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Abstract 27 

The common bean (Phaseolus vulgaris L.) is an important grain legume crop [1,2] whose life history offers 28 

an ideal evolutionary model to identify adaptive variants suitable for breeding programs [3]. Here we 29 

present the first common bean pan-genome based on five high-quality genomes and whole-genome reads 30 

representing 339 genotypes. We found ~243 Mb of additional sequences containing 7,495 protein-coding 31 

genes missing from the reference, constituting 51% of the total presence/absence variations (PAVs). There 32 

were more putatively deleterious mutations in PAVs than core genes, probably reflecting the lower 33 
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effective population size of PAVs as well as fitness advantages due to the purging effect of gene loss. Our 34 

results suggest pan-genome shrinkage occurred during wild range expansion from Mexico to South 35 

America, with more PAV loss per individual in Andean vs Mesoamerican populations. Selection during wild 36 

spreading and domestication was also associated with PAV loss involved in important adaptive traits. Our 37 

findings provide evidence that partial or complete gene loss was a key adaptive trait leading to localized 38 

and genome-wide reductions. This departs from established paradigms and reveals how evolutionary 39 

forces shape gene composition within plant genomes. The common bean pan-genome offers a valuable 40 

resource for legume research and breeding, climate change mitigation, and sustainable agriculture. 41 

 42 

Main 43 

Food legumes provide valuable genetic resources to address agriculture-related societal challenges, 44 

including climate change mitigation, biodiversity conservation, and the need for sustainable agriculture and 45 

healthy diets [4-7]. The common bean (Phaseolus vulgaris L.) is a diploid (2n=2x=22) and predominantly 46 

self-pollinating annual grain legume crop with a prominent role in agriculture and broader societal 47 

importance [1,2]. It is also a useful model of crop evolution [3] reflecting the parallel and independent life 48 

history of two geographically isolated and genetically differentiated gene pools (Mesoamerican and 49 

Andean) following the expansion of wild from Mexico to South America ~150,000–200,000 years ago, an 50 

order of magnitude earlier than its dual domestication [8-11]. Previous studies using a single reference 51 

genome have provided insights into the population structure of the common bean [12] and the genetic 52 

basis of important adaptive traits [13]. However, pan-genomic diversity must be explored to gain a 53 

comprehensive understanding [14-17]. We therefore constructed the first P. vulgaris pan-genome using a 54 

non-iterative approach and investigated its genetic variation in terms of PAVs within a representative panel 55 

of genetically and phenotypically well-characterized accessions. This publicly available common bean pan-56 

genome provides a valuable starting point to identify genes and genomic mechanisms affecting adaptation 57 

and will accelerate legume improvement. 58 

 59 

Characterization of the common bean pan-genome 60 

To generate the common bean pan-genome, we applied a non-iterative approach to five high-quality de 61 

novo genome assemblies of wild and domesticated genotypes and incorporated short-read whole genome 62 

sequencing (WGS) data from 339 representative common bean accessions, comprising 33 wild and 306 63 

domesticated forms. This revealed ~242 Mb of additional sequence containing 7,495 genes missing from 64 

the reference genome. The new sequences account for 22% of all discovered genes, with 9% (3,040 genes) 65 

derived from the high-quality genomes and the remaining 13% (4,455 genes) from the panel of 339 WGS 66 

genotypes. The final size of the reconstructed pan-genome was ~780 Mb, with 34,928 predicted protein-67 

coding genes (Supplementary Table 1a). 68 
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The new reference pan-genome was used for both variant calling and PAV calling (Supplementary 69 

Table 1b). We detected 23,343,365 variant sites, 19,002,047 of which were classified as single-nucleotide 70 

variants (SNVs) and 4,341,318 as insertions/deletions (InDels). Following PAV calling, the categorization of 71 

all 34,928 predicted genes by frequency unveiled that 58% of the pan-genome consists of core genes found 72 

across all lines (20,369 genes), with the remaining 42% comprising PAVs. These PAVs are either partially 73 

shared among accessions or exclusive to a single genotype, totalling 14,559 genes (Supplementary Table 74 

1c). Notably, 51% of these PAVs originate from non-reference regions (NRRs), representing sequences 75 

absent in the reference genome. The growth curve related to the size calculation suggested a closed pan-76 

genome. In agreement, the pan-genes reached the saturation point (99%, 34,579 genes) and remained 77 

constant without substantial increase when the number of accession genomes exceeded 120. In contrast, 78 

the size of the core genes decreased with each added genotype (Fig. 1a). This indicates that the final pan-79 

genome includes almost all the gene content of P. vulgaris. Gene Ontology (GO) enrichment analysis 80 

showed that the core genes are significantly enriched for terms associated with homeostatic (GO:0042592) 81 

and catabolic (GO:0043632) processes (Supplementary Fig. 1a; Supplementary Table 1d) whereas the 82 

PAVs are significantly enriched for terms related to defence (GO:0006952), responses to external stimuli 83 

(GO:0009605), responses to light (GO:0019684), and reproduction (GO:0000003, GO:0022414) 84 

(Supplementary Fig. 1b; Supplementary Table 1e).  85 

To investigate the evolution of the core genes and PAVs, we calculated the non-synonymous and 86 

synonymous ratio (Ka/Ks) for each gene in each accession (Supplementary Table 1f). This revealed a 87 

statistically significant difference (p < 2.2 × 10–16), with the PAVs including a greater number of harmful 88 

variants relative to benign variants when compared to the core genes (Supplementary Fig. 1c; 89 

