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Abstract 

Neurodegenerative Diseases (NDs) are a major health challenge. Thus, finding 

reliable blood biomarkers for them has been of pivotal importance in 

translational/clinical research. However, conventional omics struggle with 

the complexity of blood samples making it difficult to achieve the desired 

goal. To address this, the potential of High Molecular Weight (HMW) serum 

fractionation under non-denaturing conditions as a complementary approach to 

the direct analysis of whole serum proteomics was explored in this work. To 

achieve this, a total of 58 serum samples of Alzheimer's disease (AD), 

Parkinson's disease (PD) patients and control individuals underwent both 

strategies: i) direct analysis of whole serum and ii) non-denaturing 

fractionation using 300 kDa cut-off filters (HMW serum). As expected, each 

approach was able to capture different sets of differentially regulated 

proteins since most of the altered proteins were not shared between them. 

More importantly, it was possible to create a discriminant model using the 

altered proteins from both datasets capable of successfully distinguishing 

the three groups (AUC = 0.999 and, median sensitivity and specificity of 

97.4% and 91.7%, respectively). Among the 10 proteins included in the model 

(5 from each strategy), a clear evidence for the contribution of proteins 

from the apolipoprotein family for the diagnosis of NDs was revealed. 

Furthermore, HMW fractionation exposed potential changes within the 

organization of macromolecules and their complexes, thereby uncovering hidden 

effects in serum. Altogether, this work demonstrated that HMW fractionation 

can be a valuable complementary method to direct serum analysis and could 

enhance biomarker discovery. 
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Introduction 

Proteins can be directly or indirectly related to a myriad of diseases, 

thereby being important targets of biomarker research, which remains a 

pivotal aspect of clinical research. However, biomarkers discovery based on 

conventional proteomics strategies have not yet yielded substantial practical 

applications. Blood and its fractions are the most studied samples for 

biomarker identification, not only due to easy accessibility but also because 

of its interactions with most tissues in the body, potentially reflecting 

disease-related alterations [1, 2]. However, both plasma and serum proteomes 

have a very wide dynamic range of protein concentrations [1], with the 

detection of those least abundant being masked by the most abundant.  Despite 

all the technical developments in proteomics quantification by mass 

spectrometry (MS) [3], the high dynamic range still precludes the complete 

characterization of these samples may be one of the reasons why the 

identification of relevant biomarkers in plasma/serum by MS has been 

difficult [4]. Therefore, it is essential to have alternative approaches to 

the direct analysis of these highly demanding biofluids. Several approaches 

have been developed to reduce sample complexity [5] like size exclusion 

chromatography and electrophoretic separation methods. When working with many 

samples, a simpler approach that could serve as an alternative to direct 

sample analysis is centrifugal ultrafiltration [5], which relies on the 

separation of sample components based on size exclusion, correlated to 

molecular weight (MW). This method has typically been used to study the low 

molecular weight proteome of serum and plasma samples, using filters between 

20 kDa and 40 kDa [6, 7], but it may also be used to study other proteome 

fractions. Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) are 

inherently linked to protein aggregation [8] and, therefore, to the formation 

of high molecular weight (HMW) protein complexes. Fractionation of peripheral 

fluid samples from patients with these diseases, focused on the HMW proteome, 

could be useful to not only eliminate high abundance proteins, but also study 
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protein aggregates that may be present in circulation. In this study, we 

propose the use of centrifugal ultrafiltration focused on the HMW proteome, 

not as an alternative but as a complementary analysis to the investigation 

of unfractionated samples. To evaluate our hypothesis, the same set of 

samples was subjected to the proteomics analysis of the whole serum and to 

fractionation using centrifugal ultrafiltration with 300 kDa molecular weight 

cut-off (MWCO) filters in a non-denaturing environment (henceforth referred 

to as HMW fractionation). The data obtained in the two approaches were not 

only directly compared but also combined to identify potential biomarkers. 

This study used a cohort comprising patients with neurodegenerative 

disorders, specifically Alzheimer's and Parkinson's disease patients, and 

healthy controls (CT) to test the significance of using HMW fractionation as 

a complementary tool for biomarker discovery. These disorders were selected 

as they are considered proteinopathies and may offer ideal targets for this 

purpose. 
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Material and Methods 

Participants 

A total of 58 serum samples were used in this study, comprising 3 groups of 

individuals: AD (n = 22), PD (n = 24), and CT (n = 12). The study was approved 

by the Ethics Committee of the Faculty of Medicine of the University of 

Coimbra (reference CE_010.2017) and the Ethics Committee of the Centro 

Hospitalar e Universitário de Coimbra (CHUC) (reference 34 /CES-CHUC-024-18) 

and was conducted according to the principles stated in the Declaration of 

Helsinki [9]. Written informed consent was obtained from all participants. 

The PD patients were recruited at the Movement Disorders Units of the 

Neurological Department of the CHUC, where they were assessed by a movement 

disorders specialist and were diagnosed according to the criteria defined by 

the UK Parkinsons’s Disease Society Brain Bank [10]. The exclusion criteria 

for these patients consisted of severe dementia (as indicated by a Mini-

Mental State Exam score below 15), any psychiatric disorder, or other forms 

of parkinsonism. The clinical group of individuals with AD diagnosis was 

recruited and prospectively evaluated by two experienced neurologists at 

Memoclínica and the Neurology Department of the CHUC. The standard criteria 

for the diagnosis of AD were the Diagnostic and Statistical Manual of Mental 

Disorders4fourth edition (DSM-IV-TR) and the National Institute on Aging and 

the Alzheimer’s Association Workgroup [11]. To ensure the homogeneity of the 

sample, only patients who met the following criteria were included: they 

were in a stable condition, did not sustain recent changes in medication, 

and did not have ophthalmological or neurological/psychiatric conditions 

other than AD. The CT group was composed of age- and gender-matched 

individuals from the community with no history of cognitive deterioration, 

neurological or acquired central nervous system (CNS) disorders, traumatic 

brain injury, or psychiatric disorders. The CT group was also submitted to 

a brief cognitive assessment to exclude the presence of cognitive impairment. 
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Serum processing for proteomics analysis 

Two different strategies were used to obtain a more comprehensive proteomic 

characterization of serum samples, namely: i) direct analysis of whole serum, 

and ii) HMW fractionation through ultrafiltration using 300 kDa cut-off 

filters (HMW serum). 

