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Abstract:

Parkinson’s disease (PD) is a neurodegenerative disorder that results in the loss of dopaminergic
neurons in the substantia nigra pars compacta. Despite advances in understanding PD, there is a
critical need for novel therapeutics that can slow or halt its progression. Induced pluripotent stem cell
(iPSC)-derived dopaminergic neurons have been used to model PD but measuring differences
between PD and control cells in a robust, reproducible, and scalable manner remains a challenge. In
this study, we developed a binary classifier convolutional neural network (CNN) to accurately classify
microscopy images of PD models and matched control cells. We acquired images of iPSC-derived
neural precursor cells (NPCs) and dopaminergic (DANs) and trained multiple CNN models comparing
control cells to genetic and chemical models of PD. Our CNN accurately predicted whether control

NPC cells were treated with the PD-inducing pesticide rotenone with 97.60% accuracy. We also
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compared control to a genetic model of PD (deletion of the Parkin gene) and found a predictive
accuracy of 86.77% and 95.47% for NPC and DAN CNNs, respectively. Our cells were stained for
nuclei, mitochondria, and plasma membrane, and we compared the contribution of each to the CNN's
accuracy. Using all three features together produced the best accuracy, but nuclear staining alone
produced a highly predictive CNN. Our study demonstrates the power of deep learning and computer
vision for analyzing complex PD-related phenotypes in DANs and suggests that these tools hold

promise for identifying new targets for therapy and improving our understanding of PD.

Introduction:

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the progressive
loss of dopaminergic neurons in the substantia nigra pars compacta, affecting greater than 1% of the
population aged 60 and older.(1,2) Despite advances in understanding the disease pathology, there
remains a critical need for novel therapeutics that can slow or halt the progression of PD.(3) One
approach to studying PD is to use human patient somatic cells reprogrammed into stem cells or
induced pluripotent stem cell (iPSCs), that can be differentiated into any cell type, including
dopaminergic neurons to model PD.(4) However, assessing the phenotypic differences between
neurons derived from patients from those derived from healthy controls can be challenging. For
instance, while it is clear that morphological differences exist between iPSC-derived PD and healthy
neurons (5-9), uncovering such differences requires time-consuming and difficult-to-measure
changes in microscopic images.

In addition to the challenge of accurately measuring phenotypic differences between disease and
healthy control neurons, there is a critical need for scalable and high-throughput techniques to screen
potential therapeutic compounds for PD. Traditional methods for drug screening, such as manual
observation of cellular morphology or viability, are time-consuming and labor-intensive. Thus, there is
a pressing need for efficient and reproducible methods to assess the effects of candidate drugs on

cellular morphology and function.
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To address these problems, we turned to the field of deep learning and convolutional neural networks
(CNNs). CNNs have been widely used in image classification and segmentation tasks and have been
successfully applied to biological images to identify and classify different cell types. In this study, we
developed a binary classifier CNN to accurately classify microscopy images of cells modeling PD.
Specifically, we used high content immunofluorescence microscopy images of organic dyes marking
the nucleus, mitochondria and plasma membrane to train and test our CNN. We find that the CNN
robustly and accurately classifies neural precursor cells and neurons from both a toxin and a genetic
model of PD. The development of CNN-based classifiers provides a promising avenue for the rapid
and reliable phenotypic screening of large compound libraries, enabling the identification of potential

therapeutic candidates for PD.

Results:

CNN models accurately predict disease status in toxin and genetic models of PD

As an initial test to assess the feasibility of using machine vision to distinguish between iPSC derived
cells, we used the pesticide rotenone as an in vitro model of PD.(10,11) The healthy control iPSC line
AIW002-02 was used for these initial studies, and was differentiated into dopaminergic neuronal
precursor cells (NPCs), as previously described.(12) Half the cells were treated with rotenone then
fixed and stained with organic dyes, wheat germ agglutinin (WGA) to label cell membranes and
Hoechst to label the nucleus. Images of NPCs were processed and used to train a CNN model to
distinguish between the rotenone treated (disease state) and untreated (healthy) NPCs.

We designed our binary CNN classifier using an adapted version of the VGG model.(13) Our model
contains six convolutional layers, three max pooling layers, two dense fully connected layers and the
output layer (Figure 1A). The processed image dataset was split randomly to remove 20% of the
images as a hidden test set. The remaining 80% of the images were used to train the CNN. For
training, the training image set is again split into a training set and a validation set (80/20), the
validation images are not used to train the model, but rather to test the model accuracy during training.

We used a batch size (number of training samples shown to the model before the model’s internal
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parameters are updated) of 64 and 128 steps (number of batches) per epoch. The model was trained
until 15 epochs passed without a change in error rate. For each epoch of training, the error loss and
accuracy of the model were calculated (Figure 1B and C). The goal of the CNN model is to reduce
the loss function, the loss starts high and quickly drops, gradually decreasing until plateauing after
about 800 epochs around 0.25 (Figure 1B). The model accuracy shows the inverse pattern, starting
at 50% and quickly improves, leveling out at ~90% with minor fluctuations after only about 400 epochs
(Figure 1B and C). Next, we predicted if the hidden test images of NPCs were of cells treated with
rotenone or not. We found the CNN model made minimal mistakes in predicting disease state with an

accuracy of 97.60% (Figure 1D).
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Figure 1: CNN models can be trained to predict PD disease status in a rotenone model of PD. A)
Schematic of the binary CNN model, a simplified version of the VGG-16 model with 8 layers and 6042
trainable parameters, flattened to a layer of 16 nodes fully connected to a second layer of 16 nodes. The
dimensional output for each convolutional and max-pooling layer are indicated. NPCs were treated with
1uM rotenone or vehicle for 20 hours. B,C) Line plot showing the training loss (B) and the accuracy (C)
across epochs of training for classification of NPCs untreated or treated with rotenone. The training data is
split into training (blue line) and validation sets (orange line). The model is trained and tested on both
training and validation sets before updating in the next epoch. D) Right, example images of AIW002-02
NPCs untreated or treated with rotenone. Left, confusion matrix showing the predictions of the hidden test
data predicted using the CNN trained with NPC treated/untreated with rotenone.

