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Summary 13 

Efficient learning requires estimation of, and adaptation to, different forms of uncertainty. If 14 

uncertainty is caused by randomness in outcomes (noise), observed events should have less 15 

influence on beliefs, whereas if uncertainty is caused by a change in the process being estimated 16 

(volatility) the influence of events should increase. Previous work has demonstrated that humans 17 

respond appropriately to changes in volatility, but there is less evidence of a rational response to 18 

noise. Here we test adaptation to variable levels of volatility and noise in human participants, using 19 

choice behaviour and pupillometry as a measure of the central arousal system. We find that 20 

participants adapt as expected to changes in volatility, but not to changes in noise. Using a Bayesian 21 

observer model, we demonstrate that participants are, in fact, adapting to estimated noise, but that 22 

their estimates are imprecise, leading them to misattribute it as volatility and thus to respond 23 

inappropriately.  24 

 25 

 26 

Keywords: Uncertainty, Bayesian Models, Pupillometry, Learning 27 

Word count: 4313 28 

Figures: 5 29 

  30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.26.568699doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.26.568699
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

It is much easier to respond appropriately to an event if we know what has caused it. For example, if 31 

heavy traffic means that our drive into work takes longer than normal, the best course of action the 32 

next time we have to make the journey depends on what caused the traffic to be heavier (Yu & 33 

Dayan, 2005). If it was caused by a one-off or random event, such as a broken-down lorry, then we 34 

should continue using the same route as before, whereas if it was caused by some longer-term 35 

change, perhaps there are new road works nearby disrupting the traffic, we should consider a 36 

different route. Frequently, however, the causes of events are not obvious, we experience the heavy 37 

traffic but aren’t sure why it has occurred. In these situations, the best we can do is make an 38 

educated guess, based on our experience, about what broad type of causal process has led to recent 39 

events. In the case of the drive into work, if the traffic has been heavier for a number of days in a 40 

row it is likely that some prolonged shift has occurred, and we should change routes, whereas if the 41 

traffic changes noisily from day to day, then we should probably stick with our usual route. In the 42 

learning literature, this problem is often framed as a competitive attribution of uncertainty to one of 43 

two types; expected uncertainty, which is caused by the variability of noisy associations and 44 

unexpected uncertainty, which is caused by longer lasting changes (sometimes called volatility) in an 45 

association (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 2012; Pulcu & Browning, 2017; 46 

Yu & Dayan, 2005). The behavioural importance of this attribution process can be seen in the driving 47 

example given above; an event caused by noise requires the opposite behavioural response 48 

(continuing to use the same route) than the same event caused by volatility (switching routes). 49 

Consequently, effective decision making often depends on the accurate attribution of uncertainty,  50 

with misattribution having a substantial detrimental effect on choice (Pulcu & Browning, 2019) 51 

The influence of events on subsequent choice can be estimated within a reinforcement learning 52 

framework as the learning rate parameter (Sutton & Barto, 2018), with a higher learning rate 53 

indicating a greater influence of the event on behaviour. As described above, the normative 54 

response to changes in volatility and noise is to use a higher learning rate when volatility is high 55 

and/or noise is low (Pulcu & Browning, 2019; Yu & Dayan, 2005). A large number of studies have 56 

found the predicted increase in learning rates in response to higher outcome volatility in human 57 

learners (Behrens et al., 2007, 2008; Browning et al., 2015; Gagne et al., 2020; Nassar et al., 2012; 58 

Pulcu & Browning, 2017). In contrast, the evidence for adaptation of learning in response to changes 59 

in outcome noise is less complete. Previous studies have described the expected reduction of 60 

learning rates when outcome noise is high, but only when the level of noise is explicitly signalled in a 61 

task (Diederen & Schultz, 2015), or when it is made unambiguous by virtue of being very much 62 

smaller than changes in outcome caused by volatility (Nassar et al., 2010, 2012). As illustrated in the 63 

driving example above, we are often faced with situations in which there exists significant ambiguity 64 
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about whether an event has been caused by volatility or noise. To date however, the degree to 65 

which human learners are able to discriminate between these types of uncertainty, when they are 66 

not explicitly labelled, has not been closely examined. 67 

From a neurobiological perspective, activity of central modulatory neurotransmitter systems have 68 

been argued to represent distinct sources of uncertainty during learning, with central 69 

norepinepheric (NE)/locus coeruleus (LC) activity described as signalling changes in the associations 70 

(i.e. volatility) and central cholinergic activity representing noise (Yu & Dayan, 2005). 71 

Electrophysiological measures of LC activity in non-human primates have been shown to correlate 72 

with pupil dilation (Joshi et al., 2016) suggesting it may be possible to estimate activity in this system 73 

in humans using pupilometry. Taking this approach, indirect support for this role of the NE system 74 

has been provided by studies of human participants that report greater pupillary size in volatile 75 

relative to stable contexts (Browning et al., 2015; Nassar et al., 2012; Pulcu & Browning, 2017). 76 

However, the pupil also responds to other learning signals, such as surprise (Browning et al., 2015; 77 

O’Reilly et al., 2013; Preuschoff et al., 2011) and has been reported as being smaller when outcome 78 

noise is high (Nassar et al., 2012). Neuroimaging evidence suggests an association between activity 79 

in other central neurotransmitter nuclei, including the cholinergic basal forebrain, and pupil dilation 80 

(de Gee et al., 2017). Overall, this suggests that the pupillary signal may reflect a more general belief 81 

updating process (O’Reilly et al., 2013) rather than a specific volatility signal and thus that, like 82 

learning rates, pupil size should increase when noise is reduced as well as when volatility is 83 

increased.  84 

In this paper we test whether human participants modify their learning in situations in which the 85 

attribution of uncertainty as volatility or noise is challenging (Figure 1a-c). We report the results of a 86 

study in which participants completed a learning task during which the noise and volatility of both 87 

win and loss outcomes were independently manipulated. Participant behaviour was characterised 88 

using learning rate parameters derived from reinforcement learning models of choice, while 89 

interpretation of the results was facilitated by a Bayesian Ideal Observer model that was developed 90 

to provide a benchmark comparator to participant behaviour (Behrens et al., 2007; Nassar et al., 91 

2012; Piray & Daw, 2021; Pulcu et al., 2022) and by the collection of pupillometry data as a 92 

physiological marker of central neurotransmitter function (de Gee et al., 2017; Joshi et al., 2016). It 93 

was predicted that human participants would be able to adapt appropriately to the cause of the 94 

events they encountered—using a higher learning rate, and displaying increased pupil size, when 95 

volatility was high and when noise was low for both win and loss outcomes (Figure 1d).  96 
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 97 