Supplementary Table 1g). When we split the PAVs into three subcategories based on their frequency (soft-90 

core 0.90 f freq. < 1; accessory 0.10 f freq. < 0.90; and rare freq. < 0.10), we observed a significant increase 91 

(p = 0.048) in the proportion of putative harmful variants among the rare genes compared to the soft-core 92 

genes (Fig. 1b; Supplementary Table 1g). These results may reflect the lower effective population size of 93 

the PAVs (reducing the efficiency of purifying selection) and/or the higher fitness gain from purging genes 94 

that have accumulated deleterious mutations (loss-of-function mutations). 95 

 96 

Evolutionary trajectory of the common bean 97 

The common bean is characterized by three eco-geographic gene pools. The two major ones are the 98 

Mesoamerican (M) and Andean (A) populations, which encompass both wild and domesticated forms. The 99 

third originates from Northern Peru/Ecuador (PhI) and has a relatively narrow distribution of only wild 100 

individuals [11]. The Mesoamerican and Andean gene pools include five domesticated subgroups (M1, M2, 101 

A1, A2 and A3) corresponding to the Jalisco-Durango, Mesoamerica, Nueva Granada, Peru, and Chile races 102 

[13]. We constructed a neighbour-joining (NJ) phylogenetic tree (Fig. 2a) and conducted PAV-based 103 
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principal component analysis (PCA) (Fig. 2b), both of which confirmed this well-defined population 104 

structure. Both analyses further divided the M1/Jalisco-Durango races into two clusters that we named 105 

cluster A and cluster B, respectively. The analysis of variance conducted on M1/Jalisco-Durango accessions, 106 

considering the first component for the days to flowering, revealed that cluster A is significantly later-107 

flowering than cluster B (Fig. 2c; Supplementary Table 2a). The Jalisco (cluster A) and Durango (cluster B) 108 

races are therefore genetically distinguishable based on photoperiod sensitivity. This outcome also 109 

confirmed that our pan-genome enhances the characterization of genetic diversity and improves its 110 

analysis, exploitation and management. Cumulatively, the first and the second principal components of the 111 

PAV-based PCA explained 47.2% of the total variance, where PC1 mainly defined the differences between 112 

Mesoamerican and Andean gene pools while PC2 split the groups and subgroups within each gene pool 113 

(Fig. 2b). The NJ tree further underscored the suitability of core genes for phylogenetic reconstruction 114 

because they mitigate biases arising from the absence of genetic material among the compared accessions. 115 

In contrast to the tree based on single-nucleotide polymorphisms (SNPs) located on PAVs (Supplementary 116 

Fig. 2a), the NJ tree based solely on core SNPs properly grouped the wild PhI accession close to the wild 117 

Mesoamerican genotypes originating from Guatemala and Costa Rica (Fig. 2a), which are most closely 118 

related to the PhI gene pool [11].  119 

When we examined the total number of PAVs per genetic group (Supplementary Table 2b), we 120 

found that the wild Mesoamerican and Andean populations have more PAVs compared to their 121 

domesticated counterparts (Fig. 2d). This supports the well-established notion that domestication is usually 122 

associated with a reduction of genetic diversity. The amplification of gene loss in domesticated common 123 

bean could reflect a classic bottleneck effect rather than natural selection [18]. We also found that the 124 

M1/Jalisco-Durango and A2/Peru races have more PAVs than the other subgroups in the same gene pool 125 

(Fig. 2d). This was supported by nucleotide diversity analysis applied to the 1,451,663 core SNPs (Fig. 2e; 126 

Supplementary Table 2c) and agrees with a recent hypothesis proposing that the M1/Durango-Jalisco and 127 

A2/Peru races were the first domesticated Mesoamerican and Andean populations from which the M2, A1 128 

and A3 races arose during a secondary domestication phase [13]. 129 

To study inter-gene-pool hybridization, the PAV matrix for American domesticated accessions was 130 

analysed by using Fisher’s exact test to compare the Mesoamerican and Andean populations. We found 131 

5,556 PAVs (65% of the total) with a statistically significant difference in frequency (p < 0.05) between the 132 

two gene pools. These included 778 diagnostic PAVs, 91% (707) of which were fixed in the Mesoamerican 133 

gene pool and 9% (71) in the Andean gene pool (Supplementary Table 2d). GO enrichment analysis applied 134 

to the 778 diagnostic genes revealed enrichment in processes related to detoxification (GO:0098754), 135 

metabolism (GO:0008152), and responses to stimuli (GO:0050896) (Supplementary Fig. 2b). Interestingly, 136 

none of these PAVs were found to be diagnostic between gene pools in Europe (Supplementary Table 2d), 137 

and when Fisher’s exact test was applied to the subset of 114 European accessions, we did not detect any 138 
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diagnostic genes between the Mesoamerican and Andean gene pools (Supplementary Table 2e). These 139 

outcomes clearly reflect the extensive inter-gene-pool hybridization in European germplasm and confirm its 140 

key role in the adaptation of common bean to new agricultural environments [13]. 141 

To investigate the influence of PAVs on important trait variations and identify candidate genes 142 

associated with them, we conducted a PAV-based genome-wide association study (GWAS) involving 218 143 

