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Abstract

This study supports the development of predictive bacteriophage (phage) therapy: the concept of
phage cocktail selection to treat a bacterial infection based on machine learning models (MLM). For
this purpose, MLM were trained on thousands of measured interactions between a panel of phage
and sequenced bacterial isolates. The concept was applied to Escherichia coli (E. coli) associated
with urinary tract infections. This is an important common infection in humans and companion
animals from which multi-drug resistant (MDR) bloodstream infections can originate. The global
threat of MDR infection has reinvigorated international efforts into alternatives to antibiotics
including phage therapy. E. coli exhibit extensive genome-level variation due to horizontal gene
transfer via phage and plasmids. Associated with this, phage selection for E. coli is difficult as
individual isolates can exhibit considerable variation in phage susceptibility due to differences in
factors important to phage infection including phage receptor profiles and resistance mechanisms.
The activity of 31 phage were measured on 314 isolates with growth curves in artificial urine.
Random Forest models were built for each phage from bacterial genome features and the more
generalist phage, acting on over 20% of the bacterial population, exhibited F1 scores of >0.6 and
could be used to predict phage cocktails effective against previously untested strains. The study
demonstrates the potential of predictive models which integrate bacterial genomics with phage
activity datasets allowing their use on data derived from direct sequencing of clinical samples to

inform rapid and effective phage therapy.
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Significance Statement

With the growing challenge of antimicrobial resistance there is an urgency for alternative treatments
for common bacterial diseases including urinary tract infections (UTIs). Escherichia coli is the main
causative agent of UTls in both humans and companion animals with multidrug resistant strains
such as the globally disseminated ST131 becoming more common. Bacteriophage (phage) are
natural predators of bacteria and potentially an alternative therapy. However, a major barrier for
phage therapy is the specificity of phage on target bacteria and therefore difficulty efficiently
selecting the appropriate phage. Here, we demonstrate a genomics driven approach using machine
learning prediction models combined with phage activity clustering to select phage cocktails based
only on the genome sequence of the infecting bacterial strain.

Main Text

Introduction

Uropathogenic Escherichia coli (UPEC) are among the most common causes of urinary tract
infections (UTIs) in both humans and companion animals. It is reported that up to 80% of UTls in
humans and 35-69% of UTls in small animal pets are caused by UPEC (1, 2). UTls are widespread,
affecting an estimated 150 million people a year worldwide (3) and 40% of women will develop an
UTI during their lifetime (4). It is also reported that 14% of dogs will suffer with a UTI over their
lifetime (5). UPEC employ several virulence factors that give them the capacity to colonise, invade
and survive outside of the intestine (3). They can transfer from the intestinal environment and
ascend and colonise the urinary tract often causing uncomplicated transient infections that
selfresolve. However, the likelihood of antibiotic treatment increases if the infection persists and/or
the symptoms are more severe. Bladder (cystitis) infections can sometimes ascend to the
kidney(s) (pyelonephritis) and potentially into the bloodstream resulting in bacteraemia. Up to 50%
of human sepsis cases are associated with Escherichia coli (E. coli) originating from a urinary tract
infection (6, 7). Conversely and much less commonly, kidney infections and UTIs can result from a
bloodstream infection. Recurrent and chronic infection increases the exposure of strains to multiple
antibiotics and therefore the potential emergence of multidrug resistant bacteria (MDR) (3, 8, 9) and
treatment failure. Trimethoprim-sulfamethoxazole, fluoroquinolones and cephalosporins are
common first-line antibiotics used to treat UTIs in humans. Antibiotics from these classes are also
used to treat pets with UTls (5, 10). Antibiotic resistance is a growing problem globally and has
serious consequences, including increased healthcare costs and the spread of potentially

lifethreatening infections. High-risk globally disseminated MDR human UPEC strain types such as
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ST131 and ST410 are now being reported in veterinary settings (11). Alternative non-antibiotic
treatments for UTIs are urgently required to help prevent further development of antibiotic-resistant
bacteria and offer treatment options for MDR infections. A recent review highlights potential
alternatives which include bacteriophage (phage) therapy but acknowledges further advances in
the understanding of phage biology is required before phage therapy could be routinely used (12)

