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1. Abstract

Interest in the role of DNA methylation (DNAm) has grown in ecological and evolutionary
research of natural populations. While researchers are typically interested in comparing
population-level variation, individual sequencing is the current standard. Natural populations
have low effect sizes and thus need large sample sizes to detect differences. The cost of
sequencing the necessary samples can be prohibitive in DNAm work. Pooling DNA before
library preparation is a powerful tool to reduce costs but no recommendations exist for DNAm
pooling in ecology-epigenetics research. We test if pooled and individual libraries provide
similar global and region-specific DNA methylation signals in a natural system of response to
pollution. We generated whole-epigenome data for two freshwater invasive molluscs (Corbicula
flumina and Dreissena polymorpha) collected from a polluted and unpolluted locality, Lake
Maggiore, Italy. Our results support that pooling effectively captures the same genome-wide and
global treatment-level signals as individual libraries but we note that pooled libraries yielded
orders of magnitude more input data and differentially-methylated regions (DMRs) detected
compared with individual libraries. We estimated greatly lower power for regions from
individual libraries compared with pooled libraries. The post-hoc process of computationally
pooling data from individual libraries produced results comparable to pooled libraries in volumes
but had discrepancies between DMRs. We discuss the possible causes for the discrepancies and
put our results in the context of the benefits and drawbacks of sample pooling for epigenomics of
natural populations.
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Glossary

B: Percent methylation estimated at a locus.

Computational pooling: Post-hoc pooling of individual library epigenomic data using
bioinformatics.

Coverage/read depth: Number of reads used to inform a methylation estimate at a position/site.

CpG: A dinucleotide sequence of 5—-CG—3' within a DNA molecule.

DMR: Differentially methylated region (R), a region being a contiguous stretch of DNA.
DMS: Differentially methylated site or single base pair position.

DNAm: DNA methylation.

Eco-epi: Ecology-epigenetic; A research field at the intersection of ecology and epigenetics.

EM-seq: An enzymatic alternative to Bisulfite treatment for DNAm detection. The process uses
two enzymatic reactions: 1. to protect 5mC and 5hmC from treatment and 2. unmodified
cytosines are converted to uracil.

Epigenomic libraries: A collection of overlapping DNA fragments that have been treated to
detect DNA methylation, together representing the total DNA methylation of one (individual
library) or several specimens in a single pooled library.

Linkage group: All known genes on a chromosome.

Locus: A section of DNA without necessarily specifying its size or function or relative position.
MDM: Mean difference in methylation.

PCA: Principal component analysis.

Pooling: (in the context of this study) pooling of individual DNA samples ahead of library
preparation and sequencing.

Region: A section of DNA made up of contiguous bases, also referred to as a haplotype.
Site/base: A single base-pair.

WepiGS: Whole epi-Genome Sequencing; Non-targeted (random) sequencing of epigenomic
data, includes methods such as WGBS and EM-seq.

WGBS: Whole Genome Bisulfite Sequencing; Non-targeted (random) sequencing of epigenomic
data following bisulfite treatment.

1 Introduction

Epigenetics is the study of the stable but reversible modifications to the chromatin that do not
alter the DNA sequence itself (Fallet et al., 2020; Gallego-Fabrega et al., 2015; Paro et al.,
2021). These modifications can be established and removed in response to stimuli (Paro et al.,
2021) and their interactions can regulate gene expression (Fallet et al., 2020). This mechanism
by which gene expression can be modified has received considerable attention (Marin et al.,
2018, Mounger et al., 2021, Brander et al., 2017). DNA methylation (DNAm) is the most
frequently studied epigenetic modification, particularly in ecology-epigenetic (eco-epi) research
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focusing on comparisons between populations, in part because of how similar the workflow is to
routine population genomics (Fallet et al., 2020; Lamka et al., 2022). For instance, of the
available methods, whole epigenome sequencing (WepiGS) (e.g. whole-genome bisulfite
sequencing (WGBS) and whole-genome enzymatic-conversion sequencing (EM-seq) offer the
highest resolution available as changes can be tracked as base-pairs across the entire genome
(Fallet et al., 2020; Paro et al., 202, Ziller et al., 2014).

A recent eco-epi review highlighted gaps in taxonomic and geographic sampling, and adequate
replication particularly in population-level studies (Lamka et al., 2022). Effect sizes in ecological
settings tend to be small, so large numbers of samples (e.g. >100 individuals per population or
condition) are required to detect differences (Lea et al., 2017). Increasing sample size is not
always possible in the case of rare or endangered species, but in most cases the maximum sample
size is limited by budget. Indeed, the sampling effort, individual library preparation and
sequencing have a strong impact on research costs. In WepiGS studies, data is typically obtained
at the individual level (i.e. resulting from individual library preparation), however researchers are
usually interested in population-wide signals. While the cost of sequencing has strongly
decreased since its advent (Jobling et al., 2014) and is currently still decreasing, wet laboratory
costs including individual library preparation remain a major obstacle for large sample sizes in
many eco-epi research projects. Hence, optimizing these steps is crucial to obtaining data with
the highest statistical power in a cost-effective manner.

A way to decrease costs associated with library preparation would be to pool the DNA from
individual samples from the same population or condition prior to library preparation. The
pooled libraries would thus represent the average signal of the individuals contained therein, with
the advantage to prepare a single library. DNA sample pooling is commonly used in population
genomics, where accurate population allele frequencies can be obtained from a large number of
pooled samples (Ozerov et al., 2013, Konczal et al., 2014). Furthermore, pooling can also be
used in transcriptomic studies, as it has been shown that pooling RNA samples and reducing
coverage are effective ways to optimize costs while maintaining sufficient power in differential
expression analyses (Assefa et al., 2020). So far, few studies compared the effect of sample
pooling using DNA methylation data. One of them showed consistent results between
individually run samples and pooled samples, where correlation coefficients were >0.98 for CpG
array data (Gallego-Fabrega et al., 2015). Two further studies focusing on MALDI-TOF mass-
spectrometry data from individual and pooled DNA produced strong evidence that pooled DNA
samples provide reliable estimates of group DNA methylation averages and showed that the
agreement holds up with a variety of pooling sizes (Docherty et al, 2009; Docherty et al., 2010).
To date, however, the comparison between individual and pooled samples has not been done
with WepiGS.

While pooling samples has a strong potential for increasing power and decreasing costs, there are
important considerations related to methylation data which have led to recommending against
sample pooling (see Ziller et al., 2014 ; Lea et al, 2017). First, methylation data is more variable
than genomic data by virtue of its inducibility and reversibility (Tsai & Bell, 2015). Therefore,
individual samples are not only snapshots in time and space, but they also represent the somatic
average. Second, methylation patterns may be tissue specific (Lee et al., 2017) and more closely-
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related cell-types have more similar methylation signals (Blake et al., 2020, Ziller et al., 2014).
Thus, biases may be introduced if inter-individual (or inter-tissue) variation cannot be accounted
for (Teschendorff et al., 2017). Finally, a particular concern has been that pooling masks
variation, prevents inclusion of covariates (Tsai & Bell, 2015, Ziller et al., 2014), and ultimately
requires more biological replicates to account for the hidden variation (Futschik & Schlotterer,
2010). Most importantly, if samples are pooled there is no possibility of going back to the
individual data, so any covariation in the data that was not expected or previously identified in
the original pooling design will be masked.

As the benefits and drawbacks of sample pooling in whole-genome DNA methylation studies
have not been formally compared, and there are currently no clear recommendations about the
pertinence of pooling DNA for epigenomics of natural populations. To address this gap, we
investigated empirically the effects of sample pooling in DNAm by using two invasive
freshwater bivalves from polluted and unpolluted localities as study systems. The aims were to:
1) test whether global DNAm signals from pooled and individual libraries are equivalent, 2)
compare the overlap between differentially methylated regions between polluted and unpolluted
localities arising from individual and pooled datasets and 3) provide a set of recommendations
about the pertinence of sample pooling for future eco-epi projects.

2. Methods and materials

2.1 Sampling and DNA extraction

Individuals of the Asian clam Corbicula fluminea and the zebra mussel Dreissena polymorpha
were collected by SCUBA diving at either polluted or unpolluted localities in Lake Maggiore,
Italy, and frozen at -20C upon arrival in the laboratory (Table 1). Sampling permits were not
necessary as both species are invasive. DNA extractions for 40 individuals (10 DP, 10 DNP, 10
CP, 10 CNP) from foot tissue were performed using DNeasyBlood and Tissue DNA extraction
kit (Qiagen Cat.no. 69504) following the manufacturer’s recommendations (Elution in 110 pul
elution buffer). DNA integrity was examined using agarose gel electrophoresis and DNA
concentration was measured using Qubit 2.0 (Invitrogen). Two Corbicula extractions failed (1
CP, 1 CNP), leaving 38 DNA extractions for individual library preparation (Summary of the
experimental design in Figure 1).