American and European domesticated genotypes. We identified 39 significative association events 144 

correlated with day-to-flowering and photoperiod sensitivity, previously detailed in [13]. These associations 145 

were linked to 35 potential candidate PAVs, highlighting their likely involvement in regulating floral 146 

transition (Supplementary Table 2f). An interesting example is the GWAS peak associated with flowering 147 

time and photoperiod sensitivity located on Phvul.003G185200 (Chr03:40,838,810-40,850,729). This PAV 148 

demonstrates orthology to the HDA5 gene in Arabidopsis thaliana, which displays deacetylase activity. 149 

Notably, A. thaliana mutants with impaired HDA5 expression patterns manifest late-flowering phenotypes 150 

due to the up-regulation of two floral repressor genes, namely FLOWERING LOCUS C (FLC) and MADS 151 

AFFECTING FLOWERING 1 (MAF1) [19]. It is noteworthy that common bean genotypes lacking the PAV 152 

Phvul.003G185200 exhibit early flowering phenotypes compared to those accessions carrying the gene 153 

(Supplementary Fig. 2c), implying an adaptive role correlated to the loss. Furthermore, we found that 9 out 154 

of the 35 candidate PAVs for GWA analysis show signature of selection in various comparisons, specifically, 155 

two PAVs between wild and domesticated Mesoamerican populations and seven PAVs between wild and 156 

domesticated Andean populations. Overall, although the majority (59%) of the candidate PAVs were 157 

located on the reference genome, a significant 41% were situated on the NRRs (Supplementary Table 2f), 158 

reaffirming the efficacy of the pan-genome in identifying functional variants associated with economically 159 

or evolutionarily important traits. 160 

 161 

Pan-genome shrinkage during wild expansion to South America 162 

One of the most striking outcomes we observed was the difference in pan-genome size between the 163 

Mesoamerican and Andean gene pools (Fig. 3a). We calculated the total number of PAVs per individual and 164 

found that accessions from the same gene pool clustered together in separate groups, with Mesoamerican 165 

accessions featuring more PAVs per accession than Andean ones (Fig. 3b, c; Supplementary Table 3a). One 166 

possible explanation is that this reduction in pan-genome size may simply reflect genetic drift and the two 167 

sequential bottlenecks that occurred solely in the Andean population [12]. To better understand the roles 168 

of different evolutionary forces in shaping the PAV content of the Mesoamerican and Andean gene pools, 169 

and to distinguish between the effects of adaptation, population demography and history, we first focused 170 

on the analysis of wild accessions. Considering a panel of wild genotypes representing the entire 171 

geographical distribution in Latin America, we applied bivariate fit analysis and found a significant 172 

correlation (p < 0.0001) between the number of PAVs per individual and the latitude. Analysis of variance in 173 
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which wild individuals were grouped by latitude followed by spatial interpolation revealed a significant and 174 

progressive loss of genes ranging from the accessions of Northern Mexico to those of Northwestern 175 

Argentina (Fig. 4a, b; Supplementary Table 3b). Furthermore, FST analysis on PAVs comparing 176 

Mesoamerican and Andean wild populations may suggests the occurrence of selection for gene loss during 177 

wild range expansion (Fig. 4c). We found that 64% of all candidate PAVs in the top 5% of the FST distribution 178 

(Fstg0.85) are absent in the wild Andean gene pool. This high rate of gene loss in the Andean population 179 

significantly exceeds the gene loss rate observed in the entire variable genome (26%), demonstrating a 180 

more than twofold increase. This difference in gene loss rates was statistically validated using bootstrap 181 

resampling, strongly suggesting that gene loss during the process of wild differentiation was not a random 182 

occurrence but evident outcome of selective forces (Supplementary Fig. 3a, b). Moreover, functional 183 

annotation of the candidate PAVs revealed the enrichment of genes involved in pollen germination, innate 184 

immunity, abiotic stress tolerance, and root hair growth, indicating a potential adaptive role 185 

(Supplementary Table 3c). Overall, our findings suggest that selective pressure favouring the loss of genes 186 

involved in adaptive mechanisms, coupled with the influence of genetic drift resulting from the founder 187 

effect, may have contributed to the shrinking of the Andean pan-genome during wild differentiation. 188 

 189 

Footprints of selection for gene loss during domestication 190 

The PAVs putatively shaped by selection during domestication in Mesoamerica and the Andes revealed 191 

further evidence that gene loss underpinned the successful adaptation of the American common bean. FST 192 

analysis was applied to PAVs in wild and domesticated forms (separately for each gene pool) with only PAVs 193 

in the top 5% of the FST distribution considered as candidates. We found 460 PAVs potentially under 194 

selection in the Mesoamerican population (FST g 0.31) and 514 in the Andean population (FST g 0.27) 195 

(Supplementary Table 4a, b). Functional annotation of the candidate PAVs revealed the enrichment of 196 

genes associated with domestication syndrome and adaptive traits such as dormancy, floral transition, light 197 

acclimation, defence, and symbiotic interactions (Supplementary Table 4c, d). Importantly, the candidate 198 

Phvul.003G265200 (Chr03: 50,365,995-50,368,501) is orthologous to 11 members of the plant Rho GTPase 199 

subfamily (ROP), including ROP6 encoding a small Rho-like GTP binding protein. This GTPase subfamily is 200 

required for symbiotic interactions [20-22], and in the plasma membrane of Lotus japonicus cells it interacts 201 

directly with NOD FACTOR RECEPTOR 5, one of two nodulation factor receptors essential for nodule 202 

formation during symbiosis [23]. From our analysis, Phvul.003G265200 is a putative selected PAV (FST = 203 