The use of phage, viruses that specifically kill bacteria, is now gaining traction as an alternative to
antibiotics for the treatment of bacterial infections. Phage were first described over 100 years ago
by Felix d’Herelle (13) and used to treat bacterial infections in this era (14, 15). However, the advent
and routine use of antibiotics by the 1940s meant phage therapy development stalled globally. As
a result of the rising threat of AMR, there has been a renaissance in phage research with major
advances in the characterisation of bacterial resistance mechanisms (16, 17) and knowledge of the
counter-offensive strategies evolved by phage (18, 19). Phage as a therapy have many
advantages; they are naturally occurring, usually highly specific, non-toxic, effective on antibiotic
resistant bacteria and self-dosing. However, the specificity is also a disadvantage as ideally a
therapeutic phage needs to be matched to an infecting strain, traditionally by manual screening
using agar overlay assays. Phage are sought that are ‘generalist’ meaning they are active on a
reasonable proportion of an infecting species, but this is a much greater challenge for some species
over others depending on their genome plasticity. This includes E. coli, as integrated prophage play
a major role in their diversification and often introduce defence mechanisms against other phage to

promote their own survival.

To overcome phage specificity issues and potential resistance development, phage therapy has
often been developed using cocktails of phage, usually between 2 and 10 phage (20). While phage
interference can occur especially if too many phage are included, such cocktails are more likely to
include phage that can predate on the infecting strain and conceptually there is a reduced likelihood
that the bacteria can develop resistance if the phage use different infection pathways (21-23). Even
with cocktails, the incredible diversity of E. coli associated with UTIs in human and companion
animals make phage selection for effective treatment a major challenge. Recent advances in
genomics and machine learning analysis should allow the development of ‘smarter’, personalised
medicine approaches within the field of phage therapy. Machine learning is a computational
technique capable of analysing large and complex datasets (24) which has already been applied
for predicting viral hosts (25—-27). However, previous studies have focused on species-level host
differentiation, whereas phage therapy will require a greater level of resolution for host attribution,
down to individual bacterial isolates. To that end, we propose that machine learning models custom-
built around predicting infection efficacy of phage on bacterial isolates of a species can be used to
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design personalised phage cocktails for patients, aiming to achieve improved efficacy over a

generic cocktail.

To help address a knowledge gap of bacterial-phage interactions in clinically relevant conditions
and move towards a predictive approach to phage therapy, we have generated a large data set of
phage-UPEC interactions in an artificial urine medium. This has been used to train machine learning
models for predictive phage therapy but also gives a wealth of information to inform the selection
of phage, including activity groups and distribution of resistance mechanisms. Coupled to the direct
sequencing of infected urine samples (28), the study shows how therapeutic phage cocktail
selection can be quickly achieved using a bacterial genomics approach and appropriate interaction
datasets. These cocktails can be constructed at a generic level, best on the shelf preparation or in

a bespoke manner to an individual infection.

Results

Local epidemiology of UPEC strains for phage treatment

For this study, focused on urinary tract infections, 314 UPEC strains from both canine (n=203) and
human (n=111) patients in the Edinburgh area were whole genome sequenced (lllumina,
MicrobesNG). This was required as input data to train the machine learning models but also
enabled an understanding of local strain diversity. In addition, it facilitated the selection of
representative strains for phage enrichment to expand our phage collection from wastewater
samples. Figure 1A shows the phylogenetic tree alongside their source host for the 314 strains as
well as a set of 10 validation strains used later in the study. The sequences were uploaded to
Enterobase allowing assessment of phylotype, sequence type (ST) and O-antigen. Some phage
use components of the lipopolysaccharide (LPS) including the O-antigen portion as host receptors
and other phage activity may cluster with phylogeny so mapping this information against phage

activity could be important for rational cocktail design even without predictive models.

As expected, most of the E. coli strains in the UPEC collection belonged to phylotype B2 and D, the
phylotypes most associated with extraintestinal disease in humans and domestic animals (Figure
1B) (29, 30). The human strains had a higher proportion associated with phylotype D than the
canine strains (18.9% of strains compared with 4.4%). The differences in predominant ST and to
a lesser extent O-antigen types between the human and the canine derived isolates (Figure 1C and
1D) indicate that different types of E. coli strains are associated with UTlIs in these two hosts locally
and this is likely to impact phage specificity. ST131, ST69, ST95 and ST73 are globally
disseminated pathogenic E. coli lineages that are associated with UTI and bloodstream infections


https://doi.org/10.1101/2023.11.23.568453
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.23.568453; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(31) and these are the most abundant ST groups represented in the human UPEC set. ST73 is also
an abundant ST group in the canine strains (6.9%) although ST372 and ST12 represent almost
38% of the canine isolates.

