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Summary

Efficient learning requires estimation of, and adaptation to, different forms of uncertainty. If
uncertainty is caused by randomness in outcomes (noise), observed events should have less
influence on beliefs, whereas if uncertainty is caused by a change in the process being estimated
(volatility) the influence of events should increase. Previous work has demonstrated that humans
respond appropriately to changes in volatility, but there is less evidence of a rational response to
noise. Here we test adaptation to variable levels of volatility and noise in human participants, using
choice behaviour and pupillometry as a measure of the central arousal system. We find that
participants adapt as expected to changes in volatility, but not to changes in noise. Using a Bayesian
observer model, we demonstrate that participants are, in fact, adapting to estimated noise, but that
their estimates are imprecise, leading them to misattribute it as volatility and thus to respond
inappropriately.
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It is much easier to respond appropriately to an event if we know what has caused it. For example, if
heavy traffic means that our drive into work takes longer than normal, the best course of action the
next time we have to make the journey depends on what caused the traffic to be heavier (Yu &
Dayan, 2005). If it was caused by a one-off or random event, such as a broken-down lorry, then we
should continue using the same route as before, whereas if it was caused by some longer-term
change, perhaps there are new road works nearby disrupting the traffic, we should consider a
different route. Frequently, however, the causes of events are not obvious, we experience the heavy
traffic but aren’t sure why it has occurred. In these situations, the best we can do is make an
educated guess, based on our experience, about what broad type of causal process has led to recent
events. In the case of the drive into work, if the traffic has been heavier for a number of daysin a
row it is likely that some prolonged shift has occurred, and we should change routes, whereas if the
traffic changes noisily from day to day, then we should probably stick with our usual route. In the
learning literature, this problem is often framed as a competitive attribution of uncertainty to one of
two types; expected uncertainty, which is caused by the variability of noisy associations and
unexpected uncertainty, which is caused by longer lasting changes (sometimes called volatility) in an
association (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 2012; Pulcu & Browning, 2017;
Yu & Dayan, 2005). The behavioural importance of this attribution process can be seen in the driving
example given above; an event caused by noise requires the opposite behavioural response
(continuing to use the same route) than the same event caused by volatility (switching routes).
Consequently, effective decision making often depends on the accurate attribution of uncertainty,

with misattribution having a substantial detrimental effect on choice (Pulcu & Browning, 2019)

The influence of events on subsequent choice can be estimated within a reinforcement learning
framework as the learning rate parameter (Sutton & Barto, 2018}, with a higher learning rate
indicating a greater influence of the event on behaviour. As described above, the normative
response to changes in volatility and noise is to use a higher learning rate when volatility is high
and/or noise is low (Pulcu & Browning, 2019; Yu & Dayan, 2005). A large number of studies have
found the predicted increase in learning rates in response to higher outcome volatility in human
learners (Behrens et al., 2007, 2008; Browning et al., 2015; Gagne et al., 2020; Nassar et al., 2012;
Pulcu & Browning, 2017). In contrast, the evidence for adaptation of learning in response to changes
in outcome noise is less complete. Previous studies have described the expected reduction of
learning rates when outcome noise is high, but only when the level of noise is explicitly signalled in a
task (Diederen & Schultz, 2015), or when it is made unambiguous by virtue of being very much
smaller than changes in outcome caused by volatility (Nassar et al., 2010, 2012). As illustrated in the

driving example above, we are often faced with situations in which there exists significant ambiguity
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about whether an event has been caused by volatility or noise. To date however, the degree to
which human learners are able to discriminate between these types of uncertainty, when they are

not explicitly labelled, has not been closely examined.

From a neurobiological perspective, activity of central modulatory neurotransmitter systems have
been argued to represent distinct sources of uncertainty during learning, with central
norepinepheric (NE)/locus coeruleus (LC) activity described as signalling changes in the associations
(i.e. volatility) and central cholinergic activity representing noise (Yu & Dayan, 2005).
Electrophysiological measures of LC activity in non-human primates have been shown to correlate
with pupil dilation (Joshi et al., 2016) suggesting it may be possible to estimate activity in this system
in humans using pupilometry. Taking this approach, indirect support for this role of the NE system
has been provided by studies of human participants that report greater pupillary size in volatile
relative to stable contexts (Browning et al., 2015; Nassar et al., 2012; Pulcu & Browning, 2017).
However, the pupil also responds to other learning signals, such as surprise (Browning et al., 2015;
O’Reilly et al., 2013; Preuschoff et al., 2011) and has been reported as being smaller when outcome
noise is high (Nassar et al., 2012). Neuroimaging evidence suggests an association between activity
in other central neurotransmitter nuclei, including the cholinergic basal forebrain, and pupil dilation
(de Gee et al., 2017). Overall, this suggests that the pupillary signal may reflect a more general belief
updating process (O'Reilly et al., 2013) rather than a specific volatility signal and thus that, like
learning rates, pupil size should increase when noise is reduced as well as when volatility is

increased.

In this paper we test whether human participants modify their learning in situations in which the
attribution of uncertainty as volatility or noise is challenging (Figure 1a-c). We report the results of a
study in which participants completed a learning task during which the noise and volatility of both
win and loss outcomes were independently manipulated. Participant behaviour was characterised
using learning rate parameters derived from reinforcement learning models of choice, while
interpretation of the results was facilitated by a Bayesian Ideal Observer model that was developed
to provide a benchmark comparator to participant behaviour (Behrens et al., 2007; Nassar et al.,
2012; Piray & Daw, 2021; Pulcu et al., 2022) and by the collection of pupillometry data as a
physiological marker of central neurotransmitter function (de Gee et al., 2017; Joshi et al., 2016). It
was predicted that human participants would be able to adapt appropriately to the cause of the
events they encountered—using a higher learning rate, and displaying increased pupil size, when

volatility was high and when noise was low for both win and loss outcomes (Figure 1d).
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98 Figure 1. The Magnitude Learning Task (a) Timeline of one trial from the learning task. On each trial participants were

