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Abstract 42 

 43 

 44 

Right ventricular (RV) structure and function play a key role in mediating the morbidity and 45 

mortality from coronary artery disease (CAD), dilated cardiomyopathy (DCM), pulmonary 46 

hypertension and heart failure. No previous study has evaluated the genetic basis of RV 47 

measurements. We perform genome-wide association analyses of four clinically relevant RV 48 

phenotypes (RV end-diastolic volume, RV end-systolic volume, RV stroke volume, RV 49 

ejection fraction) from cardiovascular magnetic resonance images, using a state-of-the-art 50 

deep learning algorithm in 29,506 UK Biobank participants. We identify 25 unique loci 51 

associated with at least one RV phenotype at P < 2.27 x 10-8. In a combined meta-analysis (N 52 

= 41,830), 17 out of 25 loci are validated. Of these, 10 loci are not known to be associated 53 

with left ventricular phenotypes. Several candidate genes overlap with Mendelian 54 

cardiomyopathy genes and are involved in cardiac muscle contraction and cellular adhesion. 55 

The RV polygenic risk scores are associated with DCM, CAD and hypothyroidism. The 56 

findings represent a significant advance in our understanding of the genetic underpinning of 57 

RV measurements. 58 

 59 

 60 

mailto:p.b.munroe@qmul.ac.uk


 3 

 61 

Introduction 62 

 63 

The vital role of cardiac right ventricular (RV) structure and function in congestive heart 64 

failure, arrhythmia, pulmonary hypertension and sudden death is increasingly recognised1–5. 65 

The RV ejection fraction is an independent predictor of morbidity and mortality in the 66 

settings of acute myocardial infarction, ischaemic cardiomyopathy and all-cause heart 67 

failure6–11. Reduction in RV longitudinal function is associated with an increased risk of 68 

mortality or cardiac transplantation in patients with myocarditis12. In non-ischaemic dilated 69 

cardiomyopathy (DCM), RV end-diastolic and end-systolic volumes and RV ejection fraction 70 

are predictive of heart failure hospitalisation and death13,14. RV hypertrophy has been 71 

associated with heart failure or death in a multi-ethnic population free of clinical 72 

cardiovascular disease at baseline15 and RV longitudinal function has been found to predict 73 

cardiovascular death in the general population16, even after adjusting for the corresponding 74 

LV parameters. 75 

 76 

Morphologically, the right ventricle possesses a complex anatomy which appears triangular 77 

when viewed laterally and semi-lunar when viewed in cross-section17. Functionally, the main 78 

purpose of right ventricle is to propel systemic venous blood into the low-resistance 79 

pulmonary circulation. Despite the physiological and clinical significance of RV structure 80 

and function, there is a dearth of data on the genetic basis of RV imaging measurements. 81 

Previous studies investigating the genetic architecture of ventricular imaging traits focused 82 

solely on the left ventricle18–22. The major obstacle to accurate phenotyping in large studies is 83 

the complexity of RV geometry which defies conventional assessment with two-dimensional 84 

echocardiography. As a result, there has been no evidence to-date from a large-scale genome-85 
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wide analysis of RV imaging phenotype. Cardiovascular magnetic resonance (CMR) imaging 86 

is considered as the gold standard for comprehensive evaluation of the right heart due to its 87 

superior image quality and reproducibility23 and the lack of geometric assumptions compared 88 

to conventional echocardiography. The absence of ionising radiation in CMR compared to 89 

multidetector computed tomography also makes it ideal for large-scale population studies. 90 

The UK Biobank, one of the largest population imaging studies, has acquired both high-91 

quality standardised CMR examinations and dense genotype data, offering a tremendous 92 

opportunity to investigate the as-yet-unknown genetic determinants of RV parameters.  93 

 94 

In this study, we aim to investigate the genetic basis of four clinically relevant and 95 

prognostically important RV imaging phenotypes (RV end-diastolic volume [RVEDV], RV 96 

end-systolic volume [RVESV], RV stroke volume [RVSV] and RV ejection fraction 97 

[RVEF]). We report single nucleotide polymorphism (SNP)-based heritability estimates of 98 

19% to 34% and a total of 46 locus-trait associations (25 unique loci) associated with RV 99 

structure and function. The RV GWAS loci are enriched in the components of cell adhesion 100 

and several putative candidate genes associated with RV phenotypes are linked to inherited 101 

cardiomyopathy and intra-cellular calcium handling. The phenome-wide scanning with RV 102 

polygenic risk scores shows associations with DCM, ischaemic heart disease and 103 

hypothyroidism. Overall, this study substantially enhances our knowledge of the genetic 104 

underpinning of RV structure and function and underscores their shared genetic architecture 105 

with intrinsic heart muscle disease and arrhythmia development. 106 

 107 

Results 108 

 109 

Derivation of high-quality RV phenotypes enabled by deep learning 110 
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 111 

A total of 32,581 CMR studies were available at the time of analysis. The first 5,065 studies 112 

were manually segmented by eight human analysts to create a reference dataset for four RV 113 

structural and functional phenotypes (RVEDV, RVESV, RVSV and RVEF). This expert-114 

annotated dataset was used to train a deep fully convolutional neural network with a U-net 115 

like architecture24,25, which subsequently performed automatic segmentation of the remaining 116 

27,516 CMR studies (Methods). Both manual and automatic techniques produced highly 117 

accurate and reproducible RV segmentation and derived measurements as indicated by their 118 

Dice scores and intra-class correlation coefficients (ICC) (manual Dice = 0.87, manual ICC: 119 

0.77-0.92 and automatic Dice = 0.90, automatic ICC: 0.90-0.96)26,24. Following the exclusion 120 

of poor image quality and sample quality-control procedures, 29,506 European participants 121 

free from a diagnosis of myocardial infarction or heart failure remained (Supplementary Fig. 122 

1). The average age of the cohort at the time of imaging visit was 63 years and 47% were 123 

men. The mean values of RVEDV, RVESV, RVSV and RVEF were 157 ml, 68 ml, 89 ml 124 

and 57 %, respectively (Supplementary Table 1 and Supplementary Fig. 2). An overview of 125 

study design is presented in Fig. 1. 126 

 127 

Heritability and genotypic correlation 128 

 129 

We estimated the proportion of RV phenotypic variation attributable to the genotypes (also 130 

known as SNP-based heritability) by the variance component analysis (Methods). The RV 131 

structural and functional measurements were moderately heritable with SNP-based 132 

heritability of 31% for RVEDV, 34% for RVESV, 19% for RVSV and 21% for RVEF. The 133 

magnitude of genotypic correlation (rg) between the RV phenotypes was moderate to high for 134 

all traits except for the correlation between RVEDV and RVEF (rg = -0.13). The strongest 135 
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positive genotypic correlation was observed between RVEDV and RVSV (rg = 0.83) and the 136 

strongest negative genotypic correlation was found between RVESV and RVEF (rg = -0.67). 137 

The overall pattern of RV genotypic correlations closely mirrored the corresponding 138 

phenotypic correlations (Supplementary Fig. 3). 139 

 140 

Genomic loci associated with RV phenotypes 141 

 142 

The conventional single-trait genome-wide association analyses were conducted in ~ 9.9 143 

million variants with minor allele frequency (MAF) ³ 0.01 and INFO score > 0.3. 144 

