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Abstract

Neurodegenerative Diseases (NDs) are a major health challenge. Thus, finding
reliable Dblood biomarkers for them has been of pivotal importance in
translational/clinical research. However, conventional omics struggle with
the complexity of blood samples making it difficult to achieve the desired
goal. To address this, the potential of High Molecular Weight (HMW) serum
fractionation under non-denaturing conditions as a complementary approach to
the direct analysis of whole serum proteomics was explored in this work. To
achieve this, a total of 58 serum samples of Alzheimer's disease (AD),
Parkinson's disease (PD) patients and control individuals underwent both
strategies: i) direct analysis of whole serum and 1i) non-denaturing
fractionation using 300 kDa cut-off filters (HMW serum). As expected, each
approach was able to capture different sets of differentially regulated
proteins since most of the altered proteins were not shared between them.
More importantly, it was possible to create a discriminant model using the
altered proteins from both datasets capable of successfully distinguishing
the three groups (AUC = 0.999 and, median sensitivity and specificity of
97.4% and 91.7%, respectively). Among the 10 proteins included in the model
(5 from each strategy), a clear evidence for the contribution of proteins
from the apolipoprotein family for the diagnosis of NDs was revealed.
Furthermore, HMW fractionation exposed potential <changes within the
organization of macromolecules and their complexes, thereby uncovering hidden
effects in serum. Altogether, this work demonstrated that HMW fractionation
can be a valuable complementary method to direct serum analysis and could

enhance biomarker discovery.
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Introduction

Proteins can be directly or indirectly related to a myriad of diseases,
thereby being important targets of Dbiomarker research, which remains a
pivotal aspect of clinical research. However, biomarkers discovery based on
conventional proteomics strategies have not yet yielded substantial practical
applications. Blood and its fractions are the most studied samples for
biomarker identification, not only due to easy accessibility but also because
of its interactions with most tissues in the body, potentially reflecting
disease-related alterations [1l, 2]. However, both plasma and serum proteomes
have a very wide dynamic range of protein concentrations [1], with the
detection of those least abundant being masked by the most abundant. Despite
all the technical developments in proteomics quantification by mass
spectrometry (MS) [3], the high dynamic range still precludes the complete
characterization of these samples may be one of the reasons why the
identification of relevant Dbiomarkers in plasma/serum by MS has been
difficult [4]. Therefore, it is essential to have alternative approaches to
the direct analysis of these highly demanding biofluids. Several approaches
have been developed to reduce sample complexity [5] 1like size exclusion
chromatography and electrophoretic separation methods. When working with many
samples, a simpler approach that could serve as an alternative to direct
sample analysis is centrifugal ultrafiltration [5], which relies on the
separation of sample components based on size exclusion, correlated to
molecular weight (MW). This method has typically been used to study the low
molecular weight proteome of serum and plasma samples, using filters between
20 kDa and 40 kDa [6, 7], but it may also be used to study other proteome
fractions. Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) are
inherently linked to protein aggregation [8] and, therefore, to the formation
of high molecular weight (HMW) protein complexes. Fractionation of peripheral
fluid samples from patients with these diseases, focused on the HMW proteome,

could be useful to not only eliminate high abundance proteins, but also study
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protein aggregates that may be present in circulation. In this study, we
propose the use of centrifugal ultrafiltration focused on the HMW proteome,
not as an alternative but as a complementary analysis to the investigation
of unfractionated samples. To evaluate our hypothesis, the same set of
samples was subjected to the proteomics analysis of the whole serum and to
fractionation using centrifugal ultrafiltration with 300 kDa molecular weight
cut-off (MWCO) filters in a non-denaturing environment (henceforth referred
to as HMW fractionation). The data obtained in the two approaches were not
only directly compared but also combined to identify potential biomarkers.
This study wused a cohort comprising patients with neurodegenerative
disorders, specifically Alzheimer's and Parkinson's disease patients, and
healthy controls (CT) to test the significance of using HMW fractionation as
a complementary tool for biomarker discovery. These disorders were selected
as they are considered proteinopathies and may offer ideal targets for this

purpose.
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Material and Methods

Participants

A total of 58 serum samples were used in this study, comprising 3 groups of
individuals: AD (n = 22), PD (n = 24), and CT (n = 12). The study was approved
by the Ethics Committee of the Faculty of Medicine of the University of
Coimbra (reference CE 010.2017) and the Ethics Committee of the Centro
Hospitalar e Universitdrio de Coimbra (CHUC) (reference 34 /CES-CHUC-024-18)
and was conducted according to the principles stated in the Declaration of
Helsinki [9]. Written informed consent was obtained from all participants.
The PD patients were recruited at the Movement Disorders Units of the
Neurological Department of the CHUC, where they were assessed by a movement
disorders specialist and were diagnosed according to the criteria defined by
the UK Parkinsons’s Disease Society Brain Bank [10]. The exclusion criteria
for these patients consisted of severe dementia (as indicated by a Mini-
Mental State Exam score below 15), any psychiatric disorder, or other forms
of parkinsonism. The clinical group of individuals with AD diagnosis was
recruited and prospectively evaluated by two experienced neurologists at
Memoclinica and the Neurology Department of the CHUC. The standard criteria
for the diagnosis of AD were the Diagnostic and Statistical Manual of Mental
Disorders—fourth edition (DSM-IV-TR) and the National Institute on Aging and
the Alzheimer’s Association Workgroup [11]. To ensure the homogeneity of the
sample, only patients who met the following criteria were included: they
were 1in a stable condition, did not sustain recent changes in medication,
and did not have ophthalmological or neurological/psychiatric conditions
other than AD. The CT group was composed of age- and gender-matched
individuals from the community with no history of cognitive deterioration,
neurological or acquired central nervous system (CNS) disorders, traumatic
brain injury, or psychiatric disorders. The CT group was also submitted to

a brief cognitive assessment to exclude the presence of cognitive impairment.
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Serum processing for proteomics analysis

Two different strategies were used to obtain a more comprehensive proteomic
characterization of serum samples, namely: i) direct analysis of whole serum,
and 1ii) HMW fractionation through ultrafiltration using 300 kDa cut-off

filters (HMW serum) .

For each sample, 5 plL were used for direct serum analysis and 82.5 pL for
HMW serum fractionation. Additionally, three sample pools were prepared by
combining aliquots of all the samples, for the AD pool, PD pool or CT pool,
respectively. Pooled samples were used for Data-dependent acquisition (DDA)
experiments to build a specific protein library to be used in Data independent
acquisition (DIA) analysis and were subjected to the same sample processing
as the individual samples. Before processing, all samples were spiked with
the same amount of an internal standard (IS) to account for sample loss [12].
Different internal standards were used depending on the type of analysis:
MBP-GFP [12] in the case of the whole serum approach, while equine ferritin,
commonly available as one of the standards in the Gel Filtration Calibrants
Kit for High Molecular Weight proteins (GE28-4038-42), for the HMW

fractionation approach.

For the direct analysis of whole serum, the samples were diluted in Laemmli
buffer, followed by denaturation for 5 min at 95°C and cysteine alkylation
with acrylamide, and the total volume in all samples was subjected to in-gel
digestion using the Short-GelLC for subsequent quantitative analysis by LC-

MS/MS-DIA [13].

