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Abstract

The common bean (Phaseolus vulgaris L.) is an important grain legume crop [1,2] whose life history offers
an ideal evolutionary model to identify adaptive variants suitable for breeding programs [3]. Here we
present the first common bean pan-genome based on five high-quality genomes and whole-genome reads
representing 339 genotypes. We found ~243 Mb of additional sequences containing 7,495 protein-coding
genes missing from the reference, constituting 51% of the total presence/absence variations (PAVs). There

were more putatively deleterious mutations in PAVs than core genes, probably reflecting the lower
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effective population size of PAVs as well as fitness advantages due to the purging effect of gene loss. Our
results suggest pan-genome shrinkage occurred during wild range expansion from Mexico to South
America, with more PAV loss per individual in Andean vs Mesoamerican populations. Selection during wild
spreading and domestication was also associated with PAV loss involved in important adaptive traits. Our
findings provide evidence that partial or complete gene loss was a key adaptive trait leading to localized
and genome-wide reductions. This departs from established paradigms and reveals how evolutionary
forces shape gene composition within plant genomes. The common bean pan-genome offers a valuable

resource for legume research and breeding, climate change mitigation, and sustainable agriculture.

Main

Food legumes provide valuable genetic resources to address agriculture-related societal challenges,
including climate change mitigation, biodiversity conservation, and the need for sustainable agriculture and
healthy diets [4-7]. The common bean (Phaseolus vulgaris L.) is a diploid (2n=2x=22) and predominantly
self-pollinating annual grain legume crop with a prominent role in agriculture and broader societal
importance [1,2]. It is also a useful model of crop evolution [3] reflecting the parallel and independent life
history of two geographically isolated and genetically differentiated gene pools (Mesoamerican and
Andean) following the expansion of wild from Mexico to South America ~150,000—-200,000 years ago, an
order of magnitude earlier than its dual domestication [8-11]. Previous studies using a single reference
genome have provided insights into the population structure of the common bean [12] and the genetic
basis of important adaptive traits [13]. However, pan-genomic diversity must be explored to gain a
comprehensive understanding [14-17]. We therefore constructed the first P. vulgaris pan-genome using a
non-iterative approach and investigated its genetic variation in terms of PAVs within a representative panel
of genetically and phenotypically well-characterized accessions. This publicly available common bean pan-
genome provides a valuable starting point to identify genes and genomic mechanisms affecting adaptation

and will accelerate legume improvement.

Characterization of the common bean pan-genome

To generate the common bean pan-genome, we applied a non-iterative approach to five high-quality de
novo genome assemblies of wild and domesticated genotypes and incorporated short-read whole genome
sequencing (WGS) data from 339 representative common bean accessions, comprising 33 wild and 306
domesticated forms. This revealed ~242 Mb of additional sequence containing 7,495 genes missing from
the reference genome. The new sequences account for 22% of all discovered genes, with 9% (3,040 genes)
derived from the high-quality genomes and the remaining 13% (4,455 genes) from the panel of 339 WGS
genotypes. The final size of the reconstructed pan-genome was ~780 Mb, with 34,928 predicted protein-

coding genes (Supplementary Table 1a).
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The new reference pan-genome was used for both variant calling and PAV calling (Supplementary
Table 1b). We detected 23,343,365 variant sites, 19,002,047 of which were classified as single-nucleotide
variants (SNVs) and 4,341,318 as insertions/deletions (InDels). Following PAV calling, the categorization of
all 34,928 predicted genes by frequency unveiled that 58% of the pan-genome consists of core genes found
across all lines (20,369 genes), with the remaining 42% comprising PAVs. These PAVs are either partially
shared among accessions or exclusive to a single genotype, totalling 14,559 genes (Supplementary Table
1c). Notably, 51% of these PAVs originate from non-reference regions (NRRs), representing sequences
absent in the reference genome. The growth curve related to the size calculation suggested a closed pan-
genome. In agreement, the pan-genes reached the saturation point (99%, 34,579 genes) and remained
constant without substantial increase when the number of accession genomes exceeded 120. In contrast,
the size of the core genes decreased with each added genotype (Fig. 1a). This indicates that the final pan-
genome includes almost all the gene content of P. vulgaris. Gene Ontology (GO) enrichment analysis
showed that the core genes are significantly enriched for terms associated with homeostatic (GO:0042592)
and catabolic (G0O:0043632) processes (Supplementary Fig. 1a; Supplementary Table 1d) whereas the
PAVs are significantly enriched for terms related to defence (GO:0006952), responses to external stimuli
(GO:0009605), responses to light (G0:0019684), and reproduction (GO:0000003, GO0:0022414)
(Supplementary Fig. 1b; Supplementary Table 1e).

