

1

2

3

4

Perceptual error based on Bayesian cue combination drives implicit motor adaptation

6

7 Zhaoran Zhang^{1,†}, Huijun Wang^{1,†}, Tianyang Zhang¹, Zixuan Nie¹, Kunlin Wei^{1,2,3,4 *}

8

⁹ ¹School of Psychological and Cognitive Sciences, Peking University, Beijing, China

²Beijing Key Laboratory of Behavior and Mental Health, Beijing, China

11 ³Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China

12 ⁴National Key Laboratory of General Artificial Intelligence, Beijing, China

13

14

15

18 School of E

10 Peking University

5 Yibewuan Road

28 3 Finsbury Road

Beijing, 100071, China

22 Wei.Ku@nju.edu.cn

Perceptual Error Drives Implicit Adaptation

23 **Abstract**

24 The sensorimotor system can recalibrate itself without our conscious awareness, a type
25 of procedural learning whose computational mechanism remains undefined. Recent
26 findings on implicit motor adaptation, such as over-learning from minor perturbations and
27 swift saturation for increasing perturbation size, challenge existing theories based on
28 sensory errors. We argue that perceptual error, arising from the optimal combination of
29 movement-related cues, is the primary driver of implicit adaptation. Central to our theory
30 is the linear relationship between the sensory uncertainty of visual cues and perturbation,
31 validated through perceptual psychophysics (Experiment 1). Our theory predicts diverse
32 features of implicit adaptation across a spectrum of perturbation conditions on trial-by-
33 trial basis (Experiment 2) and explains proprioception changes and their relation to visual
34 perturbation (Experiment 3). By altering visual uncertainty in perturbation, we induced
35 unique adaptation responses (Experiment 4). Overall, our perceptual error framework
36 outperforms existing models, suggesting that Bayesian cue integration underpins the
37 sensorimotor system's implicit adaptation.

38

Perceptual Error Drives Implicit Adaptation

39 **Introduction**

40 To achieve and sustain effective motor performance, humans consistently recalibrate
41 their sensorimotor systems to adapt to both internal and external environmental
42 disturbances (Berniker & Kording, 2008; Shadmehr et al., 2010; Wolpert et al., 2011). For
43 instance, transitioning to a high-sensitivity gaming mouse, which drives cursor movement
44 at an accelerated rate compared to a standard computer mouse, may initially result in
45 decreased performance in computer-related tasks. However, humans are capable of
46 rapidly adapting to this new visuomotor mapping within a short period of time. While
47 conscious corrections can facilitate this adaptation process, our sensorimotor system
48 often times adapts itself implicitly without our conscious efforts (Albert et al., 2021;
49 Krakauer et al., 2019).

50 While recent research has intensively examined the interplay between explicit and implicit
51 learning systems (Albert et al., 2022; Miyamoto et al., 2020), several characteristics of
52 implicit motor adaptation have emerged that challenge traditional theories. Conventionally,
53 motor adaptation is conceptualized as error-based learning, in which learning accrues in
54 proportion to the motor error experienced (Cheng & Sabes, 2006; Donchin et al., 2003;
55 Thoroughman & Shadmehr, 2000). However, implicit adaptation exhibits an
56 overcompensation phenomenon where the extent of adaptation surpasses the error
57 induced by visual perturbations (Kim et al., 2018; Morehead et al., 2017). Additionally,
58 implicit adaptation manifests a saturation effect; it increases with perturbations but
59 plateaus across a broad range of larger perturbations (Bond & Taylor, 2015; Kim et al.,
60 2018; Morehead et al., 2017; Neville & Cressman, 2018). These observations of
61 overcompensation and saturation are incongruent with prevailing state-space updating

Perceptual Error Drives Implicit Adaptation

62 models, which presuppose that incremental learning constitutes only a fraction of the
63 motor error (McDougle et al., 2015; Smith et al., 2006). Another aspect of implicit
64 adaptation that remains mechanistically unexplained pertains to its impact on
65 proprioception. In traditional motor adaptation, proprioception is biased towards the visual
66 perturbation, maintaining a stable bias throughout the adaptation process (Ruttle et al.,
67 2016, 2021). In contrast, implicit adaptation initially biases proprioceptive localization of
68 the hand towards the visual perturbation, but this bias gradually drifts in the opposite
69 direction over time (Tsay et al., 2020).

70 Causal inference of motor errors has been suggested to explain the discounting of large
71 perturbations (Wei & Kording, 2009). However, the causal inference account predicts a
72 decline in adaptation with increasing perturbation, diverging from the observed ramp-like
73 saturation effect. (Tsay, Kim, et al., 2022) recently synthesized existing evidence to
74 propose that implicit adaptation reaches an upper bound set by cerebellar error correction
75 mechanisms, reflected in a ramp-like influence of vision on proprioception (Tsay, Kim, et
76 al., 2022). While this ramp function could explain the observed saturation, the postulate
77 of an upper bound on visual influence lacks empirical validation. Some research supports
78 the idea of saturation in proprioceptive recalibration (Modchalingam et al., 2019), yet other
79 studies suggest a linear increase with visual perturbations (Rossi et al., 2021;
80 Salomonczyk et al., 2011). Additionally, current models fall short of quantitatively
81 capturing the time-dependent shifts in proprioceptive bias associated with implicit
82 adaptation.

83 In this study, we put forth a unified model that aims to account for the distinct features of
84 implicit adaptation, based on the Bayesian combination of movement-related cues. Prior

Perceptual Error Drives Implicit Adaptation

85 models have overlooked the fact that visual uncertainty related to the perturbation
86 increases with the size of the perturbation as the cursor moves further from the point of
87 fixation and into the visual periphery (Klein & Levi, 1987; Levi et al., 1987). This is
88 particularly pertinent for implicit adaptation that is widely investigated by the so-called
89 error-clamp paradigm, in which participants are instructed to fixate on the target and
90 disregard the perturbing cursor. Moreover, conventional theories of motor adaptation
91 attribute motor error to the sensory modality of the perturbation, i.e., visual errors for visual
92 perturbations (Tsay, Kim, et al., 2022; Wei & Kording, 2009). We propose an alternative:
93 perceptual error drives implicit adaptation, as the perturbed sensory feedback influences
94 the perception of the effector and, subsequently, motor adaptation. Through a series of
95 experiments, we aim to demonstrate that combining eccentricity-induced visual
96 uncertainty (Experiment 1) with a traditional motor adaptation model (state-space model)
97 and a classical perception model (Bayesian cue combination) can explain both over-
98 compensation and saturation effects (Experiment 2), as well as the time-dependent
99 changes in proprioceptive bias (Tsay et al., 2020). Finally, to provide causal evidence
100 supporting our Perceptual Error Adaptation (PEA) model, we manipulated visual
101 uncertainty and observed that subsequent adaptation was attenuated for large
102 perturbations but not for small ones—a finding that contradicts existing models but aligns
103 well with the PEA model. Across the board, our model outperforms those based on ramp
104 error-correction (Tsay, Kim, et al., 2022) and causal inference of errors (Wei & Kording,
105 2009), offering a more parsimonious explanation for the salient features of implicit
106 adaptation.

Perceptual Error Drives Implicit Adaptation

108 Results

109 *The perceptual error adaptation model with varying visual uncertainty*

110 We start by acknowledging that the perceptual estimation of effector position is
111 dynamically updated and influenced by sensory perturbations during motor adaptation.
112 For implicit adaptation studied via the error-clamp paradigm, participants are required to
113 bring their hand to the target while ignoring the direction-clamped cursor (Morehead et
114 al., 2017). Accordingly, the perceptual estimation of the hand movement direction relies
115 on three noisy sensory cues: the visual cue from the cursor, the proprioceptive cue from
116 the hand, and the sensory prediction of the reaching action (Figure 1A). Without loss of
117 generality, we posit that each cue is governed by an independent Gaussian distribution:
118 the visual cue x_v follows $N(\theta, \sigma_v^2)$, where θ is the cursor direction and σ_v^2 is visual
119 variance, the proprioceptive cue x_p follows $N(x_{hand}, \sigma_p^2)$, where x_{hand} is the hand
120 movement direction and σ_p^2 is proprioceptive variance, and the sensory prediction cue x_u
121 follows $N(T, \sigma_u^2)$, where T is the target direction and σ_u^2 is prediction variance.
122 Participants aim for the target, expecting their hand to reach it. Using the Bayesian cue
123 combination framework (Berniker & Kording, 2011), the perceived hand location (\hat{x}_{Hand})
124 on trial n can be derived:

$$125 \quad \hat{x}_{Hand,n} = \sum_i W_i x_{i,n}, \text{ with } W_i = \frac{1/\sigma_i^2}{\sum_j 1/\sigma_j^2}, \quad i, j = u, p, v \quad (1)$$

126 This estimated hand position is derived using maximum likelihood estimation from the
127 three noisy cues. Given that the clamped cursor deviates the target by θ , the visual cue
128 x_v biases the hand estimate \hat{x}_{Hand} towards the cursor's direction. This deviation from the
129 target direction T constitutes the perceptual error, which drives adaptation on the

Perceptual Error Drives Implicit Adaptation

130 subsequent trial $n+1$ (Eq. 2). Consisting with existing models (Albert et al., 2022; Cheng
131 & Sabes, 2006; Herzfeld et al., 2014; McDougle et al., 2015), trial-to-trial adaptation is
132 modeled using a state-space equation:

133
$$x_{p,n+1} = Ax_{p,n} + B(T - \hat{x}_{Hand,n}), \quad (2)$$

134 where A is the retention rate capturing inter-movement forgetting and B is the learning
135 rate capturing the proportion of error corrected within a trial. The interplay between
136 forgetting and learning dictates the overall learning extent, i.e., the asymptote of x_p :

137
$$x_p^{asym} = -\frac{B/\sigma_v^2}{B/\sigma_p^2 + (1-A)\sum_j 1/\sigma_j^2} \theta, \quad j = v, p, u \quad (3)$$

138 Thus, the positive influence of perturbation size θ on the adaptation extent is
139 counterbalanced by the rise in visual uncertainty σ_v , since sensory uncertainty of various
140 visual stimuli increases linearly with eccentricity (Klein & Levi, 1987; Levi et al., 1987). As
141 participants are instructed to fixate on the target, an increase in θ lead to increased
142 eccentricity. Hence, we model this linear increase in visual uncertainty by

143
$$\sigma_v = a + b\theta, \quad (4)$$

144 where a and b are free parameters. We conducted simulations of implicit adaptation with
145 varying error clamp size (θ). The model simulation closely resembles the saturated
146 adaptation in three independent experiments (Kim et al., 2018; Morehead et al., 2017). In
147 fact, our PEA model predicts a concave adaptation pattern, contrasting with the ramp
148 pattern suggested by the PReMo model (Tsay, Kim, et al., 2022). In Experiment 1, we
149 aim to validate the assumption of a linear increase in visual uncertainty (Eq. 1); in
150 Experiment 2, we seek to verify whether implicit adaptation adheres to a concave pattern

Perceptual Error Drives Implicit Adaptation

151 as prescribed by the PEA model. Subsequent experiments, namely Experiments 3 and 4,
152 will test the model's additional novel predictions concerning changes in proprioception
153 and the impact of experimentally manipulated visual uncertainty on adaptation,
154 respectively.

155

156 *----- insert Figure 1 here -----*

157

158 *Experiment 1: Visual Uncertainty Increases Linearly with Perturbation Size*

159 To quantify visual uncertainty in a standard error-clamp adaptation setting, we employed
160 psychometric methods. Occluded from seeing their actual hand, participants (n=18) made
161 repetitive reaches to a target presented 10 cm straight head while an error-clamped
162 cursor moving concurrently with one of three perturbation sizes (i.e., 4°, 16° and 64°),
163 randomized trial-by-trial. In alignment with the error-clamp paradigm, participants were
164 instructed to fixate on the target and to ignore the rotated cursor feedback. Eye-tracking
165 confirmed compliance with these instructions (Figure S1). Perturbation directions were
166 counter-balanced across trials, with equal probability of clockwise (CW) and
167 counterclockwise (CCW) rotation. Post-movement, participants were required to judge
168 the cursor's rotation direction (CW or CCW) relative to a briefly displayed reference point
169 (Figure 2A & Figure 6A). Employing this two-alternative forced-choice (2AFC) task and
170 the Parameter Estimation by Sequential Testing (PEST) procedure (Lieberman &
171 Pentland, 1982), we derived psychometric functions for visual discrimination (Figures 6
172 and Figure S2). Our findings reveal a significant increase in visual uncertainty (σ_v) with

Perceptual Error Drives Implicit Adaptation

173 perturbation size, for both CW and CCW rotations (Friedman test, CW direction: $\chi^2(2) =$
174 34.11 , $p = 4e-8$; CCW: $\chi^2(2) = 26.47$, $p = 2e-6$). Given the symmetry for the two directions,
175 we collapsed data from both directions, and confirmed the linear relationship between σ_v
176 and θ by a generalized linear model: $\sigma_v = a + b\theta$, with $a = 1.853$ and $b = 0.309$, $R^2 =$
177 0.255 ($F = 51.6$, $p = 2.53e-9$). The 95% confidence intervals (CI) for a and b are $[0.440$,
178 $3.266]$ and $[0.182, 0.435]$, respectively. The intercept was similar to the visual uncertainty
179 estimated in a previous study (Tsay, Avraham, et al., 2021). The linear dependency
180 indicates a striking seven-fold increase in visual uncertainty from a 4° perturbation to a
181 64° perturbation ($22.641 \pm 6.024^\circ$ vs. $3.172 \pm 0.453^\circ$).

182

183 ---- insert Figure 2 here ----

184

185 *Experiment 2: Visual Uncertainty Modulated Perceptual Error Accounts for*
186 *Overcompensation and Saturation in Implicit Adaptation*

187 The critical test of the PEA model lies in its ability to employ the linear function of visual
188 uncertainty obtained from Experiment 1 to precisely explain key features of implicit
189 adaptation. Earlier research mostly scrutinized smaller perturbation angles when
190 reporting saturation effects (Bond & Taylor, 2015; Kim et al., 2018; Morehead et al., 2017).
191 In contrast, Experiment 2 involved seven participant groups ($n = 84$) to characterize
192 implicit adaptation across an extensive range of perturbation sizes (i.e., 2° , 4° , 8° , 16° ,
193 32° , 64° , and 95°). After 30 baseline training cycles without perturbations, each group
194 underwent 80 cycles of error-clamped reaching and 10 washout cycles without visual

Perceptual Error Drives Implicit Adaptation

195 feedback (Figure 3A). We replicated key features of implicit adaptation: it incrementally
196 reached a plateau, and then declined during washout. Small perturbations led to
197 overcompensation beyond visual errors (for 2°, 4°, 8°, 16° clamp sizes). Across
198 perturbation sizes, the faster the early adaptation the larger the adaptation extent (Figure
199 S4). Critically, the adaptation extent displayed a concave pattern: increasing steeply for
200 smaller perturbations and tapering off for larger ones (Figure 3B). A one-way ANOVA
201 revealed a significant group difference in adaptation extent ($F(6,83) = 12.108, p = 1.543e-09$). Planned contrasts indicated that 8°, 16°, and 32° perturbations did not differ from
202 each other (all $p > 0.417$, with Tukey-Kramer correction), consistent with earlier evidence
203 of invariant implicit adaptation (Kim et al., 2018). However, 64° and 95° perturbations led
204 to significantly reduced adaptation extents compared to 8° ($p = 3.194e-05$ and $5.509e-06$,
205 respectively), supporting the concave pattern as a more accurate portrayal of implicit
206 adaptation across varying perturbation size.

208 Importantly, the PEA model, when augmented with visual uncertainty data from
209 Experiment 1, precisely predicts this size-dependent adaptation behavior (Figure 3B).
210 Beyond adaptation extent, the model also accurately predicts the trial-by-trial adaptation
211 across all seven participant groups, employing a single parameter set ($R^2 = 0.975$; Figure
212 3A). The model had only four free parameters ($A = 0.974, B = 0.208, \sigma_p = 11.119^\circ, \sigma_u =$
213 5.048° ; Table S1). Remarkably, both the retention rate A and learning rate B are
214 consistent with previous studies focusing on visuomotor rotation adaptation (Albert et al.,
215 2022). We also quantified proprioceptive uncertainty (σ_p) in a subset of participants ($n=13$)
216 using a similar 2AFC procedure as in Experiment 1. We found that σ_p was $9.737^\circ \pm 5.598^\circ$
217 (Figure S6), which did not statistically differ from the σ_p value obtained from the model

Perceptual Error Drives Implicit Adaptation

218 fitting (two-tailed t-test, $p = 0.391$). In summary, the perceptual parameters obtained in
219 Experiment 1, when incorporated into the PEA model, effectively explain the implicit
220 adaptation behaviors observed in different participant groups in Experiment 2.