Additionally, to leverage on the increased statistical power afforded by highly correlated RV 145 

phenotypes, we performed paired multi-trait analyses using the single-trait GWAS summary 146 

statistics. Specifically, RVEDV was paired with RVSV and RVESV was paired with RVEF. 147 

The single-trait and multi-trait analyses yielded a total of a total of 46 susceptibility loci 3 12 148 

loci for RVEDV, 14 loci for RVESV, 5 loci for RVSV and 15 loci for RVEF 3 at P < 2.27 x 149 

10-8 (conventional GWAS P value 5 x 10-8 divided by 2.2, effective number of tests for 150 

correlated RV phenotypes) (Table 1 and Fig. 2). Out of 46 loci, 34 loci were discovered by 151 

single trait analyses and the remaining 12 loci were obtained from joint multi-trait analyses. 152 

The LocusZoom region plots for all RV loci are depicted in Supplementary Fig. 4. Twelve 153 

loci (TTN, ATXN2, PTPN11, ACTN4, RBL2, LUC7L2, AK097794, BAG3, GOSR2, SLC6A6, 154 

OBSCN, FHOD3) were shared across more than one RV phenotype at our pre-defined 155 

GWAS P value (2.27 x 10-8) resulting in 25 unique loci (Supplementary Fig. 5). Furthermore, 156 

all loci except for SVIL and CCDC85C for RVEF were associated with at least one other RV 157 

phenotype at a suggestive significant P < 1 x 10-5 (Supplementary Table 2), reflecting the 158 

strength of underlying phenotypic and genetic correlations. There was no evidence of 159 

confounding from population stratification or cryptic relatedness in our GWASs as 160 
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demonstrated by low genomic inflation factor (� = 1.071 3 1.102), small LD score regression 161 

intercept (1.00 3 1.01) and the quantile-quantile plots (Supplementary Fig. 6). The lead 162 

variants explained a small proportion of trait variance (R2 for RVEDV: 0.41%, RVESV: 163 

0.96%, RVSV: 0.30%, RVEF: 1.48%). The clumping procedure at linkage disequilibrium 164 

(LD) r2 < 0.1 in each genomic locus produced independent variants for several loci as 165 

indicated in the footnote of Table 1. 166 

 167 

Meta-analysis of RV loci 168 

 169 

We sought validation of the RV loci in the new UK Biobank sample which became available 170 

at the end of our discovery analysis (Nmax = 11,073) and Multi-Ethnic Study of 171 

Atherosclerosis (MESA) (N European ancestry = 1,251). We performed a meta-analysis 172 

combining the association summary statistics from the discovery analysis, the new UK 173 

Biobank sample and MESA, in a total of up to 41,830 individuals. In this analysis, 17 out of 174 

25 unique loci achieved validation by attaining genome-wide significance at Pmeta-analysis < 175 

5x10-8 (Table 1 and Supplementary Table 3). Four out of five loci highly specific to RV 176 

phenotypic variations (OBSCN, PALLD, AK311445, SVIL) were validated by the meta-177 

analysis. The lead variant of CCDC85C locus (rs79884713) which failed to achieve 178 

validation (Pmeta-analysis = 1.8x10-4) tags few LD proxies (Supplementary Fig. 4.4) and the 179 

genes in this locus were not convincingly supported by our subsequent bioinformatic 180 

analyses. 181 

 182 

Shared genetic architecture with known LV loci 183 

 184 
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No prior study had investigated the genetic architecture of RV imaging phenotypes; hence, 185 

all genetic loci reported in this study are new observations. However, due to interdependent 186 

nature of LV and RV chambers and the importance of RV remodelling in the context of left 187 

heart disease, we first sought to quantify the strength of their genetic correlations by LD 188 

score regression using our RV summary statistics and the summary data from a recently 189 

published LV GWAS22. The LV and RV imaging phenotypes were highly correlated except 190 

for the relationships between functional traits (RV and LV stroke volume and ejection 191 

fraction) where negligible genetic correlation was observed (Supplementary Fig. 7). We then 192 

looked up our RV lead variants in the published GWAS data of CMR-derived LV phenotypes 193 

to identify common genetic loci. The lead variants at 7 RV loci (TTN, SLC6A6, PTPN11, 194 

BAG3, ATXN2, SLC35F1 and CLCNKA) were also associated with CMR LV phenotypes at P 195 

< 5 x 10-8 (Supplementary Table 4). Additionally, 4 RV loci (AK097794, GOSR2, TPM2 and 196 

FHOD3) were associated with at least one LV imaging phenotype at a suggestive P < 1 x 10-
197 

5. The remaining 6 loci (AK311445, HSPA4, OBSCN, PALLD, PLEC, SVIL) did not have 198 

strong evidence of association with LV phenotypes. 199 

 200 

Pleiotropic associations with other complex traits 201 

 202 

We interrogated the Phenoscanner database27 to explore pleiotropic associations between our 203 

lead variants (and their close proxies at LD r2 ≥ 0.8) and other complex traits. Variants in 8 204 

loci (TTN, BAG3, ATXN2, PTPN11, GOSR2, SLC35F1, PLEC and HSPA4) were associated 205 

with several traits including cardiovascular risk factors and disease phenotypes (Fig. 3). To 206 

highlight a few relevant associations, our GWAS variant in the BAG3 locus (rs2234962) has 207 

been implicated in DCM and the variants in ATXN2 and PTPN11 loci have multiple 208 

pleiotropic relationships with CAD and risk factors such as hypertension, diabetes mellitus 209 



 9 

and lipids (Supplementary Table 5). We observed variants at 2 loci to be associated with CV 210 

traits only (TTN and GOSR2). Four RV loci (OBSCN, PALLD, AK311445, SVIL) showed 211 

very limited evidence of association with other traits including LV phenotypes, thus, 212 

appeared more specific to the RV phenotypes (Supplementary Fig. 8). 213 

 214 

Functional annotation of variants 215 

 216 

The RV GWAS loci harboured a total of 2756 candidate variants in 99% credible sets (2.1% 217 

exonic variants, 47% intronic variants, 31% intergenic variants, and the remainder are non-218 

coding RNA, untranslated, upstream and downstream variants). Four exonic variants were 219 

predicted to be damaging by two or more in-silico prediction tools. These variants are 220 

rs16866380 in the TTN gene, rs10497529 in the CCDC141 gene, rs2234962 in the BAG3 221 

gene and rs34674752 in the SHARPIN gene. Among the non-coding variants, 25 variants 222 

were considered functionally important according to RegulomeDB28 or Combined 223 

Annotation Dependent Depletion (CADD) score29. The eCaviar30 colocalisation analysis, 224 

which uses the gene expression data in cardiovascular tissues, detected at least one causal 225 

variant in 16 out of 17 validated RV loci. The putative causal variant differed from the lead 226 

variant in the majority (72%) of cases (Table 1). The functional characteristics of GWAS 227 

variants are outlined comprehensively in Supplementary Table 6. We next investigated the 228 

enrichment of our GWAS loci in a wide spectrum of known biological annotations using the 229 

DEPICT31 (Data-driven Expression Prioritized Integration for Complex Traits) framework. In 230 

this analysis, the GWAS summary statistics for each RV phenotype at P < 1x10-5 was 231 

inputted into the software. Enrichment in the components of cell adhesion (in particular cell-232 

substrate junctions that anchors cells to the extracellular matrix) was observed at false 233 

discovery rate < 0.05 for RVEDV and RVSV (Supplementary Table 7). 234 
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 235 