Generation of a host-phage interaction data set

To develop machine learning models and better understand genotype to phage activity phenotype,
an interaction data set is required for training and analysis. While this potentially could be mined
from online databases, the methods used would be varied and there would be a lack of negative
data. To overcome this, and to test for activity in conditions more closely reflecting those in vivo, we
generated an interaction dataset by growing 314 bacterial UPEC strains in an artificial urine (AU)
medium in 96 well plate growth assays and challenging them with a set of 31 phage. Ultimately
phage selected to treat UTIs need to be active in the host environment and to assess phage activity
against UPEC the ideal growth medium would be urine but repeated urine collection would
introduce too much variability. Our preliminary work for this study therefore included development
of an AU medium based on published studies (S/ Appendix, Figure S1A). The AU approximated
canine pooled urine in terms of growth dynamics and phage activity and also demonstrated that the
activity of certain phage could be lost when the bacteria were cultured in urine and AU compared
to Lysogeny/Luria Broth (S/ Appendix, Figure S1B).

Phage were initially selected from our phage library by screening of activity against a small subset
of UPEC strains using LB plate assays. Around 60 phage were then assayed in liquid AU against
38 bacterial isolates selected to represent the diversity of the wider UPEC collection. From this
data, a final set of 31 phage were selected to generate interaction data for the remaining 284
bacterial isolates (314 in total), >9000 interactions, each measured in triplicate against a no phage
control. The final phage set were primarily selected as those showing the broadest host range and
diverse activity profiles but some narrower range phage and phage with very related activity were
also included. An interaction score was determined for each strain-phage combination using the
ratio of the area under the curve (AUC) for phage treatment over a no-phage control culture (S/
Appendix, Table S1). A score of 100 indicated no activity while scores under 100 were indicative of
phage interaction and reduced bacterial growth. Some interactions scored higher than 100 in the
interaction assays i.e. where the bacteria grew better in the presence of the phage preparation than
the no phage control. The scores were plotted as a heatmap to visualize patterns of phage activity
across the strain collection (Figure 2) with any interaction that scored over 100 being given the
score of 100 for the purposes of the heatmap illustration. With a score of 60 or less indicating clear
phage activity, only two phage in our test set showed activity on more than 40% of strains in the
bacterial collection, Chap1 (54%) and Nea2 (41%) (Fig 2 & 3A). 4% of strains (n=14) were
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completely resistant to all 31 phage tested (all phage interactions scored higher than 90).
Subsequent to the generation of this data set, these strains were used to enrich for further phage

which will be used to broaden the host range of the phage collection.
Machine learning predictions of phage activity

The principal aim of this work was to generate an interaction database that could be used, with
features extracted from bacterial whole genome sequences, to train machine learning models to
predict phage activity based on an E. coli sequence. This is a ‘proof of principal’ study with 31 phage
to gain insight into the capacity of the method to predict phage activity, and design effective
cocktails, without further manual screening.

The main genomic features used for testing were predicted genes generated by a pangenomic
analysis and defined as protein variants (PVs). Separate models were created for each phage,
resulting in a total of 31 models. Models were initially evaluated on RMSE scores, which represent
the difference between the observed and predicted scores (available in S/ Appendix, Table S2).
The individual models (Figure 3B & S/ Appendix Figure S3) had average RSME values between 8
and 23. The interaction datasets for some of the phage were very imbalanced (Figure 3A), which
required a more stringent investigation of model bias. To reflect their use in a clinical setting,
observed and predicted interaction scores were classified either side of a threshold score of 60
(below 60 was a positive (active) interaction and above 60 a negative (inactive) interaction). A
confusion matrix was generated for each phage model, and the models were further evaluated on
classifier-based metrics; F1 (Figure 3B), recall and precision (S/ Appendix, Figure S2). F1 was
chosen as the best performance metric, taking class imbalance into account, and there was a clear
trend that more generalist phage yielded more reliable models (Figure 3B).

The spread of predicted vs observed scores for the most generalist phage Chap1 (F1=0.83) is
shown in Figure 3C. Similar figures for the other 30 phage models can be found in the supplemental
data (S/ Appendix, Figure S3). The information was also plotted across the phylogeny of the strains,
based on core SNP variation, and activity as well as significant positive or negative deviation of the
predicted score from the measured score was generally distributed across the phylogeny and not
limited to one sub-cluster (Figure 3D and S/ Appendix, Figure S4).