0.50) for the Mesoamerican gene pool whose frequency declined by more than 60% during progression 204 

from the wild (0.94) to the domesticated (0.25) population (Supplementary Table 4a). Overall, no 205 

significant differences were observed in terms of absences between the wild and domesticated populations 206 

of both gene pools. However, a significant proportion of PAVs putatively under selection, specifically 63% 207 

(289 genes) in the Mesoamerican population (Fig. 5a) and 80% (411 genes) in the Andean one (Fig. 5b), 208 
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were less frequent in domesticated than wild populations. When considering all PAVs, the percentage of 209 

PAVs with lower frequencies in domesticated populations fell significantly to 22% (p < 2.2 × 10–16) for the 210 

Mesoamerican gene pool and 29% (p < 2.2 × 10–16) for the Andean one (Fig. 5a, b). These findings suggest 211 

that selection during domestication resulted in gene loss, but unlike the range expansion of wild 212 

populations, it did not completely abolish the selected genes. This may reflect the different evolutionary 213 

timescales involved: wild differentiation occurred ~150,000 years ago whereas domestication was much 214 

more recent at ~8,000 years ago. These findings are consistent with previous observations that selection 215 

during the domestication of common bean in Mesoamerica has directly affected the transcriptome, leading 216 

to a ~20% decrease in gene expression levels attributed to loss-of-function mutations [18]. We also 217 

detected 29 PAVs with high FST values in common between the Mesoamerican and the Andean gene pools, 218 

and these are mainly associated with the tryptophan metabolic pathway. Tryptophan holds significance as 219 

a precursor in secondary metabolism, contributing to the synthesis of essential molecules like auxin, 220 

serotonin, and melatonin. These compounds play diverse roles in plant physiology, influencing processes 221 

such as seed germination, root development, senescence, and flowering. Additionally, they contribute to 222 

the plant's response mechanisms against both biotic and abiotic stresses [24]. We analysed their 223 

frequencies and found that ~86% in both gene pools decreased in frequency during the progression from 224 

wild to domesticated accessions (Supplementary Table 4e). This may indicate a pattern of genomic 225 

convergence for some key adaptive genes between the Mesoamerican and Andean populations during 226 

their parallel domestication events.  227 

 228 

Conclusions 229 

The global economic and social importance of the common bean means that pan-genomic analysis could 230 

boost the conservation and exploitation of its genetic resources to address key challenges in agriculture 231 

and wider society [1-6]. The genotypes selected for this study encompass both wild and domesticated 232 

forms, ensuring that the pan-genome comprehensively captures the extensive genetic variation within this 233 

species. This publicly accessible tool serves as a valuable resource for studies in population genetics, 234 

functional genomics, and plant breeding. PAV analysis provided insight into the evolutionary dynamics of 235 

pan-genome adaptation, including putative signals of selection for complete gene loss during wild 236 

differentiation between the Mesoamerican and Andean gene pools, contributing to the smaller pan-237 

genome of the Andean population. We also identified putative selection footprints for partial gene loss 238 

during both domestication processes in Mesoamerica and the Andes, causing localized reductions in gene 239 

frequencies in domesticated populations compared to their wild counterparts. Candidate genes that have 240 

been completely or partially lost appear to be involved in important adaptive mechanisms, such as 241 

flowering time, symbiosis, biotic and abiotic stress tolerance, and root hair growth. 242 
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The significant role of reductive genome evolution in adaptation is now widely recognized [25-27]. For 243 

instance, in contrast to their European native counterparts, invasive genotypes exhibited a reduced 244 

genome size resulting in phenotypic effects that enhanced the species' invasive potential. This included an 245 

accelerated early growth rate driven by a negative correlation between genome size and the rate of stem 246 

elongation [28]. Similarly, Díez et al. [29] documented the genome size variations within the Zea mays 247 

species during the post-domestication process, revealing that maize landraces have significantly smaller 248 

genome sizes compared to their closest wild relatives, the teosintes. Notably, a negative correlation 249 

between maize genome size and altitude was observed [29]. Moreover, gene loss is considered functionally 250 

equivalent to other loss-of-function mutations, such as premature stop codons, providing an important 251 

source of adaptive phenotypic diversity [30-33]. A notable example is found in A. thaliana, where loss of 252 

function mutations in the SCARECROW (SCR) and/or SnRK2-type protein kinase (SRK) genes underlie the 253 

switch from obligate outcrossing (self-incompatibility) to self-fertilization [34]. This transition is widely 254 

recognized as one of the predominant evolutionary shifts among flowering plants, allowing the successful 255 

colonization of oceanic islands, an ecological principle known as Baker’s rule. Accordingly, under the 256 

influence of specific and diverse agro-ecological pressures, the relinquishment of particular genes can 257 

confer a selective advantage on a given population. Overall, our findings support the <less is more= 258 

hypothesis in which non-functionalization is a common adaptive response [35]. This may be relevant when 259 

populations face selective pressure resulting from radical environmental changes, such as the expansion of 260 

wild common bean from the warm and humid climate of Central Mexico to higher and cooler altitudes in 261 

the Andes. Our results therefore establish a novel scenario in which evolutionary forces drive partial or 262 

complete gene loss due to selective pressure favouring adaptation rather than responses to stochastic 263 

events only. Mutations are more likely to cause a loss rather than a gain of function, so adaptive gene loss 264 

provides a rapid evolutionary response to environmental changes. This has profound implications for 265 

strategies to mitigate climate change. The common bean pan-genome is a valuable starting point that will 266 

lead to a deeper understanding of the genetic variations and genome dynamics responsible for key 267 

adaptive traits in food legumes. 268 

 269 

Methods 270 

Sources of genetic diversity 271 

The pan-genome was constructed from five high-quality genomes representing the Mesoamerican and 272 

