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Perceptual Error Drives Implicit Adaptation 

Abstract  23 

The sensorimotor system can recalibrate itself without our conscious awareness, a type 24 

of procedural learning whose computational mechanism remains undefined. Recent 25 

findings on implicit motor adaptation, such as over-learning from minor perturbations and 26 

swift saturation for increasing perturbation size, challenge existing theories based on 27 

sensory errors. We argue that perceptual error, arising from the optimal combination of 28 

movement-related cues, is the primary driver of implicit adaptation. Central to our theory 29 

is the linear relationship between the sensory uncertainty of visual cues and perturbation, 30 

validated through perceptual psychophysics (Experiment 1). Our theory predicts diverse 31 

features of implicit adaptation across a spectrum of perturbation conditions on trial-by-32 

trial basis (Experiment 2) and explains proprioception changes and their relation to visual 33 

perturbation (Experiment 3). By altering visual uncertainty in perturbation, we induced 34 

unique adaptation responses (Experiment 4). Overall, our perceptual error framework 35 

outperforms existing models, suggesting that Bayesian cue integration underpins the 36 

sensorimotor system's implicit adaptation. 37 

  38 
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Introduction 39 

To achieve and sustain effective motor performance, humans consistently recalibrate 40 

their sensorimotor systems to adapt to both internal and external environmental 41 

disturbances (Berniker & Kording, 2008; Shadmehr et al., 2010; Wolpert et al., 2011). For 42 

instance, transitioning to a high-sensitivity gaming mouse, which drives cursor movement 43 

at an accelerated rate compared to a standard computer mouse, may initially result in 44 

decreased performance in computer-related tasks. However, humans are capable of 45 

rapidly adapting to this new visuomotor mapping within a short period of time. While 46 

conscious corrections can facilitate this adaptation process, our sensorimotor system 47 

often times adapts itself implicitly without our conscious efforts (Albert et al., 2021; 48 

Krakauer et al., 2019). 49 

While recent research has intensively examined the interplay between explicit and implicit 50 

learning systems (Albert et al., 2022; Miyamoto et al., 2020), several characteristics of 51 

implicit motor adaptation have emerged that challenge traditional theories. Conventionally, 52 

motor adaptation is conceptualized as error-based learning, in which learning accrues in 53 

proportion to the motor error experienced (Cheng & Sabes, 2006; Donchin et al., 2003; 54 

Thoroughman & Shadmehr, 2000). However, implicit adaptation exhibits an 55 

overcompensation phenomenon where the extent of adaptation surpasses the error 56 

induced by visual perturbations (Kim et al., 2018; Morehead et al., 2017). Additionally, 57 

implicit adaptation manifests a saturation effect; it increases with perturbations but 58 

plateaus across a broad range of larger perturbations (Bond & Taylor, 2015; Kim et al., 59 

2018; Morehead et al., 2017; Neville & Cressman, 2018). These observations of 60 

overcompensation and saturation are incongruent with prevailing state-space updating 61 
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models, which presuppose that incremental learning constitutes only a fraction of the 62 

motor error (McDougle et al., 2015; Smith et al., 2006). Another aspect of implicit 63 

adaptation that remains mechanistically unexplained pertains to its impact on 64 

proprioception. In traditional motor adaptation, proprioception is biased towards the visual 65 

perturbation, maintaining a stable bias throughout the adaptation process (Ruttle et al., 66 

2016, 2021). In contrast, implicit adaptation initially biases proprioceptive localization of 67 

the hand towards the visual perturbation, but this bias gradually drifts in the opposite 68 

direction over time (Tsay et al., 2020). 69 

Causal inference of motor errors has been suggested to explain the discounting of large 70 

perturbations (Wei & Körding, 2009). However, the causal inference account predicts a 71 

decline in adaptation with increasing perturbation, diverging from the observed ramp-like 72 

saturation effect. (Tsay, Kim, et al., 2022) recently synthesized existing evidence to 73 

propose that implicit adaptation reaches an upper bound set by cerebellar error correction 74 

mechanisms, reflected in a ramp-like influence of vision on proprioception (Tsay, Kim, et 75 

al., 2022). While this ramp function could explain the observed saturation, the postulate 76 

of an upper bound on visual influence lacks empirical validation. Some research supports 77 

the idea of saturation in proprioceptive recalibration (Modchalingam et al., 2019), yet other 78 

studies suggest a linear increase with visual perturbations (Rossi et al., 2021; 79 

Salomonczyk et al., 2011). Additionally, current models fall short of quantitatively 80 

capturing the time-dependent shifts in proprioceptive bias associated with implicit 81 

adaptation. 82 

In this study, we put forth a unified model that aims to account for the distinct features of 83 

implicit adaptation, based on the Bayesian combination of movement-related cues. Prior 84 
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models have overlooked the fact that visual uncertainty related to the perturbation 85 

increases with the size of the perturbation as the cursor moves further from the point of 86 

fixation and into the visual periphery (Klein & Levi, 1987; Levi et al., 1987). This is 87 

particularly pertinent for implicit adaptation that is widely investigated by the so-called 88 

error-clamp paradigm, in which participants are instructed to fixate on the target and 89 

disregard the perturbing cursor. Moreover, conventional theories of motor adaptation 90 

attribute motor error to the sensory modality of the perturbation, i.e., visual errors for visual 91 

perturbations (Tsay, Kim, et al., 2022; Wei & Körding, 2009). We propose an alternative: 92 

perceptual error drives implicit adaptation, as the perturbed sensory feedback influences 93 

the perception of the effector and, subsequently, motor adaptation. Through a series of 94 

experiments, we aim to demonstrate that combining eccentricity-induced visual 95 

uncertainty (Experiment 1) with a traditional motor adaptation model (state-space model) 96 

and a classical perception model (Bayesian cue combination) can explain both over-97 

compensation and saturation effects (Experiment 2), as well as the time-dependent 98 

changes in proprioceptive bias (Tsay et al., 2020). Finally, to provide causal evidence 99 

supporting our Perceptual Error Adaptation (PEA) model, we manipulated visual 100 

uncertainty and observed that subsequent adaptation was attenuated for large 101 

perturbations but not for small ones4a finding that contradicts existing models but aligns 102 

well with the PEA model. Across the board, our model outperforms those based on ramp 103 

error-correction (Tsay, Kim, et al., 2022) and causal inference of errors (Wei & Körding, 104 

2009), offering a more parsimonious explanation for the salient features of implicit 105 

adaptation. 106 

 107 
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Results 108 

The perceptual error adaptation model with varying visual uncertainty 109 

We start by acknowledging that the perceptual estimation of effector position is 110 

dynamically updated and influenced by sensory perturbations during motor adaptation. 111 

For implicit adaptation studied via the error-clamp paradigm, participants are required to 112 

bring their hand to the target while ignoring the direction-clamped cursor (Morehead et 113 

al., 2017). Accordingly, the perceptual estimation of the hand movement direction relies 114 

on three noisy sensory cues: the visual cue from the cursor, the proprioceptive cue from 115 

the hand, and the sensory prediction of the reaching action (Figure 1A). Without loss of 116 

generality, we posit that each cue is governed by an independent Gaussian distribution: 117 

the visual cue āă  follows �(Ā, �ă2) , where Ā  is the cursor direction and �ă2  is visual 118 

variance, the proprioceptive cue āĂ  follows �(ā/ÿĀý , �Ă2) , where ā/ÿĀý  is the hand 119 

movement direction and �Ă2 is proprioceptive variance, and the sensory prediction cue āĂ 120 

follows �(ÿ, �Ă2) , where ÿ  is the target direction and  �Ă2  is prediction variance. 121 

Participants aim for the target, expecting their hand to reach it. Using the Bayesian cue 122 

combination framework (Berniker & Kording, 2011), the perceived hand location (ā̂�ÿĀý) 123 

on trial n can be derived: 124 

ā̂�ÿĀý,Ā = ∑ �ÿāÿ,Āÿ , Āÿý/     �ÿ = 1 �ÿ2⁄  ∑ 1 �Ā2⁄Ā , ÿ, Ā = þ, �, ÿ                       (1) 125 

This estimated hand position is derived using maximum likelihood estimation from the 126 

three noisy cues. Given that the clamped cursor deviates the target by Ā, the visual cue 127 āă biases the hand estimate ā̂�ÿĀý towards the cursor9s direction. This deviation from the 128 

target direction ÿ  constitutes the perceptual error, which drives adaptation on the 129 
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subsequent trial n+1 (Eq. 2). Consisting with existing models (Albert et al., 2022; Cheng 130 

& Sabes, 2006; Herzfeld et al., 2014; McDougle et al., 2015), trial-to-trial adaptation is 131 

modeled using a state-space equation: 132 

āĂ,Ā+1 = ýāĂ,Ā + þ(ÿ 2 ā̂�ÿĀý,Ā),                                              (2) 133 

where ý is the retention rate capturing inter-movement forgetting and þ is the learning 134 

rate capturing the proportion of error corrected within a trial. The interplay between 135 

forgetting and learning dictates the overall learning extent, i.e., the asymptote of  āĂ: 136 

āĂÿĀþÿ = 2 þ �ÿ2⁄þ ��2⁄ +(12ý) ∑ 1 �Ā2⁄Ā Ā, Ā = ÿ, �, þ                                              (3) 137 

Thus, the positive influence of perturbation size Ā  on the adaptation extent is 138 

counterbalanced by the rise in visual uncertainty �ă, since sensory uncertainty of various 139 

visual stimuli increases linearly with eccentricity (Klein & Levi, 1987; Levi et al., 1987). As 140 

participants are instructed to fixate on the target, an increase in Ā  lead to increased 141 

eccentricity. Hence, we model this linear increase in visual uncertainty by  142 

�ă = ÿ + ĀĀ,                                                         (4) 143 

where a and b are free parameters. We conducted simulations of implicit adaptation with 144 

varying error clamp size (Ā ). The model simulation closely resembles the saturated 145 

adaptation in three independent experiments (Kim et al., 2018; Morehead et al., 2017). In 146 

fact, our PEA model predicts a concave adaptation pattern, contrasting with the ramp 147 

pattern suggested by the PReMo model (Tsay, Kim, et al., 2022). In Experiment 1, we 148 

aim to validate the assumption of a linear increase in visual uncertainty (Eq. 1); in 149 