2.2 Pooling design, enzymatic conversion, library preparation and sequencing

To ensure individual and pooled libraries were comparable, the pooled libraries were prepared
from equimolar amounts of individually extracted DNA (Table S1 ; Figure 1 ), generating four
pooled libraries. The libraries were as follows; 1) Dreissena pool polluted (DpoolP) representing
the population of 10 Dreissena polymorpha individuals from the polluted locality; 2) Dreissena
pool non-polluted (DpoolNP) representing the population of 10 Dreissena polymorpha
individuals from the non-polluted locality; 3) Corbicula pool polluted (CpoolP) representing the
population of 9 Corbicula fluminea individuals from the polluted locality; 4) Corbicula pool
non-polluted (CpoolNP) representing the population of 9 Corbicula fluminea individuals from
the non-polluted locality. We prepared a total of 42 libraries, 38 individual ones and 4 libraries
from pooled DNA. We used an enzymatic technique to convert unmethylated cytosines in
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thymidine as it minimizes DNA damage. We used the NEB Next Enzymatic Methyl-seq Kit
(New England Biolabs Cat.no. E7120S). Control DNA (CpG methylated pUC19 and
unmethylated lambda) used to estimate conversion rates was added to each DNA extraction
before shearing as per the manufacturer’s instructions (New England Biolabs). For each
individual DNA extraction, DNA was sheared with a Qsonica sonicator (Q800R2 instrument)
using different shearing times depending on the level of DNA integrity previously assessed using
agarose gel electrophoresis: 1) samples with high-molecular weight DNA were sheared 2’45’
minutes; 2) samples with semi-degraded DNA were sheared 9°00°’-11°30°’ minutes; 3) samples
with highly-degraded DNA were not sheared. For the samples with highly-degraded DNA,
control DNA was sheared individually (nine minutes) and then added to the sample DNA.
Library preparation was done following the manufacturer’s instructions except that we used half
volumes of all reagents to reduce costs. The reduced reagent volumes did not have any clear
impact the sequencing output.

Final libraries were checked on a TapeStation 4150 Instrument (Agilent Technologies). We
aimed to obtain the same mean coverage per sample from both the individual libraries and the
pooled libraries of each species. We thus combined individual libraries in equimolar
concentrations and the pooled libraries in a molar concentration x-fold higher than the individual
libraries (i.e. 10x for Dreissena polymorpha pools and 9x for Corbicula fluminea pools) as the
individual and pooled libraries of a particular species were sequenced one the same lane. The 42
libraries were sequenced on two lanes of a S4 flowcell on an [llumina Novaseq 6000 sequencer
(150 bp paired-end) at the Functional Genomics Center, Ziirich.

2.3 Quality control and mapping

In total, 18 Corbicula fluminea individuals and 20 Dreissena polymorpha individuals were
sequenced at an average of 74 (£ 9.3) million reads (Table S1). The four pooled libraries were
sequenced at an average of 620 (+ 66) million reads. The reads were quality-assessed using
FastQC v.0.11.9 (Andrews, 2019) and MultiQC v.1.9 (Ewels et al., 2016). Adapters were
identified and removed using Trim Galore! v.0.6.6 (Krueger, 2020) with default settings. To
correct for bias of methylation percentage at the read ends, reads were trimmed of 10 bases on
both the 3 and 5 ends (as recommended,;
https://felixkrueger.github.io/Bismark/bismark/library_types/). Default settings were retained for
all other trimming steps, including the removal of low-quality bases (—quality 20) and dropping
reads shorter than 20 bases (-length 20). Enzyme conversion efficiency was assessed using the two
control DNA. The high quality reads having passed QC were then aligned to the respective
publicly available reference genomes; D. polymorpha (McCartney et al., 2022) and C. fluminea
(Zhang et al., 2021).

Alignment, de-duplication and methylation extraction were performed with Bismark v.0.19.0
(Krueger & Andrews, 2011). Briefly, we first converted reference genomes computationally for
alignment and then indexed using Bowtie2 v.2.4.4 (Langmead & Salzberg, 2012) with default
settings (command bismark_genome_preparation). Alignment was run with directionality specified
using the default alignment score (-score_min L,0,-1.2). Default settings included the -
exclude_overlap flag which only considers data from one of the two strands available in case of
overlap between forward and reverse reads. As part of the QC for the trimmed reads, we
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compared the number of read-pairs, the level of read duplication and the alignment efficiency
between treatment groups within species. Tests were performed using base R functions including
the Shapiro-Wilk test (shapiro.test) for univariate normality (Shapiro & Wilk, 1965), the Bartlett
test (bartlett.test) for homogeneity of variance (Bartlett, 1937) and the ANOVA performed using
the Im and summary.aov functions.

2.4 Coverage filtering, estimate of data loss and computational pooling

We processed the aligned reads for CpG sites with the MethylKit R package, v.1.24.0 (Akalin et
al., 2012) available through Bioconductor (Huber et al., 2015). To reduce computational load,
we analyzed the first eight linkage groups from each species. We decided to retain bases with at
least ten reads. We further excluded over-represented sites, which may reflect sequencing bias,
by removing the sites in the 99.9th percentile of coverage. Regions of one kb size were formed
as non-overlapping blocks using the tle function in MethylKit with default options (sliding
windows of 1000bp and regions of 1000bp).

We performed computational pooling of individual library data to allow for a better comparison
with the wet-lab pooled library data with the aggregate result of individual libraries.
Computational pooling is a post-hoc process that sums up the coverage within each treatment
using the individual library data and creates one library per treatment group or population. We
used the post-QC individual libraries as input data and pooled using the pool function in
MethylKit. We considered two thresholds for retaining loci; only loci with an overlap of at least
75% of the samples at each locus and only loci with 100% of the samples at each locus.

2.5 Evaluation of concordance between pooled and individual libraries

2.5.1 Genome-wide CpG methylation levels

As a test for agreement between the pooled and individual libraries, we fit an overall correlation
of the CpG methylation estimates for all samples in a pairwise fashion using Pearson’s
correlations with the getCorrelation function in MethylKit (Table 2). From this we could observe
any bias introduced by a particular subset of regions. In the first scenario we compared all
libraries against each other. In the other two scenarios we merged only the pollution and non-
pollution treatment groups, respectively.

To describe the relationship between the signal in the pooled and individual libraries and
between the polluted and non-polluted treatments, we performed a clustering based on the %
methylation estimates using a principal component analysis (PCA). To estimate an error on the
PCA coordinates, we performed a jackknife over linkage groups, estimating the standard error
(Busing et al., 1999; as in Montinaro et al., 2015). To confirm that jackknife iterations were
reporting a similar clustering signal, we tested for a correlation between the PC loading matrix
across jackknife iterations using the Tucker’s coefficient (Lorenzo-Seva & Berge, 2006; Peres-
Neto & Jackson, 2001).

To prevent any conflicts in the directional of components between jackknife iterations, we used a
Procrustes transformation to align each iteration of the PCA and the PCA of the full dataset
(Peres-Neto & Jackson, 2001). The transformation coefficients were examined to ensure that no
matrix needed excessive transformation to align as this would indicate a big difference in the
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signal. Where PCs were strongly correlated across jackknife iterations, we proceeded to estimate
the error.

2.5.2 Differential methylation in response to pollution

We tested if there was overlap between regions showing differential methylation between
polluted and non-polluted localities from the individual, pooled and computationally pooled
libraries. Differential methylation for the individual libraries was estimated using a logistic
regression (Cramer & Howitt, 2004). Here we only considered loci that were covered by at least
75 % of the samples in a treatment, respectively. This regression cannot be conducted with one
sample per treatment group (i.e. pooled libraries), so differential methylation was estimated for
the pooled and computationally pooled libraries using the Fisher's Exact Test (Fisher, 1934). We
set no minimum overlap for loci across samples in the computationally pooled data (Table S2).
The P-values were corrected for multiple testing under a sliding linear model method (Wang et
al., 2011) and we report the g-values. Regions were considered to have significant differential
methylation (i.e. DMR) with g<0.01 and a mean methylation difference of at least 25%. For
understanding the direction of hyper/hypo-methylation, all tests were performed with the
following orders for treatments; “Pollution treatment” vs. “Non-Pollution treatment”. The
number of regions in common between tests were visualized with ggupset (Ahlmann-Eltze, 2020)
package in R.