221

222 ---- insert Figure 3 here ----

223

224 In comparative analysis, the PReMo model yields a substantially lower R^2 value of 0.749
225 (Figure S3B). It tends to underestimate adaptation for medium-size perturbations and
226 overestimate it for large ones (Figure 3C; see also Figure S3B for trial-by-trial fitting).
227 Another alternative is the causal inference model, previously shown to account for
228 nonlinearity in motor learning (Mikulasch et al., 2022; Wei & Kording, 2009). Although this
229 model has been suggested for implicit adaptation (Tsay, Avraham, et al., 2021), it fails to
230 reproduce the observed concave adaptation pattern (Figures S3C and 3D). The model
231 aligns well with adaptations to medium-size perturbations (8° , 16° , and 32°) but falls short
232 for small and large ones, yielding an R^2 value of 0.711 (see Figure S3C for trial-by-trial
233 fits). Model comparison metrics strongly favor the PEA model over both the PReMo and
234 causal inference models, as evidenced by AIC scores of 2255, 3543, and 3283 for the
235 PEA, PReMo, and causal inference models, respectively (Table S2). In summary, it is the
236 eccentricity-induced visual uncertainty that most accurately accounts for the implicit
237 adaptation profile across a broad spectrum of perturbation sizes, rather than saturated
238 visual influence or causal inference of error.

239

Perceptual Error Drives Implicit Adaptation

240 *Experiment 3: Cue Combination Accounts for Changes in Proprioception During Implicit
241 Adaptation*

242 Motor adaptation not only recalibrates the motor system but also alters proprioception
243 (Rossi et al., 2021) and even vision (Simani et al., 2007). In traditional motor adaptation
244 involving both explicit and implicit components, the perceived hand location is initially
245 biased towards the visual perturbation and subsequently stabilizes (Ruttle et al., 2016).
246 However, in implicit adaptation, the perceived hand location initially aligns with but later
247 drifts away from the visual feedback (Tsay et al., 2020). The PReMo model proposes that
248 this drift comprises two phases: initial proprioceptive recalibration and subsequent visual
249 recalibration (Tsay, Kim, et al., 2022), however, this assumption is lack of empirical
250 validation. In contrast, we suggest that the perceived hand location is based on the same
251 Bayesian cue combination principle. In this framework, the perceived hand location at the
252 end of each reach is influenced by both the proprioceptive cue (x_p) and the estimated
253 hand position under the influence of clamped feedback (\hat{x}_{Hand} , Eq. 1).

254 During early adaptation, \hat{x}_{Hand} is biased towards the clamped feedback, while x_p remains
255 near the target as the motor system has yet to adapt (Figure 4A). This results in an initial
256 negative proprioceptive bias. As adaptation progresses, although \hat{x}_{Hand} remains biased,
257 x_p gradually shifts in the positive direction due to adaptation, resulting in an increasingly
258 positive proprioceptive bias. Remarkably, the PEA model can predict these temporal
259 changes in proprioception with high accuracy ($R^2 = 0.982$; Figure 4A).

260 If the hand estimate \hat{x}_{Hand} indeed influences proprioceptive recalibration during
261 adaptation, our PEA model can make specific quantitative predictions about the
262 relationship between proprioception changes and visual perturbation size. While

Perceptual Error Drives Implicit Adaptation

263 traditional visuomotor paradigms suggest either invariant (Modchalingam et al., 2019) or
264 linear increases in proprioceptive recalibration with visual-proprioceptive discrepancy
265 (Salomonczyk et al., 2011), the PEA model prescribes a concave function in relation to
266 visual perturbation size (Figure 4B).

267 To empirically test this prediction, Experiment 3 (n=11) measured participants'
268 proprioceptive recalibration during implicit adaptation, using a procedure similar to the
269 error-clamp perturbations in Experiment 2. After each block of six adaptation trials,
270 participants' right hands were passively moved by a robotic manipulandum, and they
271 indicated the perceived direction of their right hand using a visually represented "dial"
272 controlled by their left hand (Figure 7B). This method quantifies proprioceptive
273 recalibration during adaptation (Cressman & Henriques, 2009). Each adaptation block
274 was followed by three such proprioception test trials. The alternating design between
275 adaptation and proprioception test blocks allowed us to assess proprioceptive biases
276 across varying perturbation sizes, which consisted of $\pm 10^\circ$, $\pm 20^\circ$, $\pm 40^\circ$, and $\pm 80^\circ$, to
277 covering a wide range (Figure 4D).

278 Our findings confirmed a typical proprioceptive recalibration effect, as the perceived hand
279 direction was biased towards the visual perturbation (Figure 4E). Importantly, the bias in
280 the initial proprioception test trial exhibited a concave function of perturbation size. A one-
281 way repeated-measures ANOVA revealed a significant effect of perturbation size
282 ($F(3,30)=3.603, p=0.036$), with the 20° and 40° conditions displaying significantly greater
283 proprioceptive bias compared to the 80° condition (pairwise comparisons: 20° v.s. 80° , p
284 = 0.034; 40° v.s. 80° , p = 0.003). The bias was significantly negative for 20° and 40°
285 conditions (p = 0.005 and p = 0.007, respectively with one-tailed t-test), but not for 10°

Perceptual Error Drives Implicit Adaptation

286 and 80° condition ($p = 0.083$ and $p = 0.742$, respectively). This concave pattern aligns
287 well with the PEA model's predictions (Figure 4B), further consolidating its explanatory
288 power.

289

290 **---- insert Figure 4 here ----**

291

292 This stands in contrast to the PReMo model, which assumes a saturation for the influence
293 of the visual cue on the hand estimate (Eq. 12-13). As a result, PReMo's predicted
294 proprioceptive bias follows a ramp function, deviating substantially from our empirical
295 findings (Figure 4C). The causal inference model, which mainly focuses on the role of
296 visual feedback in error correction, lacks the capability to directly predict changes in
297 proprioceptive recalibration.

298 Interestingly, we observed that the proprioceptive bias reduced to insignificance by the
299 third trial in each proprioception test block (one-tailed t-test, all $p > 0.18$; Figure 4E, yellow
300 line). This suggests that the influence from implicit adaptation – manifested here as trial-
301 by-trial updates of the perceived hand estimate \hat{x}_{Hand} – decays rapidly over time.

302

303 *Experiment 4: Differential Impact of Upregulated Visual Uncertainty on Implicit Adaptation*
304 *Across Perturbation Sizes*

305 Thus far, we have presented both empirical and computational evidence underscoring
306 the pivotal role of perceptual error and visual uncertainty in implicit adaptation. It is crucial
307 to note, however, that this evidence is arguably correlational, arising from natural

Perceptual Error Drives Implicit Adaptation

308 variations in visual uncertainty as a function of perturbation size. To transition from
309 correlation to causation, Experiment 4 ($n = 19$) sought to directly manipulate visual
310 uncertainty by blurring the cursor, thereby offering causal support for the role of
311 multimodal perceptual error in implicit adaptation.

312 By increasing visual uncertainty via cursor blurring, we hypothesized a corresponding
313 decrease in adaptation across all perturbation sizes. Notably, the PEA model predicts a
314 size-dependent attenuation in adaptation: the reduction is less marked for smaller
315 perturbations and more pronounced for larger ones (Figure 5A). This prediction diverges
316 significantly from those of competing models. The PReMo model, operating under the
317 assumption of a saturation effect for large visual perturbations, predicts that cursor
318 blurring will only influence adaptation to smaller perturbations, leaving adaptation to larger
319 perturbations unaffected (Figure 5B). The causal inference model makes an even more
320 nuanced prediction: it anticipates that the blurring will lead to a substantial reduction in
321 adaptation for small perturbations, a diminishing effect for medium perturbations, and a
322 potential reversal for large perturbations (Figure 5C). This prediction results from the
323 model's core concept that causal attribution of the cursor to self-action—which directly
324 dictates the magnitude of adaptation—decreases for small perturbations but increases
325 for large ones when overall visual uncertainty is elevated.

326

327 **---- insert Figure 5 here ----**

328

Perceptual Error Drives Implicit Adaptation

329 Starting from the above predictions, Experiment 4 was designed to assess the impact of
330 elevated visual uncertainty across small (4°), medium (16°), and large (64°) perturbation
331 sizes. Visual uncertainty was augmented by superimposing a Gaussian blurring mask on
332 the cursor (Burge et al., 2008). Each participant performed reaching tasks with either a
333 standard or blurred clamped cursor for a single trial, bracketed by two null trials devoid of
334 cursor feedback (Figure 5D). These three-trial mini-blocks permitted the quantification of
335 one-trial learning as the directional difference of movements between the two null trials.
336 To preclude the cumulative effect of adaptation, perturbation sizes and directions were
337 randomized across mini-blocks.

338 Crucially, our findings corroborated the predictions of the PEA model: visual uncertainty
339 significantly diminished adaptation for medium and large perturbations (16° and 64°),
340 while leaving adaptation for small perturbations (4°) largely unaffected (Figure 5E). A two-
341 way repeated-measures ANOVA, with two levels of uncertainty and three levels of
342 perturbation size, revealed a significant main effect of increased visual uncertainty in
343 reducing implicit adaptation ($F(1,18) = 42.255$, $p = 4.112e-06$). Furthermore, this effect
344 interacted with perturbation size ($F(2,36) = 5.391$, $p = 0.012$). Post-hoc analyses
345 demonstrated that elevated visual uncertainty significantly attenuated adaptation for large
346 perturbations ($p = 2.877e-04$, $d = 0.804$ for 16°; $p = 1.810e-05$, $d = 1.442$ for 64°) but
347 exerted no such effect on small perturbations ($p = 0.108$, $d = 0.500$). These empirical
348 outcomes are not congruent with the predictions of either the PReMo or the causal
349 inference models (Figure 5B and 5C). This lends compelling empirical support to the
350 primacy of perceptual error in driving implicit adaptation, as posited by our PEA model.

351
352

Perceptual Error Drives Implicit Adaptation

353 Discussion

354 In this study, we elucidate the central role of perceptual error, derived from multimodal
355 sensorimotor cue integration, in governing implicit motor adaptation. Utilizing the classical
356 error-clamp paradigm, we uncover that the overcompensation observed in response to
357 small perturbations arises from a sustained perceptual error related to hand localization,
358 and the saturation effect commonly reported in implicit adaptation is not an intrinsic
359 characteristic but is attributable to increasing sensory uncertainty with increasing visual
360 perturbation eccentricity—a factor hitherto neglected in existing models of sensorimotor
361 adaptation. Contrary to conventional theories that describe implicit adaptation as either
362 saturated or invariant (Kim et al., 2018; Tsay, Kim, et al., 2022), our data reveal a concave
363 dependency of implicit adaptation on visual perturbation size, characterized by
364 diminishing adaptation in response to larger perturbations. Notably, our Perceptual Error
365 Adaptation (PEA) model, calibrated using perceptual parameters from one set of
366 participants, provides a robust account of implicit adaptation in separate groups subjected
367 to varying perturbations. The model further successfully captures the perceptual
368 consequences of implicit adaptation, such as the continuous shifts in proprioceptive
369 localization during the adaptation process (Tsay et al., 2020) and its correlation with
370 perturbation size. Lastly, we manipulated visual uncertainty independently of perturbation
371 size and demonstrated that this selectively attenuated adaptation in the context of larger
372 perturbations while leaving smaller perturbations unaffected. These empirical results,
373 inconsistent with predictions from existing models, underscore the conceptual and
374 quantitative superiority of our PEA model. In summary, our findings advocate for a revised

Perceptual Error Drives Implicit Adaptation

375 understanding of implicit motor adaptation, suggesting that it is governed by Bayesian
376 cue combination-based perceptual estimation of effector localization.

377 Bayesian cue combination has been established as a foundational principle in various
378 perceptual phenomena, both intra- and inter-modally (Seilheimer et al., 2014). It has also
379 been implicated in motor adaptation (Burge et al., 2008; He et al., 2016; Kording &
380 Wolpert, 2004; Wei & Kording, 2010). However, previous studies have largely focused on
381 experimentally manipulating sensory cue uncertainty to observe its effects on adaptation
382 (Burge et al., 2008; Wei & Kording, 2010), similar to our Experiment 4. What has been
383 largely overlooked is the natural covariance between visual uncertainty and perturbation
384 size, which, when incorporated into classical state-space models, provides a compelling
385 explanation for implicit adaptation.

386 The causal inference framework (Wei & Kording, 2009) fails to adequately predict
387 sensorimotor changes in implicit adaptation. For instance, it underestimates the
388 adaptation extent for large perturbations and incorrectly predicts that increasing visual
389 uncertainty would augment, rather than reduce, adaptation to large perturbations. We
390 postulate that causal inference is more relevant to motor learning dominated by explicit
391 processes, such as traditional visuomotor rotations, rather than in implicit adaptations
392 where cue combination is obligatory.

393 Similar to our PEA model, the PReMo model also incorporates the integration of multiple
394 sensory cues. But two models differ fundamentally in their conceptualization of how these
395 cues contribute to the error signal. The PReMo model posits two intermediate perceptual
396 variables with Bayesian cue integration: a visual estimate of the cursor and a
397 proprioceptive estimate of the hand (Tsay, Kim, et al., 2022). The final error signal in

Perceptual Error Drives Implicit Adaptation

398 PReMo is presumed to be a proprioceptive error, not from further Bayesian cue
399 combination, but from a visual-to-proprioceptive bias that is governed by a predetermined,
400 ramp-like visual influence that saturates around a 6–7° visual-proprioceptive discrepancy
401 (Eq. 13). These assumptions lack empirical validation. Our findings in Experiment 3
402 indicate that proprioceptive recalibration follows a concave function with respect to visual
403 perturbation size, contradicting the ramp-like function assumed by PReMo. Moreover, the
404 presupposed ramp-like visual influence generates a rigid prediction for a ramp-like
405 adaptation extent profile, which is at odds with the concave adaptation pattern we
406 observed in Experiment 2 and in a similar study involving trial-by-trial learning (Tsay,
407 Avraham, et al., 2021). Furthermore, PReMo predicts that increasing visual uncertainty
408 will selectively reduce adaptation to small perturbations while sparing large ones. This is
409 inconsistent with our findings in Experiment 4, which demonstrated that increased visual
410 uncertainty substantially impacted adaptation more to larger perturbations than to small
411 ones. Lastly, PReMo's reliance on a proprioceptive bias constrains its ability to account
412 for the temporal shifts in perceived hand location during adaptation (Tsay et al., 2020). In
413 contrast to PEA's unified approach, PReMo must resort to separate mechanisms of
414 proprioceptive and visual recalibration at different phases of adaptation to explain these
415 shifts. In summary, the PReMo model's assumptions introduce limitations that make it
416 less consistent with empirical observations, particularly concerning the nonlinearities
417 observed in both motoric and perceptual aspects of implicit adaptation.

418 Our research contributes to an ongoing debate concerning the driving forces behind error-
419 based motor learning, specifically addressing the question of whether implicit adaptation
420 is driven by target error or sensory prediction error (Albert et al., 2022; Izawa & Shadmehr,

Perceptual Error Drives Implicit Adaptation

421 2011; Leow et al., 2020; Mazzoni & Krakauer, 2006; McDougle et al., 2015; Miyamoto et
422 al., 2020; Taylor & Ivry, 2011; Tseng et al., 2007). Most empirical data fueling this debate
423 stem from traditional motor adaptation paradigms where explicit and implicit learning co-
424 occur and interact. In these paradigms—visuomotor rotation being a prime example—
425 target error is defined as the disparity between the target and the perturbed cursor, while
426 sensory prediction error is the disparity between the predicted and actual cursor. Both
427 types of error are sensory (specifically, visual) in nature, yet they differ due to the
428 misalignment between the predicted or desired cursor direction and the target direction,
429 which is induced by explicit learning (Taylor et al., 2014).

430 By employing the error-clamp paradigm, our study was able to isolate implicit learning,
431 thereby eliminating potential confounds from explicit learning. Interestingly, in this
432 paradigm, the target error and sensory prediction error effectively refer to the same visual
433 discrepancy, as both the predicted and target directions are aligned. Despite this,
434 classical state-space models, which utilize this visual error, fail to account for the nuanced
435 features of implicit adaptation (Tsay, Kim, et al., 2022). In contrast, our PEA model
436 reframes the perturbing cursor as a visual cue influencing the perceptual estimation of
437 hand location, rather than as a source of visual error. The resultant bias in hand estimation
438 from the desired target serves as the actual error signal. This leads us to posit that the
439 error signal driving implicit sensorimotor adaptation is fundamentally perceptual, rather
440 than sensory. From a normative standpoint, this perceptual error could be construed
441 either as a predictive or performance error (Albert et al., 2022), but importantly, it is not
442 tied to a specific modality (i.e., vision or proprioception). Instead, it directly pertains to the
443 perceptual estimate that is crucial for task execution, i.e., bringing the hand to the target.