For each sample, 5 µL were used for direct serum analysis and 82.5 µL for 

HMW serum fractionation. Additionally, three sample pools were prepared by 

combining aliquots of all the samples, for the AD pool, PD pool or CT pool, 

respectively. Pooled samples were used for Data-dependent acquisition (DDA) 

experiments to build a specific protein library to be used in Data independent 

acquisition (DIA) analysis and were subjected to the same sample processing 

as the individual samples. Before processing, all samples were spiked with 

the same amount of an internal standard (IS) to account for sample loss [12]. 

Different internal standards were used depending on the type of analysis: 

MBP-GFP [12] in the case of the whole serum approach, while equine ferritin, 

commonly available as one of the standards in the Gel Filtration Calibrants 

Kit for High Molecular Weight proteins (GE28-4038-42), for the HMW 

fractionation approach. 

For the direct analysis of whole serum, the samples were diluted in Laemmli 

buffer, followed by denaturation for 5 min at 95°C and cysteine alkylation 

with acrylamide, and the total volume in all samples was subjected to in-gel 

digestion using the Short-GeLC for subsequent quantitative analysis by LC-

MS/MS-DIA [13]. 

Samples subjected to HMW fractionation were ultrafiltrated using 300 kDa 

cut-off filters (Vivaspin® 500 Polyethersulfone, 300 kDa (Sartorius)) pre-

conditioned to PBS. Serum samples were diluted into 200 µL of PBS and 

subjected to 20 min centrifugation at 14,500× g at 4 °C followed by an 

additional washing step with another 200 µL of PBS. In some cases, the washing 

step was repeated until the retentate volume did not exceed 50 µL. The 
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resulting retentates, the HMW fraction, were collected to a new LoBind® 

microcentrifuge tube and precipitated with ice-cold acetone [14]. The 

precipitated pellets were resuspended into 30 µL of a solution containing 2% 

SDS (v/v) and 1 M of Urea, always aided by sonication (VibraCell 750 watt-

Sonics ®) with ice in the cup horn (2 min. pulse duration, at 1 second 

intervals, and with 40% amplitude). Afterward, concentrated Laemmli Buffer 

was added to the samples, followed by a 30 min incubation to reduce the 

samples and a 20 min incubation with iodoacetamide for cysteine alkylation 

[15]. The total volume in all samples was subjected to in-gel digestion as 

previously specified [13]. 

Mass spectrometry data acquisition  

Samples were analyzed on a NanoLC™ 425 System (Eksigent®) couple to a 

TripleTOF™ 6600 System (Sciex®) using DDA for each fraction of the pooled 

samples for protein identification and SWATH-MS acquisition of each 

individual sample for protein quantification. Peptides were resolved by 

micro-flow liquid chromatography on a MicroLC column ChromXP™ C18CL (300 µm 

ID × 15 cm length, 3 µm particles, 120 Å pore size, Eksigent®) at 5 µL/min. 

The liquid chromatography program was performed as follows with a multistep 

gradient: 2 % to 5 % mobile phase B (0-2 min), 5 % to 28 % B (2-50 min), 28% 

to 35% B (50-51 min), 35 to 98% of B (50352 min), 98% of B (52-61 min), 98 

to 2% of B (61362 min), 2% of B (68 min). Mobile phase A, composed of 0.1 % 

formic acid (FA) with 5% dimethyl sulfoxide (DMSO), and mobile phase B with 

0.1 % FA and 5% DMSO in acetonitrile. Peptides were eluted into the mass 

spectrometer using an electrospray ionization source (DuoSpray™ Source, 

ABSciex®) with a 25 µm internal diameter hybrid PEEKsil/stainless steel 

emitter (ABSciex®). The ionization source was operated in the positive mode 

set to an ion spray voltage of 5 500 V, 25 psi for nebulizer gas 1 (GS1) and 

25 psi for the curtain gas (CUR). 
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For DDA experiments, the mass spectrometer was set to scan full spectra (m/z 

350-1250) for 250 ms, followed by up to 100 MS/MS scans (m/z 10031500) per 

cycle to maintain a cycle time of 3.309 s. The accumulation time of each 

MS/MS scan was adjusted in accordance with the precursor intensity (minimum 

of 30 ms for precursor above the intensity threshold of 1000). Candidate 

ions with a charge state between +2 and +5 and counts above a minimum 

threshold of 10 counts per second were isolated for fragmentation and one 

MS/MS spectrum was collected before adding those ions to the exclusion list 

for 25 seconds (mass spectrometer operated by Analyst® TF 1.7, ABSciex®). 

The rolling collision energy (CE) was used with a collision energy spread 

(CES) of 5. 

For SWATH-MS-based experiments, the mass spectrometer was operated in a 

looped product ion mode [16] and the same chromatographic conditions were 

used as in the DDA experiments described above. A set of 60 windows of 

variable width (containing 1 m/z for the window overlap) was constructed, 

covering the precursor mass range of m/z 350-1250. A 250 ms survey scan (m/z 

350-1500 m/z) was acquired at the beginning of each cycle for instrument 

calibration and SWATH-MS/MS spectra were collected from the precursors 

ranging from m/z 350 to 1250 for m/z 10031500 for 20 ms resulting in a cycle 

time of 3.304 s. The CE for each window was determined according to the 

calculation for a charge +2 ion centered upon the window with variable CES 

according to the window. 

