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Abstract: 

Parkinson’s disease (PD) is a neurodegenerative disorder that results in the loss of dopaminergic 

neurons in the substantia nigra pars compacta. Despite advances in understanding PD, there is a 

critical need for novel therapeutics that can slow or halt its progression. Induced pluripotent stem cell 

(iPSC)-derived dopaminergic neurons have been used to model PD but measuring differences 

between PD and control cells in a robust, reproducible, and scalable manner remains a challenge. In 

this study, we developed a binary classifier convolutional neural network (CNN) to accurately classify 

microscopy images of PD models and matched control cells. We acquired images of iPSC-derived 

neural precursor cells (NPCs) and dopaminergic (DANs)  and trained multiple CNN models comparing 

control cells to genetic and chemical models of PD. Our CNN accurately predicted whether control 

NPC cells were treated with the PD-inducing pesticide rotenone with 97.60% accuracy. We also 
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compared control to a genetic model of PD (deletion of the Parkin gene) and found a predictive 

accuracy of 86.77% and 95.47% for NPC and DAN CNNs, respectively. Our cells were stained for 

nuclei, mitochondria, and plasma membrane, and we compared the contribution of each to the CNN's 

accuracy. Using all three features together produced the best accuracy, but nuclear staining alone 

produced a highly predictive CNN. Our study demonstrates the power of deep learning and computer 

vision for analyzing complex PD-related phenotypes in DANs and suggests that these tools hold 

promise for identifying new targets for therapy and improving our understanding of PD.  

 

Introduction: 

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the progressive 

loss of dopaminergic neurons in the substantia nigra pars compacta, affecting greater than 1% of the 

population aged 60 and older.(1,2) Despite advances in understanding the disease pathology, there 

remains a critical need for novel therapeutics that can slow or halt the progression of PD.(3) One 

approach to studying PD is to use human patient somatic cells reprogrammed into stem cells or 

induced pluripotent stem cell (iPSCs), that can be differentiated into any cell type, including 

dopaminergic neurons to model PD.(4) However, assessing the phenotypic differences between 

neurons derived from patients from those derived from healthy controls can be challenging. For 

instance, while it is clear that morphological differences exist between iPSC-derived PD and healthy 

neurons (5–9),  uncovering such differences requires time-consuming and difficult-to-measure 

changes in microscopic images.  

In addition to the challenge of accurately measuring phenotypic differences between disease and 

healthy control neurons, there is a critical need for scalable and high-throughput techniques to screen 

potential therapeutic compounds for PD. Traditional methods for drug screening, such as manual 

observation of cellular morphology or viability, are time-consuming and labor-intensive. Thus, there is 

a pressing need for efficient and reproducible methods to assess the effects of candidate drugs on 

cellular morphology and function.  
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To address these problems, we turned to the field of deep learning and convolutional neural networks 

(CNNs). CNNs have been widely used in image classification and segmentation tasks and have been 

successfully applied to biological images to identify and classify different cell types. In this study, we 

developed a binary classifier CNN to accurately classify microscopy images of cells modeling PD. 

Specifically, we used high content immunofluorescence microscopy images of organic dyes marking 

the nucleus, mitochondria and plasma membrane to train and test our CNN. We find that the CNN 

robustly and accurately classifies neural precursor cells and neurons from both a toxin and a genetic 

model of PD. The development of CNN-based classifiers provides a promising avenue for the rapid 

and reliable phenotypic screening of large compound libraries, enabling the identification of potential 

therapeutic candidates for PD. 

 

Results: 

CNN models accurately predict disease status in toxin and genetic models of PD 

As an initial test to assess the feasibility of using machine vision to distinguish between iPSC derived 

cells, we used the pesticide rotenone as an in vitro model of PD.(10,11) The healthy control iPSC line 

AIW002-02 was used for these initial studies, and was differentiated into dopaminergic neuronal 

precursor cells (NPCs), as previously described.(12) Half the cells were treated with rotenone then 

fixed and stained with organic dyes, wheat germ agglutinin (WGA) to label cell membranes and 

Hoechst to label the nucleus. Images of NPCs were processed and used to train a CNN model to 

distinguish between the rotenone treated (disease state) and untreated (healthy) NPCs.  

We designed our binary CNN classifier using an adapted version of the VGG model.(13) Our model 

contains six convolutional layers, three max pooling layers, two dense fully connected layers and the 

output layer (Figure 1A). The processed image dataset was split randomly to remove 20% of the 

images as a hidden test set. The remaining 80% of the images were used to train the CNN. For 

training, the training image set is again split into a training set and a validation set (80/20), the 

validation images are not used to train the model, but rather to test the model accuracy during training. 

We used a batch size (number of training samples shown to the model before the model’s internal 
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parameters are updated) of 64 and 128 steps (number of batches) per epoch.  The model was trained 

until 15 epochs passed without a change in error rate. For each epoch of training, the error loss and 

accuracy of the model were calculated (Figure 1B and C).  The goal of the CNN model is to reduce 

the loss function, the loss starts high and quickly drops, gradually decreasing until plateauing after 

about 800 epochs around 0.25 (Figure 1B). The model accuracy shows the inverse pattern, starting 

at 50% and quickly improves, leveling out at ~90% with minor fluctuations after only about 400 epochs 

(Figure 1B and C). Next, we predicted if the hidden test images of NPCs were of cells treated with 

rotenone or not. We found the CNN model made minimal mistakes in predicting disease state with an 

accuracy of 97.60% (Figure 1D).  
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Figure 1: CNN models can be trained to predict PD disease status in a rotenone model of PD. A) 
Schematic of the binary CNN model, a simplified version of the VGG-16 model with 8 layers and 6042 
trainable parameters, flattened to a layer of 16 nodes fully connected to a second layer of 16 nodes. The 
dimensional output for each convolutional and max-pooling layer are indicated. NPCs were treated with 
1μM rotenone or vehicle for 20 hours. B,C) Line plot showing the training loss (B) and the accuracy (C) 
across epochs of training for classification of NPCs untreated or treated with rotenone. The training data is 
split into training (blue line) and validation sets (orange line). The model is trained and tested on both 
training and validation sets before updating in the next epoch. D) Right, example images of AIW002-02 
NPCs untreated or treated with rotenone. Left, confusion matrix showing the predictions of the hidden test 
data predicted using the CNN trained with NPC treated/untreated with rotenone. 
 