To investigate the evolution of the core genes and PAVs, we calculated the non-synonymous and
synonymous ratio (Ka/Ks) for each gene in each accession (Supplementary Table 1f). This revealed a
statistically significant difference (p < 2.2 x 107%%), with the PAVs including a greater number of harmful
variants relative to benign variants when compared to the core genes (Supplementary Fig. 1c;
Supplementary Table 1g). When we split the PAVs into three subcategories based on their frequency (soft-
core 0.90 < freq. < 1; accessory 0.10 < freq. < 0.90; and rare freq. < 0.10), we observed a significant increase
(p = 0.048) in the proportion of putative harmful variants among the rare genes compared to the soft-core
genes (Fig. 1b; Supplementary Table 1g). These results may reflect the lower effective population size of
the PAVs (reducing the efficiency of purifying selection) and/or the higher fitness gain from purging genes

that have accumulated deleterious mutations (loss-of-function mutations).

Evolutionary trajectory of the common bean

The common bean is characterized by three eco-geographic gene pools. The two major ones are the
Mesoamerican (M) and Andean (A) populations, which encompass both wild and domesticated forms. The
third originates from Northern Peru/Ecuador (Phl) and has a relatively narrow distribution of only wild
individuals [11]. The Mesoamerican and Andean gene pools include five domesticated subgroups (M1, M2,
A1, A2 and A3) corresponding to the Jalisco-Durango, Mesoamerica, Nueva Granada, Peru, and Chile races

[13]. We constructed a neighbour-joining (NJ) phylogenetic tree (Fig. 2a) and conducted PAV-based
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principal component analysis (PCA) (Fig. 2b), both of which confirmed this well-defined population
structure. Both analyses further divided the M1/Jalisco-Durango races into two clusters that we named
cluster A and cluster B, respectively. The analysis of variance conducted on M1/Jalisco-Durango accessions,
considering the first component for the days to flowering, revealed that cluster A is significantly later-
flowering than cluster B (Fig. 2c; Supplementary Table 2a). The Jalisco (cluster A) and Durango (cluster B)
races are therefore genetically distinguishable based on photoperiod sensitivity. This outcome also
confirmed that our pan-genome enhances the characterization of genetic diversity and improves its
analysis, exploitation and management. Cumulatively, the first and the second principal components of the
PAV-based PCA explained 47.2% of the total variance, where PC1 mainly defined the differences between
Mesoamerican and Andean gene pools while PC2 split the groups and subgroups within each gene pool
(Fig. 2b). The NJ tree further underscored the suitability of core genes for phylogenetic reconstruction
because they mitigate biases arising from the absence of genetic material among the compared accessions.
In contrast to the tree based on single-nucleotide polymorphisms (SNPs) located on PAVs (Supplementary
Fig. 2a), the NJ tree based solely on core SNPs properly grouped the wild Phl accession close to the wild
Mesoamerican genotypes originating from Guatemala and Costa Rica (Fig. 2a), which are most closely
related to the Phl gene pool [11].

When we examined the total number of PAVs per genetic group (Supplementary Table 2b), we
found that the wild Mesoamerican and Andean populations have more PAVs compared to their
domesticated counterparts (Fig. 2d). This supports the well-established notion that domestication is usually
associated with a reduction of genetic diversity. The amplification of gene loss in domesticated common
bean could reflect a classic bottleneck effect rather than natural selection [18]. We also found that the
M1/Jalisco-Durango and A2/Peru races have more PAVs than the other subgroups in the same gene pool
(Fig. 2d). This was supported by nucleotide diversity analysis applied to the 1,451,663 core SNPs (Fig. 2e;
Supplementary Table 2c) and agrees with a recent hypothesis proposing that the M1/Durango-Jalisco and
A2/Peru races were the first domesticated Mesoamerican and Andean populations from which the M2, Al
and A3 races arose during a secondary domestication phase [13].

To study inter-gene-pool hybridization, the PAV matrix for American domesticated accessions was
analysed by using Fisher’s exact test to compare the Mesoamerican and Andean populations. We found
5,556 PAVs (65% of the total) with a statistically significant difference in frequency (p < 0.05) between the
two gene pools. These included 778 diagnostic PAVs, 91% (707) of which were fixed in the Mesoamerican
gene pool and 9% (71) in the Andean gene pool (Supplementary Table 2d). GO enrichment analysis applied
to the 778 diagnostic genes revealed enrichment in processes related to detoxification (GO:0098754),
metabolism (G0:0008152), and responses to stimuli (GO:0050896) (Supplementary Fig. 2b). Interestingly,
none of these PAVs were found to be diagnhostic between gene pools in Europe (Supplementary Table 2d),

and when Fisher’s exact test was applied to the subset of 114 European accessions, we did not detect any
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diagnostic genes between the Mesoamerican and Andean gene pools (Supplementary Table 2e). These
outcomes clearly reflect the extensive inter-gene-pool hybridization in European germplasm and confirm its
key role in the adaptation of common bean to new agricultural environments [13].