Perceptual Error Drives Implicit Adaptation

444 The concept of perceptual error-driven learning can be extrapolated to various motor
445 adaptation paradigms, including those involving explicit learning. For instance, in
446 visuomotor rotation tasks, explicit learning manifests as a deviation in the aiming direction
447 from the visual target, whereas implicit learning manifests as a further deviation the actual
448 hand position from this aiming direction (Taylor et al., 2014). Even in the presence of
449 explicit learning, the perturbed cursor continues to bias the perceptual estimate of the
450 hand, thereby potentially driving implicit adaptation. In this scenario, the perceptual error
451 is defined as the difference between the perceptual estimate of the hand and the altered
452 aiming direction, which serves as the new "target" when explicit learning is in play. Our
453 PEA model would predict similar saturation effects in implicit adaptation for this
454 conventional adaptation paradigm, similar to for the error-clamp paradigm. Indeed,
455 evidence from the conventional adaptation paradigm suggests that its implicit adaptation
456 follows either a saturation effect (Bond & Taylor, 2015; Neville & Cressman, 2018) or a
457 concave pattern (Tsay, Haith, et al., 2022) across a range of perturbation sizes.
458 Furthermore, according to the PEA framework, this perceptual error is anchored on the
459 aiming target, thereby naturally predicting that implicit and explicit adaptations should
460 interact in a complementary manner, a notion that aligns with recent theories on their
461 interaction (Albert et al., 2022; Miyamoto et al., 2020). Future research is warranted to
462 further investigate the role of perceptual error in driving implicit learning across diverse
463 motor learning paradigms.

464 Our study provides a new angle on explaining proprioceptive changes during motor
465 adaptation, advocating for a Bayesian cue combination framework. Previously, the
466 change in proprioceptive hand localization during motor adaptation has been ascribed to

Perceptual Error Drives Implicit Adaptation

467 visual-proprioceptive discrepancy-induced recalibration (Ruttle et al., 2018; Salomonczyk
468 et al., 2013) and/or altered sensory prediction driven by the adapted forward internal
469 model (Mostafa et al., 2019; 't Hart & Henriques, 2016). To dissect these components,
470 researchers have often compared proprioceptive localization in actively moved (Tsay et
471 al., 2020) versus passively placed (passive localization, e.g., Experiment 3) hands during
472 adaptation, attributing the smaller bias in passive localization to recalibration alone. The
473 difference between the two is then considered to reflect altered sensory prediction due to
474 motor adaptation (Mostafa et al., 2019; Rossi et al., 2021). But these conceptual divisions
475 lack computational models for validation. For instance, researchers have proposed that
476 proprioceptive recalibration in visuomotor adaptation is either a fixed proportion (e.g.,
477 20%) of the visual-proprioceptive discrepancy (Henriques & Cressman, 2012; Ruttle et
478 al., 2021) or largely invariant (Modchalingam et al., 2019). In fact, cross-sensory
479 calibration typically follows the Bayesian principle, as shown in other task paradigms other
480 than motor adaptation (Stetson et al., 2006; Wozny & Shams, 2011). Our Experiment 3
481 shows that proprioceptive recalibration exhibits a concave, instead of invariant or
482 proportional, dependency to visual perturbation size, a finding follows the Bayesian
483 principles of cue combination. Our results also confirm that the critical cue for passive
484 localization is the biased perceived hand position (\hat{x}_{Hand}) fueled by adaptation.
485 The same Bayesian framework applies to active localization, though this time \hat{x}_{Hand} is to
486 be combined with the proprioceptive cue from the adapted hand. In this sense, active
487 localization indeed serves as a multifaceted reflection of both the internal model and
488 proprioceptive recalibration (Mostafa et al., 2019; Rossi et al., 2021). Specifically, the
489 proprioceptive cue continuously drifts by the adapted internal model, while the perceived

Perceptual Error Drives Implicit Adaptation

490 hand position encapsulates the effects of proprioceptive recalibration. During the initial
491 stages of perturbation, the immediate negative bias in active localization is predominantly
492 attributable to rapid proprioceptive recalibration. This is evidenced by a sudden shift in
493 the estimated hand position (\hat{x}_{Hand} ; Figure 4A), occurring before the internal model has
494 had sufficient time to adapt.

495 Then, why does active localization in traditional motor adaptation paradigms yield a
496 largely stable bias (Ruttle et al., 2016, 2021)? We postulate that the rapid explicit learning
497 leads to a quick asymptotic adaptation, while previous investigations have predominantly
498 measured active localization after adaptation has plateaued (Henriques & Cressman,
499 2012; Modchalingam et al., 2019; Mostafa et al., 2019; Salomonczyk et al., 2011, 2013;
500 Tsay, Kim, et al., 2021). Consequently, these studies may overlook the evolving effect of
501 the adaptation. In contrast, the gradual nature of implicit adaptation provides a unique
502 opportunity to uncover the underlying mechanisms governing changes in proprioception
503 during the adaptation process.

504 Notably, our model aligns with previous findings that show a positive correlation between
505 proprioceptive recalibration and motor adaptation based on individual differences (Ruttle
506 et al., 2021; Salomonczyk et al., 2013; Tsay, Kim, et al., 2021). Unlike existing theories
507 that posit proprioceptive recalibration either as a component of (Modchalingam et al.,
508 2019; Mostafa et al., 2019; Ruttle et al., 2021) or a driver for implicit adaptation (Tsay,
509 Kim, et al., 2022), our PEA model provides a mechanistic and empirically testable
510 framework. It posits that the misestimation of hand position (\hat{x}_{Hand}) —induced by the
511 recent perturbation—serves as the driving factor for both implicit adaptation and changes
512 in proprioception. This misestimation is perturbation-dependent, resulting in both implicit

Perceptual Error Drives Implicit Adaptation

513 adaptation and proprioceptive recalibration exhibiting a concave profile relative to
514 perturbation size. Updated on a trial-by-trial basis, this misestimation exerts immediate
515 effects, manifesting as an abrupt negative bias (Figure 4A). Additionally, its influence
516 decays rapidly, becoming negligible within three trials (Figure 6C). These converging lines
517 of evidence strongly suggest that perceptual misestimation of hand position is central to
518 the process of proprioceptive recalibration during adaptation.

519 Our findings contribute nuanced perspectives to the modulation of implicit learning rate
520 by factors beyond visual perturbation size. Previous studies have shown that
521 environmental inconsistency -- defined as the inconsistency of visual errors -- reduced
522 the rate (Herzfeld et al., 2014; Hutter & Taylor, 2018) or asymptote (Albert et al., 2021) of
523 implicit adaptation. Baseline motor variance in unperturbed conditions has been shown
524 to increase implicit adaptation rate, proposed as a sign of better exploratory learning (Wu
525 et al., 2014). These studies interpret such phenomena as parametric changes in the
526 learning rate in relation to visual errors, conceptualized as alterations to the *B* parameter
527 in existing models. However, apparent change in learning rate to visual errors does not
528 necessarily signify parametric modification, but may attribute to other factors that
529 influence the use of visual cues (He et al., 2016), such as visual uncertainty in our case.
530 Previous research has also pointed to alternative factors like error discounting based on
531 causal inference of error (Wei & Körding, 2009), proprioceptive uncertainty (Ruttle et al.,
532 2021; Tsay, Kim, et al., 2021), and state estimation uncertainty (He et al., 2016; Wei &
533 Körding, 2010). Our work suggests a shift in perspective: the driving error signal for
534 implicit learning should be considered as perceptual, rather than merely visual. This

Perceptual Error Drives Implicit Adaptation

535 paradigmatic shift could serve as a cornerstone for future research aimed at
536 understanding how learning rates adapt under varying conditions.

537 Our new framework opens avenues for exploring the memory characteristics of implicit
538 learning. Traditional motor adaptation often exhibits 'savings,' or accelerated relearning
539 upon re-exposure to a perturbation (Della-Maggiore & McIntosh, 2005; Huberdeau et al.,
540 2019; Krakauer et al., 2005; Landi et al., 2011). In contrast, implicit adaptation has been
541 found to exhibit a decreased learning rate during re-adaptation (Avraham et al., 2021), a
542 phenomenon attributed to conditioning (Avraham et al., 2021) or associative learning
543 mechanisms (Avraham et al., 2022). Investigating this 'anti-saving' effect will yield insights
544 into the unique memory properties of implicit learning. Although our current PEA model
545 is structured around single-epoch learning and does not directly address this question, it
546 does raise new, testable hypotheses. For example, is the reduced adaptation rate during
547 relearning attributable to a down-weighting of perturbed visual feedback in cue
548 combination, or does it reflect a parametric alteration in the learning rate? Another
549 noteworthy aspect of implicit learning is its remarkably slow decay rate. It has been
550 observed that the number of trials required to washout the implicit adaptation exceeds the
551 number of trials needed to establish it (Avraham et al., 2021; Tsay et al., 2020). In the
552 context of our perceptual error framework, this raises the possibility that washout phases
553 might be governed by state updating involving a distinct set of sensorimotor cues or an
554 alternative updating mechanism, such as memory formation and selection (Oh &
555 Schweighofer, 2019).

556

Perceptual Error Drives Implicit Adaptation

557 **Methods**

558 **Participants**

559 We recruited 115 college students from Peking University (77 females, 38 males, 22.05
560 ± 2.82 years, mean \pm SD). Participants were all right-handed according to the Edinburgh
561 handedness inventory (Oldfield, 1971) and had normal or corrected-to-normal vision.
562 Participants were naïve to the purpose of the experiment and provided written informed
563 consent, which was approved by the Institutional Review Board of the School of
564 Psychological and Cognitive Sciences, Peking University. Participants received monetary
565 compensation upon completion of the experiment.

566 **Apparatus**

567 In Experiment 1, 2 and 4, participants were seated in front of a vertically-placed LCD
568 screen (29.6 x 52.7 cm, Dell, Round Rock, TX, US). They performed the movement task
569 with their right hand, holding a stylus and slide it on a horizontally placed digitizing tablet
570 (48.8 x 30.5 cm, Intuos 4 PTK-1240, Wacom, Saitama, Japan). In Experiment 1, a
571 keyboard was provided to the participants' left hand to enable them to report the direction
572 of visual stimuli in the discrimination task. A customized wooden shelter was placed
573 above the tablet to block the peripheral vision of the right arm. In Experiment 1 and 4,
574 participants placed their chin on a chin rest attached on the wooden shelter to stabilize
575 their head. Their eye movement was recorded by an eye tracker (Tobii pro nano, Tobii,
576 Danderyd Municipality, Sweden) affixed at the lower edge of the screen. The sampling
577 rate was 160-200 Hz for the tablet and 60 Hz for the eye tracker.

Perceptual Error Drives Implicit Adaptation

578 Experiment 3 was conducted using the KINARM planar robotic manipulandum with a
579 virtual-reality system (BKIN Technologies Ltd., Kingston, Canada). Participants seated in
580 a chair and held the robot handles with their left and right hands (Figure 7). The movement
581 task was performed with the right handle and the left handle was used to indicate the
582 perceived direction of right hand in the proprioception test. A semi-silvered mirror was
583 placed below the eye level to block the vision of the hands and the robotic manipulandum;
584 it also served as a display monitor.

585 **Experiment 1: measuring visual uncertainty in error-clamp adaptation**

586 Eighteen among twenty participants finished the reaching with clamped error feedback
587 and visual discrimination task in 3 consecutive days, two participants withdrew during the
588 experiment. Participants made reaching movement by sliding the stylus from a start
589 position at the center of the workspace to towards a target (Figure 6A). The start position,
590 the target, and the cursor were represented by a gray dot, a blue cross and a white dot
591 on the screen, respectively. All these elements had a diameter of 5mm. The procedure of
592 the motor and visual discrimination task is illustrated in Figure 2A. To initiate a trial,
593 participants moved the cursor into the start position. Following an 800ms holding period,
594 a target appeared 10 cm away in twelve o'clock direction and participants were instructed
595 to slide through the target rapidly while maintaining a straight hand trajectory. The trial
596 terminated when the distance between the hand and the start position exceeded 10 cm,
597 regardless of whether the target was hit. A warning message, "too slow", would appear
598 on the screen if participants failed to complete the trial within 300 ms after initiating the
599 movement. Each practice day began with 60 standard reaching trials, during which
600 veridical feedback about hand location was provided by the cursor. The target would

Perceptual Error Drives Implicit Adaptation

601 change from blue to green if the cursor successfully passed through it. In subsequent
602 visual clamp trials, the cursor moved along a predetermined direction set by the
603 perturbation angle, while its position was updated in real-time based on the hand's
604 location. The cursor's distance from the start position was equal to the distance between
605 the hand and the start position until the end of the trial.

606 Following each trial, the cursor remained frozen at its final position for an additional 800
607 ms before disappearing. The visual discrimination task commenced 1000 ms thereafter.
608 A yellow reference point, located 10 cm from the start position, was displayed for 150 ms
609 near the cursor's final position (Figure 2A & Figure 6A). Subsequently, all visual stimuli,
610 except for the blue cross at the start position, were removed from the screen. Participants
611 were then required to judge whether the reference point was situated in a clockwise (CW)
612 or counterclockwise (CCW) direction relative to the cursor's final position and to report
613 their judgment by pressing a key on the keyboard. Participants were informed that they
614 no longer controlled the direction of cursor movement during the task. They were
615 instructed to fixate their gaze on either the start position or the blue cross during the motor
616 task, while actively ignoring the white cursor. During the discrimination task, they were
617 required to maintain their gaze on the blue cross. Eye movements were monitored in real-
618 time using an eye tracker. Participants received a warning if their gaze was detected
619 outside a 75-pixel-wide band-shaped region centered on the line of gaze four consecutive
620 times during the experiment (Figure S1).

621

622 ----- insert Figure 6 here -----

623

Perceptual Error Drives Implicit Adaptation

624 In each trial, the angular deviation between the error-clamped cursor and the reference
625 point was determined using a PEST procedure (Lieberman & Pentland, 1982). Figure 6C-
626 D illustrates the evolution of the deviation angle and step size for an exemplary participant
627 experiencing a -16° perturbation. In each round, the deviation commenced at 30°
628 (indicated by yellow points in Figure 6C-D) and was altered by one step size following
629 each trial. The initial step size was set at 10° and was halved whenever the direction
630 judgment changed (i.e., from "CW" to "CCW" or vice versa). For a specific perturbation
631 angle, the initial deviation always started from the CW direction for the first round and
632 flipped the direction at the beginning of the next round. A round terminated either when
633 the step size fell below a predefined criterion (indicated by the red line in Figure 6D) or
634 when the trial count exceeded 30. Six perturbation angles were randomly interleaved
635 (Figure 6B), and the experiment concluded when four complete rounds of the PEST
636 procedure had been completed for each perturbation angle. Consequently, the total
637 number of trials varied among participants and across practice days. Additionally, for
638 some perturbation angles, more than four complete rounds could be conducted in a single
639 day.

640 **Experiment 2: Motor adaptation with different perturbation size**

641 Eighty-four participants were randomly allocated into seven groups, each comprising 12
642 individuals. Each group performed a motor adaptation task featuring clamped visual
643 feedback at different perturbation angles: 2° , 4° , 8° , 16° , 32° , 64° , and 95° . As in
644 Experiment 1, participants were instructed to slide rapidly and directly through the target,
645 which was represented by a blue dot rather than a cross. In each trial, the target appeared
646 at one of four possible locations (45° , 135° , 225° or 315° counter-clockwise from the

Perceptual Error Drives Implicit Adaptation

647 positive x-axis). The sequence of target locations was randomized, yet constrained so
648 that all four positions appeared in cycles of four trials. Each group commenced with a
649 baseline session that included 15 cycles of reaching trials with veridical feedback,
650 followed by 15 cycles without visual feedback. Subsequently, during the perturbation
651 session, participants completed 80 cycles of training trials featuring the error-clamped
652 cursor with one perturbation angle (i.e., clamp size), depending on their group assignment.
653 To assess the aftereffect, a session comprising 10 cycles of movement without visual
654 feedback was administered.

