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1. Abstract

Interest  in the role of  DNA methylation (DNAm) has grown in ecological  and evolutionary 

research  of  natural  populations.  While  researchers  are  typically  interested  in  comparing 

population-level  variation,  individual  sequencing is  the current  standard.  Natural  populations 

have  low  effect  sizes  and  thus  need  large  sample  sizes  to  detect  differences.  The  cost  of 

sequencing the  necessary samples  can be  prohibitive  in  DNAm work.  Pooling DNA before 

library preparation is a powerful tool to reduce costs but no recommendations exist for DNAm 

pooling  in  ecology-epigenetics  research.  We  test  if  pooled  and  individual  libraries  provide 

similar global and region-specific DNA methylation signals in a natural system of response to 

pollution. We generated whole-epigenome data for two freshwater invasive molluscs (Corbicula 

flumina and  Dreissena polymorpha)  collected from a  polluted and unpolluted locality,  Lake 

Maggiore, Italy. Our results support that pooling effectively captures the same genome-wide and 

global treatment-level signals as individual libraries but we note that pooled libraries yielded 

orders  of  magnitude more input  data  and differentially-methylated regions  (DMRs)  detected 

compared  with  individual  libraries.  We  estimated  greatly  lower  power  for  regions  from 

individual libraries compared with pooled libraries.  The post-hoc process of computationally 

pooling data from individual libraries produced results comparable to pooled libraries in volumes 

but had discrepancies between DMRs. We discuss the possible causes for the discrepancies and 

put our results in the context of the benefits and drawbacks of sample pooling for epigenomics of  

natural populations.

Keywords: Mollusc; DNA methylation; Dreissena; Corbicula; Effect size; Power
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Glossary

β: Percent methylation estimated at a locus.

Computational  pooling:  Post-hoc pooling  of  individual  library  epigenomic  data  using 

bioinformatics.

Coverage/read depth: Number of reads used to inform a methylation estimate at a position/site.

CpG: A dinucleotide sequence of 5ʹ–CG–3ʹ within a DNA molecule.

DMR: Differentially methylated region (R), a region being a contiguous stretch of DNA.

DMS: Differentially methylated site or single base pair position.

DNAm: DNA methylation.

Eco-epi: Ecology-epigenetic; A research field at the intersection of ecology and epigenetics.

EM-seq: An enzymatic alternative to Bisulfite treatment for DNAm detection. The process uses 

two  enzymatic  reactions:  1.  to  protect  5mC  and  5hmC  from  treatment  and  2.  unmodified 

cytosines are converted to uracil.

Epigenomic libraries:  A collection of  overlapping DNA fragments  that  have been treated to 

detect DNA methylation, together representing the total DNA methylation of one (individual 

library) or several specimens in a single pooled library.

Linkage group: All known genes on a chromosome.

Locus: A section of DNA without necessarily specifying its size or function or relative position.

MDM: Mean difference in methylation.

PCA: Principal component analysis.

Pooling:  (in  the context  of  this  study)  pooling of  individual  DNA samples  ahead of  library 

preparation and sequencing.

Region: A section of DNA made up of contiguous bases, also referred to as a haplotype.

Site/base: A single base-pair.

WepiGS:  Whole  epi-Genome Sequencing;  Non-targeted  (random) sequencing of  epigenomic 

data, includes methods such as WGBS and EM-seq.

WGBS: Whole Genome Bisulfite Sequencing; Non-targeted (random) sequencing of epigenomic 

data following bisulfite treatment.

1 Introduction

Epigenetics is the study of the stable but reversible modifications to the chromatin  that do not 

alter the DNA sequence itself (Fallet et  al., 2020; Gallego-Fabrega et  al., 2015; Paro et  al., 

2021). These modifications can be established and removed in response to stimuli (Paro et al., 

2021) and their interactions can regulate gene expression (Fallet et al., 2020).  This mechanism 

by which gene expression can be modified  has  received considerable attention  (Marin et al., 

2018,  Mounger et  al., 2021,  Brander et  al., 2017). DNA methylation  (DNAm) is  the  most 

frequently studied epigenetic modification, particularly in ecology-epigenetic (eco-epi) research 
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focusing on comparisons between populations, in part because of how similar the workflow is to 

routine  population  genomics  (Fallet et  al., 2020;  Lamka et  al., 2022).  For  instance,  of  the 

available  methods,  whole  epigenome  sequencing  (WepiGS)  (e.g.  whole-genome  bisulfite 

sequencing (WGBS) and whole-genome enzymatic-conversion sequencing (EM-seq) offer the 

highest resolution available as changes can be tracked as base-pairs across the entire genome 

(Fallet et al., 2020; Paro et al., 202, Ziller et al., 2014). 

A recent eco-epi review highlighted gaps in taxonomic and geographic sampling, and adequate 

replication particularly in population-level studies (Lamka et al., 2022). Effect sizes in ecological 

settings tend to be small, so large numbers of samples (e.g. >100 individuals per population or 

condition) are required to detect differences (Lea et al., 2017). Increasing sample size is not 

always possible in the case of rare or endangered species, but in most cases the maximum sample 

size  is  limited  by  budget.  Indeed,  the  sampling  effort,  individual  library  preparation  and 

sequencing have a strong impact on research costs. In WepiGS studies, data is typically obtained 

at the individual level (i.e. resulting from individual library preparation), however researchers are 

usually  interested  in  population-wide  signals.  While  the  cost  of  sequencing  has  strongly 

decreased since its advent (Jobling et al., 2014) and is currently still decreasing, wet laboratory 

costs including individual library preparation remain a major obstacle for large sample sizes in 

many eco-epi research projects. Hence, optimizing these steps is crucial to obtaining data with 

the highest statistical power in a cost-effective manner.

A way to decrease costs associated with library preparation would be to pool the DNA from 

individual  samples  from the  same population  or  condition  prior  to  library  preparation. The 

pooled libraries would thus represent the average signal of the individuals contained therein, with 

the advantage to prepare a single library. DNA sample pooling is commonly used in population 

genomics, where accurate population allele frequencies can be obtained from a large number of  

pooled samples (Ozerov et al., 2013, Konczal et al., 2014). Furthermore, pooling can also be 

used in transcriptomic studies, as it has been shown that pooling RNA samples and reducing 

coverage are effective ways to optimize costs while maintaining sufficient power in differential 

expression analyses (Assefa et al., 2020). So far, few studies compared the effect of sample 

pooling  using  DNA  methylation  data.  One  of  them  showed  consistent  results  between 

individually run samples and pooled samples, where correlation coefficients were >0.98 for CpG 

array data (Gallego-Fabrega et al., 2015). Two further studies focusing on MALDI-TOF mass-

spectrometry data from individual and pooled DNA produced strong evidence that pooled DNA 

samples provide reliable estimates of group DNA methylation averages and showed that the 

agreement holds up with a variety of pooling sizes (Docherty et al, 2009; Docherty  et al., 2010). 

To date, however, the comparison between individual and pooled samples has not been done 

with WepiGS.

While pooling samples has a strong potential for increasing power and decreasing costs, there are 

important considerations related to methylation data which have led to recommending against 

sample pooling (see Ziller et al., 2014 ; Lea et al, 2017). First, methylation data is more variable 

than genomic data by virtue of its inducibility and reversibility (Tsai & Bell, 2015). Therefore,  

individual samples are not only snapshots in time and space, but they also represent the somatic  

average. Second, methylation patterns may be tissue specific (Lee et al., 2017) and more closely-
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related cell-types have more similar methylation signals (Blake et al., 2020, Ziller et al., 2014). 

Thus, biases may be introduced if inter-individual (or inter-tissue) variation cannot be accounted 

for  (Teschendorff et  al., 2017).  Finally,  a  particular  concern  has  been  that  pooling  masks 

variation, prevents inclusion of covariates (Tsai & Bell, 2015, Ziller et al., 2014), and ultimately 

requires more biological replicates to account for the hidden variation (Futschik & Schlotterer, 

2010).  Most  importantly,  if  samples  are  pooled there is  no possibility  of  going back to  the 

individual data, so any covariation in the data that was not expected or previously identified in  

the original pooling design will be masked. 

As the benefits and drawbacks of sample pooling in whole-genome DNA methylation studies 

have not been formally compared, and there are currently no clear recommendations about the 

pertinence of pooling DNA for epigenomics of natural populations. To address this gap, we 

investigated  empirically  the  effects  of  sample  pooling  in  DNAm  by  using  two  invasive 

freshwater bivalves from polluted and unpolluted localities as study systems. The aims were to:  

1) test whether global DNAm signals from pooled and individual libraries are equivalent, 2) 

compare the overlap between differentially methylated regions between polluted and unpolluted 

localities arising from individual and pooled datasets and 3) provide a set of recommendations 

about the pertinence of sample pooling for future eco-epi projects.