To investigate the influence of PAVs on important trait variations and identify candidate genes
associated with them, we conducted a PAV-based genome-wide association study (GWAS) involving 218
American and European domesticated genotypes. We identified 39 significative association events
correlated with day-to-flowering and photoperiod sensitivity, previously detailed in [13]. These associations
were linked to 35 potential candidate PAVs, highlighting their likely involvement in regulating floral
transition (Supplementary Table 2f). An interesting example is the GWAS peak associated with flowering
time and photoperiod sensitivity located on Phvul.003G185200 (Chr03:40,838,810-40,850,729). This PAV
demonstrates orthology to the HDA5 gene in Arabidopsis thaliana, which displays deacetylase activity.
Notably, A. thaliana mutants with impaired HDAS5 expression patterns manifest late-flowering phenotypes
due to the up-regulation of two floral repressor genes, namely FLOWERING LOCUS C (FLC) and MADS
AFFECTING FLOWERING 1 (MAF1) [19]. It is noteworthy that common bean genotypes lacking the PAV
Phvul.003G185200 exhibit early flowering phenotypes compared to those accessions carrying the gene
(Supplementary Fig. 2c), implying an adaptive role correlated to the loss. Furthermore, we found that 9 out
of the 35 candidate PAVs for GWA analysis show signature of selection in various comparisons, specifically,
two PAVs between wild and domesticated Mesoamerican populations and seven PAVs between wild and
domesticated Andean populations. Overall, although the majority (59%) of the candidate PAVs were
located on the reference genome, a significant 41% were situated on the NRRs (Supplementary Table 2f),
reaffirming the efficacy of the pan-genome in identifying functional variants associated with economically

or evolutionarily important traits.

Pan-genome shrinkage during wild expansion to South America

One of the most striking outcomes we observed was the difference in pan-genome size between the
Mesoamerican and Andean gene pools (Fig. 3a). We calculated the total number of PAVs per individual and
found that accessions from the same gene pool clustered together in separate groups, with Mesoamerican
accessions featuring more PAVs per accession than Andean ones (Fig. 3b, c; Supplementary Table 3a). One
possible explanation is that this reduction in pan-genome size may simply reflect genetic drift and the two
sequential bottlenecks that occurred solely in the Andean population [12]. To better understand the roles
of different evolutionary forces in shaping the PAV content of the Mesoamerican and Andean gene pools,
and to distinguish between the effects of adaptation, population demography and history, we first focused
on the analysis of wild accessions. Considering a panel of wild genotypes representing the entire
geographical distribution in Latin America, we applied bivariate fit analysis and found a significant

correlation (p < 0.0001) between the number of PAVs per individual and the latitude. Analysis of variance in
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which wild individuals were grouped by latitude followed by spatial interpolation revealed a significant and
progressive loss of genes ranging from the accessions of Northern Mexico to those of Northwestern
Argentina (Fig. 4a, b; Supplementary Table 3b). Furthermore, Fst analysis on PAVs comparing
Mesoamerican and Andean wild populations may suggests the occurrence of selection for gene loss during
wild range expansion (Fig. 4c). We found that 64% of all candidate PAVs in the top 5% of the Fst distribution
(Fst=0.85) are absent in the wild Andean gene pool. This high rate of gene loss in the Andean population
significantly exceeds the gene loss rate observed in the entire variable genome (26%), demonstrating a
more than twofold increase. This difference in gene loss rates was statistically validated using bootstrap
resampling, strongly suggesting that gene loss during the process of wild differentiation was not a random
occurrence but evident outcome of selective forces (Supplementary Fig. 3a, b). Moreover, functional
annotation of the candidate PAVs revealed the enrichment of genes involved in pollen germination, innate
immunity, abiotic stress tolerance, and root hair growth, indicating a potential adaptive role
(Supplementary Table 3c). Overall, our findings suggest that selective pressure favouring the loss of genes
involved in adaptive mechanisms, coupled with the influence of genetic drift resulting from the founder

effect, may have contributed to the shrinking of the Andean pan-genome during wild differentiation.

Footprints of selection for gene loss during domestication

The PAVs putatively shaped by selection during domestication in Mesoamerica and the Andes revealed
further evidence that gene loss underpinned the successful adaptation of the American common bean. Fst
analysis was applied to PAVs in wild and domesticated forms (separately for each gene pool) with only PAVs
in the top 5% of the Fst distribution considered as candidates. We found 460 PAVs potentially under
selection in the Mesoamerican population (Fst 2 0.31) and 514 in the Andean population (Fst = 0.27)
(Supplementary Table 4a, b). Functional annotation of the candidate PAVs revealed the enrichment of
genes associated with domestication syndrome and adaptive traits such as dormancy, floral transition, light
acclimation, defence, and symbiotic interactions (Supplementary Table 4c, d). Importantly, the candidate
Phvul.003G265200 (Chr03: 50,365,995-50,368,501) is orthologous to 11 members of the plant Rho GTPase
subfamily (ROP), including ROP6 encoding a small Rho-like GTP binding protein. This GTPase subfamily is
required for symbiotic interactions [20-22], and in the plasma membrane of Lotus japonicus cells it interacts
directly with NOD FACTOR RECEPTOR 5, one of two nodulation factor receptors essential for nodule
formation during symbiosis [23]. From our analysis, Phvul.003G265200 is a putative selected PAV (Fst =
0.50) for the Mesoamerican gene pool whose frequency declined by more than 60% during progression
from the wild (0.94) to the domesticated (0.25) population (Supplementary Table 4a). Overall, no
significant differences were observed in terms of absences between the wild and domesticated populations
of both gene pools. However, a significant proportion of PAVs putatively under selection, specifically 63%