After successfully classifying a chemically induced model of PD, we next sought to investigate if we
could classify a genetic model of PD while applying a similar approach as for rotenone. Homozygous
mutations in the Parkin gene cause a form of autosomal recessive early onset PD.(14) The Parkin
protein plays a key role in mitochondrial health, which is associated with all forms of PD.(15) For these

tests, we compared the control iPSC line XCL1 with an isogenic line in which the Parkin gene was
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deleted, XCL1-ParkinKO.(9,16) NPCs were differentiated from the XCL1 and XCL1-ParkinKO iPSC
lines, stained and imaged as above. For imaging of plates half of each 96 well plate was seeded with
XCL1 NPCs and the other half with XCL1-ParkinKO NPCs, ensuring both lines were grown on the
same dish for direct comparison. We also added mitotracker-red which binds to chloromethyl groups
in the mitochondrial membrane as a third organic dye. The data was split into training and test datasets
(80/20) as above, then used to train a CNN model (Figure 2A). We find the CNN classifier can
distinguish XCL1 and XCL1-ParkinKO NPCs with an accuracy of 86.77 % (Figure 2B). We repeated
this experiment in four separate batches of NPCs for a total of five batches. To test the robustness of
the CNN model, we performed cross validation, training the model five times with different random
splits within the training set into training and validation sets in each of the batch (Figure 2C). We found
that for each experimental batch of NPCs the CNN model has a high accuracy and low variability in
cross validation tests.

After demonstrating that our CNN model can accurately predict whether NPCs are from the control or
PD iPSC lines, we next explored whether this was applicable when dopaminergic neurons (DANSs)
were used instead of NPCs. Images of the DAN cultures were used to train CNN models with the
same staining, processing and data splitting conditions applied to NPCs (Figure 2D). The CNN model
for DANs has a very high accuracy of 95.47% (Figure 2E). Cross validation and experimental repeats
show the CNN models are reproducible and robust for DANs (Figure 2F). Across both experimental
repeats and cross validation with random start repeats we find the average accuracy for DANs models

is 93.0% -/+ 2% and for DANSs is 92.0% -/+ 5%.
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Figure 2: CNN models can be trained to predict PD disease status in a genetic model of PD, Parkin-
KO compared to control. CNN models were trained using images of NPCs or DANs of control line XCL1
and PD model XCL1-Parkin-KO cells. A,D) Line plot showing the training loss across epochs of training a
CNN to distinguish between Parkin-KO and control (A) NPCs and (D) DANs. B,E) Left, example images of
XCL1 and XCL1-Parkin-KO (B) NPCs and (E) DANs. Right, confusion matrix of the prediction results for
the text data in the CNN models trained to distinguish between control and Parkin-KO cells. C,F) Box plots
showing the accuracy of CNN models trained on images of XCL1 vs XCL1-Parkin-KO (C) NPCs and (F)
DANs with different random splits of training and validation sets. All models were tested on the same test
data. Models were trained on 5 different biological replicates indicated on the x-axis.

Combining nuclear, cell membrane and mitochondrial staining improves the accuracy of CNN
models

In the Parkin KO and control CNN models, we utilized three input channels during classifier training.
Nevertheless, the specific cellular components are driving the classifications is unknown when the
models are trained with all three input channels. With this in mind, we set out to examine the individual
contributions of the image information in each channel on the accuracy of our CNN classifiers. Hoechst
(nuclei), GFP-WGA (cell membranes) and mitotracker-red (mitochondria) were imaged separately in
different channels for both NPCs and DANs (Figure 3A and B). To assess the impact of each channel

on the CNN model, we performed a series of experiments training CNNs with each channel in isolation

and with combinations of each pair of channels. Each CNN training experiment was performed for five
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experimental batches with cross validation. For NPC images, CNNs trained with each channel alone
were highly variable, with individual model accuracies ranging from 52-99% (Figure 3C). However,
combinations of mitotracker-red with either Hoechst or WGA led to a high accuracy and low variation
between repeats. For DAN images, CNNs trained with nuclear staining alone showed good accuracy,
whereas CNNs trained with cell membrane or mitochondria staining alone have poor performance
(Figure 3D). The mitochondria channel may not perform well in isolation as other contextual
information may be required. For DANs, mitochondria are important to the classification as adding the
mitochondria channel to models trained with the Hoechst or WGA improves the mean CNN
classification by 15%. For both NPCs and DANs all channels together have the highest accuracy
(Figure 3C and D). These findings collectively suggest that providing more information to the CNN

enhances the classification accuracy.
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Figure 3: Nuclei, cell membrane and mitochondrial channels all contribute to CNN model accuracy.
A,B) Example images of XCL1 control and XCL1-Parkin-KO (A) NPCs and (B) DANs with each channel
shown separately and the merged images with all channels. Each channel has a different organic dye;
Hoechst to make nuclei, WGA to stain the cell membrane and mitotracker-red for the mitochondria. C,D)
Box plots showing accuracy of predictions of hidden test data using differently trained CNN models. CNN
models were trained with each channel individually: Hoechst (HO), WGA, or mitotracker-red (Mito), or in
pairs of two channels, or with all three channels together, indicated on the x axis. For each model the cross
validation was performed on the training data. The experiment was performed on (C) NPCs and (D) DANS.
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Three different microscopy image processing methods produce highly accurate models

We next wanted to examine the effect of different image preprocessing methods on CNN classifier
accuracy. In the models trained so far, images were processed by cropping and resizing the image to
64X64, and we refer to this method as “down sample”. To assess whether showing the CNN only the
nucleus and cell soma would be sufficient to produce an accurate classifier, we used cell segmentation
to detect nuclei and cropped a square around the radius of the nucleus, termed “cell segment” (Figure
4A). We trained a CNN using images processed by the “cell segment” method using the same number
of input images as with the “down sample” processing method. For both NPC and DANSs, the “cell
segment” models were highly accurate (Figure 4B and C). The accuracy for hidden test data using
the “cell segment” method for NPC images is 90.83%. For the DAN images the accuracy of the “cell
segment” method is 94.42%. These finding indicate that machine vision can distinguish between PD
and control cells using only the nucleus and cell soma.