Figure 1. The Magnitude Learning Task (a) Timeline of one trial from the learning task. On each trial participants were 98 
presented with two abstract shapes and were asked to choose one of them. The empty bars above and below the fixation 99 
cross represented the total available wins and losses for the trial, the full length of each bar was equivalent to £1. 100 
Participants chose a shape and then were shown the proportion of each outcome that was associated with their chosen 101 
shape as coloured regions of the bars (green for wins and red for losses). The empty portions of the bars indicated the win 102 
and loss magnitudes associated with the unchosen option, allowing participants to infer which shape would have been the 103 
better option on every trial. The task consisted of six blocks of sixty trials each. The volatility and noise of the two 104 
outcomes varied independently between blocks with different shapes used in each block. Panel b illustrates outcomes 105 
from the four block types. As can be seen blocks with high volatility and low noise (top left), and those with low volatility 106 
and high noise (bottom right), present participants with a similar range of magnitudes. Participants therefore have to 107 
distinguish whether variability in the outcomes is caused by volatility or noise from the temporal structure of the outcomes 108 
rather than the size of changes in magnitude (cf; Diederen & Schultz, 2015; Krishnamurthy et al., 2017; Nassar et al., 2012). 109 
Panel c shows two example blocks (one block in grey, the other in white) with both win (green) and loss outcomes (red) 110 
displayed. Panel d shows the expected adaptation of learning rates in response to the manipulation of volatility and noise; 111 
for both win and loss outcomes, learning rates should be increased when volatility is high and when noise is low.  112 

 113 

Results 114 

Participant Demographics 115 

70 participants (see Supplementary Table 1 for demographic information) completed a learning task 116 

in which they had to choose one of two stimuli based on the separately estimated magnitudes of 117 
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win and loss outcomes associated with the stimuli. The volatility and noise of the win and loss 118 

outcomes were independently manipulated across six task blocks of 60 trials each (Figure 1). 119 

Pupillometry data was collected during task performance for the last 36 participants. 120 

Experimental Manipulation of Volatility and Noise Influences Participant Choice Behaviour 121 

As explained above, high levels of volatility and low levels of noise should increase the degree to 122 

which outcomes influence choice behaviour. A crude metric of this effect is provided by examining 123 

participant choice as a function of the previous outcome. In the task, a win outcome of >50p or a 124 

loss outcome of <50p associated with Shape A prompts participants to select Shape A in the 125 

subsequent trial, with the other outcomes (i.e. win <50p and loss >50p) prompting choice of Shape 126 

B. The influence of the outcomes on choice can therefore be roughly estimated as the relative 127 

proportion of trials in which Shape A was chosen when it was prompted by a previous outcome of a 128 

given magnitude, compared to when Shape B was prompted. Analysis of this choice metric (Figure 129 

2a-b) found the expected effect of volatility, with participant choice being more influenced by 130 

previous outcomes when volatility was higher (F(1,696)=99.8, p<0.001). An effect of noise was 131 

observed, but in the opposite direction to expected, with outcomes influencing choice more when 132 

noise was increased (F(1,696)=4.79, p=0.03). No significant difference between the influence of win 133 

and loss outcomes was found (F(1,696)=1, p=0.32) and there was no interaction between volatility 134 

and noise (F(1,693)=0.61, p=0.4). Having found some evidence of an impact of the uncertainty 135 

manipulations on a crude measure of subject choice we next sought to characterise this effect using 136 

a reinforcement learning model fit to participant choices.  137 
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 138 

Figure 2. The impact of uncertainty manipulations on participant choice. Panels a and b report a 139 

summary metric for the effect of win and loss outcomes on subsequent choice. The metric was 140 

calculated as the proportion of trials in which an outcome of magnitude 51-65 associated with Shape 141 

A was followed by choice of the shape prompted by the outcome (i.e. Shape A for win outcomes, 142 

Shape B for loss outcomes) relative to when the outcome magnitude was 49-35 (see methods and 143 

materials for more details). The higher this number, the greater the tendency for a participant to 144 

choose the shape prompted by an outcome. As can be seen, the outcome of previous trials had a 145 

greater influence on participant choice when volatility was high, with a small effect of noise, in the 146 

opposite direction to that predicted. Panels c and d report the win and loss learning rates estimated 147 

from the same data. Again, the expected effect of volatility is observed, this time with no consistent 148 

effect of noise. Bars represent the mean (±SEM) of the data, with individual data points 149 

superimposed.  150 

 151 
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Participants Adjust Normatively to Changes in Volatility but not Noise  152 

A simple reinforcement learning model was fit to choice data separately for each block of the task 153 

and each participant. The RL model included separate learning rates for win and loss outcomes 154 

allowing estimation of the degree to which participants adjusted these learning rates in response to 155 

the block-wise changes in outcome volatility and noise (see supplementary Materials and Methods 156 

for model comparison and selection analyses).  157 

Consistent with the analysis of choice data reported above, there was a significant main effects of 158 

volatility (Figure 2c-d; F(1,696)=22.2, p<0.001), with a higher learning rate used when volatility was 159 

high. There was no main effect of noise (F(1,696)=0.63, p=0.43) on learning rate or outcome valence 160 

(F(1,696)=0.15, p=0.7). An interaction between volatility and noise (F(1,693)=7.74, p=0.006) was 161 

present. A higher volatility led to a significantly raised learning rate when noise was low 162 

(F(1,383)=27.1, p<0.01) , with a non-significant increase when noise was high (F(1,311)=1.13, 163 

p=0.29). Higher noise was associated with a non-significant reduction in learning rates when 164 

volatility was high (F(1,347)=2.57, p=0.11) but to a significant increase in learning rate when volatility 165 

was low (F(1,347)=4.7, p=0.031).   166 

In summary, analysis of both crude choice data and learning rates indicates that participants 167 

adapted appropriately to changes in the volatility of learned associations but did not show a 168 

consistent response to changes in noise. In the next section we utilise an ideal Bayesian Observer 169 

Model (BOM) to investigate potential causes for this relative insensitivity to noise.  170 