289 genes) in the Mesoamerican population (Fig. 5a) and 80% (411 genes) in the Andean one (Fig. 5b),
(289 genes) pop g g g
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were less frequent in domesticated than wild populations. When considering all PAVs, the percentage of
PAVs with lower frequencies in domesticated populations fell significantly to 22% (p < 2.2 x 107%) for the
Mesoamerican gene pool and 29% (p < 2.2 x 107°) for the Andean one (Fig. 5a, b). These findings suggest
that selection during domestication resulted in gene loss, but unlike the range expansion of wild
populations, it did not completely abolish the selected genes. This may reflect the different evolutionary
timescales involved: wild differentiation occurred ~150,000 years ago whereas domestication was much
more recent at ~8,000 years ago. These findings are consistent with previous observations that selection
during the domestication of common bean in Mesoamerica has directly affected the transcriptome, leading
to a ~20% decrease in gene expression levels attributed to loss-of-function mutations [18]. We also
detected 29 PAVs with high Fst values in common between the Mesoamerican and the Andean gene pools,
and these are mainly associated with the tryptophan metabolic pathway. Tryptophan holds significance as
a precursor in secondary metabolism, contributing to the synthesis of essential molecules like auxin,
serotonin, and melatonin. These compounds play diverse roles in plant physiology, influencing processes
such as seed germination, root development, senescence, and flowering. Additionally, they contribute to
the plant's response mechanisms against both biotic and abiotic stresses [24]. We analysed their
frequencies and found that ~86% in both gene pools decreased in frequency during the progression from
wild to domesticated accessions (Supplementary Table 4e). This may indicate a pattern of genomic
convergence for some key adaptive genes between the Mesoamerican and Andean populations during

their parallel domestication events.

Conclusions

The global economic and social importance of the common bean means that pan-genomic analysis could
boost the conservation and exploitation of its genetic resources to address key challenges in agriculture
and wider society [1-6]. The genotypes selected for this study encompass both wild and domesticated
forms, ensuring that the pan-genome comprehensively captures the extensive genetic variation within this
species. This publicly accessible tool serves as a valuable resource for studies in population genetics,
functional genomics, and plant breeding. PAV analysis provided insight into the evolutionary dynamics of
pan-genome adaptation, including putative signals of selection for complete gene loss during wild
differentiation between the Mesoamerican and Andean gene pools, contributing to the smaller pan-
genome of the Andean population. We also identified putative selection footprints for partial gene loss
during both domestication processes in Mesoamerica and the Andes, causing localized reductions in gene
frequencies in domesticated populations compared to their wild counterparts. Candidate genes that have
been completely or partially lost appear to be involved in important adaptive mechanisms, such as

flowering time, symbiosis, biotic and abiotic stress tolerance, and root hair growth.
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The significant role of reductive genome evolution in adaptation is now widely recognized [25-27]. For
instance, in contrast to their European native counterparts, invasive genotypes exhibited a reduced
genome size resulting in phenotypic effects that enhanced the species' invasive potential. This included an
accelerated early growth rate driven by a negative correlation between genome size and the rate of stem
elongation [28]. Similarly, Diez et al. [29] documented the genome size variations within the Zea mays
species during the post-domestication process, revealing that maize landraces have significantly smaller
genome sizes compared to their closest wild relatives, the teosintes. Notably, a negative correlation
between maize genome size and altitude was observed [29]. Moreover, gene loss is considered functionally
equivalent to other loss-of-function mutations, such as premature stop codons, providing an important
source of adaptive phenotypic diversity [30-33]. A notable example is found in A. thaliana, where loss of
function mutations in the SCARECROW (SCR) and/or SnRK2-type protein kinase (SRK) genes underlie the
switch from obligate outcrossing (self-incompatibility) to self-fertilization [34]. This transition is widely
recognized as one of the predominant evolutionary shifts among flowering plants, allowing the successful
colonization of oceanic islands, an ecological principle known as Baker’s rule. Accordingly, under the
influence of specific and diverse agro-ecological pressures, the relinquishment of particular genes can
confer a selective advantage on a given population. Overall, our findings support the “less is more”
hypothesis in which non-functionalization is a common adaptive response [35]. This may be relevant when
populations face selective pressure resulting from radical environmental changes, such as the expansion of
wild common bean from the warm and humid climate of Central Mexico to higher and cooler altitudes in
the Andes. Our results therefore establish a novel scenario in which evolutionary forces drive partial or
complete gene loss due to selective pressure favouring adaptation rather than responses to stochastic
events only. Mutations are more likely to cause a loss rather than a gain of function, so adaptive gene loss
provides a rapid evolutionary response to environmental changes. This has profound implications for
strategies to mitigate climate change. The common bean pan-genome is a valuable starting point that will
lead to a deeper understanding of the genetic variations and genome dynamics responsible for key

adaptive traits in food legumes.

