

18 ⁸Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China

19 ⁹Qingdao Single-Cell Biotechnology, Co., Ltd., Qingdao, Shandong, China.

20 *Correspondence to: xujian@qibebt.ac.cn, maliqd@sdu.edu.cn, czs@fio.org.cn

21 **Running title:** Dissecting and mining microbiota function via FISH-scRACS-Seq

22 **Keywords:** Fluorescence In-Situ Hybridization (FISH), Single-cell Raman microspectroscopy,
23 Raman-activated Cell Sorting (RACS), microbiota, pollutant degradation

24 **Abstract**

25 Although microbiome-wide association studies (MWAS) have uncovered many marker organisms
26 for an ecosystem trait, mechanisms of most microbiota-mediated processes remain elusive, due to
27 challenges in validating the markers' *in situ* metabolic activities and tracing such activities to
28 individual genomes. Here we introduced a phylogeny-metabolism dual-directed single-cell genomics
29 approach called Fluorescence-In-Situ-Hybridization-guided Single-Cell Raman-activated Sorting and
30 Sequencing (FISH-scRACS-Seq). It directly localizes individual cells from target taxon via a FISH
31 probe for marker organism, profiles their *in situ* metabolic functions via single-cell Raman spectra,
32 sorts cells of target taxonomy and target metabolism, and produces indexed, high-coverage and
33 precisely-one-cell genomes. From cyclohexane-contaminated seawater, cells representing the MWAS-
34 derived marker taxon of γ -Proteobacteria and that are actively degrading cyclohexane *in situ* were
35 directly identified via FISH and Raman respectively, then sorted and sequenced for one-cell full
36 genomes. In such a *Pseudoalteromonas fuliginea* cell, we discovered a three-component cytochrome
37 P450 system that can convert cyclohexane to cyclohexanol *in vitro*, representing a previously unknown
38 group of cyclohexane-degrading enzymes and organisms. By culture-independently unveiling
39 enzymes, pathways, genomes and their *in situ* functions specifically for those single-cells with
40 ecological relevance, FISH-scRACS-Seq is a rational and generally applicable approach for dissecting
41 and mining microbiota functions.

42

43 **Teaser** FISH-scRACS-Seq is a new strategy to dissect microbiota functional mechanism at single-cell
44 resolution.

45 **Introduction**

46 Via their rich and diverse metabolic activities, microbial consortia have supported most if not all
47 of the critical ecological processes on Earth, such as geochemical cycling of elements, environmental
48 remediation and nutrient utilization in hosts (1-3). To dissect their functioning mechanisms, and also
49 mine the underlying bioresources (e.g., useful chassis cells or enzymes), two major strategies are
50 usually adopted. One is driven by “genotype”: for example, microbiome-wide association studies
51 (MWAS) identify for an ecosystem trait the DNA-sequence based taxonomical or functional-gene
52 markers, by probing correlation between metagenomes and the trait (4, 5). One strength of such
53 undirected approaches is the high-throughput and exhaustive discovery of ecosystem-trait associated
54 organisms or genes, which ensures ecological significance of these markers. However, due to the lack
55 of information for metabolic activities and the challenge in reconstructing individual genomes from
56 those highly heterogeneous metagenomes, it is usually difficult to validate the *in situ* functions of
57 marker taxa and to trace the functions to responsible genomes, pathways or enzymes. Consequentially,
58 although numerous taxonomic markers were reported for many microbiota-mediated processes, their
59 functioning mechanisms remain elusive (6, 7), particularly for those involving not-yet-cultured marker
60 organisms.

61 The other strategy starts with “metabolic phenotype”: for example, Raman-activated Cell Sorting
62 and Sequencing (RACS-Seq), a metabolism-directed approach, can directly identify individual cells
63 of target metabolism that corresponds to the ecosystem trait, and then track the metabolic activity to
64 the underpinning single-cell genomes (8-11). Specifically, individual cells of microbiota are profiled
65 for single-cell Raman spectra (SCRS) which serve as a proxy of *in situ* metabolic phenotype (11), and
66 those cells of target phenotypes are sorted via a RACS instrument and then sequenced for their single-

67 cell full genomes at an indexed, one-cell-one-tube manner (11-13). When coupled with stable isotope
68 probing (SIP-Raman), SCRS can measure cellular intake rate of substrates (e.g., ^{13}C , ^{15}N , ^{18}O and D
69 (^2H , 13-19)), and the D_2O -intake based cellular vitality can be used to model degradative activity of
70 carbon source (16, 20, 21). In addition, SCRS can reveal the biosynthetic profile of cell (e.g.,
71 carotenoids (22-25), proteins (26), triacylglycerols (26-28) and other Raman-sensitive compounds),
72 and characterize cellular response to environmental changes (e.g., susceptibility to drugs or other types
73 of stresses (11, 29, 30)). A core strength of this strategy is the ability to actually measure *in situ*
74 metabolic activity and directly trace it to genomes, both at single-cell resolution (24, 25, 29, 31-33).
75 However, due to the sheer number of cells in microbiota yet the comparably low throughput of RACS-
76 Seq at present, such metabolism-directed single-cell genomics approach is usually shallow in sampling
77 depth and narrow in investigative scope. As a result, *in situ* metabolism of those selected cells of
78 interest such as marker organisms identified by MWAS, cannot be probed in a targeted manner, i.e.,
79 whether the single-cell metabolic phenomes and genomes produced by RACS-Seq are of ecological
80 relevance is usually not clear.

81 To tackle these challenges, we introduce a phylogeny-metabolism dual-directed single-cell omics
82 approach called Fluorescence-In-Situ-Hybridization-guided Single-Cell Raman-activated Sorting and
83 Sequencing (FISH-scRACS-Seq). Based on a FISH probe designed from MWAS-derived taxonomical
84 markers, the method directly localizes individual cells of the target taxon in a microbiota, profiles their
85 *in situ* metabolic functions via SCRS, then sorts for those cells of target taxonomy and target
86 metabolism, and finally produces their indexed, high-coverage and precisely-one-bacterial-cell
87 genomes. The method was evaluated via a series of mock community and then demonstrated for soil
88 and seawater microbiota. Coupling of FISH-scRACS-Seq to upstream MWAS allowed efficient,

89 culture-independent tracing of cyclohexane degradation in cycloalkane-contaminated seawater from a
90 condensate gas field to the one-cell genomes of uncultured *Pseudoalteromonas fuliginea* and further
91 to a previously unknown group of cytochrome P450 based cyclohexane monooxygenases that can
92 convert cyclohexane to cyclohexanol *in vitro*. Therefore, FISH-scRACS-Seq is a rational and generally
93 applicable strategy for dissecting and mining microbiota function.

94 **Results**

95 **Overview of FISH-scRACS-Seq for phylogeny-metabolism dual-directed single-cell omics**

96 The FISH-scRACS-Seq workflow for dissecting a microbiota consists of three steps (**Fig. 1**). In
97 Step 1 (i.e., “FISH”), individual cells of a target taxon are directly localized in a microbiota sample,
98 via a taxon-specific catalyzed reporter deposition (CARD)-FISH probe (the use of CARD-FISH
99 greatly increase signal-noise ratio (34-36)). Importantly, the FISH process usually sacrifices cellular
100 vitality (37, 38), therefore, prior to probe hybridization, pretreatments that support downstream SCRS-
101 based profiling of metabolic phenotype should ensue, such as the feeding of stable-isotope labelled
102 substrates (e.g., D₂O, H¹³CO₃⁻, ¹⁵N₂, etc (11, 39)).

103 In Step 2 (i.e., “scRACS”), post-FISH cells are distinguished and sorted based on not just the target
104 phylogeny (via the FISH probe) but also the target metabolic phenotype (via the SCRS). Specifically,
105 under aqueous suspension, the CARD-FISH-labeled cells are trapped and analyzed for SCRS
106 individually in a RAGE chip via a 532 nm laser, which generates high signal-to-noise ratio SCRS.
107 Then, via a technique called single-cell Raman-activated Gravity-driven Encapsulation coupled with
108 Sequencing (scRAGE-Seq) in a RACS-Seq instrument (31) (**Methods**), those CARD-FISH-labeled
109 cells with characteristic SCRS that correspond to target metabolic phenotypes are individually captured

110 and moved with a 1,064 nm laser to form one-cell-encapsulated droplets that are then sequentially
111 exported.

112 In Step 3 (i.e., “Seq”), the post-FISH-RACS cells in droplets would undergo cell lysis, Multiple
113 Displacement Amplification (MDA), and genome sequencing in an indexed, one-cell-one-tube manner
114 (**Fig. 1**). Notably, as the one-cell-droplets already carry an oil phase (mineral oil), an emulsion reaction
115 for MDA would be formed simply via vortexing the tube after introducing the lysis buffer. After quality
116 assessment, the one-cell MDA products are then shotgun sequenced individually, followed by *de novo*
117 assembly and *in silico* genome analysis. In this way, specifically for those cells of target phylogeny in
118 a microbiota, the target metabolic activity *in situ* is directly traced to genome sequence at single-cell
119 resolution.

120 **Validation of FISH-scRACS-Seq using pure-cultured *Escherichia coli* cells**

121 To benchmark method performance, we started from a pure culture of *E. coli* K-12 DH5 α . To
122 simulate SCRS-based profiling of metabolic phenotype from a microbiota, prior to CARD-FISH
123 labeling, the cells were first fed 50% D₂O (vol/vol), producing a broad Raman band that peaks at 2,157
124 cm⁻¹ in the region between 2,040 and 2,300 cm⁻¹. Representing the C-D stretching vibrations shifted
125 from the C-H stretching vibrations at 2800-3200 cm⁻¹ (*16*), this C-D band can quantitatively model
126 metabolic vitality of the cell (*15, 16*). Then the CARD-FISH process ensued, where all the *E. coli* cells
127 were successfully labeled with the GAM42a probe, a fluorescence probe targeting γ -Proteobacteria
128 (**Fig. 2A**). Then based on the specific C-D bands in SCRS (**Fig. 2B**) and the taxon-specific fluorescence
129 signal, cells were sorted via scRAGE-Seq in a one-cell-per-tube manner (one cell-free reaction as
130 negative control in each batch of experiments). To validate successful MDA for each sorted cell, the
131 16S rRNA gene was PCR-amplified using the MDA product as template (**Table S1; Fig. S1A**). From

132 totally 20 target cells, twelve one-cell MDA products with both prominent MDA bands and positive
133 16S rRNA gene PCR results were obtained for 16S-amplicon (Sanger) and whole-genome shotgun
134 sequencing (**WGS**; **Fig. S1A**). For the one-cell WGS, ~1 Gb of raw sequencing data was produced for
135 each cell (E04, E07, E08, E09, E10, E11, E12, E13, E14 and E16; the other two failed to yield
136 sequencing libraries due to severe degradation; **Table S2**).

137 Mapping of the WGS reads to *E. coli* K-12 reference genome revealed 55.42% to 87.80% one-
138 cell genome coverage, confirming accurate sorting and sequencing for the one-cell-per-tube reactions.
139 Moreover, completeness of one-cell genome assemblies ranges from 65.74% to 95.53% (**Table S2**),
140 with 60% of the SAGs from FISH-scRAGE-Seq yielding high-quality draft genomes (estimated
141 completeness >80%; **Table S2**). Therefore, producing high-quality SCRS plus corresponding high-
142 coverage one-cell genome from a FISH sample is feasible via FISH-scRAGE-Seq.

143 Another technique to sort and sequence individual cells in an indexed manner from microbiota is
144 Raman-activated Cell Ejection (RACE-Seq), which isolates the cell of target Raman signal by ejection
145 (via a second, 532 nm pulse laser) on a dry slide via laser induced forward transfer (40, 41). To compare
146 the performance of RAGE and RACE, the ten one-cell SAGs from FISH-scRAGE-Seq were aligned
147 to RACE-Seq derived SAGs which consists of three five-cells-pooled SAGs (one-cell RACE-Seq are
148 not available due to the very low success-rate of scRACE-Seq; SRA accessions SRR10549451-
149 SRR10549453 (40)). SAGs of FISH-scRAGE-Seq are of much higher quality than RACE-Seq in all
150 assembly metrics (genome completeness, sequencing bias, assembly contiguity; **Fig. 3A-C**), and
151 recovered far more genes (**Fig. 3D**, left panel). These are consistent with previous reports on low
152 genome coverage (rarely exceeding 10% (23, 41)) of RACE-Seq due to premature cell vitality loss
153 prior to Raman exposure, direct cell exposure to the Raman-exciting laser, and the influence of pulsed

154 laser-induced cell ejection (40). Therefore, by operating all the FISH, Raman acquisition and sorting
155 steps in an aquatic phase, RAGE was chosen for FISH-scRACS-Seq in subsequent experiments.

156 On the other hand, scRAGE-Seq can reach one-cell whole-genome coverage of up to 100%, for
157 microbiomes from human urine (31), soil (24), seawater (25), wastewater (32), human gastric biopsy
158 (29) and probiotic products (33). To test whether and to what degree addition of the FISH step affects
159 downstream scRAGE-Seq results, the ten one-cell SAGs from FISH-scRAGE-Seq were compared to
160 scRAGE-Seq derived SAGs (seven one-cell SAGs; PRJNA574296 in the NCBI SRA database) from
161 the same *E. coli* culture. (i) For read coverage, FISH-scRAGE-Seq reaches averagely ~80.01%, which
162 is lower than scRAGE-Seq (~97.48%; Wilcoxon test, $p < 0.001$) but much higher than RACE-Seq
163 (~11.09%; **Fig. 3A**, left panel). Results from reconstructed draft genomes are similar (**Fig. 3A**, right
164 panel). (ii) As for uniformity of sequence coverage, which is a major challenge in single-cell genome
165 amplification and sequencing of microbiota (42), FISH-scRAGE-Seq shows similar mapping
166 uniformity on the genomes to scRAGE-Seq and bulk, respectively (**Fig. 3B**, left panel; SD; Wilcoxon
167 test, 3.65 vs 2.13, $p < 0.05$; 3.65 vs 2.06, $p < 0.01$), information entropy (**Fig. 3B**, middle panel; Entroy;
168 Wilcoxon test, 8.54 vs 8.94, $p > 0.05$; 8.54 vs 10.11, $p < 0.05$) and dropout rate (**Fig. 3B**, right panel;
169 Dropout; Wilcoxon test, 39.20% vs 37.60%, $p > 0.05$; 39.20% vs 49.7%, $p > 0.05$). (iii) As for
170 assembly continuity, FISH-scRAGE-Seq obtains shorter contigs (NGA50, 9.72 vs 78.01; Wilcoxon
171 test, $p < 0.001$) than scRAGE-Seq (**Fig. 3C**, left panel). (iv) As for number of recovered genes, FISH-
172 scRAGE-Seq recovers 86.17% genes, although 12.98% fewer than scRAGE-Seq (from the number of
173 CDSs, 3,998 vs 4,725; Wilcoxon test, $p < 0.001$) (**Fig. 3D**, left panel), which is consistent with the
174 lower completeness. Therefore, although introducing the FISH step can affect quality of downstream

175 single-cell genomes, FISH-scRAGE-Seq can still produce functionally informed, high-coverage one-
176 cell genomes for *E. coli*.

177 **FISH-scRACS-Seq shows high specificity and high sensitivity in dissecting a mock microbiota**

178 To evaluate performance of FISH-scRACS-Seq (i.e., FISH-scRAGE-Seq in this case) for
179 microbiota, we constructed a four-species mock consortium that consists of *Bacillus subtilis* H6 (*Bs*,
180 non γ -Proteobacteria), *Escherichia coli* K-12 DH5 α (*Ec*, γ -Proteobacteria), *Micrococcus luteus* D11
181 (*Ml*, non γ -Proteobacteria) and *Saccharomyces cerevisiae* BY4742 (*Sc*, non γ -Proteobacteria) in a
182 1:1:1:1 ratio (**Methods**). Sensitivity and specificity of FISH-scRACS-Seq were then evaluated by
183 sorting the mock microbiota based on fluorescence signal (i.e., the targeted taxon) and Raman signal
184 (i.e., the targeted metabolic function of vitality via C-D band).

185 We started from the FISH step, by subjecting each culture respectively to hybridization with the
186 CARD-FISH probe of GAM42a, which specifically targets *Ec*. Microscopic examination showed that
187 all cells in the *Ec* culture, but no cells in the other three cultures, were labelled with fluorescence (**Fig.**
188 **S2**). Moreover, the four cultures of *Bs*, *Ec*, *Ml* and *Sc* were labelled with 50% D₂O respectively prior
189 to CARD-FISH labeling, and then mixed in a 1:1:1:1 ratio (**Fig. 2C**). Cell counting under a
190 fluorescence microscope revealed that mean percentage of *Ec* cells before and after the FISH labelling
191 was \sim 28.8% and \sim 27.6%, respectively, showing no significant difference (Wilcoxon test, $p = 0.37$; **Fig.**
192 **2D**). This is consistent with the pre-determined ratio of *Ec* in microbiota, and supports high sensitivity
193 and specificity of CARD-FISH.

194 Furthermore, triplicate experiments were performed for sorting the mock microbiota not just based
195 on fluorescence (**Fig. 2E**) but the D₂O peak of SCRS (**Fig. 2E; Table 1**). In each of the three FISH-
196 scRACS-Seq runs, ten target cells were sorted via the presence of taxon-specific fluorescence and C-

197 D peaks, respectively. One-cell genome sequencing results suggested that (**Table 1**; **Fig. 2F**): (i) Sanger
198 sequencing of all the 16S PCR products (from 17 MDA positive cells in 30 sorted cells) yield only *E.*
199 *coli* specific 16S rDNA sequences, and the genome completeness of the SAGs ranges between 19.12%
200 and 99.76%, with average of 80.18%, 91.66% and 83.30% for each run, respectively; (ii) 26.26% to
201 54.86% of the shotgun reads are mapped to *Ec*, and the average mapping rate is 35.21%, 47.53% and
202 45.82%, respectively; (iii) for each run, the success rate for a given species ranges from 40% to 70%
203 (average of 56.67%). Notably, empty droplets derived from the aqueous phase around the target cells,
204 which served as the negative controls, produce only negative results in 16S rRNA gene validation (**Fig.**
205 **S1B-D**); these support the stringency of FISH-scRACS-Seq workflow (with the aqueous sorting
206 microenvironment of being free of contaminating DNA from air, surface or reagents, which are often
207 encountered in single-cell isolating and sequencing; (43, 44)). Collectively, results from mock
208 microbiota also support high specificity and high sensitivity of FISH-scRACS-Seq.

209 **Tests of FISH-scRACS-Seq on natural soil microbiota revealed a metabolically active *Moraxella*
210 *osloensis* cell that carries a plasmid harboring antimicrobial resistance genes**

211 To assess FISH-scRAGE-Seq's performance in an actual environmental sample, we employed soil
212 which harbors arguably the most metabolically and genetically heterogeneous microbiota on Earth
213 (45). Samples of shallow soil were collected from grassland at a depth < 3 cm in the campus of Qingdao
214 Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China (36°9'19"N,
215 120°28'50"E). Then, γ -Proteobacteria, which are metabolically active but of low abundance in soil and
216 can serve as responder/indictor of soil pollution (46-49), were labeled via CARD-FISH as above (**Fig.**
217 **4A**). Finally, individual cells that carry the fluorescent CARD-FISH signal (i.e., of the target taxon)
218 and the C-D peak (i.e., with the target metabolic vitality) were isolated from soil samples and

219 sequenced via FISH-scRACS-Seq (**Fig. 4B; Fig. 1; Methods**).