655 **Experiment 3: Proprioception test with different perturbation sizes**

656 Eleven participants were recruited for testing their proprioception recalibration. This
657 experiment incorporated two types of trials: reaching trials and proprioception test trials.
658 During the reaching trials, participants were instructed to aim for a target, which could
659 appear at one of three possible locations (25°, 45°, or 65° counter-clockwise from the
660 positive x-axis, as represented by light blue dots in Figure 4C, right panel). The task was
661 similar to those in Experiments 1 and 2, with the key difference being that participants
662 performed the task using KINARM robots (as depicted in Figure 7A). The dimensions and
663 relative distances of the visual stimuli remained consistent with those used in Experiments
664 1 and 2. As in previous experiments, three kinds of visual feedback were provided during
665 different sessions: no visual feedback, veridical feedback, and feedback featuring an
666 error-clamped cursor.

667 In the proprioception test, participants were instructed to hold the robot's right handle and
668 wait for passive movement by the robot to one of six proprioception targets (small red
669 dots in Figure 4C, right panel). These targets were spaced at 10° intervals, ranging from

Perceptual Error Drives Implicit Adaptation

670 20° to 70° counter-clockwise from the positive x-axis, and flanked the three reaching
671 targets. The passive movement lasted for 1,000 ms and followed a straight-line path at a
672 speed consistent with a minimum jerk velocity profile. During this movement, a ring with
673 a 10 cm radius, centered at the start position, was displayed on the screen (depicted as
674 a red arc in Figure 7B). The cursor was also replaced by a ring, its radius expanding as
675 the hand moved toward the proprioception target.

676 After the right hand reached the proprioception target, participants were instructed to
677 maintain their right hand's position. Using the left handle, they were then asked to indicate
678 the perceived location of their right hand. The position of the left handle was mapped to
679 the rotation of a "dial," which was constrained to the target arc.

680

681 ---- insert Figure 7 here ----

682

683 The position of h_p was displayed on the target arc as a small red rectangle (a visual "dial,"
684 as shown in Figure 7B). Participants were instructed to indicate the location of their right
685 hand by moving the red rectangle to the position they perceived as accurate. The final
686 position of h_p was recorded when its angular velocity remained below 1 degree/second
687 for a duration exceeding 1000 ms. The proprioceptive bias was then calculated as the
688 angular deviation between the actual hand position (h_R) and the perceived hand position
689 (h_p).

690 Reaching trials and proprioception test trials were organized into blocks (Figure 4D). Each
691 reaching block consisted of 6 trials, targeting 3 different locations with 2 repetitions each.

Perceptual Error Drives Implicit Adaptation

692 Each reaching block was followed by a proprioception test block consisting of 3 trials. In
693 these test trials, the robot moved the participant's right hand toward a target position near
694 one of the three reaching targets. These test targets were randomly chosen from six
695 possible locations (Figure 4C, right panel). The entire experiment comprised 40 reaching
696 blocks and 40 subsequent proprioception test blocks. The first four reaching blocks
697 provided veridical cursor feedback, the next four offered no cursor feedback, and the
698 remaining 32 featured one of eight possible perturbation sizes ($\pm 10^\circ$, $\pm 20^\circ$, $\pm 40^\circ$, and
699 $\pm 80^\circ$). The size of the perturbation was randomized between blocks.

700 **Experiment 4: upregulating visual uncertainty affects implicit adaptation**

701 Nineteen participants from Experiment 1 completed Experiment 4. The reaching task
702 employed the same setup as in Experiment 1. However, instead of performing perceptual
703 judgments of cursor motion direction, participants engaged in movements with one of
704 three types of cursor feedback: veridical feedback, no feedback, and feedback with
705 clamped perturbation. To assess the influence of visual uncertainty on implicit learning,
706 we modified the cursor to appear blurred in half of the clamped trials. The blurring mask
707 had a diameter of 6.8 mm, and the color intensity decreased from the cursor's center
708 following a two-dimensional Gaussian distribution with $\sigma_x = \sigma_y = 1.4$ mm. As depicted in
709 Figure 5D, participants underwent the same procedures across three consecutive days.
710 Each day consisted of 60 baseline trials, followed by 15 training blocks designed to
711 assess single-trial learning. Within each training block, 12 trials featured an error-clamped
712 cursor, each flanked by a trial without feedback. The difference between two adjacent no-
713 feedback trials served as a measure of single-trial learning at specific perturbation sizes.
714 Each of the 12 perturbation trials was randomly assigned one of 12 possible perturbations,

Perceptual Error Drives Implicit Adaptation

715 comprising two cursor presentations (blurred or clear) and six clamp sizes ($\pm 4^\circ$, $\pm 16^\circ$,
716 $\pm 64^\circ$).

717 **Data analysis**

718 ***Processing of kinematic data***

719 In Experiments 1, 2, and 4, hand kinematic data were collected online at a sampling rate
720 ranging between 160 and 200 Hz and subsequently resampled offline to 125 Hz. The
721 movement direction of the hand was determined by the vector connecting the start
722 position to the hand position at the point where it crossed 50% of the target distance, i.e.,
723 5 cm from the start position.

724 In Experiment 3, hand positions and velocities were directly acquired from the KINARM
725 robot at a fixed sampling rate of 1 kHz. The raw kinematic data were smoothed using a
726 fifth-order Savitzky-Golay filter with a window length of 50 ms. Owing to the high temporal
727 resolution and reliable velocity profiles provided by the KINARM system, the heading
728 direction in Experiment 3 was calculated as the vector connecting the start position to the
729 hand position at the point of peak velocity.

730 ***Psychometric curve***

731 For the visual discrimination task, data of all three days were pooled together, the
732 probability of responding that “the reference point was in the counter-clockwise direction
733 of the cursor” was calculate as p for all angle differences (Figure S2). At each perturbation
734 size, a logistic function was used to fit the probability distribution for individual participants:

735
$$p = 1/(1 + e^{-k(x-x_0)}), \quad (5)$$

Perceptual Error Drives Implicit Adaptation

736 where k is the slope and x_0 is the origin of the logistic function. The visual uncertainty was
737 defined as the angle differences between 25% and 75% of the logistic function:

738
$$\sigma_v = \frac{\log(p_2/(1-p_2)) - \log(p_1/(1-p_1))}{k}, \quad (6)$$

739 where $p_1 = 25\%$ and $p_2 = 75\%$.

740 **Statistical analysis**

741 In Experiment 1, since the visual uncertainty σ_v follows a non-negative skewed
742 distribution among participants, it violated the assumption of the ANOVA test. We thus
743 applied Friedman's nonparametric test to determine whether σ_v changes with the
744 perturbation angle θ . Specifically, σ_v for both positive and negative θ were subjected to
745 Friedman's test separately, with θ serving as the factor. Given the symmetry between
746 positive and negative θ , we pool the data to quantify the linear dependency of σ_v on the
747 absolute θ (Eq. 4). Because σ_v is expected to be always positive, we assume that it is
748 generated from a gamma distribution rather than a normal distribution. Thus, the data
749 was fitted by a generalized linear regression model with the absolute value of θ as
750 independent variable and σ_v as dependent variable.

751 In Experiment 2, the adaptation extent was defined as the mean hand angles in the last
752 10 cycles in the perturbation phase (cycle 101-110). A one-way ANOVA with perturbation
753 size serving as the factor to examine its influence on the adaptation extent. Pairwise post-
754 hoc comparisons were conducted using Tukey-Kramer correction.

755 In Experiment 3, proprioceptive recalibration was quantified as the angular difference
756 between the perceived and actual hand directions. A one-way repeated-measures
757 ANOVA was conducted on the data of first trial, using perturbation size as the within-

Perceptual Error Drives Implicit Adaptation

758 subject factor. Greenhouse-Geisser corrections were applied when the assumption of
759 sphericity was violated (Kirk, 1968). Multiple pairwise comparisons were conducted
760 among different perturbation sizes for the first proprioception test. To determine if the
761 proprioceptive biases were significantly different from zero, one-tailed (left) *t*-tests were
762 conducted separately for the first and third proprioception test trials at each perturbation
763 size.

764 In Experiment 4, the single-trial learning data was subjected to a 2 (visual uncertainty) x
765 3 (perturbation size) repeated-measures ANOVA. Greenhouse-Geisser corrections were
766 applied as above, and the simple main effect of visual uncertainty was tested for each of
767 the three perturbation sizes.

768 **Model fitting and simulations**

769 ***Perceptual Error Adaptation (PEA) model***

770 *Model fitting for adaptation extent as a function of perturbation size.* To fit the adaptation
771 extent data from three different experiments in previous studies in (Kim et al., 2018;
772 Morehead et al., 2017), Eq. 3 and Eq. 4 were modified for simplification. To avoid
773 overfitting of the small dataset, we reduced the number of model parameters by assuming
774 that \hat{x}_{Hand} asymptote to the target direction in the final adaptation trials that are used for
775 computing adaptation extent, thus the retention rate $A \equiv 1$. Insert Eq. 4 to Eq. 3, the
776 asymptote hand angle with different perturbation size is:

$$777 \quad x_p^{asym} = -\left(\frac{\sigma_p/a}{1+(b/a)\theta}\right)^2\theta. \quad (7)$$

778 Two ratio parameters $R_{1,ext} = \sigma_p/a$ and $R_{2,ext} = b/a$ were used in data fitting. Three
779 datasets were fitted separately.

Perceptual Error Drives Implicit Adaptation

780 *Model fitting for trial-by-trial adaptation and proprioception changes.* The trial-by-trial
781 changes of adaptation (Figure 3A) and of proprioceptive localization (Figure 4A) was fitted
782 with Eq. 1, Eq. 2, and Eq. 4 based on the mean performance of all participants. The PEA
783 model only had four free parameters, $\Theta = [\sigma_u, \sigma_p, A, B]$. The slope a and intercept b in Eq.
784 1 were obtained by psychometric tests from Experiment 1 (see statistical analysis). The
785 reported hand position (x_{report} , blue dots in Figure 4A) was based on the proprioceptive
786 cue x_p and the estimated hand \hat{x}_{Hand} from the reaching trial. With the Bayesian cue
787 combination assumption, the reported hand position was biased by x_p with a ratio
788 determined by the variance of x_p and \hat{x}_{Hand} :

$$789 \quad x_{report} = \hat{x}_{Hand} + \frac{\sigma_{Hand}^2}{\sigma_{Hand}^2 + \sigma_p^2} (x_p - \hat{x}_{Hand}), \quad (8)$$

790 where σ_{Hand}^2 and σ_p^2 are the variance of \hat{x}_{Hand} and x_p respectively. To verify if the slope b
791 and intercept a obtained from Experiment 1 are consistent across experiments, they were
792 also estimated by fitting data from Experiment 2 (Figure 3). In this case, the model fitting
793 was performed with 6 free parameters, $\Theta = [\sigma_u, \sigma_p, a, b, A, B]$. The fitted values of a and b
794 are fallen into the 95% CI of estimated parameters in Experiment 1 (purple line in Figure
795 2C, see details in Table S1).

796 The dependence of proprioceptive recalibration on perturbation size (Figure 4B) were
797 simulated by the PEA model with the parameter values estimated from Experiment 2. We
798 assumed that the proprioceptive bias results from the influence of a biased hand estimate
799 (\hat{x}_{Hand}) during adaptation and the influence is quantified as a percentage of its deviation
800 from the true hand location:

$$801 \quad x_{bias} = -(0 - \hat{x}_{Hand})R_p, \quad (9)$$

Perceptual Error Drives Implicit Adaptation

802 where the actual hand location is 0, R_p is the percentage of influence, and \hat{x}_{Hand} is
803 determined by Eq.1. In simulation, R_p varied from 0.05 to 0.8 to estimate the overall
804 dependence of proprioceptive recalibration on perturbation size.

805 *Model fitting and simulation for single-trial learning.* In the single-trial learning paradigm
806 (Figure S5), the average movement direction across trials aligns with the target direction
807 since the visual perturbations are evenly distributed in both directions. Thus, the sensory
808 cue x_u and x_p have the same mean. For modeling single-trial learning, instead of having
809 two separate cues, we assume a combined cue of x_u and x_p to follow $x_{int} \sim N(T, \sigma_{int}^2)$,
810 where T is the target direction, $\sigma_{int}^2 = \frac{\sigma_u^2 \sigma_p^2}{\sigma_u^2 + \sigma_p^2}$ represents the variance of integrated sensory
811 signal of x_u and x_p . Single-trial learning was quantified as the difference between the two
812 null trials before and after the perturbation trial. As the perturbation size in the triplet of
813 trials varied randomly, we assume that the effects of different perturbations are
814 independent. Thus, single-trial learning was modeled as learning from the current
815 perturbation without history effect. It follows the equations modified from Eq. 1 and 2:

816
$$x_{STL} = B(T - \hat{x}_{Hand}) \quad (10)$$

817
$$\hat{x}_{Hand} = W_{int}T + W_v x_v, \text{ with } W_{int} = \frac{1/\sigma_{int}^2}{\sum_j 1/\sigma_j^2}, \quad i, j = int, v, \quad (11)$$

818 where x_v is the visual perturbation, W_{int} and W_v are the weights of the cues, σ_v is the
819 standard deviation of the visual cue specified by Eq.4. Parameter set $\Theta = [\sigma_{int}, a, b, B]$ was
820 fitted to the average data from all participants. Model simulations (Figure 5A) were
821 performed with the same single-trial learning equations. For the clear cursor condition,
822 we used the same parameter values estimated from Experiment 2 (see details in Table

Perceptual Error Drives Implicit Adaptation

823 S1). For the blurred cursor condition, the standard deviation of visual cue was changed
824 to:

825
$$\sigma_{v,blur} = R_v \sigma_v$$
 (12)

826 for the simulation of the increase in visual uncertainty, the ratio R_v varied from 1.1 to 3.

827 **PReMo model**

828 We used the PReMo model to fit the average adaptation extent obtained from Experiment
829 2 (Figure 3C & Figure S3B). Following the study by (Tsay, Kim, et al., 2022), the hand
830 position at trial $n+1$ is:

831
$$x_{p,n+1} = Ax_{p,n} + B(T - x_{per,n}),$$
 (13)

832 where

833
$$x_{per,n} = \beta_p + \frac{\sigma_u^2}{\sigma_u^2 + \sigma_p^2} x_{p,n},$$
 (14)

834
$$\beta_p = -\min\left(\left|\beta_p^{sat}\right|, \left|\eta_p\left(\frac{\sigma_u^2}{\sigma_u^2 + \sigma_v^2} x_{v,n} - \frac{\sigma_u^2}{\sigma_u^2 + \sigma_p^2} x_{p,n}\right)\right|\right).$$
 (15)

835 In data fitting, we used two parameters to represent the ratio between sensory cues: $R_1 =$
836 $\sigma_u^2 / (\sigma_u^2 + \sigma_v^2)$ and $R_2 = \sigma_u^2 / (\sigma_u^2 + \sigma_p^2)$. The data were fitted with the parameter set $\Theta = [R_1,$
837 $\beta_p^{sat}, \eta_p, A, B]$, where β_p^{sat} is the saturation angle, η_p is a scaling factor, A is the
838 retention rate and B is the learning rate. For simulating the proprioceptive localization of
839 the hand (Figure 4C), the parameter values estimated from Experiment 2 were used. The
840 bias of hand estimation in the proprioception trials is determined as: $x_{bias} = -(0 -$
841 $x_{per})R_p$, where ratio R_p varies from 0.05 to 0.8. Thus, similar to the PEA model simulation,

Perceptual Error Drives Implicit Adaptation

842 the proprioceptive bias is a fraction of the bias in the hand estimation from the adaptation
843 trials. Single-trial learning (Figure 5B) was simulated with:

844
$$x_{STL} = B(T - x_{per}), \quad (16)$$

845 where x_{per} is determined by Eq. 12 and Eq. 13. For the clear condition, we used the
846 parameter values estimated from Experiment 2 with PReMo. For the blurred cursor
847 condition, the standard deviation of visual signal $\sigma_{v,blur}$ increases with a ratio R_v , as in Eq.
848 12.

