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Abstract

The Arctic is the fastest-warming region on the planet, and sea ice loss has
opened new habitat for sub-Arctic species such as the killer whale (Orcinus orca). As
apex predators, killer whales can cause significant ecosystem-scale changes, however, we
know very little about killer whales in the Arctic. Setting conservation priorities for killer
whales and their Arctic prey species requires knowledge of their evolutionary history and
demography. We found that there are two highly genetically distinct, non-interbreeding
populations of killer whales using the eastern Canadian Arctic—one population is newly
identified as globally distinct. The effective sizes of both populations recently declined,
and both are vulnerable to inbreeding and reduced adaptive potential. Furthermore, we
present evidence that human-caused mortalities, particularly ongoing harvest, pose an
ongoing threat to these populations. The certainty of substantial environmental change in
the Arctic complicates conservation and management significantly. Killer whales bring
top-down pressure to Arctic food webs, however, they also merit conservation concern.
The opening of the Arctic to killer whales exemplifies the magnitude of complex
decisions surrounding local peoples, wildlife conservation, and resource management as

the effects of climate change are realized.
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1. Background

The Arctic is warming four times faster than the global average[1], thus we expect
to see the earliest and most significant effects of climate change in Arctic ecosystems.
The increase in spatial extent and duration of the Arctic Ocean's ice-free season is of
particular concern. All credible emission scenarios predict that Arctic summers will be
ice-free by the mid-20th century[2]. This will cause substantial ecosystem disruption by
threatening endemic Arctic species that rely on the seasonal features of Arctic
environments and by forcing northern communities to adapt to new conditions[3,4]. For
example, reduced sea ice coverage increases access to the region's resources, leading to
human population growth and increasing pollution and shipping-related
disturbances[5,6]. The loss of habitat for sea ice-dependent algae and phytoplankton
results in negative bottom-up threats to unique sea ice ecosystems as these species
underpin primary productivity at the base of the Arctic food web[3,7]. Finally, sea ice
loss can result in considerable top-down pressure on Arctic food chains by providing
access to predators not previously common in the region[8]. We must build our
understanding of how climate change affects Arctic ecosystems to maintain what we can
for people and wildlife and to hone our understanding of the complexities of ecosystem
changes expected to become prevalent globally in the coming years.

Killer whales (Orcinus orca) are top predators with documented cascading effects
on ecosystems[9—12]. The frequency of killer whale sightings in the eastern Canadian
Arctic has increased considerably since the 1950s[13,14], so there is potential for them to
induce substantial ecosystem-level change in this sensitive region[15]. Inuit knowledge
indicates that small numbers of killer whales have long used the Arctic, but it is uncertain
whether the increase in sightings is due to a growing population, more individuals from
elsewhere using the Arctic, or both[15]. In any case, the growing presence of killer
whales in the Arctic is likely climate-linked, as sea ice blocks access to the region for
these animals[8]. With increasingly prolonged open-water seasons and growing numbers
of killer whales in the region, the direct consumption of Arctic marine mammals is
expected to rise[16—18]. In addition to directly affecting prey numbers, killer whales in

the Arctic disrupt their prey's habitat use and behavior, which stands to reshape marine
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mammal distributions[19]. Conservation efforts require information on the origin of killer
whales using the Arctic, their abundance, demographic trends, population structure, and
threats to their persistence to understand the consequences of global change for Arctic
ecosystems.

In this study, we used whole-genome data to explore the population structure and
origins of Arctic killer whales and their contemporary effective population sizes. We also
conducted a comprehensive survey of published killer whale mortalities in the western
North Atlantic to explore possible anthropogenic causes of recent declines. By examining
population genomics and threats in Arctic killer whales, we can better understand the
consequences of climate warming for Arctic ecosystems and guide future conservation

and management.

2. Methods
(a) Sample collection and sequencing

Killer whale samples were collected in the western North Atlantic (all samples
and locations listed in table S1) through tissue biopsies from free-ranging killer whales (n
= 20), tissue samples from harvested animals (n = 6), and teeth from fatally stranded
killer whales (n = 3). We extracted DNA from skin tissue using a Qiagen DNeasy Blood
and Tissue extraction kit, and DNA from tooth samples using a QlAamp DNA
Investigator kit (Valencia, CA, USA). Sequencing libraries were built using sheared
DNA extracts using NEBNext Ultra Il DNA Library Prep Kit for Illumina (Ipswich, MA,
USA) and sequenced on the [llumina HiSeq X platform (San Diego, CA, USA).