Samples subjected to HMW fractionation were ultrafiltrated using 300 kDa
cut-off filters (Vivaspin® 500 Polyethersulfone, 300 kDa (Sartorius)) pre-
conditioned to PBS. Serum samples were diluted into 200 upL of PBS and
subjected to 20 min centrifugation at 14,500x g at 4 °C followed by an
additional washing step with another 200 uL of PBS. In some cases, the washing

step was repeated until the retentate volume did not exceed 50 uL. The
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resulting retentates, the HMW fraction, were collected to a new LoBind®
microcentrifuge tube and precipitated with ice-cold acetone [14]. The
precipitated pellets were resuspended into 30 pL of a solution containing 2%
SDS (v/v) and 1 M of Urea, always aided by sonication (VibraCell 750 watt-
Sonics ®) with ice in the cup horn (2 min. pulse duration, at 1 second
intervals, and with 40% amplitude). Afterward, concentrated Laemmli Buffer
was added to the samples, followed by a 30 min incubation to reduce the
samples and a 20 min incubation with iodoacetamide for cysteine alkylation
[15]. The total volume in all samples was subjected to in-gel digestion as

previously specified [13].

Mass spectrometry data acquisition

Samples were analyzed on a NanoLC™ 425 System (Eksigent®) couple to a
TripleTOF™ 6600 System (Sciex®) using DDA for each fraction of the pooled
samples for ©protein identification and SWATH-MS acquisition of each
individual sample for protein quantification. Peptides were resolved by
micro-flow liquid chromatography on a MicroLC column ChromXP™ C18CL (300 um
ID x 15 cm length, 3 um particles, 120 A pore size, Eksigent®) at 5 pL/min.
The liquid chromatography program was performed as follows with a multistep

o) o)

gradient: 2 % to 5 % mobile phase B (0-2 min), 5 % to 28

o

B (2-50 min), 28%
to 35% B (50-51 min), 35 to 98% of B (50-52 min), 98% of B (52-61 min), 98
to 2% of B (61-62 min), 2% of B (68 min). Mobile phase A, composed of 0.1 %
formic acid (FA) with 5% dimethyl sulfoxide (DMSO), and mobile phase B with
0.1 % FA and 5% DMSO in acetonitrile. Peptides were eluted into the mass
spectrometer using an electrospray ionization source (DuoSpray™ Source,
ABSciex®) with a 25 um internal diameter hybrid PEEKsil/stainless steel
emitter (ABSciex®). The ionization source was operated in the positive mode
set to an ion spray voltage of 5 500 V, 25 psi for nebulizer gas 1 (GS1l) and

25 psi for the curtain gas (CUR).
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For DDA experiments, the mass spectrometer was set to scan full spectra (m/z
350-1250) for 250 ms, followed by up to 100 MS/MS scans (m/z 100-1500) per
cycle to maintain a cycle time of 3.309 s. The accumulation time of each
MS/MS scan was adjusted in accordance with the precursor intensity (minimum
of 30 ms for precursor above the intensity threshold of 1000). Candidate
ions with a charge state between +2 and +5 and counts above a minimum
threshold of 10 counts per second were isolated for fragmentation and one
MS/MS spectrum was collected before adding those ions to the exclusion list
for 25 seconds (mass spectrometer operated by Analyst® TF 1.7, ABSciex®).
The rolling collision energy (CE) was used with a collision energy spread

(CES) of 5.

For SWATH-MS-based experiments, the mass spectrometer was operated in a
looped product ion mode [16] and the same chromatographic conditions were
used as in the DDA experiments described above. A set of 60 windows of
variable width (containing 1 m/z for the window overlap) was constructed,
covering the precursor mass range of m/z 350-1250. A 250 ms survey scan (m/z
350-1500 m/z) was acquired at the beginning of each cycle for instrument
calibration and SWATH-MS/MS spectra were collected from the precursors
ranging from m/z 350 to 1250 for m/z 100-1500 for 20 ms resulting in a cycle
time of 3.304 s. The CE for each window was determined according to the
calculation for a charge +2 ion centered upon the window with variable CES

according to the window.

Mass spectrometry data processing

A specific library of precursor masses and fragment ions was created by
combining all files from the DDA experiments and used for subsequent SWATH
processing. Libraries were obtained using ProteinPilot™ software (v5.1,
ABSciex®), using the following parameters: 1) search against a database from
SwissProt composed by Homo Sapiens (released in March 2019), and MBP-GFP

[15] and horse ferritin light and heavy chains sequences 1ii) acrylamide or
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iodoacetamide alkylated cysteines, for whole serum or HMW respectively, as
fixed modification; 1ii) trypsin as digestion enzyme and 1iv) urea
denaturation as a special factor 1in the case of the HMW samples. An
independent False Discovery Rate (FDR) analysis using the target-decoy
approach provided with Protein Pilot software was used to assess the quality
of the identifications, and positive identifications were considered when

identified proteins and peptides reached a 5% local FDR [17, 18].

Data processing was performed using the SWATH™ processing plug-in for
PeakView™ (v2.0.01, AB Sciex®) [19]. After retention time adjustment using
a combination of IS and endogenous peptides, up to 15 peptides, with up to
5 fragments each, were chosen per protein, and quantitation was attempted
for all proteins in the library file that were identified from ProteinPilot™

searches.

Protein levels were estimated based on peptides that met the 1% FDR threshold
with at least 3 transitions in at least six samples in a group, and the peak
areas of the target fragment ions of those peptides were extracted across
the experiment using an extracted-ion chromatogram (XIC) window of 5 minutes
with 100 ppm XIC width. Protein levels were estimated by summing all the
transitions from all the peptides for a given protein (an adaptation of [20]

and further normalized to the levels of the IS [15]).

The MS proteomics data have been deposited to the ProteomeXchange Consortium
(22) wvia the PRIDE (23) partner repository with the dataset identifier
PXD034077 (for review: Username: reviewer pxd034077@ebi.ac.uk; Password:

4hF8zQaR) .

Statistical analysis and biological interpretation

Pearson's Chi-squared Test for Count Data was performed in R version 4.2.1,

using the chisg.test function available in the native stats package in R to

11
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determine if there were significant differences in the gender proportion of

the groups within the studied cohort.

To assess the variation of the serum proteins (either Whole serum or the HMW
fraction of the serum) among the three groups, a Kruskal-Wallis H test was
followed by the Dunn's Test for pairwise comparison. Dunn's p-values were
corrected using the Benjamini-Hochberg FDR adjustment, and statistical

significance was considered for p-values below 0.05.

Stepwise Linear Discriminant Analysis (LDA) was performed to select the
proteins responsible for the best separation of the groups being studied.
LDA was performed using the software IBM® SPSS® Statistics Version 22
(Trial) . LDA was attempted considering the proteins only altered at the Whole
Serum or HMW Serum, and for the combination of both results. The evaluation
of the models obtained from each analysis was performed by comparison of the
Receiver operating characteristic (ROC) curves obtained using each model.
ROC curves comparison was performed using the MedCalc Statistical Software

version 20.106 (MedCalc Software Ltd; https://www.medcalc.org; Trial). The

Delong et al. (1988) [21] method was used for the calculation of the Standard
Error (SE) of the Area Under the Curve (AUC) and of the difference between
two AUCs, and the Confidence Interval (CI) for the AUCs were calculated using
the exact Binomial Confidence Intervals which are calculated as the following

AUC + 1.96 SE.