Candidate gene identification 236 

 237 

We sought to identify candidate genes influencing RV phenotypic variation using an 238 

integrative approach supported by multiple lines of evidence. Based on the downstream 239 

analysis of the discovery GWAS summary statistics, eight genes were prioritised by the 240 

presence of damaging non-synonymous variants, 44 and 37 genes were identified by 241 

transcriptome-wide analysis of predicted gene expression and splicing, respectively, in S-242 

MultiXcan32 (Supplementary Tables 8-9), 32 genes were associated with alteration of 243 

myocardial phenotypes in mouse knockout models, 28 were discovered by the long-range 244 

chromatin interaction analyses (Supplementary Table 10) and 129 were identified by position 245 

(± 100kb of the lead variant). The gene-based analysis in MAGMA33 (Multi-marker Analysis 246 

of GenoMic Annotation) which also incorporates rare variants by burden scoring identified 247 

59 additional genes (Supplementary Table 11) including CAV3 and MYH6 (both associated 248 

with RVSV), two well-known causative genes for familial hypertrophic cardiomyopathy 249 

(HCM). In total, 221 candidate genes were mapped as detailed in Supplementary Table 12. 250 

Some notable candidate genes include FHOD3, MYL4 and TMEM43 known to be associated 251 

with inherited cardiovascular disease. 252 

 253 

The functional profiling of prioritised genes in the 17 validated RV loci using g:Profiler 254 

revealed enrichment in the biological pathways associated with cardiac morphogenesis, 255 

structural constituents of heart muscle, cardiac muscle contraction and adrenergic signalling 256 

in cardiomyocytes (Fig. 4 and Supplementary Table 13). 257 

 258 

Phenome-wide association study (PheWAS) 259 
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 260 

We investigated the relationships between weighted polygenic risk scores (PRSs) constructed 261 

from the lead and secondary variants of the validated loci for each RV phenotype and 1041 262 

disease phenotypes derived predominantly from the hospital episodes data. The PheWASs 263 

showed significant associations with ischaemic heart disease, myocardial infarction, 264 

primary/intrinsic cardiomyopathy and heart failure (Supplementary Table 14). A strong 265 

signal of association was noted between RVEF PRS and non-ischaemic DCM (odds ratio 266 

0.70, 95% confidence interval: 0.64 3 0.77, adjusted P = 5.64 x 10-12, per 1 standard deviation 267 

increase in PRS) (Fig. 5). Interestingly, beyond the circulatory system, a negative association 268 

was identified between the genetic risk scores of RVEDV, RVESV and RVSV and 269 

hypothyroidism, which may reflect the perturbation in preload and cardiac output often seen 270 

in this condition34. 271 

 272 

Discussion 273 

 274 

This is the first study to examine the genetic determinants of clinically relevant RV structural 275 

and functional phenotypes, robustly derived from high-quality CMR examinations. Both 276 

single-trait genome-wide association and multi-trait joint analyses were conducted using ~9.9 277 

million common genetic variants obtained from ~29,000 individuals free from pre-existing 278 

heart failure or myocardial infraction. This approach yielded a total of 25 unique loci (46 279 

locus-trait associations) for RV structure and function. A follow-up European ancestry meta-280 

analysis (Nmax = 41,830) validated 17 out 25 loci, 10 were not previously known to be 281 

associated with LV phenotypes. The discovered GWAS loci are enriched in the processes of 282 

cell-matrix adhesion. Extensive multi-layered bioinformatic annotations identified candidate 283 

genes involved in inherited cardiomyopathy and muscle contraction. The phenome-wide 284 
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association scanning with RV polygenic scores demonstrated the relationships between 285 

genetically determined RV structure and function and ischaemic heart disease, non-ischaemic 286 

dilated cardiomyopathy and heart failure, further underscoring the prognostic importance of 287 

RV imaging phenotypes. 288 

 289 

Prior to this study, little was known about the heritability and genetic basis of RV 290 

measurements primarily due to difficulties in imaging the complex geometry. Delineation of 291 

RV cavity to extract quantitative phenotypes such as RV volume is equally challenging and 292 

requires experienced analysts to perform a time-consuming annotation process called 293 

segmentation. In this study, acquisition of highly standardised CMR images coupled with the 294 

state-of-the-art automatic segmentation technique revolutionised by deep learning permitted 295 

characterisation of the genetic architecture of clinically relevant RV measurements and 296 

provided novel biological insights. Firstly, our investigations found that a significant 297 

proportion of RV phenotypic variability is explained by the underlying genetics as indicated 298 

by heritability estimates ranging from 19% to 34%. The RV phenotypic and genotypic 299 

correlations are strong and almost identical in magnitude. There is a very high level of 300 

genetic overlap between four RV phenotypes, reflecting their intimate physiological 301 

relationship. 302 

 303 

A large proportion of the RV loci were associated with previously reported loci for LV 304 

imaging phenotypes, an expected finding due to the interdependent nature LV and RV 305 

chambers and their strong genetic correlations as indicated by the LD score regression 306 

analysis. This observation reinforces the rationale for investigating the genetic basis of RV 307 

phenotypes as a complementary gateway to understanding the drivers of LV remodelling 308 

which is more strongly linked with adverse outcomes. Furthermore, some RV GWAS loci 309 
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showed evidence of pleiotropic associations polygenic traits such as hypertension (e.g., 310 

GOSR2 locus for RVEDV, RVESV and RVEF), highlighting the shared genetic pathway 311 

influencing cardiovascular physiology and morphology. GOSR2 a candidate gene at this 312 

locus encodes a vesicle docking protein, and recent functional studies validate its importance 313 

in cardiovascular development. Knockout studies in fish indicate numerous abnormalities 314 

including abnormal heart morphology and reverse looped heart35. Lahm and colleagues have 315 

reported a variant in high LD (r2>0.8) with our lead variant associated with congenital heart 316 

disease, and differences in gene expression between human fetal and adult tissues, indicating 317 

a possible role for GOSR2 in cardiac development36.  318 

 319 

At loci demonstrating some RV specificity in our analysis sample there are candidate genes 320 

with an important role in myocyte integrity and cell anchoring. SVIL (supervillin) binds the 321 

actin cytoskeleton and the plasma membrane and has been shown to regulate cell adhesion, 322 

cytokinesis and cell motility37. Loss of function SVIL mutations have been associated with 323 

the development of a type of skeletal myopathy with cardiac manifestations37. The OBSCN 324 

(Obscurin) gene in the OBSCN locus for RVESV and RVEF encodes a giant myofibrillar 325 

protein which mediates cellular adhesion and support sarcolemmal integrity38. Mutations in 326 

this gene had been shown to result in perturbation of calcium cycling and spontaneous 327 

arrhythmia39. PALLD (palladin) encodes a cytoskeletal protein that functions as a scaffolding 328 

molecule and is important for actin polymerization and assembly and has a role in cell 329 

morphology, motility and adhesion40. On the whole, our results suggest the involvement of 330 

protein complexes regulating the cell-matrix junction in RV remodelling in individuals 331 

without overt cardiac disease. This finding is somewhat analogous to the mutations in 332 

desmosomes (intercellular adhesives) associated with arrhythmogenic right ventricular 333 

cardiomyopathy (ARVC)41, an extreme Mendelian form of RV disease. 334 
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 335 