Mass spectrometry data processing 

A specific library of precursor masses and fragment ions was created by 

combining all files from the DDA experiments and used for subsequent SWATH 

processing. Libraries were obtained using ProteinPilot™ software (v5.1, 

ABSciex®), using the following parameters: i) search against a database from 

SwissProt composed by Homo Sapiens (released in March 2019), and MBP-GFP 

[15] and horse ferritin light and heavy chains sequences ii) acrylamide or 
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iodoacetamide alkylated cysteines, for whole serum or HMW respectively, as 

fixed modification; iii) trypsin as digestion enzyme and iv) urea 

denaturation as a special factor in the case of the HMW samples. An 

independent False Discovery Rate (FDR) analysis using the target-decoy 

approach provided with Protein Pilot software was used to assess the quality 

of the identifications, and positive identifications were considered when 

identified proteins and peptides reached a 5% local FDR [17, 18]. 

Data processing was performed using the SWATH™ processing plug-in for 

PeakView™ (v2.0.01, AB Sciex®) [19]. After retention time adjustment using 

a combination of IS and endogenous peptides, up to 15 peptides, with up to 

5 fragments each, were chosen per protein, and quantitation was attempted 

for all proteins in the library file that were identified from ProteinPilot™ 

searches. 

Protein levels were estimated based on peptides that met the 1% FDR threshold 

with at least 3 transitions in at least six samples in a group, and the peak 

areas of the target fragment ions of those peptides were extracted across 

the experiment using an extracted-ion chromatogram (XIC) window of 5 minutes 

with 100 ppm XIC width. Protein levels were estimated by summing all the 

transitions from all the peptides for a given protein (an adaptation of [20] 

and further normalized to the levels of the IS [15]). 

The MS proteomics data have been deposited to the ProteomeXchange Consortium 

(22) via the PRIDE (23) partner repository with the dataset identifier 

PXD034077 (for review: Username: reviewer_pxd034077@ebi.ac.uk; Password: 

jhF8zQaR).  

Statistical analysis and biological interpretation  

Pearson's Chi-squared Test for Count Data was performed in R version 4.2.1, 

using the chisq.test function available in the native stats package in R to 
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determine if there were significant differences in the gender proportion of 

the groups within the studied cohort. 

To assess the variation of the serum proteins (either Whole serum or the HMW 

fraction of the serum) among the three groups, a Kruskal3Wallis H test was 

followed by the Dunn's Test for pairwise comparison. Dunn's p-values were 

corrected using the Benjamini-Hochberg FDR adjustment, and statistical 

significance was considered for p-values below 0.05. 

Stepwise Linear Discriminant Analysis (LDA) was performed to select the 

proteins responsible for the best separation of the groups being studied. 

LDA was performed using the software IBM® SPSS® Statistics Version 22 

(Trial). LDA was attempted considering the proteins only altered at the Whole 

Serum or HMW Serum, and for the combination of both results. The evaluation 

of the models obtained from each analysis was performed by comparison of the 

Receiver operating characteristic (ROC) curves obtained using each model. 

ROC curves comparison was performed using the MedCalc Statistical Software 

version 20.106 (MedCalc Software Ltd; https://www.medcalc.org; Trial). The 

Delong et al. (1988) [21] method was used for the calculation of the Standard 

Error (SE) of the Area Under the Curve (AUC) and of the difference between 

two AUCs, and the Confidence Interval (CI) for the AUCs were calculated using 

the exact Binomial Confidence Intervals which are calculated as the following 

AUC ± 1.96 SE. 

Violin plots were used to present the distribution of the individual protein 

levels among each condition, and Pearson’s correlation analysis was performed 

to evaluate the similarity between the profiles of the proteins highlighted 

in the study. Violin plots were generated using GraphPad Prism 8.0.1 (Trial) 

and the Pearson’s correlation was performed using Morpheus software 

(https://software.broadinstitute.org/Morpheus). Heatmap and hierarchical 

clustering analyses were computed by using PermutMatrix version 1.9.3 
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(http://www.atgc-montpellier.fr/permutmatrix/) [22] using the Euclidean 

distance and McQuitty's criteria. 

Physical protein-protein interactions between the highlighted analytes were 

predicted by GeneMANIA webserver (Gene Function Prediction using a Multiple 

Association Network Integration Algorithm; https://genemania.org/) [23] 

together with a gene ontology (GO) analysis of the formed network. In addition 

to the proteins imported from this study, 28 additional related genes were 

allowed to create the interaction network using equal weighting by network. 

An additional GO enrichment analysis considering the term <biological 

process= was also performed. On the other hand, functional protein 

association networks were evaluated using the Search Tool for Retrieval of 

Interacting Genes/Proteins (STRING) version 11.5 (http://string-db.org/) 

with a medium confidence of 0.4 [24]. 

Pathway enrichment analyses were performed using the FunRich software 

(version 3.1.3) [25], considering two different databases: the FunRich or 

the Reactome database. In both cases, a statistically analyzed with a 

hypergeometric test using the FunRich human genome database as the background 

was performed. Enriched pathways were considered for a non-corrected, or a 

Bonferroni-corrected p-value below 0.05, for Funrich or Reactome database, 
respectively.  
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Results 

High molecular weight fractionation as a complementary method to the 

conventional whole serum proteomics 

To investigate the applicability of HMW fractionation to peripheral biomarker 

research, serum samples were subjected to either ultrafiltration using a 300 

kDa MWCO filter and subsequent protein precipitation of the retentate 

(hereinafter referred as HMW serum) prior to protein digestion and MS 

analysis, or directly analyzed (whole serum) (Figure 1). In the proposed 

pipeline, the HMW fractionation is performed under non-denaturing conditions, 

such that the filter would retain native HMW protein complexes and large 

molecular structures. 