Experiment 2, we seek to verify whether implicit adaptation adheres to a concave pattern 150 
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as prescribed by the PEA model. Subsequent experiments, namely Experiments 3 and 4, 151 

will test the model's additional novel predictions concerning changes in proprioception 152 

and the impact of experimentally manipulated visual uncertainty on adaptation, 153 

respectively. 154 

 155 

---- insert Figure 1 here ---- 156 

 157 

Experiment 1: Visual Uncertainty Increases Linearly with Perturbation Size 158 

To quantify visual uncertainty in a standard error-clamp adaptation setting, we employed 159 

psychometric methods. Occluded from seeing their actual hand, participants (n=18) made 160 

repetitive reaches to a target presented 10 cm straight head while an error-clamped 161 

cursor moving concurrently with one of three perturbation sizes (i.e., 4ð, 16ð and 64ð), 162 

randomized trial-by-trial. In alignment with the error-clamp paradigm, participants were 163 

instructed to fixate on the target and to ignore the rotated cursor feedback. Eye-tracking 164 

confirmed compliance with these instructions (Figure S1). Perturbation directions were 165 

counter-balanced across trials, with equal probability of clockwise (CW) and 166 

counterclockwise (CCW) rotation. Post-movement, participants were required to judge 167 

the cursor's rotation direction (CW or CCW) relative to a briefly displayed reference point 168 

(Figure 2A & Figure 6A). Employing this two-alternative forced-choice (2AFC) task and 169 

the Parameter Estimation by Sequential Testing (PEST) procedure (Lieberman & 170 

Pentland, 1982), we derived psychometric functions for visual discrimination (Figures 6 171 

and Figure S2). Our findings reveal a significant increase in visual uncertainty (�ă) with 172 
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perturbation size, for both CW and CCW rotations (Friedman test, CW direction: χ2(2) = 173 

34.11, p = 4e-8; CCW: χ2(2) = 26.47, p = 2e-6). Given the symmetry for the two directions, 174 

we collapsed data from both directions, and confirmed the linear relationship between �ă 175 

and Ā by a generalized linear model: �ă = ÿ + ĀĀ, with ÿ = 1.853 and Ā = 0.309, R2 = 176 

0.255 (F = 51.6, p = 2.53e-9). The 95% confidence intervals (CI) for ÿ and Ā are [0.440, 177 

3.266] and [0.182, 0.435], respectively. The intercept was similar to the visual uncertainty 178 

estimated in a previous study (Tsay, Avraham, et al., 2021). The linear dependency 179 

indicates a striking seven-fold increase in visual uncertainty from a 4ð perturbation to a 180 

64ð perturbation (22.641 ± 6.024ð vs. 3.172 ± 0.453ð).  181 

 182 

---- insert Figure 2 here ---- 183 

 184 

Experiment 2: Visual Uncertainty Modulated Perceptual Error Accounts for 185 

Overcompensation and Saturation in Implicit Adaptation 186 

The critical test of the PEA model lies in its ability to employ the linear function of visual 187 

uncertainty obtained from Experiment 1 to precisely explain key features of implicit 188 

adaptation. Earlier research mostly scrutinized smaller perturbation angles when 189 

reporting saturation effects (Bond & Taylor, 2015; Kim et al., 2018; Morehead et al., 2017). 190 

In contrast, Experiment 2 involved seven participant groups (n = 84) to characterize 191 

implicit adaptation across an extensive range of perturbation sizes (i.e., 2ð, 4ð, 8ð, 16ð, 192 

32ð, 64ð, and 95ð). After 30 baseline training cycles without perturbations, each group 193 

underwent 80 cycles of error-clamped reaching and 10 washout cycles without visual 194 
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feedback (Figure 3A). We replicated key features of implicit adaptation: it incrementally 195 

reached a plateau, and then declined during washout. Small perturbations led to 196 

overcompensation beyond visual errors (for 2ð, 4ð, 8ð, 16ð clamp sizes). Across 197 

perturbation sizes, the faster the early adaptation the larger the adaptation extent (Figure 198 

S4). Critically, the adaptation extent displayed a concave pattern: increasing steeply for 199 

smaller perturbations and tapering off for larger ones (Figure 3B). A one-way ANOVA 200 

revealed a significant group difference in adaptation extent (F(6,83) = 12.108, p = 1.543e-201 

09). Planned contrasts indicated that 8ð, 16ð, and 32ð perturbations did not differ from 202 

each other (all p>0.417, with Tukey-Kramer correction), consistent with earlier evidence 203 

of invariant implicit adaptation (Kim et al., 2018). However, 64ð and 95ð perturbations led 204 

to significantly reduced adaptation extents compared to 8ð (p = 3.194e-05 and 5.509e-06, 205 

respectively), supporting the concave pattern as a more accurate portrayal of implicit 206 

adaptation across varying perturbation size. 207 

Importantly, the PEA model, when augmented with visual uncertainty data from 208 

Experiment 1, precisely predicts this size-dependent adaptation behavior (Figure 3B). 209 

Beyond adaptation extent, the model also accurately predicts the trial-by-trial adaptation 210 

across all seven participant groups, employing a single parameter set  (R2 = 0.975; Figure 211 

3A). The model had only four free parameters (A = 0.974, B = 0.208, �Ă= 11.119o, �Ă = 212 

5.048o; Table S1). Remarkably, both the retention rate A and learning rate B are 213 

consistent with previous studies focusing on visuomotor rotation adaptation (Albert et al., 214 

2022). We also quantified proprioceptive uncertainty (�Ă) in a subset of participants (n=13) 215 

using a similar 2AFC procedure as in Experiment 1. We found that �Ă was 9.737o±5.598o 
216 

(Figure S6), which did not statistically differ from the �Ă value obtained from the model 217 
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fitting (two-tailed t-test, p = 0.391). In summary, the perceptual parameters obtained in 218 

Experiment 1, when incorporated into the PEA model, effectively explain the implicit 219 

adaptation behaviors observed in different participant groups in Experiment 2. 220 

 221 

---- insert Figure 3 here ---- 222 

 223 

In comparative analysis, the PReMo model yields a substantially lower R2 value of 0.749 224 

(Figure S3B). It tends to underestimate adaptation for medium-size perturbations and 225 

overestimate it for large ones (Figure 3C; see also Figure S3B for trial-by-trial fitting). 226 

Another alternative is the causal inference model, previously shown to account for 227 

nonlinearity in motor learning (Mikulasch et al., 2022; Wei & Körding, 2009). Although this 228 

model has been suggested for implicit adaptation (Tsay, Avraham, et al., 2021), it fails to 229 

reproduce the observed concave adaptation pattern (Figures S3C and 3D). The model 230 

aligns well with adaptations to medium-size perturbations (8ð, 16ð, and 32ð) but falls short 231 

for small and large ones, yielding an R2 value of 0.711 (see Figure S3C for trial-by-trial 232 

fits). Model comparison metrics strongly favor the PEA model over both the PReMo and 233 

causal inference models, as evidenced by AIC scores of 2255, 3543, and 3283 for the 234 

PEA, PReMo, and causal inference models, respectively (Table S2). In summary, it is the 235 

eccentricity-induced visual uncertainty that most accurately accounts for the implicit 236 

adaptation profile across a broad spectrum of perturbation sizes, rather than saturated 237 

visual influence or causal inference of error.  238 

 239 
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Experiment 3: Cue Combination Accounts for Changes in Proprioception During Implicit 240 

Adaptation 241 

Motor adaptation not only recalibrates the motor system but also alters proprioception 242 

(Rossi et al., 2021) and even vision (Simani et al., 2007). In traditional motor adaptation 243 

involving both explicit and implicit components, the perceived hand location is initially 244 

biased towards the visual perturbation and subsequently stabilizes (Ruttle et al., 2016). 245 

However, in implicit adaptation, the perceived hand location initially aligns with but later 246 

drifts away from the visual feedback (Tsay et al., 2020). The PReMo model proposes that 247 

this drift comprises two phases: initial proprioceptive recalibration and subsequent visual 248 

recalibration (Tsay, Kim, et al., 2022), however, this assumption is lack of empirical 249 

validation. In contrast, we suggest that the perceived hand location is based on the same 250 

Bayesian cue combination principle. In this framework, the perceived hand location at the 251 

end of each reach is influenced by both the proprioceptive cue (āĂ) and the estimated 252 

hand position under the influence of clamped feedback (ā̂�ÿĀý, Eq. 1).  253 

During early adaptation, ā̂�ÿĀý is biased towards the clamped feedback, while āĂ remains 254 

near the target as the motor system has yet to adapt (Figure 4A). This results in an initial 255 

negative proprioceptive bias. As adaptation progresses, although ā̂�ÿĀý remains biased, 256 āĂ gradually shifts in the positive direction due to adaptation, resulting in an increasingly 257 

positive proprioceptive bias. Remarkably, the PEA model can predict these temporal 258 

changes in proprioception with high accuracy (R2 = 0.982; Figure 4A). 259 

If the hand estimate ā̂�ÿĀý  indeed influences proprioceptive recalibration during 260 

adaptation, our PEA model can make specific quantitative predictions about the 261 

relationship between proprioception changes and visual perturbation size. While 262 
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traditional visuomotor paradigms suggest either invariant (Modchalingam et al., 2019) or 263 

linear increases in proprioceptive recalibration with visual-proprioceptive discrepancy 264 

(Salomonczyk et al., 2011), the PEA model prescribes a concave function in relation to 265 

visual perturbation size (Figure 4B). 266 

To empirically test this prediction, Experiment 3 (n=11) measured participants' 267 

proprioceptive recalibration during implicit adaptation, using a procedure similar to the 268 

error-clamp perturbations in Experiment 2. After each block of six adaptation trials, 269 

participants9 right hands were passively moved by a robotic manipulandum, and they 270 

indicated the perceived direction of their right hand using a visually represented "dial" 271 

controlled by their left hand (Figure 7B). This method quantifies proprioceptive 272 

recalibration during adaptation (Cressman & Henriques, 2009). Each adaptation block 273 

was followed by three such proprioception test trials. The alternating design between 274 

adaptation and proprioception test blocks allowed us to assess proprioceptive biases 275 

across varying perturbation sizes, which consisted of ñ10ð, ñ20ð, ñ40ð, and ñ80ð, to 276 

covering a wide range (Figure 4D).  277 

Our findings confirmed a typical proprioceptive recalibration effect, as the perceived hand 278 

direction was biased towards the visual perturbation (Figure 4E). Importantly, the bias in 279 

the initial proprioception test trial exhibited a concave function of perturbation size. A one-280 

way repeated-measures ANOVA revealed a significant effect of perturbation size 281 