Andean gene pools. The P. vulgaris reference genome Pvulgaris_442_v2.0 (PV442) was downloaded from 273 

Phytozome (https://phytozome-next.jgi.doe.gov/), the genomes of BAT93 and JaloEPP558 were provided 274 

by the INRAE Institute, and the genomes of MIDAS and G12873 were sequenced and assembled de novo 275 

specifically for this study (Supplementary Table 5a). We also integrated 339 representative low-coverage 276 

WGS common bean genotypes, including 220 domesticated and 10 wild accessions from previous studies 277 
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[11, 13]. The remaining 109 accessions were multiplied in the greenhouse, and DNA extracted from young 278 

leaves was used for sequencing (Supplementary Table 5b). 279 

 280 

Plant growth and DNA extraction 281 

MIDAS and G12873 single seed descent (SSD) genotypes were multiplied in the greenhouse. For both 282 

samples, 2 g of young leaf material was collected after 48 h of dark treatment and high-molecular-weight 283 

(HMW) DNA was extracted as previously described [36]. DNA quality was evaluated according to Oxford 284 

Nanopore Technologies (ONT) requirements. Specifically, purity was assessed using a NanoDrop 1000 285 

spectrophotometer (Thermo Fisher Scientific), the concentration was determined using a dsDNA Broad 286 

Range Assay Kit with Qubit 4.0 (Thermo Fisher Scientific), and the fragment size (f 400 kb) was determined 287 

using the CHEF Mapper electrophoresis system (Bio-Rad Laboratories). Fragments < 25 kb were removed 288 

using the Short Reads Eliminator kit (Circulomics) leaving 75% of the DNA from the MIDAS samples and 95% 289 

from the G12873 samples. 290 

P. vulgaris genotypes of BAT93 and JaloEEP558 were sowed in soil and grown in a growth chamber at 23°C, 291 

75% humidity, and 8 h dark and 16 h light photoperiods under fluorescent tubes (166lE). Young trifoliate 292 

leaves of BAT93 and JaloEEP558 genotypes were collected and flash-frozen with liquid nitrogen. Three days 293 

before sampling, plants were dark treated to optimize the high molecular weight DNA extraction. In 294 

addition, 109 SSD accessions were multiplied in the greenhouse and young leaves were collected in silica 295 

gel for drying and subsequent DNA extraction using the DNeasy 96 Plant kit (Qiagen) according to the 296 

manufacturer’s instructions. For each sample, 50–70 mg of dried leaf material was pulverized with a Tissue-297 

Lyser II (Qiagen) at 30 Hz for 6 min. The DNA quality and quantity were evaluated using a NanoPhotometer 298 

NP80 (Implen), and the concentration was determined using a Qubit BR dsDNA assay kit (Thermo Fisher 299 

Scientific). 300 

 301 

Sequencing low-coverage WGS accessions 302 

DNA libraries for all samples were prepared using a KAPA Hyper Prep kit and PCR-free protocol (Roche). For 303 

each genotype, 200 ng of DNA was fragmented by sonication using a Covaris S220 device (Covaris) and 304 

WGS DNA libraries were generated using a 0.7–0.8× ratio of AMPureXP beads for final size selection. 305 

Libraries were quantified using the Qubit BR dsDNA assay kit and equimolar pools were quantified by real-306 

time PCR against a standard curve using the KAPA Library Quantification Kit (Kapa Biosystems). Libraries 307 

were sequenced on the NovaSeq 6000 Illumina platform in 150PE mode, producing 15–30 million 308 

fragments per sample. 309 

 310 

Sequencing and assembly of MIDAS and G12873 genomes 311 
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Following quality control and priming according to ONT specifications, libraries were sequenced on a 312 

MinION device with a SpotON flow cell (FLO-MIN106 R9.4.1-Rev D). Two libraries were prepared for each 313 

genotype according to the SQK-LSK109 ligation sequencing protocol (ONT) with minor adjustments. Each 314 

library was loaded twice, and the flow cell was washed using the Flow Cell Wash Kit (ONT). Illumina PCR-315 

free libraries were prepared starting with 1 ug of fragmented gDNA using the KAPA Hyper prep protocol. 316 