2.6 Estimates of recovered power

To gauge the available power in our dataset, we estimated the recovered power per locus in the
contrast of polluted and non-polluted populations. The power of a test is defined as the
probability that it correctly rejects the null hypothesis when the alternative hypothesis is true.
Firstly we identified invariant regions, which we considered to be regions with no MDM
between the treatments, rather than regions showing no variation in methylation. This measure
takes into account both variance within and between treatments and allows for some level of
artificial variance due to errors. With the individual libraries power estimates were based on a t-
test. Effect sizes were estimated as Cohen's d, which is the expected difference in means divided
by the standard deviation across all samples (Cohen, 1988). We estimated standard deviation
following the example by Mansell et al. (2019). The mean difference in methylation (MDM) at
each locus was based on that calculated in the estimation of DMRs, with o« = 0.01 and the
observed sample sizes per treatment group per species. We consider only loci with 100% overlap
across all samples. The power values were calculated using the pwr.ttest function in the R
package pwr (Champely, 2018). For the pooled and computationally pooled libraries, adjustments
were needed to replicate the Fisher’s Exact test. With binomial count data, the variance is a
function of the mean (Everitt & Torsten, 2010) and this allows us to estimate the standard
deviation as the square root of the variance function using only the proportions

Variance=p, /|1~ p,|n;+p,/(1- p,|n,
The effect size was estimated using the ES.h function which uses an arcsine transformation. The
power was estimated using the pwr.2p2n.test function in the R package pwr. The pwr.2p2n.test test

considers a two-proportion test with unequal sample sizes (i.e. coverage in this context) under
the null hypothesis that there is no difference in the treatment means. The region-specific
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coverage value was used in the calculation.

2.7 Estimates of the necessary sampling effort for significant detection

We estimated the distribution of the necessary sampling effort to detect statistically significant
differences between polluted and non-polluted populations at each locus. Sampling effort
estimates were made with the pwr.t.test function for the individual libraries and with the pwr.2p.test
function for the pooled and computationally pooled data. We set the power threshold to 80%
(power = 0.8, n=NULL) in all cases and we assumed equal sampling effort. In this estimate the
sampling effort for individual libraries is measured as the number of biological replicates (each
providing a methylation estimate as a continuous number). Sampling effort for the pooled and
computationally pooled data is measured as the interaction of the coverage and the number of
biological replicates (count data as either methylated or unmethylated read).

2.8 Laboratory costs estimation

We summarized the costs per sample in a hypothetical scenario where 12 populations from two
treatment groups have been sampled (Table 3). We estimated the cost of creating a ‘gross
pooled’, ‘nested pooled’ and ‘individual libraries’ with 8, 4, and 1 individual(s) per library,
respectively. The costs were based on quotes as of 2023 in Swiss Francs including local taxes.
These costs exclude any procedures which are equivalent between the pooled and the individual
libraries (such as DNA extraction, sample collection and DNA sequencing, assuming equivalent
sequencing depth per individual).

3 Results

3.1 Quality control and mapping

All FASTQ files were of high quality with an average per base Phred score >32. Filtering by
conversion rate efficiencies resulted in the removal of four C. fluminea samples with less than
98.5% conversion efficiency and a further two D. polymorpha due to possible over-conversion
and poor recovery of the control sequences. All four pooled libraries had adequate conversion
rates. For the remaining samples the conversion efficiencies in the CpG context were 99.34 *
0.20% for the positive control while maintaining methylation levels of 97 + 0.6% on the negative
control (Table S3). For the individual libraries, the average number of reads after filtering and
end-trimming was 75 £ 9.3 million ( g+ S.D.) for C. fluminea and 70 + 9.7 million for D.
polymorpha (Table S1). The pooled libraries had reads slightly under 10x the value of a single
individual library; 669 + 10 million for C. fluminea and 571 + 121 million for D. polymorpha.
The statistical comparison of the read QC measures between pollution treatments within species
showed that all groups had a normally distributed number of reads, number of duplicated reads
and proportion of aligned reads (p-value > 0.05, Shapiro Wilk Test).

3.2 Larger data loss in individual libraries compared with pooled libraries

Here we used the conventional, conservative minimum coverage filter of 10x for all work.
Consequently, the minimum resolution of methylation difference that could be detectable is
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expected to be 10%. While the sequencing effort per individual was the same between individual
and pooled libraries, the individual libraries yielded several orders of magnitude fewer sites than
the pooled libraries for both species (Table 2). Specifically, 95 - 97% of the individual library
data was filtered out at this step, while 30 - 35% of the pooled library data was filtered out. This
resulted in approximately 700,000 to 1,200,000 sites per individual library, while we obtained
approximately 15 to 32 million sites per pooled library (Table 2). We also observed a far larger
proportion of the sites that had low coverage for individual libraries. Sites with high coverage (>
32x) were not well represented in the individual sequenced data (< 10K sites) but are very well
represented in the pooled libraries (> 100K sites). Coverage values are variable among individual
libraries, but there were no large deviations from the mean to warrant exclusion in all but one
treatment group (Table S1).

The difference in analyzed data between individual and pooled libraries is even more striking
when looking at the set of 1 kb regions in common among individual libraries (i.e. after the
analytical ‘union’ step), that is subsequently used for differential methylation analysis (Table
S2). There, we found that only 5,158 and 18,800 regions were common to 75% of the individuals
for Dreissena and Corbicula, respectively. The number of regions in common drops to 1,150 and
7,832 if regions have to be present in each individual. In contrast, the number of regions
available for differential methylation analysis was 798,744 and 408,906 for the pooled library
data of Dreissena and Corbicula, respectively. Similarly, the number of regions retrieved from
the computationally pooled datasets was 191,075 and 94,234 for Dreissena and Corbicula,
respectively. To summarize, we observed greater data loss in individual vs. pooled library data
due to two major steps: 1) initial minimum coverage filtering per individual, and 2) union step to
find the sites or regions in common among individuals.

3.3 Evaluation of agreement between pooled and individual libraries

3.3.1 Global DNA methylation and correlations of genome-wide methylation levels

Corbicula fluminea had slightly lower global methylation levels compared to Dreissena
polymorpha (16% £ 0.7% vs 19.9% = 0.6%). Differences in methylation were negligible
between the polluted and non-polluted treatments, and between the pooled and individual
libraries for both species (C. fluminea: individual libraries 16.04% =% 0.77% vs 16.12% =*
0.61%, pooled libraries 16.1% vs 16.2%, D. polymorpha : individual libraries 20.01% * 2.29%
vs 19.99% = 0.63%, pooled libraries 19.5% vs 20%).

We examined the correlation of methylation percentage (f3) values between individual libraries
and pooled to test for congruence between the two datasets that are expected to be equivalent.
Correlations were slightly stronger for C. fluminea (0.93 - 1.00) compared to D. polymorpha
(0.91 - 1.00; Figure 2), but overall similar trends were detected. The [ values were strongly
correlated between individual and pooled libraries with the pairwise correlation coefficients not
going below 0.95, irrespective of the pollution treatment, species or loci subset. This is expected
if pooled libraries represent an average of the individual libraries and where data have not been
centered (see Xu et al. (2015) for the importance of centering).

Unexpectedly, however, individual libraries did not correlate better with pooled libraries of the
same treatment group compared to correlations across treatment groups (Figure 2). For both
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species, pooled libraries correlated best with each other (~1.00). These results suggest that
pooling determines correlation more than pollution treatment, and that there is not a lot of
variation in DNA methylation between pollution treatments. For both species, the individual
libraries from the pollution treatment had the lowest correlation coefficients for within treatment
correlations (Figure 2). This suggests that there may be a pollution-related response in
methylation estimates. Overall, we found that genome-wide methylation levels of individual and
pooled libraries were well correlated following our expectations.

3.3.2 Agreement among PCA jackknife iterations

To understand the similarity among samples, we tested for clustering using a principal
component analysis on the 8 values. We measured heterogeneity of the signal across the genome
with a standard error based on a delete-one jackknife. This measured changes to the PCA
coordinates when removing a linkage group with each iteration of the PCA. A Tucker’s
coefficient was used to gauge similarity across the PCA iterations. For both species and nearly
all PCA iterations, the Tucker’s coefficient was greater than 0.95 indicating an overall agreement
in signal between the global PCA and each iteration (see Figures S2 & Figures S3). For C.
fluminea, one of the jackknife iterations gave notably lower Tucker’s coefficients and greater
Procrustes D values than the remaining iterations, indicating a disproportionate influence from
the respective linkage group. As we only examined the first eight linkage groups in this work, we
cannot say if the excluded linkage groups may also be disproportionately influential in the PCAs.
The result does argue that some linkage groups may have notable divergences from the majority
of the genome. The iteration excluding LGO02 produced coefficients below ~0.95 for the PCAs
including data from the polluted treatment (Figures S2). This suggests that L.G02 has a
significant influence on all other iterations of the PCA and this may be driven more by the
polluted treatment group.