Violin plots were used to present the distribution of the individual protein
levels among each condition, and Pearson’s correlation analysis was performed
to evaluate the similarity between the profiles of the proteins highlighted
in the study. Violin plots were generated using GraphPad Prism 8.0.1 (Trial)
and the Pearson’s correlation was performed using Morpheus software

(https://software.broadinstitute.org/Morpheus). Heatmap and hierarchical

clustering analyses were computed by using PermutMatrix version 1.9.3

12
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(http://www.atgc-montpellier.fr/permutmatrix/) [22] using the Euclidean

distance and McQuitty's criteria.

Physical protein-protein interactions between the highlighted analytes were
predicted by GeneMANIA webserver (Gene Function Prediction using a Multiple

Association Network Integration Algorithm; https://genemania.org/) [23]

together with a gene ontology (GO) analysis of the formed network. In addition
to the proteins imported from this study, 28 additional related genes were
allowed to create the interaction network using equal weighting by network.
An additional GO enrichment analysis considering the term “biological
process” was also performed. On the other hand, functional protein
association networks were evaluated using the Search Tool for Retrieval of

Interacting Genes/Proteins (STRING) version 11.5 (http://string-db.org/)

with a medium confidence of 0.4 [24].

Pathway enrichment analyses were performed using the FunRich software
(version 3.1.3) [25], considering two different databases: the FunRich or
the Reactome database. In both cases, a statistically analyzed with a
hypergeometric test using the FunRich human genome database as the background
was performed. Enriched pathways were considered for a non-corrected, or a
Bonferroni-corrected p-valuebelow0.05, for Funrich or Reactome database,

respectively.
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Results

High molecular weight fractionation as a complementary method to the

conventional whole serum proteomics

To investigate the applicability of HMW fractionation to peripheral biomarker
research, serum samples were subjected to either ultrafiltration using a 300
kDa MWCO filter and subsequent protein precipitation of the retentate
(hereinafter referred as HMW serum) prior to protein digestion and MS
analysis, or directly analyzed (whole serum) (Figure 1). In the proposed
pipeline, the HMW fractionation is performed under non-denaturing conditions,
such that the filter would retain native HMW protein complexes and large

molecular structures.

Figure 1: Pipeline of sample preparation, data acquisition and data analysis.

As previously reported, the use of a proper IS is of utmost importance to
uncover the effective proteome changes between different groups [12]; thus,
considering the nature of the fractionation proposed in this work, an
adequate IS for this procedure would be a HMW protein that is retained by
the filter and has no similarity with the remaining human proteins. In this
sense, two proteins with a MW higher than the MWCO of the filter (i.e., above
300 kDa) commonly used in a commercially available Gel Filtration Calibrants
Kit for size exclusion chromatography were tested, and the equine globular
protein Ferritin (~440 kDa size) proved to be a good IS for this procedure
as it has no similarity with any other protein from the human proteome
(Supplementary Figure la), the peptides monitored in the SWATH-MS analysis
are easily distinguished from the matrix (the human serum proteome;
Supplementary Figure 1b), and present a coefficient of variation similar to
the one obtained by the MBP-GFP used in the unfractionated analysis and
previously characterized [12] (Supplementary Figure 1lc). Additionally, the

overall reproducibility of the fractionation was also inspected, and
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similarly to what was observed for the IS (Supplementary Figure 1c), the
overall coefficient of variation of the proteins quantified using technical
replicates (Supplementary Figure 1d) revealed that this procedure did not
induce an appreciable increase in the variability of the quantification when
compared with the conventional protocol (unfractionated samples). Moreover,
the variation caused by the sample processing steps may be reverted by the
normalization of the values to the IS, since the coefficient of variation of
the IS is similar to the one observed for the majority of the proteins,
indicating that the selected IS is a good predictor of the alterations induced

by the method.

As proof of concept, this procedure was applied to serum samples of a cohort
comprised of 3 different groups: AD (n = 22), PD (n = 24), and CT (n = 12).
No statistically significant differences were found in the gender
distribution between the three groups; however, differences were observed
concerning age distribution, with PD individuals being slightly younger, on
average, than both other groups (Table 1). Patients with neurodegenerative
diseases, both AD and PD, were selected for this study, since these
pathologies are commonly linked with the formation of abnormal protein
complexes and protein aggregation, making these disorders suitable to test
the fractionation approach as a means to investigate potentially altered

protein interactions, which are lost in the conventional proteomics analysis.
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Table 1. Study population distribution across age and sex.

p-value
AD PD CT
CT vs.
(n = (n = (n = CT vs. AD AD vs. CT vs. CT vs.
Disease
22) 24) 12) vs. PD PD PD AD
s
Male
9 11 3
(n)
0.197* - 0.643" 0.148~ 0.262"
Female
13 13 9
(n)
Age 68.4 60.3 67.5
(mean * + + + - 0.0143 0.009¢* 0.033* 0.396f
SD) 8.2 10.4 7.2

*

Determined by x? test according to each group’s male/female proportions. ? Determined
by Kruskal-Wallis rank sum test to compare age between all groups. ' Determined by
Dunn's test (Benjamini-Hochberg correction) to compare age between group pairs.

Diseases refer to AD and PD grouped together.

A total of 203 and 186 proteins were quantified in whole serum and HMW serum,
respectively (Figure 2a, solid lines; Supplementary Tables 1 and 2 for
detailed information). A large overlap was observed between both sample
preparation procedures (168 proteins were shared, which corresponds to more
than 70% of all the quantified proteins). Additionally, quantification in
the whole serum of the proteins identified in the HMW serum library did not
lead to a discernible increase in proteome coverage (Figure 2a, dashed line;
Supplementary Table 3). Altogether, these results indicate that there are no
major differences in terms of the proteins being quantified in the two
approaches, revealing that the main aim of the HMW fractionation presented
in this work - fractionation under non-denaturing condition - 1is not the
overall improvement of the proteome coverage Dbut the possibility of
interrogating the samples considering protein interactions/macromolecular

organization.
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Figure 2 - Comparative differential proteomic analysis of whole and HMW serum
of AD and PD patients. (a) Venn diagram comparing the number of quantified
proteins in each sample type using sample-specific libraries (solid lines;
Supplementary Tables 1-2). In addition, gquantification in whole serum was
also performed for the proteins identified in the HMW specific library
(dashed line; Serum&HMWLib condition; Supplementary Table 3) to evaluate the
possible use of HMW fractionation as a tool to improve the proteome coverage
of serum samples. A total of 224 proteins were quantified in the serum samples
using the three strategies referred above, from those 162 of the proteins
were commonly quantified independently of the strategy, corresponding to near
three quarters of all the quantified proteins (72.3%). Only three new
proteins were quantified in whole serum using the HMW-specific library. (b)
Venn diagram comparing the total number of proteins considered as altered
among the three experimental groups using the two different serum-processing
strategies used in this work (Supplementary Figure 4 and Supplementary Tables
1-2). A total of 69 proteins were considered altered among the three
experimental groups, of those only 11 proteins (the respective gene names
are indicated) were consistently considered as being altered independently
of the strategy used. (c¢) Comparison of the levels of the 11 proteins commonly
considered as altered in both whole serum and HMW-fractionated serum. The
proteins were arranged considering the group comparison where the statistical
differences were observed (Supplementary Figure 5), and the alterations were
presented as the median fold change observed in each sample-type. Proteins
considered altered in more than one group are indicated in italic and with
a grey shadow. Only one protein, the beta-2-glycoprotein 1 (indicated in
bold), presented a divergent tendency when considering its values in the
whole serum versus after the HMW-fractionation of the samples. # - non-

statistically significant difference.