This process involved extending the adapter ligation time up to 30 minutes and conducting post-clean-up 317 

size selection using 0.7X AMPure XP beads. The library's concentration and size distribution were assessed 318 

using a Bioanalyzer 2100 in combination with high-sensitivity DNA reagents and chips. Sequencing was 319 

performed on a NovaSeq6000 instrument to generate 150-bp paired-end reads. MIDAS and G12873 whole-320 

genome assemblies were generated using the nanopore-based approach based on 26 Gb (50-fold coverage) 321 

and 36 Gb (69-fold coverage), respectively. Raw nanopore reads were corrected using Canu v2.1 [37] and 322 

the resulting corrected reads were assembled de novo using wtdbg2 v2.5 [38]. Draft assemblies were 323 

refined by iterative polishing using long reads (Racon v1.4.3 and Medaka v1.0.3) [39] and short reads (three 324 

rounds of Pilon v1.23) [40]. Completeness was assessed using BUSCO v4.1.2 [41] and the Fabales_odb10 325 

dataset (Supplementary Table 5c). 326 

 327 

Sequencing and assembly of BAT93 and JaloEEP558 genomes 328 

High molecular weight DNA of BAT93 and JaloEEP558 genotypes was sequenced with a PacBio Sequel II 329 

system by GENTYANE platform (INRAE Clermont-Ferrand, France). A total of 21.09 and 29.35 Gb of PacBio 330 

HiFi reads were generated from BAT93 and JaloEEPP558, respectively. PacBio HiFi reads were de novo 331 

assembled into contigs using HiFiasm (v 0.9.0) with default parameters [42]. 332 

 333 

Orthologous/paralogous analysis and clustering threshold settings 334 

To incorporate two distinct populations, namely the Andean and the Mesoamerican gene pools, into the 335 

pangenome, precise differentiation between orthologous and paralogous genes is imperative. 336 

Consequently, a meticulous strategy was devised to ensure the preservation of solitary orthologous gene 337 

copies along with all paralogous counterparts. The relationship between orthologous genes was calculated 338 

with minimap2 v2.17 [43] to align the MIDAS and G12873 genome assemblies using the open reading 339 

frames (ORFs) of 2,330 complete single-copy BUSCO (Benchmarking Universal Single-Copy Orthologs) genes 340 

selected from the P. vulgaris reference genome PV442 (Supplementary Table 5d). The percentage identity 341 

was calculated for each ORF based on the number of matches in the alignments as a proportion of ORF 342 

length. The relationship between paralogous genes was calculated using the three most abundant gene 343 

families (OG0000273, OG0000328, and OG0000085) in the P. vulgaris PV442 reference genome, composed 344 

of 26, 37, and 42 genes, respectively. An all-versus-all comparison between the members of the same 345 

family was implemented using minimap2. The percentage of  identity was calculated for each gene family 346 
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by dividing the number of matches in the alignments by the reference gene ORF length and then averaging 347 

the identity percentages for each family. Finally, the results of both tests were used to establish a clustering 348 

threshold of 90% to retain only one orthologous and all paralogous genes in the pan-genome 349 

(Supplementary Table 5e). 350 

 351 

Pan-genome construction 352 

We used a paired genome alignment strategy for pan-genome construction [44]. The PV442 reference 353 

genome was independently mapped onto MIDAS, G12873, BAT93 and JaloEPP558 with minimap2 v2.17 354 

using the alignment pre-set -x asm5, which considers regions with an average divergence < 5%. The bam 355 

files of the four alignments were converted to delta files and structural variants were called using 356 

Assemblytics v 1.2.1 [45]. Only deletions were selected as NRRs [44]. Uncovered contigs private to the four 357 

analysed genomes were identified by applying samtools depth v1.1 [46] to the bam files and were 358 

extracted as NRRs. Deletions and uncovered contigs were independently filtered for a minimum length of 1 359 

kb and clustered using CD-HIT-EST v4.8.1 [47] with a sequence identity of 90%, as described above for the 360 

orthologous and paralogous genes. To ensure that the NRRs identified through this method didn't 361 

encompass orthologous genes already existing in the PV442 reference genome, we specifically employed 362 

highly conserved BUSCO genes. We conducted a comparative analysis between the full complement of 363 

4,947 MIDAS and 4,812 G12873 BUSCO genes present in PV442 and the NRRs derived from MIDAS and 364 

G12873 using BLASTp. Illumina data representing the 339 low-coverage WGS common bean accessions 365 

were trimmed with fastp v0.21.0 [48] and aligned to the preliminary pan-genome using bowtie2 v2.3.5.1 366 

[49] with default parameters. The unmapped reads from these alignments were extracted using samtools 367 

v1.11, assembled using MaSuRCA v3.4.2 [50] with default parameters, and clustered using CD-HIT-EST 368 

v4.8.1 with a sequence identity of 90%. Finally, the NRRs derived from the panel of 339 common bean 369 

accessions were added to the preliminary pan-genome to generate the final pan-genome. To exclude 370 

putative contaminants and/or organelle sequences, NRRs were compared to the NCBI non-redundant 371 

nucleotide database using BLASTn, considering a minimum 80% identity and 25% coverage, leading to the 372 

removal of 1,194 sequences. Overall, we identified 64,174 added sequences, 86% of which reflected the 373 

mapping of the 339 low-coverage WGS accessions. The remaining 14% was identified by comparing the 374 

reference genome independently with the other four high-quality genomes (Supplementary Table 1a). 375 

 376 

Pan-genome annotation 377 

Repetitive sequences were identified and soft-masked using RepeatModeler v2.0.2 [51] and RepeatMasker 378 

v4.1.2-p1 [52]. Protein-coding genes were identified using a hybrid-approach prediction with Augustus 379 

v3.3.3 [53]. Proteins from P. vulgaris and correlated species (Medicago truncatula and Glycine soja) plus 380 

RNA-Seq data (unpublished data from [18]) were aligned to the genome and used as extrinsic evidence. 381 
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Protein sequences were aligned with Hisat2 v2.2.1 [54] and RNA-Seq data were aligned using Genome 382 