 171 

Using a Bayesian Observer Model to Characterise Noise Insensitivity 172 

Bayesian Observer Models (BOM) can be used as normative benchmarks against which human 173 

behaviour may be compared (Behrens et al., 2007; Nassar et al., 2012; Piray & Daw, 2021; Pulcu et 174 

al., 2022).  BOMs are generally not fit to participant choice, rather these models invert a generative 175 

process assumed to underlie observed events and provide an estimate of the belief of an idealised 176 

agent exposed to the same outcomes as participants. We developed a BOM (Pulcu et al., 2022) 177 

based on the generative process underlying the outcome magnitudes of our task (Figure 3a). The 178 

BOM explicitly estimates the volatility and noise of the outcomes and uses these estimates to 179 

influence its belief about the likely magnitude of upcoming outcomes (see methods for more 180 

details). We first tested whether the BOM reproduced the normative learning rate adaptation to 181 

changes in volatility and noise described in the introduction, by exposing the model to the same 182 

outcomes as participants, and using the model’s belief about the likely magnitude of the win and 183 
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loss outcome on each trial to generate choices. We then estimated the effective learning rate of the 184 

model by fitting the same RL model used to analyse participants’ choices to the model’s choices. 185 

These learning rates are presented in Figure 3f (Figure 3e reproduces the learning rates of 186 

participants, averaged across wins and losses, for comparison). As can be seen the BOM adapts as 187 

expected, using a higher learning rate both when volatility increases (F(1,696)=422, p<0.001) and 188 

when noise decreases (F(1,696)=21.2, p<0.001).  No effect of outcome valence or interaction 189 

between volatility and noise (all p>0.09) was observed.  190 

Having shown that an idealised learner adjusts its learning rate to changes in volatility and noise as 191 

expected, we next sought to understand the relative noise insensitivity of participants. In these 192 

analyses we <lesion= the BOM, to reduce its performance in some way, and then assess whether 193 

doing so recapitulates the pattern of learning rate adaptation observed for participants (Fig 3e). 194 

First, we tested the impact of completely removing the ability of the BOM to adjust to changes in 195 

either volatility (Figure 3b) or noise (Figure 3c) by removing the top nodes of the model (i.e. ��� or 196 

�� respectively). Removing these nodes forces the BOM to estimate the mean volatility or noise 197 

across all task blocks rather than estimating local periods where they are higher or lower (see 198 

supplementary video). As illustrated in Figure 3g-h, neither of these lesions recapitulates the pattern 199 

of learning rates observed in participants, with the volatility lesioned model attributing increased 200 

volatility to noise and thus decreasing its learning rate during periods of higher volatility (main effect 201 

of volatility; F(1,696)=11.9, p<0.001) and the SD-lesioned model treating any form of uncertainty as 202 

volatility and thus increasing its learning rate in response to increased noise (main effect of noise;  203 

F(1,696)=227, p<0.001). This suggests that human participants are able to adapt to changes in 204 

outcome volatility and noise to some degree, but are less sensitive to these changes than the intact 205 

BOM. 206 

We next assessed whether a relative degrading of the model’s representation of volatility and noise 207 

(Figure 3d) altered its behaviour in a manner similar to participants. This was achieved by 208 

independently coarsening the model’s representation of volatility and noise, with the degree of 209 

coarsening selected to make the model’s choices as similar as possible to those of a given 210 

participant. Details of this coarsening process are provided in the methods section, but in simple 211 

terms, at one extreme, the intact model’s beliefs about current volatility and noise are represented 212 

as probability distributions over many possible values, with the number of values used gradually 213 

reduced during coarsening, until the coarsest model treats each form of uncertainty as being either 214 

<high= or <low=.  As can be seen from Figure 3i, this relative degrading of the model’s representation 215 

of uncertainty more closely recapitulated the learning rates observed in participants, with a 216 

significant increase in learning rate in response to increased volatility (F(1,696)=59, p<0.001) and no 217 
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effect of noise (F(1,696)=2.3, p=0.13). In the next sections we characterise how coarsening the BOM 218 

changes its behaviour and assess whether it provides an accurate account of participants’ noise 219 

insensitivity. 220 

 221 

 222 

Figure 3. The Behaviour of Bayesian Observer Models. Bayesian Observer Models (BOM) invert generative descriptions of 223 
a process, indicating how an idealised observer may learn. We developed a BOM based on the generative model of the 224 
task we used (a). Details of the BOM are provided in the methods, briefly it assumes that observations (��) are generated 225 
from a Gaussian distribution with a mean (���) and standard deviation (���). Between observations, the mean changes 226 
with the rate of change controlled by the volatility parameter (����). The standard deviation and volatility of this model 227 
estimate the noise and volatility described for the task. The last parameters control the change in volatility (���� and 228 
standard deviation (�	) between observations, allowing the model to account for different periods when these types of 229 
uncertainty are high and others when they are low. The BOM adjusts it learning rate in a normative fashion (f), increasing it 230 
when volatility is higher or noise is lower. The BOM was lesioned in a number of different ways in an attempt to 231 
recapitulate the learning rate adaptation observed in participants (shown in panel e). Removing the ability of the BOM to 232 
adapt to changes in volatility (b) or noise (c) did not achieve this goal (g,h). However, degrading the BOMs representation 233 
of uncertainty (d) was able to recapitulate the behavioural pattern of participants. Bars represent the mean (±SEM) of 234 
participant learning rates, with raw data points presented as circles behind each bar.  235 

 236 

The Degraded BOM Misattributes Noise as Volatility 237 
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The BOM was degraded by reducing the number of bins it used to represent volatility and/or noise, 238 

until its behaviour most closely matched that of participants. This process led to a greater coarsening 239 

of the noise than the volatility dimension (Figure 4a; F(1,69)=49, p<0.001), with no effect of outcome 240 

valence (F(1,69)=0.73, p=0.4), suggesting that the degraded model maintained a generally less 241 

precise representation of noise than volatility. In order to investigate the impact of this coarsening 242 

on the model’s beliefs, we used the degraded BOM’s estimates of volatility and noise to categorise 243 

task trials as either high or low volatility/noise (i.e. trials in which the model’s estimates of these 244 

variables were higher/lower than the mean) and compared these to the same trial labels generated 245 

by the intact BOM. Consistent with the greater degradation of the noise dimension, coarsening the 246 

model caused it to miscategorise more trials which the intact BOM had labelled as having high than 247 

low noise (Figure 4b; F(1,69)=30.7, p<0.01) with no effect of volatility (F(1,69)=1.9, p=0.17) or 248 

outcome valence (F(1,69)=0.004, p=0.95). As illustrated in Figure 4c, when the degraded BOM 249 

miscategorised high noise trials, it tended to label them as having high, rather than low, volatility. 250 