Assessment of different approaches to select phage cocktails

Clinically, phage are often administered as a cocktail of multiple phage. The advantage of using a
phage cocktail is two-fold; (i) the construction of a general cocktail that could be used ‘off the shelf’

to treat an infection where the inclusion of a range of phage should increase the chance at least
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one is effective against the infection; (ii) a bespoke cocktail where the included phage are matched
to the infection and so should all be effective and the inclusion of multiple active phage should help
overcome the development of bacterial resistance to the phage treatment. In both these cases it
is useful to include phage with diverse activity and therefore an increased probability they use
different mechanisms to infect the host bacteria. Here, the phage were clustered by activity on the
bacterial strains generating five primary activity groupings. For this, a matrix with the
bacteriumphage interaction scores was used to produce a heatmap (gplots version 3.1.3) and
dendrogram based on pairwise comparisons (Figure 2). Cocktails were generated based on using
one phage from each activity group. We selected Chap1, F1, TB69, RV2 and Phage P for a general
cocktail, which were the broadest range phage from each activity group (Figure 2 and 4A, S/
Appendix, Table S4). From the dataset of single phage interactions, this cocktail was expected to
be effective on 64% (201/314) of strains in the training data set as at least one phage in the cocktail
has activity against the strain. This was validated on a subset of 50 strains from the UPEC
collection, selected to represent the diversity across the collection (orange dots on Figure 1A). As
expected, this general cocktail was effective on 64% of the strains tested (Figure 4A, S/ Apendix,
Table S5). With most of the strains tested, the general cocktail limited the strains to a similar level
to the most active single phage in the cocktail on that strain. There was little evidence of synergistic
effects from the general cocktail where the score for the cocktail was less than any of the individual
phage. In fact, the opposite could be seen where the cocktail score was higher than the best
individual phage indicating some antagonist activity.

Bespoke cocktails could also be designed using the phage interaction dataset by choosing a
selection of diverse phage active against a strain, a feature that would help combat the development
of bacterial phage resistance. Only a small proportion of strains from the test set of 50 were
susceptible to more than two phage in the general cocktail (5 strains, S/ Appendix, Table S5). A
bespoke cocktail selected for each strain would mean that all phage included in the cocktail should
some activity against the strain. A few strains from the set of 50 could not have a bespoke cocktail
of 5 phage designed due to a limitation of overall phage activity, but assessment was possible for
38 strains. The bespoke cocktails were significantly more effective when compared to the general
cocktail with a lower median score (Figure 4B, p=2.081e-05). As expected, analysis of the growth
curves from these interactions generally showed much less bacterial regrowth in the bespoke
cocktails compared to the general cocktail (example shown in Figure 4C) resulting in lower scores.

A key question is whether the predictive models have the potential to inform phage selection of
cocktails and how selection using this method compares to the general cocktail. To assess this and
to look at phage activity on strains outside the original 314 in the training dataset, 10 newly isolated

clinical UPEC strains (3 canine, 7 human), were genome sequenced and these sequences run
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through the predictive models to give predicted phage interaction scores (S/ Appendix, Table S6).
From the predicted scores, cocktails were constructed using specific rules (materials and methods)
so they could be compared to cocktails created using the same rules from observed phage activity
data (that was subsequently carried out for validation). Phage cocktail composition for each strain
can be found in supplementary material with selection accounting for F1 scores (S/ Appendix, Table
S6). The full set of cocktails (general, bespoke observed and bespoke predicted) were tested
against the strains in AU, and as a final validation, in canine urine (CU). The scores from each of
these cocktails for duplicate experiments are recorded in supplementary data (S/ Appendix, Table
S6) and the distribution of scores shown in Figure 4D. Three of the strains were insensitive to all
the phage tested and none of the cocktails worked well on these strains. The bespoke predicted
cocktail performed at a level equivalent to the observed bespoke cocktail and was significantly more
effective than the general cocktail in both AU and canine urine (Figure 4D).