3.3.3 PCA of genome-wide methylation levels

In the C. fluminea PCA with all samples (94,912 regions; Figure 3A), the proportion of variance
captured by each eigenvector declined gradually with the primary vector capturing ~ 10 % of the
variance and the first 11 accounting for top 90 % of the variance. There was a subtle difference
between pollution treatments (Figure 3B). There were no clear differences in the variation within
either treatment group. The two pooled libraries plotted central to all the individual libraries,
supporting that the pooled libraries represent an average of the individual libraries.

In the D. polymorpha PCA with all samples (190,879 regions; Figure 3C), the first eigenvector
captured a significant part of the variance (16%) within the pollution treatment. The remaining
vectors captured similar proportions of the variance (~ 4 - 7 %). There was no clear support for a
directional or consistent difference in central tendency of either pollution group (Figure 3D). The
two pooled libraries plot central to all the individually-sequenced data, corroborating that the
pooled libraries represent an average of the signal found in individual libraries.

3.3.4 Comparison of differential methylation in individual vs. pooled libraries

We used the pollution treatment to assess if differential methylation estimates were similar
between individual and pooled libraries. For both species, there were orders of magnitude more
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DMR in either wet-lab or computationally pooled libraries compared with individual libraries
(Figure 4). This is not surprising given the large difference in input data between individual and
pooled libraries (see section 3.2). The pooled library of C. fluminea produced 943 and 920 DMR
(hyper- and hypo-methylated, respectively) while the computationally pooled library produced
707 and 462 DMR (hyper- and hypo-methylated, respectively). In contrast individual libraries
produced only one DMR (one per hyper- and hypo-methylated), making the comparison with the
pooled dataset not possible.

Similarly, the pooled library datasets of D. polymorpha produced 2,570 and 4,178 (hyper- and
hypo-methylated, respectively), the computationally pooled library produced 3,323 and 2,695
(hyper- and hypo-methylated, respectively). Individual libraries produced 9 and 6 (hyper- and
hypo-methylated, respectively) (Figure 4). It is worth noting that each DMR from individual
library datasets was also in common with the DMRs of either the pooled library or
computationally pooled library dataset.

Despite the large number of regions detected by the tests with the pooled and computationally
pooled data, there was low overlap in the identified regions. Only one DMR was identified by
the pooled and computationally pooled datasets in C. fluminea and only 201 DMR in D.
polymorpha. In both species this amounted to < 3.5% of the regions from either test. This
supports a predominant incongruence in the results between the pooled and computationally
pooled datasets. Furthermore, the relative proportion of hyper- to hypo-methylated DMR
changed between tests. For C. fluminea, computationally pooled data produced a greater hyper-
methylated region : hypo-methylated region ratio (0.23 : 0.15) compared with the pooled data
(0.31 : 0.30). For D. polymorpha, both pooled data produced unequal proportions, but a greater
hyper-methylated region : hypo-methylated region ratio was observed for computationally
pooled libraries (0.26 : 0.20) compared to the pooled data (0.20 : 0.32).

3.4 Estimates of the required sampling effort and the recovered power

To assess the available power in our data, we estimated the level of power recovered with our
current sampling effort and the sampling effort needed to achieve power at a level of 80% at
each region. We used locus-specific estimates of effect size and mean difference in methylation
(MDM) between treatment groups (i.e. polluted vs. non-polluted).

A low proportion of regions were deemed invariant. The pooled and computationally pooled
libraries produced more invariant regions than the individual libraries (Table S4). For the variant
regions (i.e. MDM > 0), the sampling effort estimates were very large. For the individual
libraries, estimates were predominantly more than 100 per treatment group (Figure 5A & D) and
we found that no loci achieved sufficient power with our current sampling effort. Regions with
sample effort estimates below 100 were only ~7.5% (98) - 14.7% (1,506) of the total loci.

Similarly, in the pooled and computationally pooled data, estimates of required sampling effort
were >1,000x and almost exclusively >100x for both species (Figure 5 B, C, E, F). For a set of
10 individuals, this would require more than 100x coverage each to achieve adequate coverage
for less than 50% of the variance distribution. We recovered adequate power at only ~ 7 - 16 %
of regions in the pooled and computationally pooled libraries, highlighting that the majority of
our regions were under-powered. Computationally pooled libraries produced a greater
proportions of regions with coverage estimates below 100x compared to pooled libraries; 3 %
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(2,432) vs 0.5% (2,901) for C. fluminea and 8 % (12,128) vs 1% (8,999) regions for D.
polymorpha, (Figure 5 B & E).

Across all comparisons, regions with the lowest MDM had the lowest power and largest
sampling effort, which is to be expected as larger differences require fewer samples. Nearly the
entire MDM distribution was predominantly under-powered. For example, the lowest 50% of the
MDM distribution resulted in the following power values: MDM < 0.52 % had power < 0.1 for
individual libraries (Figure 5 A & D), MDM< 1.5 % had power < 0.2 for pooled C. fluminea
data, pooled D. polymorpha (Figure 5 B & E), and computationally pooled data from C. fluminea
(5 E) and MDM < 2.4 % had power < 0.2 for D. polymorpha computationally pooled data
(Figure 5 F). The upper 50 % of MDM distribution had median power < 0.8 (Table S5). Only the
highest 10% of the MDM distribution for the computationally pooled D. polymorpha data had a
median power > 0.8; ~ 16.3 % of the total regions. In contrast, pooled libraries produced
sufficient power at only 7 % (C. fluminea) and 15 % (D. polymorpha) of regions.
Computationally pooled C. fluminea data produced only 8.6 % regions with sufficient power.
These loci covered an MDM range of 4 - 40% for individual libraries, 7 - 88% for pooled
libraries and 11 - 100% for computationally pooled libraries.

With regards to differences between the species, we see that D. polymorpha had a greater
proportion of regions with achievable coverage, this being double the proportions for C. fluminea
in the pooled data and computationally pooled data. For the individual libraries this proportion
was only half C. fluminea. Similarly, a greater proportion of regions achieved sufficient power
for D. polymorpha.

Finally we also note the greater MDM for D. polymorpha, as much as 39 % for individual
libraries (vs 18 % C. fluminea). For the pooled and computationally pooled data, the two species
had equal ranges for MDM, 88% and 100%. These differences may be attributed to sample sizes
between the species and the possible differences in natural variation.

4. Discussion

4.1 Individual and pooled libraries provide similar genome-wide methylation
estimates

Here we examined if cost-effective pooled whole-epigenome libraries provide equivalent
biological results to individually sequenced libraries. We found that pooled libraries produced a
congruent epigenetic signature with individual libraries at the genome-wide level as seen with
pairwise correlations and a PCA. Our estimates of global methylation were also remarkably
stable between pooled and individual libraries. These results are in line with previous research
supporting a global or genome-wide correspondence of DNA methylation levels from pooled and
individual libraries (Docherty et al., 2009; Docherty et al., 2010; Gallego-Fabrega et al., 2015).
In our data both pooled and individual libraries showed a negligible difference in methylation
between the polluted and non-polluted treatment groups and for both species but in all cases
DMRs were detected.
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4.2 Pooled libraries provide more data than individual libraries while reducing
costs

We found that there is at least a 7-fold decrease in the cost per sample for gross pooled libraries
compared with individual libraries (Table 3). The reduction depends on the number of biological
replicates in each pool and this allows a great degree of flexibility to balance sample sizes,
coverage and cost. The pooled libraries also produced orders of magnitude more final regions
(between 60 — 600x more than individual libraries) and lost notably less data throughout the
workflow. When estimating the required sampling efforts to reach sufficient power per locus,
pooled libraries produced as much as 30x more regions with an achievable estimate (98 vs 3,000
regions for C. fluminea). Achievable is defined here as regions with estimates of <100 samples
per treatment group (individual libraries) or coverage estimates below 100x (pooled libraries).
The achieved power was greater for the pooled libraries, as much as 16% of regions had
sufficient power (power = 0.8), while the individual libraries for both species had no regions
reach the threshold. All of this strongly supports that pooled libraries produce sufficient data
more reliably compared with individual libraries given equal per-sample coverage. In practice,
our pooled libraries detected >1,000 DMRs while the individual libraries detected <15 DMRs.
These differences will make a meaningful impact on the return of investment and the possible
scope of downstream interpretation in research. We also employed computational pooling which
pools the data of the individual libraries post-hoc. Here we found it to successfully mitigate
much of the data loss that individual libraries suffered from during the QC process. Pooled and
computationally pooled libraries produced comparable volumes of input data and DMRs
detected.