99 presented with two abstract shapes and were asked to choose one of them. The empty bars above and below the fixation
100 cross represented the total available wins and losses for the trial, the full length of each bar was equivalent to £1.
101 Participants chose a shape and then were shown the proportion of each outcome that was associated with their chosen
102 shape as coloured regions of the bars (green for wins and red for losses). The empty portions of the bars indicated the win
103 and loss magnitudes associated with the unchosen option, allowing participants to infer which shape would have been the
104 better option on every trial. The task consisted of six blocks of sixty trials each. The volatility and noise of the two
105 outcomes varied independently between blocks with different shapes used in each block. Panel b illustrates outcomes
106 from the four block types. As can be seen blocks with high volatility and low noise (top left), and those with low volatility
107 and high noise (bottom right), present participants with a similar range of magnitudes. Participants therefore have to
108 distinguish whether variability in the outcomes is caused by volatility or noise from the temporal structure of the outcomes
109 rather than the size of changes in magnitude (cf; Diederen & Schultz, 2015; Krishnamurthy et al., 2017; Nassar et al., 2012).
110 Panel ¢ shows two example blocks (one block in grey, the other in white) with both win (green) and loss outcomes (red)
111 displayed. Panel d shows the expected adaptation of learning rates in response to the manipulation of volatility and noise;
112 for both win and loss outcomes, learning rates should be increased when volatility is high and when noise is low.
113
114  Results

115 Participant Demographics

116 70 participants (see Supplementary Table 1 for demographic information) completed a learning task

117  in which they had to choose one of two stimuli based on the separately estimated magnitudes of
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win and loss outcomes associated with the stimuli. The volatility and noise of the win and loss
outcomes were independently manipulated across six task blocks of 60 trials each (Figure 1).

Pupillometry data was collected during task performance for the last 36 participants.
Experimental Manipulation of Volatility and Noise Influences Participant Choice Behaviour

As explained above, high levels of volatility and low levels of noise should increase the degree to
which outcomes influence choice behaviour. A crude metric of this effect is provided by examining
participant choice as a function of the previous outcome. In the task, a win outcome of >50p or a
loss outcome of <50p associated with Shape A prompts participants to select Shape A in the
subsequent trial, with the other outcomes (i.e. win <50p and loss >50p) prompting choice of Shape
B. The influence of the outcomes on choice can therefore be roughly estimated as the relative
proportion of trials in which Shape A was chosen when it was prompted by a previous outcome of a
given magnitude, compared to when Shape B was prompted. Analysis of this choice metric (Figure
2a-b) found the expected effect of volatility, with participant choice being more influenced by
previous outcomes when volatility was higher (F(1,696)=99.8, p<0.001). An effect of noise was
observed, but in the opposite direction to expected, with outcomes influencing choice more when
noise was increased (F(1,696)=4.79, p=0.03). No significant difference between the influence of win
and loss outcomes was found (F(1,696)=1, p=0.32) and there was no interaction between volatility
and noise (F(1,693)=0.61, p=0.4). Having found some evidence of an impact of the uncertainty
manipulations on a crude measure of subject choice we next sought to characterise this effect using

a reinforcement learning model fit to participant choices.
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Figure 2. The impact of uncertainty manipulations on participant choice. Panels a and b report a
summary metric for the effect of win and loss outcomes on subsequent choice. The metric was
calculated as the proportion of trials in which an outcome of magnitude 51-65 associated with Shape
A was followed by choice of the shape prompted by the outcome (i.e. Shape A for win outcomes,
Shape B for loss outcomes) relative to when the outcome magnitude was 49-35 (see methods and
materials for more details). The higher this number, the greater the tendency for a participant to
choose the shape prompted by an outcome. As can be seen, the outcome of previous trials had a
greater influence on participant choice when volatility was high, with a small effect of noise, in the
opposite direction to that predicted. Panels ¢ and d report the win and loss learning rates estimated
from the same data. Again, the expected effect of volatility is observed, this time with no consistent
effect of noise. Bars represent the mean (+SEM) of the data, with individual data points
superimposed.
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152  Participants Adjust Normatively to Changes in Volatility but not Noise

153  Asimple reinforcement learning model was fit to choice data separately for each block of the task
154  and each participant. The RL model included separate learning rates for win and loss outcomes

155 allowing estimation of the degree to which participants adjusted these learning rates in response to
156  the block-wise changes in outcome volatility and noise (see supplementary Materials and Methods

157  for model comparison and selection analyses).

158  Consistent with the analysis of choice data reported above, there was a significant main effects of
159  volatility (Figure 2c-d; F(1,696)=22.2, p<0.001), with a higher learning rate used when volatility was
160  high. There was no main effect of noise (F(1,696)=0.63, p=0.43) on learning rate or outcome valence
161 (F(1,696)=0.15, p=0.7). An interaction between volatility and noise (F(1,693)=7.74, p=0.006) was

162  present. A higher volatility led to a significantly raised learning rate when noise was low

163  (F(1,383)=27.1, p<0.01), with a non-significant increase when noise was high (F(1,311)=1.13,

164  p=0.29). Higher noise was associated with a non-significant reduction in learning rates when

165  volatility was high (F(1,347)=2.57, p=0.11) but to a significant increase in learning rate when volatility
166  waslow (F(1,347)=4.7, p=0.031).