Discussion

This history of successful phage therapy over the last century has often occurred when a more
bespoke approach has been used, i.e. where phage are identified that act on the infecting bacteria.
While there are some exceptions to this, including ‘jumbo’ phage targeting a wide range of
Salmonella serovars for a recent advance in food safety (32), the high-profile news stories and the
long-standing work at the Eliava Institute are based on identifying the infecting organism and
selecting appropriate phage from extensive phage collections. This highlights the potential of
phage therapy but a bespoke approach is much harder to do at scale. The selection of appropriate
antibiotics is strengthened with knowledge of the antibiotic resistances of the infecting strain, and
similarly a diagnostic platform that provides information about phage effectiveness would greatly
advance the development of phage treatment. The premise for this study was that genomic
information about the infecting strain should be the basis of phage cocktail selection. Towards this,
phage activity models were generated from bacterial sequence data combined with phage
interaction data allowing prediction of phage that are active on ‘unseen’ strains, i.e. those not used
in the model training sets. Phage predicted as active from the models can then be combined into
cocktails for treatment.

E. coli UTls are an appropriate challenge for phage selection as horizontal gene transfer mediated
by phage and plasmids has resulted in an ever-increasing pangenome of >100,000 genes relative
to a ‘core’ genome of only a few hundred genes. Prophage integration also introduces resistance
mechanisms to phage infection and this accounts for major variation in phage susceptibility along
with receptor and metabolic diversity. As a consequence of the presence of these genomic
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determinants, phage activity on a strain should be identifiable from its genome sequence. To date,
most of the predictive effort has been focused on possible hosts for phage based on phage genome
sequencing, reviewed in (24), in particular prediction of bacteriophage sequences from
metagenomic studies and predictive calling of possible bacterial hosts. These have mainly used
nucleotide information including k-mer biases, although one study has taken into account CRISPR
sequences (33). These studies are identifying phage interactions at the level of phylum or genus
and have not been focused on defining phage that would be active on clinically infecting strains of
a species based on their sequence data. The idea of predictive models based on the different steps
in infection has been proposed (34) and our approach presented here, while relatively agnostic in
that it uses differential PVs (predicted genes) as features, may well include receptors and resistance
mechanisms. However, this is hard to dissect as the majority of features used are grouped genes
with no clear annotation. Future pipelines for phage selection could apply both associative features
as well as those based on functional knowledge. Either way, good quality training sets with

phenotypic interaction data will still be critical.

For the majority of methods using genome features for prediction (reviewed for source attribution
in (35)) there will be significant phylogenetic influence. This will mean that features are used with
statistically significant associations with phage activity but which do not have a functional
relationship to phage susceptibility. This is not an issue for the models as long as they are used
within a similar population structure to the training dataset but there would be reduced accuracy if
the models are applied to strains from different structures. Machine learning models are also prone
to replicating existing biases in their training datasets. This was demonstrated in the predictions
scored of phage with very imbalanced datasets (e.g. AO1), in which the model was trained on mainly
high interaction scores indicating no infection and a very small subset of low scores, indicating
infection. The resulting model struggled to differentiate isolates that the phage would actually infect
and would be prone to generating false negatives. From a cocktail perspective, the failure to select
a phage that would have been active (false negative) is actually preferred to false positives,
although a high rate of false negatives may lead to a paucity of phage predicted as active from
which to select a cocktail. We note that with the better models presented in this study the frequency
of false positives and false negatives falls within a range where if five phage are selected for a
cocktail the majority will be correctly predicted. For example, for Chap1 the predictive model

generated 7% false negative scores (22/314) and 10.8% were false positive scores (34/314).

Our analysis on a set of completely independent sequenced isolates did demonstrate that the
predicted cocktails were more effective than a generic cocktail and in fact were comparable with
the bespoke cocktails that were based on individual measured activity. This result on ‘unseen’
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isolates provides confidence in the main concept of the study. To really move such predictive phage
therapy into the clinic, there are areas the research has highlighted that require further development
along with the safety and registration issues that are being tackled more globally by the phage
community. A key improvement would be inclusion of more generalist phage in the interaction
dataset. Based on the findings illustrated in Figure 3, the models trained on datasets with a class
imbalance as high as 85:15 were able to produce results of practical value for phage selection, as
defined by a predefined F1 cutoff of 0.6. For greater reliability, it would be preferable to use phage
with a class imbalance less than this, and therefore phage that can target at least 30% of the
population. More generalist phage will also provide more options for cocktail selection especially if
they can be distributed across different activity groups. The work shown is a ‘proof of concept’ and
valuable interaction datasets for prediction models could now be produced in a short period of time
using high throughput platforms, including those that can measure 50 x 96 well plates with
appropriate phage and strain collections in place.