This was further confirmed by the fact that only 14.7% of all the proteins

considered altered in this study (11 out of 69 proteins) were consistently
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altered in the fractionated and unfractionated samples (Figure 2b;
Supplementary Tables 1-2). Moreover, taking into consideration the changes
of those 11 commonly altered proteins, it is possible to observe that all
proteins, except for the protein beta-2-glycoprotein 1 (Figure 2c, bold),
presented the same tendency in both fractionated and unfractionated samples
(Figure 2c). These results, in combination with the previous observations,
demonstrate that, although the two approaches gquantified the same set of
proteins, each method interrogated the samples in a particular context,
resulting in the identification of a different set of altered proteins and
the possibility to identify different regulatory mechanisms: while the direct
analysis of the serum mainly represents the alteration at the protein level,
the HMW fractionation under non-denaturing conditions may allow the

evaluation of the physical interaction of the proteins.

These results are further supported by the analysis of the MW distribution
of the proteins being studied, which reveals a similar profile between both
approaches (Supplementary Figure 2a, 2b, and 2c), with most of the proteins
detected in HMW serum presenting a MW below 150 kDa. Moreover, a similar
distribution 1is observed for the proteins altered exclusively in the HMW
approach (Supplementary Figure 2d), indicating that this strategy is not
biased towards only the HMW proteins and supporting the idea that those
proteins altered in this fraction may correspond to proteins being organized

into different complexes.

To test the hypothesis that the HMW approach is capable of evaluating the
re-organization of protein complexes, the nature of the 28 proteins altered
exclusively in HMW serum was evaluated. This analysis revealed that most of
those proteins have been described to interact physically either with each
other or with other proteins (Figure 3a). Upon immediate observation of the
GeneMania network, which primarily evaluates the interactions between the
proteins under study (Supplementary Table 4), it becomes apparent that the

majority of the proteins participate in established physical interactions.
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Moreover, it can be observed that these proteins form a large, interconnected
network comprising 20 of the 28 altered proteins, centered around the
interactions between the apolipoproteins and lecithin-cholesterol
acyltransferase (encoded by the LCAT gene). Although not participating in
any known interactions with another protein from the 28 altered proteins,
the proteins Glutathione peroxidase 3 (GPX3), Pigment epithelium-derived
factor (SERPINF1), Thyroxine-binding globulin (SERPINA7), and Alpha-1B-
glycoprotein (AIBG) are also known to establish physical interactions
including with the proteins identified in this analysis. Only four of the 28
altered proteins, namely SRR1-like protein (SRRD), carnosine dipeptidase 1
(CNDP1), peptidoglycan recognition protein 2 (PGLYRP2), and serum amyloid A-
4 protein (SAA4), were found to have no disclosed interactions in this
particular analysis. However, interactors for those proteins were already
pointed out in some screening assays, as confirmed in BioGRID (Biological
General Repository for Interaction Datasets, Supplementary Table 5).
Furthermore, as revealed by the functional analysis, several of these 28
proteins are involved in the formation of complexes with lipids and platelet
components (Supplementary Table 6), indicating that those proteins can form
complexes not only via the interaction with other proteins but also with
other molecules, and thus be organized in large complexes. This involvement
in the potential formation of macromolecular complexes is even more evident
when the functional pathways enriched in each of the two lists of proteins
(30 and 28 altered proteins exclusively in the whole serum or HMW serum,
respectively) are directly compared (Figure 3b). This comparison highlights
the fact that all the pathways that are either only, or at least more,
enriched in the HMW dataset in comparison to the whole serum dataset (pathways
indicated in Dbold) are related to the formation/regulation of large
complexes/macrostructures, namely amyloids, fibrin clot formation and
dissolution pathways and lipoprotein-related metabolism. On the other hand,

the pathways that are particularly enriched or unique in the whole serum
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dataset are mainly related to transcription factor networks (Supplementary

Table 7).

Figure 3 - Characterization of the proteins exclusively altered in whole
serum or HMW serum. (a) GeneMania Network of the 28 proteins altered only at
the HMW serum sample (listed in larger circles). The analysis was performed
with network weighting equal by the network, allowing a maximum of 28 extra
resultant genes (non-listed small circles). The seven most enriched GeneMania
Functions were highlighted in the network (color code; complete results in
Supplementary Table 4). Only protein-protein physical interactions (red
edges) were considered in this analysis, demonstrating that most of these 28
altered proteins have known interactors and can be involved in the formation
of large protein-protein complexes. (b) FunRich Biological Pathways enriched
in the whole serum (30 proteins; Supplementary Table 5) and HMW serum (28
proteins; Supplementary Table 6) proteomes. All GO analyses considered a p
<0.05. Pathways uniquely enriched at the HMW serum or particularly enriched
in this type of sample when compared to the whole serum are indicated in

bold.

Evaluation of the potential of this combined strategy for biomarker discovery

The previous set of results demonstrates that both approaches can provide
complementary information. In line with this evidence, the potential to use
this combined strategy for biomarker discovery was also evaluated. 1In
general, both approaches result in nearly 40 proteins being altered in at
least one pair of comparisons (Figure 4a-b; Supplementary Figure 3 for
details regarding each pair of comparisons), with a tendency to have more
proteins being altered in the comparisons involving the AD group (at least
20 proteins being altered compared to CT against a maximum of 14 altered
proteins in PD vs. CT, Supplementary Figure 4a-b) and only a small subset of
proteins being altered in only one comparison (15/41 in the whole serum and

11/39 in HMW serum, Figure 4a and 4b, respectively). Besides those
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similarities, different profiles of altered proteins were observed depending
on the approach used. Hence, it can also be highlighted that, while the whole
serum strategy (Figure 4a) mainly found proteins altered between the two
disease groups (39 proteins in AD vs. PD compared to 20 and 12 proteins in
AD vs. CT and PD vs. CT, respectively), the HMW approach (Figure 4b) captured
more differences between AD and CT samples (36 out of the 39 altered
proteins) . Due to this complementarity, the combination of results from both
approaches resulted in a more comprehensive profile (Supplementary Figure
4a-c), with a general increase in the number of altered proteins per group
(total of 69 altered proteins, Figure 4c). This improvement is particularly
evident in the case of proteins altered between PD and CT samples, for which
only one protein was considered commonly altered in the two approaches
(Figure 2c and Supplementary Figure 4Db), thus resulting in the duplication
of the 1list of proteins with the potential to serve as biomarkers for PD
versus CT individuals. Common to all mapped profiles was the low number of
proteins altered between all three groups (4, 1, and 6 for Whole serum, HMW
serum and the combination of both, Figure 4a-c, respectively) and the absence

of proteins altered exclusively between PD and CT samples.

Figure 4 - Identification of potential circulating biomarkers of AD and PD.
(a-c) Venn diagrams representing the distribution of the altered proteins
among the different comparisons (AD vs. CT; PD vs. CT; AD vs. PD) considering
the whole serum, HMW serum and the combination of the two (Whole + HMW serum)
types of samples, respectively. (d-f) LDA using all the altered proteins per
sample type or the combination of the two. The number of proteins used in
each model is indicated above the graphic, and for each model it is indicated
their specificity (percentage of healthy individuals correctly identified;
indicated in black) and the sensitivity per disease condition (percentage of
AD or PD patients correctly identified; indicated in red and blue,
respectively). Specificity and sensitivity values were also summarized in

Supplementary Table 7, and the LDA discriminant functions generated and their
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respective statistical confidence, were summarized in Figure 5a. (g-h)
Comparative ROC curves of the discriminant functions generated using all the
altered proteins per sample type or the combination of the two. An independent
evaluation was performed for each disease group being studied. The AUC of
the ROC curves, their 95% CI and the pairwise comparisons are summarized in
(i). CI was calculated as follows AUC * 1.96 SE. n.s., non-significant
alterations. * and # indicate a p<0.05 for statistically significant
differences in comparison to the Whole Serum or HMW+Whole Serum in comparison

to HMW Serum, respectively, using the method of Delong et al. (1988) [21].