Overall, these results indicate that coarsening the BOM caused it, relative to the intact BOM, to 251 

misattribute high noise trials as high volatility trials. 252 
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 253 

Figure 4. Analysis of the behaviour of the degraded BOM. The process of degrading the BOM involved reducing the 254 
number of bins used to represent the volatility and noise dimensions independently until the choice of the model matched 255 
that of participants. Panel a illustrates the number of bins selected by this process for the volatility and noise dimensions 256 
(averaged across win and loss outcomes). As can be seen the degraded BOM maintained a less precise representation of 257 
noise than volatility. In order to understand the behaviour of the degraded model, the model’s estimated ���� and ��� 258 
were used to label individual trials as high/low volatility and noise (NB greater than or less than the mean value of the 259 
estimates). These trial labels were compared with the same labels from the intact model, which were used as an ideal 260 
comparator (panels b and c). Panel b illustrates the proportion of trials in which the labels of the two models agreed, 261 
arranged by the ground truth labels of the full model and averaged across win and loss outcomes. The dotted line indicates 262 
the agreement expected by chance. The degraded model trial labels differed from those of the full model particularly for 263 
high noise trials, with no impact of trial volatility. Panel c provides more details on how the degraded model misattributes 264 
trials. In this figure, the labels assigned by the full model are arranged along the x axis. The colour of each square 265 
represents the proportion of trials with a specific full model label that received the indicated label of the degraded model 266 
(arranged along the y axis). The diagonal squares illustrate agreement between models as reported in panel b. As 267 
highlighted by the red outlines, trials which the full model labelled as having high noise were generally mislabelled by the 268 
degraded model as having high volatility. Reanalysis of participant choices using the trial labels provided by the full (panel 269 
e) and degraded (panel f) models indicate that participants adapt their learning rates in a normative fashion when the 270 
degraded model trial labels are used (panel f), but not when the full model labels are used (panel e). Panel d illustrates the 271 
same analysis using the original task block labels for comparison. Bars represent the mean (±SEM) of participant learning 272 
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rates, with raw data points presented as circles behind each bar. See supplementary figure 1 for a comparison of the 273 
behaviour of the degraded BOM with an alternative fitted model. 274 

 275 

The Degraded BOM Rescues Optimal Behaviour 276 

The process of fitting the degraded BOM to participant behaviour can be understood as searching 277 

for a configuration of the model in which participant choice conforms to the normative response to 278 

volatility and noise coded in the model’s structure. In other words, participants’ learning rates 279 

should increase when the degraded BOM’s estimate of volatility is high and, critically, when it 280 

estimates that noise is low. We demonstrate this by reanalysing participant behaviour, using the trial 281 

labels of the degraded BOM to indicate periods of low/high volatility and noise in place of the task 282 

block labels used in the original analysis. As can be seen (Figure 4f), participants significantly 283 

increased their learning rate when the degraded BOM estimated volatility to be high (F(1,566)=86, 284 

p<0.001) and noise to be low (F(1,566)=81, p<0.001). In control analyses, this normative response to 285 

uncertainty was not seen when the labels from the intact rather than the degraded BOM were used 286 

(Figure 4e), or when the BOM’s representation of outcome mean was degraded, rather than its 287 

estimates of volatility and noise (supplementary materials). 288 

 289 

Assuming Human Participants Use the Degraded BOM’s Estimates of Volatility and Noise Rescues 290 

Normative Pupillary Response 291 

If the degraded BOM is a fair representation of how participants are performing the learning task, 292 

then we would expect it to be better able to explain physiological markers of uncertainty estimation 293 

than the simple task block structure or the intact BOM. Specifically, participants’ pupils should be 294 

larger when the degraded BOM thinks that volatility is high and when it thinks noise is low. We first 295 

show (Figures 5a-c) that participants’ pupils do not adapt normatively to the task block structure, 296 

with no main effect of block volatility (F(1,1723)=0.002, p=0.9) and an increase of pupil size in 297 

response to higher noise (F(1,1723)=13.8 p<0.001). In contrast, analysis using the trial labels derived 298 

from the degraded model (Figure 5d-f) recovered the expected increase in pupil size in response to 299 

both raised volatility (F(1,2067)=105, p<0.001) and reduced noise (F(1,2067)=42.3, p<0.001) 300 

suggesting that the model provides a reasonable measure of participants’ estimates of these 301 

parameters. Finally, we tested whether the degraded BOM was able to explain more variance in the 302 

pupil data than the intact BOM. In order to do this, we first regressed participants’ pupil data against 303 

the estimated volatility and noise of the intact BOM, as well as a range of other task related factors 304 

(Figure 5g; see methods for more details of analysis). Having removed the variance accounted for by 305 
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these factors, we then regressed the residuals of this first level analyses against the degraded 306 

model’s estimates of volatility and noise. This second level analysis (Figure 5h-i) indicated that the 307 

degraded model was able to account for variance associated with outcome noise that was not 308 

explained by the full model (F(1,286)=4.1, p=0.04), but did not explain additional variance associated 309 

with outcome volatility (F(1,286)=0.1, p=0.75). In summary, assuming that participants used the 310 

degraded BOM’s estimates of outcome volatility and noise rescued the normative pattern of 311 

physiological adaptation during the task.  312 

 313 

 314 

Figure 5: Analysis of pupillometry data. Z-scored pupil area from 2 seconds before to 6 seconds after win (panel a) and 315 

loss (panel b) outcomes, split by task block. Lines illustrate average size, with shaded area illustrating SEM. Panel c Pupil 316 

size averaged across whole outcome period and both win and loss outcomes. Pupil size did not systematically vary by task 317 

block. Panels d-f, as above but using the trial labels derived from the degraded model. Pupil size was significantly larger for 318 

trials labelled as having high vs. low volatility and low vs. high noise. Panel g displays the mean (SEM) effect of volatility and 319 

noise as estimated by the full BOM derived from a regression analysis of pupil data. The residuals from this analysis were 320 

then regressed against the estimated volatility and noise from the degraded model. A time course of the regression 321 

weights from this analysis is shown in panel h, with the mean coefficients across the whole period shown in panel i. The 322 
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degraded model’s estimated noise accounted for a significant amount of variance not captured by the full model (pink line 323 

in h is below 0, the mean effect across the period is represented by dashed lines and arrows in panel i). See supplementary 324 

figure 2 for comparison of the degraded BOM with an alternative fitted model. 325 