220 After quality control, clean reads from the five FISH-scRAGE-Seq reactions were *de novo*
221 assembled into five SAGs (s2, s3, s6, s7 and s9; **Table S3**). Four of the five SAGs recovered 23S
222 rRNA gene fragments that harbor the exact hybrid site of GAM42A probe (with est. 99.99%
223 hybridization efficiency; **Fig. 4C**). Taxonomic annotation of the five SAGs also pinpoints them as
224 from γ -Proteobacteria (*Moraxella* spp. for s2, s3, s7, s9 and *Acinetobacter* spp. for s6; **Fig. 4D** and
225 **Table 2**). GC% of the assembled contigs (> 200 bp; after decontamination; **Methods**) exhibit normal
226 distribution (**Fig. S3A**). Completeness of reconstructed one-cell genomes ranges from 41.79% to 99.14%
227 (average of ~74.93%; **Table 2**), as estimated via lineage-specific marker genes by CheckM (50). These
228 results support the feasibility of FISH-scRACS-Seq on soil microbiota.

229 The FISH-scRAGE-Seq derived SAGs were further compared to scRAGE-Seq-derived (24) and
230 SAG-gel-derived (51) γ -Proteobacteria SAGs (contigs over 1000 bp were selected for comparison;
231 **Methods; Fig. 4E**). The contiguity (quantity and N50 of contigs) and completeness (genome
232 completeness and number of unique tRNAs recovered) of SAGs among the three groups showed no
233 significant difference (except for the completeness of FISH-scRAGE-Seq vs SAG-gel; **Fig. 4E**), thus
234 incorporating FISH into scRACS-Seq does not degrade the quality of SAGs when analyzing complex
235 microbiomes. Besides, in the s9 cell, the taxon-specific SAG obtained via FISH-scRAGE-Seq
236 unraveled a plasmid that harbors a gene encoding Class A β -lactamases (**Fig. S3C**), enzymes that can
237 inactivate β -lactam antibiotics including carbapenems. Such genes represent a major challenge in
238 treating bacterial infections as they are highly diverse, rapidly evolving to acquire new resistance
239 mechanisms, and easily transferred between bacteria through the spreading of plasmids (52, 53).
240 Notably, this plasmid is similar in sequence (base identity of 99.5% over totally 33.0 Kb) to the plasmid

241 1 in *M. osloensis* strain NP7 (54), a γ -Proteobacteria that resides on the human skin. The sharing of
242 such resistance-gene harboring plasmids between metabolically active γ -Proteobacteria residents from
243 soil and those from human skin suggests *M. osloensis* as one likely reservoir and conveyor of
244 antimicrobial resistance across the two ecosystems. Therefore, FISH-scRAGE-Seq is able to profile,
245 directly from complex natural microbiota and in a phylogenetically directed manner, both metabolic
246 activities and high-coverage (> 99%) genomes at precisely one-cell resolution.

247 **Unraveling *in situ* cycloalkane-degrading γ -Proteobacteria and their genomes at single-cell
248 resolution in contaminated seawater by FISH-scRACS-Seq**

249 Cyclic alkanes, abundant in both subsurface hydrocarbon reservoirs and gas condensates (55), are
250 highly toxic to aquatic organisms and recalcitrant to degradation, thus pose significant ecological risks
251 when large-scale oil spills occur (56, 57). Although little is known about cycloalkane biodegradation
252 mechanism in marine ecosystems (58), MWAS has associated a group of uncultured, psychrophilic
253 and oligotrophic γ -Proteobacteria to cycloalkane degradation in China's marginal seas (55).

254 To further probe the mechanistic link between those γ -Proteobacteria and cycloalkane degradation,
255 seven metagenomes were profiled by WGS from each of seven seawater samples of different dilution
256 ratios. The seawater was sampled from a large condensate gas field in the Bohai Sea where
257 cycloalkanes are released from gas mining (Fig. 5A). Metagenomic assembly and binning
258 reconstructed seven MAGs of γ -Proteobacteria (phylogenetically annotated as *P. fuliginea*; one MAG
259 in each sample; **Methods**), which are of 4.69 to 4.82 Mb in size, 99.66-100.00% in est. completeness
260 (42), and contain 4,111-4,266 genes respectively. However, none of the seven MAGs encode
261 cycloalkane degradation pathways. In fact, like many MWAS studies, due to the difficulty in
262 measuring target taxon's metabolic activities *in situ* and unambiguously assigning them to individual

263 genomes, the specific organisms, pathways or enzymes responsible for the ecological trait (e.g.,
264 cycloalkane degradation) have remained speculative.

265 To solve this puzzle, we developed a MWAS-coupled FISH-scRACS-Seq workflow, by
266 employing γ -Proteobacteria-targeted CARD-FISH probes to rapidly identify individual cells shown by
267 MWAS to be associated with cycloalkane degrading, and then specifically profiling their cycloalkane
268 degrading activity *in situ* based on D₂O-intake rate of a cell (which indicates such activity when
269 cycloalkane is the only carbon source available) via the C-D band in SCRS. The phylogeny-
270 metabolism dual-targeted cells were then sorted and sequenced at one-cell resolution, to mine the
271 pathways and genes responsible for the function (**Fig. 5A**).

272 Specifically, the seawater samples were incubated with cyclohexane (as sole source of carbon and
273 energy source) plus 50% D₂O (for tracking metabolic vitality of microbes) at 10 °C (temperature of
274 the sampled ocean site; **Methods**). A change in phylogenetic profile of microbiota before and after the
275 cyclohexane treatment is prominent as suggested by 16S rRNA amplicon sequencing, supporting the
276 association of γ -Proteobacteria with cyclohexane utilization (**Fig. S4; File S1**). When the dissolved
277 oxygen (DO) level was reduced to 0 μ M by microbial hydrocarbon respiration, the marine microbiota
278 was sampled to undergo the FISH procedure that employs the GAM42a probe pair which is specific
279 to γ -Proteobacteria (**Fig. 5A; Methods**). A proportion of cells were successfully labeled, suggesting
280 the presence of a considerable population of γ -Proteobacteria, which serve as the basis for subsequent
281 phylogenetically directed screening of metabolic function via SCRS (**Fig. 5B**).

282 To identify those γ -Proteobacteria cells that are degrading cycloalkane *in situ*, the cells with
283 fluorescent signals underwent SCRS acquisition, and those showing C-D bands in SCRS (indicating
284 cycloalkane degrading activity) were sorted, lysed, genome amplified and sequenced via FISH-

285 scRACS-Seq in a one-cell-one-tube manner (**Fig. 5C**; with one cell-free sample as the negative control
286 in each batch). Three one-cell MDA products each with clear MDA bands and positive 16S rRNA
287 PCR results were chosen for 16S rDNA and whole-genome sequencing, producing ~3 Gb of raw
288 sequencing data for each cell (m1, m4 and m7; **Table S3**). For each cell, GC% of the assembled contigs
289 (> 200 bp; after decontamination; **Methods**) exhibits a normal distribution (**Fig. S3B**), consistent with
290 a clean assembly. Based on lineage-specific marker genes (42), 94.35%, 40.49% and 70.88% genome
291 fractions were recovered for m1, m4 and m7, respectively (**Table 2**). Notably, the genomic regions
292 targeted by the CARD-FISH probes were also recovered from each SAG, showing hybridization
293 efficiency of up to 98% (estimated by mathFISH (59)) (**Fig. 5D**).

294 Based on Genome Taxonomy Database (GTDB), the SAGs of m1, m4 and m7 were all classified
295 as *Pseudoalteromonas fuliginea*. Sequence comparison with publicly available *Pseudoalteromonas*
296 genomes via average nucleotide identity (ANI; **Fig. 5E**; **Methods**) revealed >97% similarities of the
297 one-cell *P. fuliginea* genomes with reference genomes, and >99.5% similarities among m1, m4 and
298 m7. To test the value of FISH-scRACS-Seq in reconstructing genomes of the individual cyclohexane-
299 degrading cells, we compared these three SAGs to the seven *P. fuliginea* MAGs aforementioned. (i)
300 Most of the MAG-specific genes (versus SAGs) are from two contigs that were either mis-assembled
301 or mis-binned (**Fig. 6A**), pointing to errors in MAG. (ii) In SAG m1, four SAG-unique genes are
302 detected which are supported by metagenomic sequencing reads but not recovered in the MAGs (**Fig.**
303 **6B**), suggesting the importance of higher gene coverage in SAG. (iii) Comparison of core-genome
304 SNPs between SAG m1 and MAGs (based on high-quality SNPs; **Methods**) reveals many cell-specific
305 mutations in the SAG that are absent from the MAGs, with some carrying biological consequence such
306 as introduction of premature stop codons that lead to unstable or nonfunctional proteins (**Fig. 6C**; **Fig.**

307 S5). (iv) The SAGs recover many more insertion sequences (ISs) than MAGs (in percent of genomic
308 length, 0.78% vs 0.36%; Wilcoxon test, $p < 0.05$; **Fig. S6**). Therefore, the FISH-scRACS-Seq derived
309 SAGs more completely and accurately reconstruct the genomes of individual cyclohexane-degrading
310 cells.

311 Based on these SAGs of *P. fuliginea* that degrade cyclohexane *in situ*, annotation of carbohydrate-
312 active enzymes (CAZymes; via dbCAN2a (60)) produced a global view of the glycobiome that
313 potentially underpins the cellular function. In m1, 91 CAZyme genes were identified which suggest
314 the ability to utilize various carbohydrates including pectin, galactoside, glucan, peptidoglycan, chitin,
315 trehalose, porphyran, agarose, alginate, etc (**File S2**). To probe the selection force that shapes these
316 cyclohexane-degrading cells, dN/dS of 2,748 single-copy ortholog genes between m1 and m7 were
317 calculated (61). The genes under the strongest positive selection, i.e., with “dN != 0 and dS = 0” and
318 considered “cataclysmic” (225, accounting for 8.2%), are enriched for CAZymes (11 out of 91, **Table**
319 **S4**; 12% vs. ~5% in permutations; $p < 0.05$). Strikingly, an alginate lyase harbors four amino acid
320 mutations between m1 (m1_02445) and m7 (m7_06510), suggesting a strong ecological pressure for
321 these organisms to adapt to different types of carbon sources, including but perhaps not limited to
322 alkanes.

323 **A cytochrome P450_{PsFu} from an *in situ* cycloalkane-degrading *Pseudoalteromonas fuliginea* cell**
324 **catalyzes cyclohexane degradation**

325 At present, it was not known that members of *Pseudoalteromonas* spp. can degrade cyclohexane,
326 however each of the three *P. fuliginea* cells exhibits strong metabolic vitality *in situ* with cycloalkane
327 as the only carbon source (**Fig. 5C**). To investigate how this occurs, we focused on the 4.42 Mb, 3,853-
328 gene m1 genome which is of the highest completeness (94.35%; **Table 2**; **Table S3**). In m1, a three-

329 component cytochrome P450 systems (class I/class B) was discovered (also in m7; **Fig. 7A**), which
330 consists of *yjiB* (“m1_05218”; encoding a cytochrome P450 protein of P450_{PsFu}; **Fig. 7A**), *camA*
331 (“m1_05216”; putidaredoxin reductase) and *fdxE* (“m1_05217”; ferredoxin).

332 In protein sequence, P450_{PsFu} is of very low similarity (25.8%) to the CYP450cha from *Acidovorax*
333 spp. (AKJ87746.1 (62)) which is the only P450 known to transform cyclohexane to cyclohexanol so
334 far. In fact, P450_{PsFu} belongs to the CYP236A subfamily which reportedly uses 6-*O*-methyl-D-
335 galactose (G6Me; an abundant monosaccharide of algal agarose and porphyrin) as substrate (63).
336 However, considering the promiscuity of substrate specificity in P450 enzymes (64, 65), we
337 hypothesize that P450_{PsFu} can oxidize cyclohexane. To test this hypothesis, we started by molecular
338 docking to probe the affinity between P450_{PsFu} and cyclohexane (**Methods**; **Fig. 7B**), which reveals
339 that cyclohexane can bind to P450_{PsFu} through hydrogen bonds and strong electrostatic interactions,
340 and the affinity is actually even higher than that to CYP450cha (i.e., the positive control; **Fig. S7**).
341 Intriguingly, the binding sites/residues of cyclohexane in P450_{PsFu} are identical to the CYP236A
342 subfamily protein of P450_{ZoGa} (**Fig. S8**). In fact, most of the binding sites/residues of
343 cyclohexane/G6Me are conserved across CYP236A-family proteins (**Fig. S9**). Thus, the CYP236A
344 subfamily including P450_{PsFu} may be a previously unknown group of P450 monooxygenases for
345 cyclohexane.

346 To validate this hypothesis, we conducted an *in vitro* enzyme activity assay. The sequences of
347 P450_{PsFu}, plus its native redox partners of *camA*, and *fdxE*, were optimized based on *Escherichia coli*
348 codon preferences, and then expressed and purified to homogeneity (**Fig. 7C**). The CO-bound reduced
349 difference spectra of P450_{PsFu} protein display a characteristic peak at 450 nm, confirming the
350 expression of functional P450 enzymes (**Fig. 7D**). As expression of CamA and FdxE in *E. coli* was

351 unsuccessful, *SelFdR0978* and *SelFdx1499* from the cyanobacterium *S. elongatus* PCC 7942 was
352 employed as surrogate redox partner proteins instead, to reconstitute the *in vitro* activity of P450_{PsFu}
353 (**Fig. 7E**). The absorption spectra of *SelFdR0978* displayed characteristic peaks at around 456 nm and
354 a shoulder at 396 nm, indicative of functional FAD enzymes. *SelFdx1499* exhibited the typical UV-
355 Vis spectra with maximum peaks at approximately 420 nm, which are characteristic of UV-Vis spectra
356 for proteins containing Fe₂S₂ cluster (**Fig. S10**). Thus, these two surrogate redox partners are
357 functionally active.

358 An *in vitro* enzymatic assay for P450_{PsFu} activity was therefore established (**Methods**). Notably,
359 as the low efficiency of NAD(P)H coupling is frequently a significant constraint on the activity of a
360 reconstituted P450 system (due to the extra drain of NAD(P)H during reaction (66)), we employed an
361 NADPH regeneration system based on GDH/glucose, in order to detect the P450 activity. GC-MS
362 analysis of the product profiles of reaction reveal a compound with retention time and ionized
363 fragments identical to those of the pure cyclohexanol (**Fig. 7E**). Thus, P450_{PsFu} is able to convert
364 cyclohexane to cyclohexanol, which is the first and the rate-limiting step of cyclohexane degradation,
365 with the support of *SelFdR0978* and *SelFdx1499*.

366 Although members of the CYP236A P450 subfamily such as P450_{FoAg} and P450_{ZoGa} can oxidize
367 the methyl group on G6Me (63), it is much more difficult to oxidize the inert hydrocarbon bonds, due
368 to their much higher reaction energy requirements. Thus, the metabolic activities of P450_{PsFu} enzyme
369 and of a *Pseudoalteromonas* spp. in oxidizing cyclohexane on the cycloalkyl group are new and
370 surprising. These findings also reveal the diverse substrate specificity, and the ecological versatility
371 (i.e., in macromolecule degradation), of the CYP236A P450 subfamily.

372 **Ecological significance of the newly discovered cycloalkane monooxygenase of P450_{PsFu}**

373 The CYP236A P450 subfamily enzymes are predominantly found in Bacteroidetes and γ -
374 Proteobacteria (63). Among the 47 sequenced *Pseudoalteromonas* spp. genomes, only four species that
375 are distributed across multiple organismal branches harbor members of this subfamily (Fig. 7F). Thus,
376 although all located on chromosomes and not in plasmids, these genes are “accessory” genes found in
377 only a very small set of genomes such as a few *Pseudoalteromonas* spp. and likely originated via
378 horizontal gene transfer or independent evolution (63). Two of the four species (*P. fuliginea* PS2 and
379 *P. mariniglutinosa* NCIMB 1770) were originally isolated from surface of marine algae, suggesting a
380 symbiotic relationship underpinned by P450-mediated bacterial utilization of algal polysaccharides.
381 Interestingly, although P450_{PsFu} is discovered in a *P. fuliginea* from the Bohai Sea at the northeastern
382 Pacific Ocean, another of the species of *P. arctica* A 37-1-2 was isolated from 4 °C seawater of the
383 Arctic Sea in Spitzbergen (Norway), a location rich in oil resources and having encountered oil spills
384 (67, 68). Therefore, cyclohexane degradation by the CYP236A subfamily of P450 enzymes is likely
385 of ecological significance at a global scale.

386 From the KMAP metagenomic database which includes MAG-derived genes of diverse
387 environments (including marine, soil, rhizosphere, lake, wastewater, saltmarsh, etc (69, 70)), a search
388 for CYP236A P450 subfamily enzymes revealed only eight such genes, and they all originated from
389 seawater, marine sediment or freshwater (Table S5). Moreover, from the Ocean Microbial Reference
390 Catalog v2 (OM-RGC.v2; (71)) and Ocean Gene Atlas v2.0¹¹⁶ (Fig. 7F; Methods), 32 genes encoding
391 such enzymes were found in 22 Tara Oceans projects (Table S6), with 20 of the 22 projects being from
392 the Arctic Ocean and with temperatures of sampled sites ranging from -1.5 to 8.5 °C. The predominant
393 distribution of these enzymes in low-temperature marine ecosystems is likely consistent with that of
394 oceanic cyclohexane sink (72, 73).

395 Collectively, these results suggest the CYP236A subfamily of P450 enzymes as represented by
396 P450_{PsFu} are enzymes that are numerically rare in their microcosms and spatially constrained to specific
397 environments, but likely have contributed to cyclohexane degradation at low-temperature oceans on a
398 global scale. These ecological features can be exploited for bioaugmented removal of hydrocarbon
399 pollutants during oil spills.

400 **Discussion**

401 In many ecosystems, crucial functions can be mediated by numerically rare members of the
402 microbiota that are not yet cultured (74, 75), yet validation of such roles and mining the underlying
403 pathways or enzymes are usually difficult, due to the inability to profile their functions and the
404 corresponding genomes *in situ*. One such example is cyclohexane biodegradation in contaminated
405 seawater from a condensate gas field at the Bohai Sea. Although MWAS that correlates microbiota
406 structure with cyclohexane level has identified the group of γ -Proteobacteria as marker organisms for
407 this crucial ecosystem trait (55), these functional cells remain uncultured and their functional genes
408 are too low in relative abundance to be detected by WGS of the microbiota. By establishing FISH-
409 scRACS-Seq and coupling it to MWAS, we were able to, in a phylogeny and metabolism dual-directed
410 manner, trace the *in situ* cyclohexane activity to individual *P. fuliginea* cell and then further to P450_{PsFu}
411 which represents a previously unknown group of cyclohexane monooxygenases, and of cyclohexane-
412 degrading genus.