 

After successfully classifying a chemically induced model of PD, we next sought to investigate if we 

could classify a genetic model of PD while applying a similar approach as for rotenone. Homozygous 

mutations in the Parkin gene cause a form of autosomal recessive early onset PD.(14) The Parkin 

protein plays a key role in mitochondrial health, which is associated with all forms of PD.(15) For these 

tests, we compared the control iPSC line XCL1 with an isogenic line in which the Parkin gene was 
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deleted, XCL1-ParkinKO.(9,16) NPCs were differentiated from the XCL1 and XCL1-ParkinKO iPSC 

lines, stained and imaged as above. For imaging of plates half of each 96 well plate was seeded with 

XCL1 NPCs and the other half with XCL1-ParkinKO NPCs, ensuring both lines were grown on the 

same dish for direct comparison. We also added mitotracker-red which binds to chloromethyl groups 

in the mitochondrial membrane as a third organic dye. The data was split into training and test datasets 

(80/20) as above, then used to train a CNN model (Figure 2A). We find the CNN classifier can 

distinguish XCL1 and XCL1-ParkinKO NPCs with an accuracy of 86.77 % (Figure 2B). We repeated 

this experiment in four separate batches of NPCs for a total of five batches. To test the robustness of 

the CNN model, we performed cross validation, training the model five times with different random 

splits within the training set into training and validation sets in each of the batch (Figure 2C). We found 

that for each experimental batch of NPCs the CNN model has a high accuracy and low variability in 

cross validation tests.  

After demonstrating that our CNN model can accurately predict whether NPCs are from the control or 

PD iPSC lines, we next explored whether this was applicable when dopaminergic neurons (DANs) 

were used instead of NPCs. Images of the DAN cultures were used to train CNN models with the 

same staining, processing and data splitting conditions applied to NPCs (Figure 2D). The CNN model 

for DANs has a very high accuracy of 95.47% (Figure 2E). Cross validation and experimental repeats 

show the CNN models are reproducible and robust for DANs (Figure 2F). Across both experimental 

repeats and cross validation with random start repeats we find the average accuracy for DANs models 

is 93.0% -/+ 2% and for DANs is 92.0% -/+ 5%.  
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Figure 2: CNN models can be trained to predict PD disease status in a genetic model of PD, Parkin-
KO compared to control. CNN models were trained using images of NPCs or DANs of control line XCL1 
and PD model XCL1-Parkin-KO cells. A,D) Line plot showing the training loss across epochs of training a 
CNN to distinguish between Parkin-KO and control (A) NPCs and (D) DANs. B,E) Left, example images of 
XCL1 and XCL1-Parkin-KO (B) NPCs and (E) DANs. Right, confusion matrix of the prediction results for 
the text data in the CNN models trained to distinguish between control and Parkin-KO cells. C,F) Box plots 
showing the accuracy of CNN models trained on images of XCL1 vs XCL1-Parkin-KO (C) NPCs and (F) 
DANs with different random splits of training and validation sets.  All models were tested on the same test 
data. Models were trained on 5 different biological replicates indicated on the x-axis.  
 

Combining nuclear, cell membrane and mitochondrial staining improves the accuracy of CNN 

models 

In the Parkin KO and control CNN models, we utilized three input channels during classifier training. 

Nevertheless, the specific cellular components are driving the classifications is unknown when the 

models are trained with all three input channels. With this in mind, we set out to examine the individual 

contributions of the image information in each channel on the accuracy of our CNN classifiers. Hoechst 

(nuclei), GFP-WGA (cell membranes) and mitotracker-red (mitochondria) were imaged separately in 

different channels for both NPCs and DANs (Figure 3A and B). To assess the impact of each channel 

on the CNN model, we performed a series of experiments training CNNs with each channel in isolation 

and with combinations of each pair of channels. Each CNN training experiment was performed for five 
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experimental batches with cross validation. For NPC images, CNNs trained with each channel alone 

were highly variable, with individual model accuracies ranging from 52-99% (Figure 3C). However, 

combinations of mitotracker-red with either Hoechst or WGA led to a high accuracy and low variation 

between repeats. For DAN images, CNNs trained with nuclear staining alone showed good accuracy, 

whereas CNNs trained with cell membrane or mitochondria staining alone have poor performance 

(Figure 3D). The mitochondria channel may not perform well in isolation as other contextual 

information may be required. For DANs, mitochondria are important to the classification as adding the 

mitochondria channel to models trained with the Hoechst or WGA improves the mean CNN 

classification by 15%. For both NPCs and DANs all channels together have the highest accuracy 

(Figure 3C and D). These findings collectively suggest that providing more information to the CNN 

enhances the classification accuracy.  
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Figure 3: Nuclei, cell membrane and mitochondrial channels all contribute to CNN model accuracy. 
A,B) Example images of XCL1 control and XCL1-Parkin-KO (A) NPCs and (B) DANs with each channel 
shown separately and the merged images with all channels. Each channel has a different organic dye; 
Hoechst to make nuclei, WGA to stain the cell membrane and mitotracker-red for the mitochondria. C,D) 
Box plots showing accuracy of predictions of hidden test data using differently trained CNN models. CNN 
models were trained with each channel individually: Hoechst (HO), WGA, or mitotracker-red (Mito), or in 
pairs of two channels, or with all three channels together, indicated on the x axis. For each model the cross 
validation was performed on the training data. The experiment was performed on (C) NPCs and (D) DANs.  
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Three different microscopy image processing methods produce highly accurate models 

We next wanted to examine the effect of different image preprocessing methods on CNN classifier 

accuracy. In the models trained so far, images were processed by cropping and resizing the image to 

64X64, and we refer to this method as <down sample=. To assess whether showing the CNN only the 

nucleus and cell soma would be sufficient to produce an accurate classifier, we used cell segmentation 

to detect nuclei and cropped a square around the radius of the nucleus, termed <cell segment= (Figure 

4A). We trained a CNN using images processed by the <cell segment= method using the same number 

of input images as with the <down sample= processing method. For both NPC and DANs, the <cell 

segment= models were highly accurate (Figure 4B and C). The accuracy for hidden test data using 

the <cell segment= method for NPC images is 90.83%. For the DAN images the accuracy of the <cell 

segment= method is 94.42%. These finding indicate that machine vision can distinguish between PD 

and control cells using only the nucleus and cell soma. 