There is a preponderance of Mendelian genes implicated in the pathogenesis of inherited 336 

cardiomyopathy at the RV loci. Beyond well-recognised cardiomyopathy-associated genes 337 

such as TTN and BAG3, we identified several other candidate genes associated with RV 338 

phenotypes (FHOD3, MYH6, MYL4, TMEM43) linked to heart muscle disease and 339 

arrhythmia. The FHOD3 (Formin Homology 2 Domain Containing 3) gene in the FHOD3 340 

locus for RVESV and RVEF is involved in actin filament polymerisation during 341 

myofibrillogenesis42 and is required for post-natal development and maintenance of the adult 342 

mouse heart43. A missense mutation (rs2303510) with G to A allele polymorphism was found 343 

to be protective of sporadic DCM in an exome-wide association study44. In our GWAS, the 344 

same variant was associated with smaller RVESV suggesting a protective effect. MYH6 345 

identified by the MAGMA analysis for RVSV and MYL4 indicated by the sQTL and 346 

MAGMA analyses for RVESV are genes that encode proteins in the subunits of cardiac 347 

muscle myosin. Mutations in MYH6 cause familial HCM and DCM45. MYL4 encodes atrial-348 

selective essential myosin light chain and has been implicated in familial atrial fibrillation46. 349 

Lastly, the TMEM43 gene in the SLC6A6 locus for RVESV and RVEF is a known causative 350 

gene for a fully penetrant, high risk subtype of arrhythmogenic right ventricular 351 

cardiomyopathy (ARVC)47. These results support the role of RV imaging measurements as 352 

intermediate endophenotypes which share a genetic relationship with inherited cardiac 353 

conditions. Interestingly, other known ARVC genes such as PKP2, DSG2, JUP, DSP and 354 

DSC2 were not prioritised by our analyses. The culprit pathogenic variants in these genes are 355 

often ultra-rare in a general population. As such, our GWAS of common variants (MAF g 356 

0.01) is not designed to identify such variants. Future exome-wide association studies a large 357 

sample may shine light on how these genes modulate RV phenotypic variation. 358 

 359 
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The association between RV structural and functional adaptation and worse heart failure 360 

outcomes in both ischaemic and non-ischaemic cardiomyopathy has been reported 361 

previously6,7,13. Although there is a paucity of data pertaining to RV parameters among the 362 

general population, large prospective studies of individuals free from clinical cardiovascular 363 

disease have reported associations between RVEF and RV mass and increased incidence of 364 

heart failure  as well as between RV function and increased risk of cardiovascular death15,16. 365 

Our phenome-wide association analyses using RV PRSs shed light on the linkage between 366 

genetically determined RV phenotypic variation and the incidence of all-cause heart failure 367 

and non-ischaemic DCM. Specifically, higher genetically determined RVEF was associated 368 

with lower rates of hospitalisation for congestive heart failure and DCM, which further 369 

reinforced the importance of right ventricle in maintaining efficient circulatory physiology. 370 

This observation is overall concordant with the study by Bai et al.48 which investigated the 371 

associations between cardiac imaging measurements and a wide range of outcomes including 372 

cardiac diseases. 373 

 374 

We acknowledge some limitations in our study. Our study is of European descent and 375 

validation of our findings in more diverse cohorts is needed to assess their applicability to 376 

non-European populations. Furthermore, although we have demonstrated statistical support 377 

for the loci which are highly specific for RV phenotypic variation, future experimental 378 

studies using gene-editing techniques such as CRISPR in cellular and animal models are 379 

required to fully validate the functional significance of highlighted candidate genes and 380 

mechanisms modulating RV structure and function. 381 

 382 

Conclusion 383 

 384 
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In this first genome-wide association study to-date of CMR-derived RV phenotypes, we 385 

report 17 genetic loci validated in a combined meta-analysis; highlight the role of cellular 386 

adhesion in determining RV phenotypic variation and indicate candidate genes linked to 387 

inherited cardiomyopathy. Altogether, the findings represent a significant advance in our 388 

understanding of the genetic architecture of RV phenotypes in a general population and 389 

provides a foundation to characterise the genetic drivers of RV remodelling in the future. 390 

 391 

Methods 392 

 393 

Study cohort 394 

 395 

The discovery analysis was performed in the UK Biobank study. The UK Biobank is a large 396 

population-based prospective cohort study which has collected a wealth of information on 397 

health and lifestyle data, physical measurements, biological samples, and cardiac imaging 398 

phenotypes derived from CMR. This ambitious project aims to provide resources to 399 

disentangle the genetic and environmental determinants of complex diseases affecting middle 400 

and old age. The study protocol has been described in detail previously49. 401 

 402 

Derivation of RV phenotypes 403 

 404 

Four RV parameters (RVEDV, RVESV, RVSV and RVEF) were measured from the short-405 

axis SSFP cine images of UK Biobank CMR studies acquired using 1.5 Tesla scanners. The 406 

full CMR study protocol has been published previously50. In brief, the short-axis cine images 407 

were acquired using balanced steady-state free precession (bSSFP) sequence with typical 408 

parameters of TR/TE = 2.6/1.1 ms, flip angle 80°, Grappa factor 2, slice thickness 8mm, slice 409 
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gap 2mm, voxel size 1.8 mm × 1.8 mm × 8 mm. The actual temporal resolution of 32 ms was 410 

interpolated to 50 phases per cardiac cycle (~20 ms). 411 

 412 

A combination of manual segmentation and automatic annotation with a deep learning 413 

algorithm was used to extract the measurements as previously described24. In brief, the short 414 

axis cine images of the first 5,065 UK Biobank CMR studies were manually segmented by 415 

eight analysts in two core laboratories using a pre-defined standard operating procedure26. 416 

After removing poor quality images, the remaining 4,875 manually annotated studies were 417 

used to train and validate a deep convolutional neural network adapted from the U-net 418 

architecture51 with the VGG-1652 backbone. For training, the images were cropped to the size 419 

of 192×192 and intensity normalised to the range of [0,1]. On-the-fly data augmentation was 420 

performed by applying random translation, rotation, scaling and intensity variation to each 421 

mini-batch (20 image slices) of images. We used the Adam optimiser53 with a learning rate of 422 

0.001 and iteration number of 50,000. The network was trained using TensorFlow54 library in 423 

Python on a Nvidia Tesla K80 GPU. The Dice metric of automated contours vs manual 424 

contours for RV cavity was calculated in 600 CMR studies (hold-out test sample) and the 425 

Dice metric of manual contours for two human analysts was calculated in 50 CMR studies. 426 

The inter-observer variability of image-derived RV phenotypes was estimated by intra-class 427 

correlation coefficient. Exemplary CMR images annotated by manual and automatic methods 428 

are presented in Supplementary Fig. 9. 429 

 430 

Quality control 431 

 432 

Manually annotated CMR studies (N = 5,065) were quality checked visually by the analyst at 433 

the time of manual segmentation. Out of these 5,065 studies, 153 studies were excluded due 434 
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to poor image quality. The following are the reasons for exclusion: (i) incomplete coverage of 435 

the ventricles (N = 78 [51%]), (ii) blurred image due to ECG mis-triggering commonly 436 

caused by irregular R-R intervals (arrhythmia) (N = 26 [17%]), (iii) miscellaneous causes 437 

including motion artefacts due to poor breath-hold and missing short-axis images (N = 43 438 