Sequencing read preparation and mapping were conducted following Foote et
al.[20]. Briefly, we trimmed reads with Trimmomatic v0.35[21], then mapped the reads
to a high-quality reference genome assembly (accession #GCA_000331955.1[22]) using
BWA v0.7.12[23]. GATK v3.7.0[24] was used to create an interval file for suspect
indels, combined with high-confidence single-nucleotide polymorphism (SNP) positions,
and filtered to include only autosomal regions. We masked repeats and low-quality
regions using BEDtools v2.27.1[25], then merged the aligned reads with Picard[26].

Finally, to identify genomic variants with the reference genome, we used Freebayes
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v1.2.0, which is a haplotype-based variant detector[27]. Variants were filtered with
Vcftools v0.1.17[28] to remove indels, low quality sites (quality < 30), sites out of
Hardy-Weinberg Equilibrium (p-value threshold < 0.005), and sites with missingness >
0.4. SNPs were further filtered for minor allele frequency < 0.05 and pruned for linkage
disequilibrium (LD r?>> 0.8) to create a dataset for population structure analyses. See
supplemental materials for further details on sample collection, DNA extraction, and

sequencing reads.

(b) Genomic analyses

First, we estimated kinship through R-package SNPRelate v1.30.1[29] and plink
v1.9[30], and removed duplicates and one individual from each close kin pair in
downstream analyses (removed individuals are marked in table S1). Next, to assess
Arctic killer whale population structure, we used Principal Component Analysis (PCA)
with R-package adegenet v2.1.7[31,32] and examined ancestral admixture through sparse
non-negative matrix factorization (SNMF) in the R-package LEA v3.8.0[33]. We used R-
package StAMPP v1.6.3[34] to calculate a fixation index (Fst) to measure genetic
differentiation between the two putative populations (High Arctic and Low Arctic).
Following parameters used in Foote et al.[35], we examined runs of homozygosity
(ROH) across individual genomes using plink v1.9[30] then measured the frequency of
ROH across the genome.

To place the Arctic killer whales within a global context of killer whale
populations, we compared individuals from the two Arctic populations to genomes
sampled from 25 additional sites worldwide[20]. Associations among all samples were
investigated using PCA, then plotted as a covariance matrix. ABBA BABA statistics
(Patterson’s D statistics) were used to test for introgression[36,37] among High and Low
Arctic, and samples in the global dataset (X) at sites where X had a derived allele (i.e., an
allele different to that in an ancestral outgroup).

Demographic history was assessed with several methods to examine historic and
contemporary effective population sizes (Ne). Using SMC++ v1.15.2[38], we identified

historic changes in N. over time and estimated when the two killer whale populations
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135  diverged. Here, we used a mutation rate of 2.34 x 10" based on Dornburg et al.[39] and a
136  generation time of 25.7 years for this species[40]. To estimate recent changes in N.

137  (within the last 150 generations), we used a linkage-based method in the program

138  GONE[41] and followed parameters used in Kardos et al.[42]. Finally, we estimated

139  contemporary effective population sizes for both populations separately through StrataG
140  v2.5.1[43], using a SNP dataset that was further filtered and randomly down-sampled to
141 25,000 SNPs.

142 For further detail on genomic analyses methods, please refer to the supplemental
143 materials.

144

145  (c) Survey of anthropogenic killer whale mortalities

146 To assemble a database of killer whale mortalities from anthropogenic causes in
147  the western North Atlantic, we searched for records of these events bounded by 45°W
148  longitude (south of Cape Farwell, Western Greenland) and 10°N latitude (to Trinidad and
149  Tobago). Mortality types were divided into categories for commercial whaling,

150  subsistence harvests, opportunistic harvests, fishing gear entanglement, and retaliatory.
151  Some uncertainty in the number of records could be due to some sources pooling catch
152 records by month, a likely underestimated number of commercial kills, potential under-
153 reported struck and loss rates, and discrepancies between sources. We did not include

154  mortality from natural causes.