849 **Causal inference model**

850 The causal inference model by (Wei & Kording, 2009) was used to fit the data of
851 Experiment 2 (Figure 3D & Figure S3C). The hand position at trial $n+1$ is updated by
852 learning from visual error at trial n :

853
$$x_{p,n+1} = Ax_{p,n} + B(T - px_{v,n}), \quad (17)$$

854 where A and B are the retention and learning rates, respectively; T is the target direction.
855 Specifically for this model, the learning from error is modulated by the probability (p) of
856 causal attribution of visual error to the action or proprioception:

857
$$p = S \frac{N(x_{v,n}, 0, \sigma^2)}{N(x_{v,n}, 0, \sigma^2) + C}, \quad (18)$$

858 where $x_{v,n}$ is the visual cue at trial n . S and C are the scaling factors, and σ is the standard
859 deviation of the integrated cue combining visual and proprioceptive cues, following

860
$$\sigma^2 = \frac{\sigma_v^2 \sigma_p^2}{\sigma_v^2 + \sigma_p^2} \quad (19)$$

Perceptual Error Drives Implicit Adaptation

861 Thus, the data were fitted with five parameters $\Theta = [\sigma, S, C, A, B]$. For simulating single-trial
862 learning with cursor blurring (Figure 5C), the ratio between σ_v and σ_p is fixed as $1/2$. The
863 single-trial leaning was determined as:

864
$$x_{STL} = B(T - px_v), \quad (20)$$

865 where p is determined by Eq. 18. Put Eq. 12 and Eq. 19 into $\sigma_{blur}^2 = \frac{\sigma_{v,blur}^2 \sigma_p^2}{\sigma_{v,blur}^2 + \sigma_p^2}$, we can
866 calculate the standard deviation of the integrated sensory signal for the blurred cursor:
867
$$\sigma_{blur} = \sigma \sqrt{\frac{5R^2}{R^2+4}}$$
. Simulation was performed with R ranging from 1.1 to 3.

868 **Data fitting**

869 All data were fitted using MATLAB (2022b, MathWorks, Natick, MA, US) build-in function
870 *fmincon* with 100 randomly sampled initial values of parameter sets. See Table S1 and
871 Table S2 for the fitted parameter values and comparisons between different models.

872

873 **Data availability**

874 Data presented in this work are available at:
875 <https://doi.org/10.6084/m9.figshare.24503926.v1>.

Perceptual Error Drives Implicit Adaptation

876 References

877 Albert, S. T., Jang, J., Modchalingam, S., Marius't Hart, B., Henriques, D., Lerner, G.,
878 Della-Maggiore, V., Haith, A. M., Krakauer, J. W., & Shadmehr, R. (2022).
879 Competition between parallel sensorimotor learning systems. *ELife*, 11, e65361.

880 Albert, S. T., Jang, J., Sheahan, H. R., Teunissen, L., Vandevoorde, K., Herzfeld, D. J.,
881 & Shadmehr, R. (2021). An implicit memory of errors limits human sensorimotor
882 adaptation. *Nature Human Behaviour*, 1–15.

883 Avraham, G., Morehead, J. R., Kim, H. E., & Ivry, R. B. (2021). Reexposure to a
884 sensorimotor perturbation produces opposite effects on explicit and implicit
885 learning processes. *PLoS Biology*, 19(3), e3001147.

886 Avraham, G., Taylor, J. A., Breska, A., Ivry, R. B., & McDougle, S. D. (2022). Contextual
887 effects in sensorimotor adaptation adhere to associative learning rules. *ELife*, 11,
888 e75801.

889 Berniker, M., & Kording, K. (2008). Estimating the sources of motor errors for adaptation
890 and generalization. *Nature Neuroscience*, 11(12), 1454–1461.

891 Berniker, M., & Kording, K. (2011). Bayesian approaches to sensory integration for motor
892 control. *Wiley Interdisciplinary Reviews. Cognitive Science*, 2(4), 419–428.

893 Bond, K. M., & Taylor, J. A. (2015). Flexible explicit but rigid implicit learning in a
894 visuomotor adaptation task. *Journal of Neurophysiology*, 113(10), 3836–3849.

895 Burge, J., Ernst, M. O., & Banks, M. S. (2008). The statistical determinants of adaptation
896 rate in human reaching. *Journal of Vision*, 8(4), 1–19.

Perceptual Error Drives Implicit Adaptation

897 Cheng, S., & Sabes, P. N. (2006). Modeling sensorimotor learning with linear dynamical
898 systems. *Neural Computation*, 18(4), 760–793.

899 Cressman, E. K., & Henriques, D. Y. P. (2009). Sensory recalibration of hand position
900 following visuomotor adaptation. *Journal of Neurophysiology*, 102(6), 3505–3518.

901 Della-Maggiore, V., & McIntosh, A. R. (2005). Time course of changes in brain activity
902 and functional connectivity associated with long-term adaptation to a rotational
903 transformation. *Journal of Neurophysiology*, 93(4), 2254–2262.

904 Donchin, O., Francis, J. T., & Shadmehr, R. (2003). Quantifying generalization from trial-
905 by-trial behavior of adaptive systems that learn with basis functions: theory and
906 experiments in human motor control. *The Journal of Neuroscience: The Official
907 Journal of the Society for Neuroscience*, 23(27), 9032–9045.

908 He, K., Liang, Y., Abdollahi, F., Bittmann, M. F., Körding, K., & Wei, K. (2016). The
909 statistical determinants of the speed of motor learning. *PLoS Computational
910 Biology*, 12(9), e1005023.

911 Henriques, D. Y. P., & Cressman, E. K. (2012). Visuomotor adaptation and proprioceptive
912 recalibration. *Journal of Motor Behavior*, 44(6), 435–444.

913 Herzfeld, D. J., Vaswani, P. A., Marko, M. K., & Shadmehr, R. (2014). A memory of errors
914 in sensorimotor learning. *Science*, 345(6202), 1349–1353.

915 Huberdeau, D. M., Krakauer, J. W., & Haith, A. M. (2019). Practice induces a qualitative
916 change in the memory representation for visuomotor learning. *Journal of
917 Neurophysiology*, 122(3), 1050–1059.

Perceptual Error Drives Implicit Adaptation

918 Hutter, S. A., & Taylor, J. A. (2018). Relative sensitivity of explicit reaiming and implicit
919 motor adaptation. *Journal of Neurophysiology*, 120(5), 2640–2648.

920 Izawa, J., & Shadmehr, R. (2011). Learning from sensory and reward prediction errors
921 during motor adaptation. *PLoS Computational Biology*, 7(3), e1002012.

922 Kim, H. E., Morehead, J. R., Parvin, D. E., Moazzezi, R., & Ivry, R. B. (2018). Invariant
923 errors reveal limitations in motor correction rather than constraints on error
924 sensitivity. *Communications Biology*, 1(1), 19.

925 Kirk, R. (1968). *Experimental design: Procedures for the behavioral sciences* (Vol. 1–f).
926 Brooks/Cole.

927 Klein, S. A., & Levi, D. M. (1987). Position sense of the peripheral retina. *JOSA A*, 4(8),
928 1543–1553.

929 Kording, K., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning.
930 *Nature*, 427(6971), 244–247.

931 Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to visuomotor
932 transformations: consolidation, interference, and forgetting. *The Journal of
933 Neuroscience: The Official Journal of the Society for Neuroscience*, 25(2), 473–
934 478.

935 Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L., & Haith, A. M. (2019). Motor learning.
936 *Comprehensive Physiology*, 9(2), 613–663.

937 Landi, S. M., Baguear, F., & Della-Maggiore, V. (2011). One week of motor adaptation
938 induces structural changes in primary motor cortex that predict long-term memory

Perceptual Error Drives Implicit Adaptation

939 one year later. *The Journal of Neuroscience: The Official Journal of the Society for*
940 *Neuroscience*, 31(33), 11808–11813.

941 Leow, L.-A., Marinovic, W., de Rugy, A., & Carroll, T. J. (2020). Task errors drive
942 memories that improve sensorimotor adaptation. *Journal of Neuroscience*, 40(15),
943 3075–3088.

944 Levi, D. M., Klein, S. A., & Yap, Y. L. (1987). Positional uncertainty in peripheral and
945 amblyopic vision. *Vision Research*, 27(4), 581–597.

946 Lieberman, H. R., & Pentland, A. P. (1982). Microcomputer-based estimation of
947 psychophysical thresholds: the best PEST. *Behavior Research Methods &*
948 *Instrumentation*, 14(1), 21–25.

949 Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy
950 during visuomotor adaptation. *The Journal of Neuroscience: The Official Journal*
951 *of the Society for Neuroscience*, 26(14), 3642–3645.

952 McDougle, S. D., Bond, K. M., & Taylor, J. A. (2015). Explicit and Implicit Processes
953 Constitute the Fast and Slow Processes of Sensorimotor Learning. *The Journal of*
954 *Neuroscience: The Official Journal of the Society for Neuroscience*, 35(26).

955 Mikulasch, F. A., Rudelt, L., & Priesemann, V. (2022). Visuomotor mismatch responses
956 as a hallmark of explaining away in causal inference. *Neural Computation*, 35(1),
957 27–37.

958 Miyamoto, Y. R., Wang, S., & Smith, M. A. (2020). Implicit adaptation compensates for
959 erratic explicit strategy in human motor learning. *Nature Neuroscience*, 23(3), 443–
960 455.

Perceptual Error Drives Implicit Adaptation

961 Modchalingam, S., Vachon, C. M., 't Hart, B. M., & Henriques, D. Y. P. (2019). The effects
962 of awareness of the perturbation during motor adaptation on hand localization.
963 *PloS One*, 14(8), e0220884.

964 Morehead, J. R., Taylor, J. A., Parvin, D. E., & Ivry, R. B. (2017). Characteristics of implicit
965 sensorimotor adaptation revealed by task-irrelevant clamped feedback. *Journal of*
966 *Cognitive Neuroscience*, 29(6), 1061–1074.

967 Mostafa, A. A., 't Hart, B. M., & Henriques, D. Y. P. (2019). Motor learning without moving:
968 proprioceptive and predictive hand localization after passive visuoproprioceptive
969 discrepancy training. *PloS One*, 14(8), e0221861.

970 Neville, K. M., & Cressman, E. K. (2018). The influence of awareness on explicit and
971 implicit contributions to visuomotor adaptation over time. *Experimental Brain*
972 *Research. Experimentelle Hirnforschung. Experimentation Cerebrale*, 236(7),
973 2047–2059.

974 Oh, Y., & Schweighofer, N. (2019). Minimizing Precision-Weighted Sensory Prediction
975 Errors via Memory Formation and Switching in Motor Adaptation. *The Journal of*
976 *Neuroscience: The Official Journal of the Society for Neuroscience*, 39(46), 9237–
977 9250.

978 Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh
979 inventory. *Neuropsychologia*, 9(1), 97–113.

980 Rossi, C., Bastian, A. J., & Therrien, A. S. (2021). Mechanisms of proprioceptive
981 realignment in human motor learning. *Current Opinion in Physiology*, 20, 186–197.

Perceptual Error Drives Implicit Adaptation

982 Ruttle, J. E., Cressman, E. K., 't Hart, B. M., & Henriques, D. Y. P. (2016). Time course
983 of reach adaptation and proprioceptive recalibration during visuomotor learning.
984 *PLoS One*, 11(10), e0163695.

985 Ruttle, J. E., 't Hart, B. M., & Henriques, D. Y. P. (2018). The fast contribution of visual-
986 proprioceptive discrepancy to reach aftereffects and proprioceptive recalibration.
987 *PLoS One*, 13(7), e0200621.

988 Ruttle, J. E., 't Hart, B. M., & Henriques, D. Y. P. (2021). Implicit motor learning within
989 three trials. *Scientific Reports*, 11(1), 1627.

990 Salomonczyk, D., Cressman, E. K., & Henriques, D. Y. P. (2011). Proprioceptive
991 recalibration following prolonged training and increasing distortions in visuomotor
992 adaptation. *Neuropsychologia*, 49(11), 3053–3062.

993 Salomonczyk, D., Cressman, E. K., & Henriques, D. Y. P. (2013). The role of the cross-
994 sensory error signal in visuomotor adaptation. *Experimental Brain Research.*
995 *Experimentelle Hirnforschung. Experimentation Cerebrale*, 228(3), 313–325.

996 Seilheimer, R. L., Rosenberg, A., & Angelaki, D. E. (2014). Models and processes of
997 multisensory cue combination. *Current Opinion in Neurobiology*, 25, 38–46.

998 Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction,
999 and adaptation in motor control. *Annual Review of Neuroscience*, 33, 89–108.

1000 Simani, M. C., McGuire, L. M. M., & Sabes, P. N. (2007). Visual-shift adaptation is
1001 composed of separable sensory and task-dependent effects. *Journal of*
1002 *Neurophysiology*, 98(5), 2827–2841.

Perceptual Error Drives Implicit Adaptation

1003 Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes
1004 with different timescales underlie short-term motor learning. *PLoS Biology*, 4(6),
1005 e179.

1006 Stetson, C., Cui, X., Montague, P. R., & Eagleman, D. M. (2006). Motor-sensory
1007 recalibration leads to an illusory reversal of action and sensation. *Neuron*, 51(5),
1008 651–659.

1009 't Hart, B. M., & Henriques, D. Y. P. (2016). Separating predicted and perceived sensory
1010 consequences of motor learning. *PLoS One*, 11(9), e0163556.

1011 Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning.
1012 *PLoS Computational Biology*, 7(3), e1001096.

1013 Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to
1014 learning in a sensorimotor adaptation task. *The Journal of Neuroscience: The
1015 Official Journal of the Society for Neuroscience*, 34(8), 3023–3032.

1016 Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive
1017 combination of motor primitives. *Nature*, 407(6805), 742.

1018 Tsay, J. S., Avraham, G., Kim, H. E., Parvin, D. E., Wang, Z., & Ivry, R. B. (2021). The
1019 effect of visual uncertainty on implicit motor adaptation. *Journal of
1020 Neurophysiology*, 125(1), 12–22.

1021 Tsay, J. S., Haith, A. M., Ivry, R. B., & Kim, H. E. (2022). Interactions between sensory
1022 prediction error and task error during implicit motor learning. *PLoS Computational
1023 Biology*, 18(3), e1010005.

Perceptual Error Drives Implicit Adaptation

1024 Tsay, J. S., Kim, H. E., Parvin, D. E., Stover, A. R., & Ivry, R. B. (2021). Individual
1025 differences in proprioception predict the extent of implicit sensorimotor adaptation.
1026 *Journal of Neurophysiology*, 125(4), 1307–1321.

1027 Tsay, J. S., Kim, H., Haith, A. M., & Ivry, R. B. (2022). Understanding implicit sensorimotor
1028 adaptation as a process of proprioceptive re-alignment. *ELife*, 11, e76639.

1029 Tsay, J. S., Parvin, D. E., & Ivry, R. B. (2020). Continuous reports of sensed hand position
1030 during sensorimotor adaptation. *Journal of Neurophysiology*, 124(4), 1122–1130.

1031 Tseng, Y., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., & Bastian, A. J. (2007).
1032 Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
1033 *Journal of Neurophysiology*, 98(1), 54.

1034 Wei, K., & Kording, K. (2009). Relevance of error: what drives motor adaptation? *Journal*
1035 *of Neurophysiology*, 101(2), 655–664.

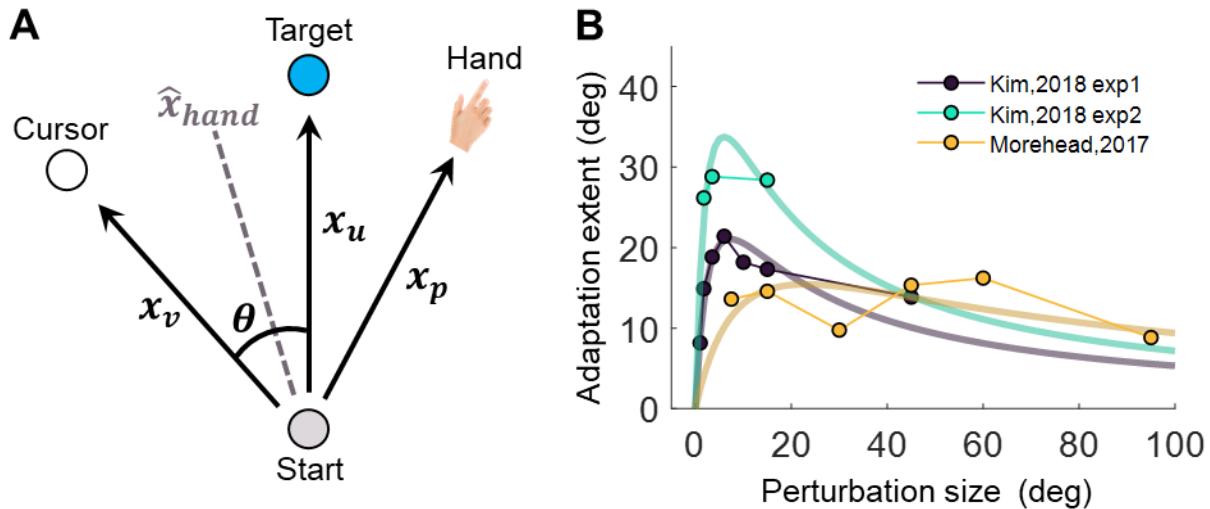
1036 Wei, K., & Kording, K. (2010). Uncertainty of feedback and state estimation determines
1037 the speed of motor adaptation. *Frontiers in Computational Neuroscience*, 4, 11.