Figure 1: Pipeline of sample preparation, data acquisition and data analysis. 

As previously reported, the use of a proper IS is of utmost importance to 

uncover the effective proteome changes between different groups [12]; thus, 

considering the nature of the fractionation proposed in this work, an 

adequate IS for this procedure would be a HMW protein that is retained by 

the filter and has no similarity with the remaining human proteins. In this 

sense, two proteins with a MW higher than the MWCO of the filter (i.e., above 

300 kDa) commonly used in a commercially available Gel Filtration Calibrants 

Kit for size exclusion chromatography were tested, and the equine globular 

protein Ferritin (~440 kDa size) proved to be a good IS for this procedure 

as it has no similarity with any other protein from the human proteome 

(Supplementary Figure 1a), the peptides monitored in the SWATH-MS analysis 

are easily distinguished from the matrix (the human serum proteome; 

Supplementary Figure 1b), and present a coefficient of variation similar to 

the one obtained by the MBP-GFP used in the unfractionated analysis and 

previously characterized [12] (Supplementary Figure 1c). Additionally, the 

overall reproducibility of the fractionation was also inspected, and 
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similarly to what was observed for the IS (Supplementary Figure 1c), the 

overall coefficient of variation of the proteins quantified using technical 

replicates (Supplementary Figure 1d) revealed that this procedure did not 

induce an appreciable increase in the variability of the quantification when 

compared with the conventional protocol (unfractionated samples). Moreover, 

the variation caused by the sample processing steps may be reverted by the 

normalization of the values to the IS, since the coefficient of variation of 

the IS is similar to the one observed for the majority of the proteins, 

indicating that the selected IS is a good predictor of the alterations induced 

by the method. 

As proof of concept, this procedure was applied to serum samples of a cohort 

comprised of 3 different groups: AD (n = 22), PD (n = 24), and CT (n = 12). 

No statistically significant differences were found in the gender 

distribution between the three groups; however, differences were observed 

concerning age distribution, with PD individuals being slightly younger, on 

average, than both other groups (Table 1). Patients with neurodegenerative 

diseases, both AD and PD, were selected for this study, since these 

pathologies are commonly linked with the formation of abnormal protein 

complexes and protein aggregation, making these disorders suitable to test 

the fractionation approach as a means to investigate potentially altered 

protein interactions, which are lost in the conventional proteomics analysis. 
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Table 1. Study population distribution across age and sex. 

 

AD 

(n = 

22) 

PD 

(n = 

24) 

CT 

(n = 

12) 

p-value 

CT vs. 

Disease

s 

CT vs. AD 

vs. PD 

AD vs. 

PD 

CT vs. 

PD 

CT vs. 

AD 

Male 

(n) 
9 11 3 

0.197* - 0.643* 0.148* 0.262* 

Female 

(n) 
13 13 9 

Age 

(mean ± 

SD) 

68.4 

± 

8.2 

60.3 

± 

10.4 

67.5 

± 

7.2 

- 0.014$ 0.009# 0.033# 0.396# 

* Determined by χ2 test according to each group’s male/female proportions. $ Determined 

by Kruskal-Wallis rank sum test to compare age between all groups. # Determined by 

Dunn's test (Benjamini-Hochberg correction) to compare age between group pairs. 

Diseases refer to AD and PD grouped together. 

A total of 203 and 186 proteins were quantified in whole serum and HMW serum, 

respectively (Figure 2a, solid lines; Supplementary Tables 1 and 2 for 

detailed information). A large overlap was observed between both sample 

preparation procedures (168 proteins were shared, which corresponds to more 

than 70% of all the quantified proteins). Additionally, quantification in 

the whole serum of the proteins identified in the HMW serum library did not 

lead to a discernible increase in proteome coverage (Figure 2a, dashed line; 

Supplementary Table 3). Altogether, these results indicate that there are no 

major differences in terms of the proteins being quantified in the two 

approaches, revealing that the main aim of the HMW fractionation presented 

in this work 3 fractionation under non-denaturing condition 3 is not the 

overall improvement of the proteome coverage but the possibility of 

interrogating the samples considering protein interactions/macromolecular 

organization. 
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Figure 2 – Comparative differential proteomic analysis of whole and HMW serum 
of AD and PD patients. (a) Venn diagram comparing the number of quantified 

proteins in each sample type using sample-specific libraries (solid lines; 

Supplementary Tables 1-2). In addition, quantification in whole serum was 

also performed for the proteins identified in the HMW specific library 

(dashed line; Serum&HMWLib condition; Supplementary Table 3) to evaluate the 

possible use of HMW fractionation as a tool to improve the proteome coverage 

of serum samples. A total of 224 proteins were quantified in the serum samples 

using the three strategies referred above, from those 162 of the proteins 

were commonly quantified independently of the strategy, corresponding to near 

three quarters of all the quantified proteins (72.3%). Only three new 

proteins were quantified in whole serum using the HMW-specific library. (b) 

Venn diagram comparing the total number of proteins considered as altered 

among the three experimental groups using the two different serum-processing 

strategies used in this work (Supplementary Figure 4 and Supplementary Tables 

1-2). A total of 69 proteins were considered altered among the three 

experimental groups, of those only 11 proteins (the respective gene names 

are indicated) were consistently considered as being altered independently 

of the strategy used. (c) Comparison of the levels of the 11 proteins commonly 

considered as altered in both whole serum and HMW-fractionated serum. The 

proteins were arranged considering the group comparison where the statistical 

differences were observed (Supplementary Figure 5), and the alterations were 

presented as the median fold change observed in each sample-type. Proteins 

considered altered in more than one group are indicated in italic and with 

a grey shadow. Only one protein, the beta-2-glycoprotein 1 (indicated in 

bold), presented a divergent tendency when considering its values in the 

whole serum versus after the HMW-fractionation of the samples. # - non-

statistically significant difference. 