155

156 3. Results and discussion

157  (a) Population structure and evolutionary origins of Arctic killer whales

158 We found clear, consistent evidence for two genetically distinct populations using
159  the eastern Canadian Arctic. One population comprised individuals sampled in the

160  eastern Canadian High Arctic and Newfoundland (hereafter referred to as the "High

161  Arctic" population); the second included individuals sampled from the Canadian Low
162 Arctic and Greenland (hereafter referred to as the "Low Arctic" population) (figure 1).
163 Although the geographical range of these two populations overlaps temporally in the

164  Arctic, they were highly genetically distinct (Fst =0.198; 0.198 to 0.200 95% CI). When
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165 comparing the Arctic whales with the global dataset, High Arctic killer whale genomes
166  were distinct with this analysis as well, and Low Arctic whales were genetically similar
167  to individuals sampled from the eastern North Atlantic (Greenland, Norway, and Iceland)
168  (figure 2). These analyses suggest that there is very limited or no contemporary gene flow
169  between the two groups. Notably, the High Arctic individuals were genetically distinct
170  from all other sampled populations—they thus comprise a newly genetically identified
171  population of killer whales. It is possible that the High Arctic population is the Arctic

172 population Inuit communities have long seen in the region, but genetic confirmation of
173 this would require older samples than are currently available.

174 The evolutionary origins of the High and Low Arctic killer whales suggest their
175  co-occurrence in eastern Canadian Arctic waters is a secondary contact between an

176  ancestral Atlantic population and a derived sub-Arctic population. Analyses of shared

177  ancestry among the global sample of killer whales suggest that High Arctic killer whales
178  are derived from an ancestral Atlantic population; they harbored an excess of derived

179 alleles shared with killer whales sampled in Brazil and Newfoundland. In contrast, Low
180  Arctic killer whales likely derived from a population that expanded into the eastern North
181  Atlantic from Greenland, Iceland, and Norway (table S2; figure S1). We estimated the
182  timing of divergence between the High and Low Arctic populations to have occurred near
183  the end of the Last Glacial Maximum approximately 9-20 kya ago (figure S2). The lack
184  of strong genetic similarity and shared ancestry with killer whales outside the Atlantic
185  Ocean suggest that these two populations evolved within the Atlantic rather than via

186  colonization from a different region.

187 We know relatively little about the ecology of the killer whales that use the

188  Arctic[15]. However, ecological divergence and specialization underlie genetic

189  differentiation between killer whale populations elsewhere. For example, killer whales in
190  the northeastern Pacific Ocean and the Southern Ocean have recognizable ecotypes based
191  on diet, social behavior, morphology, and genetics[44—49]. The level of differentiation
192 between the High and Low Arctic killer whales is comparable to the difference between
193 ecotypes from within the Antarctic and Pacific oceans[50]. However, it is much less clear

194  whether North Atlantic populations can be ecologically categorized as discretely[51,52].
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195  Fatty acid signatures from killer whales and their prey point to gradients in diet across the
196  region—Xkiller whales in the western North Atlantic, including Canadian waters, primarily
197  consumed other whale species (e.g., [53]), and individuals from Greenland prey mainly
198  on seals and fish such as herring (Clupea harengus) and mackerel (Scomber

199  scombrus)[54]. Direct observations of killer whales feeding in the Canadian Arctic

200  support these findings, with beluga (Delphinapterus leucas) and narwhal (Monodon

201  monoceros) observed as prey most often, followed by bowhead whales (Balaena

202  mysticetus), ringed (Pusa hispida), harp (Pagophilus groenlandicus), bearded

203  (Erignathus barbatus), and hooded (Cystophora cristata) seals[13,55]. In Greenland,

204  Inuit hunters report seals as the main killer whale prey, followed by fish and minke

205  whales and narwhals in the northernmost part of West Greenland[56—58]. Therefore, we
206  have limited data to support ecological discreteness, but strong evidence for genetic

207  differentiation in killer whale populations of the eastern Canadian Arctic.

208

209  (b) Population demography and threats to Arctic killer whales

210 The most important quantities for understanding population biology, and for

211  conservation and management decision-making, are the number of individuals in a

212 population, the effective population size, and whether these values are trending up or

213 down. The number of individuals in a population governs population ecology, and the
214  effective population size shapes several evolutionary processes[59]. The effective

215  population size is an estimate of the strength of genetic drift a population experiences.
216  The smaller the effective population size, the faster a population loses genetic diversity.
217  This is important because genetic diversity contributes to population mean fitness and the
218  capacity to adapt to current and future environmental change[60]. Additionally, the

219  efficiency of natural selection is inversely proportional to the strength of drift, meaning
220  small populations will have difficulties adapting to environmental change. In practice, the
221  effective population size will be much smaller than, and not well correlated with, the

222 census population size due to variation in reproductive success and output across

223 individuals and the population's demographic history. For conservation and management,

224 itis important to note that population sizes increase much faster than genetic diversity
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due to the slow rate at which mutations accrue. Thus, growing and even relatively large
populations can be at risk, evolutionarily speaking, if their effective size is low. Below
we explore threats to Arctic killer whale populations related to trends in effective
population size and the numbers of individuals in the populations.