(F(3,30)=3.603,p=0.036), with the 20ð and 40ð conditions displaying significantly greater 282 

proprioceptive bias compared to the 80ð condition (pairwise comparisons: 20o  v.s. 80o, p 283 

= 0.034; 40o v.s. 80o, p = 0.003). The bias was significantly negative for 20ð and 40ð 284 

conditions (p = 0.005 and p = 0.007, respectively with one-tailed t-test), but not for 10ð 285 
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and 80ð condition (p = 0.083 and p = 0.742, respectively). This concave pattern aligns 286 

well with the PEA model's predictions (Figure 4B), further consolidating its explanatory 287 

power. 288 

 289 

---- insert Figure 4 here ---- 290 

 291 

This stands in contrast to the PReMo model, which assumes a saturation for the influence 292 

of the visual cue on the hand estimate (Eq. 12-13). As a result, PReMo's predicted 293 

proprioceptive bias follows a ramp function, deviating substantially from our empirical 294 

findings (Figure 4C). The causal inference model, which mainly focuses on the role of 295 

visual feedback in error correction, lacks the capability to directly predict changes in 296 

proprioceptive recalibration. 297 

Interestingly, we observed that the proprioceptive bias reduced to insignificance by the 298 

third trial in each proprioception test block (one-tailed t-test, all p > 0.18; Figure 4E, yellow 299 

line). This suggests that the influence from implicit adaptation 3 manifested here as trial-300 

by-trial updates of the perceived hand estimate ā̂�ÿĀý 3 decays rapidly over time.  301 

 302 

Experiment 4: Differential Impact of Upregulated Visual Uncertainty on Implicit Adaptation 303 

Across Perturbation Sizes 304 

Thus far, we have presented both empirical and computational evidence underscoring 305 

the pivotal role of perceptual error and visual uncertainty in implicit adaptation. It is crucial 306 

to note, however, that this evidence is arguably correlational, arising from natural 307 
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variations in visual uncertainty as a function of perturbation size. To transition from 308 

correlation to causation, Experiment 4 (n = 19) sought to directly manipulate visual 309 

uncertainty by blurring the cursor, thereby offering causal support for the role of 310 

multimodal perceptual error in implicit adaptation. 311 

By increasing visual uncertainty via cursor blurring, we hypothesized a corresponding 312 

decrease in adaptation across all perturbation sizes. Notably, the PEA model predicts a 313 

size-dependent attenuation in adaptation: the reduction is less marked for smaller 314 

perturbations and more pronounced for larger ones (Figure 5A). This prediction diverges 315 

significantly from those of competing models. The PReMo model, operating under the 316 

assumption of a saturation effect for large visual perturbations, predicts that cursor 317 

blurring will only influence adaptation to smaller perturbations, leaving adaptation to larger 318 

perturbations unaffected (Figure 5B). The causal inference model makes an even more 319 

nuanced prediction: it anticipates that the blurring will lead to a substantial reduction in 320 

adaptation for small perturbations, a diminishing effect for medium perturbations, and a 321 

potential reversal for large perturbations (Figure 5C). This prediction results from the 322 

model's core concept that causal attribution of the cursor to self-action4which directly 323 

dictates the magnitude of adaptation4decreases for small perturbations but increases 324 

for large ones when overall visual uncertainty is elevated. 325 

 326 

---- insert Figure 5 here ---- 327 

 328 
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Starting from the above predictions, Experiment 4 was designed to assess the impact of 329 

elevated visual uncertainty across small (4°), medium (16°), and large (64°) perturbation 330 

sizes. Visual uncertainty was augmented by superimposing a Gaussian blurring mask on 331 

the cursor (Burge et al., 2008). Each participant performed reaching tasks with either a 332 

standard or blurred clamped cursor for a single trial, bracketed by two null trials devoid of 333 

cursor feedback (Figure 5D). These three-trial mini-blocks permitted the quantification of 334 

one-trial learning as the directional difference of movements between the two null trials. 335 

To preclude the cumulative effect of adaptation, perturbation sizes and directions were 336 

randomized across mini-blocks. 337 

Crucially, our findings corroborated the predictions of the PEA model: visual uncertainty 338 

significantly diminished adaptation for medium and large perturbations (16° and 64°), 339 

while leaving adaptation for small perturbations (4°) largely unaffected (Figure 5E). A two-340 

way repeated-measures ANOVA, with two levels of uncertainty and three levels of 341 

perturbation size, revealed a significant main effect of increased visual uncertainty in 342 

reducing implicit adaptation (F(1,18) = 42.255, p = 4.112e-06). Furthermore, this effect 343 

interacted with perturbation size (F(2,36) = 5.391, p = 0.012). Post-hoc analyses 344 

demonstrated that elevated visual uncertainty significantly attenuated adaptation for large 345 

perturbations (p = 2.877e-04, d = 0.804 for 16o; p = 1.810e-05, d = 1.442 for 64o) but 346 

exerted no such effect on small perturbations (p = 0.108, d = 0.500). These empirical 347 

outcomes are not congruent with the predictions of either the PReMo or the causal 348 

inference models (Figure 5B and 5C). This lends compelling empirical support to the 349 

primacy of perceptual error in driving implicit adaptation, as posited by our PEA model.  350 

 351 

 352 
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Discussion 353 

In this study, we elucidate the central role of perceptual error, derived from multimodal 354 

sensorimotor cue integration, in governing implicit motor adaptation. Utilizing the classical 355 

error-clamp paradigm, we uncover that the overcompensation observed in response to 356 

small perturbations arises from a sustained perceptual error related to hand localization, 357 

and the saturation effect commonly reported in implicit adaptation is not an intrinsic 358 

characteristic but is attributable to increasing sensory uncertainty with increasing visual 359 

perturbation eccentricity4a factor hitherto neglected in existing models of sensorimotor 360 

adaptation. Contrary to conventional theories that describe implicit adaptation as either 361 

saturated or invariant (Kim et al., 2018; Tsay, Kim, et al., 2022), our data reveal a concave 362 

dependency of implicit adaptation on visual perturbation size, characterized by 363 

diminishing adaptation in response to larger perturbations. Notably, our Perceptual Error 364 

Adaptation (PEA) model, calibrated using perceptual parameters from one set of 365 

participants, provides a robust account of implicit adaptation in separate groups subjected 366 

to varying perturbations. The model further successfully captures the perceptual 367 

consequences of implicit adaptation, such as the continuous shifts in proprioceptive 368 

localization during the adaptation process (Tsay et al., 2020) and its correlation with 369 

perturbation size. Lastly, we manipulated visual uncertainty independently of perturbation 370 

size and demonstrated that this selectively attenuated adaptation in the context of larger 371 

perturbations while leaving smaller perturbations unaffected. These empirical results, 372 

inconsistent with predictions from existing models, underscore the conceptual and 373 

quantitative superiority of our PEA model. In summary, our findings advocate for a revised 374 
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understanding of implicit motor adaptation, suggesting that it is governed by Bayesian 375 

cue combination-based perceptual estimation of effector localization.  376 

Bayesian cue combination has been established as a foundational principle in various 377 

perceptual phenomena, both intra- and inter-modally (Seilheimer et al., 2014). It has also 378 

been implicated in motor adaptation (Burge et al., 2008; He et al., 2016; Körding & 379 

Wolpert, 2004; Wei & Körding, 2010). However, previous studies have largely focused on 380 

experimentally manipulating sensory cue uncertainty to observe its effects on adaptation 381 

(Burge et al., 2008; Wei & Körding, 2010), similar to our Experiment 4. What has been 382 

largely overlooked is the natural covariance between visual uncertainty and perturbation 383 

size, which, when incorporated into classical state-space models, provides a compelling 384 

explanation for implicit adaptation. 385 

The causal inference framework (Wei & Körding, 2009) fails to adequately predict 386 

sensorimotor changes in implicit adaptation. For instance, it underestimates the 387 

adaptation extent for large perturbations and incorrectly predicts that increasing visual 388 

uncertainty would augment, rather than reduce, adaptation to large perturbations. We 389 

postulate that causal inference is more relevant to motor learning dominated by explicit 390 

processes, such as traditional visuomotor rotations, rather than in implicit adaptations 391 

where cue combination is obligatory. 392 

Similar to our PEA model, the PReMo model also incorporates the integration of multiple 393 

sensory cues. But two models differ fundamentally in their conceptualization of how these 394 

cues contribute to the error signal. The PReMo model posits two intermediate perceptual 395 

variables with Bayesian cue integration: a visual estimate of the cursor and a 396 

proprioceptive estimate of the hand (Tsay, Kim, et al., 2022). The final error signal in 397 
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PReMo is presumed to be a proprioceptive error, not from further Bayesian cue 398 

combination, but from a visual-to-proprioceptive bias that is governed by a predetermined, 399 

ramp-like visual influence that saturates around a 637° visual-proprioceptive discrepancy 400 

(Eq. 13). These assumptions lack empirical validation. Our findings in Experiment 3 401 

indicate that proprioceptive recalibration follows a concave function with respect to visual 402 

perturbation size, contradicting the ramp-like function assumed by PReMo. Moreover, the 403 

presupposed ramp-like visual influence generates a rigid prediction for a ramp-like 404 

adaptation extent profile, which is at odds with the concave adaptation pattern we 405 

observed in Experiment 2 and in a similar study involving trial-by-trial learning (Tsay, 406 