2. Methods and materials

2.1 Sampling and DNA extraction

Individuals of the Asian clam Corbicula fluminea and the zebra mussel Dreissena polymorpha 

were collected by SCUBA diving at either polluted or unpolluted localities in Lake Maggiore,  

Italy, and frozen at -20C upon arrival in the laboratory (Table 1). Sampling permits were not  

necessary as both species are invasive. DNA extractions for 40 individuals (10 DP, 10 DNP, 10 

CP, 10 CNP) from foot tissue were performed using DNeasyBlood and Tissue DNA extraction 

kit  (Qiagen Cat.no. 69504) following the manufacturer’s recommendations (Elution in 110 μl 

elution  buffer).  DNA  integrity  was  examined  using  agarose  gel  electrophoresis  and  DNA 

concentration was measured using Qubit 2.0 (Invitrogen). Two Corbicula extractions failed (1 

CP, 1 CNP), leaving 38 DNA extractions for individual library preparation (Summary of the 

experimental design in Figure 1).

2.2 Pooling design, enzymatic conversion, library preparation and sequencing

To ensure individual and pooled libraries were comparable, the pooled libraries were prepared 

from equimolar amounts of individually extracted DNA (Table S1 ; Figure 1 ), generating four 

pooled libraries. The libraries were as follows; 1) Dreissena pool polluted (DpoolP) representing 

the population of 10 Dreissena polymorpha individuals from the polluted locality; 2) Dreissena 

pool  non-polluted  (DpoolNP)  representing  the  population  of  10  Dreissena  polymorpha 

individuals from the non-polluted locality; 3) Corbicula pool polluted (CpoolP) representing the 

population of 9  Corbicula fluminea  individuals from the polluted locality; 4)  Corbicula pool 

non-polluted (CpoolNP) representing the population of 9  Corbicula fluminea individuals from 

the non-polluted locality. We prepared a total of 42 libraries, 38 individual ones and 4 libraries 

from pooled  DNA.  We  used  an  enzymatic  technique  to  convert  unmethylated  cytosines  in 
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thymidine  as it  minimizes DNA damage. We used the NEB Next Enzymatic Methyl-seq Kit 

(New  England  Biolabs  Cat.no.  E7120S).  Control  DNA  (CpG  methylated  pUC19  and 

unmethylated lambda) used to estimate conversion rates  was added to each DNA extraction 

before  shearing  as  per  the  manufacturer’s  instructions  (New  England  Biolabs).  For  each 

individual DNA extraction, DNA was sheared with a Qsonica sonicator (Q800R2 instrument) 

using different shearing times depending on the level of DNA integrity previously assessed using 

agarose gel electrophoresis: 1) samples with high-molecular weight DNA were sheared 2’45’’ 

minutes; 2) samples with semi-degraded DNA were sheared 9’00’’-11’30’’ minutes; 3) samples 

with  highly-degraded  DNA were  not  sheared.  For  the  samples  with  highly-degraded  DNA, 

control  DNA was  sheared  individually  (nine  minutes)  and  then  added  to  the  sample  DNA. 

Library preparation was done following the manufacturer’s instructions except that we used half 

volumes of all reagents to reduce costs. The reduced reagent volumes did not have any clear 

impact the sequencing output. 

Final  libraries  were  checked on a  TapeStation  4150 Instrument  (Agilent  Technologies).  We 

aimed to obtain the same mean coverage per sample from both the individual libraries and the  

pooled  libraries  of  each  species.  We  thus  combined  individual  libraries  in  equimolar 

concentrations and the pooled libraries in a molar concentration x-fold higher than the individual  

libraries (i.e. 10x for Dreissena polymorpha pools and 9x for Corbicula fluminea pools) as the 

individual and pooled libraries of a particular species were sequenced one the same lane. The 42 

libraries were sequenced on two lanes of a S4 flowcell on an Illumina Novaseq 6000 sequencer 

(150 bp paired-end) at the Functional Genomics Center, Zürich. 

2.3 Quality control and mapping

In  total,  18  Corbicula  fluminea individuals  and  20  Dreissena  polymorpha individuals  were 

sequenced at an average of 74 (± 9.3) million reads (Table S1). The four pooled libraries were 

sequenced at an average of 620 (± 66) million reads. The reads were quality-assessed using 

FastQC  v.0.11.9  (Andrews,  2019)  and  MultiQC  v.1.9  (Ewels et  al., 2016).  Adapters  were 

identified and removed using Trim Galore! v.0.6.6 (Krueger, 2020) with default settings. To 

correct for bias of methylation percentage at the read ends, reads were trimmed of 10 bases on 

both  the  3’  and  5’  ends  (as  recommended; 

https://felixkrueger.github.io/Bismark/bismark/library_types/). Default settings were retained for 

all other trimming steps, including the removal of low-quality bases (–quality 20) and dropping 

reads shorter than 20 bases (–length 20). Enzyme conversion efficiency was assessed using the two 

control DNA. The high quality reads having passed QC were then aligned to the respective 

publicly available reference genomes; D. polymorpha (McCartney et al., 2022) and C. fluminea 

(Zhang et al., 2021).

Alignment,  de-duplication and methylation extraction were performed with Bismark v.0.19.0 

(Krueger & Andrews, 2011). Briefly, we first converted reference genomes computationally for 

alignment and then indexed using Bowtie2 v.2.4.4 (Langmead & Salzberg, 2012) with default 

settings (command  bismark_genome_preparation). Alignment was run with directionality specified 

using  the  default  alignment  score  (–score_min  L,0,-1.2).  Default  settings  included  the  –

exclude_overlap flag which only considers data from one of the two strands available in case of 

overlap  between  forward  and  reverse  reads.  As  part  of  the  QC for  the  trimmed  reads,  we 
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compared the number of read-pairs, the level of read duplication and the alignment efficiency 

between treatment groups within species. Tests were performed using base R functions including 

the Shapiro-Wilk test (shapiro.test) for univariate normality (Shapiro & Wilk, 1965), the Bartlett 

test (bartlett.test) for homogeneity of variance (Bartlett, 1937) and the ANOVA performed using 

the lm and summary.aov functions.

2.4 Coverage filtering, estimate of data loss and computational pooling

We processed the aligned reads for CpG sites with the MethylKit R package, v.1.24.0 (Akalin et 

al., 2012) available through Bioconductor (Huber et al., 2015). To reduce computational load, 

we analyzed the first eight linkage groups from each species. We decided to retain bases with at 

least ten reads. We further excluded over-represented sites, which may reflect sequencing bias, 

by removing the sites in the 99.9th percentile of coverage. Regions of one kb size were formed 

as  non-overlapping  blocks  using  the  tile function  in  MethylKit  with  default  options  (sliding 

windows of 1000bp and regions of 1000bp).

We performed computational pooling of individual library data to allow for a better comparison 

with the  wet-lab  pooled  library  data  with  the  aggregate  result  of  individual  libraries. 

Computational pooling is a  post-hoc process that sums up the coverage within each treatment 

using the individual library data and creates one library per treatment group or population. We 

used  the  post-QC  individual  libraries  as  input  data  and  pooled  using  the  pool function  in 

MethylKit. We considered two thresholds for retaining loci; only loci with an overlap of at least 

75% of the samples at each locus and only loci with 100% of the samples at each locus.

2.5 Evaluation of concordance between pooled and individual libraries

2.5.1 Genome-wide CpG methylation levels

As a test for agreement between the pooled and individual libraries, we fit an overall correlation 

of  the  CpG  methylation  estimates  for  all  samples  in  a  pairwise  fashion using  Pearson’s 

correlations with the getCorrelation function in MethylKit (Table 2). From this we could observe 

any  bias  introduced by a  particular  subset  of  regions.  In  the first  scenario we compared all 

libraries against each other. In the other two scenarios we merged only the pollution and non-

pollution treatment groups, respectively.

To  describe  the  relationship  between  the  signal  in  the  pooled  and  individual  libraries  and 

between the polluted and non-polluted treatments, we performed a clustering based on the % 

methylation estimates using a principal component analysis (PCA). To estimate an error on the 

PCA coordinates, we performed a jackknife over linkage groups, estimating the standard error 

(Busing et al., 1999; as in Montinaro et al., 2015). To confirm that jackknife iterations were 

reporting a similar clustering signal, we tested for a correlation between the PC loading matrix 

across jackknife iterations using the Tucker’s coefficient (Lorenzo-Seva & Berge, 2006; Peres-

Neto & Jackson, 2001).

To prevent any conflicts in the directional of components between jackknife iterations, we used a 

Procrustes transformation to align each iteration of the PCA and the PCA of the full dataset  

(Peres-Neto & Jackson, 2001). The transformation coefficients were examined to ensure that no 

matrix needed excessive transformation to align as this would indicate a big difference in the 
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signal. Where PCs were strongly correlated across jackknife iterations, we proceeded to estimate 

the error.

2.5.2 Differential methylation in response to pollution

We  tested  if  there  was  overlap  between  regions  showing  differential  methylation  between 

polluted  and non-polluted  localities  from the  individual,  pooled  and computationally  pooled 

libraries.  Differential  methylation  for  the  individual  libraries  was  estimated  using  a  logistic 

regression (Cramer & Howitt, 2004). Here we only considered loci that were covered by at least  

75 % of the samples in a treatment, respectively. This regression cannot be conducted with one 

sample per treatment group (i.e. pooled libraries), so differential methylation was estimated for 

the pooled and computationally pooled libraries using the Fisher's Exact Test (Fisher, 1934). We 

set no minimum overlap for loci across samples in the computationally pooled data (Table S2).  