 326 

 327 

Discussion 328 

Humans respond in a rational, if approximate, manner to the causal statistics of dynamic 329 

environments. We found that participants adapted as expected to changes in outcome volatility, but 330 

were relatively insensitive to changes in noise. Using a degraded Bayesian Observer Model (BOM) to 331 

characterise participants’ behaviour suggested that they responded appropriately to a relatively 332 

coarse estimation of the level of noise, that led to its misattribution as volatility. Analysis of 333 

pupillometry data using the degraded model again suggested that participants were responding 334 

normatively to changes in estimated noise, but that these estimates diverged from the true noise of 335 

experienced outcomes. These results illustrate that human learners are able adapt to the statistical 336 

properties of their environment, but that this ability, particularly for outcome noise, is imprecise 337 

which leads to suboptimal choice.  338 

Using a task in which volatility and noise varied independently between blocks, we found that 339 

human learners adapted as expected (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 2012; 340 

Pulcu & Browning, 2019) to blockwise changes in the volatility of both win and loss outcomes, 341 

increasing the learning rate used when volatility was high vs. low. In contrast, the expected 342 

reduction of learning rates in response to increased outcome noise was not apparent, with 343 

participants employing a significantly higher learning rate in response to increased noise when 344 

volatility was low and a numerically lower learning rate when volatility was high. The absence of a 345 

normative response to blockwise changes in noise is at odds with previous work which has described 346 

a reduction in learning rates during periods of high noise (Diederen & Schultz, 2015; Nassar et al., 347 

2010, 2012). However, in this previous work the level of noise was either explicitly presented to 348 

participants (as a bar on screen representing the standard deviation of the generative process in 349 

Diederen & Schultz) or was made unambiguous by being very different from changes caused by 350 

volatility (in Nassar et al, noise was generated using an SD of 5 or 10, while the average change due 351 

to volatility was 100). By design, in the current task high noise and volatility resulted in a similar 352 

range of magnitudes (Figure 1b) forcing participants to use the temporal sequence of outcomes to 353 

discriminate between the different forms of uncertainty. Our behavioural results suggest that, in the 354 

absence of unambiguous differences between outcomes caused by volatility and those caused by 355 

noise, participants’ ability to estimate and/or adapt to changes in noise is reduced. Interestingly, a 356 
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recent study reported that participants do not adjust their choice or estimated confidence in 357 

response to variability in the orientation of arrays of visual gratings (Herce Castañón et al., 2019), 358 

suggesting that an insensitivity to outcome noise may be a general feature of human decision 359 

making, rather than a specific component of learning.   360 

Noise fundamentally limits the reliability of information (MacKay, 2003) and ignoring it has a clear 361 

detrimental impact on inference (Figure 3h), causing agents to be unnecessarily influenced by 362 

chance events (Pulcu & Browning, 2019). It would therefore be surprising if human learners were 363 

completely insensitive to this process, particularly given evidence that they can respond normatively 364 

when the level of noise is unambiguous (Diederen & Schultz, 2015; Nassar et al., 2010, 2012). We 365 

developed an ideal Bayesian Observer Model (BOM; Behrens et al., 2007; Nassar et al., 2010; Piray & 366 

Daw, 2021; Pulcu et al., 2022) to investigate the degree to which participants were adapting to 367 

noise. The intact BOM displayed the expected behavioural response to changes in both volatility and 368 

noise (Figure 3f) and, as a result, did not accurately capture the behaviour of participants (Figure 3e). 369 

Completely removing the BOM’s ability to adapt to noise (or volatility) did not recapitulate 370 

participant choice behaviour (Figure 3g-h), whereas coarsening its representation of volatility and 371 

noise, produced a much closer match (Figure 3i). This suggests that participants were relatively, 372 

rather than completely insensitive to noise and that they tended to misattribute high noise as 373 

volatility (Figure 4). However, an important caveat to this interpretation is that the degree of 374 

coarsening was selected using participants’ choices. The better behavioural match of the coarsened 375 

BOM to participant learning rates may therefore be simply because this model was fitted to the 376 

same choices used to calculate the learning rates, whereas the intact and fully lesioned models were 377 

not. We therefore sought to validate the coarsened BOM by assessing its ability to account for 378 

participants’ pupillary data, and by comparing it with an alternative fitted BOM which coarsened the 379 

representation of the generative mean, rather than the estimated uncertainty (see supplementary 380 

materials). Participants’ pupil size did not vary systematically between different block types, whereas 381 

they were significantly larger when the degraded BOM estimated volatility to be high and noise to 382 

be low (Figure 5a-f). Similarly, the estimated noise of the degraded BOM accounted for additional 383 

variance in pupil size, over and above the intact BOM (Figure 5g-i). In contrast, the alternative mean-384 

degraded BOM did not recapitulate participants’ learning rates (supplementary figure 3) and was not 385 

able to account for changes in participant pupil size (supplementary figure 4). The finding that 386 

participants’ pupil size covaries in the expected direction with the degraded BOM’s estimated levels 387 

of both volatility and noise provides some reassurance that the model is capturing the dynamics of 388 

participants’ uncertainty estimates. More generally, the presence of both volatility and noise signals 389 
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in this data, indicate that, as suggested previously (Nassar et al., 2012; O’Reilly et al., 2013), the 390 

pupillometry signal reflects general belief updating rather than specifically volatility. 391 

An outstanding question is why participants might be particularly insensitive to changes in outcome 392 

noise. It is tempting to try to answer this question by reference to the processes by which the BOM 393 

was coarsened (i.e. the insensitivity was caused by a reduction in the precision by which noise was 394 

represented in a multi-dimensional probability distribution). However, the BOM described here was 395 

developed as an algorithmic description of how the learning task may be solved. As far as we are 396 

aware, there is little evidence that it accurately describes the cognitive or neural implementation of 397 

uncertainty estimation. Alternative algorithmic approaches to the general problem of uncertainty 398 

estimation have been described (Kalman, 1960; Nassar et al., 2010; Piray & Daw, 2021; Pulcu & 399 