1038 Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor
1039 learning. *Nature Reviews. Neuroscience*, 12(12), 739.

1040 Wozny, D. R., & Shams, L. (2011). Recalibration of auditory space following milliseconds
1041 of cross-modal discrepancy. *Journal of Neuroscience*, 31(12), 4607–4612.

1042 Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014).
1043 Temporal structure of motor variability is dynamically regulated and predicts motor
1044 learning ability. *Nature Neuroscience*, 17(2), 312.

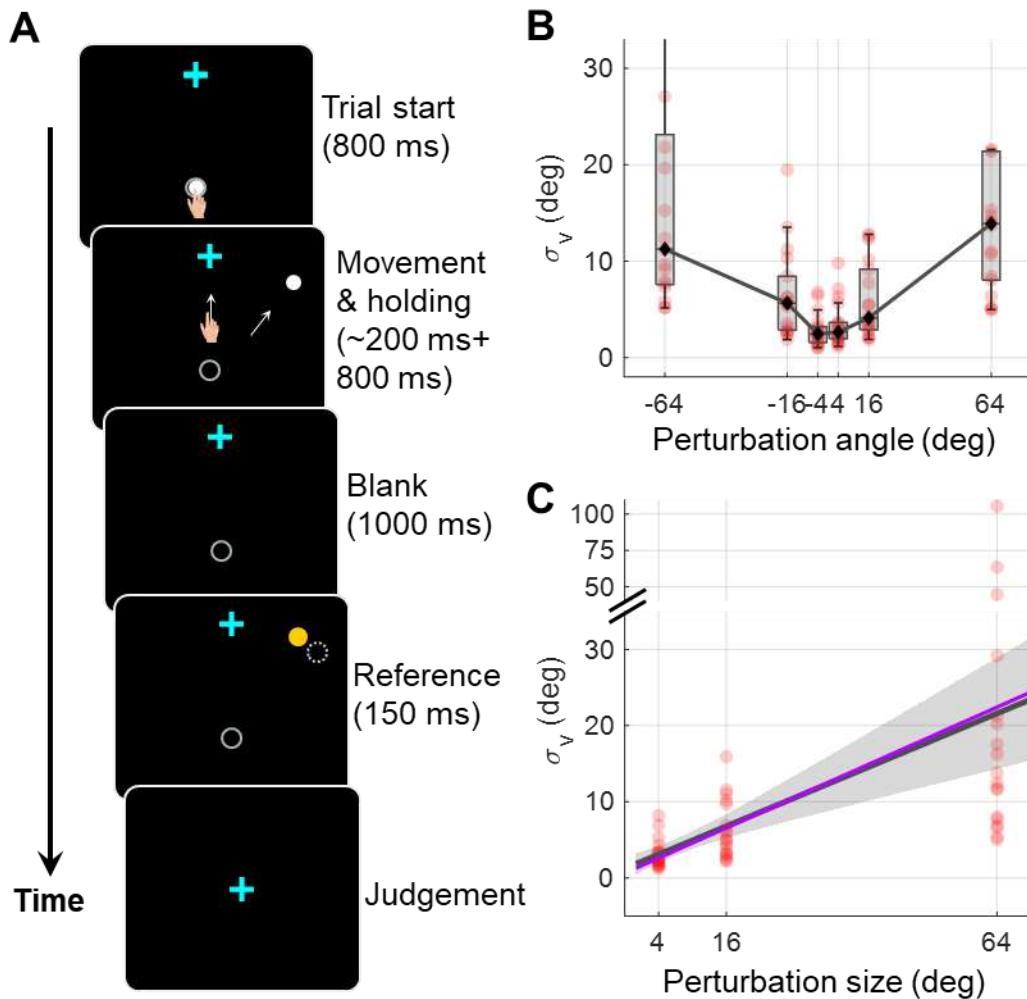
Perceptual Error Drives Implicit Adaptation



1045

1046 **Figure 1.** The Perceptual Error Adaptation (PEA) model for error-clamp adaptation. **(A)**
1047 Illustration of involved sensorimotor cues for estimating hand direction \hat{x}_{Hand} . The
1048 clamped cursor, the hand, and the sensory prediction of the reaching action provide the
1049 visual (x_v), proprioceptive (x_p), and the sensory prediction cue (x_u) of movement direction,
1050 respectively. The hand direction estimate is assumed to be based on maximum likelihood
1051 cue combination. **(B)** Assuming a linear dependency of visual uncertainty on eccentricity,
1052 the PEA model predicts that implicit adaptation extent is a concave function of
1053 perturbation size θ , a pattern qualitatively aligning with previous findings (Kim et al., 2018;
1054 Morehead et al., 2017).

Perceptual Error Drives Implicit Adaptation

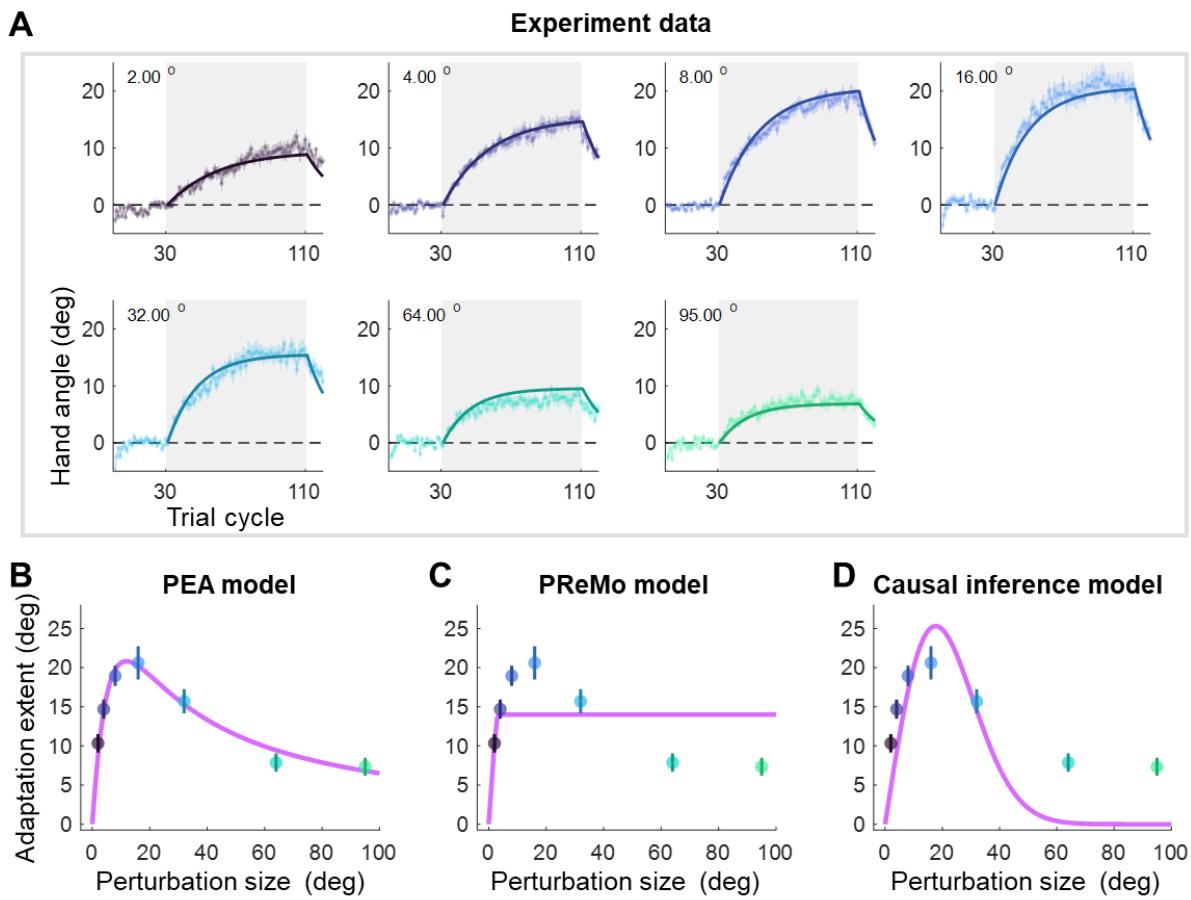


1056 **Figure 2.** Experiment 1 measuring the dependency of visual uncertainty on perturbation
1057 size. **(A)** The 2AFC task for judging the cursor motion direction. In an exemplary trial, the
1058 participant reaches to a target while a direction-clamped cursor moves concurrently,
1059 serving as an error-clamp perturbation. Following a 1000-ms blank masking period, a
1060 reference point appears for 150ms, either clockwise or counterclockwise from the
1061 clamped cursor. The participant is then asked to make a binary judgement regarding
1062 the direction of the clamped cursor relative to the reference point. **(B)** The visual
1063 uncertainty, obtained from psychometrical estimation based on the 2AFC, is plotted as a
1064 function of perturbation size. Both individual estimates (red dots) and group-level statistics

Perceptual Error Drives Implicit Adaptation

1065 (boxplots) are shown. Positive angles correspond to CW rotations, negative angles to
1066 CCW rotations. **(C)** Collapsing data from both rotation directions, we observe that visual
1067 uncertainty closely follows a linear function of perturbation size. The dark gray line and
1068 its shaded region denote the regression line and its 95% confidence interval, respectively.
1069 The purple line is generated with the values of a and b fitted from data in Experiment 2
1070 with a and b treated as free parameters (See Methods for details).

Perceptual Error Drives Implicit Adaptation



1072 **Figure 3.** Results and model fitting of Experiment 2. **(A)** Implicit adaptation to error clamps
1073 of varying sizes is depicted; colored dot-lines and colored shading area represent the
1074 mean and standard error for each participant group. The light gray area indicates trials
1075 with error-clamp perturbations. Adaptation starts after baseline, gradually asymptotes to
1076 its final extent, and then decays with null feedback during washout. Different perturbation
1077 sizes result in distinct adaptation rates and extents. Group averages and standard error
1078 across participants are shown, along with predictions (colored solid lines) from the PEA
1079 model. **(B)** The adaptation extent (cycle 100-110) exhibits a nonlinear dependency on
1080 perturbation size, conforming to a concave function as prescribed by PEA (purple line).
1081 Color dots and error bars denote the mean and standard error across participants in each

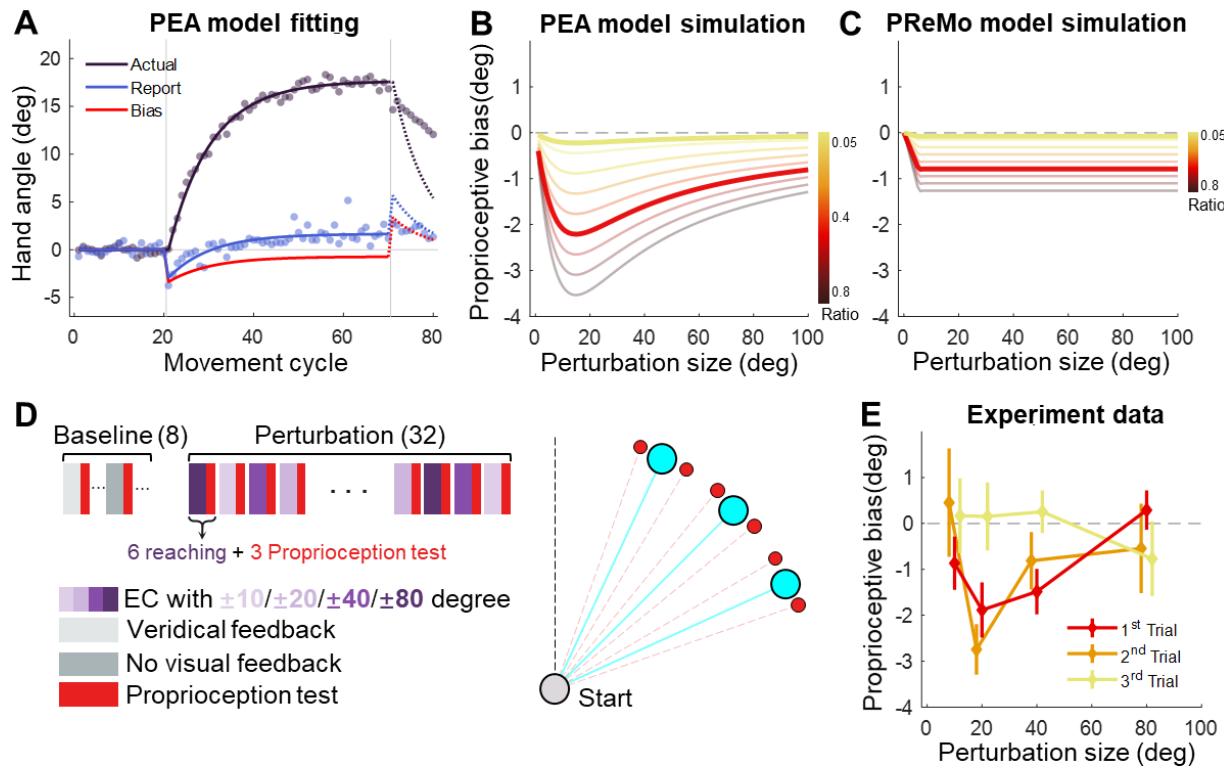
Perceptual Error Drives Implicit Adaptation

1082 group. **(C)-(D)** The same data fitted with the PReMo model and the causal inference

1083 model. See more details, refer to Figure S3.

1084

Perceptual Error Drives Implicit Adaptation



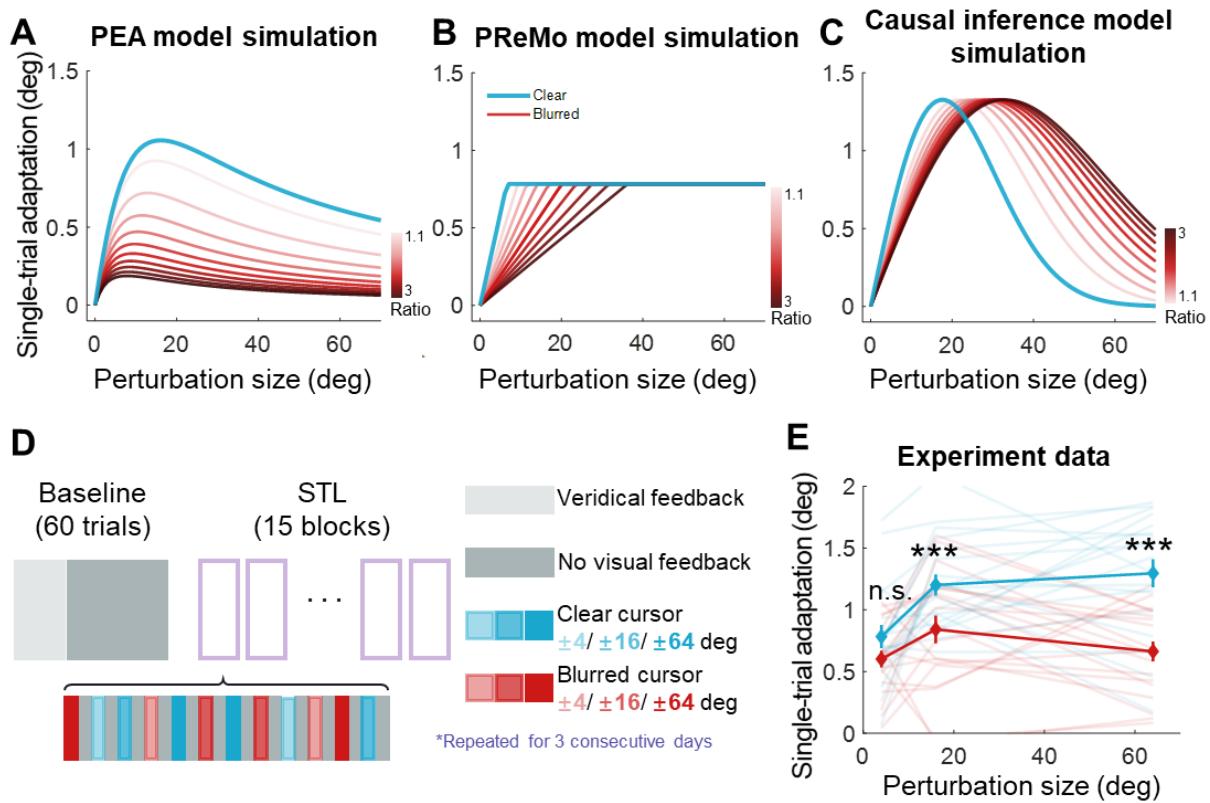
1085

1086 **Figure 4.** Proprioceptive data fitting and results from Experiment 3. **(A)** The data from
 1087 (Tsay et al., 2020) are presented alongside the fitting of the PEA model. Participants
 1088 adapting to a 30° error-clamp perturbation were required to report the location of their
 1089 adapted hand using visual aids of numbers. The report was provided when the hand
 1090 stayed at the end of movement. Initially, the proprioceptive estimate of the hand is biased
 1091 toward the visual cursor (negative in the plot) and then gradually shifts toward the hand
 1092 (positive in the plot). This trend is accurately captured by the PEA model: lines represent
 1093 model fitting results, with the adapted hand direction in indigo and the reported hand
 1094 direction in blue. The hand direction estimate (\hat{x}_{Hand} , Eq.1) following a reach movement
 1095 is shown in red. **(B)-(C)** Model simulations for proprioceptive bias from the PEA and
 1096 PReMo models. Color gradients denote the simulations with varying ratio between the
 1097 weights of \hat{x}_{Hand} and x_p , the two cues available for estimating the hand direction. Note

Perceptual Error Drives Implicit Adaptation

1098 that the two models prescribe distinct profiles for the dependency of proprioception bias
1099 on perturbation size. **(D)** Experimental design. A reaching block, either with or without
1100 visual perturbations, is followed by a proprioception test block. The size and direction of
1101 the visual perturbation vary across blocks. The proprioception test is conducted when the
1102 hand is passively moved to a target (red dots) situated near the reaching target (blue
1103 dots). **(E)** The observed proprioceptive bias as a function of perturbation size. Data from
1104 the three proprioception test trials are separately plotted. The first trial reveals
1105 proprioception biases that form a concave function of perturbation size.