The P-values were corrected for multiple testing under a sliding linear model method (Wang et 

al., 2011) and we report the q-values. Regions were considered to have significant differential  

methylation (i.e. DMR) with  q<0.01 and a mean methylation difference of at least 25%. For 

understanding  the  direction  of  hyper/hypo-methylation,  all  tests  were  performed  with  the 

following  orders  for  treatments;  “Pollution  treatment”  vs.  “Non-Pollution  treatment”.  The 

number of regions in common between tests were visualized with ggupset (Ahlmann-Eltze, 2020) 

package in R.

2.6 Estimates of recovered power 

To gauge the available power in our dataset, we estimated the recovered power per locus in the  

contrast  of  polluted  and  non-polluted  populations.  The  power  of  a  test  is  defined  as  the 

probability that it correctly rejects the null hypothesis when the alternative hypothesis is true. 

Firstly  we  identified  invariant  regions,  which  we  considered  to  be  regions  with  no  MDM 

between the treatments, rather than regions showing no variation in methylation. This measure 

takes into account both variance within and between treatments and allows for some level of 

artificial variance due to errors. With the individual libraries power estimates were based on a t-

test. Effect sizes were estimated as Cohen's d, which is the expected difference in means divided 

by the standard deviation across all samples (Cohen, 1988). We estimated standard deviation 

following the example by Mansell et al. (2019). The mean difference in methylation (MDM) at 

each locus was based on that calculated in the estimation of DMRs, with α =  0.01 and the 

observed sample sizes per treatment group per species. We consider only loci with 100% overlap 

across  all  samples.  The  power  values  were  calculated  using  the pwr.t.test function  in  the  R 

package pwr (Champely, 2018). For the pooled and computationally pooled libraries, adjustments 

were needed to replicate the Fisher’s Exact test. With binomial count data, the variance is a  

function of  the  mean (Everitt  & Torsten,  2010)  and this  allows us  to  estimate  the  standard 

deviation as the square root of the variance function using only the proportions

Variance=p1/(1 − p1 )n1+ p2/ (1− p2 )n2

The effect size was estimated using the ES.h function which uses an arcsine transformation. The 

power was estimated using the  pwr.2p2n.test function in the R package pwr. The pwr.2p2n.test test 

considers a two-proportion test with unequal sample sizes (i.e. coverage in this context) under 

the  null  hypothesis  that  there  is  no  difference  in  the  treatment  means.  The  region-specific  

 8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.11.23.568483doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568483
http://creativecommons.org/licenses/by-nc-nd/4.0/


coverage value was used in the calculation.

2.7 Estimates of the necessary sampling effort for significant detection

We estimated the distribution of the necessary sampling effort to detect statistically significant 

differences  between  polluted  and  non-polluted  populations  at  each  locus.  Sampling  effort 

estimates were made with the pwr.t.test function for the individual libraries and with the pwr.2p.test 

function for the pooled and computationally pooled data. We set the power threshold to 80% 

(power = 0.8,  n=NULL) in all cases and we assumed equal sampling effort. In this estimate the 

sampling effort for individual libraries is measured as the number of biological replicates (each 

providing a methylation estimate as a continuous number). Sampling effort for the pooled and 

computationally pooled data is measured as the interaction of the coverage and the number of 

biological replicates (count data as either methylated or unmethylated read).

2.8 Laboratory costs estimation

We summarized the costs per sample in a hypothetical scenario where 12 populations from two 

treatment  groups  have  been  sampled  (Table  3).  We estimated  the  cost  of  creating  a  ‘gross 

pooled’,  ‘nested pooled’ and ‘individual  libraries’  with 8,  4,  and 1 individual(s)  per  library,  

respectively. The costs were based on quotes as of 2023 in Swiss Francs including local taxes. 

These costs exclude any procedures which are equivalent between the pooled and the individual 

libraries (such as DNA extraction, sample collection and DNA sequencing, assuming equivalent 

sequencing depth per individual).

3 Results

3.1 Quality control and mapping

All FASTQ files were of high quality with an average per base Phred score >32. Filtering by  

conversion rate efficiencies resulted in the removal of four  C. fluminea samples with less than 

98.5% conversion efficiency and a further two D. polymorpha due to possible over-conversion 

and poor recovery of the control sequences. All four  pooled libraries had adequate conversion 

rates. For the remaining samples the conversion efficiencies in the CpG context were 99.34  ± 

0.20% for the positive control while maintaining methylation levels of 97 ± 0.6% on the negative 

control (Table S3). For the individual libraries, the average number of reads after filtering and 

end-trimming was 75  ± 9.3 million  ( μ± S.D.)  for  C. fluminea  and 70  ± 9.7 million for D. 

polymorpha (Table S1). The pooled libraries had reads slightly under 10x the value of a single 

individual library; 669 ± 10 million for C. fluminea and 571 ± 121 million for D. polymorpha. 

The statistical comparison of the read QC measures between pollution treatments within species 

showed that all groups had a normally distributed number of reads, number of duplicated reads 

and proportion of aligned reads (p-value > 0.05, Shapiro Wilk Test). 

3.2 Larger data loss in individual libraries compared with pooled libraries 

Here  we used the  conventional,  conservative  minimum coverage  filter  of  10x for  all  work. 

Consequently,  the  minimum resolution of  methylation difference that  could  be  detectable  is 
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expected to be 10%. While the sequencing effort per individual was the same between individual  

and pooled libraries, the individual libraries yielded several orders of magnitude fewer sites than 

the pooled libraries for both species (Table 2). Specifically, 95 - 97% of the individual library 

data was filtered out at this step, while 30 - 35% of the pooled library data was filtered out. This  

resulted in approximately 700,000 to 1,200,000 sites per individual library, while we obtained 

approximately 15 to 32 million sites per pooled library (Table 2). We also observed a far larger 

proportion of the sites that had low coverage for individual libraries. Sites with high coverage (> 

32x) were not well represented in the individual sequenced data (< 10K sites) but are very well 

represented in the pooled libraries (> 100K sites). Coverage values are variable among individual 

libraries, but there were no large deviations from the mean to warrant exclusion in all but one  

treatment group (Table S1).

The difference in analyzed data between individual and pooled libraries is even more striking 

when looking at the set of 1 kb regions in common among individual libraries (i.e. after the  

analytical ‘union’ step), that is subsequently used for differential methylation analysis (Table 

S2). There, we found that only 5,158 and 18,800 regions were common to 75% of the individuals 

for Dreissena and Corbicula, respectively. The number of regions in common drops to 1,150 and 

7,832  if  regions  have  to  be  present  in  each  individual.  In  contrast,  the  number  of  regions 

available for differential methylation analysis was 798,744 and 408,906 for the pooled library 

data of Dreissena and Corbicula, respectively. Similarly, the number of regions retrieved from 

the  computationally  pooled  datasets  was  191,075  and  94,234  for  Dreissena and  Corbicula, 

respectively. To summarize, we observed greater data loss in individual vs. pooled library data 

due to two major steps: 1) initial minimum coverage filtering per individual, and 2) union step to  

find the sites or regions in common among individuals.

3.3 Evaluation of agreement between pooled and individual libraries

3.3.1 Global DNA methylation and correlations of genome-wide methylation levels 

Corbicula  fluminea had  slightly  lower  global  methylation  levels  compared  to  Dreissena 

polymorpha (16%  ± 0.7% vs  19.9%  ± 0.6%).  Differences  in  methylation  were  negligible 

between  the  polluted  and  non-polluted  treatments,  and  between  the  pooled  and  individual 

libraries  for  both  species  (C.  fluminea:  individual  libraries  16.04%  ± 0.77% vs  16.12%  ± 

0.61%, pooled libraries 16.1% vs 16.2%, D. polymorpha : individual libraries 20.01% ± 2.29% 

vs 19.99% ± 0.63%, pooled libraries 19.5% vs 20%).

We examined the correlation of methylation percentage (β) values between individual libraries 

and pooled to test for congruence between the two datasets that are expected to be equivalent. 

Correlations were slightly stronger for  C. fluminea (0.93 - 1.00) compared to  D. polymorpha 

(0.91 - 1.00; Figure 2), but overall similar trends were detected. The  β values were strongly 

correlated between individual and pooled libraries with the pairwise correlation coefficients not 

going below 0.95, irrespective of the pollution treatment, species or loci subset. This is expected 

if pooled libraries represent an average of the individual libraries and where data have not been 

centered (see Xu et al. (2015) for the importance of centering). 