Avraham, et al., 2021). Furthermore, PReMo predicts that increasing visual uncertainty 407 

will selectively reduce adaptation to small perturbations while sparing large ones. This is 408 

inconsistent with our findings in Experiment 4, which demonstrated that increased visual 409 

uncertainty substantially impacted adaptation more to larger perturbations than to small 410 

ones. Lastly, PReMo's reliance on a proprioceptive bias constrains its ability to account 411 

for the temporal shifts in perceived hand location during adaptation (Tsay et al., 2020). In 412 

contrast to PEA's unified approach, PReMo must resort to separate mechanisms of 413 

proprioceptive and visual recalibration at different phases of adaptation to explain these 414 

shifts. In summary, the PReMo model's assumptions introduce limitations that make it 415 

less consistent with empirical observations, particularly concerning the nonlinearities 416 

observed in both motoric and perceptual aspects of implicit adaptation. 417 

Our research contributes to an ongoing debate concerning the driving forces behind error-418 

based motor learning, specifically addressing the question of whether implicit adaptation 419 

is driven by target error or sensory prediction error (Albert et al., 2022; Izawa & Shadmehr, 420 
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2011; Leow et al., 2020; Mazzoni & Krakauer, 2006; McDougle et al., 2015; Miyamoto et 421 

al., 2020; Taylor & Ivry, 2011; Tseng et al., 2007). Most empirical data fueling this debate 422 

stem from traditional motor adaptation paradigms where explicit and implicit learning co-423 

occur and interact. In these paradigms4visuomotor rotation being a prime example4424 

target error is defined as the disparity between the target and the perturbed cursor, while 425 

sensory prediction error is the disparity between the predicted and actual cursor. Both 426 

types of error are sensory (specifically, visual) in nature, yet they differ due to the 427 

misalignment between the predicted or desired cursor direction and the target direction, 428 

which is induced by explicit learning (Taylor et al., 2014).  429 

By employing the error-clamp paradigm, our study was able to isolate implicit learning, 430 

thereby eliminating potential confounds from explicit learning. Interestingly, in this 431 

paradigm, the target error and sensory prediction error effectively refer to the same visual 432 

discrepancy, as both the predicted and target directions are aligned. Despite this, 433 

classical state-space models, which utilize this visual error, fail to account for the nuanced 434 

features of implicit adaptation (Tsay, Kim, et al., 2022). In contrast, our PEA model 435 

reframes the perturbing cursor as a visual cue influencing the perceptual estimation of 436 

hand location, rather than as a source of visual error. The resultant bias in hand estimation 437 

from the desired target serves as the actual error signal. This leads us to posit that the 438 

error signal driving implicit sensorimotor adaptation is fundamentally perceptual, rather 439 

than sensory. From a normative standpoint, this perceptual error could be construed 440 

either as a predictive or performance error (Albert et al., 2022), but importantly, it is not 441 

tied to a specific modality (i.e., vision or proprioception). Instead, it directly pertains to the 442 

perceptual estimate that is crucial for task execution, i.e., bringing the hand to the target. 443 
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The concept of perceptual error-driven learning can be extrapolated to various motor 444 

adaptation paradigms, including those involving explicit learning. For instance, in 445 

visuomotor rotation tasks, explicit learning manifests as a deviation in the aiming direction 446 

from the visual target, whereas implicit learning manifests as a further deviation the actual 447 

hand position from this aiming direction (Taylor et al., 2014). Even in the presence of 448 

explicit learning, the perturbed cursor continues to bias the perceptual estimate of the 449 

hand, thereby potentially driving implicit adaptation. In this scenario, the perceptual error 450 

is defined as the difference between the perceptual estimate of the hand and the altered 451 

aiming direction, which serves as the new "target" when explicit learning is in play. Our 452 

PEA model would predict similar saturation effects in implicit adaptation for this 453 

conventional adaptation paradigm, similar to for the error-clamp paradigm. Indeed, 454 

evidence from the conventional adaptation paradigm suggests that its implicit adaptation 455 

follows either a saturation effect (Bond & Taylor, 2015; Neville & Cressman, 2018) or a 456 

concave pattern (Tsay, Haith, et al., 2022) across a range of perturbation sizes. 457 

Furthermore, according to the PEA framework, this perceptual error is anchored on the 458 

aiming target, thereby naturally predicting that implicit and explicit adaptations should 459 

interact in a complementary manner, a notion that aligns with recent theories on their 460 

interaction (Albert et al., 2022; Miyamoto et al., 2020). Future research is warranted to 461 

further investigate the role of perceptual error in driving implicit learning across diverse 462 

motor learning paradigms. 463 

Our study provides a new angle on explaining proprioceptive changes during motor 464 

adaptation, advocating for a Bayesian cue combination framework. Previously, the 465 

change in proprioceptive hand localization during motor adaptation has been ascribed to 466 
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visual-proprioceptive discrepancy-induced recalibration (Ruttle et al., 2018; Salomonczyk 467 

et al., 2013) and/or altered sensory prediction driven by the adapted forward internal 468 

model (Mostafa et al., 2019; 8t Hart & Henriques, 2016). To dissect these components, 469 

researchers have often compared proprioceptive localization in actively moved (Tsay et 470 

al., 2020) versus passively placed (passive localization, e.g., Experiment 3) hands during 471 

adaptation, attributing the smaller bias in passive localization to recalibration alone. The 472 

difference between the two is then considered to reflect altered sensory prediction due to 473 

motor adaptation (Mostafa et al., 2019; Rossi et al., 2021). But these conceptual divisions 474 

lack computational models for validation. For instance, researchers have proposed that 475 

proprioceptive recalibration in visuomotor adaptation is either a fixed proportion (e.g., 476 

20%) of the visual-proprioceptive discrepancy (Henriques & Cressman, 2012; Ruttle et 477 

al., 2021) or largely invariant (Modchalingam et al., 2019). In fact, cross-sensory 478 

calibration typically follows the Bayesian principle, as shown in other task paradigms other 479 

than motor adaptation (Stetson et al., 2006; Wozny & Shams, 2011). Our Experiment 3 480 

shows that proprioceptive recalibration exhibits a concave, instead of invariant or 481 

proportional, dependency to visual perturbation size, a finding follows the Bayesian 482 

principles of cue combination. Our results also confirm that the critical cue for passive 483 

localization is the biased perceived hand position (ā̂�ÿĀý) fueled by adaptation.  484 

The same Bayesian framework applies to active localization, though this time ā̂�ÿĀý is to 485 

be combined with the proprioceptive cue from the adapted hand. In this sense, active 486 

localization indeed serves as a multifaceted reflection of both the internal model and 487 

proprioceptive recalibration (Mostafa et al., 2019; Rossi et al., 2021). Specifically, the 488 

proprioceptive cue continuously drifts by the adapted internal model, while the perceived 489 
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hand position encapsulates the effects of proprioceptive recalibration. During the initial 490 

stages of perturbation, the immediate negative bias in active localization is predominantly 491 

attributable to rapid proprioceptive recalibration. This is evidenced by a sudden shift in 492 

the estimated hand position (ā̂�ÿĀý; Figure 4A), occurring before the internal model has 493 

had sufficient time to adapt.  494 

Then, why does active localization in traditional motor adaptation paradigms yield a 495 

largely stable bias (Ruttle et al., 2016, 2021)? We postulate that the rapid explicit learning 496 

leads to a quick asymptotic adaptation, while previous investigations have predominantly 497 

measured active localization after adaptation has plateaued (Henriques & Cressman, 498 

2012; Modchalingam et al., 2019; Mostafa et al., 2019; Salomonczyk et al., 2011, 2013; 499 

Tsay, Kim, et al., 2021). Consequently, these studies may overlook the evolving effect of 500 

the adaptation. In contrast, the gradual nature of implicit adaptation provides a unique 501 

opportunity to uncover the underlying mechanisms governing changes in proprioception 502 

during the adaptation process. 503 

Notably, our model aligns with previous findings that show a positive correlation between 504 

proprioceptive recalibration and motor adaptation based on individual differences (Ruttle 505 

et al., 2021; Salomonczyk et al., 2013; Tsay, Kim, et al., 2021). Unlike existing theories 506 

that posit proprioceptive recalibration either as a component of (Modchalingam et al., 507 

2019; Mostafa et al., 2019; Ruttle et al., 2021) or a driver for implicit adaptation (Tsay, 508 

Kim, et al., 2022), our PEA model provides a mechanistic and empirically testable 509 

framework. It posits that the misestimation of hand position (ā̂�ÿĀý) 4induced by the 510 

recent perturbation4serves as the driving factor for both implicit adaptation and changes 511 

in proprioception. This misestimation is perturbation-dependent, resulting in both implicit 512 
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adaptation and proprioceptive recalibration exhibiting a concave profile relative to 513 

perturbation size. Updated on a trial-by-trial basis, this misestimation exerts immediate 514 

effects, manifesting as an abrupt negative bias (Figure 4A). Additionally, its influence 515 

decays rapidly, becoming negligible within three trials (Figure 6C). These converging lines 516 

of evidence strongly suggest that perceptual misestimation of hand position is central to 517 

the process of proprioceptive recalibration during adaptation. 518 

Our findings contribute nuanced perspectives to the modulation of implicit learning rate 519 

by factors beyond visual perturbation size. Previous studies have shown that 520 

environmental inconsistency -- defined as the inconsistency of visual errors -- reduced 521 

the rate (Herzfeld et al., 2014; Hutter & Taylor, 2018) or asymptote (Albert et al., 2021) of 522 

implicit adaptation. Baseline motor variance in unperturbed conditions has been shown 523 

to increase implicit adaptation rate, proposed as a sign of better exploratory learning  (Wu 524 

et al., 2014). These studies interpret such phenomena as parametric changes in the 525 

learning rate in relation to visual errors, conceptualized as alterations to the B parameter 526 

in existing models. However, apparent change in learning rate to visual errors does not 527 

necessarily signify parametric modification, but may attribute to other factors that 528 

influence the use of visual cues (He et al., 2016), such as visual uncertainty in our case. 529 

Previous research has also pointed to alternative factors like error discounting based on 530 

causal inference of error (Wei & Körding, 2009), proprioceptive uncertainty (Ruttle et al., 531 

2021; Tsay, Kim, et al., 2021), and state estimation uncertainty (He et al., 2016; Wei & 532 

Körding, 2010). Our work suggests a shift in perspective: the driving error signal for 533 

implicit learning should be considered as perceptual, rather than merely visual. This 534 
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paradigmatic shift could serve as a cornerstone for future research aimed at 535 

understanding how learning rates adapt under varying conditions. 536 

Our new framework opens avenues for exploring the memory characteristics of implicit 537 

learning. Traditional motor adaptation often exhibits 'savings,' or accelerated relearning 538 

upon re-exposure to a perturbation (Della-Maggiore & McIntosh, 2005; Huberdeau et al., 539 