To further confirm the biomarker potential of the altered proteins from the
three strategies presented above, they were wused as input to Dbuild
discriminant models that could differentiate between the studied groups
(Figure 4d-f). From each dataset, candidates whose combination resulted in
the best possible discriminant model were automatically selected (detailed
information regarding the methods in Table 2), resulting in three distinct
and statistically wvalid models (all with p < 0.0032) capable of
discriminating the three groups being studied. The whole serum dataset
resulted in a reasonable model composed of 4 proteins (Figure 4d), with a
median sensitivity (the capacity to classify the individuals from each
disease group correctly) of 86.95% (sensitivity and specificity are
summarized in Supplementary Table 8). On the other hand, the model created
with six proteins from the HMW approach (Figure 4e) had lower performance,
with a median sensitivity of only 80.3% (corresponding to 83.3% predicting
capacity for PD samples and 77.3% for AD samples). Moreover, neither of the
models was particularly good in the classification of CT samples, resulting
in a specificity of only 66.7% and 75% in the whole serum and HMW serum
models, respectively. Remarkably, the combined model (created from the
dataset containing the altered proteins from both approaches - Figure 4f)
clearly outperformed the two models based only on proteins from a single

approach. For this combined model, a total of 10 proteins were selected and
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integrated, creating a discriminant model capable of correctly classifying
more than 96% of all tested samples (93% in a cross-validation test; Table
2), 1including 100% correct classification of PD samples (Figure 4f).
Altogether, this combined method presented a median sensitivity of 97.75%

and a specificity of 91.7%.

The diagnostic capacity of these models was further evaluated by ROC curves
of the capacity to positively classify the AD and PD patients against all
the remaining samples (Figure 4g-i). This analysis confirmed that the best
model is the one created with the combination of proteins from both approaches
and that, in general, the model using only proteins from the whole serum
approach 1is better than the model from the HMW approach. The respective
statistics (Figure 41i) further support that the whole serum model performed
better than the HMW serum model Dbut without statistically significant
differences between the two ROC curves. Additionally, the statistical
analysis also confirmed that the combined model (AUC = 0.999 for the
classification of AD and PD patients) is the best model, and that it performed
significantly better (p < 0.05) than both other models for PD classification
(HMW serum, AUC = 0.888; whole serum, AUC = 0.960) and better than the HMW
serum model (AUC = 0.919) in the case of AD classification. The robustness
of the combined model is further evidenced by the confidence interval (CI)
of the AUC, which has a lower limit above 0.93 for both diseases, in contrast
with the values achieved for the other two methods, whose lower limits are

all below 0.9.
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1 Table 2.

Gene

Linear Discriminant models,

Whole Serum

respective statistical analysis and classification results.

HMW serum

Whole + HMW serum

Name Protein name (KDa) Dis 1 Dis 2 Dis 1 Dis 2 Dis 1 Dis 2
! FOXM1 Forkhead box protein Ml 84.283 == == == == 245.36 -10.93
' °2.071 . 1212.34 -—- -—- -1557.39  623.28
PROC Vitamin K-dependent protein C 1133.77 ) ) ’
t Hemoglobin subunit beta (Beta- 15.998
BB globin) 1.49 0.58 0.06 0.13 0.42 1.50
" apoal Apolipoprotein Al (Apo-AI) 30.778 3.63 0.53 = = -0.16 -3.08
s _ . .
IGLV3 Immunoglobulin lambda variable 12.042 . L L L 62.89 52 .70
19 3-19
®  SRRD SRR1-like protein 38.573 -— -— 20.37 7.55 16.69 11.52
° APOC1 Apolipoprotein Cl (Apo-CI) 9.332 - - -9.74 19.21 =15.77 1.33
°  APOE Apolipoprotein E (Apo-E) 36.154 -—- -—- 1.46 -0.42 0.84 0.53
S SERPINF Pigment epithelium-derived 46.312 . L L L 6.85 2 63
1 factor (PEDF) ’ :
¢ KRT9 Keratin, type I cytoskeletal 9 62.064 - - -8.80 5.05 -12.73 -4.91
PPBP Platelet basic protein (PBP) 13.894 --= --= 8.89 -7.88 -—- -
TF Serotransferrin (Transferrin) 77.050 -0.99 -1.66 =os =os Soc -—
(Constant) 2.11 -0.81 -1.11 -2.82 3.34 -1.10
= 0.253 0.773 0.242 0.629 0.058 0.292
Statistics (Wilks' Lambda, Chi-square X2 73.473 13.473 74.458 24.361 143.675 62.244
and p-value) = 9.97x10 3.23x10- 1 4.65x10- 1.85x10- 1 1.01x10- 4.94x10
P< -13 03 11 04 20 -10
Original 82.8 79.3 96.6
Overall classification results
(% of cases correctly classified) CFossT 81.0 72 .4 93.1
validation
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2
3
4

# selected from the data from the whole serum approach for the Whole + HMW serum model; S selected from the data from the HMW
serum approach for the Whole + HMW serum model; Dis - discriminant function; Note that proteins are sorted by order of inclusion

into the Whole + HMW serum discriminant model.
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By looking at the proteins selected to build the different methods (Table
2), it was observed that the combined method is not the simple combination
of the proteins previously selected from each of the individual methods. The
combined model is built by the combination of 10 proteins, five from each
dataset, including three [forkhead box protein M1 (FOXM1), immunoglobulin
lambda variable 3-19 (IGLV3-19) and pigment epithelium-derived factor
(SERPINF1)] that were not selected on the database-specific models. On the
other hand, some previously selected proteins [serotransferrin (TF) and
platelet basic protein (PPBP)] were not included in the combined model.
Finally, the Hemoglobin subunit beta (HBB) was selected in both approach-
specific models, although only data from the whole serum dataset was used in
the combined model. These results demonstrate that the increase in the
initial amount of data provided for the discriminant analysis has an
important impact on the generated model by making it possible to test
different combinations of proteins and, thus, allowing for the identification
of better combinations than those highlighted in the analysis of individual
datasets. Interestingly, all ten proteins selected in the combined model
have a MW below 90 kDa (Table 2), confirming that all the proteins selected
from the HMW approach have a MW below the theoretical cut-off of the filters
used for fractionation, which supports the hypothesis that this approach may
be capable of evaluating the remodeling of molecular complexes. By plotting
the individual values of each of the ten proteins selected in the combined
model (Figure 5a), it is possible to observe that, as expected, those wvalues
present some variation characteristic of the individuality of each patient.
Nevertheless, considering that the model was able to correctly classify more
than 90% of all the patients (Figure 4f), it is possible to infer that the
combinations performed in the model could diminish the impact of the
biological wvariability, proving that the combination of different markers
can overcome their individual weaknesses. The analysis of these plots
immediately reveals that: i) only three proteins from the model (the proteins