Unexpectedly, however, individual libraries did not correlate better with pooled libraries of the 

same treatment group compared to correlations across treatment groups (Figure 2).  For both 

 10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.11.23.568483doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568483
http://creativecommons.org/licenses/by-nc-nd/4.0/


species,  pooled  libraries  correlated  best  with  each  other  (~1.00).  These  results  suggest  that 

pooling  determines  correlation  more  than  pollution  treatment,  and that  there  is  not  a  lot  of 

variation in DNA methylation between pollution treatments.  For both species,  the individual 

libraries from the pollution treatment had the lowest correlation coefficients for within treatment 

correlations  (Figure  2).  This  suggests  that  there  may  be  a  pollution-related  response  in 

methylation estimates. Overall, we found that genome-wide methylation levels of individual and 

pooled libraries were well correlated following our expectations.

3.3.2 Agreement among PCA jackknife iterations

To  understand  the  similarity  among  samples,  we  tested  for  clustering  using  a  principal 

component analysis on the β values. We measured heterogeneity of the signal across the genome 

with  a  standard  error  based  on  a  delete-one  jackknife.  This  measured  changes  to  the  PCA 

coordinates  when  removing  a  linkage  group  with  each  iteration  of  the  PCA.  A  Tucker’s 

coefficient was used to gauge similarity across the PCA iterations. For both species and nearly 

all PCA iterations, the Tucker’s coefficient was greater than 0.95 indicating an overall agreement 

in signal between the global PCA and each iteration (see Figures S2 & Figures S3).  For  C. 

fluminea, one of the jackknife iterations gave notably lower Tucker’s coefficients and greater 

Procrustes D values than the remaining iterations, indicating a disproportionate influence from 

the respective linkage group. As we only examined the first eight linkage groups in this work, we 

cannot say if the excluded linkage groups may also be disproportionately influential in the PCAs. 

The result does argue that some linkage groups may have notable divergences from the majority 

of the genome. The iteration excluding LG02 produced coefficients below ~0.95 for the PCAs 

including  data  from  the  polluted  treatment  (Figures  S2).  This  suggests  that  LG02  has  a 

significant influence on all  other iterations of the PCA and this may be driven more by the 

polluted treatment group.

3.3.3 PCA of genome-wide methylation levels 

In the C. fluminea PCA with all samples (94,912 regions; Figure 3A), the proportion of variance 

captured by each eigenvector declined gradually with the primary vector capturing ~ 10 % of the 

variance and the first 11 accounting for top 90 % of the variance. There was a subtle difference 

between pollution treatments (Figure 3B). There were no clear differences in the variation within 

either treatment group. The two pooled libraries plotted central to all the individual libraries,  

supporting that the pooled libraries represent an average of the individual libraries.

In the D. polymorpha PCA with all samples (190,879 regions; Figure 3C), the first eigenvector 

captured a significant part of the variance (16%) within the pollution treatment. The remaining 

vectors captured similar proportions of the variance (~ 4 - 7 %). There was no clear support for a 

directional or consistent difference in central tendency of either pollution group (Figure 3D). The 

two pooled libraries plot central to all the individually-sequenced data, corroborating that the 

pooled libraries represent an average of the signal found in individual libraries.

3.3.4 Comparison of differential methylation in individual vs. pooled libraries 

We used the  pollution  treatment  to  assess  if  differential  methylation  estimates  were  similar 

between individual and pooled libraries. For both species, there were orders of magnitude more 
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DMR in either wet-lab or  computationally pooled libraries compared with individual libraries 

(Figure 4). This is not surprising given the large difference in input data between individual and 

pooled libraries (see section 3.2). The pooled library of C. fluminea produced 943 and 920 DMR 

(hyper- and hypo-methylated, respectively) while the computationally pooled library produced 

707 and 462 DMR (hyper- and hypo-methylated, respectively). In contrast individual libraries 

produced only one DMR (one per hyper- and hypo-methylated), making the comparison with the 

pooled dataset not possible.

Similarly, the pooled library datasets of  D. polymorpha produced 2,570 and 4,178 (hyper- and 

hypo-methylated, respectively), the computationally pooled library produced 3,323 and 2,695 

(hyper- and hypo-methylated, respectively). Individual libraries produced 9 and 6 (hyper- and 

hypo-methylated, respectively) (Figure 4). It  is worth noting that each DMR from individual 

library  datasets  was  also  in  common  with  the  DMRs  of  either  the  pooled  library  or 

computationally pooled library dataset.

Despite the large number of regions detected by the tests with the pooled and computationally 

pooled data, there was low overlap in the identified regions. Only one DMR was identified by 

the  pooled  and  computationally  pooled  datasets  in  C.  fluminea and  only  201  DMR  in  D. 

polymorpha.  In  both  species  this  amounted to  < 3.5% of  the  regions  from either  test.  This 

supports  a  predominant  incongruence in the results  between the pooled and computationally 

pooled  datasets.  Furthermore,  the  relative  proportion  of  hyper-  to  hypo-methylated  DMR 

changed between tests. For C. fluminea, computationally pooled data produced a greater hyper-

methylated region : hypo-methylated region ratio (0.23 : 0.15) compared with the pooled data 

(0.31 : 0.30). For D. polymorpha, both pooled data produced unequal proportions, but a greater 

hyper-methylated  region  :  hypo-methylated  region  ratio  was  observed  for  computationally 

pooled libraries (0.26 : 0.20) compared to the pooled data (0.20 : 0.32).

3.4 Estimates of the required sampling effort and the recovered power

To assess the available power in our data, we estimated the level of power recovered with our 

current sampling effort and the sampling effort needed to achieve power at a level of 80% at 

each region. We used locus-specific estimates of effect size and mean difference in methylation 

(MDM) between treatment groups (i.e. polluted vs. non-polluted).

A low proportion of regions were deemed invariant. The pooled and computationally pooled 

libraries produced more invariant regions than the individual libraries (Table S4). For the variant 

regions  (i.e.  MDM >  0),  the  sampling  effort  estimates  were  very  large.  For  the  individual 

libraries, estimates were predominantly more than 100 per treatment group (Figure 5A & D) and 

we found that no loci achieved sufficient power with our current sampling effort. Regions with 

sample effort estimates below 100 were only ~7.5% (98) - 14.7% (1,506) of the total loci. 

Similarly, in the pooled and computationally pooled data, estimates of required sampling effort 

were >1,000x and almost exclusively >100x for both species (Figure 5 B, C, E, F). For a set of 

10 individuals, this would require more than 100x coverage each to achieve adequate coverage 

for less than 50% of the variance distribution. We recovered adequate power at only ~ 7 - 16 % 

of regions in the pooled and computationally pooled libraries, highlighting that the majority of 

our  regions  were  under-powered.  Computationally  pooled  libraries  produced  a  greater 

proportions of regions with coverage estimates below 100x compared to pooled libraries; 3 % 
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(2,432)  vs  0.5%  (2,901)  for  C.  fluminea and  8  %  (12,128)  vs  1%  (8,999)  regions  for  D. 

polymorpha, (Figure 5 B & E).

Across  all  comparisons,  regions  with  the  lowest  MDM  had  the  lowest  power  and  largest 

sampling effort, which is to be expected as larger differences require fewer samples. Nearly the 

entire MDM distribution was predominantly under-powered. For example, the lowest 50% of the 

MDM distribution resulted in the following power values: MDM < 0.52 % had power < 0.1 for 

individual libraries (Figure 5 A & D), MDM< 1.5 % had power < 0.2 for pooled  C. fluminea 

data, pooled D. polymorpha (Figure 5 B & E), and computationally pooled data from C. fluminea 

(5 E) and MDM < 2.4 % had power < 0.2 for  D. polymorpha  computationally pooled data 

(Figure 5 F). The upper 50 % of MDM distribution had median power < 0.8 (Table S5). Only the  

highest 10% of the MDM distribution for the computationally pooled D. polymorpha data had a 

median  power  >  0.8;  ~  16.3  % of  the  total  regions.  In  contrast,  pooled  libraries  produced 

sufficient  power  at  only  7  %  (C.  fluminea)  and  15  %  (D.  polymorpha)  of  regions. 

Computationally pooled  C. fluminea data produced only 8.6 % regions with sufficient power. 

These loci covered an MDM range of 4 -  40% for individual libraries,  7 -  88% for pooled 

libraries and 11 - 100% for computationally pooled libraries.

With  regards  to  differences  between  the  species,  we  see  that  D.  polymorpha had  a  greater 

proportion of regions with achievable coverage, this being double the proportions for C. fluminea 

in the pooled data and computationally pooled data. For the individual libraries this proportion 

was only half C. fluminea. Similarly, a greater proportion of regions achieved sufficient power 

for D. polymorpha.

Finally we also note the greater MDM for  D. polymorpha, as much as 39 % for individual 

libraries (vs 18 % C. fluminea). For the pooled and computationally pooled data, the two species 

had equal ranges for MDM, 88% and 100%. These differences may be attributed to sample sizes 

between the species and the possible differences in natural variation.