To test if distance between cells and cell processes could also contribute to the model, we tested 

cropping images in a simple grid (Figure 4A). We divided each starting image into 64X64 pixel images 

using a grid, that we refer to as <grid crop=. The resulting images have a wide variety of content. Some 

contain nuclei and cell bodies whereas others contain only neurites. Some images were empty, and 

we filtered these out by applying an intensity threshold. The <grid crop= images were used to train CNN 

models, including the same number of images as in the other methods.  Again, both NPC and DAN 

models were highly accurate, 92.77% for NPCs and 94.30% for DANs using the <grid crop= method 

(Figure 4D and E).  For the NPC images the <down sample= method yields the most accurate 

classifiers, indicating that including nuclear, cell soma, and spaces between cells are all required for 

the best accuracy (Figure 4F). In contrast, for DANs, the <cell segment= method produces CNN 

classifiers with the highest accuracy, possibly because the highly variable neurite processes are 

removed (Figure 4G). Overall, each of the three preprocessing methods result in models with 

accuracies over 90%.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.568499doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568499
http://creativecommons.org/licenses/by/4.0/


 
 
 
 
 
 
Figure 4: Input training data processed with different methods all yield accurate predictive models. 
A) Diagram with an example image processed with three different methods. The <down sample= method is 
the standard method used throughout the manuscript. The center of each image is cropped and then the 
resolution is reduced to result in a 64x64 pixel image. The <cell segment= method finds each nucleus in an 
image and crops an image sized relative to the nucleus. In the <grid crop= method the full image is split into 
64x64 pixel images, in this method empty images were discarded. B) Confusion matrix showing the 
predicted disease status of test data with a CNN model trained to distinguish XCL1 to XCL1-Parkin-KO 
NPCs processed using <cell segmentation=. C) Confusion matrix showing the predictions of disease status 
images using a CNN model trained to distinguish XCL1 to XCL1-Parkin-KO DAN images processed using 
<cell segmentation=. D) Confusion matrix showing the predictions of test data with a CNN model trained to 
distinguish XCL1 to XCL1-Parkin-KO NPC images processed using <grid crop=. E) Confusion matrix 
showing the predictions of disease status in test data using CNN model trained to distinguish XCL1 to 
XCL1-Parkin-KO DAN images using <grid crop= processing. F, G) Box plot showing accuracy of test data 
predictions in cross validation experiments of different CNN models trained with images processed by three 
different methods, indicated on the x-axis. The experiment was performed on (F) NPCs and (G) DANs.  
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CNN models generalize within experiments but not across experiments  

To test the ability of the CNN models to generalize, we trained five separate CNNs, one for each 

experimental batch of cells. We then tested each of the five separately trained models using the 

different hidden test image sets (Figure 5A). We find that for NPC images, each separately trained 

model is highly accurate for the test set from the same batch (as shown in Figure 1G). However, the 

disease status is poorly predicted in test images from other batches (Figure 5B). While in a few cases 

one model can predict if NPC images are of XCL1 or XCL1-Parkin-KO cells with an accuracy of 65%, 

in other cases the accuracies are equivalent or worse than random. For DANs, the ability of models 

trained with one experimental batch to predict if cells are from XCL1 or XCL1-Parkin-KO in a different 

batch is also poor (Figure 5C). We next tested if it was possible with this type of microscopy data for 

a model to generalize at all. For this we used four separate plates from one experimental batch, where 

all the plates were seeded, fixed, stained and imaged together. We trained a CNN for each plate and 

predicted if test images were from XCL1 or XCL1-Parkin-KO lines. For NPCs, all models predict the 

test data sets from all plates with high accuracy (Figure 5D),  similar results were observed for DANs 

(Figure 5E). These results imply that the technical differences between experimental batches of NPCs 

and DANs are leading to CNN models that do not generalize. Indeed, within one experimental batch, 

CNN models generalize extremely well. 

With this in mind, we next set out to determine if combining multiple experimental batches and training 

CNNs with these merged data sets could help yield a model to accurately predict images from a data 

set not used in training (Figure 5F). We trained CNN models using NPC images from each 

combination of the four experimental batches and tested images from the dropped-out batch, for each 

combination we repeated the training five times (Figure 5G and H). Next, we performed the same 

experiment on DANs (Figure 5I and J). We find that for both NPCs and DANs the models occasionally 

have an accuracy near 70% in the test data from the dropped batch, but more often have accuracies 

near or below 50%. Given that some models tend toward generalization, we decided to test tuning 

different hyperparameters, step size and learning rate.  We found in the ranges we tested that altering 
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either step size or learning rate did not improve the ability of a CNN trained on four experimental 

batches to generalize to the fifth batch (data not shown).  

 

 
Figure 5: CNN models generalize within one batch of images but show poor generalization across 
batches. A) Schematic showing CNN models were trained separately for each of 5 batches (cells seeded, 
differentiated, stained, and imaged on different days). The test data for each of the 5 batches was predicted 
in all 5 separately trained model. B, C) Heat map showing the accuracy of prediction if images contain 
XCL1 control or XCL1-Parkin-KO (B) NPCs and (C) DANs. The y-axis indicates which batch was used to 
train the CNN model. The x-axis indicates which batch the predicted test data came from. D, E) Heat map 
showing the accuracy of prediction if images contain XCL1 control or XCL1-Parkin-KO (D) NPCs and (E) 
DANs. The y-axis indicates which plates was used to train the CNN model. The x-axis indicates the plate 
the predicted test data came from. F) Schematic showing batch drop out combinations, where a CNN model 
was training with 4 out of 5 batches and the test data is from the <dropped= batch. G-H) Dot plots showing 
the accuracy of CNN models trained with 4 of 5 batches.  The test data used to train the models is shown 
on the x-axis. The batch the test data comes from is indicated by the colour of the dot.  Each dot represents 
the same test data predicted in separately trained models; these replications represent different random 
splits within the training data. G) Accuracy of predictions of control vs Parkin-KO cells in NPC test images 
in the <dropped= batch not used in training. H) Prediction accuracy on all NPC test data sets from batch 
used in the training and the dropped batch for each CNN model. I) Accuracy of predictions of control vs 
Parkin-KO cells in DAN test images in the <dropped= batch not used in training. J) Prediction accuracy on 
all DAN test data sets from batch used in the training and the dropped batch for each CNN model.  
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CNN models can accurately distinguish between isogenic controls and different genetic 

models of PD 

We have shown that a CNN can accurately predict if images are of NPCs or DANs from control or 