Threader v1.7.1 [55]. BUSCO genes in the Fabales_odb10 database were used to train the model for the 383 

Augustus predictor. Predicted genes were scanned with InterProScan v5.46-81.0 [56] for the presence of 384 

protein domains. Using a custom script, genes with transposon-related domains were filtered out and 385 

retained in the annotation if they contained at least one known protein domain. The filtered proteins were 386 

compared to the pan-genome with BLASTp v2.12.0 [57] and filtered by the best hits. The predicted genes 387 

were clustered with the proteins of all species considered in the annotation using OrthoFinder v2.5.4 [58]. 388 

Finally, functional annotation was achieved by integrating information about orthologous genes and by 389 

identifying functional domains using a custom script. 390 

 391 

PAV calling 392 

Illumina data representing the 339 low-coverage WGS accessions were aligned to the pan-genome using 393 

bowtie2 v2.3.5.1 and the coverage of each predicted gene was calculated for each accession using samtools 394 

v1.11 (Supplementary Table 5f). PAV calling thresholds were defined for each accession according to the 395 

minimum coverage value of 1000 randomly selected BUSCO genes (ORFs). The BUSCO genes are 396 

orthologous genes that should be present in all considered accessions, but a few underrepresented genes 397 

in a given accession could constitute a bias. To avoid this, values below 1% (the 10 least covered genes) 398 

were discarded. The identified genes were classified based on their frequency as core genes if present in all 399 

the accessions or PAVs if partially shared or private to a single genotype (Supplementary Table 1b, c). 400 

 401 

Pan-genes and core genes size calculation 402 

The curves describing the pan-genome and core genome sizes were evaluated by considering 1,000 random 403 

orders of the 339 genotypes. The orders were chosen randomly among all possible permutations (n! where 404 

n=[1,339]). For each ordering, the gene sets of the accessions were progressively added to the total 405 

genome size without considering the genes already present in the total set. The same procedure was 406 

applied for the core genome size, but the gene sets were intersected when each genome was added, thus 407 

keeping only the genes in common for each iteration (Supplementary Table 5g, h). 408 

 409 

Variant calling 410 

SNVs and InDels were called with bcftools v1.10.2 [59] based on the alignment of 339 accessions with the 411 

pan-genome using bowtie2 v2.3.5.1. We used bcftools mpileup v1.10.2 to generate a genotype likelihood 412 

table, and variants were identified using bcftools call v1.10.2 and the pileup table, producing the final vcf 413 

file. 414 

 415 

Non-synonymous and synonymous mutations  416 
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The Ka/Ks ratio was computed for each gene in each accession using KaKs calculator v2.0 [60]. For each 417 

gene, the consensus sequence of each accession was extracted using bcftools consensus v1.10.2. The 418 

calculator compares the pan-genome gene sequence with the gene sequence of each accession to identify 419 

non-synonymous and synonymous variants and then computes the ratio. The calculator reported NA when 420 

there were no variants in a specific accession or when the denominator of the Ka/Ks ratio was zero. It was 421 

possible to compute the analysis for 30,850 of 34,928 genes. Sometimes the length of one of the two 422 

compared sequences was not divisible by three so the sequence could not be read in triplets 423 

(Supplementary Table 1f). The average Ka/Ks value per gene was used to assess the significance of the 424 

sample median (Supplementary Table 1g). 425 

 426 

Data analysis 427 

Pan-genome analysis focused on a representative subset of 99 well-characterized accessions among the 428 

original 339, including wild and American domesticated forms. In some cases, we also analysed the subset 429 

of 114 European domesticated accessions (Supplementary Table 5b). 430 

For GO enrichment, the annotated core genes and PAVs in the pan-genome were analysed using the 431 

buildGOmap R function to infer indirect annotations and generate data suitable for clusterProfiler [61, 62]. 432 

Diagnostic genes were analysed using Metascape [63]. A. thaliana orthologs were identified using 433 

OrthoFinder [58] and by comparing all protein sequences from P. vulgaris (v2.1) and A. thaliana (TAIR10). 434 

For PCA, the PAV matrix (1/0) was analysed using the logisticPCA package in R [64]. 435 

ANOVA within subgroup M1 was carried out using the first principal component related to days-to-436 

flowering and photoperiod sensitivity [13] as a representative phenotypic trait.  437 

FST analysis involved the separate testing of PAVs in the Mesoamerican and Andean gene pools by 438 

comparing the frequency of each PAV between wild and domesticated forms. Each PAV was considered as 439 

a single locus (0/1) and FST was calculated by applying the formula FST = (H total – H within) / H total, where 440 

H is the heterozygosity [65]. The same procedure was applied to wild accessions when comparing the 441 

Mesoamerican and Andean gene pools. Only PAVs in the top 5% of the FST distribution were considered as 442 

candidates. 443 

The functions of interesting PAVs and those associated with A. thaliana orthologs detected by OrthoFinder 444 

[58] were investigated manually in the NCBI database (https://www.ncbi.nlm.nih.gov/). 445 

Phylogenetic analysis involved the extraction and filtering of SNVs located in core genes and PAVs using 446 

bcftools [59], resulting in two final datasets: 1,451,663 SNPs for the core genes and 338,475 SNPs for the 447 