This was further confirmed by the fact that only 14.7% of all the proteins 

considered altered in this study (11 out of 69 proteins) were consistently 
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altered in the fractionated and unfractionated samples (Figure 2b; 

Supplementary Tables 1-2). Moreover, taking into consideration the changes 

of those 11 commonly altered proteins, it is possible to observe that all 

proteins, except for the protein beta-2-glycoprotein 1 (Figure 2c, bold), 

presented the same tendency in both fractionated and unfractionated samples 

(Figure 2c). These results, in combination with the previous observations, 

demonstrate that, although the two approaches quantified the same set of 

proteins, each method interrogated the samples in a particular context, 

resulting in the identification of a different set of altered proteins and 

the possibility to identify different regulatory mechanisms: while the direct 

analysis of the serum mainly represents the alteration at the protein level, 

the HMW fractionation under non-denaturing conditions may allow the 

evaluation of the physical interaction of the proteins. 

These results are further supported by the analysis of the MW distribution 

of the proteins being studied, which reveals a similar profile between both 

approaches (Supplementary Figure 2a, 2b, and 2c), with most of the proteins 

detected in HMW serum presenting a MW below 150 kDa. Moreover, a similar 

distribution is observed for the proteins altered exclusively in the HMW 

approach (Supplementary Figure 2d), indicating that this strategy is not 

biased towards only the HMW proteins and supporting the idea that those 

proteins altered in this fraction may correspond to proteins being organized 

into different complexes. 

To test the hypothesis that the HMW approach is capable of evaluating the 

re-organization of protein complexes, the nature of the 28 proteins altered 

exclusively in HMW serum was evaluated. This analysis revealed that most of 

those proteins have been described to interact physically either with each 

other or with other proteins (Figure 3a). Upon immediate observation of the 

GeneMania network, which primarily evaluates the interactions between the 

proteins under study (Supplementary Table 4), it becomes apparent that the 

majority of the proteins participate in established physical interactions. 
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Moreover, it can be observed that these proteins form a large, interconnected 

network comprising 20 of the 28 altered proteins, centered around the 

interactions between the apolipoproteins and lecithin-cholesterol 

acyltransferase (encoded by the LCAT gene). Although not participating in 

any known interactions with another protein from the 28 altered proteins, 

the proteins Glutathione peroxidase 3 (GPX3), Pigment epithelium-derived 

factor (SERPINF1), Thyroxine-binding globulin (SERPINA7), and Alpha-1B-

glycoprotein (A1BG) are also known to establish physical interactions 

including with the proteins identified in this analysis. Only four of the 28 

altered proteins, namely SRR1-like protein (SRRD), carnosine dipeptidase 1 

(CNDP1), peptidoglycan recognition protein 2 (PGLYRP2), and serum amyloid A-

4 protein (SAA4), were found to have no disclosed interactions in this 

particular analysis. However, interactors for those proteins were already 

pointed out in some screening assays, as confirmed in BioGRID (Biological 

General Repository for Interaction Datasets, Supplementary Table 5). 

Furthermore, as revealed by the functional analysis, several of these 28 

proteins are involved in the formation of complexes with lipids and platelet 

components (Supplementary Table 6), indicating that those proteins can form 

complexes not only via the interaction with other proteins but also with 

other molecules, and thus be organized in large complexes. This involvement 

in the potential formation of macromolecular complexes is even more evident 

when the functional pathways enriched in each of the two lists of proteins 

(30 and 28 altered proteins exclusively in the whole serum or HMW serum, 

respectively) are directly compared (Figure 3b). This comparison highlights 

the fact that all the pathways that are either only, or at least more, 

enriched in the HMW dataset in comparison to the whole serum dataset (pathways 

indicated in bold) are related to the formation/regulation of large 

complexes/macrostructures, namely amyloids, fibrin clot formation and 

dissolution pathways and lipoprotein-related metabolism. On the other hand, 

the pathways that are particularly enriched or unique in the whole serum 
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dataset are mainly related to transcription factor networks (Supplementary 

Table 7). 

Figure 3 – Characterization of the proteins exclusively altered in whole 
serum or HMW serum. (a) GeneMania Network of the 28 proteins altered only at 

the HMW serum sample (listed in larger circles). The analysis was performed 

with network weighting equal by the network, allowing a maximum of 28 extra 

resultant genes (non-listed small circles). The seven most enriched GeneMania 

Functions were highlighted in the network (color code; complete results in 

Supplementary Table 4). Only protein-protein physical interactions (red 

edges) were considered in this analysis, demonstrating that most of these 28 

altered proteins have known interactors and can be involved in the formation 

of large protein-protein complexes. (b) FunRich Biological Pathways enriched 

in the whole serum (30 proteins; Supplementary Table 5) and HMW serum (28 

proteins; Supplementary Table 6) proteomes. All GO analyses considered a p 

<0.05. Pathways uniquely enriched at the HMW serum or particularly enriched 

in this type of sample when compared to the whole serum are indicated in 

bold. 