167  In summary, analysis of both crude choice data and learning rates indicates that participants
168  adapted appropriately to changes in the volatility of learned associations but did not show a
169  consistent response to changes in noise. In the next section we utilise an ideal Bayesian Observer

170  Model (BOM) to investigate potential causes for this relative insensitivity to noise.
171
172 Using a Bayesian Observer Model to Characterise Noise Insensitivity

173 Bayesian Observer Models (BOM) can be used as normative benchmarks against which human

174 behaviour may be compared (Behrens et al., 2007; Nassar et al., 2012; Piray & Daw, 2021; Pulcu et
175  al., 2022). BOMs are generally not fit to participant choice, rather these models invert a generative
176  process assumed to underlie observed events and provide an estimate of the belief of an idealised
177  agent exposed to the same outcomes as participants. We developed a BOM (Pulcu et al., 2022)
178 based on the generative process underlying the outcome magnitudes of our task (Figure 3a). The
179  BOM explicitly estimates the volatility and noise of the outcomes and uses these estimates to

180 influence its belief about the likely magnitude of upcoming outcomes (see methods for more

181  details). We first tested whether the BOM reproduced the normative learning rate adaptation to
182  changes in volatility and noise described in the introduction, by exposing the model to the same

183  outcomes as participants, and using the model’s belief about the likely magnitude of the win and
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loss outcome on each trial to generate choices. We then estimated the effective learning rate of the
model by fitting the same RL model used to analyse participants’ choices to the model’s choices.
These learning rates are presented in Figure 3f (Figure 3e reproduces the learning rates of
participants, averaged across wins and losses, for comparison). As can be seen the BOM adapts as
expected, using a higher learning rate both when volatility increases (F(1,696)=422, p<0.001) and
when noise decreases (F(1,696)=21.2, p<0.001). No effect of outcome valence or interaction

between volatility and noise (all p>0.09) was observed.

Having shown that an idealised learner adjusts its learning rate to changes in volatility and noise as
expected, we next sought to understand the relative noise insensitivity of participants. In these
analyses we “lesion” the BOM, to reduce its performance in some way, and then assess whether
doing so recapitulates the pattern of learning rate adaptation observed for participants (Fig 3e).
First, we tested the impact of completely removing the ability of the BOM to adjust to changes in
either volatility (Figure 3b) or noise (Figure 3c) by removing the top nodes of the model (i.e. kmu or
vs respectively). Removing these nodes forces the BOM to estimate the mean volatility or noise
across all task blocks rather than estimating local periods where they are higher or lower (see
supplementary video). As illustrated in Figure 3g-h, neither of these lesions recapitulates the pattern
of learning rates observed in participants, with the volatility lesioned model attributing increased
volatility to noise and thus decreasing its learning rate during periods of higher volatility (main effect
of volatility; F(1,696)=11.9, p<0.001) and the SD-lesioned model treating any form of uncertainty as
volatility and thus increasing its learning rate in response to increased noise (main effect of noise;
F(1,696)=227, p<0.001). This suggests that human participants are able to adapt to changes in
outcome volatility and noise to some degree, but are less sensitive to these changes than the intact

BOM.

We next assessed whether a relative degrading of the model’s representation of volatility and noise
(Figure 3d) altered its behaviour in a manner similar to participants. This was achieved by
independently coarsening the model’s representation of volatility and noise, with the degree of
coarsening selected to make the model’s choices as similar as possible to those of a given
participant. Details of this coarsening process are provided in the methods section, but in simple
terms, at one extreme, the intact model’s beliefs about current volatility and noise are represented
as probability distributions over many possible values, with the number of values used gradually
reduced during coarsening, until the coarsest model treats each form of uncertainty as being either
“high” or “low”. As can be seen from Figure 3i, this relative degrading of the model’s representation
of uncertainty more closely recapitulated the learning rates observed in participants, with a

significant increase in learning rate in response to increased volatility (F(1,696)=59, p<0.001) and no

9
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effect of noise (F(1,696)=2.3, p=0.13). In the next sections we characterise how coarsening the BOM
changes its behaviour and assess whether it provides an accurate account of participants’ noise

insensitivity.
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Figure 3. The Behaviour of Bayesian Observer Models. Bayesian Observer Models (BOM) invert generative descriptions of
a process, indicating how an idealised observer may learn. We developed a BOM based on the generative model of the
task we used (a). Details of the BOM are provided in the methods, briefly it assumes that observations (y;) are generated
from a Gaussian distribution with a mean (mu;) and standard deviation (SD;). Between observations, the mean changes
with the rate of change controlled by the volatility parameter (vmu;). The standard deviation and volatility of this model
estimate the noise and volatility described for the task. The last parameters control the change in volatility (kmu) and
standard deviation (vs) between observations, allowing the model to account for different periods when these types of
uncertainty are high and others when they are low. The BOM adjusts it learning rate in a normative fashion (f), increasing it
when volatility is higher or noise is lower. The BOM was lesioned in a number of different ways in an attempt to
recapitulate the learning rate adaptation observed in participants (shown in panel e). Removing the ability of the BOM to
adapt to changes in volatility (b) or noise (c) did not achieve this goal (g,h). However, degrading the BOMs representation
of uncertainty (d) was able to recapitulate the behavioural pattern of participants. Bars represent the mean (zSEM) of
participant learning rates, with raw data points presented as circles behind each bar.

The Degraded BOM Misattributes Noise as Volatility

10
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238  The BOM was degraded by reducing the number of bins it used to represent volatility and/or noise,
239 until its behaviour most closely matched that of participants. This process led to a greater coarsening
240 of the noise than the volatility dimension (Figure 4a; F(1,69)=49, p<0.001), with no effect of outcome
241  valence (F(1,69)=0.73, p=0.4), suggesting that the degraded model maintained a generally less

242 precise representation of noise than volatility. In order to investigate the impact of this coarsening
243 onthe model’s beliefs, we used the degraded BOM's estimates of volatility and noise to categorise
244 task trials as either high or low volatility/noise (i.e. trials in which the model’s estimates of these

245  variables were higher/lower than the mean) and compared these to the same trial labels generated
246 by the intact BOM. Consistent with the greater degradation of the noise dimension, coarsening the
247  model caused it to miscategorise more trials which the intact BOM had labelled as having high than
248  low noise (Figure 4b; F(1,69)=30.7, p<0.01) with no effect of volatility (F(1,69)=1.9, p=0.17) or

249  outcome valence (F(1,69)=0.004, p=0.95). As illustrated in Figure 4c, when the degraded BOM

250  miscategorised high noise trials, it tended to label them as having high, rather than low, volatility.
251 Overall, these results indicate that coarsening the BOM caused it, relative to the intact BOM, to