The genetic diversity and demographic histories of the Canadian Arctic killer
whale populations strongly suggest that they warrant conservation concern. We found the
effective population sizes of the High and Low Arctic populations are 20 (N. = 19.67;
19.65 to 19.69 95% CI) and 14 (Ne = 13.92; 13.89 to 13.94 95% CI), respectively. These
very small effective population sizes mean that these populations will have difficulty
adaptively responding to future environmental change. Recently, the United Nations
Convention on Biodiversity adopted the Kunming-Montreal global biodiversity
framework to guide biodiversity conservation interventions. This agreement prioritized
two indicators of population genetic risk. First, the agreement considers effective
population sizes < 500 to be at high genetic risk due to loss of adaptive capacity [headline
indicator A.5 for Goal A and Target 4CBD, 2022[61]]. The effective sizes identified here
are approximately 14x to 20x below United Nations guidelines for limiting genetic risk.
While the relationships between effective population size and genetic risk are context-
dependent, the low effective population sizes in the High and Low Arctic are concerning
for their capacities to maintain genetic diversity and adaptive resilience. The second
headline indicator for evolutionary risk is the loss of genetically distinct populations. The
genetically distinct Arctic populations we identify merit conservation and management
concern based on both criteria.

The two Arctic populations arrived at their similarly low effective population
sizes differently and in ways that will affect conservation efforts and likely their
outcomes. The populations drifted genetically following their initial divergence (figure
S2) and the effective population sizes of both populations were stable for most of the last
4000 years (figure 3a). However, both populations have experienced notable recent
declines (figure 3a). The High Arctic population decline was much more pronounced
than in the Low Arctic population, which had a much smaller effective population size

across those 4000 years. Although both populations' contemporary effective sizes are
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similar, the Low Arctic population is much more inbred than the High Arctic population,
as shown by the greater proportion of runs of homozygosity (figure 3b). The difference in
inbreeding between the High Arctic and Low Arctic is likely due to the recency and
magnitude of the decline in effective population size in the High Arctic whales, as
genetic drift and inbreeding accumulate for many generations after the initial population
declines. Given the similar contemporary effective population sizes, we should expect
ongoing inbreeding in the Low Arctic population with the levels of genetic diversity in
both populations eventually converging.

The very low contemporary effective population sizes suggest that Arctic killer
whales are vulnerable to inbreeding depression. Inbreeding depression causes reduced
survival and reproduction in small populations due to increased homozygosity of partially
recessive deleterious alleles. The well-documented negative effects of inbreeding in
Southern Resident killer whales are instructive for the Arctic populations[42]. The
Southern Resident and Low Arctic populations have very comparable recent
demographic histories and patterns of runs of homozygosity, and all three populations
have comparable contemporary effective population sizes (Southern Resident N =27,
Kardos et al.[42]; High Arctic Ne = 20; Low Arctic Ne = 14). Using long-term individual
based monitoring data in the Southern Resident population, Kardos et al.[42] found
convincing evidence that inbreeding depression limits population growth in Southern
Resident killer whales, and predicted further population declines in the system due to
inbreeding. Given historical and contemporary demographic similarities with the Low
Arctic population, those findings bear on the current and future effects of inbreeding for
the Arctic whales—inbreeding depression will likely limit population recovery. While
both Arctic populations may be threatened by inbreeding, the smaller runs of
homozygosity in the High Arctic population mean that conservation action focused on
extrinsic threats and maintaining population size could mitigate the risk of inbreeding
depression in this population.

Census population size estimates help put effective population sizes into context
regarding human-caused mortalities. The number of killer whales in the northern Baffin

Island region is estimated to be between 136 to 190 individuals, based on photographic

10
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capture recapture[18]. In our survey of published killer whale mortalities in the western
North Atlantic (table S3, figure S5), we found that commercial whaling and subsistence
harvest were the leading documented sources of mortality. The earliest whaling record in
the region was from Nuuk, West Greenland, in 1756[56,62]. Harvest has continued since
then, with Greenland introducing a bounty on killer whales from 1960-1975[56]. This
harvest continues to this day with a distinct increase in southeast Greenland starting in
2009, following a climate-related ecosystem shift caused by the collapse of drifting sea
ice during summer and a consequent increase in the number of killer whales in the
area[58,63]. Of the 500 mortalities we document, all but two (fishing gear entanglement)
were intentional kills. This literature survey is very likely an underestimate of human-
caused mortality. Kills in Canadian waters are under-reported but second and third-hand
accounts suggest they occur[64]. Killer whales are often difficult to retrieve as they
readily sink after being killed due to having relatively little blubber, decreased buoyancy
in cold waters[65], and because they are or were not killed for consumption—Xkiller
whales are sometimes seen as threats to people and valued wildlife[58]. These deaths
often go unreported but could be substantial in number. For example, during three hunts
in Greenland, interviewed hunters reported landing 4 whales with an additional 9 whales
killed, unretrieved, and unreported in harvest data[58].