413 The phylogeny directedness of MWAS-derived FISH probes ensures the metabolic activities of
414 cells (and pathways and enzymes encoded by their genomes) discovered by FISH-scRACS-Seq are of
415 ecological relevance. On the other hand, the metabolism directedness of scRACS-Seq ensures the
416 individual cells recovered are actually performing the right function *in situ* (which is critical as it is

417 well-known that genome-based metabolic reconstruction or functional assays in pure culture are unable
418 to reliably predict the *in situ* function of a cell in a microbiota at its native state (18, 76)). In a natural
419 microbiota sample, cells with an interested metabolic activity that is nonrelevant in ecosystem
420 functioning are abundant, so are those from a target taxonomy yet not performing the target
421 biodegradation activity. Therefore, the dual directedness of FISH-scRACS-Seq greatly elevates the
422 efficiency in dissecting “Who is doing What” in a microbiota, particularly for the low-abundance yet
423 functional members of microbiota, such as the *P. fuliginea* cell and the P450_{PsFu}.

424 Cyclic alkanes, common in hydrocarbon reservoirs and gas condensates, are highly toxic to aquatic
425 life and pose an ecological risk during oil spills, while the mechanisms of biodegradation in marine
426 ecosystems remain poorly understood (55). In particular, cyclohexane, a common organic compound
427 found in various industrial and environmental settings, is biotoxic yet its biodegradation is difficult
428 due to its chemical structure (77). In cyclohexane degradation, its oxidation to the non-biotoxic
429 cyclohexanol represents the first and the rate-limiting step. The discoveries of *P. fuliginea* *in situ* and
430 of P450_{PsFu} for this crucial step are unexpected, as no *Pseudoalteromonas* spp. or members of the
431 CYP236A P450 subfamily were known to have this talent. Notably, as the *P. fuliginea* genome lacks
432 enzymes for subsequent utilization of cyclohexanol, which however is of much higher bioavailability
433 to microbial degraders than cyclohexane, it is possible that *P. fuliginea* is a keystone species at the start
434 of a food chain and collaborates with other symbiotic bacteria for the complete mineralization of
435 cyclohexane. Therefore, although numerically rare in their microcosms and spatially constrained to
436 specific environments, they might have contributed to cyclohexane degradation in low-temperature
437 oceans at a global scale.

438 Further development of FISH-scRACS-Seq can take multiple directions. (i) Although the use of

439 CARD-FISH probes improves the detection of target cells (78), multiplexing of probe hybridization is
440 possible, which should allow simultaneous interrogation of genome-phenome-gene links for multiple
441 marker organisms (79, 80). Moreover, in addition to taxonomical markers, functional genes can also
442 be targeted by a FISH probe via nucleotide sequence, therefore, FISH-scRACS-Seq can be extended
443 to dissect a target gene's *in vivo* function in mutant libraries, microbiota, or even plant or animal tissues.

444 (ii) In microbiota RACS-Seq, by creating a RAGE chip that preserves cell vitality (31) and designing
445 a Hotja Phi29 enzyme that reduces bias in DNA amplification in one-cell MDA reactions (81), we have
446 demonstrated production of high-quality SCRS plus corresponding high-coverage genomes at
447 precisely one-cell resolution directly from diverse ecosystems such as urine (31), gastric biopsy (29),
448 soil (24), seawater (25), wastewater (32) and probiotics products (33). However, at 3~8 cells/min (31),
449 the sorting throughput should be elevated, e.g., by improving RAGE-chip design (82) and
450 incorporating A.I.-based image analysis and automation into the RAGE operation (83). Flow-mode
451 RACS systems that sort at much higher throughput can also be adopted (84-86), to enable much deeper
452 sampling of complex microbiota for a diverse set of cellular functions via SCRS (11, 18). (iii)
453 Cultivation of the target cells after FISH-scRACS operation is highly desirable, particularly since cells
454 can remain viable after RACS, as demonstrated in scRACS-Culture for phosphate-solubilizing bacteria
455 in wastewater (32), and pool-based RACS-Culture for mucin-degrading microbes from mouse colon
456 microbiota (76). As chemical cross-linking or fixation with paraformaldehyde (to stabilize the cells
457 and partial cell wall lysis) and ethanol (to enable probe penetration) would cause cell death, live-FISH
458 techniques followed by RACS-Seq should be explored that allows bacteria to survive the FISH
459 procedure (37).

460 In summary, mechanistic dissections of microbiota function have greatly lagged behind the
461 explosive pace of MWAS generating marker organisms (and marker genes) for ecosystem traits. FISH-
462 scRACS-Seq can bridge this long-standing gap by efficiently unveiling enzymes, pathways, genomes
463 and *in situ* metabolic functions specifically targeting those cells revealed by MWAS as of ecological
464 relevance, regardless of their cultivability. Therefore, we propose the complete MWAS-FISH-
465 scRACS-Seq (e.g., **Fig. 5A**) as a rational and generally applicable platform to systematically and
466 thoroughly dissect and mine microbiota function from the plethora of ecosystems on Earth.

467 **Materials and Methods**

468 **Experimental Design**

469 The FISH-scRACS-Seq workflow consists of three steps (**Fig. 1**). In Step 1 (i.e., “FISH”),
470 individual cells of a target taxon are directly localized in a microbiota sample, via a taxon-specific
471 FISH probe. In Step 2 (i.e., “scRACS”), post-FISH cells are distinguished and sorted based on not just
472 the target phylogeny (via the FISH probe) but also the target metabolic phenotype (via the SCRS). In
473 Step 3 (i.e., “Seq”), the post-FISH-RACS cells in droplets would undergo cell lysis, Multiple
474 Displacement Amplification (MDA), and genome sequencing in an indexed, one-cell-one-tube manner
475 In this way, specifically for those cells of target phylogeny in a microbiota, the target metabolic activity
476 *in situ* is directly traced to genome sequence at single-cell resolution.

477 **Bacterial species, media and growth conditions**

478 The series of mock microbiota include the three bacteria of *Escherichia coli* K-12 DH5 α ,
479 *Micrococcus luteus* D11 (isolated from soil environment in our laboratory) and *Bacillus subtilis* H6,
480 and the one fungus of *Saccharomyces cerevisiae* BY4742. Each of the strains was grown in pure culture.
481 *E. coli* K-12 DH5 α , *M. luteus* D11 and *B. subtilis* H6 were all cultured in Luria-Bertani (LB) medium

482 (Tryptone, Yeast extract, NaCl, pH 7.0) and incubated at 37 °C. These three strains were diluted to an
483 OD 600 of ~0.5 and inoculated at a ratio of 1:10 into 4 mL of LB medium, respectively. *S. cerevisiae*
484 BY4742 were cultured in YPD medium (Yeast Extract, Peptone, glucose, pH 6.5~6.8) and incubated
485 at 30 °C. *S. cerevisiae* BY4742 was diluted to an OD 600 of ~0.5 and inoculated at a ratio of 1:10 into
486 4 mL of YPD medium. In these experiments, we assumed a constant relationship between OD and cell
487 concentration for all the species.

488 For deuterium isotope labeling, 50% D₂O (vol/vol) (99.9 atom% D, Sigma-Aldrich, Canada) was
489 used in all the above media. To prepare the media for deuterium isotope labeling, 2× medium was
490 prepared with water and autoclaved, and then diluted to 1× medium with filtered pure D₂O, so that the
491 eventual level of D₂O is 50%. Each of the microorganisms was incubated in the respective medium
492 containing 50% D₂O until reaching the logarithmic phase, washed using distilled water, and mixed to
493 form the synthetic consortia with defined structure. The mock microbiota were then subjected to
494 CARD-FISH labeling, single-cell Raman spectroscopy and SCRS-based sorting, respectively.

495 ***Probing the active cycloalkane-degraders in situ by D₂O labelling***

496 A bottom water sample of NS25 was collected from a large condensate gas field in the Bohai Sea
497 during the spring of 2020. NS25T18 was derived from NS25 by enriching cycloalkane-degrading
498 activities via incubating the seawater with methylcyclohexane as described (55). Cyclohexane and D₂O
499 were then added to NS25T18 to probe the metabolically active cycloalkane degraders. Glass serum
500 bottles (CNW, 10 mL) outfitted with an oxygen sensor spot (Pyroscience, OXSP5) were used in the
501 incubation to allow for contactless monitoring of oxygen concentration. Specifically, 2 mL of ONR7a,
502 4 mL of D₂O, 2 mL of bloomed culture NS25T18, and 2 μL of cyclohexane (Aladdin, purity 99.5%)
503 were added into the sterile glass serum bottles. As controls, 2 mL of ONR7a, 4 mL of H₂O, 2 mL of

504 bloomed culture, and 2 μ L of cyclohexane were added into the sterile glass serum bottles. Two
505 duplicates were prepared for each treatment.

506 ***Extracting bacteria from soil and D₂O labeling of microbial cells***

507 To extract the cells from soil, the soil slurries generated by adding 1 g soil into 5 mL 1 \times PBS buffer
508 supplemented with 25 μ L Tween 20 were vortexed for 30 min to free the particle-associated cells. In
509 a new 15 mL centrifuge tube, 5 mL Nycomedz iohexol (1.42 g/mL; Aladdin, China) was added, then
510 the aforementioned supernatant from soil slurries was slowly added to the top of Nycomedz. The tubes
511 were centrifuged at 14,000 \times g for 90 min at 4 °C with slow acceleration and deceleration. At the middle
512 layer which is between the clear PBS layer and the debris layer, a faint whitish band containing
513 bacterial cells would emerge (17, 87). This band was recovered and transferred into a new 1.5 mL
514 Eppendorf tube with a pipette. Then 1 mL ddH₂O was added to resuspend the cells, and the cells were
515 pelleted by centrifugation at 10,000 \times g for 10 min at 4 °C for 3 times. Finally, the cell pellets were
516 resuspended in 0.2 mL ddH₂O, which represent the “soil cell extracts”.

517 As for D₂O-probed SCRS acquisition and scRAGE-Seq experiments for metabolically active cells,
518 the soil cell extracts were then incubated in PBS with final D₂O level of 50% at room temperature for
519 24h based on the previous experimental results (24). After that, this D₂O-labeled cell extracts were
520 subjected to the CARD-FISH procedure.

521 ***The CARD-FISH procedure of microbiota samples***

522 ***Sample preparation and fixation*** The aforementioned D₂O-labelled-cells from pure cultures or
523 environmental samples (i.e., soil and seawater) were centrifuged and fixed in 4% paraformaldehyde
524 (PFA) solution in 1 x phosphate buffered saline (PBS) buffer, respectively. Fixed cells can be stored
525 in 1 x PBS/ethanol (EtOH) at -20 °C for up to one month without apparent effect on the hybridization.

526 To inactivate endogenous peroxidases, the fixtures were dehydrated in different concentrations of
527 ethanol (50%, 80%, 100% [v/v] in H₂O) successively, and then treated in 0.15% H₂O₂ in methanol
528 solution for 30 min at room temperature. For permeabilization of cell walls, cells were rinsed with PBS
529 and then consecutively incubated in lysozyme solution (10 mg·mL⁻¹ in 0.5 M EDTA, 1 M Tris·HCl
530 (pH 8.0)) for 60 min at 37 °C. To minimize cell loss during cell wall permeabilization, low-speed
531 centrifugation (6000 rpm, 5 min) was implemented instead of filtration and agarose embedding for cell
532 collection, and specifically, care was taken to avoid excessive agitation during the washing steps. After
533 two washing steps with sterile H₂O_{MQ}, the samples were rinsed with ethanol dehydrated, dried at room
534 temperature, and subsequently stored at -20 °C until further processing.

535 ***Hybridizations with oligonucleotide probes*** For CARD-FISH, the 16S rRNA targeted
536 oligonucleotide probes GAM42a (**Table S1**, TAKARA Bio Inc., Japan) was applied to the
537 identification of γ -Proteobacteria. Probe was labeled by horseradish peroxidase (HRP) and Alexa Fluor
538 488 (Invitrogen, USA) was used to synthesize the tyramide conjugate. Negative controls were
539 performed by probe NONEUB (**Table S1**, TAKARA Bio Inc., Japan).

540 Hybridizations were performed at 46 °C for 2 h using 300 μ L of hybridization buffer (0.9 M NaCl,
541 20 mM Tris·HCl (pH 8.0), 20% [w/v] dextran sulfate (Sigma Aldrich), 0.02% [w/v] sodium dodecyl
542 sulphate (SDS), 1% [w/v] blocking reagent (Roche, Germany), and 20% [v/v] formamide) together
543 with 1 μ L probe (50 ng μ L⁻¹). A negative control, i.e., that without adding the probe, was included.
544 After adding the pre-warmed washing buffer (0.215 M NaCl, 5 mM EDTA (pH 8.0), 20 mM Tris·HCl
545 (pH 8.0), and 0.01% [w/v] SDS), the samples were incubated at 48 °C for 10 min and then equilibrated
546 in 1 x PBS solution for 15 min at RT.

547 ***Tyramide signal amplification and microscopic evaluation*** For tyramide signal amplification in

548 the CARD-FISH experiment, the samples were collected at 6,000 rpm for 5min to remove excess
549 buffer and resuspended in 1mL amplification buffer (2 M NaCl, 0.1% [w/v] blocking reagent, 10%
550 [w/v] dextran sulfate, 0.0015% H₂O₂ in 1 x PBS (pH 7.4)), mixed with 1 μ L of AF₄₈₈-labeled tyramide
551 solution (1 mg·mL⁻¹), and then incubated at 37 °C for 30 min in dark. After incubation, the samples
552 were transferred to 1x PBS and soaked in dark for 15 min, followed by a thorough wash with H₂O_{MQ}.
553 Then CARD-FISH preparations were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (1
554 μ g·mL⁻¹), subsequently washed in H₂O_{MQ}, dehydrated in ethanol, and air-dried in the dark. The
555 obtained samples mounted with Citifluor (Citifluor Ltd, UK) can be stored at -20 °C for up to one
556 month without loss of fluorescence intensity. Microscopic preview was performed by an
557 epifluorescence microscope with a U-RFL-T light source (BX53F2; Olympus, Japan).

558 In addition, for mock microbiota, cell counts for the target cells were performed by
559 hemocytometer before and after CARD-FISH labeling, respectively, for comparing the change in the
560 proportion of target bacteria before and after CARD-FISH labeling. Briefly, the target bacterial
561 suspension was diluted in an appropriate gradient and subsequently allowed to flow automatically into
562 the counting chamber along the edge of the coverslip, and the quadrant and center compartments of
563 the counting chamber were selected for cell count estimation (88).

564 Experimental details for target-cell sorting, multiple displacement amplification, library
565 construction and next generation sequencing are provided in **Supplementary Materials**.

566 ***Sequencing data analysis***

567 ***Metagenomic data analysis*** For the analysis of 16S rRNA gene data, the software package of
568 QIIME2 (version 2022.8) was employed (89). The forward and reverse read pairs were denoised,
569 dereplicated and chimera filtered using DADA2 algorithm (90) (with default parameters), then

570 clustered based on Vsearch algorithm (91, 92) with Greengenes database v13.8 as reference (percent
571 identify cutoff of 97%). At the phylum, class, order, family, genus, and species levels, the relative
572 abundances of the bacterial taxa were calculated and compared, respectively. Finally, biomarkers were
573 discovered using LEFSe at the class and the genus levels (93). For analysis of WGS data, sequencing
574 reads were quality controlled, assembled and binned using MetaWRAP pipeline (94). Then, all the
575 bins (MAGs) were annotated using Prokka (95) and eggNOG-mapper (96). The depth of coverage for
576 each contig was obtained by remapping sequencing reads to each MAG using Bowtie2 (97) and
577 winding up using BEDTools (98).

578 ***One-cell genome sequencing data analysis*** An integrated computational pipeline (SCGS;
579 <https://github.com/gongyh/nf-core-scgs>) for analyzing single-cell amplified genomes (SAGs) datasets
580 was applied. Briefly, raw sequencing reads were quality controlled using Trim Galore (99) in paired
581 end mode for each sample. Then, clean reads were assembled into contigs using SPAdes (100) in
582 single-cell mode. Taxonomic composition of assembled contigs (longer than 200 bp) was visualized
583 using BlobTools (101). Assembled genomes were annotated using Prokka (95), KofamKOALA (102)
584 and eggNOG-mapper (96). Considering the possibility of DNA contamination for environmental
585 samples, assembled contigs were further split into bins by taxonomic annotations (in the genus level)
586 for each SAG, followed by estimation of genome completeness using CheckM (42).

587 ***Heterogeneity analysis*** The taxonomy of each SAG was obtained via GTDB-Tk (103). The
588 average nucleotide identity (ANI) between each SAG was calculated using OrthoANIu v1.2 (104).
589 Orthologs between SAGs/MAGs were identified using OrthoLoger v2.6.2 (105). SNP variants
590 between core-genomes of SAGs/MAGs were called using Parsnp v1.7.2 (106). High quality SNPs in
591 SAGs were called using MonoVar (107) (shared ones were used for subsequent analysis), and

592 annotated using SnpEff v5 (108).

593 ***Comparison of single-cell sequencing performance via SAG*** The FISH-scRACS-Seq-derived
594 SAGs from soil were compared to scRAGE-Seq-derived SAGs (24) and SAG-gel-derived SAGs (51).
595 To be fair, only SAGs from soil and belonging to γ -proteobacterium were considered, and all SAG
596 contigs shorter than 1000 bp were filtered and removed prior to comparison. For scRAGE-Seq, five
597 SAGs (SR9, BSR2, BSR3, BSR5, BSR11) were obtained for comparison. The metrics of FISH-
598 scRACS-Seq-derived SAGs and scRAGE-Seq-derived SAGs were calculated as described before (24,
599 31). For SAG-gel-derived SAGs, published metrics were used.

600 ***Sequence analysis of CYP236A subfamily proteins*** (i) A total of 173 proteins that are
601 homologous to P450_{PsFu} were retrieved from Uniref90 database (109) using MMseqs2 ((110); with
602 parameters of “--min-seq-id 0.4 -c 0.8”). Multiple sequence alignments of those proteins were
603 performed using MAFFT v7.508 (111). Residue conservations were visualized using WebLogo v3
604 (112). (ii) The sequences of P450_{PsFu} (in SAG m1 and m7), P450_{ZoGa} (WP_013995999.1) and P450_{FoAg}
605 (WP_038530297.1) were compared using MAFFT v7.508 (111) and visualized using the R package
606 ggmsa (<https://cloud.r-project.org/package=ggmsa>). (iii) The CYP236A P450 subfamily proteins were
607 searched in the environmental metagenomic databases of KMAP (69) and OM-RGC.v2 (71) using
608 P450_{PsFu} as the query. Initially, candidate CYP236A proteins were selected based on homology
609 comparisons using blastp (113) or diamond blastp (114); then, the sequence identities between P450_{PsFu}
610 and all candidate CYP236A proteins were calculated using ggsearch36 (115); finally, proteins in the
611 CYP236A P450 subfamily were filtered out (with a criterion of protein identities > 55%) using custom
612 scripts. Phylogenetic trees were visualized using the iTOL online service (116). The abundance of
613 CYP236A enzymes on the ocean map was visualized using the web service of Ocean Gene Atlas v2.0

614 (117), with m1_P450 as query sequence and e-value of 1E-160.