encoded by the genes FOXMI1, HBB, and SRRD) are significantly altered between
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all three groups; and that 1ii) only one protein, the apolipoprotein Cl (Apo-
CI, encoded by the APOC1 gene), 1is altered between a single comparison, in
this case between AD and PD which may indicate that this protein may have a
particularly important role in this model for distinguishing AD from PD
patients. Among the remaining 6 proteins: i) three are altered between both
disease groups and control sample (all three found in the HMW fraction); ii)
two are altered in AD in comparison to both PD and CT, and one, the Vitamin
K-dependent protein C (encoded by the PROC gene), 1is altered in PD patients
in comparison to the other two groups. Moreover, it is noteworthy that while
there was a tendency to incorporate proteins that were increased in AD
compared to CT from the whole serum approach (three out of the five proteins
from the whole serum model encoded by the genes FOXMI1, HBB, and APOAI), the
opposite trend was observed in the case of proteins from the HMW approach.
Specifically, three out of the five proteins (the proteins encoded by the
genes SRRD, APOE, and SERPINF1) were found to be decreased in the AD vs. CT
comparison. On the contrary, for the PD vs. CT comparison there were no major
differences in terms of tendencies when considering the proteins captured in

whole serum or the HMW serum.

Finally, all proteins from the whole serum dataset, in addition to SRR1-like
protein (encoded by the SRRD gene) and Apo-CI from the HMW dataset, were
significantly altered between both disease groups. From these, three proteins
[the protein Forkhead box protein M1 (encoded by the FOXMI gene), hemoglobin
subunit beta (encoded by HBB gene), and apolipoprotein Al (Apo-AI, encoded
by the APOAl gene)], are less abundant in PD samples than in AD samples,

while the remaining four are increased.

Figure 5 - Characterization of the proteins selected by the LDA model created
by the combination of Whole Serum and HMW Serum analyses and their
correlation. (a) Violin plots representing the group’s distribution of the
levels of each of the ten proteins from the model. The dashed lines inside

the violin plots indicate the first, second (median) and third quartiles. *,
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**, and *** indicate a p<0.05, p<0.01, and p<0.001 for statistically
significant differences in comparison to the control group. #, ##, and ###
indicate a p<0.05, p<0.01, and p<0.001 for statistically significant
differences in comparison between disease groups. Statistical analysis was
performed using the Kruskal-Wallis H test followed by the Dunn's Test for
pairwise comparison. (b) Person’s correlation analysis between the overall
regulation profile of the ten proteins included in the model. (c¢) Heatmap
and hierarchical clustering analysis of the 10 proteins from the model.
Clustering was performed for both the proteins and the individuals analyzed
in this study. Three different clusters (Cluster PD, CT and AD) containing
the large majority of the individuals from a given group can be highlighted
from the analysis. The average profile of each cluster is indicated on the
right and can be considered as the profile of expression of those ten proteins
within the groups considered in this study. (d) The interaction network of
the ten proteins included in the model was carried out with STRING with
medium confidence (0.4) score. The color of the edges indicates the type of
evidence that supports a given interaction, while the color of the nodes
represents the categorization of the proteins considering UniProt Keywords
enriched in this dataset (complete functional enrichment analysis in the
Supplementary Table 8). The calculated PPI enrichment p-value is 2.07e-05.
Three clusters (Cluster 1 to 3) can be identified within the network, with
the dashed edges indicating the separation between the two clusters. Cluster
1 corresponds to proteins whose interactions are experimentally confirmed,
while cluster 2 is composed of proteins that are theoretically related, and
finally, cluster 3 corresponds to non-related proteins. (e) Reactome pathways
enrichment analysis using the ten proteins included in the diagnostic model.
The analysis was performed by FunRich functional enrichment analysis. The
red line indicates Bonferroni corrected p-value with the corrected p < 0.05,
meaning a significant enrichment. The grey dashed 1line indicates the
reference line (p = 0.05). The complete analysis can be found in Supplementary

Table 9.
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97 The correlation analysis of the protein abundances among groups, confirmed
98 that, in general, there is no particularly evident correlation between the
99 profiles and the magnitude of regulation of these proteins (Figure 5b). There
100 were, however, some observed exceptions, including a strong positive
101 correlation between the proteins encoded by the genes APOAI and FOXMI1 (r=0.8)
102 and, to a lesser extent, the proteins encoded by APOCI, APOE and SERPINFI
103 (r=0.5-0.6) . Interestingly, the proteins exhibiting a positive correlation
104 originated from the same approach: i) the gene products of APOAI and FOXMI
105 were both highlighted in the whole serum approach, indicating that the total
106 levels of these two proteins were modified in the same way: while, 1ii) the
107 products of the APOC1, APOE, and SERPINF1 genes were found to be altered in
108 the HMW fractionation strategy, which may indicate that these proteins could
109 be involved in the same complex and consequently regulated similarly. No
110 remarkable negative correlations were found, with the strongest being
111 observed between the proteins encoded by the APOAI and SRRD genes, which
112 indicates that none of the proteins in the model present a completely opposite
113 regulation profile. Additionally, an unsupervised clustering analysis using
114 these ten proteins (Figure 5c¢) confirmed their capacity to partially
115 distinguish the three groups being studied, revealing that, besides the
116 existence of individual variability, it was possible to identify three
117 independent clusters composed exclusively or mainly of samples from one of
118 the three groups. This analysis also demonstrates that this set of proteins
119 is particularly efficient in isolating the AD patients from the remaining
120 individuals from the study: the AD cluster was composed exclusively of AD
121 patients and only 6 out of the 22 AD patients were not included in this
122 cluster. On the other hand, a slightly lower separation capacity was observed
123 for both PD and CT samples. These two clusters contained few samples that
124 did not belong to their respective groups, resulting in a higher percentage
125 of individuals not properly grouped (10 out of 24 and 4 out of 12 samples
126 for PD and CT, respectively). The discrepancies observed between the

127 clustering analysis and the discriminant model results, where the latter
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128 correctly classified over 90% of the samples, can be attributed to the fact
129 that the clustering analysis relied solely on the individual protein
130 distribution profiles across the samples. In contrast, the discriminant
131 analysis employed equations with different weightings for each protein,
132 resulting in a single model that effectively reduces the intragroup
133 variability while promoting a better separation between the analyzed groups.
134 Despite that, the clustering analysis remains an important approach for
135 understanding how the proteins are modulated within the samples. Thus, from
136 the three different clusters highlighted in the analysis, it was possible to
137 infer the median protein abundance profile of these proteins among the three
138 groups. For instance, the gene products of SERPINF1, APOE and APOCI tend to
139 be less abundant in both disease groups compared to CT samples. Furthermore,
140 some proteins are more abundant in each disease group, namely the gene
141 products of PROC and KRT9 in PD samples and the gene products of HBB, APOAl
142 and FOXMI in AD samples. Another disease-specific observation was the smaller
143 amount of immunoglobulin lambda variable 3-19 (IGLV3-19) 1in AD samples
144 compared to both other groups. Overall, these tendencies characterize the
145 unique profiles determined for each disease group, which may be a precursor
146 to a potential future biomarker panel, more informative than the analysis

147 based on any single protein.