Evaluation of the potential of this combined strategy for biomarker discovery  

The previous set of results demonstrates that both approaches can provide 

complementary information. In line with this evidence, the potential to use 

this combined strategy for biomarker discovery was also evaluated. In 

general, both approaches result in nearly 40 proteins being altered in at 

least one pair of comparisons (Figure 4a-b; Supplementary Figure 3 for 

details regarding each pair of comparisons), with a tendency to have more 

proteins being altered in the comparisons involving the AD group (at least 

20 proteins being altered compared to CT against a maximum of 14 altered 

proteins in PD vs. CT, Supplementary Figure 4a-b) and only a small subset of 

proteins being altered in only one comparison (15/41 in the whole serum and 

11/39 in HMW serum, Figure 4a and 4b, respectively). Besides those 
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similarities, different profiles of altered proteins were observed depending 

on the approach used. Hence, it can also be highlighted that, while the whole 

serum strategy (Figure 4a) mainly found proteins altered between the two 

disease groups (39 proteins in AD vs. PD compared to 20 and 12 proteins in 

AD vs. CT and PD vs. CT, respectively), the HMW approach (Figure 4b) captured 

more differences between AD and CT samples (36 out of the 39 altered 

proteins). Due to this complementarity, the combination of results from both 

approaches resulted in a more comprehensive profile (Supplementary Figure 

4a-c), with a general increase in the number of altered proteins per group 

(total of 69 altered proteins, Figure 4c). This improvement is particularly 

evident in the case of proteins altered between PD and CT samples, for which 

only one protein was considered commonly altered in the two approaches 

(Figure 2c and Supplementary Figure 4b), thus resulting in the duplication 

of the list of proteins with the potential to serve as biomarkers for PD 

versus CT individuals. Common to all mapped profiles was the low number of 

proteins altered between all three groups (4, 1, and 6 for Whole serum, HMW 

serum and the combination of both, Figure 4a-c, respectively) and the absence 

of proteins altered exclusively between PD and CT samples. 

Figure 4 – Identification of potential circulating biomarkers of AD and PD. 
(a-c) Venn diagrams representing the distribution of the altered proteins 

among the different comparisons (AD vs. CT; PD vs. CT; AD vs. PD) considering 

the whole serum, HMW serum and the combination of the two (Whole + HMW serum) 

types of samples, respectively. (d-f) LDA using all the altered proteins per 

sample type or the combination of the two. The number of proteins used in 

each model is indicated above the graphic, and for each model it is indicated 

their specificity (percentage of healthy individuals correctly identified; 

indicated in black) and the sensitivity per disease condition (percentage of 

AD or PD patients correctly identified; indicated in red and blue, 

respectively). Specificity and sensitivity values were also summarized in 

Supplementary Table 7, and the LDA discriminant functions generated and their 
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respective statistical confidence, were summarized in Figure 5a. (g-h) 

Comparative ROC curves of the discriminant functions generated using all the 

altered proteins per sample type or the combination of the two. An independent 

evaluation was performed for each disease group being studied. The AUC of 

the ROC curves, their 95% CI and the pairwise comparisons are summarized in 

(i). CI was calculated as follows AUC ± 1.96 SE. n.s., non-significant 

alterations. * and # indicate a p < 0.05 for statistically significant 

differences in comparison to the Whole Serum or HMW+Whole Serum in comparison 

to HMW Serum, respectively, using the method of Delong et al. (1988) [21]. 

To further confirm the biomarker potential of the altered proteins from the 

three strategies presented above, they were used as input to build 

discriminant models that could differentiate between the studied groups 

(Figure 4d-f). From each dataset, candidates whose combination resulted in 

the best possible discriminant model were automatically selected (detailed 

information regarding the methods in Table 2), resulting in three distinct 

and statistically valid models (all with p < 0.0032) capable of 

discriminating the three groups being studied. The whole serum dataset 

resulted in a reasonable model composed of 4 proteins (Figure 4d), with a 

median sensitivity (the capacity to classify the individuals from each 

disease group correctly) of 86.95% (sensitivity and specificity are 

summarized in Supplementary Table 8). On the other hand, the model created 

with six proteins from the HMW approach (Figure 4e) had lower performance, 

with a median sensitivity of only 80.3% (corresponding to 83.3% predicting 

capacity for PD samples and 77.3% for AD samples). Moreover, neither of the 

models was particularly good in the classification of CT samples, resulting 

in a specificity of only 66.7% and 75% in the whole serum and HMW serum 

models, respectively. Remarkably, the combined model (created from the 

dataset containing the altered proteins from both approaches - Figure 4f) 

clearly outperformed the two models based only on proteins from a single 

approach. For this combined model, a total of 10 proteins were selected and 
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integrated, creating a discriminant model capable of correctly classifying 

more than 96% of all tested samples (93% in a cross-validation test; Table 

2), including 100% correct classification of PD samples (Figure 4f). 

Altogether, this combined method presented a median sensitivity of 97.75% 

and a specificity of 91.7%. 

The diagnostic capacity of these models was further evaluated by ROC curves 

of the capacity to positively classify the AD and PD patients against all 

the remaining samples (Figure 4g-i). This analysis confirmed that the best 

model is the one created with the combination of proteins from both approaches 

and that, in general, the model using only proteins from the whole serum 

approach is better than the model from the HMW approach. The respective 

statistics (Figure 4i) further support that the whole serum model performed 

better than the HMW serum model but without statistically significant 

differences between the two ROC curves. Additionally, the statistical 

analysis also confirmed that the combined model (AUC = 0.999 for the 

classification of AD and PD patients) is the best model, and that it performed 

significantly better (p < 0.05) than both other models for PD classification 

(HMW serum, AUC = 0.888; whole serum, AUC = 0.960) and better than the HMW 

serum model (AUC = 0.919) in the case of AD classification. The robustness 

of the combined model is further evidenced by the confidence interval (CI) 

of the AUC, which has a lower limit above 0.93 for both diseases, in contrast 

with the values achieved for the other two methods, whose lower limits are 

all below 0.9. 
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Table 2. Linear Discriminant models, respective statistical analysis and classification results.  1 

 
Gene 
Name 

 
 

 Whole Serum HMW serum Whole + HMW serum 

 Protein name 
MW 
(KDa)   