615 **Molecular docking analysis** Firstly, the three-dimensional structure of candidate P450 enzymes
616 was predicted using ESMFold (118). Then, to analyze the binding affinities and modes of interaction
617 between the candidate P450 enzymes and cyclohexane (and ligand Heme), CB-Dock2 was employed
618 for docking calculations and visualizations (119), via an online service (<https://cadd.labshare.cn/cb-dock2/php/blinddock.php>).
619

620 **Purification and *in vitro* enzymatic assay of the cytochrome P450_{PsFu}**

621 **Protein purification** The *yjiB* gene which encodes cytochrome P450_{PsFu} was codon-optimized and
622 inserted between the *NdeI* and *NotI* restriction sites of pMAL-c5E to create pMAL-c5E-*yjiB*. This
623 plasmid was transformed into *E. coli* BL21 (DE3). A single colony of the transformant was inoculated
624 into LB medium containing 50 mg/L ampicillin. The seed culture grown overnight was used for 1:100
625 inoculation of 1 liter of LB medium containing 50 mg/L ampicillin, 1 mM thiamine, 10% glycerol, and
626 rare salt solution at 37°C (120). Protein expression was induced with 0.2 mM isopropyl-β-d-
627 thiogalactopyranoside (IPTG), and 1 mM δ-aminolevulinic acid was added as the heme synthetic
628 precursor until the optical density at 600 nm (OD600) reached 0.6 to 1.0. The cells were then incubated
629 with shaking for 20 h at 18 °C. The protein was purified according to a previously developed procedure
630 (120) and digested with enterokinase to release MBP. The native redox partner *camA* and *fdxE* were
631 unable to express in *E. coli*. Therefore, the frequently-used surrogate redox partner
632 *Se/Fdx1499/Se/FdR0978* from *S. elongatus* PCC 7942 was chosen for analyzing the *in vitro* enzyme
633 activity of YjiB. SDS-PAGE (Fig. 7C and Fig. S10) verified the purification of all enzymes, which
634 were stored at -80 °C. The UV-visible spectra were obtained on a UV-visible spectrophotometer
635 (Varian, UK). The functional concentration of P450 YjiB was calculated from the CO-bound reduced

636 difference spectrum using an extinction coefficient ($\epsilon_{450-490}$) of 91,000 M⁻¹ cm⁻¹ (66). The
637 concentrations of *sel*/FdX1499 and *sel*/FdR0978 were determined by measuring the absorbance at
638 selected wavelengths. The extinction coefficients of *Sel*/FdR0978 and *Sel*/FdX1499 were determined to
639 be $\epsilon_{454} = 19120$ M⁻¹ cm⁻¹ and $\epsilon_{460} = 11270$ M⁻¹ cm⁻¹, respectively (66).

640 ***Enzymatic assay of the cytochrome P450_{PsFu}*** The standard assay contained 5 μM P450, 50 μM
641 Fdx, 25 μM FdR, 500 μM substrate, 0.5 mM NAD(P)⁺ and NAD(P)H regeneration system (10 mM
642 glucose and 2 U glucose-6-phosphate dehydrogenase) in 200 μL reaction buffer (50 mM potassium
643 phosphate buffer, pH 7.4). A ratio of 1:10:5 for P450/Fdx/FdR was used to ensure adequate electron
644 supplies and efficient P450-mediated conversions. The reactions were incubated at 30 °C for 12 h and
645 quenched by adding an equal volume of ethyl acetate and vortexing for organic extraction. After high-
646 speed centrifugation, the organic phases were directly used as samples for GC or GC-MS analysis. GC
647 and GC-MS analyses were performed on an Agilent 7980A gas chromatograph equipped with an
648 Agilent 5975C mass selective detector (Agilent Technologies, Little Falls, DE, USA) and a HP-
649 INNOWAX capillary column (30 m × 0.25mm × 0.25μm, Agilent, USA). The program used for GC-
650 MS analysis was as follows: carrier gas: He, flow rate 1.0 mL/min, no splitting, inlet temperature:
651 300 °C, the oven temperature was held at 40 °C for 3min, increased to 200 °C at a rate of 15 °C/min,
652 then increased to 240 °C and held for 8 min, transfer line temperature: 280 °C, ion source temperature:
653 230 °C.

654 **References**

- 655 1. A. Konopka, S. Lindemann, J. Fredrickson, Dynamics in microbial communities: unraveling mechanisms to
656 identify principles. *ISME J.* **9**, 1488-1495 (2015).
- 657 2. S. Gupta, T. D. Ross, M. M. Gomez, J. L. Grant, P. A. Romero, O. S. Venturelli, Investigating the dynamics of
658 microbial consortia in spatially structured environments. *Nat. Commun.* **11**, 2418 (2020).
- 659 3. C. W. Kang, H. G. Lim, J. Won, S. Cha, G. Shin, J.-S. Yang, J. Sung, G. Y. Jung, Circuit-guided population
660 acclimation of a synthetic microbial consortium for improved biochemical production. *Nat. Commun.* **13**, 6506
661 (2022).
- 662 4. J. Wang, H. Jia, Metagenome-wide association studies: fine-mining the microbiome. *Nat. Rev. Microbiol.* **14**, 508-
663 522 (2016).
- 664 5. T. Kishikawa, Y. Maeda, T. Nii, D. Motooka, Y. Matsumoto, M. Matsushita, H. Matsuoka, M. Yoshimura, S.
665 Kawada, S. Teshigawara, E. Oguro, Y. Okita, K. Kawamoto, S. Higa, T. Hirano, M. Narazaki, A. Ogata, Y. Saeki,
666 S. Nakamura, H. Inohara, A. Kumanogoh, K. Takeda, Y. Okada, Metagenome-wide association study of gut
667 microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. *Ann. Rhe. Dis.* **79**, 103-
668 111 (2020).
- 669 6. K. J. Locey, J. T. Lennon, Scaling laws predict global microbial diversity. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 5970-
670 5975 (2016).
- 671 7. G. Berg, D. Rybakova, D. Fischer, T. Cernava, M.-C. C. Vergès, T. Charles, X. Chen, L. Cocolin, K. Eversole, G.
672 H. Corral, M. Kazou, L. Kinkel, L. Lange, N. Lima, A. Loy, J. A. Macklin, E. Maguin, T. Mauchline, R. McClure,
673 B. Mitter, M. Ryan, I. Sarand, H. Smidt, B. Schelkle, H. Roume, G. S. Kiran, J. Selvin, R. S. C. d. Souza, L. van
674 Overbeek, B. K. Singh, M. Wagner, A. Walsh, A. Sessitsch, M. Schloter, Microbiome definition re-visited: old
675 concepts and new challenges. *Microbiome* **8**, 103 (2020).
- 676 8. W. E. Huang, R. I. Griffiths, I. P. Thompson, M. J. Bailey, A. S. Whiteley, Raman microscopic analysis of single
677 microbial cells. *Anal. Chem.* **76**, 4452-4458 (2004).
- 678 9. W. E. Huang, A. D. Ward, A. S. Whiteley, Raman tweezers sorting of single microbial cells. *Environ. Microbiol.*
679 *Rep.* **1**, 44-49 (2009).
- 680 10. K. S. Lee, M. Wagner, R. Stocker, Raman-based sorting of microbial cells to link functions to their genes. *Microb.*
681 *Cell* **7**, 62-65 (2020).
- 682 11. Y. He, X. Wang, B. Ma, J. Xu, Ramanome technology platform for label-free screening and sorting of microbial
683 cell factories at single-cell resolution. *Biotechnol. Adv.* **37**, 107388 (2019).
- 684 12. Q. Zhang, P. Zhang, H. Gou, C. Mou, W. E. Huang, M. Yang, J. Xu, B. Ma, Towards high-throughput microfluidic
685 Raman-activated cell sorting. *Analyst* **140**, 6163-6174 (2015).
- 686 13. M. Li, P. C. Ashok, K. Dholakia, W. E. Huang, Raman-activated cell counting for profiling carbon dioxide fixing
687 microorganisms. *J. Phys. Chem. A* **116**, 6560-6563 (2012).
- 688 14. Y. Wang, W. E. Huang, L. Cui, M. Wagner, Single cell stable isotope probing in microbiology using Raman
689 microspectroscopy. *Curr. Opin. Biotechnol.* **41**, 34-42 (2016).
- 690 15. Y. Tao, Y. Wang, S. Huang, P. Zhu, W. E. Huang, J. Ling, J. Xu, Metabolic-activity-based assessment of
691 antimicrobial effects by D₂O-labeled single-cell Raman microspectroscopy. *Anal. Chem.* **89**, 4108-4115 (2017).
- 692 16. D. Berry, E. Mader, T. K. Lee, D. Woebken, Y. Wang, D. Zhu, M. Palatinszky, A. Schintlmeister, M. C. Schmid,
693 B. T. Hanson, Tracking heavy water (D₂O) incorporation for identifying and sorting active microbial cells. *Proc.*
694 *Natl. Acad. Sci. U.S.A.* **112**, 194-203 (2015).
- 695 17. L. Cui, K. Yang, H. Z. Li, H. Zhang, J. Q. Su, M. Paraskevaidi, F. L. Martin, B. Ren, Y. G. Zhu, Functional single-
696 cell approach to probing nitrogen-fixing bacteria in soil communities by resonance Raman spectroscopy with ¹⁵N₂

- 697 Labeling. *Anal. Chem.* **90**, 5082-5089 (2018).
- 698 18. R. Hatzenpichler, V. Krukenberg, R. L. Spietz, Z. J. Jay, Next-generation physiology approaches to study
699 microbiome function at single cell level. *Nat. Rev. Microbiol.* **18**, 241-256 (2020).
- 700 19. G. Azemtsop Matanfack, A. Pistiki, P. Rösch, J. Popp, Raman ¹⁸O-labeling of bacteria in visible and deep UV-
701 ranges. *J. Biophotonics* **14**, e202100013.
- 702 20. X. Ge, F. C. Pereira, M. Mitteregger, D. Berry, M. Zhang, B. Hausmann, J. Zhang, A. Schintlmeister, M. Wagner,
703 J. X. Cheng, SRS-FISH: A high-throughput platform linking microbiome metabolism to identity at the single-cell
704 level. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2203519119 (2022).
- 705 21. M. Yasuda, N. Takeshita, S. Shigeto, Deuterium-labeled Raman tracking of glucose accumulation and protein
706 metabolic dynamics in *Aspergillus nidulans* hyphal tips. *Sci. Rep.* **11**, 1279 (2021).
- 707 22. X. Jing, H. Gou, Y. Gong, X. Su, L. Xu, Y. Ji, Y. Song, I. P. Thompson, J. Xu, W. E. Huang, Raman-activated cell
708 sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. *Environ. Microbiol.* **20**, 2241-
709 2255 (2018).
- 710 23. Y. Song, A. K. Kaster, J. Vollmers, Y. Song, P. A. Davison, M. Frentrup, G. M. Preston, I. P. Thompson, J. C.
711 Murrell, H. Yin, Single-cell genomics based on Raman sorting reveals novel carotenoid-containing bacteria in the
712 Red Sea. *Microb. Biotechnol.* **10**, 125-137 (2017).
- 713 24. X. Jing, Y. Gong, T. Xu, Y. Meng, X. Han, X. Su, J. Wang, Y. Ji, Y. Li, Z. Jia, B. Ma, J. Xu, One-Cell Metabolic
714 Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE).
715 *mSystems* **6**, e0018121 (2021).
- 716 25. X. Jing, Y. Gong, T. Xu, P. A. Davison, C. MacGregor-Chatwin, C. N. Hunter, L. Xu, Y. Meng, Y. Ji, B. Ma, J. Xu,
717 W. E. Huang, Revealing CO₂-fixing SAR11 bacteria in the ocean by Raman-based single-cell metabolic profiling
718 and genomics. *BioDesign Research* **2022**, 9782712 (2022).
- 719 26. Y. He, P. Zhang, S. Huang, T. Wang, Y. Ji, J. Xu, Label-free, simultaneous quantification of starch, protein and
720 triacylglycerol in single microalgal cells. *Biotechnol. Biofuels* **10**, 275 (2017).
- 721 27. T. Wang, Y. Ji, Y. Wang, J. Jia, J. Li, S. Huang, D. Han, Q. Hu, W. E. Huang, J. Xu, Quantitative dynamics of
722 triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman
723 microscopy. *Biotechnol. Biofuels* **7**, 58 (2014).
- 724 28. H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, *In vivo* lipidomics using single-cell
725 Raman spectroscopy. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 3809-3814 (2011).
- 726 29. M. Liu, P. Zhu, L. Zhang, Y. Gong, C. Wang, L. Sun, L. Wang, R. Chen, Y. Mao, X. Fu, L. Zhang, T. Xu, Y. Ji, Q.
727 Dong, B. Ma, J. Zhang, J. Xu, Single-cell identification, drug susceptibility test, and whole-genome sequencing
728 of *helicobacter pylori* directly from gastric biopsy by clinical antimicrobial susceptibility test Ramanometry. *Clin.
729 Chem.* **68**, 1064-1074 (2022).
- 730 30. K. Aljakouch, T. Lechtonen, H. K. Yosef, M. K. Hammoud, W. Alsaidi, C. Kötting, C. Mügge, R. Kourist, S. F.
731 El-Mashtoly, K. Gerwert, Raman microspectroscopic evidence for the metabolism of a Tyrosine Kinase Inhibitor,
732 Neratinib, in Cancer Cells. *Angew. Chem. Int. Ed.* **57**, 7250-7254 (2018).
- 733 31. T. Xu, Y. Gong, X. Su, P. Zhu, J. Dai, J. Xu, B. Ma, Phenome-Genome Profiling of Single Bacterial Cell by
734 Raman-Activated Gravity-Driven Encapsulation and Sequencing. *Small* **16**, e2001172 (2020).
- 735 32. X. Jing, Y. Gong, H. Pan, Y. Meng, Y. Ren, Z. Diao, R. Mu, T. Xu, J. Zhang, Y. Ji, Y. Li, C. Wang, L. Qu, L. Cui,
736 B. Ma, J. Xu, Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in
737 situ phosphate-solubilizing microbes from nature. *ISME Commun.* **2**, 106 (2022).
- 738 33. J. Zhang, L. Ren, L. Zhang, Y. Gong, T. Xu, X. Wang, C. Guo, L. Zhai, X. Yu, Y. Li, P. Zhu, R. Chen, X. Jing, G.
739 Jing, S. Zhou, M. Xu, C. Wang, C. Niu, Y. Ge, B. Ma, G. Shang, Y. Cui, S. Yao, J. Xu, Single-cell rapid
740 identification, in situ viability and vitality profiling, and genome-based source-tracking for probiotics products.

- 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
- iMeta **2**, e117 (2023).
34. R. Amann, B. M. Fuchs, Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. *Nat. rev. Microbiol.* **6**, 339-348 (2008).
35. M. Wagner, M. Horn, H. Daims, Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. *Curr. Opin. Biotechnol.* **6**, 302-309 (2003).
36. M. Wagner, S. Haider, New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. *Curr. Opin. Biotechnol.* **23**, 96-102 (2012).
37. G. Batani, K. Bayer, J. Böge, U. Hentschel, T. Thomas, Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. *Sci. Rep.* **9**, 18618 (2019).
38. T. E. Aune, F. L. Aachmann, Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. *Appl. Microbiol. biot.* **85**, 1301-1313 (2010).
39. C. Rinke, J. Lee, N. Nath, D. Goudeau, B. Thompson, N. Poulton, E. Dmitrieff, R. Malmstrom, R. Stepanauskas, T. Woyke, Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. *Nat. Protoc.* **9**, 1038-1048 (2014).
40. X. Su, Y. Gong, H. Gou, X. Jing, T. Xu, X. Zheng, R. Chen, Y. Li, Y. Ji, B. Ma, J. Xu, Rational optimization of Raman-activated cell ejection and sequencing for bacteria. *Anal. Chem.* **12**, 8081-8089 (2020).
41. Y. Wang, Y. Ji, E. S. Wharfe, R. S. Meadows, P. March, R. Goodacre, J. Xu, W. E. Huang, Raman activated cell ejection for isolation of single cells. *Anal. Chem.* **85**, 10697-10701 (2013).
42. D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome res.* **25**, 1043-1055 (2015).
43. H.-S. Han, P. G. Cantalupo, A. Rotem, S. K. Cockrell, M. Carbonnaux, J. M. Pipas, D. A. Weitz, Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample. *Angew. Chem. Int. Ed.* **54**, 13985-13988 (2015).
44. R. M. Marín, J. Vanícek, Efficient use of accessibility in microRNA target prediction. *NAR.* **39**, 19-29 (2011).
45. I. M. Young, J. W. Crawford, Interactions and Self-Organization in the Soil-Microbe Complex. *Science* **304**, 1634-1637 (2004).
46. Q. Zhang, Z. Zhang, T. Lu, Y. Yu, J. Penuelas, Y.-G. Zhu, H. Qian, Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants. *Microbiome* **9**, 196 (2021).
47. V. Kurm, W. H. van der Putten, W. de Boer, S. Naus-Wiezer, W. H. G. Hol, Low abundant soil bacteria can be metabolically versatile and fast growing. *Ecology* **98**, 555-564 (2017).
48. D. K. Thompson, G. S. Wickham, Gammaproteobacteria and Firmicutes are Resistant to Long-Term Chromium Exposure in Soil. *AMB.* **1**, (2018).
49. M. Köberl, M. Dita, A. Martinuz, C. Staver, G. Berg, Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. *Sci. Rep.* **7**, 45318 (2017).
50. D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.* **25**, 1043-1055 (2015).
51. Y. Nishikawa, M. Kogawa, M. Hosokawa, R. Wagatsuma, K. Mineta, K. Takahashi, K. Ide, K. Yura, H. Behzad, T. Gojobori, H. Takeyama, Validation of the application of gel beads-based single-cell genome sequencing platform to soil and seawater. *ISME Commun.* **2**, 92 (2022).
52. O. A. Pemberton, R. E. Noor, V. Kumar M. V., R. Sanishvili, M. T. Kemp, F. L. Kearns, H. L. Woodcock, I. Gelis, Y. Chen, Mechanism of proton transfer in class A β -lactamase catalysis and inhibition by avibactam. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 5818-5825 (2020).
53. T. Palzkill, Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the