[28%]). 439 

 440 

As for the automatically analysed CMR studies, the segmentation and image quality was 441 

reviewed in a bespoke image visualisation application written in R <Shiny= library55. We 442 

used a <statistical and prior knowledge= approach to select studies that required visual quality 443 

check. In this process, CMR studies with (i) outlying values (defined as values more than 444 

three interquartile range [IQR] above the first quartile or below the third quartile) before and 445 

after indexing for body surface area and height2.7, (ii) non-physiological measurements 446 

(RVEDV < 75ml and RVESV < 25ml) and, (iii) measurements within the abnormal zones as 447 

defined in the published reference ranges paper26 were visually reviewed using the custom 448 

<Shiny= visualisation tool for segmentation errors, image artefacts and incomplete coverage 449 

of ventricles. As a sanity check, 5,000 automatically segmented images were reviewed 450 

visually and only five additional cases (above and beyond what we have identified in the 451 

review process of pre-selected cases) were identified as poor quality due to incomplete 452 

coverage rather than segmentation error. Therefore, the statistical and prior knowledge 453 

approach of only reviewing the segmented images with outlying and non-physiological 454 

values and measurements outside the normal bounds of reference ranges was accepted as a 455 

good compromise which is adequate to ensure the quality of output data. 456 

 457 

Sample selection 458 

 459 
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Out of 32,581 participants with available CMR studies, 29,506 European individuals free 460 

from pre-existing heart failure, myocardial infarction were included in the analysis following 461 

the quality control procedures outlined in Supplementary Fig. 1. 462 

 463 

Single-trait GWAS 464 

 465 

The SNP-based heritability was estimated by the directly genotyped variants using the 466 

variance component method implemented in BOLT-REML software56. Single-trait GWASs 467 

were performed under an additive linear mixed-effects model using ~9.9 million well-468 

imputed variants with MAF ³ 1% and INFO > 0.3 in BOLT-LMM software. The analysis 469 

models were adjusted for age, sex, height, weight, SBP corrected for anti-hypertensive 470 

medication use (by adding 15mmHg)57, phenotype-derivation method (automatic/manual), 471 

array type (UK Biobank vs UK BiLEVE array), and imaging centre. Due to the non-normal 472 

distribution, we performed the rank-based inverse normal transformation of the residuals of 473 

RV phenotypes.  474 

 475 

Multi-trait analysis 476 

 477 

Paired multi-trait analyses of GWAS summary statistics were performed using MTAG58. 478 

MTAG boosts statistical power by capitalising on the correlated effect estimates across 479 

different traits. We paired the GWAS summary data of RVEDV with RVSV and RVESV 480 

with RVEF as input because of their strong genotypic correlations (rg = 0.83 and -0.67, 481 

respectively). The MAF filter of 0.01 and the INFO filter of 0.3 were applied. 482 

 483 
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The cut-off for genome-wide significance was set at P < 2.27 x 10-8 (conventional GWAS P 484 

value threshold of 5 x 10-8 divided by 2.2, effective number of tests for multiple correlated 485 

phenotypes). LD score regression (LDSC) was performed using the ldsc python package 486 

v1.0.1 using the default settings to obtain the LDSC intercept59 which represents the extent of 487 

confounding form population stratification and genetic correlations60. A genomic risk locus 488 

was defined as 500kb upstream and downstream of the most significant variant. In each 489 

genomic locus, we performed clumping using plink 8--clump9 function with r2 threshold of 490 

0.1. Therefore, each locus may contain multiple lead SNPs and their proxies at r2 cut-off of 491 

0.1. The proportion of variance explained by the genome-wide significant variants for each 492 

RV phenotype was calculated by the difference in the adjusted R2 between the linear 493 

regression model containing all covariates plus all lead variants for the trait and the model 494 

containing only the analysis covariates.  495 

 496 

Cross-referencing RV loci in other traits 497 

 498 

We looked up our RV lead variants in the summary data available from a recently published 499 

genome-wide association studies22 of CMR derived LV phenotypes with comparable sample 500 

size. Additionally, we cross-referenced our RV lead variants and their close proxies (LD r2 ³ 501 

0.8) in the 99% credible sets with the genome-wide association results of other traits in the 502 

Phenoscanner61 database v2 (http://www.phenoscanner.medschl.cam.ac.uk/). 503 

 504 

European ancestry meta-analysis 505 

 506 

We obtained the lookup results of the RV lead variants in the UK Biobank European sample 507 

which became available at the end of our discovery analysis (N = 11,073) and Multi-Ethnic 508 

http://www.phenoscanner.medschl.cam.ac.uk/
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Study of Atherosclerosis (MESA) (N = 1,251). In the new UK Biobank cohort, we removed 509 

individuals with relatives (third-degree or closer; Kinship coefficient g 0.044) in our 510 

discovery sample to get unbiased estimates of association. 511 

 512 

MESA is a longitudinal study of subclinical cardiovascular disease and risk factors that 513 

predict progression to clinically overt cardiovascular disease or progression of the subclinical 514 

disease. Between 2000 and 2002, MESA recruited 6,814 men and women 45 to 84 years of 515 

age from Forsyth County, North Carolina; New York City; Baltimore; St. Paul, Minnesota; 516 

Chicago; and Los Angeles. Exclusion criteria were clinical cardiovascular disease, weight 517 

exceeding 136 kg (300 lb.), pregnancy, and impediment to long-term participation. RV 518 

imaging and measurements in MESA have been previously described62.  519 

 520 

MESA participants who consented to genetic analyses were genotyped in 2009 using the 521 

Affymetrix Human SNP array 6.0. Following genotype quality control for these data 522 

including filter on SNP level call rate < 95%, individual level call rate < 95%, 523 

heterozygosity > 53%, 897,981 SNPs remained. The University of Michigan imputation 524 

server was used for pre-phasing and imputation using the 1,000 Genomes Phase 3 integrated 525 

variant set. Among the MESA participants with RV phenotypes available, we stratified by 526 

race/ethnic group and constructed a subset of unrelated individuals by retaining at most one 527 

individual from each family. We further excluded those individuals with top principal 528 

components (PCs) of ancestry > 3.5 SD from the mean within any race/ethnic group. The 529 

genetic association analysis in the European subset of MESA (N = 1,251) was conducted on 530 

the rank-based inverse normal transformed residuals model adjusted for age, sex, study site, 531 

top 3 principal components of ancestry, height, weight and medication-adjusted systolic 532 

blood pressure in ProbABELv0.5.063. Finally, a fixed-effect meta-analysis of the association 533 
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summary statistics from UK Biobank discovery sample, UK Biobank additional sample and 534 