PAVs. The datasets were used to calculate the genetic distance between individuals and compute maximum 448 

composite likelihood values with 1000 bootstraps for the NJ tree in MEGA11 [66]. The final trees were 449 

visualized in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).  450 
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The filtered dataset of SNPs in core genes was also used to quantify the genetic diversity within groups of 451 

accessions by estimating π. The --window-pi vcftools flag was used to obtain measures of nucleotide 452 

diversity in 250-kb windows. The windowed-pi estimates were then divided by the total number of SNPs to 453 

calculate a global estimate for each genetic group. 454 

Fisher’s exact test with the false discovery rate corrected for multiple comparisons was applied in R to 455 

identify PAVs that differed significantly in frequency between the Mesoamerican and Andean gene pools 456 

for the American and European accessions. 457 

The phenotypic data used for PAV-based GWAS encompassed the flowering time and photoperiod 458 

sensitivity data previously analysed by Bellucci et al. [13]. GWA analysis was run by using both the Mixed 459 

Linear Model (MLM) [67] and the Fixed and random model Circulating Probability Unification (FarmCPU) 460 

[68] implemented in the R package GAPIT v3 [69]. The threshold for each Genome Wide Association (GWA) 461 

scan was determined by the Bonferroni corrected p value at α = 0.05. The kinship matrix (IBS method) was 462 

calculated with Tassel 5 [70] and the population structure (at K2 obtained from Bellucci et al. [13]) were 463 

included into the models as fixed factors. Quantile-quantile (Q-Q) plots were obtained by plotting the 464 

observed -log10(p values) against the expected -log10(p values) under the null hypothesis of no association. 465 

 466 

Data Availability 467 

The 109 raw sequencing reads generated and analyzed in this study have been deposited in the Sequence 468 

Read Archive (SRA) of the National Center of Biotechnology Information (NCBI) under BioProject number 469 

PRJNA1042929. Additional data comprising 230 raw sequencing reads have been sourced from Frascarelli 470 

et al. [11] and Bellucci et al. [13]. The pan-genome assembly and its annotation are publicly accessible via 471 

this link: https://doi.org/10.6084/m9.figshare.24573874.  472 
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Figures 682 

 683 

Fig. 1: Characterization of the common bean pan-genome. a, Pan-gene and core gene size calculation. The 684 

growth curve of pan-genes (grey) reached saturation point (99%, 34,579 genes) when 120 individuals were 685 
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included, as indicated by the dashed red line. In contrast, the growth curve of core genes (red) diminished 686 

with the addition of each genotype. b, Violin plots showing analysis of variance (ANOVA) related to the 687 

ratio of non-synonymous to synonymous mutations in the core genes and PAs. The PAVs are split into three 688 

subcategories based on their frequency: soft core, accessory, and rare. Supplementary Table 1g contains 689 

detailed statistics. 690 
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Fig. 2: Population structure of P. vulgaris. a, Neighbour-joining (NJ) phylogenetic tree constructed using 693 

only SNPs located in core genes (bootstrap = 1000). b, PAV-based principal component analysis (PCA). c, 694 

Violin plots showing the analysis of variance (ANOVA) for PC1 representing days to flowering and 695 

photoperiod sensitivity in the M1/Jalisco-Durango races by splitting the accessions into two clusters based 696 

on PCA and the NJ tree. d, Bar chart showing the number of PAVs per genetic group. e, Bar chart showing 697 

nucleotide diversity calculated by estimating π in 250-kb windows. All procedures were applied to a 698 

representative subset of 99 genetically and phenotypically well-characterized P. vulgaris accessions. 699 
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Fig. 3: Evolution of the common bean pan-genome. a, Heat map illustrating the number of PAVs per 701 

individual in the final pan-genome. Orange indicates presence while blue indicates absence. b, Scatterplot 702 

showing the number of PAVs per individual (y-axis) in relation to the coverage (x-axis) of each genotype. c, 703 

Violin plots representing the analysis of variance (ANOVA) for the number of PAVs per individual by genetic 704 

group. All procedures were applied to a representative subset of 99 genetically and phenotypically well-705 

characterized P. vulgaris accessions. Supplementary Table 3a contains detailed statistics. 706 

 707 
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Fig. 4: Selection for adaptive gene loss during the expansion of wild common bean. a, Violin plots showing 709 

the analysis of variance (ANOVA) for the number of PAVs per individual based on grouping the wild 710 

Mesoamerican and Andean accessions according to latitude coordinates. Supplementary Table 3b contains 711 

detailed statistics. b, Interpolation of the geographic distributions of the wild accessions based on the 712 

number of PAVs per individual. Dark red regions indicate a higher number of PAVs and blue regions a lower 713 

number of PAVs. c, Bar charts showing the proportions of absences found for the subset of PAVs putatively 714 

under selection during the wild expansion (white) and for the entire variable genome (black). 715 

 716 

 717 

Fig. 5: Localized adaptive reduction effects during the domestication of the common bean. a, Bar chart 718 

showing the proportions of presence/absence in the Mesoamerican gene pool for the entire variable 719 
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genome (left) and for the subset of PAVs putatively under selection between wild and domesticated 720 

populations (right). b, Bar chart showing the proportions of presence/absence in the Andean gene pool for 721 

the entire variable genome (left) and for the subset of PAVs putatively under selection between wild and 722 

domesticated populations (right). In both charts, the presence values are divided based on frequency (g/<) 723 

in the comparison between wild and domesticated forms. 724 
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