Another major consideration is the actual activity of the selected phage in the infection environment,
in this case urine which can vary considerably in terms of composition and constituent
concentrations, especially pH and osmolarity, as well as factors associated with the host response
to infection (36—38). We have tried to mitigate this by measuring phage activity in artificial urine but
acknowledge this cannot capture the complexity of real urine as although it is a defined reproducible
medium and a closer match to urine than many rich broths that are routinely used for phage activity
studies that allow faster bacterial growth. The bespoke phage cocktails formulated in this study
based on the predictive models showed good activity in canine urine, comparable with results in
artificial urine (Fig. 4D), and this mirrored our preliminary work on the activity of a subset of

individual phage in artificial urine vs pooled canine urine. (S/ Appendix, Figure S1).

Predictive phage therapy would be used in conjunction with diagnostic sequencing. Direct
sequencing of nucleic acids extracted from clinical sample has been successfully used for diagnosis
for viruses, fungi and bacteria (39—41) including UTI (42, 43) and we have applied it to direct
sequencing of E. coli in canine urine samples with respect to the selection of appropriate
antimicrobials (28). There is the challenge of feature extraction for the phage models from long read
data of more complex samples compared to assemblies of short reads from purified strains, as
used in this study. If there are multiple strains associated with the infection then the models may
still be useful to select phage, even without their separation at a genome level, although that
remains to be tested. The testing of phage activity with sequenced clinical samples would be used
to continually reinforce the learning dataset and improve predictions.
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It should be emphasised that the primary aim of this study was to signpost what could be possible
for phage therapy with machine learning or alternative predictive methods based on comprehensive
interaction datasets. The study looked at both canine and human UTI E. coli isolates presented by
patients at local hospitals and used a selection of 31 phage from an initial pool of just over 100.
While these are only representative subpopulations, we consider they allowed the concept of
predictive phage therapy to be tested with a promiscuous and important pathogen than can exhibit
multi-drug resistance. We are optimistic that there will be a rapid expansion of advances in this
space and the best methods could be combined in pipelines to transition the best approaches into
clinical practice. However, the wider adoption of phage therapy in the veterinary or human clinic
will require changes in licensing and management of expectations of both clinicians and the general
public (44).

Materials and Methods

Strain Information

203 E. coli were isolated from UTlIs in canine patients at the Royal (Dick) School of Veterinary
Studies, Hospital for Small Animals between Jul. 2017 and Jun. 2019. In addition, 81 E. coli were
isolated from urine and 30 E. coli from blood from patients with blood stream infections processed
at The Royal Infirmary of Edinburgh (collected between Jan. 2019 and Nov. 2019). The canine,
human urine and human blood isolates were designated “CANxx”, “HUxx” and “HBxx” respectively.
Isolates were stored at -70°C in 20% glycerol (G5516, Sigma, Germany) and streaked out to obtain
pure, individual colonies on LB agar. A final set of 10 strains were collected from the same clinics
towards the end of the study for validation of the prediction models. (canine, n=3, collected as part
of a different study(28) and human, n=7, from The Royal Infirmary of Edinburgh collected Spring
2023).

Phage Isolation and Propagation

Phage were propagated by growing the appropriate host strain to an ODeoo 0.2 to 0.3 in LB or AU
in a glass conical flask at 37°C with shaking at 170 rpm before adding 500 pL of phage plaque
filtrate in SM (50mM Tris-HCI pH7. 5, 100mM NaCl, 8mM MgS04, 0.01% Gelatin (v/w)) buffer and
continuing to incubate overnight. Infected cultures were centrifuged at 5,000 rpm for 10 minutes in
a benchtop centrifuge to pellet the bacteria, and the phage lysate passed through a 0.22 yM syringe
filter before long term storage at 4°C. Phage were titred using double layer agar overlay plates and
diluted to 1 x 106 per mL working stock concentration using SM buffer.

11


https://doi.org/10.1101/2023.11.23.568453
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.23.568453; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Growth media and Culture Conditions

1L volumes of artificial urine (AU) were prepared (according to the following protocol,
https://dx.doi.org/10.17504/protocols.io.kxygx3exzg8j/v1), aliquoted into single use tubes, and
frozen until required. Each aliquot was filter sterilised through a 0.22 yM syringe filter prior to use.
Canine urine was collected from healthy dogs, filter sterilised using a 0.22 uM syringe filter,

aliquoted and frozen until use.