Parkin KO iPSCs in one genetic background, the XCL1 cell background. Thus, we next wanted to 

confirm that the distinction is not iPSC line specific. Building on the earlier work, we used a second 

healthy control line (referred to as AIW002-02) and compared cells generated from this control line to 

cells generated from this line with Parkin knocked out.(17) The iPSCs were differentiated into NPCs, 

stained, and imaged as described above. Here we have ~3600 images per condition. A CNN model 

was trained with AIW002-02 and AIW002-02-ParkinKO NPCs, and we find the prediction accuracy is 

95.34% on the hidden test data (Figure 6A). After confirming Parkin-KO cells can be distinguished 

from control cells across two different genetic backgrounds, we next tested two other genetic models 

of PD. The gene GBA1 encodes the enzyme GCase, critical for lysosomal function and cellular 

homeostasis. Mutations in GBA1 constitute a major risk factor for PD.(18) We trained a CNN model 

to distinguish between AIW002-02 control NPCs and AIW002-02-GBA1-KO NPCs. The model predicts 

the correct iPSC line with 86.58% accuracy (Figure 6B). Mutations or triplication of the gene SNCA 

encoding α-synuclein is a common genetic cause of PD.(14) We used a line with the known patient 

mutation A53T introduced into the SNCA gene in AIW002-02 iPSC line, AIW002-02-SNCA-A53T. 

When we trained the CNN model with NPC images from AIW002-02 and AIW002-02-SNCA-A53T we 

find the model can distinguish the two cell lines with 97.81% accuracy on the hidden test data (Figure 

6C).  

To explore the extent of overlap in morphology between the three genetic models of PD we designed 

a four-way categorical model to classify between control, Parkin-KO, GBA-KO and SCNA-A53T NPCs.  

The architecture of the CNN was maintained, only the final output layer was adjusted to account for 

four output categories instead of two. We trained the categorical model with NPC images from 

AIW002-02, AIW002-02-Parkin-KO, AIW002-02-GBA-KO and AIW002-02-SNCA-A53T, then tested 

the accuracy of predictions in the hidden test data. Each image is predicted as being from one of the 

four iPSC lines. We find that overall accuracy is only 66.56%, however the accuracy for predicting the 
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AIW002-02 control line correctly is 88.75% (Figure 6D). The categorical CNN model mis-predicts the 

different genetic PD models as another PD model but does not confuse them for the control line. This 

indicates a partially overlapping PD morphology in these lines. Specifically, AIW002-02-GBA-KO and 

AIW002-02-SNCA-A53T are both mis-predicted as AIW002-02-ParkinKO, but not mis-predicted as 

each other. In the cases where AIW002-02 is predicted as a PD line, it is predicted to be the AIW002-

02-GBA-KO, indicating this line might share the most morphological similarity to the control.  

 

After noting that the different PD genetic models could have overlapping morphological features used 

by the CNN, we decided to test combinations of the three genetic PD models in training CNN binary 

classifiers. Surprisingly, when images from AIW002-02-GBA-KO and AIW002-02-SNCA-A53T were 

combined together to train a CNN model to distinguish these two genotypes from the AIW002-02 

control, the mean accuracy of predicting the hidden text data is 76.5%, indicating these two models of 

PD may have overlapping morphological phenotypes recognized by the CNN (Figure 6E). However, 

the models trained by combining sets including AIW002-02-Parkin-KO together with AIW002-02-GBA-

KO or AIW002-02-SNCA-A53T or both together are highly variable over cross validation, indicating 

the variability between genotypes and within one genotype is very high (Figure 6E). Our findings 

indicate overlap between morphological difference in multiple genetic models. CNN Models 

distinguishing individual PD genetic models from control cells are all highly accurate and perform better 

than models trained on two or more genetic PD models.  
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Figure 6: CNN classifiers accurate distinguish between control NPCs and three different models of 
PD. A) Right, example images of control AIW002-02 and AIW002-02-Parkin-KO NPCs. Left, confusion 
matrix showing predictions of hidden test data in a model trained to distinguish AIW002-02 (healthy) and 
AIW002-02-Parkin-KO (disease) NPCs. The number of images predicted are indicated.  B) Right, example 
images of control AIW002-02 (healthy) and AIW002-02-GBA-KO (disease) NPCs. Left, confusion matrix 
showing the number of images from the hidden test data predicted as healthy or control and the true status 
of the cell. C) Right, example images of control AIW002-02 (healthy) and AIW002-02-SNCA-A53T (disease) 
NPCs. Left, confusion matrix showing the number of images from the hidden test data predicted as healthy 
or control and the true status of the cell.  D) Confusion matrix showing test data predictions of which cell 
type an NPC images contains. A four-way categorical model was trained to distinguish between AIW002-
02 control, AIW002-02-SNCA-A53T, AIW002-02-GBA-KO and AIW002-02-ParkinKO NPCs. E) Box plot 
showing accuracy of cross validation of CNN binary classier models trained with different combinations of 
inputs. The x-axis indicates which disease model NPC images were compared to AIW002-02 control cells. 
Each line AIW002-02-SNCA-A53T, AIW002-02-GBA-KO and AIW002-02-ParkinKO was used to train CNN 
models alone, in combination of two PD lines together and all three PD lines together. For each combination 
of iPSC lines cross validation replication with random splits of the training data was performed five times.  
 

 

Discussion  

In this study, we introduced a deep learning convolutional neural networks (CNNs) to detect disease 

status in iPSC-derived cells, specifically NPCs and DANs. Notably, we harnessed the power of high-

content imaging using three distinct organic dyes to stain the nucleus, cell membrane, and 

mitochondria. While previous research has employed CNNs in the context of microscopic imaging 
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data, these applications were primarily focused on cell type classification or cell segmentation.(19,20) 

High content microscopy analysis methods targeted toward screening applications utilize extracted 

features and do not directly apply machine vision to the microscopy images.(21,22) While, to our 

knowledge, there exists one other notable instance of CNN application for disease status classification 

in Parkinson's disease (PD), it involved patient fibroblasts rather than neurons.(23) In contrast, our 

study takes a significant step forward by utilizing CNNs to distinguish disease status in iPSC-derived 

DANs, thereby expanding the utility of this technology in the field of neurobiology. 

In a related study, the Gandhi group utilized features extracted from microscopy images to train a deep 

learning neural network for predicting disease status in iPSC-derived cortical neuron cultures.(24) 

Their research, which employed an SNCA triplication line, provided valuable insights into disease 

classification. However, our approach, which incorporates CNNs and directly analyzes microscopy 

images, offers a distinct contribution to this evolving field. Notably, our study demonstrates that CNN 

models can be effectively trained to predict disease status, even in complex biological systems. 