Browning, 2019), including simpler approaches that avoid computationally expensive 400 

representations of multi-dimensional distributions (Kalman, 1960; Nassar et al., 2010) and which 401 

therefore may be more likely implementational candidates. In other words, the current results 402 

indicate that human learners are relatively insensitive to changes in outcome noise, but do not 403 

specify the lower level mechanisms that determine this effect. 404 

In conclusion, human learners adapt rationally, to estimates of the volatility and noise of 405 

experienced outcomes. However, these estimates are approximate leading to a relative insensitivity 406 

to outcome noise.  407 

 408 

  409 
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Methods 410 

Experimental model and subject details 411 

Participants. 70 English-speaking participants aged between 18 and 65 were recruited from the 412 

general public using print and online advertisements. A previous study (Pulcu & Browning, 2017) on 413 

behavioural response to changes in volatility reported an effect size of d=0.7. As the effect size of a 414 

noise manipulation was not clear, we recruited a sample size sufficient to detect an effect size of half 415 

this value (d=0.35) with 80% power. Participants were excluded from the study if they had any 416 

psychological or neurological disorders or were currently on psychotropic medication.  417 

Method details 418 

General procedure. Participants attended a single study visit during which they completed the 419 

learning task. Pupillometry data was collected during task completion for the last 36 participants 420 

recruited to the study. The study was approved by the University of Oxford Central Research Ethics 421 

Committee (R49753/RE001). All participants provided written informed consent to take part in the 422 

study, in accordance with the Declaration of Helsinki.  423 

Behavioural Paradigm. The reinforcement learning (RL) task consisted of six blocks, each comprising 424 

60 trials. In each trial, participants were presented with two abstract shapes taken from the 425 

Agathodaimon font (i.e. shape A and shape B). Two different shapes were used in each block, with 426 

rest sessions between blocks. The shapes were presented randomly on either side of the screen. 427 

Participants were explicitly instructed that this randomised location did not influence the outcome 428 

magnitudes. Participants attempted to accumulate as much money as possible by learning the likely 429 

magnitude of the wins and losses associated with each shape and using this information to guide 430 

their choice. On each trial, participants chose one of two shapes, with their choice highlighted by a 431 

black frame (see Fig 1a). Following the choice, the win and loss amounts associated with the chosen 432 

shape were presented, in randomised order, for a jittered period (2-6 sec, mean: 4 sec) inside two 433 
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empty bars, above and below the fixation cross. The win amount was shown as a green area in the 434 

upper bar, and the loss amount represented as a red area in the lower bar. The total length of each 435 

bar represented £1 (i.e. of wins or losses) and thus the amount associated with the chosen shape 436 

was the proportion of the bar filled by the green/red areas (e.g. three quarters of the upper bar 437 

being green, would mean that the chosen option was associated with a win of 75p). Participants 438 

were informed that the unshaded area of each bar was the amount associated with the unchosen 439 

option. Thus, on each trial participants knew how much they had won/lost and how much they 440 

would have won/lost if they had chosen the other option. This feature simplified the task; rather 441 

than having to separately estimate the wins and losses associated with each shape, participants only 442 

had to estimate these values for one shape (with the other shape being £1 minus this value). For 443 

each trial participants received the difference between the win and loss amounts associated with 444 

their choice. A running total amount of money was displayed in the centre of the screen, under the 445 

bars and was updated at the beginning of the subsequent trial with the recent winnings.  446 

The wins and the losses associated with each shape followed independent outcome schedules 447 

(Figure 1b), generated from a Gaussian distribution. In each block, the win and loss outcomes had 448 

either high or low volatility and high or low noise. When volatility was low, the mean of the Gaussian 449 

distribution remained constant, when volatility was high the mean changed from between 25-40 and 450 

60-75 every 9-15 trials. When noise was low the standard deviation of the Gaussian was set to 5, 451 

whereas when noise was high the standard deviation was 35. As can be seen from Figure 1b, these 452 

schedules resulted in similar ranges of outcome magnitudes for periods of high noise and high 453 

volatility. The first block for every participant had high volatility and low noise for both win and loss 454 

outcomes and was used to familiarise participants with the task. Choices from this block were not 455 

used in the analyses presented (although including them does not alter the reported pattern of 456 

results). The schedules in the remaining five blocks were presented in a randomised order with the 457 

constraint that, across both win and loss outcomes, each of the four combinations of volatility and 458 

noise level (Figure 1B) were presented either 2 or 3 times. Thus, while each participant completed at 459 
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least two blocks with each of the four combinations of high/low volatility/noise, the specific pairings 460 

of win and loss volatility/noise levels, differed across participants. This approach was used in 461 

preference to a fully factorial design in order to keep the total task duration to a manageable level. 462 

At the end of the experiment, participants were paid one fifth of their total winnings, plus a £15 463 

baseline rate for turning up to take part.  464 

Pupillometry data was collected for 36 of the 70 participants. During collection of pupillary data, the 465 

task was presented on a VGA monitor connected to a laptop computer running Presentation 466 

software version 18.3 (Neurobehavioural Systems). An identical behavioural version of the task, 467 

presented using Psychtoolbox 3.0 on MATLAB (MathWorks Inc.), was used to collect behavioural 468 

data from the remaining 34 participants. In the pupillometry version, participants’ heads were 469 

stabilised using a head-and-chin rest placed 70 cm from the screen on which the eye tracking system 470 

was mounted (Eyelink 1000 Plus; SR Research). The eye tracking device was configured to record the 471 

coordinates of both of the eyes and pupil area at a rate of 500 Hz. The task stimuli were drawn on 472 

either side of a fixation cross which marked the middle of the screen and were offset by 7° visual 473 

angle. The testing session lasted approximately 70 min per participant. 474 

Analysis of Choice Data 475 

Non-model based measure of the influence of outcomes. The manipulation of uncertainty in the 476 

reinforcement learning task is expected to alter the degree to which participants’ choices are 477 

influenced by the outcomes they experience. A simple, if somewhat crude, measure of this influence 478 

can be calculated as the proportion of trials in a block in which participants select the choice 479 

prompted by the win or loss outcomes on the previous trial. Generally, win outcomes of >50p and 480 

loss outcomes of <50p associated with a shape will prompt selection of the same shape on the next 481 

trial, whereas other outcomes will prompt selection of the alternative shape. The overall effect of 482 

win outcomes on choice can therefore be estimated as: 483 

����������� | ���
���� ��� ������� ��� ������ � ����������� |���
���� ��� ������� ��� ������ 
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That is, the probability of choosing shape A, given that, on the previous trial, a win of >50p was 484 

associated with shape A – the probability of choosing Shape A, given that, on the previous trial a win 485 

of <50p was associated with Shape A. Similarly, the effect of loss outcomes is estimated as: 486 