Interaction Assays including AUC analysis
Phage interactions assays were performed using 31 phage against 314 E. coli isolates using an

MOI of 0.01 (~1 phage per 100 bacteria). This MOI ratio was chosen to ensure that complete virus
lifecycle infections were analyzed rather than abortive infections which can occur at higher MOls.
A single colony of an E. coli isolate was picked to inoculate 5 mL LB (LBL0102, Formedium Ltd,
England) and incubated overnight at 37°C with shaking at 170 rpm. 50 pL of overnight culture was
subcultured into 5 mL fresh LB and grown at 37°C and 170 rpm shaking to an optical density (ODsoo)
of 1.0 (equivalent to 108 bacterial cells per mL). During this incubation, 10 uL of SM buffer (for no
phage controls) or 10 uL phage at 1 x 10 per mL (phage stocks were diluted in SM buffer) was
added to a flat-bottomed 96-well microplate. 180 pL of AU was added to all wells. 10 uL of E. coli
at ODeoo of 1 was added to all wells resulting in a final reaction volume of 200 uL. A gas permeable,
sterile, optically clear plate seal was applied to the plate (4ti-0516/96, Azenta Life Sciences) to
control for evaporation and prevent phage contamination within the plate reader. Microplates were
run on 1 of 3 identical Multiskan FC photometers (51119100, Thermo, China) with absorbance
measurements at 620 nm taken every 20 minutes immediately after a 5 sec mix over a time course

of 18 hours and constant incubation at 37°C.

All interactions and controls were measured with at least three technical repeats and additional
controls on each plate for growth and sterility, Media controls comprised 180 yL AU, 10 yL SM
buffer, and 10 uL LB in place of bacterial culture. While the number of interactions involved were
too large to carry out each interaction as triplicate biological repeats, biological repeats of a limited
number of strains were carried out periodically to ensure repeatability of the assay over time and
consistency of phage activity. Based on 31 phage measured on 314 bacterial strains with the
technical repeats, a total of >27,000 growth curves were produced and analysed. The Multiskan
FC photometers use Skanlt Software (Thermo) allowed raw data to be exported as a Microsoft
Excel file. Phage interaction scores were calculated by comparing the average area under the curve
(AUC) of the plus phage triplicate wells against the average AUC for the no phage control wells
using PRISM software (GraphPad). (Score = (AUC plus phage/AUC no phage control) x 100). For
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the purposes of plotting data where the score generated was over 100 it has was recorded as a
value of 100 representing no phage activity.

Genome Sequencing

Genome sequencing of isolates was provided by MicrobesNG (http://www.microbesng.com)
using paired lllumina reads. The reads were uploaded to Enterobase and assembled using the

Enterobase Tool Kit (https://qithub.com/zheminzhou/EToKi). The assemblies were then annotated

with prokka version 1.14.5 (45) Enterobase’s Tool Kit was also used to generate a maximum
likelihood phylogenetic tree based on core SNP.

Machine Learning and prediction pipelines

After filtering for fragmented assemblies (<600 contigs), 301 of the 314 isolates were used for model
training and testing. The main features used for testing were predicted genes, defined as predicted
protein variants (PVs) generated from a pangenome analysis of the 301 bacterial sequences using
panaroo version 1.2.9 (46). PVs were encoded in a binary format (1/0) to indicate
presence/absence in an isolate.

Random forest regression models were created for each of the 31 phage using the MUVR package
(47) using 1 75-25 split of training/testing data and 10-fold cross validation. The predicted value
was the interaction score calculated during the interaction assays analysis. (Score). Model
performance was evaluated using the Root Mean Square Error (RMSE) statistic, which is calculated
by taking the square root of the average of the squared differences between the predicted and
actual values. RMSE provides a single numerical value that represents the overall accuracy of a
prediction model, with lower values indicating better predictive performance. F1, recall, precision
and related statistics were created by classifying each observed and predicted phage interaction
based on the score (Score<60: infection; Score>60 No infection).