4.3 Pooled and computationally pooled libraries provided different DMR in
our dataset

Beyond the global signal, our results showed that genome-wide congruence does not necessarily
imply corresponding DMR signals for pooled and individual libraries. We found low overlap in
DMR which is contrasting with the correlations and PCA. While the difference in volume of
input data played a significant role for individually sequenced libraries, the results from the
computationally pooled libraries also showed that the discrepancy is not solely due to the number
of regions detected.

In our dataset, pooled and computationally pooled libraries both had several thousand DMRs
detected yet had < 4% regions in common. These results argue that there are discrepancies in the
underlying signal between the wet-lab pooled and computationally pooled libraries. These
differences may arise from several factors: 1) the individuals compared between the pooled and
computationally pooled libraries were not exactly the same as four Corbicula and two Dreissena
individuals were excluded from downstream analyses as they failed conversion rate quality
control; 2) lack of normalization of individual data before computational pooling; 3) stochasticity
in the library preparation and sequencing processes (e.g. differential PCR during library
preparation; cryptic biases in sequencing among the specimens of the pooled libraries). Based on
these results, we discuss below the benefits and drawbacks of sample pooling, as well as possible
improvements and ways forward.
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4.4 Benefits and drawbacks of sample pooling and recommendations

WepiGS offers important opportunities for ecological and evolutionary studies, hence it is
crucial to optimally use resources and consider trade-offs before initiating a project. We
emphasize that there is not a single optimal solution for all projects and that the decision to
sequence pooled or individual libraries depends on the scientific question of a particular project
and should be planned at very early stages.

Here we put our work in context and provide a summary of the key benefits and drawbacks of
pooling libraries for epigenome sequencing (WepiGS), as well as their implications (summary in
Table 4).

Starting with the benefits, we showed that pooled libraries can be up to 7-fold more cost
effective than individual libraries, when comparing wet lab costs. These costs are likely to be a
limiting factor into the future. There is flexibility in cost adjustment when the pooling scheme
varies (e.g. deciding how many pools to prepare) but there are presently limited research on the
trade-offs of different degrees of pooling. Another important benefit of pooled libraries is that
the number of individuals per pool can be increased; typically the number of individuals per
investigated population is between 10 and 20, however it has been shown that a larger number of
individuals is required to achieve sufficient power in natural populations (Tsai & Bell, 2015, Lea
et al 2017). For instance, when a predictor variable explains 15% of the difference between
populations, 125 individuals per population are needed to reach 50% power (Lea et al, 2017). A
third advantage that we did not expect was that a larger proportion of the sequencing data can be
used with pooled libraries, resulting in a 20-30 fold increase in retrieved loci in our dataset. This
was not only due to the higher coverage of pooled libraries, but also because there was a single
union step using the pooled datasets (i.e. finding the loci in common among libraries, which
typically leads to a large loss of data). Together with this, if a high sequencing coverage is not
necessary (e.g. in our case 100x per pooled library), researchers can decide to lower the
sequencing effort per pooled library, possibly decreasing even more the project costs.

Using pooled libraries has several drawbacks, though, the most important one being that there is
no possibility of going back to the individual data. Hence, researchers should be extremely
careful when thinking about the pooling design, and make sure that every covariate that may
impact the signal in the data has been taken into account (e.g. sampling locality, sampling time in
the year, sex, age, tissue, experimental condition, etc.). If these covariate can be clearly identified
and separated in sub-pools, then pooling the DNA of samples may be a good option to increase
power and decrease costs. In contrast, if covariates cannot be identified or if the variability in the
data is not known (e.g. first epigenomic experiment), we would recommend against pooling.

In addition, individual libraries provide more flexibility and higher resolution as groups and
comparisons can be done a posteriori (e.g. testing the impact of different covariates in a pilot
study) and data can be reused for future projects (e.g. adding individuals from different
populations or time points, or different comparisons can be made). Other drawbacks of using
pooled libraries arise from the data analysis side. For instance, individual samples that failed
cannot be excluded (e.g. low conversion rate; low amount of sequencing data), and thus equal
conversion rates and sequencing depth for all individuals in a pool is assumed. Furthermore, we
observed that a large amount of computational resources was required to process the pooled
datasets (e.g. alignment, methylation calling) and that the currently widely used bioinformatic
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tools are not well adapted to handle such large datasets (e.g. MethylKit running in R).
Researchers could decide to filter out invariant sites early in the data analysis, and/or decrease
the sequencing depth of the pools (i.e. less than 10x per sample), however the minimum
sequencing depth to obtain meaningful population methylation rates is not known. We note that
this issue arises when study organisms have large genomes (in our case 1.6 Gb and 1.8 Gb), but
it may be less of a problem for organisms with smaller genome sizes (e.g. less than 1 Gb).
Finally, we also noticed that there are fewer and less flexible statistical tests available for data
analysis (e.g. Logistic regression cannot be used with two samples). We hope that new tools that
can handle large pooled epigenomic datasets will be developed in the future.

To conclude, because individual libraries provide greater flexibility and control, they are the best
option to explore a first epigenomic dataset where covariate variation is unknown, or when
samples are rare or limited. However, we believe there are situations in which pooling DNA
before library preparation would be the best option to obtain population-level signals (Futschik
& Schlotterer, 2010, Kaplow et al., 2015), increase power and decrease costs. For instance, when
the number of individuals per population is not limited (e.g. abundant species), in well-studied
systems where epigenomic variation is already known and researchers want to increase power in
follow-up studies. In these systems, either a clear separation of covariates is possible, or
organisms are small and whole organisms are used for DNA extraction, making sure that all
covariates are captured in a single DNA extraction (Harney et al., 2022). Finally, pooling would
be particularly well-suited in systems with small genome sizes to facilitate downstream analyses.

4.5 Possible improvements and ways forward

We have shown that pooled libraries provide estimates of genome-wide methylation comparable
to individual libraries. However, signals of differential methylation at specific regions were not
congruent between individual and pooled libraries, mostly as a result of large differences in the
number of loci retrieved and the power. Even when pooling computationally the data of
individual libraries, the overlap with the empirically pooled datasets was low. This may arise
from the fact that six individuals were excluded from the analyses due to low conversion rates
and low sequencing data, resulting in actual differences between the pooled and computationally
pooled datasets. In addition, stochasticity in the library preparation and sequencing processes
may have led to further discrepancies between these datasets. Together with this, we worked on
two empirical systems with relatively low global DNA methylation levels (16-20%), which
likely explains the low power recovered in our datasets. It is possible that when working with
species with higher global DNA methylation levels there would have been more congruence
between DMR of pooled and computationally pooled datasets.

In addition, these epigenomic datasets were the first ones for the two species of interest,
Corbicula fluminea and Dreissena polymorpha. Therefore, global DNA methylation levels were
previously unknown, as well as the level of covariate variation. Based on these results, before
considering pooling, we would recommend to perform a pilot study using individual libraries to
assess these metrics and make an informed decision about pooling individuals in subsequent
studies or not. Furthermore, we acknowledge that we did not perform simulations in this study,
because we wanted to focus on empirical data to explore commonalities and differences between
individual and pooled libraries produced in the lab. Thus, we aimed to obtain a very practical
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result close to a real experiment. In future studies, it would be interesting to simulate the
minimum coverage of a pool required to obtain reliable population-level DNA methylation rates,
as a way of facilitating downstream analyses and further decreasing project costs. To conclude,
our study brings important insights on the relevance of pooling DNA of individuals before
library preparation in epigenomic studies of natural populations, and we believe that it will help
researchers in making informed decisions for future epigenomic projects.
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Species No. of  Locality Coordinates Sampling date Depth  Environment  Acronym
specimens [decimal degrees] [m] [Treatment group]
Dreissena polymorpha 10 Baveno 45.915011 N, 8.503474 E 22.05.20 6 Polluted DP
10 Cannobio 46.092616 N, 8.691536 E 22.05.20 6 Non-polluted DNP
Corbicula fluminea 10 Baveno 45915011 N, 8.503474 E 09.05.18 4 Polluted CP
10 Magadino 46.153440 N, 8.852953 E 13.08.20 4 Non-polluted CNP
Table 1: Summary of sampling design. All localities are in Lake Maggiore, Italy.
Species Libraries Pool Treatment No. before filter S.D. No. after filter S.D. % loss S.D.
C. fluminea 7 No P 15,955,679.00 1,184,713.97 703,178.29 247,309.93 96% 0.01
7 No NP 16,598,487.86  664,380.62 829,556.29 260,670.42  95% 0.01
14 No P+NP 16,277,083.43  924,547.29  766,367.29 253,990.18 95% 0.01
1 Yes P 23,887,527.00 - 15,535,134.00 - 35% -
1 Yes NP 24,073,697.00 - 15,626,885.00 - 35% -
2 Yes P+NP 23,980,612.00  131,642.07 15,581,009.50 64,877.75 35% O
D. polymorpha 8 No P 30,625,991.00 2,369,570.65  844,482.00  261,373.55 97% 0.01
10 No NP 32,947,578.60 1,105,154.88 1,230,564.60 486,459.13 96% 0.01
18 No P+NP 31,786,784.80 1,737,362.76  1,037,523.30 373,916.34 97% 0.01
1 Yes P 48,459,924.00 - 33,839,276.00 - 30% -
1 Yes NP 47,975,036.00 - 31,541,434.00 - 34% -
2 Yes P+NP 48,217,480.00  342,867.59 32,690,355.00 1,624,819.66 32% 0.03