Perceptual Error Drives Implicit Adaptation



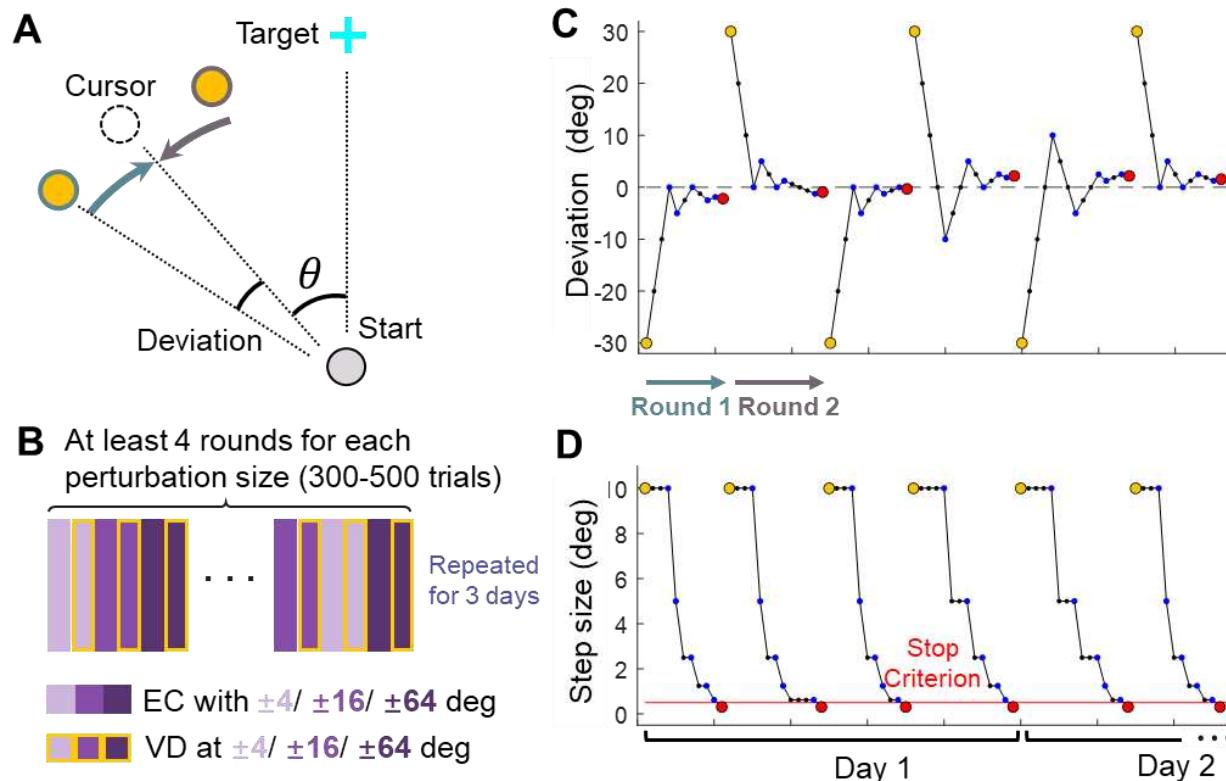
1106

1107 **Figure 5.** Results of Experiment 4. **(A)-(C)** Model simulations for single-trial learning
1108 under different visual uncertainty levels, shown separately for the PEA, PReMo and
1109 causal inference models. Blue curves represent simulated learning based on model
1110 parameters estimated from Experiment 2. Curves with red gradient indicate simulations
1111 with increasing levels of visual uncertainty, color coded by the ratio of visual uncertainty
1112 for the blurred cursor to that of the clear cursor. **(D)** Experimental design. Following 60
1113 baseline trials without perturbations, participants completed 15 mini-blocks of error-clamp
1114 adaptation over three successive days. Each mini-block features 12 different types of
1115 error-clamp perturbations, distinguished by two cursor presentations (blurred or clear
1116 cursor) and six clamp sizes. Each perturbation trial, varied randomly in perturbation type,
1117 is flanked by two no-feedback trials. The change in hand direction between these two no-

Perceptual Error Drives Implicit Adaptation

1118 feedback trials serves to quantify single-trial learning. **(E)** The single-trial learning with the
1119 blurred cursor is less than that with the clear cursor, but the difference is non-monotonic
1120 across perturbation size (** denote $p < 0.001$).

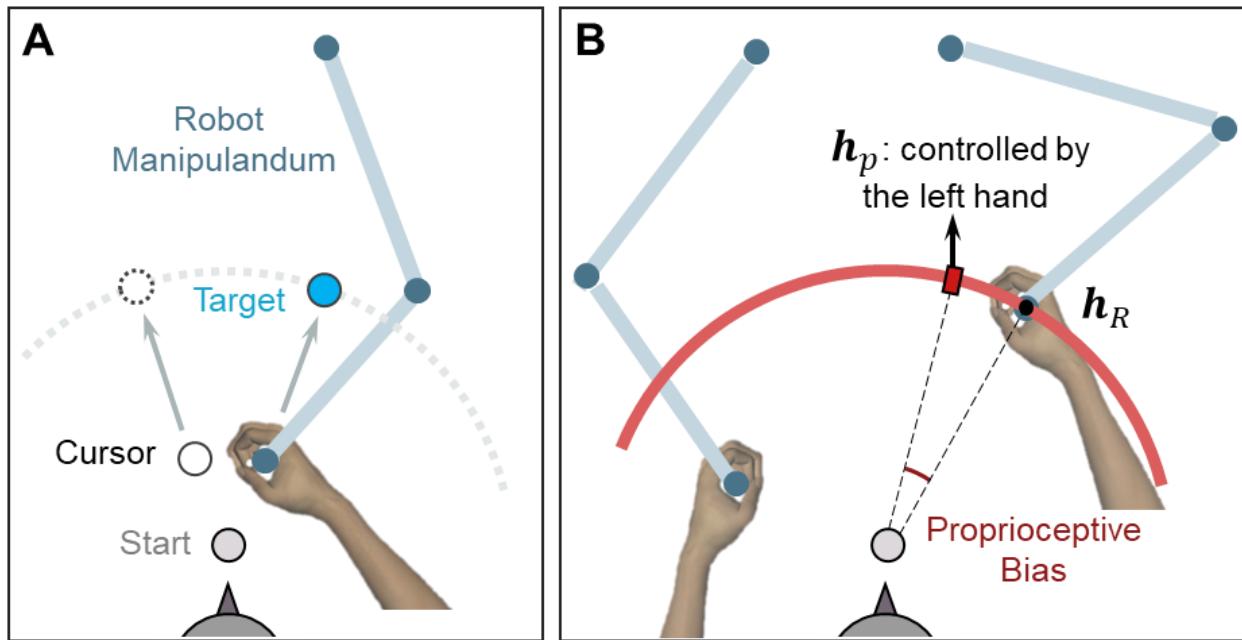
Perceptual Error Drives Implicit Adaptation



1121

1122 **Figure 6.** Design of Experiment 1. **(A)** Top-down view of the setup in visual discrimination
1123 task. The reference point (yellow) was presented either CW or CCW relative to the
1124 clamped cursor (dashed circle), which has a perturbation size θ . **(B)** Trial structure of the
1125 visual discrimination task. Purple rectangles represent error-clamped trials with varying
1126 perturbation size, rectangles with yellow edges represent the ensuing visual
1127 discrimination test for each perturbation size. **(C)-(D)** Exemplary sequences of the
1128 reference point: These sequences illustrate the deviation of the reference point from the
1129 cursor (C) and the changing step size across trials (D), following the PEST algorithm.
1130 Individual trials are represented by blue dots. Yellow and red dots mark the initiation and
1131 termination of each round of trials, respectively. In each round, the reference point starts
1132 on either the CW or CCW side of the cursor; In the subsequent round, it starts on the
1133 opposite side.

Perceptual Error Drives Implicit Adaptation

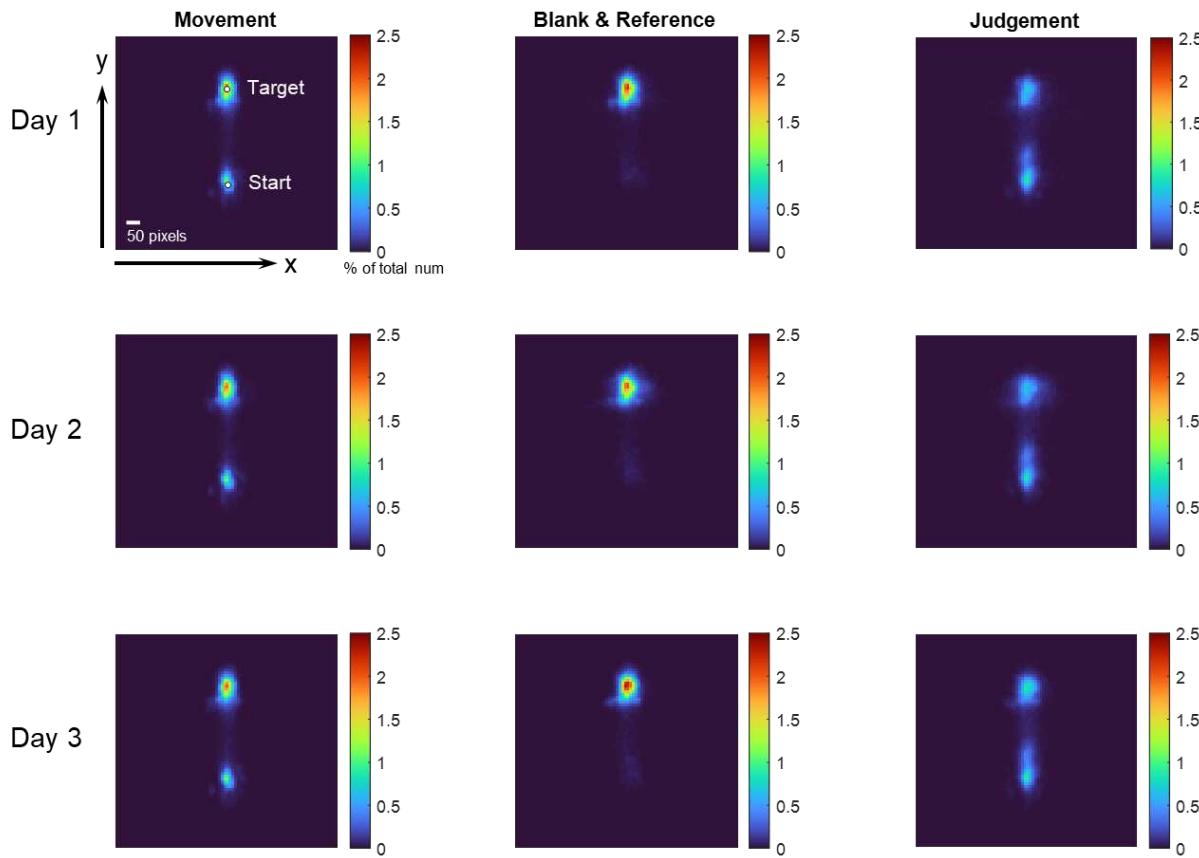


1134

1135 **Figure 7.** Setup for measuring proprioceptive recalibration in Experiment 3. **(A)** Reaching
1136 movement with error-clamped cursor, performed by the right hand holding a robot handle.
1137 **(B)** Passive movement in the proprioception test. The right hand was passively moved to
1138 the unseen target (h_R), depicted here as a small black dot. A red hollow circle with an
1139 expanding radius appears on the screen during passive movement, signaling the
1140 increasing distance between the hand and the start position. Subsequently, participants
1141 used their left hand to report the right-hand location (h_p) by aligning a red rectangle on
1142 the red circle, which is displayed at the target distance.

1143 **Supplementary Materials**

1144



1145

1146 **Figure S1.** Heat map of eye fixations during the 2AFC task in Experiment 1. The screen
1147 is partitioned into 10x10 pixel grids, and the cumulative number of gaze samples in each
1148 grid is recorded. Data from all participants, aggregated across each day of practice, are
1149 presented. The color map signifies the normalized count of gaze samples in each grid.
1150 Data are separately displayed for the three distinct phases of a trial, as delineated by the
1151 columns on the left, middle, and right. These correspond to periods during hand
1152 movement, the appearance of the visual mask and reference point, and the time allotted
1153 for manual response. On average, 95.06%, 89.93%, and 86.55% of gaze samples fall
1154 within the ± 50 -pixel range of the central line during these three phases, respectively.

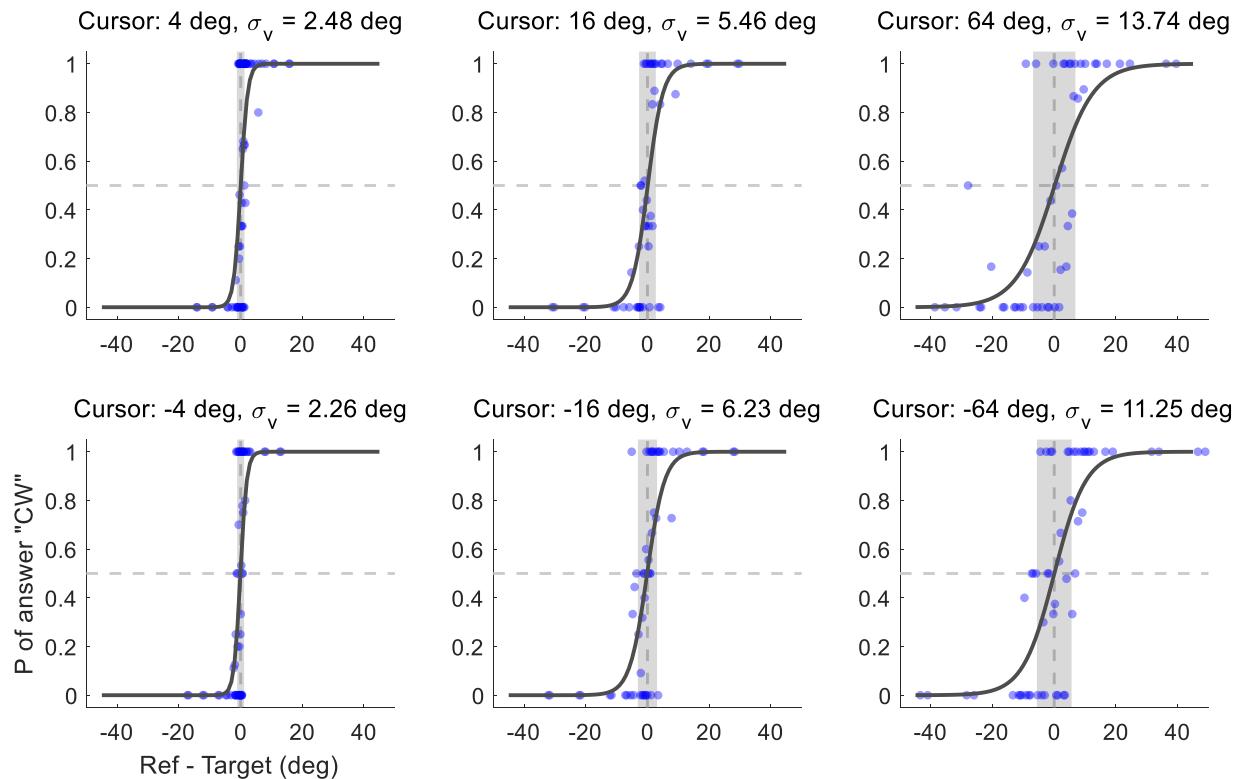
Perceptual Error Drives Implicit Adaptation

1155 These results corroborate that participant adhered to the instructions and refrained from
1156 looking at the cursor during the visual discrimination task.