2019; Krakauer et al., 2005; Landi et al., 2011). In contrast, implicit adaptation has been 540 

found to exhibit a decreased learning rate during re-adaptation (Avraham et al., 2021), a 541 

phenomenon attributed to conditioning (Avraham et al., 2021) or associative learning 542 

mechanisms (Avraham et al., 2022). Investigating this 'anti-saving' effect will yield insights 543 

into the unique memory properties of implicit learning. Although our current PEA model 544 

is structured around single-epoch learning and does not directly address this question, it 545 

does raise new, testable hypotheses. For example, is the reduced adaptation rate during 546 

relearning attributable to a down-weighting of perturbed visual feedback in cue 547 

combination, or does it reflect a parametric alteration in the learning rate? Another 548 

noteworthy aspect of implicit learning is its remarkably slow decay rate. It has been 549 

observed that the number of trials required to washout the implicit adaptation exceeds the 550 

number of trials needed to establish it (Avraham et al., 2021; Tsay et al., 2020). In the 551 

context of our perceptual error framework, this raises the possibility that washout phases 552 

might be governed by state updating involving a distinct set of sensorimotor cues or an 553 

alternative updating mechanism, such as memory formation and selection (Oh & 554 

Schweighofer, 2019). 555 

  556 
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Methods 557 

Participants 558 

We recruited 115 college students from Peking University (77 females, 38 males, 22.05 559 

ñ 2.82 years, mean ñ SD). Participants were all right-handed according to the Edinburgh 560 

handedness inventory (Oldfield, 1971) and had normal or corrected-to-normal vision. 561 

Participants were naïve to the purpose of the experiment and provided written informed 562 

consent, which was approved by the Institutional Review Board of the School of 563 

Psychological and Cognitive Sciences, Peking University. Participants received monetary 564 

compensation upon completion of the experiment.   565 

Apparatus 566 

In Experiment 1, 2 and 4, participants were seated in front of a vertically-placed LCD 567 

screen (29.6 x 52.7 cm, Dell, Round Rock, TX, US). They performed the movement task 568 

with their right hand, holding a stylus and slide it on a horizontally placed digitizing tablet 569 

(48.8 x 30.5 cm, Intuos 4 PTK-1240, Wacom, Saitama, Japan). In Experiment 1, a 570 

keyboard was provided to the participants9 left hand to enable them to report the direction 571 

of visual stimuli in the discrimination task. A customized wooden shelter was placed 572 

above the tablet to block the peripheral vision of the right arm. In Experiment 1 and 4, 573 

participants placed their chin on a chin rest attached on the wooden shelter to stabilize 574 

their head. Their eye movement was recorded by an eye tracker (Tobii pro nano, Tobii, 575 

Danderyd Municipality, Sweden) affixed at the lower edge of the screen. The sampling 576 

rate was 160-200 Hz for the tablet and 60 Hz for the eye tracker. 577 
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Experiment 3 was conducted using the KINARM planar robotic manipulandum with a 578 

virtual-reality system (BKIN Technologies Ltd., Kingston, Canada). Participants seated in 579 

a chair and held the robot handles with their left and right hands (Figure 7). The movement 580 

task was performed with the right handle and the left handle was used to indicate the 581 

perceived direction of right hand in the proprioception test. A semi-silvered mirror was 582 

placed below the eye level to block the vision of the hands and the robotic manipulandum; 583 

it also served as a display monitor.  584 

Experiment 1: measuring visual uncertainty in error-clamp adaptation 585 

Eighteen among twenty participants finished the reaching with clamped error feedback 586 

and visual discrimination task in 3 consecutive days, two participants withdrew during the 587 

experiment. Participants made reaching movement by sliding the stylus from a start 588 

position at the center of the workspace to towards a target (Figure 6A). The start position, 589 

the target, and the cursor were represented by a gray dot, a blue cross and a white dot 590 

on the screen, respectively. All these elements had a diameter of 5mm. The procedure of 591 

the motor and visual discrimination task is illustrated in Figure 2A. To initiate a trial, 592 

participates moved the cursor into the start position. Following an 800ms holding period, 593 

a target appeared 10 cm away in twelve o9clock direction and participants were instructed 594 

to slide through the target rapidly while maintaining a straight hand trajectory. The trial 595 

terminated when the distance between the hand and the start position exceeded 10 cm, 596 

regardless of whether the target was hit. A warning message, "too slow", would appear 597 

on the screen if participants failed to complete the trial within 300 ms after initiating the 598 

movement. Each practice day began with 60 standard reaching trials, during which 599 

veridical feedback about hand location was provided by the cursor. The target would 600 
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change from blue to green if the cursor successfully passed through it. In subsequent 601 

visual clamp trials, the cursor moved along a predetermined direction set by the 602 

perturbation angle, while its position was updated in real-time based on the hand's 603 

location. The cursor's distance from the start position was equal to the distance between 604 

the hand and the start position until the end of the trial. 605 

Following each trial, the cursor remained frozen at its final position for an additional 800 606 

ms before disappearing. The visual discrimination task commenced 1000 ms thereafter. 607 

A yellow reference point, located 10 cm from the start position, was displayed for 150 ms 608 

near the cursor's final position (Figure 2A & Figure 6A). Subsequently, all visual stimuli, 609 

except for the blue cross at the start position, were removed from the screen. Participants 610 

were then required to judge whether the reference point was situated in a clockwise (CW) 611 

or counterclockwise (CCW) direction relative to the cursor's final position and to report 612 

their judgment by pressing a key on the keyboard. Participants were informed that they 613 

no longer controlled the direction of cursor movement during the task. They were 614 

instructed to fixate their gaze on either the start position or the blue cross during the motor 615 

task, while actively ignoring the white cursor. During the discrimination task, they were 616 

required to maintain their gaze on the blue cross. Eye movements were monitored in real-617 

time using an eye tracker. Participants received a warning if their gaze was detected 618 

outside a 75-pixel-wide band-shaped region centered on the line of gaze four consecutive 619 

times during the experiment (Figure S1). 620 

 621 

---- insert Figure 6 here ---- 622 

 623 
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In each trial, the angular deviation between the error-clamped cursor and the reference 624 

point was determined using a PEST procedure (Lieberman & Pentland, 1982). Figure 6C-625 

D illustrates the evolution of the deviation angle and step size for an exemplary participant 626 

experiencing a -16° perturbation. In each round, the deviation commenced at 30° 627 

(indicated by yellow points in Figure 6C-D) and was altered by one step size following 628 

each trial. The initial step size was set at 10° and was halved whenever the direction 629 

judgment changed (i.e., from "CW" to "CCW" or vice versa). For a specific perturbation 630 

angle, the initial deviation always started from the CW direction for the first round and 631 

flipped the direction at the beginning of the next round. A round terminated either when 632 

the step size fell below a predefined criterion (indicated by the red line in Figure 6D) or 633 

when the trial count exceeded 30. Six perturbation angles were randomly interleaved 634 

(Figure 6B), and the experiment concluded when four complete rounds of the PEST 635 

procedure had been completed for each perturbation angle. Consequently, the total 636 

number of trials varied among participants and across practice days. Additionally, for 637 

some perturbation angles, more than four complete rounds could be conducted in a single 638 

day.  639 

Experiment 2: Motor adaptation with different perturbation size 640 

Eighty-four participants were randomly allocated into seven groups, each comprising 12 641 

individuals. Each group performed a motor adaptation task featuring clamped visual 642 

feedback at different perturbation angles: 2°, 4°, 8°, 16°, 32°, 64°, and 95°. As in 643 

Experiment 1, participants were instructed to slide rapidly and directly through the target, 644 

which was represented by a blue dot rather than a cross. In each trial, the target appeared 645 

at one of four possible locations (45°, 135°, 225° or 315° counter-clockwise from the 646 
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positive x-axis). The sequence of target locations was randomized, yet constrained so 647 

that all four positions appeared in cycles of four trials. Each group commenced with a 648 

baseline session that included 15 cycles of reaching trials with veridical feedback, 649 

followed by 15 cycles without visual feedback. Subsequently, during the perturbation 650 

session, participants completed 80 cycles of training trials featuring the error-clamped 651 

cursor with one perturbation angle (i.e., clamp size), depending on their group assignment. 652 

To assess the aftereffect, a session comprising 10 cycles of movement without visual 653 

feedback was administered. 654 

Experiment 3: Proprioception test with different perturbation sizes 655 

Eleven participants were recruited for testing their proprioception recalibration. This 656 

experiment incorporated two types of trials: reaching trials and proprioception test trials. 657 

During the reaching trials, participants were instructed to aim for a target, which could 658 

appear at one of three possible locations (25°, 45°, or 65° counter-clockwise from the 659 

positive x-axis, as represented by light blue dots in Figure 4C, right panel). The task was 660 

similar to those in Experiments 1 and 2, with the key difference being that participants 661 

performed the task using KINARM robots (as depicted in Figure 7A). The dimensions and 662 

relative distances of the visual stimuli remained consistent with those used in Experiments 663 

1 and 2. As in previous experiments, three kinds of visual feedback were provided during 664 

different sessions: no visual feedback, veridical feedback, and feedback featuring an 665 

error-clamped cursor. 666 

In the proprioception test, participants were instructed to hold the robot's right handle and 667 

wait for passive movement by the robot to one of six proprioception targets (small red 668 

dots in Figure 4C, right panel). These targets were spaced at 10° intervals, ranging from 669 
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20° to 70° counter-clockwise from the positive x-axis, and flanked the three reaching 670 

targets. The passive movement lasted for 1,000 ms and followed a straight-line path at a 671 

speed consistent with a minimum jerk velocity profile. During this movement, a ring with 672 

a 10 cm radius, centered at the start position, was displayed on the screen (depicted as 673 

a red arc in Figure 7B). The cursor was also replaced by a ring, its radius expanding as 674 

the hand moved toward the proprioception target. 675 

After the right hand reached the proprioception target, participants were instructed to 676 

maintain their right hand's position. Using the left handle, they were then asked to indicate 677 

the perceived location of their right hand. The position of the left handle was mapped to 678 

the rotation of a "dial," which was constrained to the target arc. 679 

 680 

---- insert Figure 7 here ---- 681 

 682 

The position of hp was displayed on the target arc as a small red rectangle (a visual "dial," 683 

as shown in Figure 7B). Participants were instructed to indicate the location of their right 684 

hand by moving the red rectangle to the position they perceived as accurate. The final 685 

position of hp was recorded when its angular velocity remained below 1 degree/second 686 

for a duration exceeding 1000 ms. The proprioceptive bias was then calculated as the 687 

angular deviation between the actual hand position (hR) and the perceived hand position 688 