To test if distance between cells and cell processes could also contribute to the model, we tested
cropping images in a simple grid (Figure 4A). We divided each starting image into 64X64 pixel images
using a grid, that we refer to as “grid crop”. The resulting images have a wide variety of content. Some
contain nuclei and cell bodies whereas others contain only neurites. Some images were empty, and
we filtered these out by applying an intensity threshold. The “grid crop” images were used to train CNN
models, including the same number of images as in the other methods. Again, both NPC and DAN
models were highly accurate, 92.77% for NPCs and 94.30% for DANs using the “grid crop” method
(Figure 4D and E). For the NPC images the “down sample” method yields the most accurate
classifiers, indicating that including nuclear, cell soma, and spaces between cells are all required for
the best accuracy (Figure 4F). In contrast, for DANs, the “cell segment” method produces CNN
classifiers with the highest accuracy, possibly because the highly variable neurite processes are
removed (Figure 4G). Overall, each of the three preprocessing methods result in models with

accuracies over 90%.
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Figure 4: Input training data processed with different methods all yield accurate predictive models.
A) Diagram with an example image processed with three different methods. The “down sample” method is
the standard method used throughout the manuscript. The center of each image is cropped and then the
resolution is reduced to result in a 64x64 pixel image. The “cell segment” method finds each nucleus in an
image and crops an image sized relative to the nucleus. In the “grid crop” method the full image is split into
64x64 pixel images, in this method empty images were discarded. B) Confusion matrix showing the
predicted disease status of test data with a CNN model trained to distinguish XCL1 to XCL1-Parkin-KO
NPCs processed using “cell segmentation”. C) Confusion matrix showing the predictions of disease status
images using a CNN model trained to distinguish XCL1 to XCL1-Parkin-KO DAN images processed using
“cell segmentation”. D) Confusion matrix showing the predictions of test data with a CNN model trained to
distinguish XCL1 to XCL1-Parkin-KO NPC images processed using “grid crop”. E) Confusion matrix
showing the predictions of disease status in test data using CNN model trained to distinguish XCL1 to
XCL1-Parkin-KO DAN images using “grid crop” processing. F, G) Box plot showing accuracy of test data
predictions in cross validation experiments of different CNN models trained with images processed by three
different methods, indicated on the x-axis. The experiment was performed on (F) NPCs and (G) DANs.
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CNN models generalize within experiments but not across experiments

To test the ability of the CNN models to generalize, we trained five separate CNNs, one for each
experimental batch of cells. We then tested each of the five separately trained models using the
different hidden test image sets (Figure 5A). We find that for NPC images, each separately trained
model is highly accurate for the test set from the same batch (as shown in Figure 1G). However, the
disease status is poorly predicted in test images from other batches (Figure 5B). While in a few cases
one model can predict if NPC images are of XCL1 or XCL1-Parkin-KO cells with an accuracy of 65%,
in other cases the accuracies are equivalent or worse than random. For DANs, the ability of models
trained with one experimental batch to predict if cells are from XCL1 or XCL1-Parkin-KO in a different
batch is also poor (Figure 5C). We next tested if it was possible with this type of microscopy data for
a model to generalize at all. For this we used four separate plates from one experimental batch, where
all the plates were seeded, fixed, stained and imaged together. We trained a CNN for each plate and
predicted if test images were from XCL1 or XCL1-Parkin-KO lines. For NPCs, all models predict the
test data sets from all plates with high accuracy (Figure 5D), similar results were observed for DANs
(Figure 5E). These results imply that the technical differences between experimental batches of NPCs
and DANs are leading to CNN models that do not generalize. Indeed, within one experimental batch,
CNN models generalize extremely well.

With this in mind, we next set out to determine if combining multiple experimental batches and training
CNNs with these merged data sets could help yield a model to accurately predict images from a data
set not used in training (Figure 5F). We trained CNN models using NPC images from each
combination of the four experimental batches and tested images from the dropped-out batch, for each
combination we repeated the training five times (Figure 5G and H). Next, we performed the same
experiment on DANs (Figure 51 and J). We find that for both NPCs and DANs the models occasionally
have an accuracy near 70% in the test data from the dropped batch, but more often have accuracies
near or below 50%. Given that some models tend toward generalization, we decided to test tuning

different hyperparameters, step size and learning rate. We found in the ranges we tested that altering
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either step size or learning rate did not improve the ability of a CNN trained on four experimental

batches to generalize to the fifth batch (data not shown).
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Figure 5: CNN models generalize within one batch of images but show poor generalization across
batches. A) Schematic showing CNN models were trained separately for each of 5 batches (cells seeded,
differentiated, stained, and imaged on different days). The test data for each of the 5 batches was predicted
in all 5 separately trained model. B, C) Heat map showing the accuracy of prediction if images contain
XCL1 control or XCL1-Parkin-KO (B) NPCs and (C) DANs. The y-axis indicates which batch was used to
train the CNN model. The x-axis indicates which batch the predicted test data came from. D, E) Heat map
showing the accuracy of prediction if images contain XCL1 control or XCL1-Parkin-KO (D) NPCs and (E)
DANSs. The y-axis indicates which plates was used to train the CNN model. The x-axis indicates the plate
the predicted test data came from. F) Schematic showing batch drop out combinations, where a CNN model
was training with 4 out of 5 batches and the test data is from the “dropped” batch. G-H) Dot plots showing
the accuracy of CNN models trained with 4 of 5 batches. The test data used to train the models is shown
on the x-axis. The batch the test data comes from is indicated by the colour of the dot. Each dot represents
the same test data predicted in separately trained models; these replications represent different random
splits within the training data. G) Accuracy of predictions of control vs Parkin-KO cells in NPC test images
in the “dropped” batch not used in training. H) Prediction accuracy on all NPC test data sets from batch
used in the training and the dropped batch for each CNN model. 1) Accuracy of predictions of control vs
Parkin-KO cells in DAN test images in the “dropped” batch not used in training. J) Prediction accuracy on
all DAN test data sets from batch used in the training and the dropped batch for each CNN model.
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CNN models can accurately distinguish between isogenic controls and different genetic
models of PD