Table 2: Summary of data loss throughout QC. Presented are the mean number of CpG sites before and after
applying a filter for 10x minimum coverage, as well as the amount of data lost as a percentage.
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Individual Nested Pooled Gross Pooled

Pooling details
Populations 12 12 12
Libraries 192 48 24
Samples per library 1 4 8
Total samples 192 192 192
Material/Protocol total
NEBNext® Enzymatic Methyl-seq Kit ***  9,374.00 2,604.00 1,302.00
General consumables** 192.00 48.00 24.00
Library quantification* 192.00 48.00 24.00
Library quality control* 960.00 240.00 120.00
Total 10,718.00 2,940.00 1,470.00
55.82 15.31 7.66
Cost ratio (Individual:Pooled) 3.6 7.3

Table 3: Cost comparison of pooled and individual libraries. Estimated costs per specimen in a scenario of
sampling 12 populations for a total of 192 biological replicates and no technical replicates. Costs are provided in
Swiss Francs (CHF) with local 2023 prices. Costs are likely to vary among countries based on local factors. Prices
include local taxes. * Tapestation D1000 screen tape, reagents and consumables. ** Pipette tips, general reagents,
gloves, tubes etc. *** 1*24 rxn kit for pooled and 2*96 rxn kit for individual libraries. Where costs are equal
between pooled and individual libraries, we omitted such costs (i.e. individual DNA extraction, quality control,
shearing, sequencing depth).
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Topics

Libraries

Implications Individual Pooled

Costs

Power

Power / costs

Flexibility

Data analyses

Data analyses

Data analyses

Higher wet lab costs for individual libraries. Cost savings can - +
be adjusted according to the pooling scheme (See Table 3 for
details)

Increased number of individuals included in a pool improves - +
accuracy of population-level metrics (e.g. Response to treat-

ments, differences between environmental conditions) and

increases power to detect differences

20-30-fold more data when pooled libraries are sequenced at - +
an equivalent sequencing effort to the individual libraries (see

Table 2 for details). Additional cost savings are possible if

sequencing effort of pooled libraries is reduced.

Individual information (covariates) cannot be used with pool- + -
ing. Nested pooling (pooling by condition, e.g. sampling

locality, sex, age, tissue, experimental condition, ...) is needed

to measure variability in the data. Data reuse for subsequent

projects is challenging

Differences in individual conversion rates or individual se- + -
quencing depth are not taken into account when samples are

pooled. Possible biased representation of some samples in

the pool cannot be accounted for.

Greater computational resources needed resulting from + -
greater data volumes of pooled libraries. Many tools for

methylation analyses are not adapted to handle large datasets

from pooled libraries.

Fewer, less flexible statistical tests are available for pooled + -
datasets.
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_
22
>
&y

Paired reads Cytosine ;— <
Species Sample Total S.D. % aligned S.D. % duplication S.D. Total S.D. Coverage S.D. g -(gls
Corbicula fluminea C10P 79,904,532.00 34.18 20.48 973,770,066.00 4.14 5O
C1P 74,738,403.00 32.03 20.5 887,207,192.00 3.79 9 g
Cc2p 84,759,893.00 34.09 18.57 1,051,349,940.00 4.37 8 a
C3P 65,165,994.00 3437 19.01 778,022,325.00 3.26 = 9
C4p 38,398,067.00 34.35 16.05 487,725,519.00 1.96 (TT; :r
CsP 68,910,145.00 3473 16.84 825,628,926.00 3.36 o=
C6P 75,235,776.00 33.54 183 922,937,770.00 3.79 D'B
csp 55,808,379.00 34.76 17.24 682,092,108.00 2.77 ; E
copP 83,025,026.00 34.05 16.99 1,059,124,248.00 4.29 @D o
Average  71,826,893.57 9.311,387.23 33.95 0.94 18.48 1.57 875,540,376.43 125,935,097.78 3.63 0.53 (2 5
CIONP 79.616,730.00 3433 19.63 964,245,233.00 4.06 (;6 (é
CINP 92,972,078.00 3431 19.15 1,152,249,279.00 4.78 (_'D '5
C2NP 83,972,229.00 3325 21.27 992,946,861.00 431 é H
C3NP 75,932,743.00 339 17.96 942,277,154.00 3.86 & '5
C4NP 64,381,899.00 34.67 18.09 809,494,157.00 333 g 5 I:
C5NP 78,291,875.00 34.74 18.99 984,091,085.00 4.1 o D 8
C6NP 74,741,855.00 33.71 18.07 917,716,701.00 3.76 g_) N
C8NP 74,770,619.00 34.52 17.87 926,653,920.00 3.81 o % w
CONP 82,647,061.00 3373 20.27 975,358.391.00 4.14 2 2 I':
Average  78,055.450.43 8.,880.630.31 34.1 0.5 18.86 1.26 957,940.472.14 103,198.480.14 3.99 0.46 g- ? B
CpoolP  661,904.290.00 3453 29.46 7.004,096,743.00 33.62 2 8_ U'I
CpooINP  675,878,620.00 34.08 314 7,001,527,240.00 3451 [ Q %
Average  668,891,455.00  9,881,343.51 34.31 0.31 30.43 1.37  7,002,811,991.50 1,816,913.00 34.06 0.63 O~ g
Dreissena polymorpha D10P 65,410,675.00 49.59 15.48 1,160,699,600.00 4.09 Q %—_00
DIP 73,460,038.00 49.4 15.07 1,349,558,024.00 4.74 3 o '—:}
D2p 59,121,375.00 48.13 14.39 1,039,914,761.00 3.63 'Z Q:J- n
D3P 68,703,649.00 48.54 16.13 1,269,970,624.00 4.51 Og é
D4p 51,119,921.00 47.23 14.32 872,596.859.00 3.02 bl S a
D5P 64,776,750.00 51.77 13.92 1,263,320,184.00 434 O5 o
D6P 42,903,550.00 49.12 15.47 751,604,109.00 2.64 'b 6 >
D7P 47,844,529.00 48.37 14.33 841,215,204.00 2.94 9 g-g
D8P 66,746,309.00 48.32 13.67 1,227,896,716.00 421 >52
DoP 63,351,525.00 50.2 14.39 1,203,155,822.00 4.18 Q E 3
Average  64,086,280.25 6,674.156.69 49.15 142 14.67 0.83  1,173,389,073.75 151,544.719.09 4.09 0.54 § < g
DIONP 75.,884,193.00 47.74 15.73 1,278,999.481.00 451 6 Q@ <
DINP  79,359,990.00 48.92 14.97 1,449.986.916.00 5.08 3 %g
D2NP 69,143,806.00 49.43 14.77 1,289,478,957.00 451 ; g o
D3NP 72,289,318.00 49.33 15.08 1,354,203,964.00 471 8 g 2
D4NP 72,492,019.00 47.68 15.09 1,33 9,670.00 4.68 a 8. B
DSNP 73,438.,833.00 49.23 16.04 1,343,852,759.00 4.79 ('D Q-;\J
D6NP 71,852,551.00 49.77 13.93 1,351,093,249.00 4.69 n o
DINP  73,660941.00 48.89 15.49 1,342,094,303.00 475 '% 5
DSNP 98,739.,072.00 48.89 15.95 1,751,923.420.00 6.23 <
DINP 66,962,735.00 49.6 13.95 1,258,500,785.00 4.38 5—" 5‘
Average  75,382,345.80 8,872,805.68 48.95 0.72 15.1 0.74  1,375,867,350.40 142,273,247.94 4.84 0.53 @ g
DpoolP  657,309,352.00 48.94 24.88 10,418,395,650.00 41.31 -('96 _8
DpooINP  485,624,776.00 49.2 19.65 8,590,178,928.00 319 '(_3‘ \S‘
Average  571,467,064.00 121,399,327.91 49.07 0.18 22.27 3.7  9.504,287.289.00  1,292,744,441.60 36.6 6.65 a(g
=y
_g =
Table S 1: Summary of the paired sequence data used for alignment. Presented for each library are the estimates of the total number of paired reads, the e
proportion of reads successfully aligned, the estimated levels of duplication, the resultant number of Cytosines in the CpG context and the coverage at CpG sites. ?i_a §
Samples removed from downstream analyses due to low conversion efficiencies are indicated in grey. The average across treatment and pooling scheme are =gnt
indicated at the bottom of each set of samples. The averages do not include samples removed from downstream analyses. S.D. = Standard deviation. =0
=
D
5%
o=
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Species Treatment subset Overlap  Statistical test  Post-union regions % loss
C. fluminea Individual libraries 0.75  Logistic Regression 18,800 0.79
1 Logistic Regression 7,832 0.96
Pooled libraries 1 Fisher’s Exact Test 482,906 0.08
Computationally pooled libraries - Fisher’s Exact Test 94,234 -1.08
D. polymorpha Individual libraries 0.75  Logistic Regression 5,158 0.98
1 Logistic Regression 1,150 0.99
Pooled libraries 1 Fisher’s Exact Test 798,744 0.1
Computationally pooled libraries - Fisher’s Exact Test 191,075 -1.42