To validate the effectiveness of our CNN classifier, we employed two distinct models of PD: a 

pharmacological model involving rotenone treatment and a genetic model using several lines with PD-

associated mutations or gene knockouts. Importantly, our approach successfully distinguished 

disease status in isogenic control and Parkin KOs in both NPCs and DANs, providing evidence of its 

versatility and robustness. Moreover, we extended our analysis to NPCs and DANs differentiated from 

isogenic iPSC lines with mutations in SNCA and GBA, two additional PD genes, highlighting the 

potential of CNNs to classify disease status across various disease models. 

To ensure the reproducibility of our model, we subjected it to rigorous testing, including cross-

validation and validation over multiple biological datasets. These tests confirmed that our model is 

both computationally and biologically reproducible, underscoring its reliability and utility. Additionally, 

we investigated the contributions of different channels within the imaging data, revealing that all three 

channels, representing the nucleus, cell membrane, and mitochondria, play vital roles in the model's 

accuracy, with the nucleus channel being the most important contributor to predictions in our model. 
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One limitation of CNNs is that they can classify based on irrelevant information. We explored the 

effects of image processing on model performance, comparing segmenting individual cells and 

dividing large images into a grid of smaller ones with the traditional method of cropping and resizing. 

Our findings suggest that CNNs rely on the information provided by the nucleus and cell body to make 

accurate predictions. This insight provides valuable information about the features that contribute most 

to disease status classification and indicates biologically relevant information is being used for 

classification. 

One notable challenge we encountered was the generalizability of our model across different biological 

experiments. While some degree of generalization was observed, it was not consistently achieved. 

This lack of generalizability appeared to stem from the inherent variability between batches of NPCs 

and DANs, a well-known occurrence in biological research. Addressing this challenge may require 

further adjustments to the image processing method to normalize images and enhance the model's 

capacity to generalize across varying culture conditions. 

In summary, our CNN-based model presents a valuable tool for the exploration of nervous system 

biology when tested alongside a range of CNN models. The binary predictive models developed in 

this study have promising applications in phenotypic compound screening. For instance, researchers 

can employ CNN models to differentiate control cells from PD models and simultaneously treat PD 

cell models with a panel of drugs or compounds of interest. Such an approach allows for the 

identification of compounds that can cause PD-affected cells to be classified as the control state, 

indicating a potential rescue of the PD phenotype. Conversely, researchers can perform a reverse 

screen to identify compounds that lead to control cells being predicted to be more closely aligned with 

a PD state, shedding light on potential factors that drive a PD phenotype. These applications 

underscore the versatility and significance of our CNN-based disease status classifier in advancing 

our understanding of PD and contributing to potential therapeutic interventions. 
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Methods 

 

Cell lines 

The iPSC lines XCL1 and XCL1-ParkinKO were purchased from Xcell Science and previously 

described.(9) The XCL1 line was reprogrammed from cord blood cells from a male donor using 

episomal vectors. The other AIW002-02 and AIW002-02-Parkin-KO iPSC cell lines were previously 

described.(12,17) The AIW002-02-GBA-KO and AIW002-02-SNCA-A53T lines were generated using 

CRISPR and standard quality control measure were performed (see supplemental documents 1 and 

2). 

AIW002-02-SNCA-A53T: A single guide RNA (gRNA) was designed using benchling.com to generate 

a double-strand break (DSB) in exon 3 (ENSE00000970012) of transcript SNCA-201 

(ENST00000336904.7) of the human gene SNCA (ENSG00000145335), 1 base pair (bp) downstream 

of the target nucleotide. The mutation A53T was created by homology-directed repair (HDR) using a 

single-stranded oligonucleotide (ssODN) template. All CRISPR reagents were electroporated into 

iPSCs using the P3 Primary Cell 4D Nucleofector™ X Kit S (Lonza), as previously described.(25) Cells 

at 50% confluency were dissociated with Accutase (StemCell Technologies). 500,000 cells were 

resuspended in 25 μl of Cas9:gRNA ribonucleoprotein (RNP)-ssODN-buffer mix, consisting of 1 µl of 

Alt-R® S.p. HiFi Cas9 Nuclease V3 (stock 61 µM; IDT), 3 µl of gRNA (stock 100 µM; Synthego), and 

1 µl of ssODN (stock 100 µM; IDT) in 20 µl of nucleofection buffer P3. Nucleofection was performed 

using the CA137 program in a Nucleofector 4D device.  

 Following nucleofection, iPSCs were evenly distributed into a flat-bottom 96-well plate in mTeSR1 

media (StemCell Technologies) and 10 µM Y-27632 (StemCell Technologies). After limiting dilution, 

gene-edited clones were identified by ddPCR (QX200™ Droplet Reader, Bio-Rad). The detection of 

the modified nucleotide by ddPCR was based on a TaqMan® assay including two PCR primers and 

two DNA probes (one for each of the wildtype and mutant alleles). Locked Nucleic Acid (LNA®) probes  
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were designed following the manufacturer’s criteria. Sequence integrity of successful clones was  

assessed using Sanger sequencing of PCR amplification of the expected 320 bp amplicon 

 (Supplemental document 1).  

AIW002-02-GBA-KO: Two gRNAs were designed using the <optimized CRISPR design= tool 

(www.crisp.mit.edu) to target sites in exon 4 of the human GBA gene (ENSG00000177628) and 

remove a 98bp segment.  Each double strained gRNA was separately cloned into a Cas9/puromycin 

expressing vector (pX459 from Addgene #48139). The gRNA plasmids were delivered into AIW002-

02 iPSCs by Neon electroporation. Cells recovered for 48hours and then 0.2µg/ml Puromycin was 

added into medium to select transfected cells and isolate clones. Cell clones were transferred in 96 

well plates for genotyping and amplification.  