252  misattribute high noise trials as high volatility trials.
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Figure 4. Analysis of the behaviour of the degraded BOM. The process of degrading the BOM involved reducing the
number of bins used to represent the volatility and noise dimensions independently until the choice of the model matched
that of participants. Panel a illustrates the number of bins selected by this process for the volatility and noise dimensions
(averaged across win and loss outcomes). As can be seen the degraded BOM maintained a less precise representation of
noise than volatility. In order to understand the behaviour of the degraded model, the model’s estimated vmu; and SD;
were used to label individual trials as high/low volatility and noise (NB greater than or less than the mean value of the
estimates). These trial labels were compared with the same labels from the intact model, which were used as an ideal
comparator (panels b and c). Panel b illustrates the proportion of trials in which the labels of the two models agreed,
arranged by the ground truth labels of the full model and averaged across win and loss outcomes. The dotted line indicates
the agreement expected by chance. The degraded model trial labels differed from those of the full model particularly for
high noise trials, with no impact of trial volatility. Panel ¢ provides more details on how the degraded model misattributes
trials. In this figure, the labels assigned by the full model are arranged along the x axis. The colour of each square
represents the proportion of trials with a specific full model label that received the indicated label of the degraded model
(arranged along the y axis). The diagonal squares illustrate agreement between models as reported in panel b. As
highlighted by the red outlines, trials which the full model labelled as having high noise were generally mislabelled by the
degraded model as having high volatility. Reanalysis of participant choices using the trial labels provided by the full (panel
e) and degraded (panel f) models indicate that participants adapt their learning rates in a normative fashion when the
degraded model trial labels are used (panel f), but not when the full model labels are used (panel e). Panel d illustrates the
same analysis using the original task block labels for comparison. Bars represent the mean (+SEM) of participant learning
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rates, with raw data points presented as circles behind each bar. See supplementary figure 1 for a comparison of the
behaviour of the degraded BOM with an alternative fitted model.

The Degraded BOM Rescues Optimal Behaviour

The process of fitting the degraded BOM to participant behaviour can be understood as searching
for a configuration of the model in which participant choice conforms to the normative response to
volatility and noise coded in the model’s structure. In other words, participants’ learning rates
should increase when the degraded BOM'’s estimate of volatility is high and, critically, when it
estimates that noise is low. We demonstrate this by reanalysing participant behaviour, using the trial
labels of the degraded BOM to indicate periods of low/high volatility and noise in place of the task
block labels used in the original analysis. As can be seen (Figure 4f), participants significantly
increased their learning rate when the degraded BOM estimated volatility to be high (F(1,566)=86,
p<0.001) and noise to be low (F(1,566)=81, p<0.001). In control analyses, this normative response to
uncertainty was not seen when the labels from the intact rather than the degraded BOM were used
(Figure 4e), or when the BOM’s representation of outcome mean was degraded, rather than its

estimates of volatility and noise (supplementary materials).

Assuming Human Participants Use the Degraded BOM’s Estimates of Volatility and Noise Rescues

Normative Pupillary Response

If the degraded BOM is a fair representation of how participants are performing the learning task,
then we would expect it to be better able to explain physiological markers of uncertainty estimation
than the simple task block structure or the intact BOM. Specifically, participants’ pupils should be
larger when the degraded BOM thinks that volatility is high and when it thinks noise is low. We first
show (Figures 5a-c) that participants’ pupils do not adapt normatively to the task block structure,
with no main effect of block volatility (F(1,1723)=0.002, p=0.9) and an increase of pupil size in
response to higher noise (F(1,1723)=13.8 p<0.001). In contrast, analysis using the trial labels derived
from the degraded model (Figure 5d-f) recovered the expected increase in pupil size in response to
both raised volatility (F(1,2067)=105, p<0.001) and reduced noise (F(1,2067)=42.3, p<0.001)
suggesting that the model provides a reasonable measure of participants’ estimates of these
parameters. Finally, we tested whether the degraded BOM was able to explain more variance in the
pupil data than the intact BOM. In order to do this, we first regressed participants’ pupil data against
the estimated volatility and noise of the intact BOM, as well as a range of other task related factors

(Figure 5g; see methods for more details of analysis). Having removed the variance accounted for by

13


https://doi.org/10.1101/2023.11.26.568699
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.26.568699; this version posted November 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

306
307
308
309
310
311
312

313

314

315
316
317
318
319
320
321
322

available under aCC-BY-NC-ND 4.0 International license.

these factors, we then regressed the residuals of this first level analyses against the degraded
model’s estimates of volatility and noise. This second level analysis (Figure 5h-i) indicated that the
degraded model was able to account for variance associated with outcome noise that was not
explained by the full model (F(1,286)=4.1, p=0.04), but did not explain additional variance associated
with outcome volatility (F(1,286)=0.1, p=0.75). In summary, assuming that participants used the
degraded BOM'’s estimates of outcome volatility and noise rescued the normative pattern of

physiological adaptation during the task.
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Figure 5: Analysis of pupillometry data. Z-scored pupil area from 2 seconds before to 6 seconds after win (panel a) and
loss (panel b) outcomes, split by task block. Lines illustrate average size, with shaded area illustrating SEM. Panel ¢ Pupil
size averaged across whole outcome period and both win and loss outcomes. Pupil size did not systematically vary by task
block. Panels d-f, as above but using the trial labels derived from the degraded model. Pupil size was significantly larger for
trials labelled as having high vs. low volatility and low vs. high noise. Panel g displays the mean (SEM) effect of volatility and
noise as estimated by the full BOM derived from a regression analysis of pupil data. The residuals from this analysis were
then regressed against the estimated volatility and noise from the degraded model. A time course of the regression

weights from this analysis is shown in panel h, with the mean coefficients across the whole period shown in panel i. The
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degraded model’s estimated noise accounted for a significant amount of variance not captured by the full model (pink line
in h is below 0, the mean effect across the period is represented by dashed lines and arrows in panel i). See supplementary

figure 2 for comparison of the degraded BOM with an alternative fitted model.