4. Discussion

4.1 Individual and pooled libraries provide similar genome-wide methylation 
estimates

Here  we  examined  if  cost-effective  pooled  whole-epigenome  libraries  provide  equivalent 

biological results to individually sequenced libraries. We found that pooled libraries produced a 

congruent epigenetic signature with individual libraries at the genome-wide level as seen with 

pairwise correlations and a PCA. Our estimates of  global  methylation were also  remarkably 

stable between pooled and individual libraries. These results are in line with previous research 

supporting a global or genome-wide correspondence of DNA methylation levels from pooled and 

individual libraries (Docherty et al., 2009; Docherty et al., 2010; Gallego-Fabrega et al., 2015). 

In our data both pooled and individual libraries showed a negligible difference in methylation 

between the polluted and non-polluted treatment groups and for both species but in all cases 

DMRs were detected.
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4.2 Pooled libraries provide more data than individual libraries while reducing 
costs

We found that there is at least a 7-fold decrease in the cost per sample for gross pooled libraries  

compared with individual libraries (Table 3). The reduction depends on the number of biological 

replicates in each pool and this allows a great degree of flexibility to balance sample sizes,  

coverage and cost. The pooled libraries also produced orders of magnitude more final regions 

(between 60 – 600x more than individual libraries) and lost notably less data throughout the 

workflow. When estimating the required sampling efforts to reach sufficient power per locus, 

pooled libraries produced as much as 30x more regions with an achievable estimate (98 vs 3,000 

regions for C. fluminea). Achievable is defined here as regions with estimates of <100 samples 

per treatment group (individual libraries) or coverage estimates below 100x (pooled libraries). 

The  achieved  power  was  greater  for  the  pooled  libraries,  as  much  as  16% of  regions  had 

sufficient power (power = 0.8), while the individual libraries for both species had no regions 

reach the threshold. All of this strongly supports that pooled libraries produce sufficient data 

more reliably compared with individual libraries given equal per-sample coverage. In practice, 

our pooled libraries detected >1,000 DMRs while the individual libraries detected <15 DMRs. 

These differences will make a meaningful impact on the return of investment and the possible 

scope of downstream interpretation in research. We also employed computational pooling which 

pools the data of the individual libraries  post-hoc.  Here we found it to successfully mitigate 

much of the data loss that individual libraries suffered from during the QC process. Pooled and 

computationally  pooled  libraries  produced  comparable  volumes  of  input  data  and  DMRs 

detected.

4.3 Pooled and computationally pooled libraries provided different DMR in 
our dataset

Beyond the global signal, our results showed that genome-wide congruence does not necessarily 

imply corresponding DMR signals for pooled and individual libraries. We found low overlap in 

DMR which is contrasting with the correlations and PCA. While the difference in volume of 

input data played a significant role for individually sequenced libraries,  the results  from the 

computationally pooled libraries also showed that the discrepancy is not solely due to the number 

of regions detected.

In our dataset, pooled and computationally pooled libraries both had several thousand DMRs 

detected yet had < 4% regions in common. These results argue that there are discrepancies in the  

underlying  signal  between  the  wet-lab  pooled  and  computationally  pooled  libraries.  These 

differences may arise from several factors: 1) the individuals compared between the pooled and 

computationally pooled libraries were not exactly the same as four Corbicula and two Dreissena 

individuals  were  excluded  from downstream analyses  as  they  failed  conversion  rate  quality 

control; 2) lack of normalization of individual data before computational pooling; 3) stochasticity 

in  the  library  preparation  and  sequencing  processes  (e.g.  differential  PCR  during  library 

preparation; cryptic biases in sequencing among the specimens of the pooled libraries). Based on 

these results, we discuss below the benefits and drawbacks of sample pooling, as well as possible 

improvements and ways forward.
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4.4 Benefits and drawbacks of sample pooling and recommendations

WepiGS offers  important  opportunities  for  ecological  and  evolutionary  studies,  hence  it  is 

crucial  to  optimally  use  resources  and  consider  trade-offs  before  initiating  a  project.  We 

emphasize that there is not a single optimal solution for all projects and that the decision to 

sequence pooled or individual libraries depends on the scientific question of a particular project 

and should be planned at very early stages.

Here we put our work in context and provide a summary of the key benefits and drawbacks of 

pooling libraries for epigenome sequencing (WepiGS), as well as their implications (summary in 

Table 4).

Starting  with  the  benefits,  we  showed  that  pooled  libraries  can  be  up  to  7-fold  more  cost  

effective than individual libraries, when comparing wet lab costs. These costs are likely to be a  

limiting factor into the future. There is flexibility in cost adjustment when the pooling scheme 

varies (e.g. deciding how many pools to prepare) but there are presently limited research on the 

trade-offs of different degrees of pooling. Another important benefit of pooled libraries is that  

the number of individuals per pool can be increased; typically the number of individuals per 

investigated population is between 10 and 20, however it has been shown that a larger number of 

individuals is required to achieve sufficient power in natural populations (Tsai & Bell, 2015, Lea 

et al 2017). For instance, when a predictor variable explains 15% of the difference between 

populations, 125 individuals per population are needed to reach 50% power (Lea et al, 2017). A 

third advantage that we did not expect was that a larger proportion of the sequencing data can be 

used with pooled libraries, resulting in a 20-30 fold increase in retrieved loci in our dataset. This  

was not only due to the higher coverage of pooled libraries, but also because there was a single 

union step using the pooled datasets (i.e. finding the loci in common among libraries, which 

typically leads to a large loss of data). Together with this, if a high sequencing coverage is not 

necessary  (e.g.  in  our  case  100x  per  pooled  library),  researchers  can  decide  to  lower  the 

sequencing effort per pooled library, possibly decreasing even more the project costs.

Using pooled libraries has several drawbacks, though, the most important one being that there is  

no possibility  of  going back to  the  individual  data.  Hence,  researchers  should be  extremely 

careful when thinking about the pooling design, and make sure that every covariate that may 

impact the signal in the data has been taken into account (e.g. sampling locality, sampling time in 

the year, sex, age, tissue, experimental condition, etc.). If these covariate can be clearly identified 

and separated in sub-pools, then pooling the DNA of samples may be a good option to increase 

power and decrease costs. In contrast, if covariates cannot be identified or if the variability in the  

data is not known (e.g. first epigenomic experiment), we would recommend against pooling.

In addition,  individual libraries provide more flexibility and higher resolution as groups and 

comparisons can be done  a posteriori (e.g. testing the impact of different covariates in a pilot 

study)  and  data  can  be  reused  for  future  projects  (e.g.  adding  individuals  from  different 

populations or time points, or different comparisons can be made). Other drawbacks of using 

pooled libraries arise from the data analysis side. For instance, individual samples that failed 

cannot be excluded (e.g. low conversion rate; low amount of sequencing data), and thus equal 

conversion rates and sequencing depth for all individuals in a pool is assumed. Furthermore, we 

observed that a large amount of computational resources was required to process the pooled 

datasets (e.g. alignment, methylation calling) and that the currently widely used bioinformatic 
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tools  are  not  well  adapted  to  handle  such  large  datasets  (e.g.  MethylKit  running  in  R). 

Researchers could decide to filter out invariant sites early in the data analysis, and/or decrease 

the  sequencing  depth  of  the  pools  (i.e.  less  than  10x  per  sample),  however  the  minimum 

sequencing depth to obtain meaningful population methylation rates is not known. We note that 

this issue arises when study organisms have large genomes (in our case 1.6 Gb and 1.8 Gb), but 

it  may be less of a problem for organisms with smaller genome sizes (e.g.  less than 1 Gb). 

Finally, we also noticed that there are fewer and less flexible statistical tests available for data 

analysis (e.g. Logistic regression cannot be used with two samples). We hope that new tools that 

can handle large pooled epigenomic datasets will be developed in the future.

To conclude, because individual libraries provide greater flexibility and control, they are the best  

option to  explore a  first  epigenomic dataset  where covariate  variation is  unknown,  or  when 

samples are rare or limited. However, we believe there are situations in which pooling DNA 

before library preparation would be the best option to obtain population-level signals (Futschik 

& Schlotterer, 2010, Kaplow et al., 2015), increase power and decrease costs. For instance, when 

the number of individuals per population is not limited (e.g. abundant species), in well-studied 

systems where epigenomic variation is already known and researchers want to increase power in 

follow-up  studies.  In  these  systems,  either  a  clear  separation  of  covariates  is  possible,  or 

organisms are small and whole organisms are used for DNA extraction, making sure that all  

covariates are captured in a single DNA extraction (Harney et al., 2022). Finally, pooling would 

be particularly well-suited in systems with small genome sizes to facilitate downstream analyses. 

4.5 Possible improvements and ways forward

We have shown that pooled libraries provide estimates of genome-wide methylation comparable 

to individual libraries. However, signals of differential methylation at specific regions were not 

congruent between individual and pooled libraries, mostly as a result of large differences in the 

number  of  loci  retrieved  and  the  power.  Even  when  pooling  computationally  the  data  of 

individual libraries, the overlap with the empirically pooled datasets was low. This may arise 

from the fact that six individuals were excluded from the analyses due to low conversion rates 

and low sequencing data, resulting in actual differences between the pooled and computationally 

pooled datasets. In addition, stochasticity in the library preparation and sequencing processes 

may have led to further discrepancies between these datasets. Together with this, we worked on 

two empirical  systems with  relatively  low global  DNA methylation  levels  (16-20%),  which 

likely explains the low power recovered in our datasets. It is possible that when working with 

species with higher global DNA methylation levels there would have been more congruence 

between DMR of pooled and computationally pooled datasets. 