We have shown that a CNN can accurately predict if images are of NPCs or DANs from control or
Parkin KO iPSCs in one genetic background, the XCL1 cell background. Thus, we next wanted to
confirm that the distinction is not iPSC line specific. Building on the earlier work, we used a second
healthy control line (referred to as AIW002-02) and compared cells generated from this control line to
cells generated from this line with Parkin knocked out.(17) The iPSCs were differentiated into NPCs,
stained, and imaged as described above. Here we have ~3600 images per condition. A CNN model
was trained with AIW002-02 and AIW002-02-ParkinKO NPCs, and we find the prediction accuracy is
95.34% on the hidden test data (Figure 6A). After confirming Parkin-KO cells can be distinguished
from control cells across two different genetic backgrounds, we next tested two other genetic models
of PD. The gene GBAT encodes the enzyme GCase, critical for lysosomal function and cellular
homeostasis. Mutations in GBAT constitute a major risk factor for PD.(18) We trained a CNN model
to distinguish between AIW002-02 control NPCs and AIW002-02-GBA1-KO NPCs. The model predicts
the correct iPSC line with 86.58% accuracy (Figure 6B). Mutations or triplication of the gene SNCA
encoding a-synuclein is a common genetic cause of PD.(14) We used a line with the known patient
mutation A53T introduced into the SNCA gene in AIW002-02 iPSC line, AIW002-02-SNCA-A53T.
When we trained the CNN model with NPC images from AIW002-02 and AIW002-02-SNCA-A53T we
find the model can distinguish the two cell lines with 97.81% accuracy on the hidden test data (Figure
6C).

To explore the extent of overlap in morphology between the three genetic models of PD we designed
a four-way categorical model to classify between control, Parkin-KO, GBA-KO and SCNA-A53T NPCs.
The architecture of the CNN was maintained, only the final output layer was adjusted to account for
four output categories instead of two. We trained the categorical model with NPC images from
AIW002-02, AIW002-02-Parkin-KO, AIW002-02-GBA-KO and AIW002-02-SNCA-A53T, then tested
the accuracy of predictions in the hidden test data. Each image is predicted as being from one of the

four iPSC lines. We find that overall accuracy is only 66.56%, however the accuracy for predicting the
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AIW002-02 control line correctly is 88.75% (Figure 6D). The categorical CNN model mis-predicts the
different genetic PD models as another PD model but does not confuse them for the control line. This
indicates a partially overlapping PD morphology in these lines. Specifically, AIW002-02-GBA-KO and
AIW002-02-SNCA-A53T are both mis-predicted as AIW002-02-ParkinKO, but not mis-predicted as
each other. In the cases where AIW002-02 is predicted as a PD line, it is predicted to be the AIW002-

02-GBA-KO, indicating this line might share the most morphological similarity to the control.

After noting that the different PD genetic models could have overlapping morphological features used
by the CNN, we decided to test combinations of the three genetic PD models in training CNN binary
classifiers. Surprisingly, when images from AIW002-02-GBA-KO and AIW002-02-SNCA-A53T were
combined together to train a CNN model to distinguish these two genotypes from the AIW002-02
control, the mean accuracy of predicting the hidden text data is 76.5%, indicating these two models of
PD may have overlapping morphological phenotypes recognized by the CNN (Figure 6E). However,
the models trained by combining sets including AIW002-02-Parkin-KO together with AIW002-02-GBA-
KO or AIW002-02-SNCA-A53T or both together are highly variable over cross validation, indicating
the variability between genotypes and within one genotype is very high (Figure 6E). Our findings
indicate overlap between morphological difference in multiple genetic models. CNN Models
distinguishing individual PD genetic models from control cells are all highly accurate and perform better

than models trained on two or more genetic PD models.
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Figure 6: CNN classifiers accurate distinguish between control NPCs and three different models of
PD. A) Right, example images of control AIW002-02 and AIW002-02-Parkin-KO NPCs. Left, confusion
matrix showing predictions of hidden test data in a model trained to distinguish AIW002-02 (healthy) and
AIWO002-02-Parkin-KO (disease) NPCs. The number of images predicted are indicated. B) Right, example
images of control AIW002-02 (healthy) and AIW002-02-GBA-KO (disease) NPCs. Left, confusion matrix
showing the number of images from the hidden test data predicted as healthy or control and the true status
of the cell. C) Right, example images of control AIW002-02 (healthy) and AIW002-02-SNCA-A53T (disease)
NPCs. Left, confusion matrix showing the number of images from the hidden test data predicted as healthy
or control and the true status of the cell. D) Confusion matrix showing test data predictions of which cell
type an NPC images contains. A four-way categorical model was trained to distinguish between AIW002-
02 control, AIW002-02-SNCA-A53T, AIW002-02-GBA-KO and AIW002-02-ParkinKO NPCs. E) Box plot
showing accuracy of cross validation of CNN binary classier models trained with different combinations of
inputs. The x-axis indicates which disease model NPC images were compared to AIW002-02 control cells.
Each line AIW002-02-SNCA-A53T, AIW002-02-GBA-KO and AIW002-02-ParkinKO was used to train CNN
models alone, in combination of two PD lines together and all three PD lines together. For each combination
of iPSC lines cross validation replication with random splits of the training data was performed five times.

Discussion

In this study, we introduced a deep learning convolutional neural networks (CNNSs) to detect disease
status in iPSC-derived cells, specifically NPCs and DANs. Notably, we harnessed the power of high-
content imaging using three distinct organic dyes to stain the nucleus, cell membrane, and

mitochondria. While previous research has employed CNNs in the context of microscopic imaging
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data, these applications were primarily focused on cell type classification or cell segmentation.(19,20)
High content microscopy analysis methods targeted toward screening applications utilize extracted
features and do not directly apply machine vision to the microscopy images.(21,22) While, to our
knowledge, there exists one other notable instance of CNN application for disease status classification
in Parkinson's disease (PD), it involved patient fibroblasts rather than neurons.(23) In contrast, our
study takes a significant step forward by utilizing CNNs to distinguish disease status in iPSC-derived
DANSs, thereby expanding the utility of this technology in the field of neurobiology.

In a related study, the Gandhi group utilized features extracted from microscopy images to train a deep
learning neural network for predicting disease status in iPSC-derived cortical neuron cultures.(24)
Their research, which employed an SNCA triplication line, provided valuable insights into disease
classification. However, our approach, which incorporates CNNs and directly analyzes microscopy
images, offers a distinct contribution to this evolving field. Notably, our study demonstrates that CNN
models can be effectively trained to predict disease status, even in complex biological systems.