Discussion

Humans respond in a rational, if approximate, manner to the causal statistics of dynamic
environments. We found that participants adapted as expected to changes in outcome volatility, but
were relatively insensitive to changes in noise. Using a degraded Bayesian Observer Model (BOM) to
characterise participants’ behaviour suggested that they responded appropriately to a relatively
coarse estimation of the level of noise, that led to its misattribution as volatility. Analysis of
pupillometry data using the degraded model again suggested that participants were responding
normatively to changes in estimated noise, but that these estimates diverged from the true noise of
experienced outcomes. These results illustrate that human learners are able adapt to the statistical
properties of their environment, but that this ability, particularly for outcome noise, is imprecise

which leads to suboptimal choice.

Using a task in which volatility and noise varied independently between blocks, we found that
human learners adapted as expected (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 2012;
Pulcu & Browning, 2019) to blockwise changes in the volatility of both win and loss outcomes,
increasing the learning rate used when volatility was high vs. low. In contrast, the expected
reduction of learning rates in response to increased outcome noise was not apparent, with
participants employing a significantly higher learning rate in response to increased noise when
volatility was low and a numerically lower learning rate when volatility was high. The absence of a
normative response to blockwise changes in noise is at odds with previous work which has described
areduction in learning rates during periods of high noise (Diederen & Schultz, 2015; Nassar et al.,
2010, 2012). However, in this previous work the level of noise was either explicitly presented to
participants (as a bar on screen representing the standard deviation of the generative process in
Diederen & Schultz) or was made unambiguous by being very different from changes caused by
volatility (in Nassar et al, noise was generated using an SD of 5 or 10, while the average change due
to volatility was 100). By design, in the current task high noise and volatility resulted in a similar
range of magnitudes (Figure 1b) forcing participants to use the temporal sequence of outcomes to
discriminate between the different forms of uncertainty. Our behavioural results suggest that, in the
absence of unambiguous differences between outcomes caused by volatility and those caused by

noise, participants’ ability to estimate and/or adapt to changes in noise is reduced. Interestingly, a
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recent study reported that participants do not adjust their choice or estimated confidence in
response to variability in the orientation of arrays of visual gratings (Herce Castafién et al., 2019),
suggesting that an insensitivity to outcome noise may be a general feature of human decision

making, rather than a specific component of learning.

Noise fundamentally limits the reliability of information (MacKay, 2003) and ignoring it has a clear
detrimental impact on inference (Figure 3h), causing agents to be unnecessarily influenced by
chance events (Pulcu & Browning, 2019). It would therefore be surprising if human learners were
completely insensitive to this process, particularly given evidence that they can respond normatively
when the level of noise is unambiguous (Diederen & Schultz, 2015; Nassar et al., 2010, 2012). We
developed an ideal Bayesian Observer Model (BOM; Behrens et al., 2007; Nassar et al., 2010; Piray &
Daw, 2021; Pulcu et al., 2022) to investigate the degree to which participants were adapting to
noise. The intact BOM displayed the expected behavioural response to changes in both volatility and
noise (Figure 3f) and, as a result, did not accurately capture the behaviour of participants (Figure 3e).
Completely removing the BOM'’s ability to adapt to noise (or volatility) did not recapitulate
participant choice behaviour (Figure 3g-h), whereas coarsening its representation of volatility and
noise, produced a much closer match (Figure 3i). This suggests that participants were relatively,
rather than completely insensitive to noise and that they tended to misattribute high noise as
volatility (Figure 4). However, an important caveat to this interpretation is that the degree of
coarsening was selected using participants’ choices. The better behavioural match of the coarsened
BOM to participant learning rates may therefore be simply because this model was fitted to the
same choices used to calculate the learning rates, whereas the intact and fully lesioned models were
not. We therefore sought to validate the coarsened BOM by assessing its ability to account for
participants’ pupillary data, and by comparing it with an alternative fitted BOM which coarsened the
representation of the generative mean, rather than the estimated uncertainty (see supplementary
materials). Participants’ pupil size did not vary systematically between different block types, whereas
they were significantly larger when the degraded BOM estimated volatility to be high and noise to
be low (Figure 5a-f). Similarly, the estimated noise of the degraded BOM accounted for additional
variance in pupil size, over and above the intact BOM (Figure 5g-i). In contrast, the alternative mean-
degraded BOM did not recapitulate participants’ learning rates (supplementary figure 3) and was not
able to account for changes in participant pupil size (supplementary figure 4). The finding that
participants’ pupil size covaries in the expected direction with the degraded BOM’s estimated levels
of both volatility and noise provides some reassurance that the model is capturing the dynamics of

participants’ uncertainty estimates. More generally, the presence of both volatility and noise signals
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in this data, indicate that, as suggested previously (Nassar et al., 2012; O’Reilly et al., 2013), the

pupillometry signal reflects general belief updating rather than specifically volatility.

An outstanding question is why participants might be particularly insensitive to changes in outcome
noise. It is tempting to try to answer this question by reference to the processes by which the BOM
was coarsened (i.e. the insensitivity was caused by a reduction in the precision by which noise was
represented in a multi-dimensional probability distribution). However, the BOM described here was
developed as an algorithmic description of how the learning task may be solved. As far as we are
aware, there is little evidence that it accurately describes the cognitive or neural implementation of
uncertainty estimation. Alternative algorithmic approaches to the general problem of uncertainty
estimation have been described (Kalman, 1960; Nassar et al., 2010; Piray & Daw, 2021; Pulcu &
Browning, 2019), including simpler approaches that avoid computationally expensive
representations of multi-dimensional distributions (Kalman, 1960; Nassar et al., 2010) and which
therefore may be more likely implementational candidates. In other words, the current results
indicate that human learners are relatively insensitive to changes in outcome noise, but do not

specify the lower level mechanisms that determine this effect.