MESA European cohort was performed in GWAMA v2.2.264. 535 

 536 

Bioinformatic analyses 537 

 538 

Variant-level annotation 539 

 540 

The lead variants and their proxies at r2 < 0.01 were first filtered to 99% credible sets using 541 

the Bayesian approach previously described by Wakefield65. All variants in the 99% credible 542 

sets were interrogated with ANNOVAR66 database to describe their locations and predicted 543 

function using several risk prediction tools including SIFT and PolyPhen-2. The non-544 

synonymous variants were classified as 8damaging9 if two or more methods predicted 545 

detrimental effects and 8probably damaging9 if indicated by a single prediction tool. The non-546 

coding variants were annotated with CADD (v1.6)29 and RegulomeDB (v2.0)28. Variants 547 

with scaled CADD score > 20 or RegulomeDB score f 1f were considered functionally 548 

important. Finemapping of causal variants within credible sets was performed by the 549 

colocalisation analysis of GWAS and cis-eQTL signals from cardiovascular tissues (aorta, 550 

coronary artery, tibial artery, left atrial appendage and left ventricle) in GTEx (v7)67 using 551 

eCaviar30. Variants with colocalisation posterior probability (CLPP) value higher than 0.01 552 

were identified as candidate causal variants. We performed the pathway enrichment analysis 553 

of GWAS signals using DEPICT31 (Data-driven Expression-Prioritised Integration for 554 

Complex Traits) using the GWAS summary statistics of each RV trait as the input files with 555 

an association P value threshold of 1 x 10-5 as recommended by the authors of DEPICT. 556 

 557 

Gene-level annotation 558 
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 559 

Transcriptome-wide association study 560 

 561 

We investigated the influence of our GWAS variants on gene expression and splicing using 562 

the multi-tissue transcriptome datasets from Genotype-Tissue Expression project (GTEx 563 

v8)68. In this analysis, we estimated the genetically regulated gene expression and splicing 564 

using the S-MultiXcan tool32 which integrates the evidence from the GWAS summary data 565 

and expression and splicing quantitative trait loci studies across multiple tissues to prioritise 566 

candidate genes. We corrected the P values for multiple testing by adjusting for the number 567 

of genes x the effective number of tests for correlated RV phenotypes (2.2). 568 

 569 

Gene-based association study 570 

 571 

Genome-wide gene-based association analysis was performed using Multi-marker Analysis 572 

of GenoMic Annotation (MAGMA v1.07b)33. In MAGMA, the variants in raw genotype data 573 

were first assigned to the genes based on the overlap of their genomic location with a gene 574 

window of 35kb upstream and 10kb downstream to include regulatory elements. Rare 575 

variants with MAF < 0.01 were inputted into the model as burden scores. The association 576 

between variants in gene units and RV phenotypes was tested by principal component 577 

regression adjusted for the same covariates as the primary GWAS analysis. The MAGMA 578 

values were corrected for multiple testing by adjusting for the number of genes x the effective 579 

number of tests for correlated RV phenotypes (2.2). 580 

 581 

Hi-C analysis 582 

 583 
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Long-range chromatin interaction analysis was performed using the Hi-C data in FUMA69 584 

web-based platform v1.3.3c. In the chromatin interaction analysis, we only considered target 585 

genes with evidence of significant enhancer-promoter interactions at FDR < 1x10-6 in the left 586 

and right ventricular and aortic tissues. The analysis was filtered to our regulatory GWAS 587 

variants with RegulomeDB score £ 5 (where low scores indicate greater evidence of 588 

functional significance) locating within these enhancer and promotor regions obtained from 589 

the Roadmap Epigenomic project70.  590 

 591 

Finally, all candidate genes were ranked based on evidence from: 592 

i. presence of damaging coding variant in the loci; 593 

ii. genes prioritised by S-MultiXcan analyses in expression and splicing quantitative trait 594 

loci (eQTL and sQTL) datasets; 595 

iii. availability of knockout model from International Mouse Phenotyping Consortium 596 

(http://www.mousephenotype.org/) and the Mouse Genome Informatics database 597 

(http://www.informatics.jax.org/); 598 

iv. targets genes from Hi-C data; 599 

v. genes locating within the 100kb window of the lead variant 600 

vi. genes prioritised by MAGMA 601 

 602 

Enrichment and pathway analyses 603 

 604 

Functional enrichment and pathway characterisation of candidate genes in the validated RV 605 

loci were done in the g:profiler tool which leverages on the diverse sources of biological 606 

evidence including Gene Ontology (GO), Human Phenotype Ontology (HPO), Reactome, 607 

KEGG and Wikipathway71. We used the candidate genes supported by at least 2 lines of 608 

http://www.mousephenotype.org/
http://www.informatics.jax.org/
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evidence (as described above) as g:Profiler input. In g:profiler, multiple-testing correction 609 

was performed by the bespoke ontology-focused g:SCS (Set Counts and Sizes) method72 at 610 

5% threshold. 611 

 612 

Phenome-wide association scan 613 

 614 

We conducted PheWASs using the polygenic risk scores of each RV phenotype derived from 615 

the lead and secondary variants of genome-wide significant loci validated in the meta-616 

analysis. Logistic regression adjusted for age, sex and the first five genetic principal 617 

components was performed to test for the associations between each polygenic risk score and 618 

a total of 1041 phenotypes with prevalence of g 200 cases in the remaining UK Biobank 619 

sample excluding the RV GWAS discovery cohort and their relatives (third-degree or closer 620 

with Kinship coefficient g 0.044) (n = 354,307). The PheWAS phenotypes were derived from 621 

ICD-10, ICD-9 and OPCS4 codes from hospital episode data, death reports, and self-reported 622 

medical history which were last updated on 5th March 2020. Out of 1041 phenotypes, 1029 623 

phenotypes were defined according to the phecode system as previously described73 and 12 624 

cardiovascular phenotypes (hypertrophic cardiomyopathy, heart failure, myocardial 625 

infarction, CAD, non-ischaemic DCM, other inherited cardiomyopathy, stroke, atrial 626 

fibrillation/flutter, bradyarrhythmia, ventricular tachycardia, insertion of implantable 627 

cardioverter-defibrillator and congenital heart disease) were manually curated using the 628 

ICD10, ICD9 and OPCS4 codes detailed in Supplementary Table 15. Multiple testing 629 

correction by adjusting for 1041 phenotypes and 2.2 (effective number of tests for correlated 630 

RV phenotypes) yielded a significant p value threshold of 2.2 x 10-5 (0.05/2290). 631 

 632 
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Table 1. Genomic loci identified for CMR-derived RV phenotypes  860 

CMR 

phenotypes 
Locus name 

Lead 

variant 

Co-localised 

variant† 
CHR 

Position 

(hg19) 
EA NEA EAF 

BETA 

Discovery 

SE 

Discovery 

P 

Discovery 

BETA 

Meta-

analysis 

SE 

Meta-

analysis 

P 

Meta-

analysis 

RVEDV OBSCN†† rs12126782* rs78529941 1 228613648 T G 0.64 -0.051 0.008 1.37E-09 -0.047 0.007 2.19E-11 

RVEDV TTNa rs2042995 
rs967507, 

rs16866380 
2 179558366 T C 0.78 0.070 0.010 1.50E-13 0.053 0.008 7.27E-11 

RVEDV SLC6A6 rs754020 rs754020 3 14306081 T C 0.45 -0.050 0.010 1.80E-09 -0.034 0.008 9.67E-06 

RVEDV AK097794 rs2276773 rs6792449 3 158287455 A G 0.50 -0.049 0.008 8.61E-10 -0.041 0.007 5.28E-10 