In  addition,  these  epigenomic  datasets  were  the  first  ones  for  the  two  species  of  interest, 

Corbicula fluminea and Dreissena polymorpha. Therefore, global DNA methylation levels were 

previously unknown, as well as the level of covariate variation. Based on these results, before 

considering pooling, we would recommend to perform a pilot study using individual libraries to 

assess these metrics and make an informed decision about pooling individuals in subsequent 

studies or not. Furthermore, we acknowledge that we did not perform simulations in this study,  

because we wanted to focus on empirical data to explore commonalities and differences between 

individual and pooled libraries produced in the lab. Thus, we aimed to obtain a very practical 
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result  close  to  a  real  experiment.  In  future  studies,  it  would  be  interesting  to  simulate  the 

minimum coverage of a pool required to obtain reliable population-level DNA methylation rates, 

as a way of facilitating downstream analyses and further decreasing project costs. To conclude, 

our  study brings  important  insights  on  the  relevance  of  pooling  DNA of  individuals  before 

library preparation in epigenomic studies of natural populations, and we believe that it will help 

researchers in making informed decisions for future epigenomic projects. 
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Species No. of Locality Coordinates Sampling date Depth Environment Acronym

specimens [decimal degrees] [m] [Treatment group]

Dreissena polymorpha 10 Baveno 45.915011 N, 8.503474 E 22.05.20 6 Polluted DP

10 Cannobio 46.092616 N, 8.691536 E 22.05.20 6 Non-polluted DNP

Corbicula fluminea 10 Baveno 45.915011 N, 8.503474 E 09.05.18 4 Polluted CP

10 Magadino 46.153440 N, 8.852953 E 13.08.20 4 Non-polluted CNP

Table 1: Summary of sampling design. All localities are in Lake Maggiore, Italy.

Species Libraries Pool Treatment No. before filter S.D. No. after filter S.D. % loss S.D.

C. fluminea 7 No P 15,955,679.00 1,184,713.97 703,178.29 247,309.93 96% 0.01

7 No NP 16,598,487.86 664,380.62 829,556.29 260,670.42 95% 0.01

14 No P+NP 16,277,083.43 924,547.29 766,367.29 253,990.18 95% 0.01

1 Yes P 23,887,527.00 - 15,535,134.00 - 35% -

1 Yes NP 24,073,697.00 - 15,626,885.00 - 35% -

2 Yes P+NP 23,980,612.00 131,642.07 15,581,009.50 64,877.75 35% 0

D. polymorpha 8 No P 30,625,991.00 2,369,570.65 844,482.00 261,373.55 97% 0.01

10 No NP 32,947,578.60 1,105,154.88 1,230,564.60 486,459.13 96% 0.01

18 No P+NP 31,786,784.80 1,737,362.76 1,037,523.30 373,916.34 97% 0.01

1 Yes P 48,459,924.00 - 33,839,276.00 - 30% -

1 Yes NP 47,975,036.00 - 31,541,434.00 - 34% -

2 Yes P+NP 48,217,480.00 342,867.59 32,690,355.00 1,624,819.66 32% 0.03

Table 2: Summary of data loss throughout QC. Presented are the mean number of CpG sites before and after

applying a filter for 10x minimum coverage, as well as the amount of data lost as a percentage.
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Individual Nested Pooled Gross Pooled

Pooling details

Populations 12 12 12

Libraries 192 48 24

Samples per library 1 4 8

Total samples 192 192 192

Material/Protocol total

NEBNext® Enzymatic Methyl-seq Kit *** 9,374.00 2,604.00 1,302.00

General consumables** 192.00 48.00 24.00

Library quantification* 192.00 48.00 24.00

Library quality control* 960.00 240.00 120.00

Total 10,718.00 2,940.00 1,470.00

55.82 15.31 7.66

Cost ratio (Individual:Pooled) 3.6 7.3

Table 3: Cost comparison of pooled and individual libraries. Estimated costs per specimen in a scenario of

sampling 12 populations for a total of 192 biological replicates and no technical replicates. Costs are provided in

Swiss Francs (CHF) with local 2023 prices. Costs are likely to vary among countries based on local factors. Prices

include local taxes. * Tapestation D1000 screen tape, reagents and consumables. ** Pipette tips, general reagents,

gloves, tubes etc. *** 1*24 rxn kit for pooled and 2*96 rxn kit for individual libraries. Where costs are equal

between pooled and individual libraries, we omitted such costs (i.e. individual DNA extraction, quality control,

shearing, sequencing depth).
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Libraries

Topics Implications Individual Pooled

Costs Higher wet lab costs for individual libraries. Cost savings can

be adjusted according to the pooling scheme (See Table 3 for

details)

- +

Power Increased number of individuals included in a pool improves

accuracy of population-level metrics (e.g. Response to treat-

ments, differences between environmental conditions) and

increases power to detect differences

- +

Power / costs 20-30-fold more data when pooled libraries are sequenced at

an equivalent sequencing effort to the individual libraries (see

Table 2 for details). Additional cost savings are possible if

sequencing effort of pooled libraries is reduced.

- +

Flexibility Individual information (covariates) cannot be used with pool-

ing. Nested pooling (pooling by condition, e.g. sampling

locality, sex, age, tissue, experimental condition, ...) is needed

to measure variability in the data. Data reuse for subsequent

projects is challenging

+ -

Data analyses Differences in individual conversion rates or individual se-

quencing depth are not taken into account when samples are

pooled. Possible biased representation of some samples in

the pool cannot be accounted for.

+ -

Data analyses Greater computational resources needed resulting from

greater data volumes of pooled libraries. Many tools for

methylation analyses are not adapted to handle large datasets

from pooled libraries.

+ -

Data analyses Fewer, less flexible statistical tests are available for pooled

datasets.

+ -

Table 4: Benefits and drawbacks of DNA pooling before library preparation
.
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2 SUPPLEMENTAL TABLES
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Paired reads Cytosine

Species Sample Total S.D. % aligned S.D. % duplication S.D. Total S.D. Coverage S.D.

Corbicula fluminea C10P 79,904,532.00 34.18 20.48 973,770,066.00 4.14

C1P 74,738,403.00 32.03 20.5 887,207,192.00 3.79

C2P 84,759,893.00 34.09 18.57 1,051,349,940.00 4.37

C3P 65,165,994.00 34.37 19.01 778,022,325.00 3.26

C4P 38,398,067.00 34.35 16.05 487,725,519.00 1.96

C5P 68,910,145.00 34.73 16.84 825,628,926.00 3.36

C6P 75,235,776.00 33.54 18.3 922,937,770.00 3.79

C8P 55,808,379.00 34.76 17.24 682,092,108.00 2.77

C9P 83,025,026.00 34.05 16.99 1,059,124,248.00 4.29

Average 71,826,893.57 9,311,387.23 33.95 0.94 18.48 1.57 875,540,376.43 125,935,097.78 3.63 0.53

C10NP 79,616,730.00 34.33 19.63 964,245,233.00 4.06

C1NP 92,972,078.00 34.31 19.15 1,152,249,279.00 4.78

C2NP 83,972,229.00 33.25 21.27 992,946,861.00 4.31

C3NP 75,932,743.00 33.9 17.96 942,277,154.00 3.86

C4NP 64,381,899.00 34.67 18.09 809,494,157.00 3.33

C5NP 78,291,875.00 34.74 18.99 984,091,085.00 4.1

C6NP 74,741,855.00 33.71 18.07 917,716,701.00 3.76

C8NP 74,770,619.00 34.52 17.87 926,653,920.00 3.81

C9NP 82,647,061.00 33.73 20.27 975,358,391.00 4.14

Average 78,055,450.43 8,880,630.31 34.1 0.5 18.86 1.26 957,940,472.14 103,198,480.14 3.99 0.46

CpoolP 661,904,290.00 34.53 29.46 7,004,096,743.00 33.62

CpoolNP 675,878,620.00 34.08 31.4 7,001,527,240.00 34.51

Average 668,891,455.00 9,881,343.51 34.31 0.31 30.43 1.37 7,002,811,991.50 1,816,913.00 34.06 0.63

Dreissena polymorpha D10P 65,410,675.00 49.59 15.48 1,160,699,600.00 4.09

D1P 73,460,038.00 49.4 15.07 1,349,558,024.00 4.74

D2P 59,121,375.00 48.13 14.39 1,039,914,761.00 3.63

D3P 68,703,649.00 48.54 16.13 1,269,970,624.00 4.51

D4P 51,119,921.00 47.23 14.32 872,596,859.00 3.02

D5P 64,776,750.00 51.77 13.92 1,263,320,184.00 4.34

D6P 42,903,550.00 49.12 15.47 751,604,109.00 2.64

D7P 47,844,529.00 48.37 14.33 841,215,204.00 2.94

D8P 66,746,309.00 48.32 13.67 1,227,896,716.00 4.21

D9P 63,351,525.00 50.2 14.39 1,203,155,822.00 4.18

Average 64,086,280.25 6,674,156.69 49.15 1.42 14.67 0.83 1,173,389,073.75 151,544,719.09 4.09 0.54