Methods

Sources of genetic diversity

The pan-genome was constructed from five high-quality genomes representing the Mesoamerican and
Andean gene pools. The P. vulgaris reference genome Pvulgaris_442 v2.0 (PV442) was downloaded from

Phytozome (https://phytozome-next.jgi.doe.gov/), the genomes of BAT93 and JaloEPP558 were provided

by the INRAE Institute, and the genomes of MIDAS and G12873 were sequenced and assembled de novo
specifically for this study (Supplementary Table 5a). We also integrated 339 representative low-coverage

WGS common bean genotypes, including 220 domesticated and 10 wild accessions from previous studies
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[11, 13]. The remaining 109 accessions were multiplied in the greenhouse, and DNA extracted from young

leaves was used for sequencing (Supplementary Table 5b).

Plant growth and DNA extraction

MIDAS and G12873 single seed descent (SSD) genotypes were multiplied in the greenhouse. For both
samples, 2 g of young leaf material was collected after 48 h of dark treatment and high-molecular-weight
(HMW) DNA was extracted as previously described [36]. DNA quality was evaluated according to Oxford
Nanopore Technologies (ONT) requirements. Specifically, purity was assessed using a NanoDrop 1000
spectrophotometer (Thermo Fisher Scientific), the concentration was determined using a dsDNA Broad
Range Assay Kit with Qubit 4.0 (Thermo Fisher Scientific), and the fragment size (< 400 kb) was determined
using the CHEF Mapper electrophoresis system (Bio-Rad Laboratories). Fragments < 25 kb were removed
using the Short Reads Eliminator kit (Circulomics) leaving 75% of the DNA from the MIDAS samples and 95%
from the G12873 samples.

P. vulgaris genotypes of BAT93 and JaloEEP558 were sowed in soil and grown in a growth chamber at 23°C,
75% humidity, and 8 h dark and 16 h light photoperiods under fluorescent tubes (166lE). Young trifoliate
leaves of BAT93 and JaloEEP558 genotypes were collected and flash-frozen with liquid nitrogen. Three days
before sampling, plants were dark treated to optimize the high molecular weight DNA extraction. In
addition, 109 SSD accessions were multiplied in the greenhouse and young leaves were collected in silica
gel for drying and subsequent DNA extraction using the DNeasy 96 Plant kit (Qiagen) according to the
manufacturer’s instructions. For each sample, 50-70 mg of dried leaf material was pulverized with a Tissue-
Lyser Il (Qiagen) at 30 Hz for 6 min. The DNA quality and quantity were evaluated using a NanoPhotometer
NP80 (Implen), and the concentration was determined using a Qubit BR dsDNA assay kit (Thermo Fisher

Scientific).

Sequencing low-coverage WGS accessions

DNA libraries for all samples were prepared using a KAPA Hyper Prep kit and PCR-free protocol (Roche). For
each genotype, 200 ng of DNA was fragmented by sonication using a Covaris S220 device (Covaris) and
WGS DNA libraries were generated using a 0.7-0.8x ratio of AMPureXP beads for final size selection.
Libraries were quantified using the Qubit BR dsDNA assay kit and equimolar pools were quantified by real-
time PCR against a standard curve using the KAPA Library Quantification Kit (Kapa Biosystems). Libraries
were sequenced on the NovaSeq 6000 Illumina platform in 150PE mode, producing 15-30 million

fragments per sample.

Sequencing and assembly of MIDAS and G12873 genomes
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Following quality control and priming according to ONT specifications, libraries were sequenced on a
MinlON device with a SpotON flow cell (FLO-MIN106 R9.4.1-Rev D). Two libraries were prepared for each
genotype according to the SQK-LSK109 ligation sequencing protocol (ONT) with minor adjustments. Each
library was loaded twice, and the flow cell was washed using the Flow Cell Wash Kit (ONT). Ilumina PCR-
free libraries were prepared starting with 1 ug of fragmented gDNA using the KAPA Hyper prep protocol.
This process involved extending the adapter ligation time up to 30 minutes and conducting post-clean-up
size selection using 0.7X AMPure XP beads. The library's concentration and size distribution were assessed
using a Bioanalyzer 2100 in combination with high-sensitivity DNA reagents and chips. Sequencing was
performed on a NovaSeq6000 instrument to generate 150-bp paired-end reads. MIDAS and G12873 whole-
genome assemblies were generated using the nanopore-based approach based on 26 Gb (50-fold coverage)
and 36 Gb (69-fold coverage), respectively. Raw nanopore reads were corrected using Canu v2.1 [37] and
the resulting corrected reads were assembled de novo using wtdbg2 v2.5 [38]. Draft assemblies were
refined by iterative polishing using long reads (Racon v1.4.3 and Medaka v1.0.3) [39] and short reads (three
rounds of Pilon v1.23) [40]. Completeness was assessed using BUSCO v4.1.2 [41] and the Fabales_odb10

dataset (Supplementary Table 5c).