Movement within a population is important to consider when looking into
anthropogenic mortalities, since hunting pressure in one location may affect the
population inhabiting multiple areas. Our genomic results suggest the High Arctic
population range between Mittimatalik and Newfoundland and photographic recaptures
support this. Two individual killer whales (DI02 and DI03) first identified near Disko
Island, Greenland in 2011[66] were re-sighted near Mittimatalik, Nunavut in 2019
(ECA072 and ECAOQ71, respectively)[67]. This evidence shows that killer whales are
moving between eastern Canadian Arctic and west Greenland waters, indicating that
killer whales in the High Arctic population are subject to harvest pressure in Greenland.
It is likely that harvest has contributed to the recent population declines we document and

is a threat to population recovery.

11
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4. Conservation implications

The task of conservation given climate change presents a classic 'wicked problem'
that will continue to play out globally. Accumulated greenhouse gas emissions and future
emissions targets ensure that the planet’s ecosystems will be highly altered regardless of
future mitigations. With conservation of the present state in many regions ranging from
impractical to impossible we are forced to conserve what we can and manage wildlife for
an uncertain future. The case of killer whales in the Arctic exemplifies the magnitude of
complex decisions related to people and wildlife conservationists and managers will face
as the effects of climate change are realized throughout the planet. The current small,
genetically homogeneous, and potentially ecologically distinct killer whale populations in
the eastern Canadian Arctic are susceptible to inbreeding and harvest, as well as a high
exposure to contaminants[68]. Conservation and management issues are made more
complex by the lack of foundational knowledge in these systems, exemplified by the
newly identified High Arctic population. At the same time, the increasing use of the
Arctic and consumption of Arctic marine mammals by killer whales could also cause
significant ecosystem-scale change concurrent with other threats through trophic
cascades (e.g., [9—11,69]; although see [70,71]). Arctic marine mammals use sea ice to
reduce the risk of killer whale predation. With the loss of ice cover, killer whale
predation could lead to severe consequences for their prey populations. The marine
mammals that the killer whales hunt while in northern waters are culturally and
economically important to indigenous communities, so these species also merit
conservation and management concern in light of killer whale populations moving into
the Arctic. Effective conservation and management of killer whale populations and their
ecosystems will require a holistic approach that considers their genetic background, and
complex interactions among killer whale populations, changing prey interactions, and
other human-induced threats in the context of ongoing climate change. This will require
collaborations among scientists, policymakers, and stakeholders across national and
international borders. Finally, it will require a commitment to address the root causes of
threats to killer whale populations, including climate change and human activities such as

past and current whaling.
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566
567  Figure 1. Two sympatric killer whale populations in the eastern Canadian Arctic. (a)

568  Sampling locations with respective sample sizes in parentheses (n = 29). Locations with
569 an asterisk (*) include individuals from close kin or duplicate pairs that were excluded in
570  population structure analyses. (b) PCA containing high proportion of variance and (c¢)

571  admixture results support evidence of two genetic populations.
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572

573  Figure 2. Arctic killer whales positively covaried with whales sampled in Newfoundland
574  and eastern North Atlantic. Covariance matrix from a PCA among global killer whales
575  with two samples from this study and samples from a previously published global dataset
576  in Foote et al. (2019). "Mittimatalik, Canadian Arctic" represents the High Arctic

577  population; and "Naujaat, Canadian Arctic" represents the Low Arctic population.
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580  Figure 3. Recent population declines and levels of inbreeding. (b) Arctic killer whale

581 effective population sizes across over the past 150 generations (generation time of 25.7
582  years[40]) (see figure S3 for the model without minor allele frequency filter). Bolded

583  lines represent the median estimates and shaded regions are 95% confidence intervals. (b)
584  Proportions of runs of homozygosity (ROH) using a minimum ROH length of 1 Mb for
585  each killer whale individual from the eastern Canadian Arctic (see figure S4 with a

586  minimum ROH length of 1.5 Mb).
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