D10NP 75,884,193.00 47.74 15.73 1,278,999,481.00 4.51

D1NP 79,359,990.00 48.92 14.97 1,449,986,916.00 5.08

D2NP 69,143,806.00 49.43 14.77 1,289,478,957.00 4.51

D3NP 72,289,318.00 49.33 15.08 1,354,203,964.00 4.77

D4NP 72,492,019.00 47.68 15.09 1,338,539,670.00 4.68

D5NP 73,438,833.00 49.23 16.04 1,343,852,759.00 4.79

D6NP 71,852,551.00 49.77 13.93 1,351,093,249.00 4.69

D7NP 73,660,941.00 48.89 15.49 1,342,094,303.00 4.75

D8NP 98,739,072.00 48.89 15.95 1,751,923,420.00 6.23

D9NP 66,962,735.00 49.6 13.95 1,258,500,785.00 4.38

Average 75,382,345.80 8,872,805.68 48.95 0.72 15.1 0.74 1,375,867,350.40 142,273,247.94 4.84 0.53

DpoolP 657,309,352.00 48.94 24.88 10,418,395,650.00 41.31

DpoolNP 485,624,776.00 49.2 19.65 8,590,178,928.00 31.9

Average 571,467,064.00 121,399,327.91 49.07 0.18 22.27 3.7 9,504,287,289.00 1,292,744,441.60 36.6 6.65

Table S 1: Summary of the paired sequence data used for alignment. Presented for each library are the estimates of the total number of paired reads, the

proportion of reads successfully aligned, the estimated levels of duplication, the resultant number of Cytosines in the CpG context and the coverage at CpG sites.

Samples removed from downstream analyses due to low conversion efficiencies are indicated in grey. The average across treatment and pooling scheme are

indicated at the bottom of each set of samples. The averages do not include samples removed from downstream analyses. S.D. = Standard deviation.
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Species Treatment subset Overlap Statistical test Post-union regions % loss

C. fluminea Individual libraries 0.75 Logistic Regression 18,800 0.79

1 Logistic Regression 7,832 0.96

Pooled libraries 1 Fisher’s Exact Test 482,906 0.08

Computationally pooled libraries - Fisher’s Exact Test 94,234 -1.08

D. polymorpha Individual libraries 0.75 Logistic Regression 5,158 0.98

1 Logistic Regression 1,150 0.99

Pooled libraries 1 Fisher’s Exact Test 798,744 0.1

Computationally pooled libraries - Fisher’s Exact Test 191,075 -1.42

Table S 2: Number of loci retained after filtering for union across libraries. Presented are the mean and standard

deviation (S.D.) of the number of regions retained after uniting samples for individual, pooled and computationally

pooled libraries. The data loss (% loss) is estimated relative to the mean number of regions before uniting. For

individual libraries, we present the results for when using a 75 % and 100 % overlap across libraries.
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Control pUC19 Lambda

Sample Code Total C S.D. C Coverage S.D. % CpG S.D. % CHG S.D. % CHH S.D. Total C S.D. C Coverage S.D. % CpG S.D. % CHG S.D. % CHH S.D. Excluded

C1P 11,350.00 20.25 98.1 1.7 1 212,158.00 22 0.7 0.9 0.9

C2P 5,762.00 9.7 99.5 21.1 22.1 115,737.00 11.75 18.8 24.7 25.7 x

C3P 6,051.00 10.11 97.7 3.3 1.7 97,711.00 10.11 1.1 1.4 1.5

C4P 3,187.00 5.26 97.5 7.8 7.4 42,339.00 4.15 2 3.5 3.8 x

C5P 5,236.00 9.27 97.8 2.9 2.2 70,070.00 7.08 0.7 1.3 1.4

C6P 11,882.00 21.54 97.8 1.8 1.5 213,506.00 22.32 0.4 0.6 0.6

C8P 3,534.00 5.77 99.5 2.3 1.3 88,186.00 8.94 0.6 0.7 0.9

C9P 11,382.00 19.95 99.1 2.6 1.6 208,825.00 21.41 0.7 0.9 0.9

C10P 9,158.00 15.41 98.9 3.5 2.2 160,481.00 16.46 1 1.4 1.3

All P 7,504.67 3,471.67 13.03 6.37 98.43 0.81 5.22 6.23 4.56 6.86 134,334.78 66,112.62 13.8 6.93 2.89 5.98 3.93 7.84 4.11 8.15

C1NP 11,625.00 19.83 97.6 2.5 1.8 231,651.00 23.72 0.6 0.7 0.7

C2NP 17,938.00 31.9 97.1 4.2 3.7 255,942.00 26.37 1.3 2 2.1

C3NP 13,546.00 24.55 97.7 2.5 1.8 201,767.00 20.59 0.6 1.1 1.1

C4NP 9,533.00 16.12 98.1 2.4 2.1 156,840.00 16.13 0.7 1.2 1.2

C5NP 11,872.00 21.08 98.8 18.2 19.7 215,116.00 21.88 14.3 18.6 18.7 x

C6NP 12,641.00 22.49 97.7 2.3 1.5 221,986.00 23.26 0.6 0.7 0.8

C8NP 10,990.00 18.53 98.3 2.3 1.7 184,530.00 18.67 0.5 0.7 0.8

C9NP 7,640.00 12.8 99.4 13.3 14.1 146,817.00 15.03 10.7 14.3 15.3 x

C10NP 10,539.00 17.27 98.3 1.7 1.3 174,080.00 17.84 0.6 0.8 0.7

All NP 11,813.78 2,875.67 20.51 5.52 98.11 0.69 5.49 5.98 5.3 6.76 198,747.67 36,115.37 20.39 3.77 3.32 5.29 4.46 6.9 4.6 7.09

CpoolP 48,915.00 91.82 97.5 2.2 1.6 937,629.00 106.48 0.7 0.9 0.9

CpoolNP 76,964.00 157.63 98 3.1 2.4 1,361,544.00 161.82 0.9 1.3 1.3

All pooled 62,939.50 19,833.64 124.72 46.54 97.75 0.35 2.65 0.64 2 0.57 1,149,586.50 299,753.17 134.15 39.13 0.8 0.14 1.1 0.28 1.1 0.28

D1P 13,170.00 23.47 98.2 2.1 1.2 218,117.00 22.29 0.7 0.7 0.7

D2P 8,639.00 15.68 97.7 1.9 1 137,280.00 13.75 0.3 0.4 0.5

D3P 16,471.00 29.34 97.8 2.2 1.5 257,445.00 26.88 0.6 0.8 0.7

D4P 8,228.00 13.65 97.9 1.4 1 141,537.00 14.29 0.7 0.9 0.9

D5P 12,447.00 22.06 97.8 2.3 1.5 196,148.00 20.09 0.5 0.7 0.6

D6P 6,443.00 12.05 94 0.8 0.6 129,620.00 13.25 0.3 0.4 0.4 x

D7P 2,238.00 3.75 83 2.4 2.5 36,097.00 3.58 1.4 2.1 2.4 x

D8P 14,498.00 25.26 97.9 2.4 1.9 213,204.00 21.61 0.6 0.7 0.7

D9P 10,805.00 18.96 98 2 1.6 163,064.00 16.71 0.5 0.8 1

D10P 12,327.00 22.16 97.2 1.9 1.3 213,402.00 21.8 0.5 0.5 0.5

All P 10,526.60 4,207.48 18.64 7.49 95.95 4.71 1.94 0.5 1.41 0.53 170,591.40 63,141.66 17.43 6.58 0.61 0.31 0.8 0.49 0.84 0.58

D1NP 11,766.00 20.02 98.3 2.3 1.6 221,420.00 22.82 0.5 0.7 0.8

D2NP 9,279.00 15.68 99.1 1.6 0.9 154,184.00 15.92 0.5 0.5 0.5

D3NP 9,033.00 15.6 98.4 2.5 1.6 155,290.00 15.84 0.8 0.9 0.9

D4NP 10,654.00 17.62 96.6 2.7 2.1 207,312.00 21.1 0.7 0.8 1

D5NP 7,539.00 12.76 98.7 2.7 2.4 157,185.00 16.46 0.6 0.8 0.9

D6NP 10,514.00 17.41 96.7 2.3 1.8 178,031.00 18.34 0.5 0.8 0.7

D7NP 8,878.00 14.07 98.7 2.1 1.8 165,344.00 16.87 0.7 0.7 0.8

D8NP 10,965.00 18.09 99.5 3.8 2.8 211,734.00 21.67 0.4 0.5 0.6

D9NP 7,387.00 12.28 98.2 3.1 1.6 133,188.00 13.5 0.8 1.1 1.1

D10NP 7,233.00 12.21 97.5 2.5 1.5 131,224.00 13.38 0.7 0.9 0.7

All NP 9,324.80 1,613.74 15.57 2.71 98.17 0.96 2.56 0.59 1.81 0.52 171,491.20 32,199.59 17.59 3.32 0.62 0.14 0.77 0.18 0.8 0.18