In conclusion, human learners adapt rationally, to estimates of the volatility and noise of
experienced outcomes. However, these estimates are approximate leading to a relative insensitivity

to outcome noise.
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Methods

Experimental model and subject details

Participants. 70 English-speaking participants aged between 18 and 65 were recruited from the
general public using print and online advertisements. A previous study (Pulcu & Browning, 2017) on
behavioural response to changes in volatility reported an effect size of d=0.7. As the effect size of a
noise manipulation was not clear, we recruited a sample size sufficient to detect an effect size of half
this value (d=0.35) with 80% power. Participants were excluded from the study if they had any

psychological or neurological disorders or were currently on psychotropic medication.

Method details

General procedure. Participants attended a single study visit during which they completed the
learning task. Pupillometry data was collected during task completion for the last 36 participants
recruited to the study. The study was approved by the University of Oxford Central Research Ethics
Committee (R49753/REQ01). All participants provided written informed consent to take part in the

study, in accordance with the Declaration of Helsinki.

Behavioural Paradigm. The reinforcement learning (RL) task consisted of six blocks, each comprising
60 trials. In each trial, participants were presented with two abstract shapes taken from the
Agathodaimon font (i.e. shape A and shape B). Two different shapes were used in each block, with
rest sessions between blocks. The shapes were presented randomly on either side of the screen.
Participants were explicitly instructed that this randomised location did not influence the outcome
magnitudes. Participants attempted to accumulate as much money as possible by learning the likely
magnitude of the wins and losses associated with each shape and using this information to guide
their choice. On each trial, participants chose one of two shapes, with their choice highlighted by a
black frame (see Fig 1a). Following the choice, the win and loss amounts associated with the chosen

shape were presented, in randomised order, for a jittered period (2-6 sec, mean: 4 sec) inside two
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434  empty bars, above and below the fixation cross. The win amount was shown as a green area in the
435  upper bar, and the loss amount represented as a red area in the lower bar. The total length of each
436 bar represented £1 (i.e. of wins or losses) and thus the amount associated with the chosen shape
437  was the proportion of the bar filled by the green/red areas (e.g. three quarters of the upper bar
438  being green, would mean that the chosen option was associated with a win of 75p). Participants
439  were informed that the unshaded area of each bar was the amount associated with the unchosen
440 option. Thus, on each trial participants knew how much they had won/lost and how much they
441  would have won/lost if they had chosen the other option. This feature simplified the task; rather
442  than having to separately estimate the wins and losses associated with each shape, participants only
443  had to estimate these values for one shape (with the other shape being £1 minus this value). For
444  each trial participants received the difference between the win and loss amounts associated with
445  their choice. A running total amount of money was displayed in the centre of the screen, under the

446  bars and was updated at the beginning of the subsequent trial with the recent winnings.

447  The wins and the losses associated with each shape followed independent outcome schedules

448 (Figure 1b), generated from a Gaussian distribution. In each block, the win and loss outcomes had
449 either high or low volatility and high or low noise. When volatility was low, the mean of the Gaussian
450  distribution remained constant, when volatility was high the mean changed from between 25-40 and
451  60-75 every 9-15 trials. When noise was low the standard deviation of the Gaussian was set to 5,
452  whereas when noise was high the standard deviation was 35. As can be seen from Figure 1b, these
453  schedules resulted in similar ranges of outcome magnitudes for periods of high noise and high

454  volatility. The first block for every participant had high volatility and low noise for both win and loss
455  outcomes and was used to familiarise participants with the task. Choices from this block were not
456  used in the analyses presented (although including them does not alter the reported pattern of

457  results). The schedules in the remaining five blocks were presented in a randomised order with the
458 constraint that, across both win and loss outcomes, each of the four combinations of volatility and
459  noise level (Figure 1B) were presented either 2 or 3 times. Thus, while each participant completed at
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least two blocks with each of the four combinations of high/low volatility/noise, the specific pairings
of win and loss volatility/noise levels, differed across participants. This approach was used in
preference to a fully factorial design in order to keep the total task duration to a manageable level.
At the end of the experiment, participants were paid one fifth of their total winnings, plus a £15

baseline rate for turning up to take part.

Pupillometry data was collected for 36 of the 70 participants. During collection of pupillary data, the
task was presented on a VGA monitor connected to a laptop computer running Presentation
software version 18.3 (Neurobehavioural Systems). An identical behavioural version of the task,
presented using Psychtoolbox 3.0 on MATLAB (MathWorks Inc.), was used to collect behavioural
data from the remaining 34 participants. In the pupillometry version, participants’ heads were
stabilised using a head-and-chin rest placed 70 cm from the screen on which the eye tracking system
was mounted (Eyelink 1000 Plus; SR Research). The eye tracking device was configured to record the
coordinates of both of the eyes and pupil area at a rate of 500 Hz. The task stimuli were drawn on
either side of a fixation cross which marked the middle of the screen and were offset by 7° visual

angle. The testing session lasted approximately 70 min per participant.

Analysis of Choice Data

Non-model based measure of the influence of outcomes. The manipulation of uncertainty in the
reinforcement learning task is expected to alter the degree to which participants’ choices are
influenced by the outcomes they experience. A simple, if somewhat crude, measure of this influence
can be calculated as the proportion of trials in a block in which participants select the choice
prompted by the win or loss outcomes on the previous trial. Generally, win outcomes of >50p and
loss outcomes of <50p associated with a shape will prompt selection of the same shape on the next
trial, whereas other outcomes will prompt selection of the alternative shape. The overall effect of

win outcomes on choice can therefore be estimated as:

P(choice::A | previous win outcome for A>50p) — P(choice::A |previous win outcome for A<50p)
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That is, the probability of choosing shape A, given that, on the previous trial, a win of >50p was
associated with shape A — the probability of choosing Shape A, given that, on the previous trial a win

of <50p was associated with Shape A. Similarly, the effect of loss outcomes is estimated as:

P(choice::A | previous loss outcome for A<50p) — P(choice::A |previous loss outcome for A>50p)

However, choice is also influenced by the magnitude of the outcome; a win of 90p will have a
greater effect on subsequent choice than a win of 55p. Blocks with high levels of either volatility or
noise have more extreme magnitudes than blocks with low levels of both (Figure 1b) which will bias
any comparison of this metric between blocks. In order to limit the effect of this bias, we estimated
the simple choice metric only for trials in which the previous outcome lay in the range of magnitudes

common to all four blocks, 35-65.