KO cells were confirmed by PCR amplification and gel electrophoresis, where the wildtype GBA gene 

results in a 739bp product and the KO product was 641bp. Genomic DNA was extracted with 

QuickExtract (Lucigen) and PCR was performed using Q5® High-Fidelity DNA Polymerase according 

to the manufacturer’s protocol. PCR products were cloned into the pMiniT vector and sent for Sanger 

sequence to confirm the KO by the DNA sequence (Supplemental document 2).  
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Table 1: Sequences of reagents used in gene editing to generate new genetic PD model iPSC 
lines 

Line Item Sequence Source 
AIW002-02-
SNCA-A53T 

gRNA GUGGUGCAUGGUGUGGCAAC  Synthego 
ssODN template ATTTGTTTTTGTAGGCTCCAAAACCAAGGA

GGGAGTGGTGCATGGTGTCACAACTGGTA
AGCTCCATTGTGCTTATATCCAAAGATGAT
ATTTAAAGTAT 

IDT 

PCR primer 1 ACCAAGGAGGGAGTGGT IDT 

PCR primer 2 GGGCCACACTAATCACTAGATAC IDT 
DNA probe (wildtype) /5HEX/TG+T+G+GC+A+A+CA/3IABkFQ/ IDT 
DNA probe (mutant) /56-FAM/TG+T+C+ACAA+C+AGG/3IABkFQ/ IDT 
PCR/Sanger primer 1 ACTAGCTAATCAGCAATTTAAGGCT IDT 
PCR/Sanger primer 2 AAGCCCTCATTATTCTTGGCA IDT 

 gRNA 1 TAAAAGCTTCGGCTACAGCT Life Technologies 

 gRNA 2 GCTATGAGAGTACACGCAGT Life Technologies 
 PCR primer 1 TTTTGGCTCATTCCAACCTC Life Technologies 
 PCR primer2  TTGAGAGCAGCAGCATCTGT Life Technologies 

 

Cell cultures and iPSC differentiation 

IPSCs were differentiated into NPCs as previously described and frozen for future experiments.(12) 

NPCs were recovered for one week and seeded at a density of 10,000 cells per well in 96-well plates 

coated with poly-L-ornithine (PLO) 1μg/ml overnight at 37 0C, followed by laminin 5μg/ml for 2 hours 

at 37 0C. NPCs were stained and fixed 48 hours after seeding. DANs differentiated from NPCs as 

previously described and maintained in 96 well plates for 4 weeks.(17)  

Rotenone treatment 

NPC were seeded at a density of 10 000 cells per well in 96-well plates. After 24 hours for cell adhesion 

and recovery, half of the wells were treated with 1uM rotenone for 20 hours. Rotenone treatment was 

selected from visual inspection of a rotenone dose curve and from previous experiments, to select a 

dose that would not cause a visual difference in cell to the human eye.(26)  
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Fixation and staining 

To stain for mitochondria, live NPCs and DANs were incubated with 500nM Mitotracker 

OrangeCMTMRos (ThermoFisher Scientific) for 1 hour at 37 0C. Then the cells were fixed with 4% 

formaldehyde in PBS (10 mins), washed 3 times in PBS, stained with CF488A conjugated Wheat germ 

agglutinin (Biotium, 2μg/mL) and Hoechst33342 (ThermoFisher Scientific, 5μg/mL) for 10 minutes and 

washed 3 times in PBS.  

Imaging 

Images were acquired on a CellInsight CX7 High Content Screening microscope (ThermoFisher 

Scientific) with a 20X objective (NA 0.7). Excitation/ Emission filters for Hoechst33324, WGA and 

Mitotracker were 386-23/438-47, 485-20/542-27, 549-15/612-69, respectively. Images were collected 

for 121 fields per well (covering ~90% of a given well). Image size was 1104x1104 pixel (0.4µm/pixel) 

with 14-bit depth. For analysis, images were exported in 8-bit TIFF format. 
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Table 2: Sets of microscopy images from cells seeded, grown, fixed, and imaged at different 
times.  

Experiment Batch iPSC lines Cell type 
Number of 96 
well plates Cell staining 

-/+ 1 mM 
Rotenone 1 XCL1 NPCs 6 Hoechst, WGA 

Control vs 
Parkin-KO 1 

XCL1, XCI1-
Parkin-KO NPCs 2 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO 2 

XCL1, XCI1-
Parkin-KO NPCs 2 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO 3 

XCL1, XCI1-
Parkin-KO NPCs 4 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO 4 

XCL1, XCI1-
Parkin-KO NPCs 4 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO  5 

XCL1, XCI1-
Parkin-KO NPCs 2 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO  1 

XCL1, XCI1-
Parkin-KO DANs 2 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO  2 

XCL1, XCI1-
Parkin-KO DANs 2 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO  3 

XCL1, XCI1-
Parkin-KO DANs 4 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO  4 

XCL1, XCI1-
Parkin-KO DANs 4 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO  5 

XCL1, XCI1-
Parkin-KO DANs 2 

Hoechst, WGA, 
mitotracker 

Control vs 
Parkin-KO  1 

AIW002-02, 
AIW002-02-
Parkin-KO NPCs 

18 wells per 
condition 

Hoechst, WGA, 
mitotracker 

Control vs 
GBA-KO  1 

AIW002-02, 
AIW002-02-
GBA-KO NPCs 

18 wells per 
condition 

Hoechst, WGA, 
mitotracker 

Control vs 
SNCA-A53T 1 

AIW002-02, 
AIW002-02-
SNCA-A53T NPCs 

18 wells per 
condition 

Hoechst, WGA, 
mitotracker 

 

For rotenone experiments on each plate half the wells were treated with 1 mM Rotenone and half with 

vehicle. For XCL1 vs XCL1-Parkin-KO experiments on each plate half the wells were seeded with 

XCL1 and half with XCL1-Parkin-KO. For AIW002-02 experiments three columns were seeded for 

each genotype (AIW002-02, AIW002-02-Parkin-KO, AIW002-02-GBA-KO and AIW002-02-SNCA-

A53T) in a 96 well plate.   
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Image preprocessing 

Down sample method: The basic preprocessing methods the input images 1104 by 1104 pixels were 

down sampled to a 128x128 pixel image with linear interpolation, and then cropped in the margins by 

another 32 pixels to get an input image of 64x64 pixels. Each channel is process separately. This 

method was applied for all models unless otherwise indicated.  

Cell segment method: the python package PIL was used to identify nuclei and measure the diameter 

of the nucleus.   Then a 64 x 64 box is drawn around the nucleus with the center of the nucleus set as 

the center of the box. 

Grid crop method: The original images of 1104x1104 were cropped into 144 images and rescaled with 

linear interpolation to 64x64 pixel images. Intensity was used to detect empty images after cropping.  