- 785 Specificity of TEM, CTX-M, and KPC β -lactamases. *Front mol. biosci.* **5**, 16 (2018).
- 786 54. M. Ganzorig, J. Y. Lim, I. Hwang, K. Lee, Complete genome sequence of multidrug-resistant *Moraxella osloensis* NP7 with multiple plasmids isolated from human skin. *Korean J. Microbiol.* **54**, 286-288 (2018).
- 787 55. Z. Cui, X. Luan, S. Li, Y. Li, X. Bian, G. Li, Q. Wei, X. Ran, M. Bao, D. L. Valentine, Occurrence and distribution of cyclic-alkane-consuming psychrophilic bacteria in the Yellow Sea and East China Sea. *J. Hazard. Mater.* **427**, 128129 (2022).
- 788 56. J. C. Carrillo, M. D. Adenuga, F. Momin, R. H. McKee, The sub-chronic toxicity of a naphthenic hydrocarbon solvent in rats. *Regul. toxicol. pharm.* **95**, 323-332 (2018).
- 789 57. F. Qiao, G. Wang, L. Yin, K. Zeng, Y. Zhang, M. Zhang, B. Xiao, S. Jiang, H. Chen, G. Chen, Modelling oil trajectories and potentially contaminated areas from the Sanchi oil spill. *Sci. total environ.* **685**, 856-866 (2019).
- 790 58. J. Tremblay, E. Yergeau, N. Fortin, S. Cobanli, M. Elias, T. L. King, K. Lee, C. W. Greer, Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria. *ISME J.* **11**, 2793-2808 (2017).
- 791 59. L. S. Yilmaz, S. Parnerkar, D. R. Noguera, mathFISH, a Web Tool That Uses Thermodynamics-based mathematical models for *in silico* evaluation of oligonucleotide probes for Fluorescence *In Situ* Hybridization. *AEM* **77**, 1118-1122 (2011).
- 792 60. H. Zhang, T. Yohe, L. Huang, S. Entwistle, P. Wu, Z. Yang, P. K. Busk, Y. Xu, Y. Yin, dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. *NAR* **46**, W95-W101 (2018).
- 793 61. H.-G. Drost, A. Gabel, I. Grosse, M. Quint, Evidence for Active Maintenance of Phylotranscriptomic Hourglass Patterns in Animal and Plant Embryogenesis. *Mol. Biol. Evol.* **32**, 1221-1231 (2015).
- 794 62. D. Salamanca, R. Karande, A. Schmid, D. Dobslaw, Novel cyclohexane monooxygenase from *Acidovorax* sp. CHX100. *Appl. microbiol. biot.* **99**, 6889-6897 (2015).
- 795 63. C. S. Robb, L. Reisky, U. T. Bornscheuer, J.-H. Hehemann, Specificity and mechanism of carbohydrate demethylation by cytochrome P450 monooxygenases. *Biochem. J.* **475**, 3875-3886 (2018).
- 796 64. L.-L. Wong, A. C. G. Westlake, D. P. Nickerson, "[Protein engineering of cytochrome P450cam]" in *Metal Sites in Proteins and Models* (Springer Berlin Heidelberg, Berlin, Heidelberg, 1997), pp. 175-207.
- 797 65. S. G. Bell, E. Orton, H. Boyd, J.-A. Stevenson, A. Riddle, S. Campbell, L.-L. Wong, Engineering cytochrome P450cam into an alkane hydroxylase. *Dalton Trans.* 2133-2140 (2003).
- 798 66. X. Liu, F. Li, T. Sun, J. Guo, X. Zhang, X. Zheng, L. Du, W. Zhang, L. Ma, S. Li, Three pairs of surrogate redox partners comparison for Class I cytochrome P450 enzyme activity reconstitution. *Commun. biol.* **5**, 791 (2022).
- 799 67. J. Nagy, Oil exploration in Spitsbergen. *Polar Rec.* **12**, 703-708 (2009).
- 800 68. B. Gulliksen, J. P. Taasen, Effect of an oil spill in Spitzbergen in 1978. *Mar. Pollut. Bull.* **13**, 96-98 (1982).
- 801 69. I. Alam, A. A. Kamau, D. K. Ngugi, T. Gojobori, C. M. Duarte, V. B. Bajic, KAUST Metagenomic Analysis Platform (KMAP), enabling access to massive analytics of re-annotated metagenomic data. *Sci. Rep.* **11**, 11511 (2021).
- 802 70. A. Priyam, B. J. Woodcroft, V. Rai, I. Moghul, A. Munagala, F. Ter, H. Chowdhary, I. Pieniak, L. J. Maynard, M. A. Gibbins, H. Moon, A. Davis-Richardson, M. Uludag, N. S. Watson-Haigh, R. Challis, H. Nakamura, E. Favreau, E. A. Gómez, T. Pluskal, G. Leonard, W. Rumpf, Y. Wurm, Sequenceserver: A Modern Graphical User Interface for Custom BLAST Databases. *Mol. Biol. Evol.* **36**, 2922-2924 (2019).
- 803 71. G. Salazar, L. Paoli, A. Alberti, J. Huerta-Cepas, H. J. Ruscheweyh, M. Cuenca, C. M. Field, L. P. Coelho, C. Cruaud, S. Engelen, A. C. Gregory, K. Labadie, C. Marec, E. Pelletier, M. Royo-Llonch, S. Roux, P. Sánchez, H. Uehara, A. A. Zayed, G. Zeller, M. Carmichael, C. Dimier, J. Ferland, S. Kandels, M. Picheral, S. Pisarev, J. Poulain, S. G. Acinas, M. Babin, P. Bork, C. Bowler, C. de Vargas, L. Guidi, P. Hingamp, D. Iudicone, L. Karp-Boss, E. Karsenti, H. Ogata, S. Pesant, S. Speich, M. B. Sullivan, P. Wincker, S. Sunagawa, Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. *Cell* **179**, 1068-

- 829 1083.e1021 (2019).
- 830 72. L. J. Beck, N. Sarnela, H. Junninen, C. J. M. Hoppe, O. Garmash, F. Bianchi, M. Riva, C. Rose, O. Peräkylä, D. Wimmer, O. Kausiala, T. Jokinen, L. Ahonen, J. Mikkilä, J. Hakala, X.-C. He, J. Kontkanen, K. K. E. Wolf, D. Cappelletti, M. Mazzola, R. Traversi, C. Petroselli, A. P. Viola, V. Vitale, R. Lange, A. Massling, J. K. Nøjgaard, R. Krejci, L. Karlsson, P. Zieger, S. Jang, K. Lee, V. Vakkari, J. Lampilahti, R. C. Thakur, K. Leino, J. Kangasluoma, E.-M. Duplissy, E. Siivola, M. Marbouti, Y. J. Tham, A. Saiz-Lopez, T. Petäjä, M. Ehn, D. R. Worsnop, H. Skov, M. Kulmala, V.-M. Kerminen, M. Sipilä, Differing Mechanisms of New Particle Formation at Two Arctic Sites. *GRL*. **48**, e2020GL091334 (2021).
- 837 73. G. T. Tomy, K. Pleskach, G. Arsenault, D. Potter, R. McCrindle, C. H. Marvin, E. Sverko, S. Tittlemier, Identification of the Novel Cycloaliphatic Brominated Flame Retardant 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Canadian Arctic Beluga (*Delphinapterus leucas*). *Environ. Sci. Technol.* **42**, 543-549 (2008).
- 841 74. W.-S. Shu, L.-N. Huang, Microbial diversity in extreme environments. *Nat. Rev. Microbiol.* **20**, 219-235 (2022).
- 842 75. Z. S. Hua, Y. J. Han, L. X. Chen, J. Liu, M. Hu, S. J. Li, J. L. Kuang, P. S. Chain, L. N. Huang, W. S. Shu, Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. *ISME J.* **9**, 1280-1294 (2015).
- 845 76. K. S. Lee, F. C. Pereira, M. Palatinszky, L. Behrendt, U. Alcolombri, D. Berry, M. Wagner, R. Stocker, Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. *Nat. Protocols* **16**, 634-676 (2021).
- 848 77. E. H. Lee, K. S. Cho, Characterization of cyclohexane and hexane degradation by *Rhodococcus* sp. EC1. *Chemosphere* **71**, 1738-1744 (2008).
- 850 78. H. Schmidt, T. Eickhorst, R. Tippkötter, Evaluation of tyramide solutions for an improved detection and enumeration of single microbial cells in soil by CARD-FISH. *J. microbiol. meth.* **91**, 399-405 (2012).
- 852 79. Z. Cao, W. Zuo, L. Wang, J. Chen, Z. Qu, F. Jin, L. Dai, Spatial profiling of microbial communities by sequential FISH with error-robust encoding. *Nat. Commun.* **14**, 1477 (2023).
- 854 80. H. Shi, Q. Shi, B. Grodner, J. S. Lenz, W. R. Zipfel, I. L. Brito, I. De Vlaminck, Highly multiplexed spatial mapping of microbial communities. *Nature* **588**, 676-681 (2020).
- 856 81. J. Zhang, X. Su, Y. Wang, X. Wang, S. Zhou, H. Jia, X. Jing, Y. Gong, J. Wang, J. Xu, Improved single-cell genome amplification by a high-efficiency phi29 DNA polymerase. *Front Bioeng. Biotech.* **11**, (2023).
- 858 82. T. Xu, Y. Li, X. Han, L. Kan, J. Ren, L. Sun, Z. Diao, Y. Ji, P. Zhu, J. Xu, B. Ma, Versatile, facile and low-cost single-cell isolation, culture and sequencing by optical tweezer-assisted pool-screening. *Lab chip* **23**, 125-135 (2022).
- 861 83. Z. Diao, L. Kan, Y. Zhao, H. Yang, J. Song, C. Wang, Y. Liu, F. Zhang, T. Xu, R. Chen, Y. Ji, X. Wang, X. Jing, J. Xu, Y. Li, B. Ma, Artificial intelligence-assisted automatic and index-based microbial single-cell sorting system for One-Cell-One-Tube. *mLife* **1**, 448-459 (2022).
- 864 84. X. Wang, Y. Xin, L. Ren, Z. Sun, P. Zhu, Y. Ji, C. Li, J. Xu, B. Ma, Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo. *Sci. Adv.* **6**, eabb3521 (2020).
- 867 85. K. S. Lee, M. Palatinszky, F. C. Pereira, J. Nguyen, V. I. Fernandez, A. J. Mueller, F. Menolascina, H. Daims, D. Berry, M. Wagner, An automated Raman-based platform for the sorting of live cells by functional properties. *Nat. microbiol.* **4**, 1035-1048 (2019).
- 870 86. N. Nitta, T. Iino, A. Isozaki, M. Yamagishi, Y. Kitahama, S. Sakuma, Y. Suzuki, H. Tezuka, M. Oikawa, F. Arai, T. Asai, D. Deng, H. Fukuzawa, M. Hase, T. Hasunuma, T. Hayakawa, K. Hiraki, K. Hiramatsu, Y. Hoshino, M. Inaba, Y. Inoue, T. Ito, M. Kajikawa, H. Karakawa, Y. Kasai, Y. Kato, H. Kobayashi, C. Lei, S. Matsusaka, H.

- 873 Mikami, A. Nakagawa, K. Numata, T. Ota, T. Sekiya, K. Shiba, Y. Shirasaki, N. Suzuki, S. Tanaka, S. Ueno, H.
874 Watarai, T. Yamano, M. Yazawa, Y. Yonamine, D. Di Carlo, Y. Hosokawa, S. Uemura, T. Sugimura, Y. Ozeki, K.
875 Goda, Raman image-activated cell sorting. *Nat. Commun.* **11**, 3452 (2020).
- 876 87. S. A. Eichorst, F. Strasser, T. Woyke, A. Schintlmeister, M. Wagner, D. Woebken, Advancements in the application
877 of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. *FEMS microbiol.
878 ecol.* **91**, (2015).
- 879 88. Y. Öznel, U. Yılmaz, G. Ünlü, A. Özbilgin, M. Ünlü, Growth of *Trichomonas vaginalis* in Basic Media Available
880 in Routine Microbiology Laboratories. *Turkiye parazitol. derg.* **46**, 7-13 (2022).
- 881 89. E. Bolyen, J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, G. A. Al-Ghalith, H. Alexander, E. J. Alm,
882 M. Arumugam, F. Asnicar, Y. Bai, J. E. Bisanz, K. Bittinger, A. Brejnrod, C. J. Brislawn, C. T. Brown, B. J.
883 Callahan, A. M. Caraballo-Rodríguez, J. Chase, E. K. Cope, R. Da Silva, C. Diener, P. C. Dorrestein, G. M.
884 Douglas, D. M. Durall, C. Duvallet, C. F. Edwardson, M. Ernst, M. Estaki, J. Fouquier, J. M. Gauglitz, S. M.
885 Gibbons, D. L. Gibson, A. Gonzalez, K. Gorlick, J. Guo, B. Hillmann, S. Holmes, H. Holste, C. Huttenhower, G.
886 A. Huttley, S. Janssen, A. K. Jarmusch, L. Jiang, B. D. Kaehler, K. B. Kang, C. R. Keefe, P. Keim, S. T. Kelley,
887 D. Knights, I. Koester, T. Kosciolek, J. Kreps, M. G. I. Langille, J. Lee, R. Ley, Y.-X. Liu, E. Loftfield, C.
888 Lozupone, M. Maher, C. Marotz, B. D. Martin, D. McDonald, L. J. McIver, A. V. Melnik, J. L. Metcalf, S. C.
889 Morgan, J. T. Morton, A. T. Naimey, J. A. Navas-Molina, L. F. Nothias, S. B. Orchanian, T. Pearson, S. L. Peoples,
890 D. Petras, M. L. Preuss, E. Pruesse, L. B. Rasmussen, A. Rivers, M. S. Robeson, P. Rosenthal, N. Segata, M.
891 Shaffer, A. Shiffer, R. Sinha, S. J. Song, J. R. Spear, A. D. Swafford, L. R. Thompson, P. J. Torres, P. Trinh, A.
892 Tripathi, P. J. Turnbaugh, S. Ul-Hasan, J. J. J. van der Hooft, F. Vargas, Y. Vázquez-Baeza, E. Vogtmann, M. von
893 Hippel, W. Walters, Y. Wan, M. Wang, J. Warren, K. C. Weber, C. H. D. Williamson, A. D. Willis, Z. Z. Xu, J. R.
894 Zaneveld, Y. Zhang, Q. Zhu, R. Knight, J. G. Caporaso, Reproducible, interactive, scalable and extensible
895 microbiome data science using QIIME 2. *Nat. Biotechnol.* **37**, 852-857 (2019).
- 896 90. B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, S. P. Holmes, DADA2: High-resolution
897 sample inference from Illumina amplicon data. *Nat. Methods* **13**, 581-583 (2016).
- 898 91. T. Rognes, T. Flouri, B. Nichols, C. Quince, F. Mahé, VSEARCH: a versatile open source tool for metagenomics.
899 *Peer J.* **4**, e2584 (2016).
- 900 92. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F. O. Glöckner, The SILVA ribosomal
901 RNA gene database project: improved data processing and web-based tools. *NAR.* **41**, 590-596 (2012).
- 902 93. N. Segata, J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W. S. Garrett, C. Huttenhower, Metagenomic biomarker
903 discovery and explanation. *Genome Biol.* **12**, R60 (2011).
- 904 94. G. V. Uritskiy, J. DiRuggiero, J. Taylor, MetaWRAP—a flexible pipeline for genome-resolved metagenomic data
905 analysis. *Microbiome* **6**, 158 (2018).
- 906 95. S. Torsten, Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-2069 (2014).
- 907 96. J. Huerta-Cepas, K. Forslund, L. P. Coelho, D. Szklarczyk, L. J. Jensen, M. C. Von, P. Bork, Fast genome-wide
908 functional annotation through orthology assignment by eggNOG-mapper. *Mol. Biol. Evol.* **34**, 2115-2122 (2016).
- 909 97. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357-359 (2012).
- 910 98. A. R. Quinlan, I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*
911 **26**, 841-842 (2010).
- 912 99. K. Felix, J. Frankie, E. Phil, A. Ebrahim, S.-B. Benjamin, FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo.
913 (2021).
- 914 100. B. Anton, N. Sergey, A. Dmitry, A. A. Gurevich, D. Mikhail, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, P. Son,
915 A. D. Prjibelski, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J.
916 Comput. Biol.* **19**, 455-477 (2012).

- 917 101. D. Laetsch, M. Blaxter, BlobTools: Interrogation of genome assemblies. *F1000Res* **6**, 16 (2017).
- 918 102. T. Aramaki, R. Blanc-Mathieu, H. Endo, K. Ohkubo, M. Kanehisa, S. Goto, H. Ogata, KofamKOALA: KEGG
919 ortholog assignment based on profile HMM and adaptive score threshold. *BioRxiv* **36**, 2251-2252 (2019).
- 920 103. P.-A. Chaumeil, A. J. Mussig, P. Hugenholtz, D. H. Parks, GTDB-Tk: a toolkit to classify genomes with the
921 Genome Taxonomy Database. *Bioinformatics* **36**, 1925-1927 (2019).
- 922 104. S.-H. Yoon, S.-m. Ha, J. Lim, S. Kwon, J. Chun, A large-scale evaluation of algorithms to calculate average
923 nucleotide identity. *Antonie van Leeuwenhoek* **110**, 1281-1286 (2017).
- 924 105. D. Kuznetsov, F. Tegenfeldt, M. Manni, M. Seppey, M. Berkeley, Evgenia V. Kriventseva, E. M. Zdobnov,
925 OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. *NAR* **51**, D445-D451 (2022).
- 926 106. T. J. Treangen, B. D. Ondov, S. Koren, A. M. Phillippy, The Harvest suite for rapid core-genome alignment and
927 visualization of thousands of intraspecific microbial genomes. *Genome Biol.* **15**, 524 (2014).
- 928 107. H. Zafar, Y. Wang, L. Nakhleh, N. Navin, K. Chen, Monovar: single-nucleotide variant detection in single cells.
929 *Nat. Methods* **13**, 505-507 (2016).
- 930 108. P. Cingolani, A. Platts, L. Wang le, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, D. M. Ruden, A program for
931 annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
932 *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly* **6**, 80-92 (2012).
- 933 109. B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, C. H. Wu, UniRef: comprehensive and non-redundant
934 UniProt reference clusters. *Bioinformatics* **23**, 1282-1288 (2007).
- 935 110. M. Steinegger, J. Söding, MMseqs2 enables sensitive protein sequence searching for the analysis of massive data
936 sets. *Nat. Biotechnol.* **35**, 1026-1028 (2017).
- 937 111. K. Katoh, D. M. Standley, MAFFT Multiple Sequence Alignment Software Version 7: Improvements in
938 Performance and Usability. *Mol. Biol. Evol.* **30**, 772-780 (2013).
- 939 112. G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, WebLogo: a sequence logo generator. *Genome res.* **14**,
940 1188-1190 (2004).
- 941 113. C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T. L. Madden, BLAST+: architecture
942 and applications. *BMC Bioinform.* **10**, 421 (2009).
- 943 114. B. Buchfink, K. Reuter, H.-G. Drost, Sensitive protein alignments at tree-of-life scale using DIAMOND. *Nat.*
944 *Methods* **18**, 366-368 (2021).
- 945 115. W. R. Pearson, D. J. Lipman, Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci. U.S.A.* **85**,
946 2444-2448 (1988).
- 947 116. I. Letunic, P. Bork, Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.
948 *NAR* **49**, W293-W296 (2021).
- 949 117. C. Vernette, J. Lecubin, P. Sánchez, T. O. Coordinators, S. Sunagawa, T. O. Delmont, S. G. Acinas, E. Pelletier, P.
950 Hingamp, M. Lescot, The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of
951 plankton genes. *NAR* **50**, W516-W526 (2022).
- 952 118. Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli, A. dos Santos
953 Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, A. Rives, Evolutionary-scale prediction of atomic-level protein
954 structure with a language model. *Science* **379**, 1123-1130 (2023).
- 955 119. Y. Liu, X. Yang, J. Gan, S. Chen, Z.-X. Xiao, Y. Cao, CB-Dock2: improved protein-ligand blind docking by
956 integrating cavity detection, docking and homologous template fitting. *NAR* **50**, W159-W164 (2022).
- 957 120. L. Ma, F. Li, X. Zhang, H. Chen, Q. Huang, J. Su, X. Liu, T. Sun, B. Fang, K. Liu, D. Tang, D. Wu, W. Zhang, L.
958 Du, S. Li, Development of MEMS directed evolution strategy for multiplied throughput and convergent evolution
959 of cytochrome P450 enzymes. *Sci. China Life sci.* **65**, 550-560 (2022).