Reinforcement Learning Model: While the choice metric described above provides a relatively
transparent measure of the influence of task outcomes on choice, it does not account for differences
in outcome magnitude making it liable to bias. We therefore fitted a simple reinforcement learning
model to measure block-wise learning rates, which provide a more principled estimate of the degree
to which choices are influenced by outcomes. The model combines a learning phase in which the
magnitude of wins and losses associated with a shape are estimated (note that it is not necessary to

learn the magnitudes associated with the other shape, as these are simply 1- those described below)

QWin_a(t+1) = QWin—a(t) + Qwin (Win(t) - Qwinfa(t))

QlOSS_a(t+1) = Qloss_a(t) + aloss(loss(t) - Qlossfa(t))

In these equations, Qwin_a, and Qloss_a are the estimated win and loss magnitudes associated
with Shape A on trial t, win(,) and loss ) are the observed win and loss outcome magnitudes and
Qyin and @, are the win and loss learning rates. These values are then combined in a decision

phase such that:
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1
1 + e_.B(Qwin_a(t)_Qloss_a(t))

Pchoice_ag =

Where Pchoice_a ;) is the probability that Shape A will be chosen on trial t and f3 is a single inverse
decision temperature. This model was initiated with Qwin_a g = Qloss_ag) = 0.5 and the three free
parameters (win, loss) and B) were estimated for each block and each participant by calculating
the joint posterior probability given participant choice, marginalising each parameter and deriving
the parameters’ expected values (Behrens et al., 2007; Browning et al., 2015). See supplementary

materials for model selection data.

Some analyses reported in the paper (i.e. where trials are labelled as high/low volatility and high/low
noise by the Bayesian Observer Model rather than by task block) cannot be modelled using this
block-wise approach (as different types of trial are interleaved throughout the task, rather than
blocked). In these analyses a similar, single model was fit across all trials in the task. This model had
8 different learning rates (separate win and loss learning rates, for each combination of high/low
volatility and high/low noise labelled trials) and a single inverse temperature parameter. Although
this model is somewhat less flexible than the blockwise modelling approach (i.e. it has 8, rather than
10 learning rates, and 1 rather than 5 inverse temperatures), it produces the same pattern of results
when applied to participant choices split by task block (all estimated learning rates correlate at
r>0.8, Figure 2c-d show results from blockwise fitting, Figure 3e from the simpler model). This
simpler model was fit using stan, with 5000 burn in and 5000 estimation trials, with posterior

convergence visually checked and rhat values of less than 1.1 accepted.

Note that neither of these models describe how participants adjust to different levels of volatility
and noise, they simply estimate the learning rates used in each block/type of trial, which are
expected to vary in response to differences in levels of uncertainty (in contrast, the Bayesian

Observer Model described below does estimate uncertainty and adjust to levels of uncertainty).
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526  Bayesian Observer Model: A recursive, grid-based Bayesian Observer Model (BOM) was developed,
527  similar to that described by Behrens and colleagues (Behrens et al., 2007; Pulcu et al., 2022). The
528 BOM is based on a generative process (see Figure 3), and described fully in Pulcu et al. (Pulcu et al.,

529 2022). Below we summarise the key aspects of the model.

530  The BOM assumes that the observed outcomes at a given time point ¢, y,, are generated from a
531 Gaussian distribution with an unknown mean, y;, and standard deviation, e3Pt with the later

532  producing noise in the observed outcomes (Figure 1b-c).
533 ye~N(ue, e%%t)

534  Asillustrated in Figure 1b-c, the mean of this distribution may change between time points, leading
535  to volatility in the task environment, with this change described by a second level Gaussian
536 distribution, centered on the current mean and with a standard deviation of e”™*t, The mean of the

537  generative Gaussian distribution in the following trial is drawn from:
538 P(pey1)~N(ue, €7m)

539 Both the noise (SD,) and volatility (vmu,) parameters can also change between time points with

540  their change governed by Gaussian distributions centered on their current value with standard

vSD kmu

541 deviations of e and e respectively. These higher-level parameters allow the model to account
542  for periods in which noise and volatility are high and other periods in which they are low (for

543  example, as caused by the uncertainty changes between task blocks).
ekmu)

P(vmugyq)~N(vmu,

544 P(SD;11)~N(SD,, e"*?)

545  The BOM estimates the joint posterior probability of the five causal parameters, given the choice

546  outcome it has observed. The joint probability distribution at time point t is defined as:

547 P(joint,) = P(mu, vmu, kmu,SD, vSD| ¥_1,Vi_2, -, V1)
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This joint probability distribution can be thought of as the BOM'’s belief about the values of each
parameter in the generative model. A Markovian assumption (i.e. that nodes of the model are
sufficient to describe the generative process) simplifies this process and illustrates the recursive

update performed by the BOM:

P(joint,) = P(mu,, vmu,, kmu,, SD,, vSD, | joint,_;,V._1)

We initialized the joint posterior, before observation of any task outcomes as a uniform distribution.
The BOM performs the update, first using Bayes’ rule to incorporate the effect of the most recently
observed outcome, and then accounts for the drifting parameters by using the conditional
probability of the new value of the drifting parameter, given the initial value and drift rate (See;

Pulcu et al., 2022 for a detailed account of this updating process):

p(oint, | joint,_y,y;-1) =
jff pGoint,_, | y,_1)p(SD, | SD,_,, vSD) p(vmu, | vmu,_,, kmu) ...

p(mu, | mu,_,,vmu,),dSD,_,, dvmu,_,, dmu,_,

The value of each node is derived at every time point by marginalizing over all but the relevant

dimension of the joint probability distribution and calculating the expected value of that dimension.