For all images, preliminary preprocessing was used to find and reject images that were empty or 

contained the edge of the plate. A brightness threshold, the top and bottom 10% average pixel 

intensities was used remove images and reduce variation in the data set. All other images had each 

of their channels normalized, before entering the CNN model. 

 

CNN model 

We used the VGG16 changing from 16 layers to 8 layers.  The model was created in Python using the 

Keras deep learning library running on the TensorFlow framework. An 8-layer convolutional model 

was created, incorporating 3 blocks of convolutional and pooling layers with the rectified linear unit 

(ReLU) activation function followed by a fully connected classification perceptron with the SoftMax 

activation function. 

For the categorical model, the overall structure of the model remains the same, however, changes 

were made to the final SoftMax activation layer to support multiple labels with categorical cross 

entropy. 
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CNN training 

Processed images were split 80/20 into training and test images.  The training set was then split again 

80/20 into training and validation. The CNN default model conditions are set as 64 steps per epoch 

for 50 epochs. Separate models were created to handle different amount of channel inputs, differing 

only in the first convolutional layer to handle the different number of channels. The experiments 

involving testing different channel combinations used models for each of the indicated channels. For 

the rotenone treatment models only two channels (nuclei and cell membrane) were imaged and used 

as inputs to the CNN. For all other experiments three channels were used.   

Table 3: Number of images used in training different models before data splitting. 

CNN model Number of images 
used in each condition 

AIW002-02 Rotenone vs control NPCs 34848 

XCL1 control vs XCL1-Parkin-KO NPCs 5808 
XCL1 control vs XCL1-Parkin-KO DANs 5808 

AIW002-02 control vs AIW002-Parkin-KO 3872 
AIW002-02 control vs AIW002-Parkin-KO 3872 
AIW002-02 control vs AIW002-Parkin-KO 3872 

 

Cross validation 

For cross validation experiments within a given dataset, we divided the training dataset into 5 equal-

sized subsets. The model is then trained on 4 of the subsets and evaluated on the remaining subset, 

which serves as the validation set. This process is repeated 5 times, with each subset serving as the 

validation set once. The performance of the model is then averaged across the 5 iterations to obtain 

a more robust estimate of its generalization performance. 
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Dropout comparisons for generalization 

For experiments where four batches were used as the training data and the dropped batch was used 

as the test data. The same processed images used in separate batch models were used for the 

generalization tests.  

CNN model outputs 

For each model training curves for error loss and accuracy are output. Average receiver operating 

characteristic (ROC) curves and accuracy are calculated from the test results.  Outputs are printed to 

a log file and plots are saved. Accuracy is a calculated by the amount correctly classified labels over 

the total amount of items.  

 

Code availability 

Cod for image processing, building models, training models and testing models is freely available at:  

https://github.com/RhalenaThomas/DeepLearningCNN_DiseaseStatusClassifier 
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Supplemental Document 1 

 

SNCA A53T/AIW002-02 ☐ Control line ☒ Disease line 

Gene edited? Yes 

  

General information 

 

Donor information 

Cell line name SNCA A53T/AIW002-02 

Biosample ID 2889 

Lines from same 

donor 

 

 

Sex MALE 

Age 37 YEARS 

Race CAUCASIAN 
 

  

Culture conditions 
 

Derivation 

Coating/ 

medium 

MATRIGEL/mTeSR1 

Passage method Gentle cell dissociation 

reagent 
 

Primary cell line PBMC 

Reprograming 

method 

RETROVIRUS 

Reprogramming 

factors 

Bcl-Xl ☐ Myc ☒  

Nanog ☐ SOX2 ☒ LIN28 ☐ 

KLF4  ☒  

OCT3/4 ☒ 
 

  

Disease status 

 
Disease Parkinson’s Disease 

Affected gene SNCA 

Disease mutation/family history SNCA A53T 
 

 

Genetic modification 
 

Modification CRISPR-Cas9 Knock in 

Gene SNCA 

Gene ID ENSG00000145335 

Chromosome location Chromosome 4: 89,700,345-89,838,315 reverse strand 

gRNA1 GUGGUGCAUGGUGUGGCAAC 

gRNA2 NA 

Delivery method Lonza Nucleofection 

Subclone IDs B1 

Description One gRNA was designed using benchling.com to generate one DSB in exon 3 

(ENSE00000970012) of transcript SNCA-201 (ENST00000336904.7), 1bp 

downstream of the target nucleotide, using Cas9 nuclease; the mutation A53T was 

created by HDR using the ssODN template  

ATTTGTTTTTGTAGGCTCCAAAACCAAGGAGGGAGTGGTGCATGGTGTCACAACTGGTA

AGCTCCATTGTGCTTATATCCAAAGATGATATTTAAAGTAT;  

 

Edited alleles were detected by ddPCR with primers ACCAAGGAGGGAGTGGT and 

GGGCCACACTAATCACTAGATAC, and Affinity probes wt: 

/5HEX/TG+T+G+GC+A+A+CA/3IABkFQ/ and mutant: /56-

FAM/TG+T+C+ACAA+C+AGG/3IABkFQ/;  
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Primers for PCR/Sanger sequencing were ACTAGCTAATCAGCAATTTAAGGCT and 

AAGCCCTCATTATTCTTGGCA (amplicon: 320bp); 

 
 

 
Sanger DNA sequence of SNCA A53T/AIW002-02 (homozygous):  

ASCCTTGRARAMTTAATGTCTTGAATTTGTTTTTGTAGGCTCCAAAACCAAGGAGGGAGTGGTGCATGGTGTCACAACAGGTA

AGCTCCATTGTGCTTATATCCAAAGATGATATTTAAAGTATCTAGTGATTAGTGTGGCCCAGTATTCAAGATTCCTATGAAATTG

TAAAACAATCACTGAGCATTCTAAGAACATATCAGTCTTATTGAAACTGAATTCTTTATAAAGTATTTTTAAAAAGGTAAATATT

GATTATAAATAAAAAATATACTTGCCAAGAATAATGAGGGCTTAATA 

 

 

 

 

 

 

Figure 1. DNA Sanger sequence of the target codon area in exon 3 of SNCA.  

The blue shaded area confirms that the mutant codon ACA has replaced the wt codon GCA, generating the 

missense mutation A53T in both alleles (homozygous). *Note that one silent mutation G>C was introduced in both 

Edited alleles (homozygous) 1 bp upstream of the target codon. 