Table S 2: Number of loci retained after filtering for union across libraries. Presented are the mean and standard
deviation (S.D.) of the number of regions retained after uniting samples for individual, pooled and computationally
pooled libraries. The data loss (% loss) is estimated relative to the mean number of regions before uniting. For
individual libraries, we present the results for when using a 75 % and 100 % overlap across libraries.
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Control pUC1Y Lambda
Sample Code  Total C S.D. CCoverage S.D. % CpG S.D. % CHG S.D. % CHH S.D. Total C S.D. CCoverage S.D. % CpG S.D. % CHG SD. % CHH S.D. Excluded
Cip 11,350.00 20.25 98.1 1.7 1 212,158.00 22 0.7 0.9 0.9
czp 5,762.00 9.7 99.5 21.1 22.1 115,737.00 11.75 18.8 24.7 25.7 X
C3P 6.051.00 10.11 97.7 33 1.7 97,711.00 10.11 1.1 14 1.5
c4ap 3,187.00 5.26 97.5 7.8 7.4 42,339.00 4.15 2 35 3.8 X
CsP 5,236.00 9.27 97.8 29 22 70,070.00 7.08 0.7 1.3 1.4
CoP 11,882.00 21.54 97.8 1.8 1.5 213.506.00 2232 0.4 0.6 0.6
Cc8p 3,534.00 5.77 99.5 23 1.3 88,186.00 8.94 0.6 0.7 0.9
CcoP 11,382.00 19.95 99.1 26 1.6 208.,825.00 21.41 0.7 0.9 0.9
CI10P 9,158.00 15.41 98.9 35 2.2 160,481.00 16.46 1 1.4 1.3
AllP 7,504.67  3,471.67 13.03 6.37 9843  0.81 522 6.23 4.56 6.86  134,334.78 66,112.62 13.8 6.93 2.89 5.98 3.93 7.84 4.11 8.15
CINP 11,625.00 19.83 97.6 25 1.8 231,651.00 2372 0.6 0.7 0.7
C2NP 17,938.00 31.9 97.1 42 37 255,942.00 26.37 1.3 2 2.1
C3NP 13,546.00 24.55 97.7 25 1.8 201,767.00 20.59 0.6 1.1 11
C4NP 9.533.00 16.12 98.1 24 2.1 156,840.00 16.13 0.7 1.2 1.2
C5NP 11,872.00 21.08 98.8 18.2 19.7 215,116.00 21.88 143 18.6 18.7 X
C6NP 12,641.00 2249 97.7 23 L5 221,986.00 23.26 0.6 0.7 0.8
C8NP 10,990.00 18.53 98.3 23 1.7 184,530.00 18.67 0.5 0.7 0.8
CINP 7.640.00 12.8 99.4 133 14.1 146.817.00 15.03 10.7 143 153 X
CIONP 10,539.00 17.27 98.3 1.7 1.3 174,080.00 17.84 0.6 0.8 0.7
AlINP 11,813.78  2,875.67 20.51 552 9811 0.69 549 598 53 676  198,747.67  36,115.37 20.39 3.77 332 529 446 6.9 4.6 7.09
CpoolP 48,915.00 91.82 97.5 22 1.6 937,629.00 106.48 0.7 0.9 0.9
CpoolNP 76,964.00 157.63 98 3.1 24 1,361,544.00 161.82 0.9 1.3 1.3
All pooled 62,939.50 19.833.64 124.72 46.54 9775 035 2.65 0.64 2 0.57 1,149.586.50 299,753.17 134.15 39.13 0.8 0.14 11 0.28 11 0.28
DIP 13,170.00 23.47 98.2 2.1 1.2 218,117.00 22.29 0.7 0.7 0.7
D2p 8,639.00 15.68 97.7 1.9 1 137,280.00 13.75 0.3 0.4 0.5
D3P 16,471.00 29.34 97.8 22 1.5 257,445.00 26.88 0.6 0.8 0.7
D4P 8,228.00 13.65 97.9 1.4 1 141,537.00 14.29 0.7 0.9 0.9
D5P 12,447.00 22.06 97.8 23 1.5 196,148.00 20.09 0.5 0.7 0.6
D6P 6.443.00 12.05 94 0.8 0.6 129.620.00 13.25 03 0.4 0.4 X
D7P 2,238.00 3.75 83 24 25 36,097.00 3.58 1.4 2.1 24 X
D8P 14,498.00 25.26 97.9 24 1.9 213,204.00 21.61 0.6 0.7 0.7
D9P 10,805.00 18.96 98 2 1.6 163.064.00 16.71 0.5 0.8 1
DI0P 12,327.00 22.16 97.2 1.9 1.3 213,402.00 21.8 0.5 0.5 0.5
AllP 10,526.60  4,207.48 18.64 7.49 9595 471 1.94 0.5 1.41 0.53  170,591.40 63,141.66 17.43 6.58 0.61 0.31 0.8 0.49 0.84 0.58
DINP 11,766.00 20.02 98.3 23 1.6 221,420.00 2282 0.5 0.7 0.8
D2NP 9.279.00 15.68 99.1 1.6 0.9 154.184.00 15.92 0.5 0.5 0.5
D3NP 9,033.00 15.6 98.4 25 1.6 155,290.00 15.84 0.8 0.9 0.9
D4NP 10,654.00 17.62 96.6 2.7 2.1 207,312.00 21.1 0.7 0.8 1
DSNP 7.539.00 12.76 98.7 27 24 157.185.00 16.46 0.6 0.8 0.9
D6NP 10,514.00 17.41 96.7 23 1.8 178,031.00 18.34 0.5 0.8 0.7
D7NP 8,878.00 14.07 98.7 2.1 1.8 165,344.00 16.87 0.7 0.7 0.8
DSNP 10,965.00 18.09 99.5 3.8 28 211,734.00 21.67 0.4 0.5 0.6
DY9NP 7,387.00 12.28 98.2 3.1 1.6 133,188.00 13.5 08 L1 11
DIONP 7.233.00 1221 97.5 25 1.5 131,224.00 13.38 0.7 0.9 0.7
AIINP 9.324.80 1,613.74 15.57 2.71 98.17  0.96 2.56 0.59 1.81 052 171,491.20 32,199.59 17.59 3.32 0.62 0.14 0.77 0.18 0.8 0.18
DpoolP 76,496.00 154.17 96 1.7 1.6 1,353,971.00 161.55 0.6 0.8 0.8
DpooINP 71,022.00 141.52 97.5 2.2 1.5 1,246,168.00 146.63 0.6 0.8 0.9
All pooled 73,759.00  3,870.70 147.85 8.94 96.75 1.06 1.95 0.35 1.55 0.07 1,300,069.50  76,228.23 154.09 10.55 0.6 0 0.8 0 0.85 0.07

Table S 3: Estimates of the conversion rate efficiencies. Estimates based on the methylation of two spike-in controls. The pUC19 sequence is CpG methylated
(negative control) reflecting 99.5 % efficiency when 96 - 98 % methylated. The lambda sequence is entirely unmethylated (positive control) reflecting 99.5 %
efficiency when 0.5 % methylated. Parameters with suspect values are highlighted in grey. Samples removed from downstream analyses indicated in bold.