Feature reduction was performed recursively using the MUVR package. For each phage, an initial
model using all PVs was created. Then the top-ranking features of a model were selected to create
a new model with a reduced number of features and the RMSE values between the old and the
new model were compared. If the models had a similar RMSE, the top-ranking features of the new

model were used to create another new model, and the process repeated.
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Phage cocktail testing

Cocktail interaction assays were set up in a similar manner to the single phage assays described
above. Phage were selected for the bespoke cocktails (both predicted and observed) using the
same design rules; (i) to include the lowest scoring (highest activity) phage from each interaction
grouping (Figure 2) as long as it scored under 80 (ii) if no active phage available from a group then
additional phage(s) were added that were the second lowest scoring phage from activity groupings
starting with the remaining phage with the lowest score until 5 phage in the cocktail (iii) if less than
5 phage available with scores less than 80 then less phage were used in the cocktail. Working
stocks of phage cocktails were prepared by mixing equal volumes of each selected phage already
prepared at 10° per mL such that the 10 pL volume transferred to each triplicate well of a 96-well
plate contained an equivalent total number of virus particles to the single phage assays, so that the

overall MOI remained at 0.01. Additionally, the cocktail assays were allowed to proceed for 24 hr.

Genomic Data

The genomic data generated for this work has been deposited in Enterobase

(https://enterobase.warwick.ac.uk/species/ecoli/search strains?query=workspace:97040).
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Figures

Figure 1. (A) Phylogentic tree showing the relationship of the UPEC strains from the collection used
in this study (314 strains in training set and 10 strains from validation set). The host source (canine
or human) is shown in the outer ring. Orange dots show the 50 representative strains used to test
the general and bespoke cocktails and the purple dots show the 10 ‘unseen’ strains used to validate
the machine learning models. (B, C, D) Charts showing the percentage of the canine and human
strains (n=314) belonging to the different phylotypes (B), O-Antigen type (C) and sequence type
(ST) as defined by Enterobase.
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Figure 2. Heatmap of bacterial (n=314) phage (n=31) interactions based on score from growth
assay in artificial urine. Low scores (yellow) represent high phage activity and good inhibition of
bacterial growth. High scores (dark red) represent limited phage activity. Using heatmap2 in gplots
(v3.1.3,), pairwise comparisons of the data interactions allowed the phage to be clustered into five
primary activity groups to aid with cocktail selection.
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Figure 3. (A) The infectivity of the 31 phage across the E. coli dataset. Infections were determined
based on a score of less than 60. (B) F1 scores vs activity (ratio of infected isolates) for PV phage
models. The dashed line delineates a threshold of 0.6 for the F1 score as a metric for a ‘reliable’
model. (C) Scatter plot of the predicted vs observed interaction scores for phage CHAP1. The
diagonal line represents a perfect prediction (observed=predicted). The chart is divided into 4
colour-coded quadrants to represent correct/incorrect predictions (True Negatives and True
Positives as blue, False Negatives and False Positives as red). (D) Phylogenetic SNP tree of the
isolates used for model training. Exemplar phage models for CHAP1, NEA2 and E4 are shown. For
each model, the observed and predicted interaction scores are shown in black and white, followed
by the difference between the two scores as a colour gradient, followed by whether each isolate
would be categorised (score <60 the cut-off value for activity) in the same way by both the observed
and predicted scores.
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Figure 4. Phage cocktail analysis (A) Using a representative set of 50 UPEC strains from the
training set of E. coli the General Cocktail was tested. The box plots show the distribution of scores
for the individual phage and for the cocktail. (B) For the 38 strains (out of the set of 50) that had
more than 2 effective phage (from different activity groups) a bespoke cocktail was created and
scores recorded (S/ Appendix, Table S4 & S5). A statistical analysis (paired t-test) comparing the
general to the bespoke cocktail for these 38 strains shows that the bespoke cocktail is more
effective (p= 2.081e-05). (C) Representative growth data that was used to generate the activity
scores comparing the general and bespoke cocktails for three strains where there is no difference
between the cocktails (CAN118), where there is bacterial resistance evolving for the general
cocktail (CAN127) and where the bespoke cocktail is effective over the general cocktail (HU25).
(D) A set of 10 strains that had not been in the training set were used to validate the prediction
models. Using defined rules bespoke cocktails were created using the predicted scores and
separately the observed scores and compared alongside the general cocktail. This was done in AU
and canine urine (CU) and the scores plotted (representative data from one experiment, repeat
data available in S/ Appendix, Table S6). Analysis of these results (paired t-test) showed the
predicted cocktail was more effective than the general cocktail (p=0.03502 (AU), p=0.03614 (CU)).
There was not a statistical difference in effectiveness between the observed or predicted cocktail
(p=0.1746 (AU), p=0.4288 (CU)).
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