To validate the effectiveness of our CNN classifier, we employed two distinct models of PD: a
pharmacological model involving rotenone treatment and a genetic model using several lines with PD-
associated mutations or gene knockouts. Importantly, our approach successfully distinguished
disease status in isogenic control and Parkin KOs in both NPCs and DANs, providing evidence of its
versatility and robustness. Moreover, we extended our analysis to NPCs and DANs differentiated from
isogenic iPSC lines with mutations in SNCA and GBA, two additional PD genes, highlighting the
potential of CNNs to classify disease status across various disease models.

To ensure the reproducibility of our model, we subjected it to rigorous testing, including cross-
validation and validation over multiple biological datasets. These tests confirmed that our model is
both computationally and biologically reproducible, underscoring its reliability and utility. Additionally,
we investigated the contributions of different channels within the imaging data, revealing that all three
channels, representing the nucleus, cell membrane, and mitochondria, play vital roles in the model's

accuracy, with the nucleus channel being the most important contributor to predictions in our model.
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One limitation of CNNs is that they can classify based on irrelevant information. We explored the
effects of image processing on model performance, comparing segmenting individual cells and
dividing large images into a grid of smaller ones with the traditional method of cropping and resizing.
Our findings suggest that CNNs rely on the information provided by the nucleus and cell body to make
accurate predictions. This insight provides valuable information about the features that contribute most
to disease status classification and indicates biologically relevant information is being used for
classification.

One notable challenge we encountered was the generalizability of our model across different biological
experiments. While some degree of generalization was observed, it was not consistently achieved.
This lack of generalizability appeared to stem from the inherent variability between batches of NPCs
and DANs, a well-known occurrence in biological research. Addressing this challenge may require
further adjustments to the image processing method to normalize images and enhance the model's
capacity to generalize across varying culture conditions.

In summary, our CNN-based model presents a valuable tool for the exploration of nervous system
biology when tested alongside a range of CNN models. The binary predictive models developed in
this study have promising applications in phenotypic compound screening. For instance, researchers
can employ CNN models to differentiate control cells from PD models and simultaneously treat PD
cell models with a panel of drugs or compounds of interest. Such an approach allows for the
identification of compounds that can cause PD-affected cells to be classified as the control state,
indicating a potential rescue of the PD phenotype. Conversely, researchers can perform a reverse
screen to identify compounds that lead to control cells being predicted to be more closely aligned with
a PD state, shedding light on potential factors that drive a PD phenotype. These applications
underscore the versatility and significance of our CNN-based disease status classifier in advancing

our understanding of PD and contributing to potential therapeutic interventions.
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Methods

Cell lines

The iPSC lines XCL1 and XCL1-ParkinKO were purchased from Xcell Science and previously
described.(9) The XCL1 line was reprogrammed from cord blood cells from a male donor using
episomal vectors. The other AIW002-02 and AIW002-02-Parkin-KO iPSC cell lines were previously
described.(12,17) The AIW002-02-GBA-KO and AIW002-02-SNCA-A53T lines were generated using
CRISPR and standard quality control measure were performed (see supplemental documents 1 and

2).

AIW002-02-SNCA-A53T: A single guide RNA (gRNA) was designed using benchling.com to generate
a double-strand break (DSB) in exon 3 (ENSE00000970012) of transcript SNCA-201
(ENST00000336904.7) of the human gene SNCA (ENSG00000145335), 1 base pair (bp) downstream
of the target nucleotide. The mutation A53T was created by homology-directed repair (HDR) using a
single-stranded oligonucleotide (ssODN) template. All CRISPR reagents were electroporated into
iPSCs using the P3 Primary Cell 4D Nucleofector™ X Kit S (Lonza), as previously described.(25) Cells
at 50% confluency were dissociated with Accutase (StemCell Technologies). 500,000 cells were
resuspended in 25 pl of Cas9:gRNA ribonucleoprotein (RNP)-ssODN-buffer mix, consisting of 1 pl of
Alt-R® S.p. HiFi Cas9 Nuclease V3 (stock 61 uM; IDT), 3 ul of gRNA (stock 100 uM; Synthego), and
1 pl of ssODN (stock 100 pM; IDT) in 20 pl of nucleofection buffer P3. Nucleofection was performed

using the CA137 program in a Nucleofector 4D device.

Following nucleofection, iPSCs were evenly distributed into a flat-bottom 96-well plate in mTeSR1
media (StemCell Technologies) and 10 uM Y-27632 (StemCell Technologies). After limiting dilution,
gene-edited clones were identified by ddPCR (QX200™ Droplet Reader, Bio-Rad). The detection of
the modified nucleotide by ddPCR was based on a TagMan® assay including two PCR primers and

two DNA probes (one for each of the wildtype and mutant alleles). Locked Nucleic Acid (LNA®) probes
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were designed following the manufacturer’s criteria. Sequence integrity of successful clones was
assessed using Sanger sequencing of PCR amplification of the expected 320 bp amplicon

(Supplemental document 1).

AIW002-02-GBA-KO: Two gRNAs were designed using the “optimized CRISPR design” tool

(www.crisp.mit.edu) to target sites in exon 4 of the human GBA gene (ENSG00000177628) and

remove a 98bp segment. Each double strained gRNA was separately cloned into a Cas9/puromycin
expressing vector (pX459 from Addgene #48139). The gRNA plasmids were delivered into AIW002-
02 iPSCs by Neon electroporation. Cells recovered for 48hours and then 0.2ug/ml Puromycin was
added into medium to select transfected cells and isolate clones. Cell clones were transferred in 96

well plates for genotyping and amplification.