148 Finally, STRING analysis (Figure 5d and Supplementary Table 9) revealed that
149 these ten proteins have more interactions among themselves than what would
150 be expected for a random set of proteins of the same size and degree of
151 distribution, indicating that this set of proteins is, at least partially,
152 biologically connected (PPI enrichment p = 2.07x107%). This result may be

153 mainly due to the strong network involving apolipoproteins and Hemoglobin

154 subunit beta (cluster 1). Again, two out of the ten proteins selected for
155 the discriminant method revealed to be associated with high-density
156 lipoproteins (HDL) and chylomicron (ultra-low-density lipoproteins

157 particles) remodeling and assembly (Figure 5e and Supplementary Table 10),
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158 highlighting the ©potential importance of these mechanisms in the
159 neurodegenerative process, and confirming that the proteins related with

160 these mechanisms could be good biomarker candidates for their diagnosis.

161 Given the central role that apolipoproteins appear to play in this model, a
162 discriminant analysis was performed using data from ten altered proteins
163 involved in apolipoprotein-related mechanisms to investigate if the

164 diagnostic model could be limited to this set of functionally related

165 proteins (Supplementary Figure 5). However, the generated model exhibited
166 lower diagnostic capacity compared to the combined approach, with only 82.75%

167 of the samples being correctly classified. The model showed a specificity of
168 66.7%, and a sensitivity of 86.4% and 87.5% for AD and PD, respectively,

169 resulting in ROC curves with AUCs equal to or below 0.955. Thus, besides the

170 importance of apolipoproteins, the results from these proteins alone are not
171 enough to distinguish the three groups, which emphasizes the importance of
172 having diagnostic models based on several complementary candidates instead
173 of a single or just a few candidates. Nonetheless, the identification of
174 this robust core of functionally related proteins underscores the
175 significance of the combined approach for identifying new potential

176 biomarkers, since the dysregulation of Apo-Cl and Apolipoprotein E (Apo-E,
177 encoded by the APOE gene) was discovered using the HMW fractionation approach
178 while the dysregulation of Apo-AI was identified using the whole serum

179 approach.
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180 Discussion

181 The present study presents a proof of concept of a novel two-pronged approach
182 to biomarker discovery in complex peripheral biological fluids. More
183 specifically, it was demonstrated that through the combination of two
184 complementary proteomics strategies, the direct analysis of whole serum and
185 the analysis of serum HMW fraction (above 300 kDa) in non-denaturing
186 conditions, another level of proteome characterization of the samples could
187 be achieved resulting in more robust diagnostic models. In this sense, when
188 applied to serum samples from a cohort of control individuals and individuals
189 afflicted by neurodegenerative diseases, this strategy allowed for a strong

190 discriminant model to be built, able to distinguish all studied groups more

191 effectively than the models generated from a single proteomics analysis. The
192 most noticeable findings from this model showed that several, otherwise
193 overlooked, proteins may yet serve as potential biomarkers of disease, in

194 this case, AD and PD, particularly when analyzed together in a model created
195 using the two different approaches. Thus, these results confirm the
196 importance of having a panel of potential candidates rather than a single
197 protein biomarker, and besides that, it also demonstrates that the biomarker
198 discovery field will also benefit from combining data from the sample
199 obtained through different sample processing strategies. Although not
200 sufficient to be considered as a biomarker by itself, the substantial
201 influence of apolipoproteins, namely Apo-AI, Apo-CI, and Apo-E, in the
202 aforementioned discriminant model points out for a possible disease-specific

203 dysregulation of the lipoprotein metabolism in AD and PD patients.

204 HMW fractionation may reveal a potentially altered macromolecular and

205 macromolecular-complex organization

206 In this work it was demonstrated that interrogating serum samples with the
207 HMW fractionation method adds an extra layer of information capable of

208 bringing new insight into the behavior of the serum proteins, particularly
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209 regarding their potential macromolecular organization. Because the
210 fractionation procedure took place under non-denaturing conditions and since
211 aberrant protein aggregation [8] is a common hallmark of both AD and PD, it

212 was hypothesized that macromolecular complexes, potentially altered between

213 the studied groups, could be captured through the HMW fractionation approach.

214 The present results confirmed this premise, as evidenced by the fact that
215 although no variation was observed in the overall serum protein captured by
216 both strategies, proteins exclusively altered in the HMW fraction accounted
217 for 40% of the total list of altered proteins. Furthermore, with the exception
218 of one protein (Centrosome-associated protein CEP250), all proteins had a MW
219 below 90 kDa, which is considerably lower than the 300 kDa cut-off filter
220 used. It is worth noting that 72% of proteins altered in the HMW fraction
221 did not exhibit alterations in their total levels. This supports the
222 possibility that different regulatory mechanisms of these proteins, apart
223 from expression and degradation, are being revealed and studied using this

224 approach.

225 Moreover, the results show that most of these proteins have several reported
226 interactors and thus may be involved in the formation of large complexes. An
227 example is the protein clusterin (CLU gene), also known as apolipoprotein J,

228 which has been reported to be involved in the metabolism of aggregation-

229 prone proteins, such as those involved in NDs [26-28]. For instance, the
230 interaction of clusterin with AR42 has been shown to increase its clearance
231 from the Dbrain through the Dblood-brain barrier (BBB) [26]. Moreover,
232 clusterin has already been pointed out as being related to different stages
233 of PD disease, including a potential neuroprotective role arising from its
234 interaction with a-synuclein aggregates [27]. Additionally, the interaction
235 of clusterin with o-synuclein has already been detected in plasma samples
236 [28]. Besides this specific example, the generic functional analysis of the

237 altered proteins, particularly those from the HMW serum strategy, reveals
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238 that those protein are highly related with the amyloids and clot formation,

239 which can be large structures.

240 On the other hand, some of these proteins may instead, or additionally, be
241 present in large biological structures not composed exclusively of proteins,
242 like exosomes or lipoproteins, which would not only likewise justify their
243 presence in this HMW serum fraction but also give further understanding of
244 the potentially altered mechanisms related to the diseases being studied.
245 Such may be the case of the proteins clusterin and serum amyloid A-4 (SAA4
246 gene), which were found to be altered in serum neuron-derived exosomes of AD
247 patients [29]. Additionally, exosomal clusterin was found to be altered in
248 patients at different stages of PD when compared to controls [30]. Thus,
249 although the presence of exosomes in the HMW fraction was not confirmed,
250 given the MWCO of the filters used in this work, it is feasible that some of
251 the proteins being analyzed in the HMW fraction may correspond to proteins

252 linked to the extracellular vesicles.

253 Altogether, these findings support the notion that the HMW fractionation
254 approach can provide a new level of information that may provide new insights

255 into how proteins are organized within a given sample.

256 Altered lipoprotein metabolism can be a peripherical marker of AD and PD

257 Importantly, the combination of the two approaches in this study led to a
258 robust and promising potential biomarker panel composed of ten proteins,
259 quantified in whole serum or HMW serum. A major finding revealed by this
260 model was the involvement of several lipoproteins in discriminating the
261 studied groups. Among the ten proteins used in the best discriminant model,
262 three are apolipoproteins: Apo-AI from whole serum, and Apo-CI and Apo-E
263 from HMW serum. Besides those three proteins, other altered apolipoproteins
264 were observed in this study but not included in the model, namely: i) the
265 Apo-AII, Apo-LI and clusterin highlighted in the HMW serum strategy; ii) the

266 Apo-AIV from the whole serum; and, 1ii) beta-2-glycoprotein 1 in both
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267 approaches. Furthermore, a lipoprotein-related enzyme, lecithin-cholesterol
268 acyltransferase, was also altered in HMW serum. This is further supported by
269 the functional enrichment analysis of the altered proteins discovered in
270 both strategies that highlight the involvement of those proteins in
271 lipoprotein metabolism and HDL-mediated 1lipid transport pathways.
272 Cumulatively, all these findings point to the relevance of lipoproteins in
273 the context of NDs and, although not absolutely clear, the link between these
274 diseases, in particularly AD, and apolipoproteins has been the focus of many

275 studies [26-28, 31-40].