(hp).  689 

Reaching trials and proprioception test trials were organized into blocks (Figure 4D). Each 690 

reaching block consisted of 6 trials, targeting 3 different locations with 2 repetitions each. 691 
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Each reaching block was followed by a proprioception test block consisting of 3 trials. In 692 

these test trials, the robot moved the participant's right hand toward a target position near 693 

one of the three reaching targets. These test targets were randomly chosen from six 694 

possible locations (Figure 4C, right panel). The entire experiment comprised 40 reaching 695 

blocks and 40 subsequent proprioception test blocks. The first four reaching blocks 696 

provided veridical cursor feedback, the next four offered no cursor feedback, and the 697 

remaining 32 featured one of eight possible perturbation sizes (ñ10ð, ñ20ð, ñ40ð, and 698 

ñ80ð). The size of the perturbation was randomized between blocks. 699 

Experiment 4: upregulating visual uncertainty affects implicit adaptation 700 

Nineteen participants from Experiment 1 completed Experiment 4. The reaching task 701 

employed the same setup as in Experiment 1. However, instead of performing perceptual 702 

judgments of cursor motion direction, participants engaged in movements with one of 703 

three types of cursor feedback: veridical feedback, no feedback, and feedback with 704 

clamped perturbation. To assess the influence of visual uncertainty on implicit learning, 705 

we modified the cursor to appear blurred in half of the clamped trials. The blurring mask 706 

had a diameter of 6.8 mm, and the color intensity decreased from the cursor's center 707 

following a two-dimensional Gaussian distribution with σx  = σy  = 1.4 mm. As depicted in 708 

Figure 5D, participants underwent the same procedures across three consecutive days. 709 

Each day consisted of 60 baseline trials, followed by 15 training blocks designed to 710 

assess single-trial learning. Within each training block, 12 trials featured an error-clamped 711 

cursor, each flanked by a trial without feedback. The difference between two adjacent no-712 

feedback trials served as a measure of single-trial learning at specific perturbation sizes. 713 

Each of the 12 perturbation trials was randomly assigned one of 12 possible perturbations, 714 
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comprising two cursor presentations (blurred or clear) and six clamp sizes (ñ4ð, ñ16ð, 715 

ñ64ð). 716 

Data analysis 717 

Processing of kinematic data 718 

In Experiments 1, 2, and 4, hand kinematic data were collected online at a sampling rate 719 

ranging between 160 and 200 Hz and subsequently resampled offline to 125 Hz. The 720 

movement direction of the hand was determined by the vector connecting the start 721 

position to the hand position at the point where it crossed 50% of the target distance, i.e., 722 

5 cm from the start position. 723 

In Experiment 3, hand positions and velocities were directly acquired from the KINARM 724 

robot at a fixed sampling rate of 1 kHz. The raw kinematic data were smoothed using a 725 

fifth-order Savitzky-Golay filter with a window length of 50 ms. Owing to the high temporal 726 

resolution and reliable velocity profiles provided by the KINARM system, the heading 727 

direction in Experiment 3 was calculated as the vector connecting the start position to the 728 

hand position at the point of peak velocity. 729 

Psychometric curve 730 

For the visual discrimination task, data of all three days were pooled together, the 731 

probability of responding that <the reference point was in the counter-clockwise direction 732 

of the cursor= was calculate as p for all angle differences (Figure S2). At each perturbation 733 

size, a logistic function was used to fit the probability distribution for individual participants: 734 

� =  1 (1 + �2ý(ý2ý0))⁄ ,                                                (5) 735 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.11.23.568442doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568442
http://creativecommons.org/licenses/by/4.0/


Perceptual Error Drives Implicit Adaptation 

where k is the slope and x0 is the origin of the logistic function. The visual uncertainty was 736 

defined as the angle differences between 25% and 75% of the logistic function:   737 

�ă = log(Ă2 (12Ă2)⁄ )2log(Ă1 (12Ă1)⁄ )ý ,                                          (6) 738 

where p1 = 25% and p2 = 75%.  739 

Statistical analysis 740 

In Experiment 1, since the visual uncertainty �ă  follows a non-negative skewed 741 

distribution among participants, it violated the assumption of the ANOVA test.  We thus 742 

applied Friedman9s nonparametric test to determine whether �ă  changes with the 743 

perturbation angle Ā. Specifically, �ă for both positive and negative Ā were subjected to 744 

Friedman9s test separately, with Ā serving as the factor. Given the symmetry between 745 

positive and negative Ā, we pool the data to quantify the linear dependency of �ă on the 746 

absolute Ā (Eq. 4). Because �ă is expected to be always positive, we assume that it is 747 

generated from a gamma distribution rather than a normal distribution. Thus, the data 748 

was fitted by a generalized linear regression model with the absolute value of Ā  as 749 

independent variable and �ă as dependent variable.  750 

In Experiment 2, the adaptation extent was defined as the mean hand angles in the last 751 

10 cycles in the perturbation phase (cycle 101-110). A one-way ANOVA with perturbation 752 

size serving as the factor to examine its influence on the adaptation extent. Pairwise post-753 

hoc comparisons were conducted using Tukey-Kramer correction. 754 

In Experiment 3, proprioceptive recalibration was quantified as the angular difference 755 

between the perceived and actual hand directions. A one-way repeated-measures 756 

ANOVA was conducted on the data of first trial, using perturbation size as the within-757 
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subject factor. Greenhouse-Geisser corrections were applied when the assumption of 758 

sphericity was violated (Kirk, 1968). Multiple pairwise comparisons were conducted 759 

among different perturbation sizes for the first proprioception test. To determine if the 760 

proprioceptive biases were significantly different from zero, one-tailed (left) t-tests were 761 

conducted separately for the first and third proprioception test trials at each perturbation 762 

size. 763 

In Experiment 4, the single-trial learning data was subjected to a 2 (visual uncertainty) x 764 

3 (perturbation size) repeated-measures ANOVA. Greenhouse-Geisser corrections were 765 

applied as above, and the simple main effect of visual uncertainty was tested for each of 766 

the three perturbation sizes. 767 

Model fitting and simulations 768 

Perceptual Error Adaptation (PEA) model 769 

Model fitting for adaptation extent as a function of perturbation size. To fit the adaptation 770 

extent data from three different experiments in previous studies in (Kim et al., 2018; 771 

Morehead et al., 2017), Eq. 3 and Eq. 4 were modified for simplification. To avoid 772 

overfitting of the small dataset, we reduced the number of model parameters by assuming 773 

that ā̂�ÿĀý asymptote to the target direction in the final adaptation trials that are used for 774 

computing adaptation extent, thus the retention rate ý ≡ 1. Insert Eq. 4 to Eq. 3, the 775 

asymptote hand angle with different perturbation size is:  776 

āĂÿĀþÿ = 2( �� ÿ⁄1+(Ā ÿ⁄ )�)2Ā.                                              (7) 777 

 Two ratio parameters ý1,þýā = �Ă ÿ⁄  and ý2,þýā = Ā ÿ⁄  were used in data fitting. Three 778 

datasets were fitted separately. 779 
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Model fitting for trial-by-trial adaptation and proprioception changes. The trial-by-trial 780 

changes of adaptation (Figure 3A) and of proprioceptive localization (Figure 4A) was fitted 781 

with Eq. 1, Eq. 2, and Eq. 4 based on the mean performance of all participants. The PEA 782 

model only had four free parameters, Θ = [�Ă, �Ă, A, B].  The slope a and intercept b in Eq. 783 

1 were obtained by psychometric tests from Experiment 1 (see statistical analysis). The 784 

reported hand position (āÿþĂāÿā, blue dots in Figure 4A) was based on the proprioceptive 785 

cue āĂ  and the estimated hand ā̂�ÿĀý  from the reaching trial. With the Bayesian cue 786 

combination assumption, the reported hand position was biased by āĂ  with a ratio 787 

determined by the variance of āĂ and ā̂�ÿĀý :  788 

āÿþĂāÿā = ā̂�ÿĀý + ��ÿ��2��ÿ��2 +��2 (āĂ 2 ā̂�ÿĀý),                                (8) 789 

where ��ÿĀý2  and �Ă2 are the variance of ā̂�ÿĀý and āĂ respectively. To verify if the slope b 790 

and intercept a obtained from Experiment 1 are consistent across experiments, they were 791 

also estimated by fitting data from Experiment 2 (Figure 3). In this case, the model fitting 792 

was performed with 6 free parameters, Θ = [�Ă, �Ă, a, b, A, B]. The fitted values of a and b 793 

are fallen into the 95% CI of estimated parameters in Experiment 1 (purple line in Figure 794 

2C, see details in Table S1). 795 

The dependence of proprioceptive recalibration on perturbation size (Figure 4B) were 796 

simulated by the PEA model with the parameter values estimated from Experiment 2. We 797 

assumed that the proprioceptive bias results from the influence of a biased hand estimate 798 

(ā̂�ÿĀý) during adaptation and the influence is quantified as a percentage of its deviation 799 

from the true hand location:  800 

āĀÿÿĀ = 2(0 2 ā̂�ÿĀý)ýĂ,                                                (9) 801 
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where the actual hand location is 0, ýĂ  is the percentage of influence, and ā̂�ÿĀý  is 802 

determined by Eq.1. In simulation, ýĂ  varied from 0.05 to 0.8 to estimate the overall 803 

dependence of proprioceptive recalibration on perturbation size.  804 

Model fitting and simulation for single-trial learning. In the single-trial learning paradigm 805 