KO cells were confirmed by PCR amplification and gel electrophoresis, where the wildtype GBA gene
results in a 739bp product and the KO product was 641bp. Genomic DNA was extracted with
QuickExtract (Lucigen) and PCR was performed using Q5® High-Fidelity DNA Polymerase according
to the manufacturer’s protocol. PCR products were cloned into the pMiniT vector and sent for Sanger

sequence to confirm the KO by the DNA sequence (Supplemental document 2).
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Table 1: Sequences of reagents used in gene editing to generate new genetic PD model iPSC

lines
Line Item Sequence Source
AIW002-02- | gRNA GUGGUGCAUGGUGUGGCAAC Synthego
SNCA-A53T | ssODN template ATTTGTTTTTGTAGGCTCCAAAACCAAGGA | IDT
GGGAGTGGTGCATGGTGTCACAACTGGTA
AGCTCCATTGTGCTTATATCCAAAGATGAT
ATTTAAAGTAT
PCR primer 1 ACCAAGGAGGGAGTGGT IDT
PCR primer 2 GGGCCACACTAATCACTAGATAC IDT
DNA probe (wildtype) /SHEX/TG+T+G+GC+A+A+CA/3IABKFQ/ IDT
DNA probe (mutant) /56-FAM/TG+T+C+ACAA+C+AGG/3IABKFQ/ IDT
PCR/Sanger primer 1 ACTAGCTAATCAGCAATTTAAGGCT IDT
PCR/Sanger primer 2 AAGCCCTCATTATTCTTGGCA IDT
gRNA 1 TAAAAGCTTCGGCTACAGCT Life Technologies
gRNA 2 GCTATGAGAGTACACGCAGT Life Technologies
PCR primer 1 TTTTGGCTCATTCCAACCTC Life Technologies
PCR primer2 TTGAGAGCAGCAGCATCTGT Life Technologies

Cell cultures and iPSC differentiation

IPSCs were differentiated into NPCs as previously described and frozen for future experiments.(12)

NPCs were recovered for one week and seeded at a density of 10,000 cells per well in 96-well plates

coated with poly-L-ornithine (PLO) 1ug/ml overnight at 37 °C, followed by laminin 5ug/ml for 2 hours

at 37 °C. NPCs were stained and fixed 48 hours after seeding. DANs differentiated from NPCs as

previously described and maintained in 96 well plates for 4 weeks.(17)

Rotenone treatment

NPC were seeded at a density of 10 000 cells per well in 96-well plates. After 24 hours for cell adhesion

and recovery, half of the wells were treated with 1uM rotenone for 20 hours. Rotenone treatment was

selected from visual inspection of a rotenone dose curve and from previous experiments, to select a

dose that would not cause a visual difference in cell to the human eye.(26)
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Fixation and staining

To stain for mitochondria, live NPCs and DANs were incubated with 500nM Mitotracker
OrangeCMTMRos (ThermoFisher Scientific) for 1 hour at 37 °C. Then the cells were fixed with 4%
formaldehyde in PBS (10 mins), washed 3 times in PBS, stained with CF488A conjugated Wheat germ
agglutinin (Biotium, 2ug/mL) and Hoechst33342 (ThermoFisher Scientific, 5ug/mL) for 10 minutes and

washed 3 times in PBS.

Imaging

Images were acquired on a Cellinsight CX7 High Content Screening microscope (ThermoFisher
Scientific) with a 20X objective (NA 0.7). Excitation/ Emission filters for Hoechst33324, WGA and
Mitotracker were 386-23/438-47, 485-20/542-27, 549-15/612-69, respectively. Images were collected
for 121 fields per well (covering ~90% of a given well). Image size was 1104x1104 pixel (0.4um/pixel)

with 14-bit depth. For analysis, images were exported in 8-bit TIFF format.
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times.
Number of 96
Experiment Batch | iPSC lines Cell type well plates Cell staining
-/+ 1 mM
Rotenone 1 XCL1 NPCs 6 Hoechst, WGA
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 1 Parkin-KO NPCs 2 mitotracker
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 2 Parkin-KO NPCs 2 mitotracker
Control vs XCL1, XClI1- Hoechst, WGA,
Parkin-KO 3 Parkin-KO NPCs 4 mitotracker
Control vs XCL1, XClI1- Hoechst, WGA,
Parkin-KO 4 Parkin-KO NPCs 4 mitotracker
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 5 Parkin-KO NPCs 2 mitotracker
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 1 Parkin-KO DANs 2 mitotracker
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 2 Parkin-KO DANs 2 mitotracker
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 3 Parkin-KO DANs 4 mitotracker
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 4 Parkin-KO DANs 4 mitotracker
Control vs XCL1, XCI1- Hoechst, WGA,
Parkin-KO 5 Parkin-KO DANs 2 mitotracker
AIW002-02,
Control vs AIW002-02- 18 wells per Hoechst, WGA,
Parkin-KO 1 Parkin-KO NPCs condition mitotracker
AIW002-02,
Control vs AIW002-02- 18 wells per Hoechst, WGA,
GBA-KO 1 GBA-KO NPCs condition mitotracker
AIW002-02,
Control vs AIW002-02- 18 wells per Hoechst, WGA,
SNCA-A53T 1 SNCA-A53T NPCs condition mitotracker

For rotenone experiments on each plate half the wells were treated with 1 mM Rotenone and half with
vehicle. For XCL1 vs XCL1-Parkin-KO experiments on each plate half the wells were seeded with
XCL1 and half with XCL1-Parkin-KO. For AIW002-02 experiments three columns were seeded for
each genotype (AIW002-02, AIW002-02-Parkin-KO, AIW002-02-GBA-KO and AIW002-02-SNCA-

A53T) in a 96 well plate.
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Image preprocessing

Down sample method: The basic preprocessing methods the input images 1104 by 1104 pixels were
down sampled to a 128x128 pixel image with linear interpolation, and then cropped in the margins by
another 32 pixels to get an input image of 64x64 pixels. Each channel is process separately. This
method was applied for all models unless otherwise indicated.

Cell segment method: the python package PIL was used to identify nuclei and measure the diameter
of the nucleus. Then a 64 x 64 box is drawn around the nucleus with the center of the nucleus set as
the center of the box.

Grid crop method: The original images of 1104x1104 were cropped into 144 images and rescaled with
linear interpolation to 64x64 pixel images. Intensity was used to detect empty images after cropping.
For all images, preliminary preprocessing was used to find and reject images that were empty or
contained the edge of the plate. A brightness threshold, the top and bottom 10% average pixel
intensities was used remove images and reduce variation in the data set. All other images had each

of their channels normalized, before entering the CNN model.

CNN model

We used the VGG 16 changing from 16 layers to 8 layers. The model was created in Python using the
Keras deep learning library running on the TensorFlow framework. An 8-layer convolutional model
was created, incorporating 3 blocks of convolutional and pooling layers with the rectified linear unit
(ReLU) activation function followed by a fully connected classification perceptron with the SoftMax

activation function.