Sequencing and assembly of BAT93 and JaloEEP558 genomes

High molecular weight DNA of BAT93 and JaloEEP558 genotypes was sequenced with a PacBio Sequel Il
system by GENTYANE platform (INRAE Clermont-Ferrand, France). A total of 21.09 and 29.35 Gb of PacBio
HiFi reads were generated from BAT93 and JaloEEPP558, respectively. PacBio HiFi reads were de novo

assembled into contigs using HiFiasm (v 0.9.0) with default parameters [42].

Orthologous/paralogous analysis and clustering threshold settings

To incorporate two distinct populations, namely the Andean and the Mesoamerican gene pools, into the
pangenome, precise differentiation between orthologous and paralogous genes is imperative.
Consequently, a meticulous strategy was devised to ensure the preservation of solitary orthologous gene
copies along with all paralogous counterparts. The relationship between orthologous genes was calculated
with minimap2 v2.17 [43] to align the MIDAS and G12873 genome assemblies using the open reading
frames (ORFs) of 2,330 complete single-copy BUSCO (Benchmarking Universal Single-Copy Orthologs) genes
selected from the P. vulgaris reference genome PV442 (Supplementary Table 5d). The percentage identity
was calculated for each ORF based on the number of matches in the alignments as a proportion of ORF
length. The relationship between paralogous genes was calculated using the three most abundant gene
families (0G0000273, 0G0000328, and OGO000085) in the P. vulgaris PV442 reference genome, composed
of 26, 37, and 42 genes, respectively. An all-versus-all comparison between the members of the same

family was implemented using minimap2. The percentage of identity was calculated for each gene family
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by dividing the number of matches in the alignments by the reference gene ORF length and then averaging
the identity percentages for each family. Finally, the results of both tests were used to establish a clustering
threshold of 90% to retain only one orthologous and all paralogous genes in the pan-genome

(Supplementary Table 5e).

Pan-genome construction

We used a paired genome alignment strategy for pan-genome construction [44]. The PV442 reference
genome was independently mapped onto MIDAS, G12873, BAT93 and JaloEPP558 with minimap2 v2.17
using the alignment pre-set -x asm5, which considers regions with an average divergence < 5%. The bam
files of the four alignments were converted to delta files and structural variants were called using
Assemblytics v 1.2.1 [45]. Only deletions were selected as NRRs [44]. Uncovered contigs private to the four
analysed genomes were identified by applying samtools depth v1.1 [46] to the bam files and were
extracted as NRRs. Deletions and uncovered contigs were independently filtered for a minimum length of 1
kb and clustered using CD-HIT-EST v4.8.1 [47] with a sequence identity of 90%, as described above for the
orthologous and paralogous genes. To ensure that the NRRs identified through this method didn't
encompass orthologous genes already existing in the PV442 reference genome, we specifically employed
highly conserved BUSCO genes. We conducted a comparative analysis between the full complement of
4,947 MIDAS and 4,812 G12873 BUSCO genes present in PV442 and the NRRs derived from MIDAS and
G12873 using BLASTp. lllumina data representing the 339 low-coverage WGS common bean accessions
were trimmed with fastp v0.21.0 [48] and aligned to the preliminary pan-genome using bowtie2 v2.3.5.1
[49] with default parameters. The unmapped reads from these alighnments were extracted using samtools
v1.11, assembled using MaSuRCA v3.4.2 [50] with default parameters, and clustered using CD-HIT-EST
v4.8.1 with a sequence identity of 90%. Finally, the NRRs derived from the panel of 339 common bean
accessions were added to the preliminary pan-genome to generate the final pan-genome. To exclude
putative contaminants and/or organelle sequences, NRRs were compared to the NCBI non-redundant
nucleotide database using BLASTn, considering a minimum 80% identity and 25% coverage, leading to the
removal of 1,194 sequences. Overall, we identified 64,174 added sequences, 86% of which reflected the
mapping of the 339 low-coverage WGS accessions. The remaining 14% was identified by comparing the

reference genome independently with the other four high-quality genomes (Supplementary Table 1a).