(Figure S5), the average movement direction across trials aligns with the target direction 806 

since the visual perturbations are evenly distributed in both directions. Thus, the sensory 807 

cue āĂ and āĂ have the same mean. For modeling single-trial learning, instead of having 808 

two separate cues, we assume a combined cue of āĂ and āĂ to follow āÿĀā~�(ÿ, �ÿĀā2 ), 809 

where T is the target direction, �ÿĀā2 = �þ2��2�þ2+��2 represents the variance of integrated sensory 810 

signal of āĂ and āĂ. Single-trial learning was quantified as the difference between the two 811 

null trials before and after the perturbation trial. As the perturbation size in the triplet of 812 

trials varied randomly, we assume that the effects of different perturbations are 813 

independent. Thus, single-trial learning was modeled as learning from the current 814 

perturbation without history effect. It follows the equations modified from Eq. 1 and 2: 815 

āþÿ� = þ(ÿ 2 ā̂�ÿĀý)                                                 (10) 816 

ā̂�ÿĀý = �ÿĀāÿ + �ăāă, with �ÿĀā = 1 �ÿ�ý2⁄∑ 1 �Ā2⁄Ā , ÿ, Ā = ÿĀý, ÿ,                (11) 817 

where āă  is the visual perturbation, �ÿĀā  and �ă  are the weights of the cues, �ă  is the 818 

standard deviation of the visual cue specified by Eq.4. Parameter set Θ = [�ÿĀā , a, b, B] was 819 

fitted to the average data from all participants. Model simulations (Figure 5A) were 820 

performed with the same single-trial learning equations. For the clear cursor condition, 821 

we used the same parameter values estimated from Experiment 2 (see details in Table 822 
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S1). For the blurred cursor condition, the standard deviation of visual cue was changed 823 

to: 824 

�ă,ĀþĂÿ = ýă�ă                                                   (12) 825 

for the simulation of the increase in visual uncertainty, the ratio ýă varied from 1.1 to 3. 826 

PReMo model 827 

We used the PReMo model to fit the average adaptation extent obtained from Experiment 828 

2 (Figure 3C & Figure S3B). Following the study by (Tsay, Kim, et al., 2022), the hand 829 

position at trial n+1 is:  830 

āĂ,Ā+1 = ýāĂ,Ā + þ(ÿ 2 āĂþÿ,Ā),                                     (13) 831 

where  832 

āĂþÿ,Ā = �Ă + �þ2�þ2+��2 āĂ,Ā,                                                   (14) 833 

�Ă = 2ÿÿĀ (|�ĂĀÿā|, |ÿĂ( �þ2�þ2+�ÿ2 āă,Ā 2 �þ2�þ2+��2 āĂ,Ā)|).                         (15) 834 

In data fitting, we used two parameters to represent the ratio between sensory cues: ý1 =835 �Ă2 (�Ă2 + �ă2)⁄  and ý2 = �Ă2 (�Ă2 + �Ă2)⁄ . The data were fitted with the parameter set Θ = [ý1, 836 ý2 , �ĂĀÿā , ÿĂ , A, B], where �ĂĀÿā  is the saturation angle, ÿĂ  is a scaling factor, A is the 837 

retention rate and B is the learning rate. For simulating the proprioceptive localization of 838 

the hand (Figure 4C), the parameter values estimated from Experiment 2 were used. The 839 

bias of hand estimation in the proprioception trials is determined as: āĀÿÿĀ = 2(0 2840 āĂþÿ)ýĂ, where ratio ýĂ varies from 0.05 to 0.8. Thus, similar to the PEA model simulation, 841 
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the proprioceptive bias is a fraction of the bias in the hand estimation from the adaptation 842 

trials. Single-trial learning (Figure 5B) was simulated with:  843 

āþÿ� = þ(ÿ 2 āĂþÿ),                                                  (16) 844 

where āĂþÿ is determined by Eq. 12 and Eq. 13. For the clear condition, we used the 845 

parameter values estimated from Experiment 2 with PReMo. For the blurred cursor 846 

condition, the standard deviation of visual signal �ă,ĀþĂÿ increases with a ratio ýă, as in Eq. 847 

12. 848 

Causal inference model 849 

The causal inference model by (Wei & Körding, 2009) was used to fit the data of 850 

Experiment 2 (Figure 3D & Figure S3C). The hand position at trial n+1 is updated by 851 

learning from visual error at trial n: 852 

āĂ,Ā+1 = ýāĂ,Ā + þ(ÿ 2 �āă,Ā),                                           (17) 853 

where A and B are the retention and learning rates, respectively; T is the target direction. 854 

Specifically for this model, the learning from error is modulated by the probability (p) of 855 

causal attribution of visual error to the action or proprioception: 856 

� = þ �(ýÿ,�,0,�2)�(ýÿ,�,0,�2)+ÿ,                                                    (18) 857 

where āă,Ā is the visual cue at trial n. S and C are the scaling factors, and � is the standard 858 

deviation of the integrated cue combining visual and proprioceptive cues, following 859 

�2 = �ÿ2��2�ÿ2+��2                                                           (19) 860 
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Thus, the data were fitted with five parameters Θ = [σ, S, C, A, B]. For simulating single-trial 861 

learning with cursor blurring (Figure 5C), the ratio between �ă and �Ă is fixed as ½. The 862 

single-trial leaning was determined as: 863 

āþÿ� = þ(ÿ 2 �āă),                                                   (20) 864 

where p is determined by Eq. 18. Put Eq. 12 and Eq. 19 into �ĀþĂÿ2 = �ÿ,Ā�þ�2 ��2�ÿ,Ā�þ�2 +��2, we can 865 

calculate the standard deviation of the integrated sensory signal for the blurred cursor: 866 

�ĀþĂÿ = �√ 5ý2ý2+4. Simulation was performed with R ranging from 1.1 to 3. 867 

Data fitting 868 

All data were fitted using MATLAB (2022b, MathWorks, Natick, MA, US) build-in function 869 

fmincon with 100 randomly sampled initial values of parameter sets. See Table S1 and 870 

Table S2 for the fitted parameter values and comparisons between different models.  871 

 872 

Data availability  873 

Data presented in this work are available at: 874 

https://doi.org/10.6084/m9.figshare.24503926.v1.   875 
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 1045 

Figure 1. The Perceptual Error Adaptation (PEA) model for error-clamp adaptation. (A) 1046 

Illustration of involved sensorimotor cues for estimating hand direction ā̂�ÿĀý . The 1047 

clamped cursor, the hand, and the sensory prediction of the reaching action provide the 1048 

visual (āă), proprioceptive (āĂ), and the sensory prediction cue (āĂ) of movement direction, 1049 

respectively. The hand direction estimate is assumed to be based on maximum likelihood 1050 

cue combination. (B) Assuming a linear dependency of visual uncertainty on eccentricity, 1051 

the PEA model predicts that implicit adaptation extent is a concave function of 1052 

perturbation size Ā, a pattern qualitatively aligning with previous findings (Kim et al., 2018; 1053 

Morehead et al., 2017).   1054 
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 1055 

Figure 2. Experiment 1 measuring the dependency of visual uncertainty on perturbation 1056 

size. (A) The 2AFC task for judging the cursor motion direction. In an exemplary trial, the 1057 

participant reaches to a target while a direction-clamped cursor moves concurrently, 1058 

serving as an error-clamp perturbation. Following a 1000-ms blank masking period, a 1059 

reference point appears for 150ms, either clockwise or counterclockwise from the 1060 

clamped cursor. The participant is then asked to making a binary judgement regarding 1061 

the direction of the clamped cursor relative to the reference point. (B) The visual 1062 

uncertainty, obtained from psychometrical estimation based on the 2AFC, is plotted as a 1063 

function of perturbation size. Both individual estimates (red dots) and group-level statistics 1064 
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(boxplots) are shown. Positive angles correspond to CW rotations, negative angles to 1065 

CCW rotations. (C) Collapsing data from both rotation directions, we observe that visual 1066 

uncertainty closely follows a linear function of perturbation size. The dark gray line and 1067 

its shaded region denote the regression line and its 95% confidence interval, respectively. 1068 

The purple line is generated with the values of a and b fitted from data in Experiment 2 1069 

with a and b treated as free parameters (See Methods for details).  1070 
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 1071 

Figure 3. Results and model fitting of Experiment 2. (A) Implicit adaptation to error clamps 1072 

of varying sizes is depicted; colored dot-lines and colored shading area represent the 1073 

mean and standard error for each participant group. The light gray area indicates trials 1074 

with error-clamp perturbations. Adaptation starts after baseline, gradually asymptotes to 1075 

its final extent, and then decays with null feedback during washout. Different perturbation 1076 

sizes result in distinct adaptation rates and extents. Group averages and standard error 1077 

across participants are shown, along with predictions (colored solid lines) from the PEA 1078 

model. (B) The adaptation extent (cycle 100-110) exhibits a nonlinear dependency on 1079 

perturbation size, conforming to a concave function as prescribed by PEA (purple line). 1080 

Color dots and error bars denote the mean and standard error across participants in each 1081 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.11.23.568442doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568442
http://creativecommons.org/licenses/by/4.0/


Perceptual Error Drives Implicit Adaptation 

group. (C)-(D) The same data fitted with the PReMo model and the causal inference 1082 

model. See more details, refer to Figure S3. 1083 

  1084 
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 1085 

Figure 4. Proprioceptive data fitting and results from Experiment 3. (A) The data from 1086 

(Tsay et al., 2020) are presented alongside the fitting of the PEA model. Participants 1087 

adapting to a 30ð error-clamp perturbation were required to report the location of their 1088 

adapted hand using visual aids of numbers. The report was provided when the hand 1089 

stayed at the end of movement. Initially, the proprioceptive estimate of the hand is biased 1090 

toward the visual cursor (negative in the plot) and then gradually shifts toward the hand 1091 

(positive in the plot). This trend is accurately captured by the PEA model: lines represent 1092 

model fitting results, with the adapted hand direction in indigo and the reported hand 1093 

direction in blue. The hand direction estimate (ā̂�ÿĀý, Eq.1) following a reach movement 1094 

is shown in red. (B)-(C) Model simulations for proprioceptive bias from the PEA and 1095 

PReMo models. Color gradients denote the simulations with varying ratio between the 1096 

weights of ā̂�ÿĀý and āĂ, the two cues available for estimating the hand direction. Note 1097 
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that the two models prescribe distinct profiles for the dependency of proprioception bias 1098 

on perturbation size. (D) Experimental design. A reaching block, either with or without 1099 

visual perturbations, is followed by a proprioception test block. The size and direction of 1100 

the visual perturbation vary across blocks. The proprioception test is conducted when the 1101 

hand is passively moved to a target (red dots) situated near the reaching target (blue 1102 

dots). (E) The observed proprioceptive bias as a function of perturbation size. Data from 1103 

the three proprioception test trials are separately plotted. The first trial reveals 1104 

proprioception biases that form a concave function of perturbation size.   1105 
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 1106 