RVEDV BC038750 rs752650 rs2714972 4 120632387 T C 0.65 -0.050 0.010 1.40E-08 -0.032 0.008 4.62E-05 

RVEDV LUC7L2 rs144567740 3 7 139099813 T G 0.80 -0.060 0.010 1.20E-08 -0.038 0.008 5.22E-06 

RVEDV BAG3 rs11199043 rs4751742 10 121367249 A G 0.52 -0.047 0.008 5.11E-09 -0.033 0.007 5.97E-07 

RVEDV ATXN2b rs35350651 rs7137828 12 111907431 A AC 0.49 -0.060 0.010 9.80E-15 -0.055 0.008 8.42E-13 

RVEDV PTPN11 rs11066320 rs11066320 12 112906415 A G 0.42 -0.050 0.010 2.90E-11 -0.045 0.008 7.89E-09 

RVEDV RBL2 rs375730363 
3 

16 53440590 
CT

T 
C 0.58 

-0.050 0.010 
8.60E-09 -0.040 0.008 3.07E-07 

RVEDV GOSR2 rs76774446 rs78033733 17 45046368 C A 0.86 -0.070 0.010 1.50E-08 -0.072 0.009 1.77E-16 

RVEDV ACTN4 rs11083473 3 19 39179934 A G 0.45 -0.046 0.008 6.50E-09 -0.033 0.007 8.21E-07 

RVESV OBSCN†† rs12126782* rs78529941 1 228613648 T G 0.64 -0.060 0.010 4.40E-13 -0.056 0.008 2.18E-12 

RVESV TTNc rs2042995 rs2366920 2 179558366 T C 0.78 0.080 0.010 4.00E-18 0.062 0.008 8.07E-14 

RVESV SLC6A6d rs9856926 
rs2128163, 

rs13061705 
3 14280450 C A 0.57 -0.060 0.010 1.40E-15 -0.049 0.008 2.18E-10 

RVESV AK097794 rs2276773 rs6792449 3 158287455 A G 0.50 -0.060 0.010 1.60E-13 -0.053 0.008 8.38E-12 

RVESV CAMK2D rs55754224 3 4 114428714 C T 0.74 0.060 0.010 7.20E-10 0.044 0.008 6.58E-08 

RVESV PALLD†† rs11357121 rs12509709 4 169847115 TA T 0.20 0.060 0.010 4.60E-09 0.049 0.008 7.87E-09 
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RVESV BAG3e rs72840788 rs4751742 10 121415685 G A 0.78 0.080 0.010 2.70E-17 0.069 0.008 1.10E-16 

RVESV ATXN2f rs35350651 rs4766578 12 111907431 A AC 0.49 -0.060 0.010 7.90E-15 -0.056 0.008 5.16E-13 

RVESV PTPN11 rs11066320 rs11066320 12 112906415 A G 0.42 -0.050 0.010 5.20E-10 -0.045 0.008 1.36E-08 

RVESV RBL2 rs61400540 rs61400540 16 53442606 G A 0.68 -0.050 0.010 1.10E-08 -0.037 0.008 3.74E-06 

RVESV GOSR2 rs17608766 rs17608766 17 45013271 T C 0.85 -0.080 0.010 6.10E-12 -0.085 0.009 2.76E-22 

RVESV FHOD3 rs503274 rs561021 18 34253745 C T 0.30 -0.050 0.010 2.80E-09 -0.042 0.008 1.64E-07 

RVESV ACTN4 rs554462699 
rs28488032 

19 39164393 
AT

T 
A 0.52 

-0.050 0.010 
1.20E-09 -0.034 0.008 1.06E-05 

RVESV RSPH6A rs10402263 rs10412574 19 46313758 G C 0.65 -0.050 0.010 3.00E-09 -0.039 0.008 7.01E-07 

RVSV TTN rs2303838 rs967507 2 179444939 C T 0.83 0.061 0.010 3.13E-09 0.039 0.009 8.62E-06 

RVSV SLC35F1 rs3951016 rs6912208 6 118559658 T A 0.53 0.050 0.010 3.10E-09 0.049 0.008 2.92E-10 

RVSV LUC7L2 rs144567740 3 7 139099813 T G 0.80 -0.057 0.010 1.13E-08 -0.041 0.009 1.49E-06 

RVSV ATXN2 rs653178 rs7137828 12 112007756 C T 0.48 -0.052 0.008 1.62E-11 -0.050 0.006 2.53E-15 

RVSV PTPN11 rs11066320 rs11066320 12 112906415 A G 0.42 -0.047 0.008 2.39E-09 -0.044 0.006 1.15E-11 

RVEF CLCNKA rs9442216 rs10927878 1 16353400 T C 0.33 0.048 0.008 3.77E-09 0.046 0.007 9.09E-11 

RVEF OBSCN†† rs78529941 rs55756479 1 228551488 G A 0.62 0.050 0.010 3.50E-10 0.050 0.008 1.45E-10 

RVEF TTNg rs2042995 – 2 179558366 T C 0.78 -0.066 0.009 1.62E-12 -0.059 0.008 5.59E-14 

RVEF SLC6A6h rs55834511 
rs9856926, 

rs11715111 
3 14273414 G C 0.79 0.070 0.010 5.30E-13 0.070 0.009 2.05E-16 

RVEF AK097794 rs2276773 rs6792449 3 158287455 A G 0.50 0.050 0.010 5.20E-09 0.054 0.008 2.89E-12 

RVEF HSPA4 rs72801474 rs72801474 5 132444128 G A 0.90 -0.075 0.013 2.05E-08 -0.069 0.011 1.17E-09 

RVEF SLC23A1 rs6876106 rs10063949 5 138710030 G A 0.71 -0.050 0.010 2.10E-09 -0.038 0.008 2.24E-06 

RVEF PLEC rs11786896 rs11786896 8 145018354 C T 0.95 -0.110 0.020 4.20E-09 -0.113 0.016 6.21E-12 

RVEF TPM2 rs2789750 – 9 35683473 C G 0.68 0.060 0.010 8.40E-11 0.048 0.008 5.71E-09 

RVEF AK311445†† rs12006440 rs12006440 9 107703337 C T 0.97 0.140 0.020 2.40E-09 0.117 0.017 1.84E-11 
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RVEF SVIL†† rs11007712 rs10826702 10 30009340 A G 0.75 -0.060 0.010 8.50E-09 -0.046 0.008 4.93E-08 

RVEF BAG3 rs72840788 – 10 121415685 G A 0.78 -0.090 0.010 8.00E-19 -0.081 0.008 6.33E-22 

RVEF CCDC85C†† rs79884713 3 14 99987456 G A 0.98 -0.160 0.030 3.70E-09 -0.092 0.025 1.81E-04 

RVEF GOSR2 rs17608766 – 17 45013271 T C 0.85 0.067 0.011 1.15E-09 0.071 0.009 4.52E-14 

RVEF FHOD3 rs501740 rs2644266 18 34244174 G T 0.26 0.060 0.010 5.90E-11 0.054 0.008 4.97E-11 

 861 

The locus name indicates the nearest annotated gene. Single-trait analysis was performed in a conventional genome-wide association framework 862 

using BOLT-LMM. Multi-trait analysis was performed by a joint-analysis of the summary statistics of correlated phenotypes using MTAG 863 