Pan-genome annotation

Repetitive sequences were identified and soft-masked using RepeatModeler v2.0.2 [51] and RepeatMasker
v4.1.2-p1 [52]. Protein-coding genes were identified using a hybrid-approach prediction with Augustus
v3.3.3 [53]. Proteins from P. vulgaris and correlated species (Medicago truncatula and Glycine soja) plus

RNA-Seq data (unpublished data from [18]) were aligned to the genome and used as extrinsic evidence.
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Protein sequences were aligned with Hisat2 v2.2.1 [54] and RNA-Seq data were aligned using Genome
Threader v1.7.1 [55]. BUSCO genes in the Fabales_odb10 database were used to train the model for the
Augustus predictor. Predicted genes were scanned with InterProScan v5.46-81.0 [56] for the presence of
protein domains. Using a custom script, genes with transposon-related domains were filtered out and
retained in the annotation if they contained at least one known protein domain. The filtered proteins were
compared to the pan-genome with BLASTp v2.12.0 [57] and filtered by the best hits. The predicted genes
were clustered with the proteins of all species considered in the annotation using OrthoFinder v2.5.4 [58].
Finally, functional annotation was achieved by integrating information about orthologous genes and by

identifying functional domains using a custom script.

PAV calling

[llumina data representing the 339 low-coverage WGS accessions were aligned to the pan-genome using
bowtie2 v2.3.5.1 and the coverage of each predicted gene was calculated for each accession using samtools
v1.11 (Supplementary Table 5f). PAV calling thresholds were defined for each accession according to the
minimum coverage value of 1000 randomly selected BUSCO genes (ORFs). The BUSCO genes are
orthologous genes that should be present in all considered accessions, but a few underrepresented genes
in a given accession could constitute a bias. To avoid this, values below 1% (the 10 least covered genes)
were discarded. The identified genes were classified based on their frequency as core genes if present in all

the accessions or PAVs if partially shared or private to a single genotype (Supplementary Table 1b, c).

Pan-genes and core genes size calculation

The curves describing the pan-genome and core genome sizes were evaluated by considering 1,000 random
orders of the 339 genotypes. The orders were chosen randomly among all possible permutations (n! where
n=[1,339]). For each ordering, the gene sets of the accessions were progressively added to the total
genome size without considering the genes already present in the total set. The same procedure was
applied for the core genome size, but the gene sets were intersected when each genome was added, thus

keeping only the genes in common for each iteration (Supplementary Table 5g, h).

Variant calling

SNVs and InDels were called with bcftools v1.10.2 [59] based on the alighment of 339 accessions with the
pan-genome using bowtie2 v2.3.5.1. We used bcftools mpileup v1.10.2 to generate a genotype likelihood
table, and variants were identified using bcftools call v1.10.2 and the pileup table, producing the final vcf

file.

Non-synonymous and synonymous mutations
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The Ka/Ks ratio was computed for each gene in each accession using KaKs calculator v2.0 [60]. For each
gene, the consensus sequence of each accession was extracted using bcftools consensus v1.10.2. The
calculator compares the pan-genome gene sequence with the gene sequence of each accession to identify
non-synonymous and synonymous variants and then computes the ratio. The calculator reported NA when
there were no variants in a specific accession or when the denominator of the Ka/Ks ratio was zero. It was
possible to compute the analysis for 30,850 of 34,928 genes. Sometimes the length of one of the two
compared sequences was not divisible by three so the sequence could not be read in triplets
(Supplementary Table 1f). The average Ka/Ks value per gene was used to assess the significance of the

sample median (Supplementary Table 1g).

Data analysis

Pan-genome analysis focused on a representative subset of 99 well-characterized accessions among the
original 339, including wild and American domesticated forms. In some cases, we also analysed the subset
of 114 European domesticated accessions (Supplementary Table 5b).

For GO enrichment, the annotated core genes and PAVs in the pan-genome were analysed using the
buildGOmap R function to infer indirect annotations and generate data suitable for clusterProfiler [61, 62].
Diagnostic genes were analysed using Metascape [63]. A. thaliana orthologs were identified using
OrthoFinder [58] and by comparing all protein sequences from P. vulgaris (v2.1) and A. thaliana (TAIR10).
For PCA, the PAV matrix (1/0) was analysed using the logisticPCA package in R [64].

ANOVA within subgroup M1 was carried out using the first principal component related to days-to-
flowering and photoperiod sensitivity [13] as a representative phenotypic trait.

Fsr analysis involved the separate testing of PAVs in the Mesoamerican and Andean gene pools by
comparing the frequency of each PAV between wild and domesticated forms. Each PAV was considered as
a single locus (0/1) and Fsr was calculated by applying the formula Fsr = (H total — H within) / H total, where
H is the heterozygosity [65]. The same procedure was applied to wild accessions when comparing the
Mesoamerican and Andean gene pools. Only PAVs in the top 5% of the Fsr distribution were considered as
candidates.

The functions of interesting PAVs and those associated with A. thaliana orthologs detected by OrthoFinder

[58] were investigated manually in the NCBI database (https://www.ncbi.nlm.nih.gov/).