276 Both Apo-AI and Apo-E have an established relation to toxic species clearance
277 from the brain in the context of AD and PD [26, 28, 31, 41-44]. Additionally,
278 regarding AD, our findings for both proteins are contrary to what can be
279 found in the literature [32, 37]. For Apo-AI, we found an increase in

280 abundance in AD patients as opposed to the decrease reported for most studies

281 [32]. However, 1in another study where no significant alterations in total
282 serum Apo-AI content of AD patients were reported, further investigation
283 revealed that some proteoforms of this protein were significantly increased

284 compared to the levels observed in the controls [33]. This has been suggested
285 as a possible explanation for the different observations regarding this
286 protein in the context of AD, which might be related to the use of different
287 detection methods within different studies [32]. Regarding this protein’s
288 connection to clearance mechanisms, evidence suggests that for HDLs
289 containing Apo-AI (APOA1-HDL), the structure seems to influence not only the
290 disaggregation of AR fibrils but also its ability to cross the BBB, with
291 lipid-poor discoidal APOA1-HDL having the best performance when compared to
292 APOA1-HDL in other lipidation states [31]. Moreover, in the present study,
293 phosphatidylcholine-sterol acyltransferase, an enzyme known to affect HDL
294 structure through lipidation of Apo-AI in plasma [39], was also found to be
295 altered in AD patients. As this enzyme participates in HDL maturation in

296 plasma [45], this result could reflect the dysregulation of lipoproteins in
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297 AD. For Apo-E, we found a decrease in abundance in AD patients as opposed to
298 the increase reported for MCI patients in a previous study [37]. Isoform and
299 lipidation status of Apo-E is also crucial for the AR clearance, with the
300 Apo-E4 isoform, the genetic risk factor most associated with the onset of AD
301 [26, 42], and higher lipidation having detrimental effects on the process
302 [26, 42]. Further investigation using the combined approach presented in
303 this study, particularly in the context of AD, should also involve a lipid
304 profile analysis and APOE genotyping of the participants to enable a more

305 comprehensive characterization of serum HDLs and Apo-E content, respectively.

306 Although systemic lipid abnormalities have also been implicated in PD, there
307 are much fewer findings connecting it to HDL-related proteins, as compared
308 to AD [27]. Nonetheless, a previous report observed significantly decreased
309 values of Apo-AI in mild PD patients when compared to healthy controls, but

310 much like what we observed for this protein, a less impactful and non-

311 significant decrease was observed in moderate/severe PD patients [46]. In
312 fact, most research indicates that Apo-AI may have a protective role in PD
313 [27] and it has been hypothesized that APOA1-HDL could take part in the

314 efflux of a-synuclein from the brain [28]. Additionally, both Apo-AI and

315 Apo-E have been reported to interact with a-synuclein [28].

316 Finally, HDL size and plasma levels have been shown to be dependent on the
317 levels of Apo-CI [47], another apolipoprotein included in the best diagnostic
318 model generated in this study. Besides that, a previous study also shows
319 that the dysregulation of this protein can lead to impaired memory processes
320 in mice [48]. This suggests that the regulation of Apo-CI can be pivotal in
321 the brain and that a systemic disruption of this process could have effects
322 detectable beyond the CNS, particularly in lipoprotein metabolism, that could
323 be observable in peripheral biofluids. Interestingly, in this study, it was
324 found that Apo-CI was significantly decreased in the HMW serum fraction of
325 AD in comparison to PD patients, but only a slight and non-significant

326 decrease was observed when compared to CT patients. Similarly, only a small
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327 non-significant decrease in HMW serum Apo-CI was observed for controls in
328 comparison to PD patients, which is in accordance to what was already reported
329 for whole plasma [34]. Since impairment of memory is a hallmark of AD and is
330 not a predominant feature among the PD patients [49], these results may be
331 impacted, at least in part, by the age discrepancies observed between the
332 patients from the PD group and the other two groups. In fact, the PD patients
333 are on average younger than the other two groups that have a similar age-
334 distribution among them. In this sense, the lower levels of Apo-CI in
335 comparison to PD may be in part linked with some memory impairment associated
336 to natural aging [50]. On the other hand, the results of Apo-CI may also be
337 influenced by the individual Apo-CI and Apo-E isoforms. In fact, the APOE
338 and APOCI genes are in linkage disequilibrium [51], and carriers of the
339 APOE (¢4) and APOCI (H2) alleles have been shown to have an increased risk of
340 developing AD [40]. This was further confirmed in an study using human APOE-
341 carrying mice, which demonstrated that those animals carrying the APOE (¢4)
342 allele were found to have decreased serum Apo-CI content when compared to
343 those carrying the APOE (¢3) allele [52]. However, Apo-CI has also been
344 suggested to potentially play a modulatory role in the development of AD,
345 with reported effects on mice cognitive function independent of Apo-E
346 expression [53]. Again, these observations strengthen the importance of
347 combining these results with further characterization of the individuals,

348 including genotyping of the apolipoproteins’ isoforms.

349 Despite of the connection between these three apolipoproteins to AD and PD,

350 as evidenced by previously mentioned studies, and their relevance for the

351 discriminant model, the use of these proteins alone or in combination with
352 other proteins associated with apolipoprotein-related mechanisms did not
353 result in a robust diagnostic model capable of effectively distinguishing
354 between the studied groups (as shown in Supplementary Figure 5). This

355 indicates that these three apolipoproteins had to be combined with other

356 seemingly unrelated proteins to be used as potential biomarkers. Further
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357 studies should be directed towards elucidating this potential relationship
358 to understand: i) the importance of the identified proteins/mechanisms for
359 the pathophysiology of the studied NDs, and 1i) to which extent these

360 mechanisms are differently altered between the two diseases.

361 In summary, in this work it was demonstrated that the combination of two
362 complementary sample processing approaches is a more effective strategy to
363 reach potential biomarkers rather than a single approach. Besides that, the

364 strategies used here, that combine the analysis of the whole serum and the
365 HMW fractionation of non- denaturing serum, can also identifying proteins
366 being differentially modulated besides the conventional alteration in their
367 total levels. In this work, this new strategy was applied to a cohort of NDs
368 patients and respective CT individuals, being able to build a good predictive
369 model capable of distinguishing all the three groups studied (AD, PD and
370 CT). This predictive model highlighted the linkage of the apolipoprotein
371 family and NDs, with three out of the ten proteins included in this model
372 being apolipoproteins. Nevertheless, further validation in a larger and
373 independent cohort is needed to confirm the soundness of the model, as well
374 as more studies to link the alterations observed and these pathologies.
375 Controlling the lipid profile of each individual included in future studies
376 is also advised, as altered lipid metabolism was a major finding of the
377 present work. Another interesting aspect to be further explored would be the
378 identification of protein complexes in the HMW fraction to better understand
379 the origin of the protein alterations observed. This is particularly relevant
380 since many of the proteins captured in this fraction have a molecular weight
381 that would normally exclude them from analysis through the 300kDa cut off
382 fractionation approach. Overall, the results of this study demonstrate that
383 HMW fractionation under non-denaturing conditions could be a valuable

384 addition to routine biofluid analysis.
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