Dis 1 Dis 2 Dis 1 Dis 2 Dis 1 Dis 2 

# FOXM1 Forkhead box protein M1  84.283   --- --- --- --- 245.36 -10.93 
# 

PROC Vitamin K-dependent protein C 
52.071 

 

-
1133.77 

1212.34 --- --- -1557.39 623.28 

# 
HBB 

Hemoglobin subunit beta (Beta-
globin) 

15.998 

 
1.49 0.58 -0.06 -0.13 0.42 -1.50 

# APOA1 Apolipoprotein A1 (Apo-AI) 30.778 
 3.63 0.53 --- --- -0.16 -3.08 

# IGLV3-

19 

Immunoglobulin lambda variable 
3-19 

12.042 
  

--- --- --- --- 62.89 52.70 

§ SRRD SRR1-like protein 38.573 
 --- --- 20.37 7.55 16.69 11.52 

§ APOC1 Apolipoprotein C1 (Apo-CI) 9.332 
 --- --- -9.74 19.21 -15.77 1.33 

§ APOE Apolipoprotein E (Apo-E) 36.154 
 --- --- 1.46 -0.42 0.84 0.53 

§ SERPINF

1 

Pigment epithelium-derived 

factor (PEDF) 

46.312 

  
--- --- --- --- 6.85 2.63 

§ KRT9 Keratin, type I cytoskeletal 9 62.064 
 --- --- -8.80 5.05 -12.73 -4.91  

PPBP Platelet basic protein (PBP)  13.894   --- --- 8.89 -7.88 --- ---  

TF Serotransferrin (Transferrin) 77.050   -0.99 -1.66 --- --- --- --- 

 
(Constant)    2.11 -0.81 -1.11 -2.82 3.34 -1.10 

 

Statistics (Wilks' Lambda, Chi-square 

and p-value) 

 λ= 
χ2
= 
p< 

 0.253 
73.473 
9.97×10

-13 

0.773 
13.473 
3.23×10-

03 

0.242  
74.458 
4.65×10-

11 

0.629 
24.361 
1.85×10-

04 

0.058 
143.675 
1.01×10-

20 

0.292 
62.244 
4.94×10

-10 

 

Overall classification results  
(% of cases correctly classified) 

Original 82.8 79.3 96.6 

Cross-

validation 
81.0 72.4 93.1 
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# selected from the data from the whole serum approach for the Whole + HMW serum model; § selected from the data from the HMW 2 

serum approach for the Whole + HMW serum model; Dis 3 discriminant function; Note that proteins are sorted by order of inclusion 3 

into the Whole + HMW serum discriminant model.  4 
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By looking at the proteins selected to build the different methods (Table 5 

2), it was observed that the combined method is not the simple combination 6 

of the proteins previously selected from each of the individual methods. The 7 

combined model is built by the combination of 10 proteins, five from each 8 

dataset, including three [forkhead box protein M1 (FOXM1), immunoglobulin 9 

lambda variable 3-19 (IGLV3-19) and pigment epithelium-derived factor 10 

(SERPINF1)] that were not selected on the database-specific models. On the 11 

other hand, some previously selected proteins [serotransferrin (TF) and 12 

platelet basic protein (PPBP)] were not included in the combined model. 13 

Finally, the Hemoglobin subunit beta (HBB) was selected in both approach-14 

specific models, although only data from the whole serum dataset was used in 15 

the combined model. These results demonstrate that the increase in the 16 

initial amount of data provided for the discriminant analysis has an 17 

important impact on the generated model by making it possible to test 18 

different combinations of proteins and, thus, allowing for the identification 19 

of better combinations than those highlighted in the analysis of individual 20 

datasets. Interestingly, all ten proteins selected in the combined model 21 

have a MW below 90 kDa (Table 2), confirming that all the proteins selected 22 

from the HMW approach have a MW below the theoretical cut-off of the filters 23 

used for fractionation, which supports the hypothesis that this approach may 24 

be capable of evaluating the remodeling of molecular complexes. By plotting 25 

the individual values of each of the ten proteins selected in the combined 26 

model (Figure 5a), it is possible to observe that, as expected, those values 27 

present some variation characteristic of the individuality of each patient. 28 

Nevertheless, considering that the model was able to correctly classify more 29 

than 90% of all the patients (Figure 4f), it is possible to infer that the 30 

combinations performed in the model could diminish the impact of the 31 

biological variability, proving that the combination of different markers 32 

can overcome their individual weaknesses. The analysis of these plots 33 

immediately reveals that: i) only three proteins from the model (the proteins 34 

encoded by the genes FOXM1, HBB, and SRRD) are significantly altered between 35 
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all three groups; and that  ii) only one protein, the apolipoprotein C1 (Apo-36 