961 **Acknowledgements**

962 We are grateful to Zongze Shao (from Third Institute of Oceanography, Ministry of Natural
963 Resources of China) for his insightful comments.

964 **Funding**

965 National Key R&D Program Young Scientists Project of China No. 2021YFD1900400 (YTL)

966 National Science Foundation of China No. 32270109 (XYJ)

967 National Science Foundation of China No. 32370097 (YHG)

968 National Science Foundation of China No. 42076165 (ZSC)

969 National Science Foundation of China No. 32071266 (LM)

970 **Author Contributions**

971 Conceptualization: XJ, XYJ

972 Methodology: XYJ, YM, ZDD, JC

973 Investigation: YM, YSR, YCL, WHS

974 Visualization: YHG, XYJ, YM

975 Supervision: YTL, JZ, YTJ, BM, ZQC, SYL

976 Writing: XJ, XYJ, YHG, LM, YM, ZSC

977 **Competing interest**

978 JX and BM are founders of Qingdao Single-cell Biotechnology Co. No other competing interest
979 is declared.

980 **Data and materials availability**

981 The sequence data reported in this study have been deposited in the NCBI SRA database under
982 BioProject ID: PRJNA890413, PRJNA891066, PRJNA814381, and PRJNA855277. All data are

983 available in the main text or the supplementary materials.

984 **Figures and Tables**

985 **Figure 1. The FISH-scRACS-Seq strategy for taxonomy-guided, in-situ-function-driven**
986 **profiling of microbiota at single-cell resolution. I.** Pre-treatment: microbial extracts from
987 environment, and then the microbial cells were labelled by D₂O. **II.** CARD-FISH: CARD-FISH
988 labelling was performed by fixation, hybridization and amplification successively via the taxon-
989 specific CARD-FISH probe for γ -Proteobacteria. **III.** Raman-activated sorting of FISH-labelled cells:
990 Fluorescence signal recognition for γ -Proteobacteria was performed via 488 nm laser; their
991 corresponding metabolic vitality revealed via D₂O-labeling was recognized via Raman
992 microspectroscopy; the target cells were then sorted out in the RAGE chip, as a one-cell-encapsulated
993 droplet. **IV.** Sequencing & data analysis: The sorted cells were lysed and its genomic DNA were
994 amplified by MDA, then the MDA products underwent single-cell genome sequencing and analysis.

995

996 **Figure 2. FISH-scRACS-Seq accurately and efficiently recovers SAGs from metabolically active,**
997 **pure-cultured γ -Proteobacteria cells. (A)** Photomicrographs of CARD-FISH-stained pure-cultured
998 *Escherichia coli* K-12 DH5 α . (a) Photomicrographs of cells hybridized with HRP-labelled
999 oligonucleotide probes GAM42a (green); (b) DAPI staining (blue) of cells shown via a color-combined
1000 image recorded by epifluorescence microscopy (c); (d) phase-contrast photomicrograph. Panel (b) is
1001 the negative control (i.e., without any probes). Scale bar, 10 μ m. **(B)** The C-D peaks (left panel) and
1002 their corresponding C-D Ratios (right panel) of the target cells which were sorted via both “taxon-
1003 specific” and “metabolic” phenotypes of *Escherichia coli* K-12 DH5 α for single-cell genomes. Letters
1004 “a-j” represent cells with C-D peaks in SCRSs of samples “E04, E07, E08, E09, E10, E11, E12, E13,
1005 E14, and E16”, respectively, whereas the “control” SCRSs represent cells without C-D bands. **(C)**

1006 CARD-FISH Photomicrographs of four-species mock microbiota hybridized with probe GAM42a.
1007 Each series shows identical microscopic fields. Panels a to d show photomicrograph of the mock
1008 bacteria hybridized with γ -Proteobacteria targeting probe GAM42a, DAPI staining of DNA, overlay
1009 images of probe signal (green) and DAPI staining (blue), phase-contrast image, respectively. Scale bar:
1010 10 μm . **(D)** Statistics on the percentage of the target *Escherichia coli* K-12 DH5 α cells in this four-
1011 species mock microbiota before and after the CARD-FISH experiment. Three batches of experiments
1012 (A, B and C) were performed. **(E)** The C-D peaks (left panel) and their corresponding C-D Ratios
1013 (right panel) of the target cells from these four species, which were mixed for cell sorting via both
1014 “taxon-specific” and “metabolism-specific” features for single-cell genomes. **(F)** Performance
1015 validation of FISH-scRACS-Seq via statistical analysis of FISH-scRACS-derived SAGs. Three
1016 batches of experiments (A, B and C) were performed. Completeness is shown as the percentage of
1017 bases with sequencing reads and total bases in the reference genome. Mapping rate is shown as the
1018 percentage of sequencing reads which can be mapped to the reference genome. Success rate is shown
1019 as “the number of successful runs/total number of attempted runs”. Success was defined based on
1020 sequence-based verification of 16S rDNA genes amplified from the gene-specific primer pairs.
1021

1022 **Figure 3. Performance of FISH-scRACS-Seq in precisely one-bacterial-cell genome sequencing.**
1023 For FISH-scRACS-Seq, ten *Escherichia coli* K-12 DH5 α cells (E04, E07, E08, E09, E10, E11, E12,
1024 E13, E14 and E16) were individually sorted and sequenced from precisely one cell, i.e., one SAG per
1025 cell. For scRAGE-Seq, seven *E. coli* ATCC35218 cells (X1, X2, X3, X4, X6, X7, X9) were
1026 individually sorted and sequenced, i.e., one SAG per cell. For scRACE-Seq, individual *E. coli*
1027 ATCC35218 cells were ejected by RACE separately, which generated three five-cell-pools (S1, S2, S9)

1028 for sequencing (as one-cell sorting and sequencing with RACE has suffered from low success rates),
1029 i.e., one MDA reaction per five-cell pool. In addition, three replicates of isogenic liquid culture derived
1030 from a single *E. coli* ATCC35218 colony on plate (Bulk; Ec1, Ec2, Ec3) were sequenced (each
1031 including approx. 10^9 cells). Sequencing data from scRAGE-Seq and RACE-Seq were retrieved from
1032 NCBI SRA database (bioproject PRJNA574296 and PRJNA592282). The *de novo* assembly of Ec1
1033 was employed as reference genome to assess the quality of aforementioned SAGs. **(A)** Completeness
1034 of the SAGs based on covered bases (left) and mapped contigs (right). **(B)** Bias in genome coverage
1035 (by sequencing reads), assessed via three parameters: SD (standard deviation of relative coverage; left),
1036 entropy (information entropy of relative coverage; middle) and drop-out rate (fraction of 200-bp
1037 fragments with relative coverage < 0.1 ; right). **(C)** Continuity of *de novo* assembly based on NGA50
1038 (the length for which the collection of all aligned contigs of that length or longer covers at least half
1039 the reference genome; left) and median gap size (right). **(D)** The number of protein-coding genes mined
1040 from *de novo* assembly (left) and fidelity of *de novo* assembly, as evaluated by misassemblies
1041 (normalized by aligned contigs, middle) and duplication ratio (right).
1042

1043 **Figure 4. Application of FISH-scRACS-Seq in identifying, sorting and sequencing of metabolic**
1044 **active γ -Proteobacteria cells at one-cell resolution in soil microbiota. (A)** Photomicrographs of γ -
1045 Proteobacteria targeted by CARD-FISH probe from soil bacteria. Panels a to d are photomicrographs
1046 of soil bacteria hybridized with γ -Proteobacteria targeting probe GAM42a, DAPI staining of DNA,
1047 overlay images of probe signal (green) and DAPI staining (blue), and phase-contrast image,
1048 respectively. Each series shows identical microscopic fields. Scale bar, 10 μm . **(B)** SCRS of the target
1049 cells in soil sample, which sorted via both “taxon-specific” and “metabolic” phenotypes of microbes

1050 for single-cell genomes. **(C)** The FISH probe perfectly matches those contained genomic regions
1051 recovered from SAGs. **(D)** Phylogenetic tree constructed using UPGMA based on ANI matrix of SAGs
1052 and collected genomes from NCBI RefSeq database. **(E)** Continuity and completeness comparison of
1053 soil-derived γ -Proteobacteria SAGs for FISH-scRAGE-Seq, scRAGE-Seq and SAG-gel. No
1054 significant differences were observed for FISH-scRAGE-Seq and scRAGE-Seq. FISH-scRAGE-Seq
1055 and SAG-gel had comparable performance, except that the completeness of FISH-Seq-derived SAGs
1056 was significantly higher than SAG-gel-derived SAGs ($p < 0.05$, Wilcoxon test).

1057

1058 **Figure 5. Application of FISH-scRACS-Seq on identifying, sorting and sequencing cycloalkane-
1059 degrading γ -Proteobacteria in cycloalkane-contaminated seawater samples.** **(A)** The overall
1060 strategy of “MWAS-FISH-scRACS-Seq”. **(B)** Photomicrographs of γ -Proteobacteria targeted by
1061 CARD-FISH probe from marine microbiota. Identical microscopic fields are displayed for each series.
1062 Panel (a) shows γ -Proteobacteria were detected using GAM42a probe; Panel (b) and Panel (c) depict
1063 corresponding DAPI staining and autofluorescence of marine bacteria, respectively; Panel (d) displays
1064 overlay images of probe signal (green), DAPI staining (blue), and autofluorescence (red); green
1065 corresponds to γ -Proteobacteria labelled with Alexa488 using CARD-FISH; blue represents DAPI
1066 staining, and red indicates autofluorescence of marine bacteria. Cells appear magenta because of an
1067 overlay of DAPI staining and autofluorescence. Scale bar, 10 μ m. **(C)** SCRS of the target cells in
1068 seawater sample, which were sorted via both “taxon-specific” and “metabolism-specific” features for
1069 single-cell genomes. **(D)** FISH-probe-containing genomic regions recovered from SAGs. **(E)**
1070 Phylogenetic tree constructed using UPGMA method based on ANI matrix of SAGs and
1071 *Pseudoalteromonas* spp. genomes collected from NCBI RefSeq database.

1072

1073 **Figure 6. Comparison between the FISH-scRACS-Seq derived SAGs and the shotgun sequencing**
1074 **derived MAGs from cyclohexane-contaminated seawater. (A)** MAGs recovered two contigs from
1075 unknown source, which are not included in FISH-scRACS-Seq derived SAGs. **(B)** FISH-scRACS-Seq
1076 derived SAGs reconstructed four unique genes which have support in reads from MAGs but cannot be
1077 successfully assembled and binned. **(C)** Core-genome SNP profiling analysis reveals that FISH-
1078 scRACS-Seq derived SAGs retain within population genomic heterogeneity. High quality SNPs in m1
1079 SAG were compared to MAGs, with “high impact” SNPs (“stop_gain”: SNP introduces a premature
1080 stop codon; shortened polypeptides were also shown) highlighted in rectangular boxes.

1081

1082 **Figure 7. FISH-scRACS-Seq based discovery and experimental validation of cytochrome**
1083 **P450_{PsFu} from *Pseudoalteromonas fuliginea* that catalyses cyclohexane degradation in**
1084 **cyclohexane-contaminated seawater. (A)** A three-component cytochrome P450 system was
1085 recovered in FISH-scRACS-Seq derived SAGs of m1 and m7. The *yjiB* gene encodes a cytochrome
1086 P450 protein. Genes of *camA*, *fdxE* and *yjiB* constitute three component P450 system. There is one
1087 amino acid mutation at position 90 for m7_P450. **(B)** Molecular docking analysis support P450_{PsFu} as
1088 cyclohexane degrading enzyme. The protein-ligand docking simulation reveals that cyclohexane
1089 (colored in gray) can conjunct with P450_{PsFu}. The potential active sites of cyclohexane to P450_{PsFu} are
1090 marked. **(C)** SDS-PAGE analysis of purified cytochrome P450_{PsFu}. **(D)** CO-bound reduced difference
1091 spectra of cytochrome P450_{PsFu}. Dotted line, absorbance spectra of cytochrome P450_{PsFu} in ferrous
1092 CO-complexed state. Solid line: absorbance spectra of P450 in ferric state. This assay was also used
1093 to determine the concentration of functional cytochrome P450 enzyme using the extinction coefficient

1094 of 91,000 M⁻¹ cm⁻¹. (E) GC chromatograms and GC-MS of product from the P450_{PsFu}-mediated
1095 reaction. (i) Authentic standard of cyclohexanol; (ii) Reaction of cyclohexane with YjiB in the presence
1096 of *SeIFdR0978* and *SeIFdx1499*; (iii) Negative control of (ii) with boiled YjiB. (F) CYP236A enzymes
1097 found in reference genomes of the *Pseudoalteromonas* genus (left panel) and global marine ecosystems
1098 (right panel). Among the reference genomes of 47 *Pseudoalteromonas* species, only four harbor
1099 CYP236A P450 subfamily genes. At global oceans, CYP236A enzymes are of low abundance and
1100 mostly found in colder seas.

Table 1. Benchmarking the performance of FISH-scRACS-Seq using a four-species mock microbiota, consisting of *Escherichia coli* K-12 DH5a (*Ec*), *Micrococcus luteus* D11 (*Ml*), *Bacillus subtilis* H6 (*Bs*) and *Saccharomyces cerevisiae* BY4742 (*Sc*) in a 1:1:1:1 ratio. *Ec* and *Ml* are γ -Proteobacteria.

Experiment series	Sample ID	WGS reads mapped to reference genome			One-cell WGS assembly				
		Taxonomy of bins based on sequence	Mapping rate of the WGS reads (%)	Average mapping rate (%)	Genome completeness (%)	Average genome completeness (%)	Contamination (%)	WGS consistent with sorting criteria	Success rate (%)
A	FME01	<i>Ec</i>	43.0	35.2	99.03	80.18	0.16	yes	70
	FME03	<i>Ec</i>	32.7		99.38		0.25	yes	
	FME04	<i>Ec</i>	31.7		96.67		0.77	yes	
	FME06	<i>Ec</i>	34.2		83.31		5.7	yes	
	FME08	<i>Ec</i>	39.5		99.57		0.52	yes	
	FME09	<i>Ec</i>	26.3		19.12		0	yes	
	FME10	<i>Ec</i>	38.9		64.21		4.15	yes	
	NC_A	-	-		-		-	-	-
B	SME01	<i>Ec</i>	43.0	46.6	99.1	91.66	0.75	yes	40
	SME02	<i>Ec</i>	39.3		80.86		2.66	yes	
	SME07	<i>Ec</i>	49.3		89.46		2.74	yes	
	SME08	<i>Ec</i>	54.7		97.21		0.84	yes	
	NC_B	-	-		-		-	-	-

C	TME02	<i>Ec</i>	54.8	45.8	99.76	83.30	0.78	yes	60
	TME03	<i>Ec</i>	43.5		99.6		1.5	yes	
	TME05	<i>Ec</i>	48.3		99.35		0.21	yes	
	TME06	<i>Ec</i>	35.0		37.07		1.72	yes	
	TME08	<i>Ec</i>	50.5		98.19		0.65	yes	
	TME09	<i>Ec</i>	42.6		65.81		5.09	yes	
	NC_C	-	-	-	-	-	-	-	-

Table 2. Performance of FISH-scRACS-Seq in profiling metabolic phenotype and genome of γ -Proteobacteria in soil and seawater samples.

FISH-scRACS-sorted samples		Taxonomic classification	Genome completeness (%)	Contamination (%)
C-D peak-containing γ -Proteobacteria cells <u>in soil</u>	s2	<i>Moraxella</i>	41.79	7.85
	s3	<i>Moraxella</i>	75.60	6.19
	s6	<i>Acinetobacter</i>	85.13	1.57
	s7	<i>Moraxella</i>	99.14	0.10
	s9	<i>Moraxella</i>	72.97	2.38
C-D peak-containing and cycloalkane-degrading γ -Proteobacteria cells <u>in seawater</u>	m1	<i>Pseudoalteromonas</i>	94.35	1.02
	m4	<i>Pseudoalteromonas</i>	40.49	2.98
	m7	<i>Pseudoalteromonas</i>	70.88	4.95

1 **Supplemental Figures, Tables and Files**

2 **Figure S1. Agarose gel images of the multiple displacement amplifications (MDAs) and 16S**

3 **rRNA gene validation processes for target γ -Proteobacteria cells obtained via the FISH-scRACS-**

4 **Seq.** MDA products and PCR products of the 16S rRNA genes of the target γ -Proteobacteria cells from

5 the pure cultured *Escherichia coli* K-12 DH5 α (A) and from a four-species mock microbiota (B-D,

6 three batches of experiments (B, C and D) were performed). Lane NC, empty droplet (i.e., without

7 cells); Lane N, negative control for PCR (i.e., without adding template); Lane P, positive control for

8 PCR. The non-specific amplification of MDA is due to formation of primer dimers in the MDA reaction.

9

10 **Figure S2. Validation of the probe GAM42a targeting (A) *Micrococcus luteus* D11 (*Ml*, non γ -**

11 **Proteobacteria), (B) *Bacillus subtilis* H6 (*Bs*, non γ -Proteobacteria) and (C) one fungus of**

12 ***Saccharomyces cerevisiae* BY4742 (*Sc*, non γ -Proteobacteria), respectively.** Panel (a) shows the

13 photomicrographs of strain hybridized with HRP-labeled oligonucleotide probes GAM42a; Panel (b)

14 represents DAPI staining (blue) and the same field of view which shows a color combined image

15 recorded by epifluorescence microscopy in Panel (c); Phase-contrast photomicrographs is shown in

16 Panel (d).

17

18 **Figure S3. GC distributions of contigs from the FISH-scRACS-Seq derived SAGs.** GC

19 distributions of the contigs from the SAGs that correspond to FISH-scRACS-sorted cells in soil (A)

20 and seawater (B), respectively. Black curves represent GC distribution of recovered draft genomes. A

21 sliding window of 200 bp along each contig was used to extract sequence fragments and then calculate

22 GC contents. Red curves show theoretical normal distribution with similar mean and standard

23 deviation to the corresponding GC distribution. The GC contents of these sets of contigs exhibit normal
24 distribution, supporting the integrity of the one-cell assemblies. **(C)** Mapping SAG contigs to a plasmid
25 sequence (accession NZ_CP024444.1) reveals the recovery of a plasmid-encoded antimicrobial
26 resistance gene in the SAG of s9.