Figure 5. Results of Experiment 4. (A)-(C) Model simulations for single-trial learning 1107 

under different visual uncertainty levels, shown separately for the PEA, PReMo and 1108 

causal inference models. Blue curves represent simulated learning based on model 1109 

parameters estimated from Experiment 2. Curves with red gradient indicate simulations 1110 

with increasing levels of visual uncertainty, color coded by the ratio of visual uncertainty 1111 

for the blurred cursor to that of the clear cursor. (D) Experimental design. Following 60 1112 

baseline trials without perturbations, participants completed 15 mini-blocks of error-clamp 1113 

adaptation over three successive days. Each mini-block features 12 different types of 1114 

error-clamp perturbations, distinguished by two cursor presentations (blurred or clear 1115 

cursor) and six clamp sizes. Each perturbation trial, varied randomly in perturbation type, 1116 

is flanked by two no-feedback trials. The change in hand direction between these two no-1117 
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feedback trials serves to quantify singe-trial learning. (E) The single-trial learning with the 1118 

blurred cursor is less than that with the clear cursor, but the difference is non-monotonic 1119 

across perturbation size (*** denote p < 0.001).   1120 
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 1121 

Figure 6. Design of Experiment 1. (A) Top-down view of the setup in visual discrimination 1122 

task. The reference point (yellow) was presented either CW or CCW relative to the 1123 

clamped cursor (dashed circle), which has a perturbation size Ā. (B) Trial structure of the 1124 

visual discrimination task. Purple rectangles represent error-clamped trials with varying 1125 

perturbation size, rectangles with yellow edges represent the ensuing visual 1126 

discrimination test for each perturbation size. (C)-(D) Exemplary sequences of the 1127 

reference point: These sequences illustrate the deviation of the reference point from the 1128 

cursor (C) and the changing step size across trials (D), following the PEST algorithm. 1129 

Individual trials are represented by blue dots. Yellow and red dots mark the initiation and 1130 

termination of each round of trials, respectively. In each round, the reference point starts 1131 

on either the CW or CCW side of the cursor; In the subsequent round, it starts on the 1132 

opposite side.   1133 
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 1134 

Figure 7. Setup for measuring proprioceptive recalibration in Experiment 3. (A) Reaching 1135 

movement with error-clamped cursor, performed by the right hand holding a robot handle. 1136 

(B) Passive movement in the proprioception test. The right hand was passively moved to 1137 

the unseen target (hR), depicted here as a small black dot. A red hollow circle with an 1138 

expanding radius appears on the screen during passive movement, signaling the 1139 

increasing distance between the hand and the start position. Subsequently, participants 1140 

used their left hand to report the right-hand location (hp) by aligning a red rectangle on 1141 

the red circle, which is displayed at the target distance.   1142 
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Supplementary Materials 1143 

 1144 

  1145 

Figure S1. Heat map of eye fixations during the 2AFC task in Experiment 1. The screen 1146 

is partitioned into 10x10 pixel grids, and the cumulative number of gaze samples in each 1147 

grid is recorded. Data from all participants, aggregated across each day of practice, are 1148 

presented. The color map signifies the normalized count of gaze samples in each grid. 1149 

Data are separately displayed for the three distinct phases of a trial, as delineated by the 1150 

columns on the left, middle, and right. These correspond to periods during hand 1151 

movement, the appearance of the visual mask and reference point, and the time allotted 1152 

for manual response. On average, 95.06%, 89.93%, and 86.55% of gaze samples fall 1153 

within the ±50-pixel range of the central line during these three phases, respectively. 1154 
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These results corroborate that participant adhered to the instructions and refrained from 1155 

looking at the cursor during the visual discrimination task. 1156 
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 1158 

Figure S2. Performance of an exemplary participant in Experiment 1. Six panels display 1159 

the psychometric curves corresponding to different error-clamp sizes. The x-axis denotes 1160 

the angular deviation between the clamped cursor and the reference point (as depicted 1161 

in Figure 6A). A negative value implies that the reference point appears on the 1162 

counterclockwise (CCW) side of the clamped cursor. The blue dots represent the 1163 

proportion of trials in which the participant reported that "the yellow point is on the 1164 

clockwise (CW) side of the clamped cursor" for various angular deviations between these 1165 

two. Data were aggregated from all trials across three days of the experiment. The gray-1166 

shaded region represents the interquartile range (25th to 75th percentile) of the 1167 

psychometric curve, and the width of this shaded region serves as an indicator of the 1168 

amplitude of visual uncertainty. 1169 
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 1170 

Figure S3. Model fitting for observed implicit adaptation in Experiment 2. This 1171 

supplementary figure provides a comprehensive evaluation of the three competing 1172 

models: the PEA model, the PReMo model, and the causal inference model. (A) Results 1173 

of PEA Model Fitting: The layout of these plots mirrors that of Figures 3A and 3B, serving 1174 

as a direct comparison between the empirical data and the predictions made by the PEA 1175 
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model. (B) Results of PReMo Model Fitting: The left panel is a duplicate of Figure 3C, 1176 

while the right panel presents the trial-by-trial data fitting. This juxtaposition allows for a 1177 

nuanced evaluation of the PReMo model's performance at both the aggregate and 1178 

individual trial levels. (C) Results of Causal Inference Model: The arrangement of these 1179 

plots is consistent with panels (A) and (B), facilitating a straightforward comparison of all 1180 

three models. For a detailed assessment of the quality of model fitting and subsequent 1181 

model comparisons, please refer to Table S1 and Table S2. 1182 
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 1184 

Figure S4. Correlation between initial learning rate and adaptation extent in Experiment 1185 

2. For each participant, the initial learning rate is calculated as the change in hand angle 1186 

between the 1st and 10th cycle, divided by 10. The adaptation extent is defined as the 1187 

average hand angle across the last 10 adaptation cycles. When pooling data across all 1188 

perturbation sizes, a significant correlation is observed between the initial learning rate 1189 

and the adaptation extent.   1190 
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 1191 

Figure S5. Model fitting of single-trial learning from Experiment 2 of (Tsay, Avraham, et 1192 

al., 2021). Blue dots represent the mean single-trial learning across varying perturbation 1193 

size, with error bars represent denoting standard errors across participants. The left, 1194 

middle and right panel present the fitting results for the PEA, PReMo, and causal 1195 

inference models, respectively. For additional details, refer to the Methods, Results, and 1196 

Table S1 & S2.  1197 
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 1198 

Figure S6. Proprioception uncertainty estimation results. Thirteen participants from 1199 

Experiment 1 participated in a proprioception discrimination task to measure their 1200 

proprioceptive uncertainty in the setting of the error-clamp adaptation. The setup 1201 

paralleled that used for estimating visual uncertainty in Experiment 1. In each trial, 1202 

participants initially held their hand at the starting position. They were instructed to relax 1203 

their arm while the experimenter, seated on the other side of the monitor, pulled their 1204 

hand to a proprioceptive target near the straight-ahead target. The arms of the 1205 

experimenter and the participant were blocked from the view of the participant. After 0.8 1206 

seconds, a yellow reference point appeared. The angular deviation between the 1207 

participant's hand and this reference was determined using the same PEST procedure 1208 

employed in Experiment 1. Participants indicated, by pressing left or right arrow keys by 1209 

their left hand, whether the reference point appeared on the CW or CCW side of their 1210 

actual right-hand position. The maximum deviation allowed was 30°, with an initial step 1211 
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size of 10° and a stop threshold of 0.5°. This task was conducted over six runs across 1212 

three consecutive days. Similar to Figure S2, panel (A) to (M) show the psychometric 1213 

curves for each participant with data from the three days pooled together. (N) and (O) 1214 

present the measured proprioceptive uncertainty and bias for all participants (gray dots) 1215 

and their mean ± standard deviation (red error bars).  1216 
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Table S1. Model fitting and simulation parameters with the PEA model. 1218 

 

Data set 

Parameters Goodness-of-fit 

 
�Ă 

(deg) 

�Ă 

(deg) 
a b A B R2 

RMSE 

(deg) 

Adaptation extent fitting 
(Figure 1B) 

Kim 2018, 

Exp1 
-- �Ă/a = 3.406; b/a = 0.138 -- -- 0.773 1.898 

Kim 2018, 

Exp2 
-- �Ă/a = 4.758; b/a = 0.168 -- -- <0 2.163 

Morehead, 

2017 
-- �Ă/a = 1.639; b/a = 0.044 -- -- <0 2.937 

Trial-by-trial adaptation fitting 

Exp 2, 

Figure 3 

5.048 11.119 *1.853 *0.309 0.970 0.208 0.975 1.222 

5.468 12.128 1.663 0.331 0.971 0.194 0.975 1.217 

Tsay 2019, 

Figure 4A 
1.896 7.959 *1.853 *0.309 0.978 0.525 0.991 0.716 

Single-trial learning fitting 
Tsay 2021, 

Figure S6 
σÿĀā = 7.364 1.179 0.384 -- 0.057 0.974 0.020 

Proprioceptive recalibration 
simulation 

Exp 3, 

Figure 4B 
5.048 11.119 1.853 0.309 0.970 0.208 -- -- 

Adaptation affected by visual 
uncertainty simulation 

Exp 4, 

Figure 5 
5.048 11.119 1.853 0.309 -- 0.208 -- -- 

* Asterisks represent fixed parameters in specific data fitting. The fixed values equal to 1219 

the slope and intercept estimated from Experiment 1.   1220 
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Table S2. Model comparisons. 1221 

Data set  PEA PReMo Causal Inference 

Block-design learning fitting 

Exp 2, Figure 3 & S3 

AIC 2255 3543 3283 

R2 0.975 0.749 0.711 

RMSE (deg) 1.222 3.896 4.151 

Single-trial learning fitting 

Tsay 2021, Figure S5 

AIC -36.90 -15.98 -11.28 

R2 0.974 0.584 0.305 

RMSE (deg) 0.020 0.103 0.080 

 1222 
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