(multi-trait analysis of GWAS). The loci additionally supported by the combined meta-analysis at Pmeta-analysis < 5x10-8
 are highlighted in bold. 864 

CMR, cardiovascular magnetic resonance; RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic volume; 865 

RVEF, right ventricular ejection fraction; CHR, chromosome; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency in UKBB 866 

cohort; SE, standard error 867 

The effect size (BETA) represents the change in rank-transformed phenotype per effect allele. 868 

ars143720616 is an independent variant in this locus. brs2339905 is an independent variant in this locus. crs4894062 and rs115150884 are 869 

independent variants in this locus. drs13061705 is an independent variant in the locus. ers10718041 is an independent variant in the locus. 870 

frs2339905 is an independent variant in this locus. grs10930846 is an independent variant in this locus. hrs758925815 is an independent variant 871 

in this locus. 872 
*The nearest gene is HIST3H3 but the lead variant (rs12126782) is in high LD (r2 0.75) with rs78529941 (OBSCN locus) associated with RVEF. 873 

†Co-localisation of GWAS variants and cis-eQTL variants was performed in eCaviar; ††Loci showing some RV specificity. 874 

 875 
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Figure Legends 876 

 877 

Figure 1. Flowchart of analysis strategy for RV GWASs 878 

RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic 879 

volume; RVSV, right ventricular stroke volume; RVEF, right ventricular ejection fraction; 880 

UKBB, UK Biobank; CMR, cardiovascular magnetic resonance; IVNT, rank-based inverse 881 

normal transformation; MAF minor allele frequency; INFO, imputation quality score; LD, 882 

linkage disequilibrium; GCTA, genome-wide complex trait analysis; LV, left ventricle; 883 

PheWAS, phenome-wide association study; PRS, polygenic risk score; SIFT, Sorting 884 

Intolerant From Tolerant score; PolyPhen-2, Polymorphism Phenotyping score 2; CADD, 885 

Combined Annotation Dependent Depletion score; eCaviar, eQTL and GWAS CAusal 886 

Variants Identification in Associated Regions tool; MTAG, multi-trait analysis of genome-887 

wide association; MAGMA, Multi-marker Analysis of GenoMic Annotation; KO, knockout; 888 

Hi-C, long-range chromatic interaction 889 

 890 

Figure 2. Manhattan plots of genomic loci associated with CMR-derived RV phenotypes 891 

 892 

The red line indicates the genome-wide significant threshold at P < 2.27x10-8. 893 

RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic 894 

volume; RVSV, right ventricular stroke volume; RVEF, right ventricular ejection fraction 895 

 896 

Figure 3. Pleiotropic associations between the RV GWAS variants and other traits 897 

 898 

The left semicircle represents the RV GWAS loci and the right semicircle represents 899 

previously reported GWAS traits in the Phenoscanner database. 900 

 901 

GWAS, genome-wide association studies; CV, cardiovascular; CVD, cardiovascular disease; 902 

DCM, dilated cardiomyopathy 903 

 904 

Figure 4. Enrichment of genes associated with RV phenotypes in g:Profiler 905 

 906 

Gene sets and pathways results were corrected for multiple testing by the g:Profiler <sets 907 

counts and sizes= method at 5% threshold. 908 

 909 

GO: BP, Gene Ontology Biological Process; GO:CC, Gene Ontology Cellular Component; 910 

MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes pathway 911 

 912 

Figure 5. Phenome-wide association analysis of RV polygenic risk scores 913 

 914 

A total of 1041 phenotypes were evaluated for associations with RV polygenic risk scores 915 

adjusted for age, sex and the first 5 genetic principal components by logistic regression. The 916 

red line represents the significant threshold after accounting for multiple testing (-log10 of 917 

2.2 x 10-5). The upright triangles indicate positive correlations and the inverted triangles 918 

indicate negative correlations. 919 

 920 

RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic 921 

volume; RVSV, right ventricular stroke volume; RVEF, right ventricular ejection fraction; 922 

NOS, not otherwise specified 923 

 924 
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 925 

 926 

Figure 1. Flowchart of analysis strategy for RV GWASs 927 

RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic 928 

volume; RVSV, right ventricular stroke volume; RVEF, right ventricular ejection fraction; 929 

UKBB, UK Biobank; CMR, cardiovascular magnetic resonance; IVNT, rank-based inverse 930 

normal transformation; MAF minor allele frequency; INFO, imputation quality score; LD, 931 

linkage disequilibrium; GCTA, genome-wide complex trait analysis; LV, left ventricle; 932 

MESA, Multi-Ethnic Study of Atherosclerosis; EUR; European; PheWAS, phenome-wide 933 

association study; PRS, polygenic risk score; SIFT, Sorting Intolerant From Tolerant score; 934 
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PolyPhen-2, Polymorphism Phenotyping score 2; CADD, Combined Annotation Dependent 935 

Depletion score; eCaviar, eQTL and GWAS CAusal Variants Identification in Associated 936 

Regions tool; MTAG, multi-trait analysis of genome-wide association; MAGMA, Multi-937 

marker Analysis of GenoMic Annotation; KO, knockout; Hi-C, long-range chromatic 938 

interaction 939 

 940 

 941 

 942 

 943 

Figure 2. Manhattan plots of genomic loci associated with CMR-derived RV phenotypes 944 

 945 

The red line indicates the genome-wide significant threshold at P < 2.27x10-8. The loci 946 

discovered by the multi-trait analysis are shown in red. 947 

RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic 948 

volume; RVSV, right ventricular stroke volume; RVEF, right ventricular ejection fraction 949 
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 964 

 965 

 966 

 967 

 968 

 969 

 970 

Figure 3. Pleiotropic associations between the RV GWAS variants and other traits 971 

 972 

The left semicircle represents the RV GWAS loci and the right semicircle represents 973 

previously reported GWAS traits in the Phenoscanner database. 974 

 975 

GWAS, genome-wide association studies; CV, cardiovascular; CVD, cardiovascular disease; 976 

DCM, dilated cardiomyopathy 977 

 978 

 979 
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 981 

 982 

 983 

 984 

 985 

Figure 4. Enrichment of genes associated with all RV phenotypes in g:Profiler 986 

 987 

Gene sets and pathways results were corrected for multiple testing by the g:Profiler <sets 988 

counts and sizes= method at 5% threshold. The results are available in a tabular format in 989 

Supplementary Table 13. 990 

 991 

GO: BP, Gene Ontology Biological Process; GO:CC, Gene Ontology Cellular Component; 992 

MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes pathway 993 

 994 

 995 

 996 

 997 

 998 

 999 
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 1001 

 1002 

Figure 5. Phenome-wide association analysis of RV polygenic risk scores 1003 

 1004 

A total of 1041 phenotypes were evaluated for associations with RV polygenic risk scores 1005 

adjusted for age, sex and the first 5 genetic principal components by logistic regression. The 1006 

red line represents the significant threshold after accounting for multiple testing (-log10 of 1007 

2.2 x 10-5). The upright triangles indicate positive correlations and the inverted triangles 1008 

indicate negative correlations. 1009 

 1010 

RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic 1011 

volume; RVSV, right ventricular stroke volume; RVEF, right ventricular ejection fraction; 1012 

NOS, not otherwise specified 1013 

 1014 

 1015 