27

28 **Figure S4. The bacterial community structures of the original seawater and the D₂O-spiked**
29 **enrichment cultures derived from the Bohai Sea, respectively.**

30

31 **Figure S5. Read mappings to the MAG1 genome showed sensitive and reliable recovery of**
32 **chromosomal mutations in SAG1.** Positions of the five SNPs which introduce premature stop codons
33 were shown here. Mismatches in read mappings were highlighted using different colors (not gray).

34

35 **Figure S6. The insertion sequences (ISs) recovered from bulk sample, SAGs and MAGs,**
36 **respectively.** Genome sequences of isolated *P. fuliginea* (“Isolate”) are retrieved from NCBI RefSeq
37 database. Single-cell genomes (“Single-cell”) include SAGs of m1, m4 and m7. MAG genomes
38 (“Metagenome”) consist of MAG1-MAG7.

39

40 **Figure S7. The protein-ligand docking simulation reveals that cyclohexane (colored in orange)**
41 **can conjunct with the CYP450cha (AKJ87746.1 from *Acidovorax* spp.).**

42

43 **Figure S8. Sequence logo of CYP236 family proteins selected from the UniRef90 database.** The
44 active sites of G6Me to P450_{ZoGa}, which contains all the potential active sites of cyclohexane to

45 P450_{PsFu}, are highlighted in red squares.

46

47 **Figure S9. Multiple sequence alignments of P450_{PsFu} (in SAGs m1 and m7), P450_{ZoGa} and**

48 P450_{FoAg}. The active sites of G6Me to P450_{ZoGa} are conserved and marked with black asterisk.

49

50 **Figure S10. SDS-PAGE (A) and UV/Vis absorption spectra (B) of *Se/FdR0978* and *Se/Fdx1499*.**

51

52 **Table S1. Probes used in FISH-scRACS-Seq and primers used for PCR amplification of 16S**

53 **rRNA gene for MDA products.**

54

55 **Table S2. Performance of FISH-scRACS-Seq targeting *Escherichia coli* K-12 DH5 α (Ec).** The GC

56 content and the genome size of reference genome is 50.79% and ~4.64 Mb (RefSeq: NC_000913.3).

57

58 **Table S3. Sequencing and assembly statistics for single-cell genomes from the soil and seawater**

59 **produced by FISH-scRACS-Seq.**

60

61 **Table S4. Carbohydrate-active enzymes in sample m1.**

62

63 **Table S5. List of CYP236A P450 subfamily enzymes searched from the KMAP metagenomic**

64 **database.**

65

66 **Table S6. List of CYP236A P450 subfamily enzymes searched from the Ocean Microbial**

67 **Reference Catalog v2.**

68

69 **Supplementary file 1. List of the taxonomy abundance for the seawater samples (A, B and C**
70 **represent three biological replicates).**

71

72 **Supplementary file 2. Genes identified as CAZymes in SAG of m1.**

73

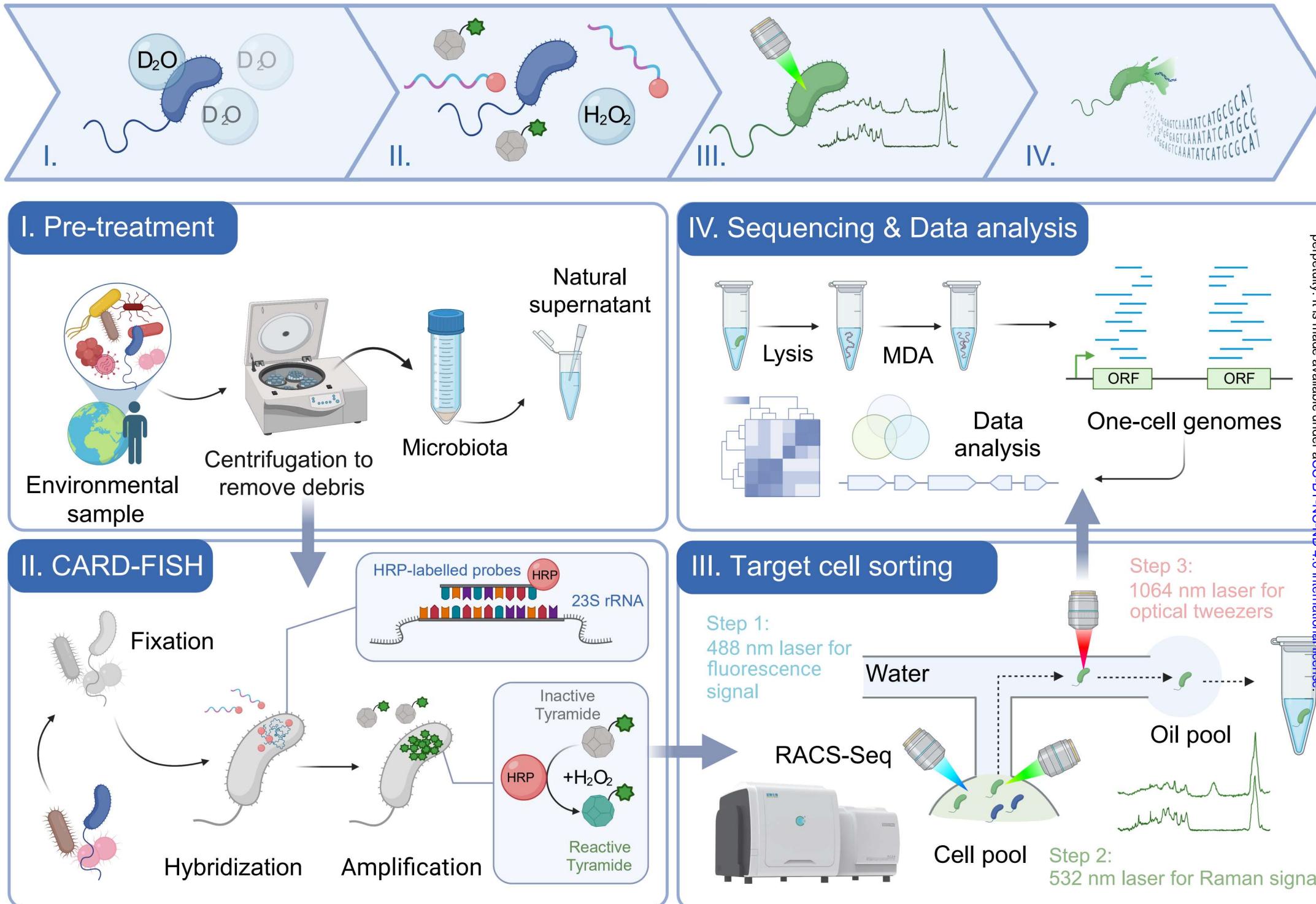
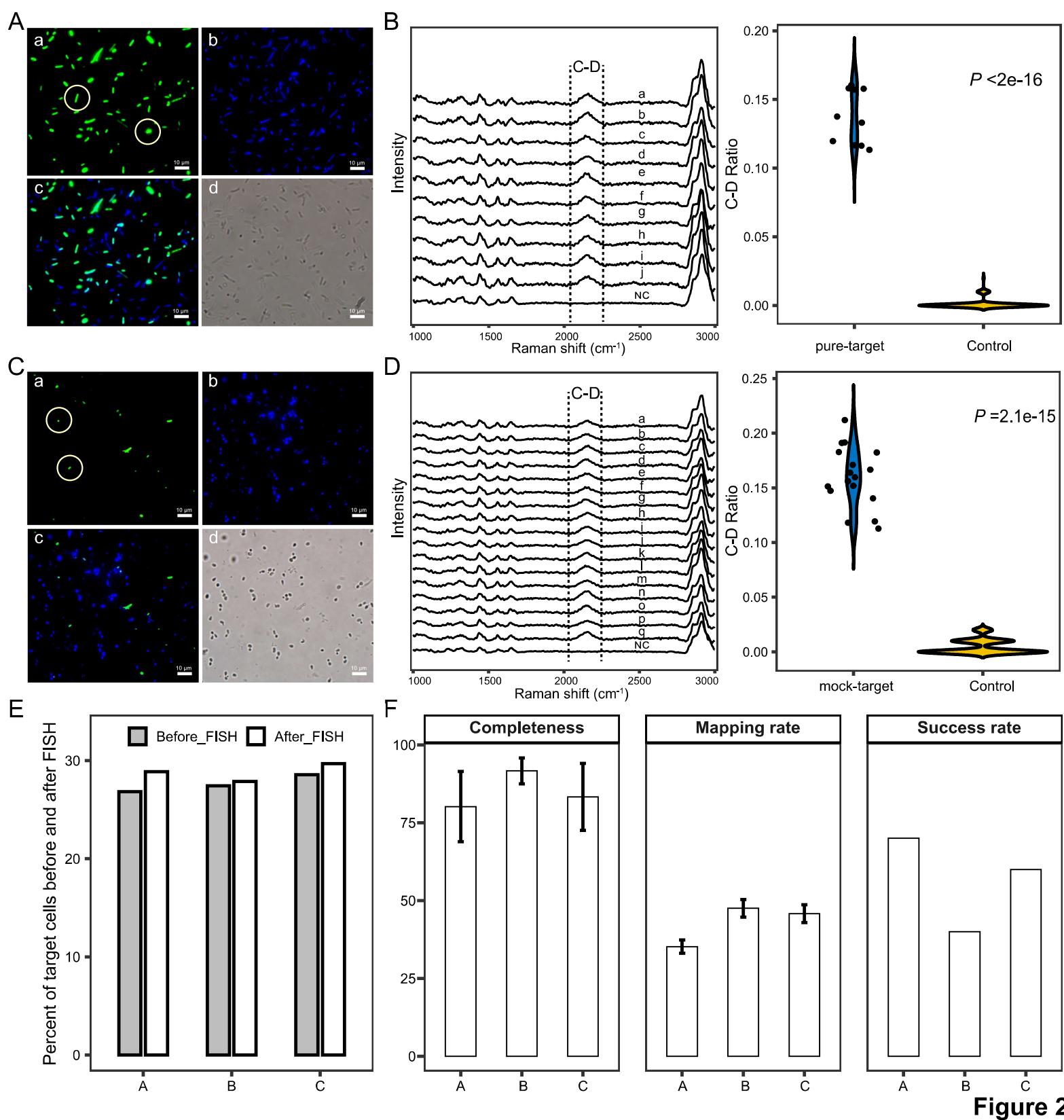



Figure 1

Figure 2

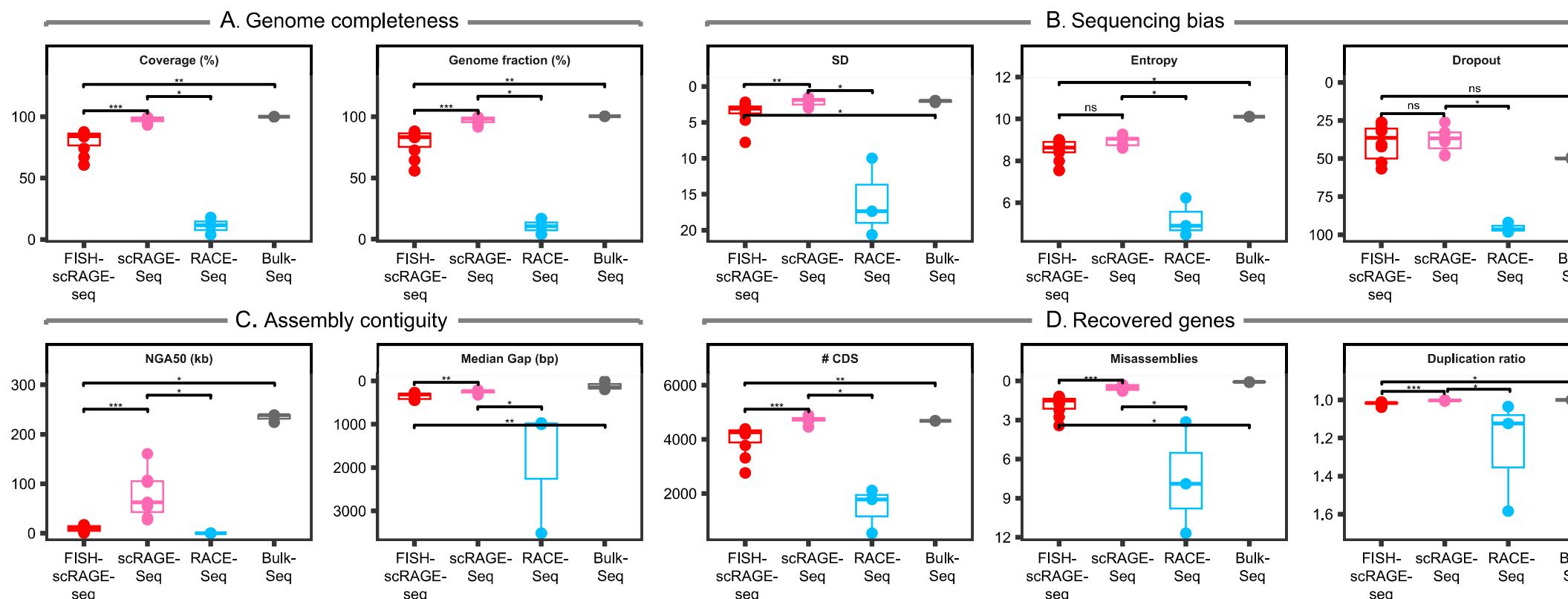
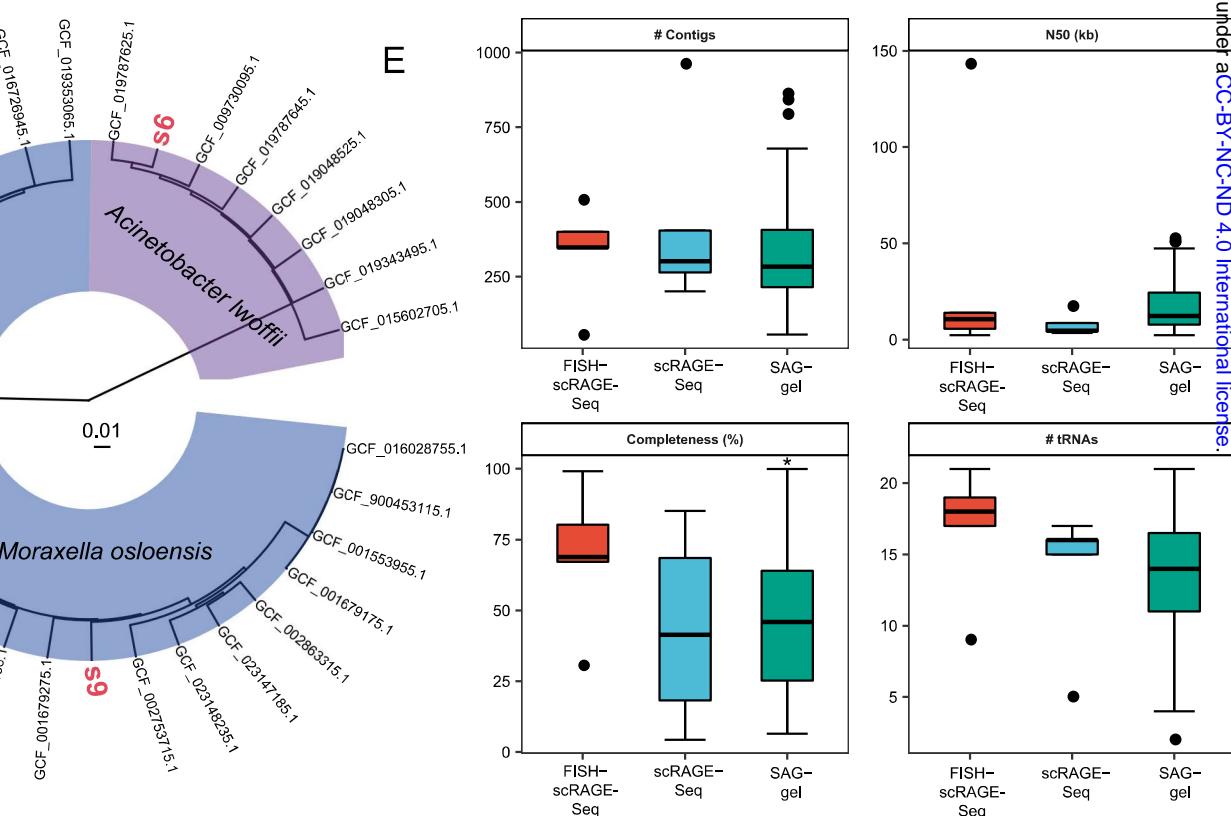
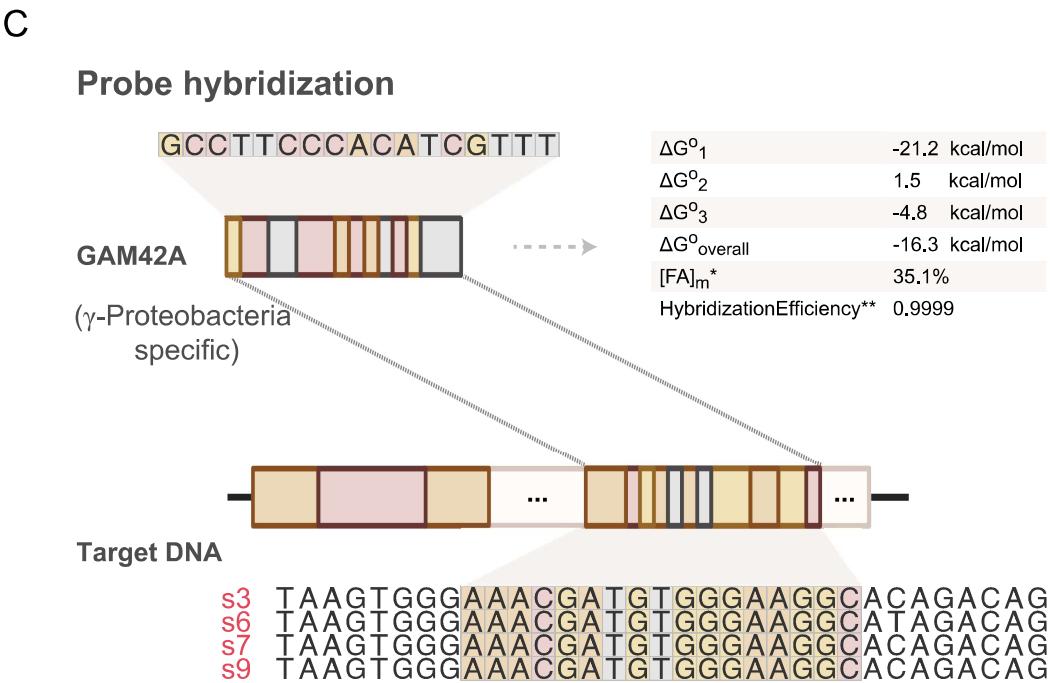
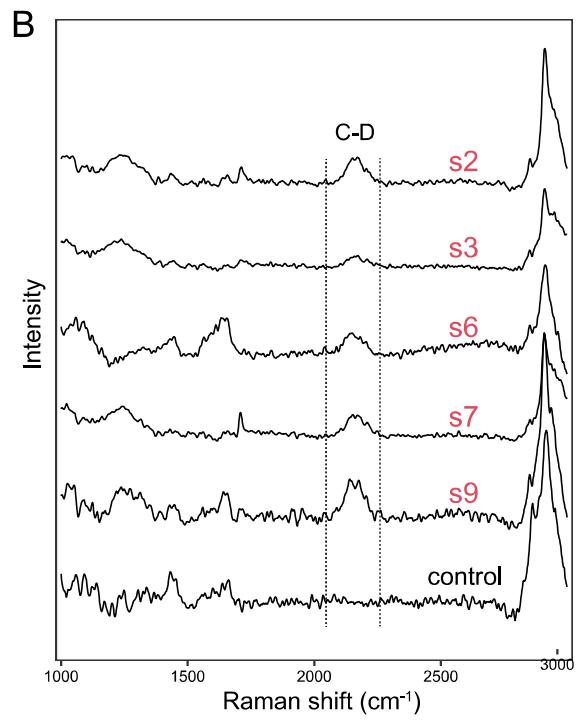
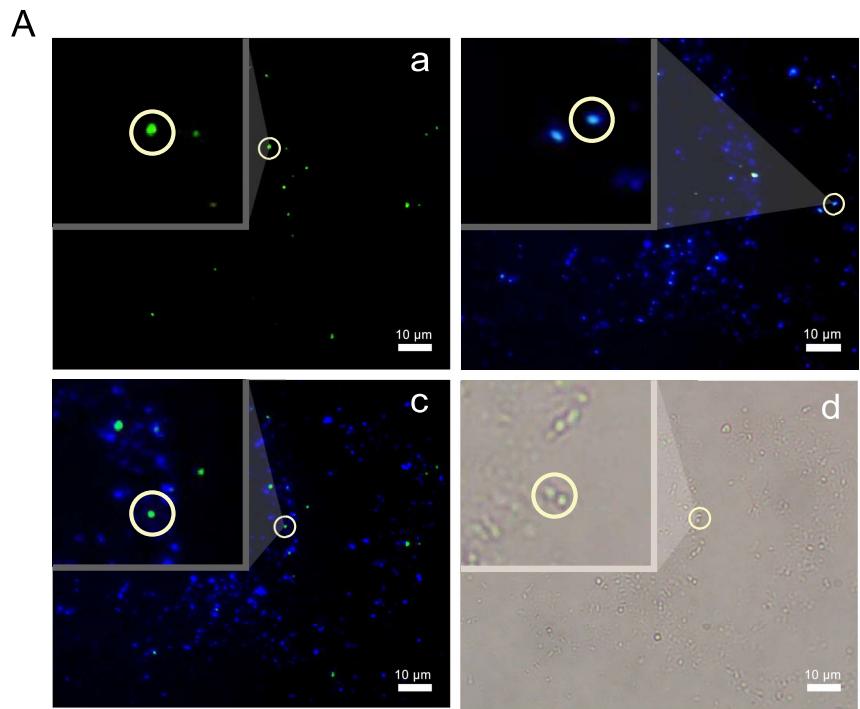
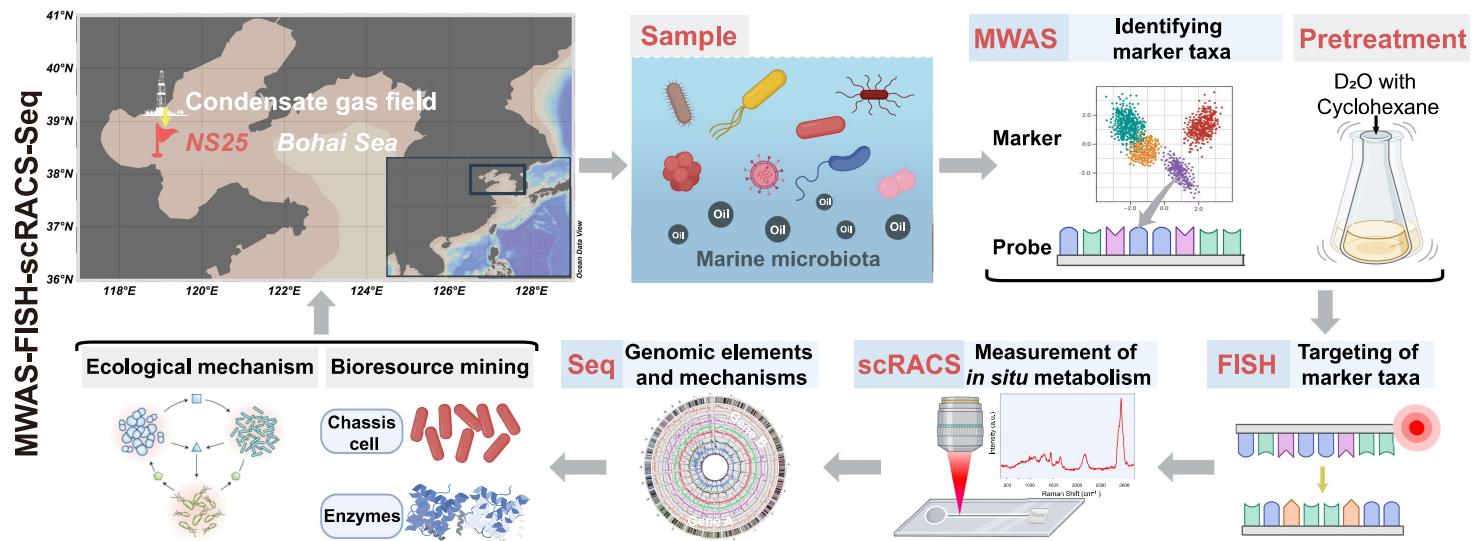