 

Characterization: 

 
 

Authentication by STR analysis 

 

 

 AIW002-02 SNCA A53T/AIW002-02  

Marker Allele 1 Allele 2 Allele 1 Allele 2 

AMEL X Y X Y 

CSF1PO 9 10 9 10 

D13S317 12 12 12 12 

D16S539 12 13 12 13 

D21S11 29 32.2 29 32.2 

D5S818 12 12 12 12 

D7S820 9 11 9 11 

TH01 8 9 8 9 

TPOX 8 11 8 11 

vWA 14 15 14 15 
 

 

 

 

 

 

 

 

 

* 
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Genotyping analysis: 

Passage number P12+C5 

Karyotyping Normal 46, XY 

qPCR (Genetic Analysis kit) Normal 

 

 
 

Figure 2.G-band assay show normal karyotype of 

SNCA A53T/AIW002-02, 46, XY. 

 
 

Figure 3. Genetic stability assay show normal 

chromosome of SNCA A53T/AIW002-02.  

 

Pluripotency analysis: 
Marker Expressed? 

Nanog Yes 

Tra-1-60 Yes 

SSEA-4 Yes 

OCT3/4 Yes 
 

 
Figure 4. Immunostaining of pluripotency markers on SNCA A53T/ 

AIW002-02. 

 

Microbiology/virus screening: 

Mycoplasma test Negative 

Hepatitis B Negative 

Hepatitis C Negative 

HIV1 or 2 Negative 
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Supplemental Document 2 

 

GBA-KO /AIW002-02  ☐ Control line ☒ Disease line 

Gene edited? Yes 

  

General information 

 

Donor information 

Cell line name GBA-KO/ AIW002-02  

Biosample ID 2889 

Lines from same 

donor 

 

 

Sex MALE 

Age 37 YEARS 

Race CAUCASIAN 
 

  

Culture conditions 
 

Derivation 

Coating/ 

medium 

MATRIGEL/mTeSR1 

Passage 

method 

Gentle cell dissociation reagent 

 

Primary cell line PBMC 

Reprogramming 

method 

RETROVIRUS 

Reprogramming 

factors 

Bcl-Xl ☐ Myc ☒  

Nanog ☐ SOX2 ☒ LIN28 ☐ 

KLF4  ☒  

OCT3/4 ☒ 
 

  

Disease status 

 
Disease Parkinson’s Disease 

Affected gene GBA 

Disease mutation/family history GBA-KO 
 

 

Genetic modification 
 

Modification CRISPR-Cas9 Knock out 

Gene GBA 

Gene ID ENSG00000177628 

Chromosome location Chromosome 1: 155,234,452-155,244,699 

gRNA1 TAAAAGCTTCGGCTACAGCT 

gRNA2 GCTATGAGAGTACACGCAGT 

Delivery method Neon electroporation 

Subclone IDs No.18 

Description 
For knocking out the expression of GBA in AIW002-02 iPSCs, Guide RNAs (gRNAs) 

were designed using the <optimized CRISPR design= tool (www.crisp.mit.edu). 

The locations of gRNA1 and gRNA2 were in exon 4.  Oligonucleotides with Bsb1 

cleavage overhang were ordered from Life Technologies, annealed and cloned 

into Cas9/puromycin expressing vector (PX459 from Addgene #48139). The 

following gRNA sequences were used to create the KO line. gRNA1:  
TAAAAGCTTCGGCTACAGCT, gRNA2:     GCTATGAGAGTACACGCAGT. 

Genotyping: genomic DNA was extracted with QuickExtract (Lucigen) and PCR 

was performed using Q5® High-Fidelity DNA Polymerase according to the 

manufacturer’s protocol (Forward primer: TTTTGGCTCATTCCAACCTC. Reverse 
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primer:  TTGAGAGCAGCAGCATCTGT). Wild type PCR product: 739bp. Knock out 

PCR product: 641bp.  
 

 

Sanger DNA sequence of GBA-KO/AIW002-02:  

AGGTAGCTGGGATTACAGGCGGCCACCACTACGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGCTGGC

AAGGCAGGTCTCAAACTCCTCACCTCAGGTGATCCGCCCACCTCGGCCTCCTAAAGTGCTAGGATTACAGGTGTGAGCCCCTGC

GCCCGGCCAAGGGGTGAGGAATTTTGAAACCGTGTTCAGTCTCTCCTAGCAGATGTGTCCATTCTCCATGTCTTCATCAGACCT

CACTCTGCTTGTACTCCCTCCCTCCCAGGTGCCCGCCCCTGCATCCCTAAAAGCTTCGGCTACAAGTGGGCGACGGATGGAGCT

GAGTATGGGGCCCATCCAGGCTAATCACACG 

 

 

A 

 

 

 

 

 
 

 

 

 

 

 

 

B  

 

 
 

Figure 1. Sequence verification of GBA knock-out in AIW002-02.  

A. PCR analysis of GBA-KO/AIW002-02: 641bp. AIW002-2: 739bp  

B. Sequences of GBA-KO/AIW002-02 is aligned with AIW002-02 sequence.  

 

Characterization: 
 

Authentication by STR analysis 

 

 AIW002-02 GBA-KO/AIW002-02 

Marker Allele 1 Allele 2 Allele 1 Allele 2 

AMEL X Y X Y 

CSF1PO 9 10 9 10 

D13S317 12 12 12 12 

D16S539 12 13 12 13 

D21S11 29 32.2 29 32.2 

D5S818 12 12 12 12 

D7S820 9 11 9 11 

1. 100bp DNA ladder 

2. AIW002-02   

3. GBA-KO/AIW002-02  

1       2       3 
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TH01 8 9 8 9 

TPOX 8 11 8 11 

vWA 14 15 14 15 
 

 

 

 
Genotyping analysis: 

Passage number P10+C5   

Karyotyping Normal 46, XY 

qPCR (Genetic Analysis kit) Normal 

 

 
 

Figure 2. G-band assay show normal karyotype of 

GBA-KO/AIW002-02.  

 
 

Figure 3. Genetic stability assay show normal 

chromosome of GBA-KO/AIW002-02.  

 

 

 

 

 

 

Pluripotency analysis: 
Marker Expressed? 

Nanog Yes 

Tra-1-60 Yes 

SSEA-4 Yes 

OCT3/4 Yes 
 

 
Figure 4. Immunostaining of pluripotency markers on GBA-KO/AIW002-02. 
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Microbiology/virus screening: 

Mycoplasma test Negative 

Hepatitis B Negative 

Hepatitis C Negative 

HIV1 or 2 Negative 
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