"asua2l| [euoeualul 0’y AN-DN-AG-DDe J1apun a|gejrene

apeuw si | ‘Aunadiad ul uudaid ayy Aejdsip 01 asuadl| e AIxHoIq pajuelh sey oym ‘1spunyoyine ayi si (mainal 1aad Aq paijiniad Jou sem Yyaiym)
wiudaud sy Joy 1spjoy 1yBLAdoD 8L "£20Z ‘€2 JequianoN paisod UoISIBA SIUl :e81895°€Z TT'€202/T0TT 0T/610"10p//:sdny :10p uudaid Axygolq


https://doi.org/10.1101/2023.11.23.568483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.23.568483; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Invariable Variable
Library Regions Proportion Regions Proportion
Corbicula fluminea Individual 10 0.001 7822 0.999
Pooled 26596 0.055 456310 0.945
Computationally pooled 18786 0.199 75448 0.801
Dreissena polymorpha Individual 1 0.001 1149 0.999
Pooled 38717 0.048 760027 0.952

Computationally pooled 58231 0.305 132844 0.695

Table S 4: Summary of variable and invariable regions.

Power > 0.8 Power < 0.8

Species Libraries Quantile MDM bin (%) Regions Proportion Regions Proportion
C. fluminea Individual 0-5% [0.0387,0.0833) 391 0.05
Individual 5-10% [0.0833,0.212) 1173 0.15
Individual 10-25% [0.212,0.521) 1955 0.25
Individual 25-50% [0.521,1.39) 1955 0.25
Individual 50-75% [1.39,3.45) 1173 0.15
Individual 75 -90% [3.45,5) 391 0.05
Individual 90 - 95% [5.18.4] 392 0.05
Individual 95-100%  [9.33e-06,0.0387) 392 0.05
Pooled 0-5% [0.0837,0.163) 22813 0.05
Pooled 5-10% [0.163.0.422) 33 0.00 68416 0.15
Pooled 10 - 25% [0.422,1.15) 3905 0.01 110172 0.24
Pooled 25-50% [1.15,3.46) 13011 0.03 101066 0.22
Pooled 50-75% [11.1,88] 9692 0.02 13124 0.03
Pooled 75 -90% [3.46,7.63) 6691 0.01 61756 0.14
Pooled 90 - 95% [7.63,11.1) 4005 0.01 18810 0.04
Pooled 95-100%  [9.39¢-06,0.0837) 22816 0.05
Computationally pooled 0-5% [0.121,0.223) 3772 0.05
Computationally pooled 5 - 10% [0.223,0.529) 23 0.00 11294 0.15
Computationally pooled 10 - 25% [0.529,1.47) 492 0.01 18346 0.24
Computationally pooled 25 - 50% [1.47.4.51) 1448 0.02 17438 0.23
Computationally pooled 50 - 75% [10.7,16) 947 0.01 2825 0.04
Computationally pooled 75 - 90% [16,100] 1945 0.03 1828 0.02
Computationally pooled 90 - 95% [4.51,10.7) 1611 0.02 9706 0.13
Computationally pooled 95 -100%  [9.33e-06,0.121) 3773 0.05
D. polymorpha Individual 0-5%  [0.000541,0.0363) 58 0.05
Individual 5-10% [0.0363,0.0647) 57 0.05
Individual 10 - 25% [0.0647.0.168) 172 0.15
Individual 25 - 50% [0.168,0.407) 287 0.25
Individual 50-75% [0.407,1.38) 287 0.25
Individual 75 - 90% [1.38,5.01) 173 0.15
Individual 90-95% [5.01,8.09) 57 0.05
Individual 95 - 100% [8.09,39.1] 58 0.05
Pooled 0-5% [0.0798,0.154) 38000 0.05
Pooled 5-10% [0.154,0.409) 110 0.00 113895 0.15
Pooled 10-25% [0.409,1.21) 12640 0.02 177366 0.23
Pooled 25-50% [1.21,4.4) 27941 0.04 162056 021
Pooled 50-75% [12.6,87.9] 26269 0.03 11733 0.02
Pooled 75-90%  [2.01e-05,0.0798) 38002 0.05
Pooled 90 - 95% [4.4.8.91) 29197 0.04 84817 0.11
Pooled 95 - 100% [8.91,12.6) 17617 0.02 20384 0.03
Computationally pooled 0-5% [0.000324,0.19) 1 0.00 6613 0.05
Computationally pooled 5 - 10% [0.19,0.325) 13 0.00 6617 0.05
Computationally pooled 10 - 25% [0.325,0.78) 153 0.00 19783 0.15
Computationally pooled 25 - 50% [0.78,2.36) 1067 0.01 32142 0.24
Computationally pooled 50 - 75% [16.2,23.9) 4052 0.03 2590 0.02
Computationally pooled 75 - 90% [2.36,7.43) 3701 0.03 29512 0.22
Computationally pooled 90 - 95% [23.9,100] 6048 0.05 595 0.00
Computationally pooled 95 - 100% [7.43,16.2) 6647 0.05 13279 0.10

Table S 5: Distribution of regions by mean difference in methylation. For each species and each of individual,
pooled and computationally pooled data we indicate the number and proportion of regions according to the
percentile bins for the mean difference in methylation between the polluted and non-polluted treatment groups.
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Figure 1: Experimental design of the study. Individuals from two species (Dreissena polymorpha and Corbicula
Sfluminea) were collected at polluted and non-polluted localities in Lake Maggiore, Italy. See Table 1. Individual
DNA extractions were performed. The same DNA extractions were used to construct 38 individual and four pooled
libraries. Individual and pooled libraries were sequenced at an equivalent per-individual sequencing coverage (i.e.
~10x per individual).
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Figure 2: Scatter plots of the correlation coefficients for correlations of percent methylation between pollution
treatments. Pearson correlation coefficients are based on the 3 values (per-region % methylation) for each pair of
libraries when using all samples.

Page | 13


https://doi.org/10.1101/2023.11.23.568483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.23.568483; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Corbicula fluminea

(A)

0.100

(C) Dreissena polymorpha

0.15 -} |l First 90% of variance

0.10
T
0.00 IIII

0.075

0.050
0.025

0.000

Proportion of variance explained

rTrrrrrrrrrrrriorid IrTrrrrrrrrrrrrrrororTaild
HNmﬁ,m@hmeHNmﬁ'mw O=HANMIINONOMNO
O8358808335005008  pu0nBesB350000000000
GooooocoAgpagaad foooooooogygpaoaaoaa
Component Component
(B) (D)
30 -
20 -
R
~ 07 * °
X ~10
n - S
o . = —+—
O -30 O _4*
a Q@ 0+ Q®
Treatment e _+_
O Pooled |
-60 | | —®— Polluted 10
Not polluted + .
I I I I T | I
-80 -40 0 40 -10 0 10 20

PC1 (11%) PC1 (16%)

Figure 3: Principal component analysis of the genome-wide percent methylation. Panels A and C show the
variance explained by each component for C. fluminea and D. polymorpha, respectively. Highlighted bars show
the components that make up the top 90% of the variance. Panel B and D show the first two components with
standard error bars based on the delete-one jackknife in C. fluminea and D. polymorpha, respectively. The percent
variation explained by each axis is indicated on the axis label. The pooled libraries plot centrally to the individual
libraries from the same treatment, highlighting that each pooled library represents the average signal of a particular
treatment or population.
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Figure 4: Intersection of the identified DMRs between the polluted and non-polluted localities from the
individual, pooled and computationally pooled libraries. The individual, pooled and computationally pooled
libraries are each a ’set’ of DMRs as show by the rows at the bottom. The ’intersections’ (columns) are the DMRs
shared between sets. The dot-plot in the bottom shows how DMRs from each set are distributed among intersections.
The central barplot shows the number of DMRs within a particular intersection. Annotations indicate the number
of DMRs which are either hyper- or hypo-methylated.
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Figure 5: Estimates of the required per-locus sampling effort and the achieved power. Panel A - C shows the
estimates for C. fluminea and panel D - F shows the estimates for D. polymorpha with separate plots for individual
(panels A D), pooled (panels B E) and computationally pooled libraries (panels C F). Dots are individual loci and
colours indicate the estimated power achieved. Note that in panels A D loci with sampling effort estimates > 1000
were capped to 1000 and in panels B, C, E F, loci with sampling effort estimates > 10,000 were capped to 10,000.
Sampling effort is measured as the number of biological replicates per treatment for individual libraries in panel A
D and sequencing coverage per pooled treatment for pooled libraries in panel B, C, E F. Loci with power > 0.8
were plotted above other loci to aid visibility.
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Figure S 1: Correlation of the Tucker’s coefficient and the Procrustes transformation D for C. fluminea using
samples from the in vitro pooled and individual libraries with tile-resolution data. Data subsets indicated for each
plot.
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Figure S 2: Correlation of the Tucker’s coefficient and the Procrustes transformation D for D. polymorpha using
samples from the in vitro pooled and individual libraries with tile-resolution data. Data subsets indicated for each
plot.
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