For the categorical model, the overall structure of the model remains the same, however, changes
were made to the final SoftMax activation layer to support multiple labels with categorical cross

entropy.
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CNN training

Processed images were split 80/20 into training and test images. The training set was then split again
80/20 into training and validation. The CNN default model conditions are set as 64 steps per epoch
for 50 epochs. Separate models were created to handle different amount of channel inputs, differing
only in the first convolutional layer to handle the different number of channels. The experiments
involving testing different channel combinations used models for each of the indicated channels. For
the rotenone treatment models only two channels (nuclei and cell membrane) were imaged and used

as inputs to the CNN. For all other experiments three channels were used.

Table 3: Number of images used in training different models before data splitting.

CNN model Number of images
used in each condition

AIW002-02 Rotenone vs control NPCs 34848

XCL1 control vs XCL1-Parkin-KO NPCs 5808

XCL1 control vs XCL1-Parkin-KO DANs 5808

AIW002-02 control vs AIW002-Parkin-KO 3872

AIW002-02 control vs AIW002-Parkin-KO 3872

AIW002-02 control vs AIW002-Parkin-KO 3872

Cross validation

For cross validation experiments within a given dataset, we divided the training dataset into 5 equal-
sized subsets. The model is then trained on 4 of the subsets and evaluated on the remaining subset,
which serves as the validation set. This process is repeated 5 times, with each subset serving as the
validation set once. The performance of the model is then averaged across the 5 iterations to obtain

a more robust estimate of its generalization performance.
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Dropout comparisons for generalization

For experiments where four batches were used as the training data and the dropped batch was used
as the test data. The same processed images used in separate batch models were used for the

generalization tests.

CNN model outputs

For each model training curves for error loss and accuracy are output. Average receiver operating
characteristic (ROC) curves and accuracy are calculated from the test results. Outputs are printed to
a log file and plots are saved. Accuracy is a calculated by the amount correctly classified labels over

the total amount of items.

Code availability
Cod for image processing, building models, training models and testing models is freely available at:

https://qithub.com/RhalenaThomas/DeeplLearningCNN DiseaseStatusClassifier
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Supplemental Document 1

SNCA A53T/AIW002-02

General information

Cell line name

SNCA A53T/AIW002-02

L] Control line X Disease line

Gene edited? Yes

Donor information

Sex MALE

Biosample ID

2889

Age 37 YEARS

Lines from same
donor

Race CAUCASIAN

Culture conditions Derivation

Coating/ ‘ MATRIGEL/mTeSR1 Primary cell line PBMC

medium Reprograming RETROVIRUS

Passage method Gentle cell dissociation method

reagent Reprogramming Bcl-XI 1 Myc
factors Nanog [J SOX2 X LIN28 []
KLF4
0CT3/4

Disease status

Disease Parkinson’s Disease

Affected gene SNCA

Disease mutation/family history SNCA A53T
Genetic modification

Modification CRISPR-Cas9 Knock in

Gene SNCA

Gene ID ENSG00000145335

Chromosome location Chromosome 4: 89,700,345-89,838,315 reverse strand

gRNA1 GUGGUGCAUGGUGUGGCAAC

gRNA2 NA

Delivery method Lonza Nucleofection

Subclone IDs B1

Description One gRNA was designed using benchling.com to generate one DSB in exon 3

(ENSE00000970012) of transcript SNCA-201 (ENST00000336904.7), 1bp
downstream of the target nucleotide, using Cas9 nuclease; the mutation A53T was
created by HDR using the ssODN template
ATTTGTTTTTGTAGGCTCCAAAACCAAGGAGGGAGTGGTGCATGGTGTCACAACTGGTA
AGCTCCATTGTGCTTATATCCAAAGATGATATTTAAAGTAT;

Edited alleles were detected by ddPCR with primers ACCAAGGAGGGAGTGGT and
GGGCCACACTAATCACTAGATAC, and Affinity probes wt:
/SHEX/TG+T+G+GC+A+A+CA/3IABkFQ/ and mutant: /56-
FAM/TG+T+C+ACAA+C+AGG/3IABKFQ/;
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Primers for PCR/Sanger sequencing were ACTAGCTAATCAGCAATTTAAGGCT and
AAGCCCTCATTATTCTTGGCA (amplicon: 320bp);

Sanger DNA sequence of SNCA A53T/AIW002-02 (homozygous):
ASCCTTGRARAMTTAATGTCTTGAATTTGTTTTTGTAGGCTCCAAAACCAAGGAGGGAGTGGTGCATGGTGTCACAACAGGTA
AGCTCCATTGTGCTTATATCCAAAGATGATATTTAAAGTATCTAGTGATTAGTGTGGCCCAGTATTCAAGATTCCTATGAAATTG
TAAAACAATCACTGAGCATTCTAAGAACATATCAGTCTTATTGAAACTGAATTCTTTATAAAGTATTTTTAAAAAGGTAAATATT
GATTATAAATAAAAAATATACTTGCCAAGAATAATGAGGGCTTAATA

*
CAAGG AGGGAGTGGTGCATGE GTETCACAACAGGTAAGCTCCATTGEGTGCTTAT

r b \ A AN | A x N
e LA /MJ IJ\/\’H g\/\_ It ﬂ/ -\{1\){(\/\,! Jﬂ'u'f H'I JI'MI U‘ Iu.l; '-,Tf '.kl.

100 both
Edited alleles (homozygous) 1 bp upstream of the target codon.

BOD

Characterization:

Authentication by STR analysis

AIW002-02 SNCA A53T/AIW002-02
Marker Allele 1 Allele 2 Allele 1 Allele 2

AMEL X Y X Y
CSF1PO 9 10 9 10
D13S317 12 12 12 12
D16S539 12 13 12 13
D21511 29 32.2 29 32.2
D55818 12 12 12 12
D75820 9 11 9 11
THO1 8 9 8 9
TPOX 8 11 8 11

VWA 14 15 14 15
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Genotyping analysis:
Passage number P12+C5
Karyotyping Normal 46, XY
gPCR (Genetic Analysis kit) | Normal
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0
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L
2 v Normal SNCA A53T/AIW002-02
Figure 2.G-band assay show normal karyotype of Figure 3. Genetic stability assay show normal
SNCA A53T/AIW002-02, 46, XY. chromosome of SNCA A53T/AIW002-02.
Pluripotency analysis:
Marker Expressed? Nanog Tral-60 Hoechst 33342 Merge
Nanog Yes
Tra-1-60 Yes
SSEA-4 Yes
OCT3/4 Yes
SSEA-4 0CT3/4 Hoechst 33342 Merge

Figure 4. Immunostaining of pluripotency markers on SNCA A53T/
AIW002-02.