Figure 3

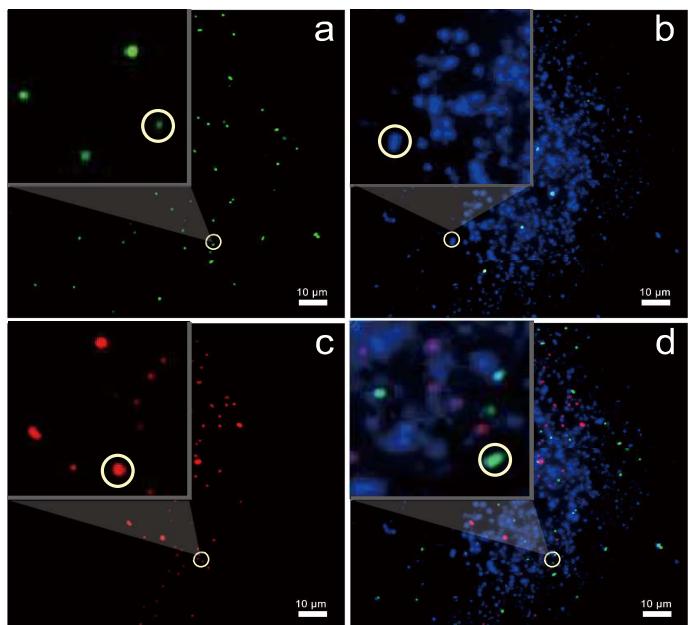
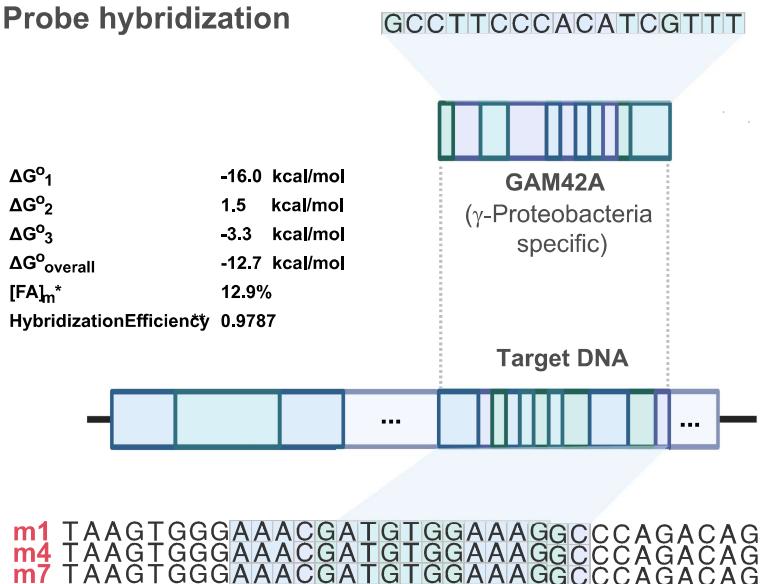
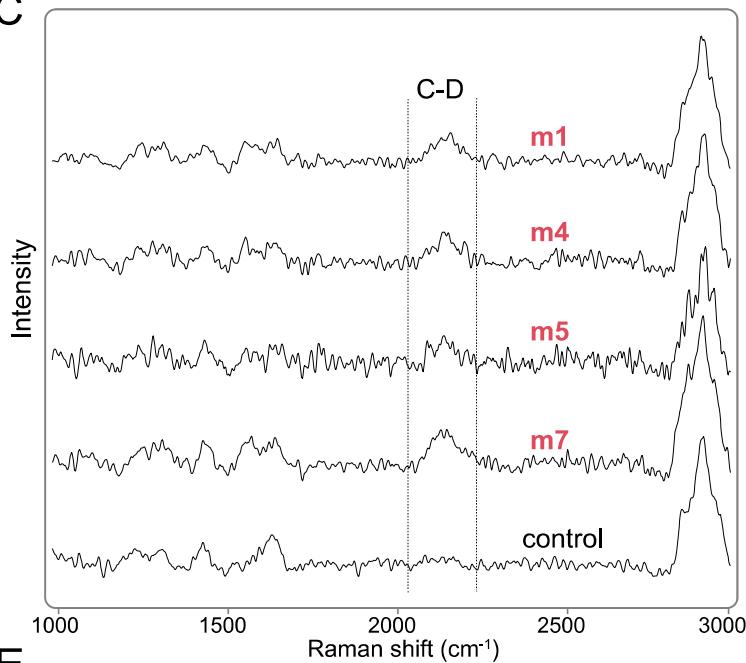


Figure 4

A



B



D

Probe hybridization

C

E

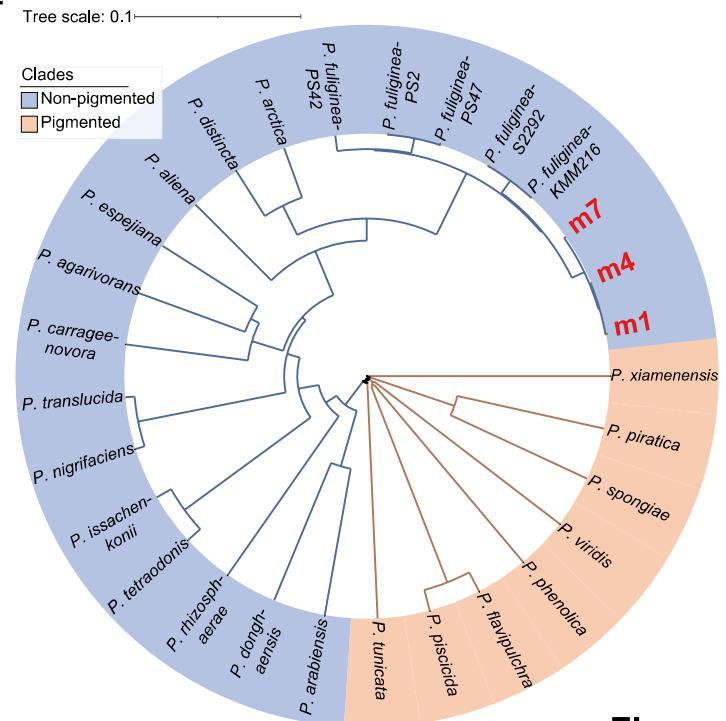
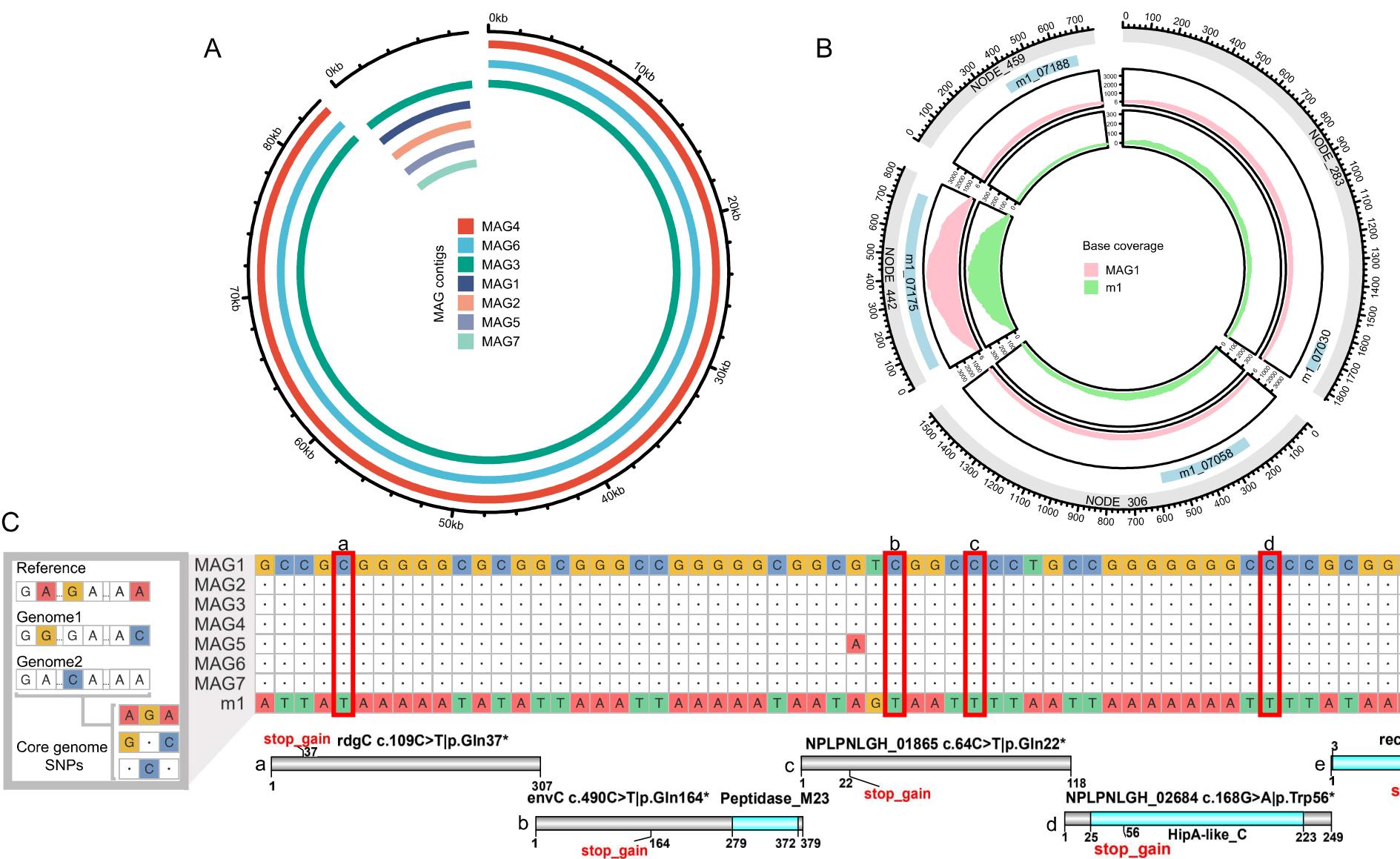
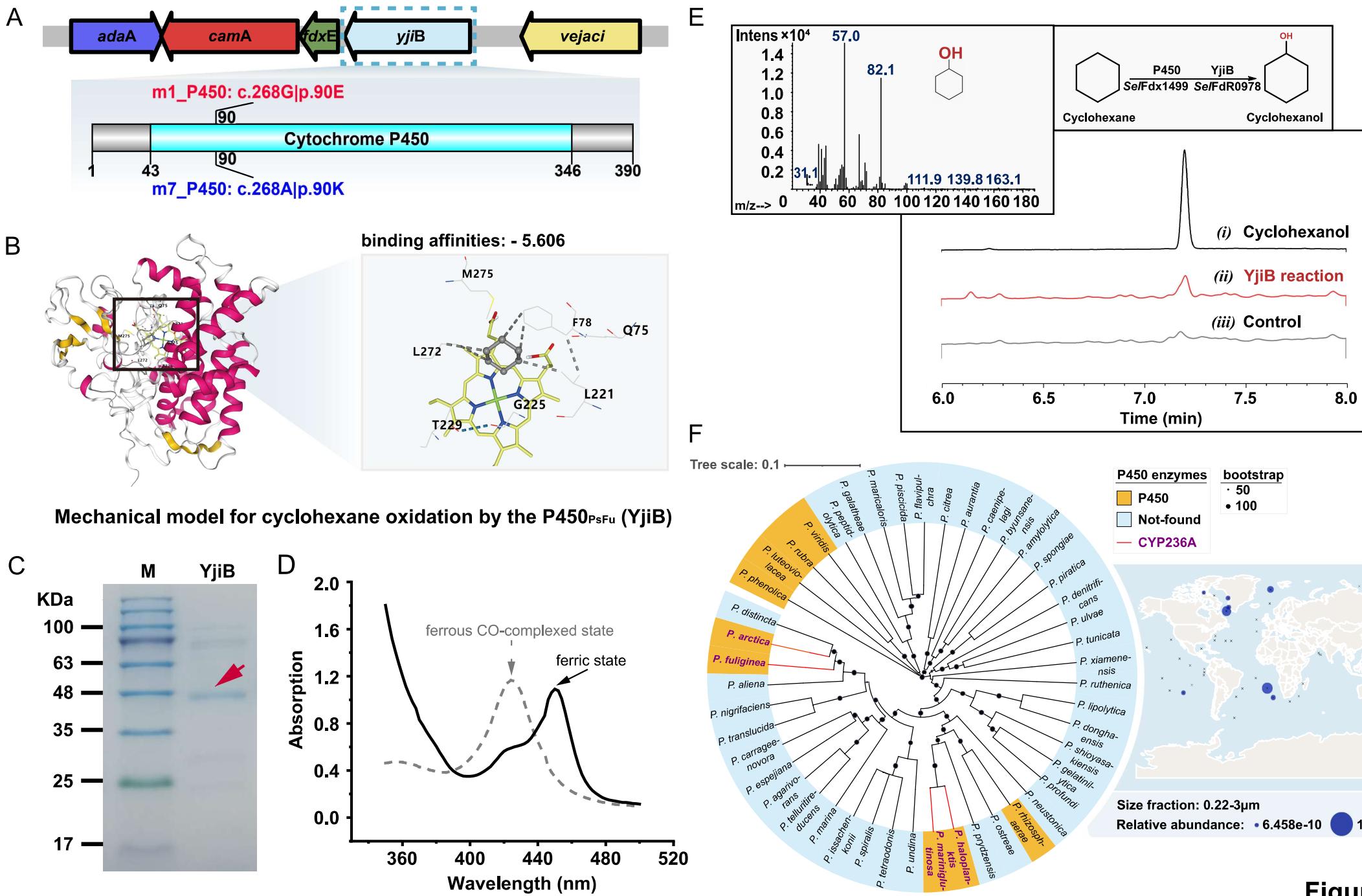




Figure 5

Figure 6