DpoolP 76,496.00 154.17 96 1.7 1.6 1,353,971.00 161.55 0.6 0.8 0.8

DpoolNP 71,022.00 141.52 97.5 2.2 1.5 1,246,168.00 146.63 0.6 0.8 0.9

All pooled 73,759.00 3,870.70 147.85 8.94 96.75 1.06 1.95 0.35 1.55 0.07 1,300,069.50 76,228.23 154.09 10.55 0.6 0 0.8 0 0.85 0.07

Table S 3: Estimates of the conversion rate efficiencies. Estimates based on the methylation of two spike-in controls. The pUC19 sequence is CpG methylated

(negative control) reflecting 99.5 % efficiency when 96 - 98 % methylated. The lambda sequence is entirely unmethylated (positive control) reflecting 99.5 %

efficiency when 0.5 % methylated. Parameters with suspect values are highlighted in grey. Samples removed from downstream analyses indicated in bold.
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Invariable Variable

Library Regions Proportion Regions Proportion

Corbicula fluminea Individual 10 0.001 7822 0.999

Pooled 26596 0.055 456310 0.945

Computationally pooled 18786 0.199 75448 0.801

Dreissena polymorpha Individual 1 0.001 1149 0.999

Pooled 38717 0.048 760027 0.952

Computationally pooled 58231 0.305 132844 0.695

Table S 4: Summary of variable and invariable regions.

Power > 0.8 Power < 0.8

Species Libraries Quantile MDM bin (%) Regions Proportion Regions Proportion

C. fluminea Individual 0 - 5% [0.0387,0.0833) 391 0.05

Individual 5 - 10% [0.0833,0.212) 1173 0.15

Individual 10 - 25% [0.212,0.521) 1955 0.25

Individual 25 - 50% [0.521,1.39) 1955 0.25

Individual 50 - 75% [1.39,3.45) 1173 0.15

Individual 75 - 90% [3.45,5) 391 0.05

Individual 90 - 95% [5,18.4] 392 0.05

Individual 95 - 100% [9.33e-06,0.0387) 392 0.05

Pooled 0 - 5% [0.0837,0.163) 22813 0.05

Pooled 5 - 10% [0.163,0.422) 33 0.00 68416 0.15

Pooled 10 - 25% [0.422,1.15) 3905 0.01 110172 0.24

Pooled 25 - 50% [1.15,3.46) 13011 0.03 101066 0.22

Pooled 50 - 75% [11.1,88] 9692 0.02 13124 0.03

Pooled 75 - 90% [3.46,7.63) 6691 0.01 61756 0.14

Pooled 90 - 95% [7.63,11.1) 4005 0.01 18810 0.04

Pooled 95 - 100% [9.39e-06,0.0837) 22816 0.05

Computationally pooled 0 - 5% [0.121,0.223) 3772 0.05

Computationally pooled 5 - 10% [0.223,0.529) 23 0.00 11294 0.15

Computationally pooled 10 - 25% [0.529,1.47) 492 0.01 18346 0.24

Computationally pooled 25 - 50% [1.47,4.51) 1448 0.02 17438 0.23

Computationally pooled 50 - 75% [10.7,16) 947 0.01 2825 0.04

Computationally pooled 75 - 90% [16,100] 1945 0.03 1828 0.02

Computationally pooled 90 - 95% [4.51,10.7) 1611 0.02 9706 0.13

Computationally pooled 95 - 100% [9.33e-06,0.121) 3773 0.05

D. polymorpha Individual 0 - 5% [0.000541,0.0363) 58 0.05

Individual 5 - 10% [0.0363,0.0647) 57 0.05

Individual 10 - 25% [0.0647,0.168) 172 0.15

Individual 25 - 50% [0.168,0.407) 287 0.25

Individual 50 - 75% [0.407,1.38) 287 0.25

Individual 75 - 90% [1.38,5.01) 173 0.15

Individual 90 - 95% [5.01,8.09) 57 0.05

Individual 95 - 100% [8.09,39.1] 58 0.05

Pooled 0 - 5% [0.0798,0.154) 38000 0.05

Pooled 5 - 10% [0.154,0.409) 110 0.00 113895 0.15

Pooled 10 - 25% [0.409,1.21) 12640 0.02 177366 0.23

Pooled 25 - 50% [1.21,4.4) 27941 0.04 162056 0.21

Pooled 50 - 75% [12.6,87.9] 26269 0.03 11733 0.02

Pooled 75 - 90% [2.01e-05,0.0798) 38002 0.05

Pooled 90 - 95% [4.4,8.91) 29197 0.04 84817 0.11

Pooled 95 - 100% [8.91,12.6) 17617 0.02 20384 0.03

Computationally pooled 0 - 5% [0.000324,0.19) 1 0.00 6613 0.05

Computationally pooled 5 - 10% [0.19,0.325) 13 0.00 6617 0.05

Computationally pooled 10 - 25% [0.325,0.78) 153 0.00 19783 0.15

Computationally pooled 25 - 50% [0.78,2.36) 1067 0.01 32142 0.24

Computationally pooled 50 - 75% [16.2,23.9) 4052 0.03 2590 0.02

Computationally pooled 75 - 90% [2.36,7.43) 3701 0.03 29512 0.22

Computationally pooled 90 - 95% [23.9,100] 6048 0.05 595 0.00

Computationally pooled 95 - 100% [7.43,16.2) 6647 0.05 13279 0.10

Table S 5: Distribution of regions by mean difference in methylation. For each species and each of individual,

pooled and computationally pooled data we indicate the number and proportion of regions according to the

percentile bins for the mean difference in methylation between the polluted and non-polluted treatment groups.
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3 FIGURES
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Figure 1: Experimental design of the study. Individuals from two species (Dreissena polymorpha and Corbicula

fluminea) were collected at polluted and non-polluted localities in Lake Maggiore, Italy. See Table 1. Individual

DNA extractions were performed. The same DNA extractions were used to construct 38 individual and four pooled

libraries. Individual and pooled libraries were sequenced at an equivalent per-individual sequencing coverage (i.e.

~10x per individual).
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Figure 2: Scatter plots of the correlation coefficients for correlations of percent methylation between pollution

treatments. Pearson correlation coefficients are based on the β values (per-region % methylation) for each pair of

libraries when using all samples.
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Figure 3: Principal component analysis of the genome-wide percent methylation. Panels A and C show the

variance explained by each component for C. fluminea and D. polymorpha, respectively. Highlighted bars show

the components that make up the top 90% of the variance. Panel B and D show the first two components with

standard error bars based on the delete-one jackknife in C. fluminea and D. polymorpha, respectively. The percent

variation explained by each axis is indicated on the axis label. The pooled libraries plot centrally to the individual

libraries from the same treatment, highlighting that each pooled library represents the average signal of a particular

treatment or population.
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Figure 4: Intersection of the identified DMRs between the polluted and non-polluted localities from the

individual, pooled and computationally pooled libraries. The individual, pooled and computationally pooled

libraries are each a ’set’ of DMRs as show by the rows at the bottom. The ’intersections’ (columns) are the DMRs

shared between sets. The dot-plot in the bottom shows how DMRs from each set are distributed among intersections.

The central barplot shows the number of DMRs within a particular intersection. Annotations indicate the number

of DMRs which are either hyper- or hypo-methylated.
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Figure 5: Estimates of the required per-locus sampling effort and the achieved power. Panel A - C shows the

estimates for C. fluminea and panel D - F shows the estimates for D. polymorpha with separate plots for individual

(panels A D), pooled (panels B E) and computationally pooled libraries (panels C F). Dots are individual loci and

colours indicate the estimated power achieved. Note that in panels A D loci with sampling effort estimates > 1000

were capped to 1000 and in panels B, C, E F, loci with sampling effort estimates > 10,000 were capped to 10,000.

Sampling effort is measured as the number of biological replicates per treatment for individual libraries in panel A

D and sequencing coverage per pooled treatment for pooled libraries in panel B, C, E F. Loci with power > 0.8

were plotted above other loci to aid visibility.
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4 SUPPLEMENTAL FIGURES 15
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(a) All data. (b) Polluted treatment.

(c) Non-polluted treatment.

Figure S 1: Correlation of the Tucker’s coefficient and the Procrustes transformation D for C. fluminea using

samples from the in vitro pooled and individual libraries with tile-resolution data. Data subsets indicated for each

plot.
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(a) All data. (b) Polluted treatment.

(c) Non-polluted treatment.

Figure S 2: Correlation of the Tucker’s coefficient and the Procrustes transformation D for D. polymorpha using

samples from the in vitro pooled and individual libraries with tile-resolution data. Data subsets indicated for each

plot.
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