Microbiology/virus screening:

Mycoplasma test Negative
Hepatitis B Negative
Hepatitis C Negative
HIV1 or 2 Negative
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Supplemental Document 2

GBA-KO /AIW002-02 L] Control line X Disease line
Gene edited? Yes
General information Donor information
Cell line name GBA-KO/ AIW002-02 Sex MALE
Biosample ID 2889 Age 37 YEARS
Lines from same Race CAUCASIAN
donor
Culture conditions Derivation
Coating/ MATRIGEL/mTeSR1 Primary cell line PBMC
medium Reprogramming RETROVIRUS
Passage Gentle cell dissociation reagent method
method Reprogramming Bcl-XI L1 Myc
factors Nanog [ SOX2 [XI LIN28 []
KLF4
OCT3/4
Disease status
Disease Parkinson’s Disease
Affected gene GBA
Disease mutation/family history GBA-KO
Genetic modification
Modification CRISPR-Cas9 Knock out
Gene GBA
Gene ID ENSG00000177628
Chromosome location Chromosome 1: 155,234,452-155,244,699
gRNA1 TAAAAGCTTCGGCTACAGCT
gRNA2 GCTATGAGAGTACACGCAGT
Delivery method Neon electroporation
Subclone IDs No.18
Description

For knocking out the expression of GBA in AIW002-02 iPSCs, Guide RNAs (gRNAs)
were designed using the “optimized CRISPR design” tool (www.crisp.mit.edu).
The locations of gRNA1 and gRNA2 were in exon 4. Oligonucleotides with Bsb1
cleavage overhang were ordered from Life Technologies, annealed and cloned
into Cas9/puromycin expressing vector (PX459 from Addgene #48139). The
following gRNA sequences were used to create the KO line. gRNA1:
TAAAAGCTTCGGCTACAGCT, gRNA2: GCTATGAGAGTACACGCAGT.

Genotyping: genomic DNA was extracted with QuickExtract (Lucigen) and PCR
was performed using Q5® High-Fidelity DNA Polymerase according to the
manufacturer’s protocol (Forward primer: TTTTGGCTCATTCCAACCTC. Reverse
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primer: TTGAGAGCAGCAGCATCTGT). Wild type PCR product: 739bp. Knock out
PCR product: 641bp.

Sanger DNA sequence of GBA-KO/AIW002-02:
AGGTAGCTGGGATTACAGGCGGCCACCACTACGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGCTGGC
AAGGCAGGTCTCAAACTCCTCACCTCAGGTGATCCGCCCACCTCGGCCTCCTAAAGTGCTAGGATTACAGGTGTGAGCCCCTGC
GCCCGGCCAAGGGGTGAGGAATTTTGAAACCGTGTTCAGTCTCTCCTAGCAGATGTGTCCATTCTCCATGTCTTCATCAGACCT
CACTCTGCTTGTACTCCCTCCCTCCCAGGTGCCCGCCCCTGCATCCCTAAAAGCTTCGGCTACAAGTGGGCGACGGATGGAGCT
GAGTATGGGGCCCATCCAGGCTAATCACACG

A
1. 100bp DNA ladder
2.  AIW002-02
3. GBA-KO/AIW002-02
B

JCCCTGCATCCCTAAAAGCTTCGECTACAGCTCEETGETGTGTETCTGCAATGCCACATACTGTGACTCCTTTEACCCCCCGACCTTTCCTGCCCTTGETACCTTCAGCCGCTATGAGAGTACACGCAGTGEGCEACEEATEEAGCT

SCTACATOCCTAAAAGCTT G TA G — AETGRGCRACGEATEBAGET

Figure 1. Sequence verification of GBA knock-out in AIW002-02.
A. PCR analysis of GBA-KO/AIW002-02: 641bp. AIW002-2: 739bp

B. Sequences of GBA-KO/AIW002-02 is aligned with AIW002-02 sequence.

Characterization:

Authentication by STR analysis

AIW002-02 GBA-KO/AIW002-02
Marker Allele 1 Allele 2 Allele 1 Allele 2

AMEL X Y X Y
CSF1PO 9 10 9 10
D13S317 12 12 12 12
D16S539 12 13 12 13
D21511 29 32.2 29 32.2
D55818 12 12 12 12

D75820 9 11 9 11
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THO1 8 9 8 9
TPOX 8 11 8 11
VWA 14 15 14 15
Genotyping analysis:
Passage number P10+C5
Karyotyping Normal 46, XY
gPCR (Genetic Analysis kit) | Normal
25
2 R aa !
& g Ay QU 2F Heo ' ! \ .
1 2 3 4 5 ’q—,
g 15
34 RE 88 e & Al M8 2
H& S5 BR A8 S8 &u HH 2 . .
z [=]
6 7 8 9 10 1 12 Q
TRV Y 3 A a8

.

chrig chrdq chr10p chri2p chr17q chri8q chr20q chrXp

2 v v Normal GBA-KO/AIW002-02

Figure 3. Genetic stability assay show normal

Figure 2. G-band assay show normal karyotype of
chromosome of GBA-KO/AIW002-02.

GBA-KO/AIW002-02.

Pluripotency analysis:
Marker | Expressed?

Nanog Yes

Tra-1-60 | Yes
SSEA-4 Yes
OCT3/4 | Yes

Nanog Tral-60 Hoechst 33342 Merge

SSEA-4 0OCT3/4 Hoechst 33342 Merge

Figure 4. Immunostaining of pluripotency markers on GBA-KO/AIW002-02.
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Microbiology/virus screening:

Mycoplasma test Negative
Hepatitis B Negative
Hepatitis C Negative
HIV1 or 2 Negative
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