����������� | ���
���� ���� ������� ��� ������ � ����������� |���
���� ���� ������� ��� ������ 

However, choice is also influenced by the magnitude of the outcome; a win of 90p will have a 487 

greater effect on subsequent choice than a win of 55p. Blocks with high levels of either volatility or 488 

noise have more extreme magnitudes than blocks with low levels of both (Figure 1b) which will bias 489 

any comparison of this metric between blocks. In order to limit the effect of this bias, we estimated 490 

the simple choice metric only for trials in which the previous outcome lay in the range of magnitudes 491 

common to all four blocks, 35-65.  492 

Reinforcement Learning Model: While the choice metric described above provides a relatively 493 

transparent measure of the influence of task outcomes on choice, it does not account for differences 494 

in outcome magnitude making it liable to bias. We therefore fitted a simple reinforcement learning 495 

model to measure block-wise learning rates, which provide a more principled estimate of the degree 496 

to which choices are influenced by outcomes. The model combines a learning phase in which the 497 

magnitude of wins and losses associated with a shape are estimated (note that it is not necessary to 498 

learn the magnitudes associated with the other shape, as these are simply 1- those described below) 499 

�	
�_
����� � �	
�_
��� � �����	
���� � ����_����� 

�����_
����� � �����_
��� � ������������� � �����_����� 

In these equations, �	
�_
��� and �����_
��� are the estimated win and loss magnitudes associated 500 

with Shape A on trial t, 	
���� and ������� are the observed win and loss outcome magnitudes and 501 

���� and ����� are the win and loss learning rates. These values are then combined in a decision 502 

phase such that: 503 
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����
��_
��� �
1

1 � �� �!���_���	�!
���_���	�
 

Where ����
��_
��� is the probability that Shape A will be chosen on trial t and � is a single inverse 504 

decision temperature. This model was initiated with �	
�_
��� = �����_
��� = 0.5 and the three free 505 

parameters (	
����, ������� and �) were estimated for each block and each participant by calculating 506 

the joint posterior probability given participant choice, marginalising each parameter and deriving 507 

the parameters’ expected values (Behrens et al., 2007; Browning et al., 2015). See supplementary 508 

materials for model selection data. 509 

Some analyses reported in the paper (i.e. where trials are labelled as high/low volatility and high/low 510 

noise by the Bayesian Observer Model rather than by task block) cannot be modelled using this 511 

block-wise approach (as different types of trial are interleaved throughout the task, rather than 512 

blocked). In these analyses a similar, single model was fit across all trials in the task. This model had 513 

8 different learning rates (separate win and loss learning rates, for each combination of high/low 514 

volatility and high/low noise labelled trials) and a single inverse temperature parameter. Although 515 

this model is somewhat less flexible than the blockwise modelling approach (i.e. it has 8, rather than 516 

10 learning rates, and 1 rather than 5 inverse temperatures), it produces the same pattern of results 517 

when applied to participant choices split by task block (all estimated learning rates correlate at 518 

r>0.8, Figure 2c-d show results from blockwise fitting, Figure 3e from the simpler model). This 519 

simpler model was fit using stan, with 5000 burn in and 5000 estimation trials, with posterior 520 

convergence visually checked and rhat values of less than 1.1 accepted. 521 

Note that neither of these models describe how participants adjust to different levels of volatility 522 

and noise, they simply estimate the learning rates used in each block/type of trial, which are 523 

expected to vary in response to differences in levels of uncertainty (in contrast, the Bayesian 524 

Observer Model described below does estimate uncertainty and adjust to levels of uncertainty).  525 
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Bayesian Observer Model: A recursive, grid-based Bayesian Observer Model (BOM) was developed, 526 

similar to that described by Behrens and colleagues (Behrens et al., 2007; Pulcu et al., 2022). The 527 

BOM is based on a generative process (see Figure 3), and described fully in Pulcu et al. (Pulcu et al., 528 

2022). Below we summarise the key aspects of the model.  529 

The BOM assumes that the observed outcomes at a given time point �, �� , are generated from a 530 

Gaussian distribution with an unknown mean, ��, and standard deviation, �"#� , with the later 531 

producing noise in the observed outcomes (Figure 1b-c). 532 

��~���� , �"#��                                                                        533 

As illustrated in Figure 1b-c, the mean of this distribution may change between time points, leading 534 

to volatility in the task environment, with this change described by a second level Gaussian 535 

distribution, centered on the current mean and with a standard deviation of �
��� . The mean of the 536 

generative Gaussian distribution in the following trial is drawn from: 537 

�������~����, �
����    538 

Both the noise ( !�) and volatility (����) parameters can also change between time points with 539 

their change governed by Gaussian distributions centered on their current value with standard 540 

deviations of �
"#  and �$�� respectively. These higher-level parameters allow the model to account 541 

for periods in which noise and volatility are high and other periods in which they are low (for 542 

example, as caused by the uncertainty changes between task blocks). 543 

���������~������ , �$��� 

P(������~����� , ����� 544 

The BOM estimates the joint posterior probability of the five causal parameters, given the choice 545 

outcome it has observed. The joint probability distribution at time point � is defined as: 546 

��"�
���� � ����, ���, ���,  !, � !| ����, ���%, … , ���        547 
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This joint probability distribution can be thought of as the BOM’s belief about the values of each 548 

parameter in the generative model. A Markovian assumption (i.e. that nodes of the model are 549 

sufficient to describe the generative process) simplifies this process and illustrates the recursive 550 

update performed by the BOM: 551 

	�
��
��� � 	���� , ���� , ���� , ���, ���� | 
��
���� , ����� 

We initialized the joint posterior, before observation of any task outcomes as a uniform distribution. 552 

The BOM performs the update, first using Bayes’ rule to incorporate the effect of the most recently 553 

observed outcome, and then accounts for the drifting parameters by using the conditional 554 

probability of the new value of the drifting parameter, given the initial value and drift rate (See; 555 

Pulcu et al., 2022 for a detailed account of this updating process): 556 

          ��
��
�� | 
��
����, ����� �      557 

� ��
��
���� | ���������� | �����, ���� ������ | ������ , ���� … 

����� | ����� , �����, ������, �������, ������ 

      558 

The value of each node is derived at every time point by marginalizing over all but the relevant 559 

dimension of the joint probability distribution and calculating the expected value of that dimension. 560 