1157

Perceptual Error Drives Implicit Adaptation

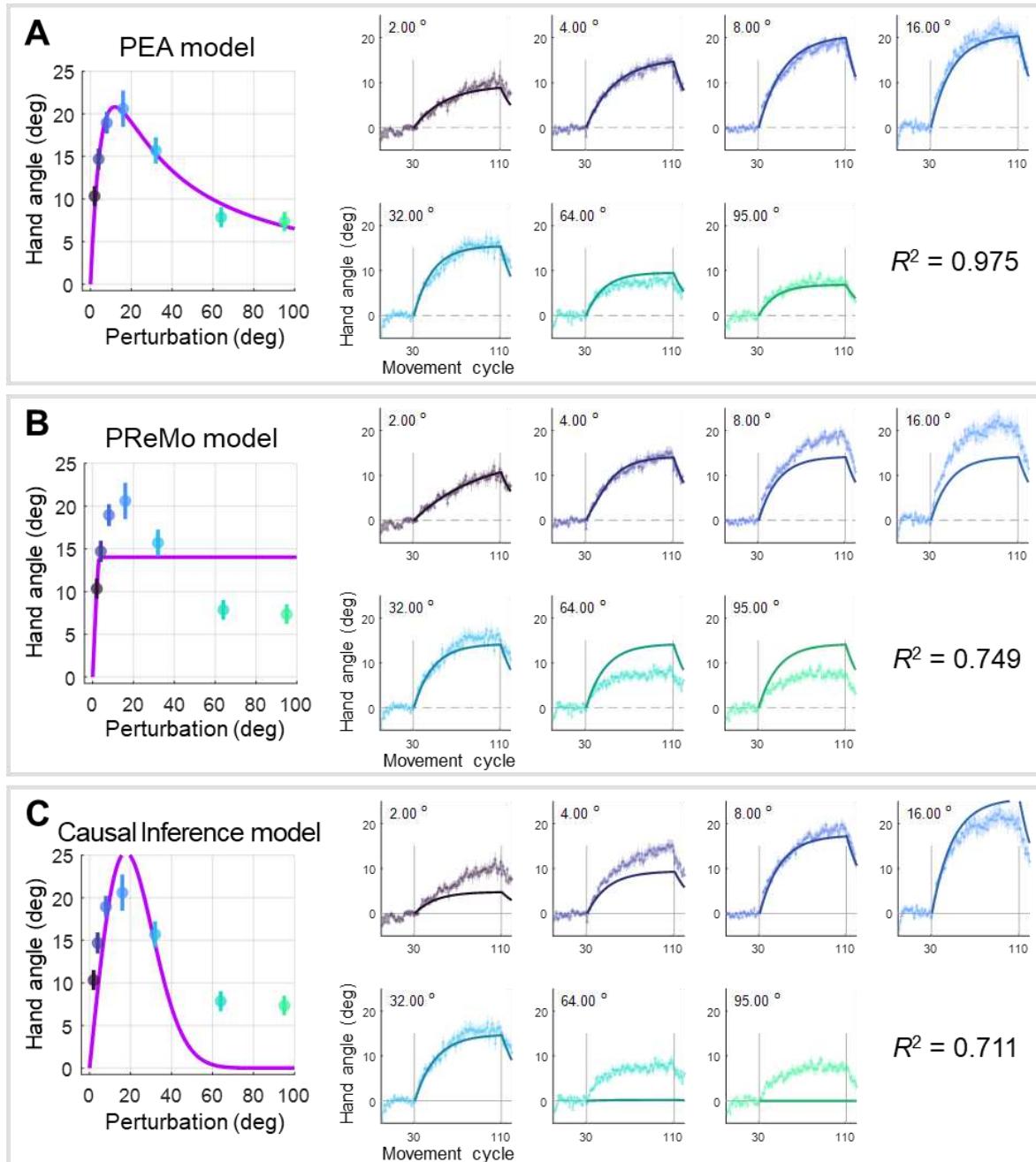
Experiment 1, Exemplary Subject



1158

1159 **Figure S2.** Performance of an exemplary participant in Experiment 1. Six panels display
1160 the psychometric curves corresponding to different error-clamp sizes. The x-axis denotes
1161 the angular deviation between the clamped cursor and the reference point (as depicted
1162 in Figure 6A). A negative value implies that the reference point appears on the
1163 counterclockwise (CCW) side of the clamped cursor. The blue dots represent the
1164 proportion of trials in which the participant reported that "the yellow point is on the
1165 clockwise (CW) side of the clamped cursor" for various angular deviations between these
1166 two. Data were aggregated from all trials across three days of the experiment. The gray-
1167 shaded region represents the interquartile range (25th to 75th percentile) of the
1168 psychometric curve, and the width of this shaded region serves as an indicator of the
1169 amplitude of visual uncertainty.

Perceptual Error Drives Implicit Adaptation



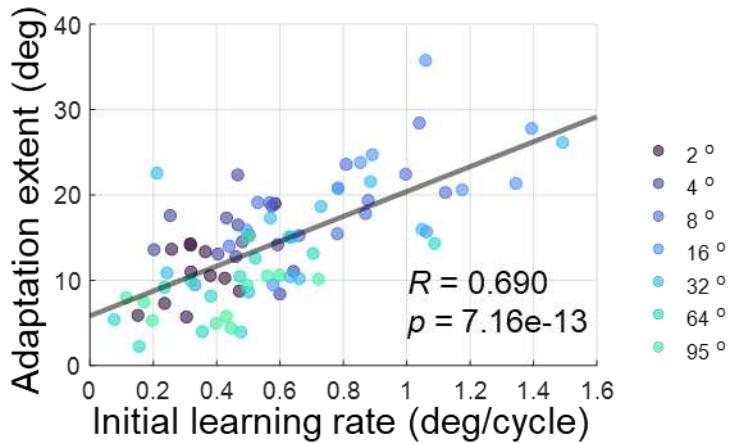
1171 **Figure S3.** Model fitting for observed implicit adaptation in Experiment 2. This
1172 supplementary figure provides a comprehensive evaluation of the three competing
1173 models: the PEA model, the PReMo model, and the causal inference model. **(A)** Results
1174 of PEA Model Fitting: The layout of these plots mirrors that of Figures 3A and 3B, serving
1175 as a direct comparison between the empirical data and the predictions made by the PEA

Perceptual Error Drives Implicit Adaptation

1176 model. **(B)** Results of PReMo Model Fitting: The left panel is a duplicate of Figure 3C,
1177 while the right panel presents the trial-by-trial data fitting. This juxtaposition allows for a
1178 nuanced evaluation of the PReMo model's performance at both the aggregate and
1179 individual trial levels. **(C)** Results of Causal Inference Model: The arrangement of these
1180 plots is consistent with panels (A) and (B), facilitating a straightforward comparison of all
1181 three models. For a detailed assessment of the quality of model fitting and subsequent
1182 model comparisons, please refer to Table S1 and Table S2.

1183

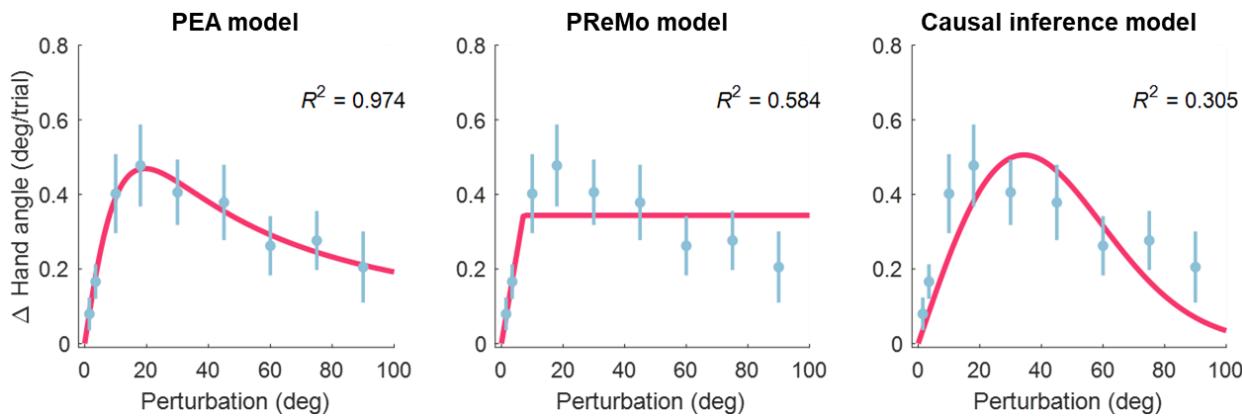
Perceptual Error Drives Implicit Adaptation



1184

1185 **Figure S4.** Correlation between initial learning rate and adaptation extent in Experiment
1186 2. For each participant, the initial learning rate is calculated as the change in hand angle
1187 between the 1st and 10th cycle, divided by 10. The adaptation extent is defined as the
1188 average hand angle across the last 10 adaptation cycles. When pooling data across all
1189 perturbation sizes, a significant correlation is observed between the initial learning rate
1190 and the adaptation extent.

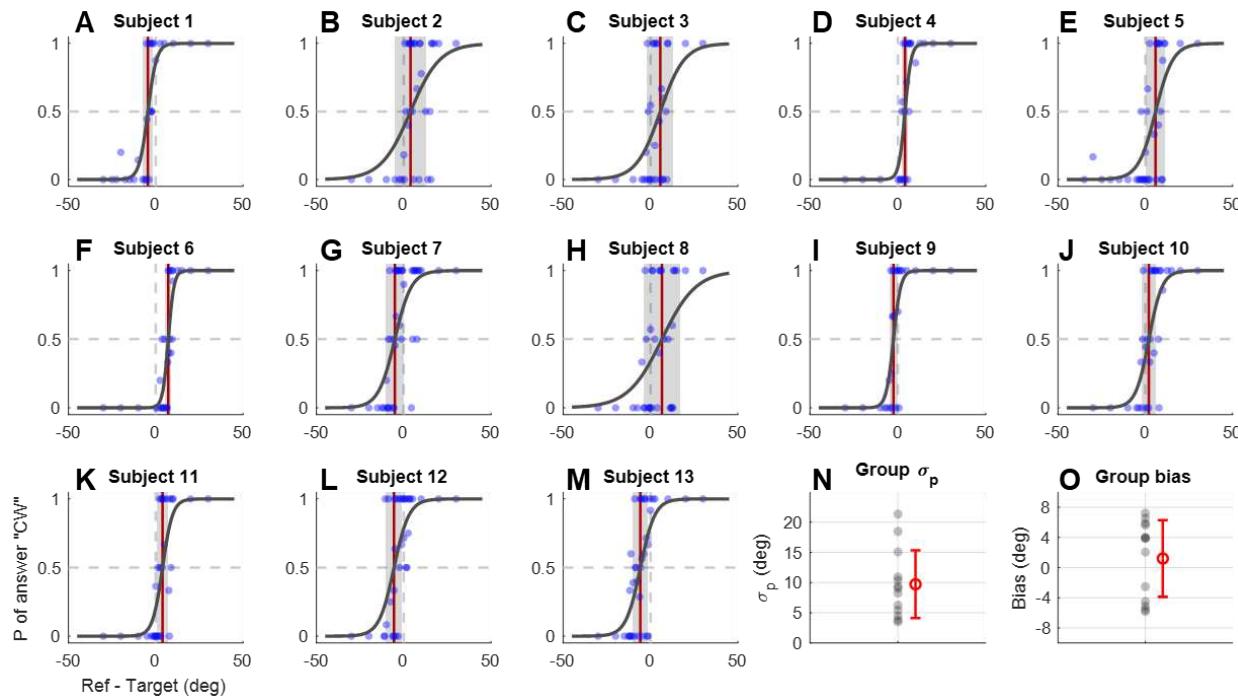
Perceptual Error Drives Implicit Adaptation



1191

1192 **Figure S5.** Model fitting of single-trial learning from Experiment 2 of (Tsay, Avraham, et
1193 al., 2021). Blue dots represent the mean single-trial learning across varying perturbation
1194 size, with error bars represent denoting standard errors across participants. The left,
1195 middle and right panel present the fitting results for the PEA, PReMo, and causal
1196 inference models, respectively. For additional details, refer to the Methods, Results, and
1197 Table S1 & S2.

Perceptual Error Drives Implicit Adaptation



1198

1199 **Figure S6.** Proprioception uncertainty estimation results. Thirteen participants from
1200 Experiment 1 participated in a proprioception discrimination task to measure their
1201 proprioceptive uncertainty in the setting of the error-clamp adaptation. The setup
1202 paralleled that used for estimating visual uncertainty in Experiment 1. In each trial,
1203 participants initially held their hand at the starting position. They were instructed to relax
1204 their arm while the experimenter, seated on the other side of the monitor, pulled their
1205 hand to a proprioceptive target near the straight-ahead target. The arms of the
1206 experimenter and the participant were blocked from the view of the participant. After 0.8
1207 seconds, a yellow reference point appeared. The angular deviation between the
1208 participant's hand and this reference was determined using the same PEST procedure
1209 employed in Experiment 1. Participants indicated, by pressing left or right arrow keys by
1210 their left hand, whether the reference point appeared on the CW or CCW side of their
1211 actual right-hand position. The maximum deviation allowed was 30°, with an initial step

Perceptual Error Drives Implicit Adaptation

1212 size of 10° and a stop threshold of 0.5° . This task was conducted over six runs across
1213 three consecutive days. Similar to Figure S2, panel (A) to (M) show the psychometric
1214 curves for each participant with data from the three days pooled together. (N) and (O)
1215 present the measured proprioceptive uncertainty and bias for all participants (gray dots)
1216 and their mean \pm standard deviation (red error bars).

1217

Perceptual Error Drives Implicit Adaptation

1218 **Table S1.** Model fitting and simulation parameters with the PEA model.

	Data set	Parameters						Goodness-of-fit	
		σ_u (deg)	σ_p (deg)	a	b	A	B	R^2	RMSE (deg)
<i>Adaptation extent fitting (Figure 1B)</i>	Kim 2018, Exp1	--	$\sigma_p/a = 3.406$; $b/a = 0.138$	--	--	--	--	0.773	1.898
	Kim 2018, Exp2	--	$\sigma_p/a = 4.758$; $b/a = 0.168$	--	--	--	--	<0	2.163
	Morehead, 2017	--	$\sigma_p/a = 1.639$; $b/a = 0.044$	--	--	--	--	<0	2.937
<i>Trial-by-trial adaptation fitting</i>	Exp 2, Figure 3	5.048	11.119	*1.853	*0.309	0.970	0.208	0.975	1.222
	Tsay 2019, Figure 4A	5.468	12.128	1.663	0.331	0.971	0.194	0.975	1.217
<i>Single-trial learning fitting</i>	Tsay 2021, Figure S6	$\sigma_{int} = 7.364$	1.179	0.384	--	0.057	--	0.974	0.020
<i>Proprioceptive recalibration simulation</i>	Exp 3, Figure 4B	5.048	11.119	1.853	0.309	0.970	0.208	--	--
<i>Adaptation affected by visual uncertainty simulation</i>	Exp 4, Figure 5	5.048	11.119	1.853	0.309	--	0.208	--	--

1219 * Asterisks represent fixed parameters in specific data fitting. The fixed values equal to

1220 the slope and intercept estimated from Experiment 1.

Perceptual Error Drives Implicit Adaptation

1221 **Table S2.** Model comparisons.

<i>Data set</i>		<i>PEA</i>	<i>PReMo</i>	<i>Causal Inference</i>
<i>Block-design learning fitting Exp 2, Figure 3 & S3</i>	AIC	2255	3543	3283
	R^2	0.975	0.749	0.711
	$RMSE$ (deg)	1.222	3.896	4.151
<i>Single-trial learning fitting Tsay 2021, Figure S5</i>	AIC	-36.90	-15.98	-11.28
	R^2	0.974	0.584	0.305
	$RMSE$ (deg)	0.020	0.103	0.080

1222