Phylogenetic analysis involved the extraction and filtering of SNVs located in core genes and PAVs using
bcftools [59], resulting in two final datasets: 1,451,663 SNPs for the core genes and 338,475 SNPs for the
PAVs. The datasets were used to calculate the genetic distance between individuals and compute maximum
composite likelihood values with 1000 bootstraps for the NJ tree in MEGA11 [66]. The final trees were

visualized in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).
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The filtered dataset of SNPs in core genes was also used to quantify the genetic diversity within groups of
accessions by estimating m. The --window-pi vcftools flag was used to obtain measures of nucleotide
diversity in 250-kb windows. The windowed-pi estimates were then divided by the total number of SNPs to
calculate a global estimate for each genetic group.

Fisher’s exact test with the false discovery rate corrected for multiple comparisons was applied in R to
identify PAVs that differed significantly in frequency between the Mesoamerican and Andean gene pools
for the American and European accessions.

The phenotypic data used for PAV-based GWAS encompassed the flowering time and photoperiod
sensitivity data previously analysed by Bellucci et al. [13]. GWA analysis was run by using both the Mixed
Linear Model (MLM) [67] and the Fixed and random model Circulating Probability Unification (FarmCPU)
[68] implemented in the R package GAPIT v3 [69]. The threshold for each Genome Wide Association (GWA)
scan was determined by the Bonferroni corrected p value at a = 0.05. The kinship matrix (IBS method) was
calculated with Tassel 5 [70] and the population structure (at K2 obtained from Bellucci et al. [13]) were
included into the models as fixed factors. Quantile-quantile (Q-Q) plots were obtained by plotting the

observed -log10(p values) against the expected -log10(p values) under the null hypothesis of no association.

Data Availability

The 109 raw sequencing reads generated and analyzed in this study have been deposited in the Sequence
Read Archive (SRA) of the National Center of Biotechnology Information (NCBI) under BioProject number
PRINA1042929. Additional data comprising 230 raw sequencing reads have been sourced from Frascarelli
et al. [11] and Bellucci et al. [13]. The pan-genome assembly and its annotation are publicly accessible via

this link: https://doi.org/10.6084/m9.figshare.24573874.
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684  Fig. 1: Characterization of the common bean pan-genome. a, Pan-gene and core gene size calculation. The

685  growth curve of pan-genes (grey) reached saturation point (99%, 34,579 genes) when 120 individuals were
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included, as indicated by the dashed red line. In contrast, the growth curve of core genes (red) diminished
with the addition of each genotype. b, Violin plots showing analysis of variance (ANOVA) related to the
ratio of non-synonymous to synonymous mutations in the core genes and PAs. The PAVs are split into three
subcategories based on their frequency: soft core, accessory, and rare. Supplementary Table 1g contains

detailed statistics.
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Fig. 2: Population structure of P. vulgaris. a, Neighbour-joining (NJ) phylogenetic tree constructed using
only SNPs located in core genes (bootstrap = 1000). b, PAV-based principal component analysis (PCA). c,
Violin plots showing the analysis of variance (ANOVA) for PC1 representing days to flowering and
photoperiod sensitivity in the M1/Jalisco-Durango races by splitting the accessions into two clusters based
on PCA and the NJ tree. d, Bar chart showing the number of PAVs per genetic group. e, Bar chart showing
nucleotide diversity calculated by estimating m in 250-kb windows. All procedures were applied to a

representative subset of 99 genetically and phenotypically well-characterized P. vulgaris accessions.
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Fig. 3: Evolution of the common bean pan-genome. a, Heat map illustrating the number of PAVs per
individual in the final pan-genome. Orange indicates presence while blue indicates absence. b, Scatterplot
showing the number of PAVs per individual (y-axis) in relation to the coverage (x-axis) of each genotype. c,
Violin plots representing the analysis of variance (ANOVA) for the number of PAVs per individual by genetic
group. All procedures were applied to a representative subset of 99 genetically and phenotypically well-

characterized P. vulgaris accessions. Supplementary Table 3a contains detailed statistics.
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709  Fig. 4: Selection for adaptive gene loss during the expansion of wild common bean. a, Violin plots showing
710 the analysis of variance (ANOVA) for the number of PAVs per individual based on grouping the wild
711 Mesoamerican and Andean accessions according to latitude coordinates. Supplementary Table 3b contains
712  detailed statistics. b, Interpolation of the geographic distributions of the wild accessions based on the
713 number of PAVs per individual. Dark red regions indicate a higher number of PAVs and blue regions a lower
714  number of PAVs. ¢, Bar charts showing the proportions of absences found for the subset of PAVs putatively

715 under selection during the wild expansion (white) and for the entire variable genome (black).
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718  Fig. 5: Localized adaptive reduction effects during the domestication of the common bean. a, Bar chart

719 showing the proportions of presence/absence in the Mesoamerican gene pool for the entire variable
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genome (left) and for the subset of PAVs putatively under selection between wild and domesticated
populations (right). b, Bar chart showing the proportions of presence/absence in the Andean gene pool for
the entire variable genome (left) and for the subset of PAVs putatively under selection between wild and
domesticated populations (right). In both charts, the presence values are divided based on frequency (2/<)

in the comparison between wild and domesticated forms.
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