During the task, the shapes presented to participants change between each task block, which means 561 

that, at the start of each block, participants have to relearn the mean associated with each shape. 562 

This was dealt with in the BOM by flattening the mu dimension of the joint probability distribution at 563 

the start of each trial (i.e. replacing the values of the mean dimension, with the average of the joint 564 

distribution across this dimension). The effect of this is to reset the model’s belief about the actual 565 

magnitude associated with the two new shapes, while maintaining its belief about the overall 566 

volatility and noise of the outcomes.  567 
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The BOM was provided with the win and loss outcomes (as values between 0 and 1) for each trial, 568 

across all trials in the task (excluding the first practice block, although including this did not alter the 569 

pattern of results). It treated the two outcomes as independent (i.e. the win outcome did not 570 

influence estimates for the loss outcome and vice versa) and transformed the outcomes to the 571 

infinite real line using the logistic transform before estimating the posterior probability (Pulcu et al., 572 

2022). 573 

 574 

Lesioning the Bayesian Observer Model: A number of different lesions were applied to the BOM. 575 

First, it’s ability to estimate changes in either volatility or noise was removed. This was achieved 576 

simply by removing the kmu or vSD nodes from the BOM (reducing the dimensionality of the joint 577 

distribution by one in each case). The effect of this is to force the BOM to estimate the mean 578 

volatility and noise (respectively) across the whole task, rather than to modify its estimates of these 579 

parameters between trials.  580 

The second approach induced a graded, rather than absolute, lesion. This was achieved by reducing 581 

the precision with which the BOM represented the volatility-related nodes (vmu and kmu) and/or 582 

the noise related nodes (SD and vSD). More specifically, the BOM’s estimates of the values of each of 583 

the five nodes are encoded on a five dimensional grid, with each dimension on the grid representing 584 

the possible range of values of a particular node, from low to high, using a fixed number of points. 585 

The probability ascribed by the model to a specific point on this dimension is the relative probability 586 

that the value of the node lies within the bin of values that is closer to the point, than to adjacent 587 

points. For example, say the value of volatility (vmu) ranged from 0 to 10 and was represented by 10 588 

bins. In this case volatility would be represented by a probability mass function over the 10 bins 589 

(<0.5, 0.5-1.5, 1.5-2.5, …,  > 9.5). Lesioning occurred by independently varying the number of bins 590 

used in the volatility-related and/or noise-related dimensions, from a maximum of 20, to a minimum 591 

of 2 (i.e. with only 2 bins volatility/noise would be represented as simply <high= or <low=). The 592 
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degree of lesioning selected for each individual participant was determined as the number of bins 593 

for the volatility and noise dimensions that, after passing the model estimates through a softmax 594 

action selector with a single inverse temperature parameter (i.e. as described for the RL model), 595 

maximized the likelihood that the model would make the same choices as the participant, across all 596 

task blocks. This process of lesioning therefore progressively coarsens the BOM’s representation of 597 

the two types of uncertainty and selects the degree of coarsening that results in choices as similar as 598 

possible to participants (see supplementary materials for an alternative model that coarsens the 599 

representation of the mean values). 600 

 601 

Pupilometry Data Preprocessing. Pupilometry data were collected using the Eyelink II system 602 

(SRresearch) from both eyes, sampled at 500Hz. Preprocessing involved the following steps: Eye 603 

blinks were identified using the built in filter of the Eyelink system and were removed from the data. 604 

A linear interpolation was implemented for all missing data points (including blinks). The resulting 605 

trace was subjected to a low pass Butterworth filter (cut-off of 3.75 Hz), z transformed across the 606 

session (Browning et al., 2015; Nassar et al., 2012), and then averaged across the two eyes. The pupil 607 

response to the win and the loss outcomes were extracted separately from each trial, using a time 608 

window based on the presentation of the outcomes. This included a 2-s pre-outcome period, and a 609 

6-s period following outcome presentation. Individual trials were excluded from the pupilometry 610 

analysis if more than 50% of the data from the outcome period had been interpolated (mean =6.7% 611 

of trials) (Browning et al., 2015).  The first 5 trials from each block were not used in the analysis as 612 

initial pupil adaption can occur in response to luminance changes in this period (Browning et al., 613 

2015; Nassar et al., 2012).  The preprocessing resulted in two sets of timeseries per participant, one 614 

set containing pupil size data for each included trial when the win outcomes were displayed and the 615 

other when the loss outcomes were displayed. These pupil area data were binned into one second 616 

bins across the outcome period for analysis (NB Figure 5a-f). This analysis was supplemented by an 617 
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individual regression approach (Figure 5g-i) in which individual participants’ pupil area timeseries 618 

was first regressed against estimated trialwise volatility and noise from the intact BOM (Figure 5g), 619 

as well as a number of control variables (constant term, amount won/lost on trial (i.e. magnitude of 620 

outcome), valence of outcome (win or loss), order in which outcomes were presented (win first/loss 621 

first), trial number (1:360), whether shape chosen switched on next trial or not (1:0)). The residuals 622 

from this regression were then regressed against estimated trialwise volatility and noise from the 623 

degraded BOM (Figure 5h,i). These regression analyses resulted in timeseries of beta-weights that 624 

were analysed in the same manner as raw pupil size data. 625 

Quantification and statistical analysis 626 

Behavioural data were analysed using linear mixed effect models (fitlme function of Matlab (2022a)) 627 

with participant ID included as a random factor and volatility, noise and valence added as fixed 628 

factors. Two way interactions between fixed effects were also tested (main effects are reported 629 

from models without interaction terms). Addition of random slopes for any of the fixed factors 630 

decreased LME model fit statistics and so were not included (Matuschek et al., 2017). Analysis of 631 

timeseries pupillometry data included the additional fixed effect factor of time across the outcome 632 

period. Learning rates were transformed to the infinite real line using a logistic transform before 633 

analyses (untransformed data are displayed in figures for ease of interpretation). The normality of 634 

the distribution of the residuals of the LME analyses were checked both visually and with a one-635 

sample Kolmogorov-Smirnov test. Changes in the classification of trials between the full and 636 

degraded BOM (Figure 4b) were analysed using a repeated measures ANOVA with within subject 637 

factors of volatility, noise and valence. Raw data are superimposed on all summary figures. 638 

Code and Data Availability 639 

Study data and analysis scripts, including code for the various models used are available at: 640 

https://osf.io/j7md3/. 641 
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