During the task, the shapes presented to participants change between each task block, which means
that, at the start of each block, participants have to relearn the mean associated with each shape.
This was dealt with in the BOM by flattening the mu dimension of the joint probability distribution at
the start of each trial (i.e. replacing the values of the mean dimension, with the average of the joint
distribution across this dimension). The effect of this is to reset the model’s belief about the actual
magnitude associated with the two new shapes, while maintaining its belief about the overall

volatility and noise of the outcomes.

24


https://doi.org/10.1101/2023.11.26.568699
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.26.568699; this version posted November 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

available under aCC-BY-NC-ND 4.0 International license.

The BOM was provided with the win and loss outcomes (as values between 0 and 1) for each trial,
across all trials in the task (excluding the first practice block, although including this did not alter the
pattern of results). It treated the two outcomes as independent (i.e. the win outcome did not
influence estimates for the loss outcome and vice versa) and transformed the outcomes to the
infinite real line using the logistic transform before estimating the posterior probability (Pulcu et al.,

2022).

Lesioning the Bayesian Observer Model: A number of different lesions were applied to the BOM.
First, it's ability to estimate changes in either volatility or noise was removed. This was achieved
simply by removing the kmu or vSD nodes from the BOM (reducing the dimensionality of the joint
distribution by one in each case). The effect of this is to force the BOM to estimate the mean
volatility and noise (respectively) across the whole task, rather than to modify its estimates of these

parameters between trials.

The second approach induced a graded, rather than absolute, lesion. This was achieved by reducing
the precision with which the BOM represented the volatility-related nodes (vmu and kmu) and/or
the noise related nodes (SD and vSD). More specifically, the BOM’s estimates of the values of each of
the five nodes are encoded on a five dimensional grid, with each dimension on the grid representing
the possible range of values of a particular node, from low to high, using a fixed number of points.
The probability ascribed by the model to a specific point on this dimension is the relative probability
that the value of the node lies within the bin of values that is closer to the point, than to adjacent
points. For example, say the value of volatility (vmu) ranged from 0 to 10 and was represented by 10
bins. In this case volatility would be represented by a probability mass function over the 10 bins
(0.5, 0.5-1.5, 1.5-2.5, ..., >9.5). Lesioning occurred by independently varying the number of bins
used in the volatility-related and/or noise-related dimensions, from a maximum of 20, to a minimum

of 2 (i.e. with only 2 bins volatility/noise would be represented as simply “high” or “low”). The
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degree of lesioning selected for each individual participant was determined as the number of bins
for the volatility and noise dimensions that, after passing the model estimates through a softmax
action selector with a single inverse temperature parameter (i.e. as described for the RL model),
maximized the likelihood that the model would make the same choices as the participant, across all
task blocks. This process of lesioning therefore progressively coarsens the BOM'’s representation of
the two types of uncertainty and selects the degree of coarsening that results in choices as similar as
possible to participants (see supplementary materials for an alternative model that coarsens the

representation of the mean values).

Pupilometry Data Preprocessing. Pupilometry data were collected using the Eyelink Il system
(SRresearch) from both eyes, sampled at 500Hz. Preprocessing involved the following steps: Eye
blinks were identified using the built in filter of the Eyelink system and were removed from the data.
A linear interpolation was implemented for all missing data points (including blinks). The resulting
trace was subjected to a low pass Butterworth filter (cut-off of 3.75 Hz), z transformed across the
session (Browning et al., 2015; Nassar et al., 2012), and then averaged across the two eyes. The pupil
response to the win and the loss outcomes were extracted separately from each trial, using a time
window based on the presentation of the outcomes. This included a 2-s pre-outcome period, and a
6-s period following outcome presentation. Individual trials were excluded from the pupilometry
analysis if more than 50% of the data from the outcome period had been interpolated (mean =6.7%
of trials) (Browning et al., 2015). The first 5 trials from each block were not used in the analysis as
initial pupil adaption can occur in response to luminance changes in this period (Browning et al.,
2015; Nassar et al., 2012). The preprocessing resulted in two sets of timeseries per participant, one
set containing pupil size data for each included trial when the win outcomes were displayed and the
other when the loss outcomes were displayed. These pupil area data were binned into one second

bins across the outcome period for analysis (NB Figure 5a-f). This analysis was supplemented by an
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individual regression approach (Figure 5g-i) in which individual participants’ pupil area timeseries
was first regressed against estimated trialwise volatility and noise from the intact BOM (Figure 5g),
as well as a number of control variables (constant term, amount won/lost on trial (i.e. magnitude of
outcome), valence of outcome (win or loss), order in which outcomes were presented (win first/loss
first), trial number (1:360), whether shape chosen switched on next trial or not (1:0)). The residuals
from this regression were then regressed against estimated trialwise volatility and noise from the
degraded BOM (Figure 5h,i). These regression analyses resulted in timeseries of beta-weights that

were analysed in the same manner as raw pupil size data.

Quantification and statistical analysis

Behavioural data were analysed using linear mixed effect models (fitime function of Matlab (2022a))
with participant ID included as a random factor and volatility, noise and valence added as fixed
factors. Two way interactions between fixed effects were also tested (main effects are reported
from models without interaction terms). Addition of random slopes for any of the fixed factors
decreased LME model fit statistics and so were not included (Matuschek et al., 2017). Analysis of
timeseries pupillometry data included the additional fixed effect factor of time across the outcome
period. Learning rates were transformed to the infinite real line using a logistic transform before
analyses (untransformed data are displayed in figures for ease of interpretation). The normality of
the distribution of the residuals of the LME analyses were checked both visually and with a one-
sample Kolmogorov-Smirnov test. Changes in the classification of trials between the full and
degraded BOM (Figure 4b) were analysed using a repeated measures ANOVA with within subject

factors of volatility, noise and valence. Raw data are superimposed on all summary figures.

Code and Data Availability

Study data and analysis scripts, including code for the various models used are available at:

https://osf.io/j7md3/.
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