CI, encoded by the APOC1 gene), is altered between a single comparison, in 37 

this case between AD and PD which may indicate that this protein may have a 38 

particularly important role in this model for distinguishing AD from PD 39 

patients. Among the remaining 6 proteins: i) three are altered between both 40 

disease groups and control sample (all three found in the HMW fraction); ii) 41 

two are altered in AD in comparison to both PD and CT, and one, the Vitamin 42 

K-dependent protein C (encoded by the PROC gene), is altered in PD patients 43 

in comparison to the other two groups. Moreover, it is noteworthy that while 44 

there was a tendency to incorporate proteins that were increased in AD 45 

compared to CT from the whole serum approach (three out of the five proteins 46 

from the whole serum model encoded by the genes FOXM1, HBB, and APOA1), the 47 

opposite trend was observed in the case of proteins from the HMW approach. 48 

Specifically, three out of the five proteins (the proteins encoded by the 49 

genes SRRD, APOE, and SERPINF1) were found to be decreased in the AD vs. CT 50 

comparison. On the contrary, for the PD vs. CT comparison there were no major 51 

differences in terms of tendencies when considering the proteins captured in 52 

whole serum or the HMW serum.  53 

Finally, all proteins from the whole serum dataset, in addition to SRR1-like 54 

protein (encoded by the SRRD gene) and Apo-CI from the HMW dataset, were 55 

significantly altered between both disease groups. From these, three proteins 56 

[the protein Forkhead box protein M1 (encoded by the FOXM1 gene), hemoglobin 57 

subunit beta (encoded by HBB gene), and apolipoprotein A1 (Apo-AI, encoded 58 

by the APOA1 gene)], are less abundant in PD samples than in AD samples, 59 

while the remaining four are increased. 60 

Figure 5 – Characterization of the proteins selected by the LDA model created 61 

by the combination of Whole Serum and HMW Serum analyses and their 62 

correlation. (a) Violin plots representing the group’s distribution of the 63 

levels of each of the ten proteins from the model. The dashed lines inside 64 

the violin plots indicate the first, second (median) and third quartiles. *, 65 
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**, and *** indicate a p < 0.05, p<0.01, and p<0.001 for statistically 66 

significant differences in comparison to the control group. #, ##, and ### 67 

indicate a p < 0.05, p<0.01, and p<0.001 for statistically significant 68 

differences in comparison between disease groups. Statistical analysis was 69 

performed using the Kruskal3Wallis H test followed by the Dunn's Test for 70 

pairwise comparison. (b) Person’s correlation analysis between the overall 71 

regulation profile of the ten proteins included in the model. (c) Heatmap 72 

and hierarchical clustering analysis of the 10 proteins from the model. 73 

Clustering was performed for both the proteins and the individuals analyzed 74 

in this study. Three different clusters (Cluster PD, CT and AD) containing 75 

the large majority of the individuals from a given group can be highlighted 76 

from the analysis. The average profile of each cluster is indicated on the 77 

right and can be considered as the profile of expression of those ten proteins 78 

within the groups considered in this study. (d) The interaction network of 79 

the ten proteins included in the model was carried out with STRING with 80 

medium confidence (0.4) score. The color of the edges indicates the type of 81 

evidence that supports a given interaction, while the color of the nodes 82 

represents the categorization of the proteins considering UniProt Keywords 83 

enriched in this dataset (complete functional enrichment analysis in the 84 

Supplementary Table 8). The calculated PPI enrichment p-value is 2.07e-05. 85 

Three clusters (Cluster 1 to 3) can be identified within the network, with 86 

the dashed edges indicating the separation between the two clusters. Cluster 87 

1 corresponds to proteins whose interactions are experimentally confirmed, 88 

while cluster 2 is composed of proteins that are theoretically related, and 89 

finally, cluster 3 corresponds to non-related proteins. (e) Reactome pathways 90 

enrichment analysis using the ten proteins included in the diagnostic model. 91 

The analysis was performed by FunRich functional enrichment analysis. The 92 

red line indicates Bonferroni corrected p-value with the corrected p < 0.05, 93 

meaning a significant enrichment. The grey dashed line indicates the 94 

reference line (p = 0.05). The complete analysis can be found in Supplementary 95 

Table 9. 96 
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The correlation analysis of the protein abundances among groups, confirmed 97 

that, in general, there is no particularly evident correlation between the 98 

profiles and the magnitude of regulation of these proteins (Figure 5b). There 99 

were, however, some observed exceptions, including a strong positive 100 

correlation between the proteins encoded by the genes APOA1 and FOXM1 (r=0.8) 101 

and, to a lesser extent, the proteins encoded by APOC1, APOE and SERPINF1 102 

(r=0.5-0.6). Interestingly, the proteins exhibiting a positive correlation 103 

originated from the same approach: i) the gene products of APOA1 and FOXM1 104 

were both highlighted in the whole serum approach, indicating that the total 105 

levels of these two proteins were modified in the same way: while, ii) the 106 

products of the APOC1, APOE, and SERPINF1 genes were found to be altered in 107 

the HMW fractionation strategy, which may indicate that these proteins could 108 

be involved in the same complex and consequently regulated similarly. No 109 

remarkable negative correlations were found, with the strongest being 110 

observed between the proteins encoded by the APOA1 and SRRD genes, which 111 

indicates that none of the proteins in the model present a completely opposite 112 

regulation profile. Additionally, an unsupervised clustering analysis using 113 

these ten proteins (Figure 5c) confirmed their capacity to partially 114 

distinguish the three groups being studied, revealing that, besides the 115 

existence of individual variability, it was possible to identify three 116 

independent clusters composed exclusively or mainly of samples from one of 117 

the three groups. This analysis also demonstrates that this set of proteins 118 

is particularly efficient in isolating the AD patients from the remaining 119 

individuals from the study: the AD cluster was composed exclusively of AD 120 

patients and only 6 out of the 22 AD patients were not included in this 121 

cluster. On the other hand, a slightly lower separation capacity was observed 122 

for both PD and CT samples. These two clusters contained few samples that 123 

did not belong to their respective groups, resulting in a higher percentage 124 

of individuals not properly grouped (10 out of 24 and 4 out of 12 samples 125 

for PD and CT, respectively). The discrepancies observed between the 126 

clustering analysis and the discriminant model results, where the latter 127 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.568435doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568435
http://creativecommons.org/licenses/by-nc/4.0/


30 

 

correctly classified over 90% of the samples, can be attributed to the fact 128 

that the clustering analysis relied solely on the individual protein 129 

distribution profiles across the samples. In contrast, the discriminant 130 

analysis employed equations with different weightings for each protein, 131 

resulting in a single model that effectively reduces the intragroup 132 

variability while promoting a better separation between the analyzed groups. 133 

Despite that, the clustering analysis remains an important approach for 134 

understanding how the proteins are modulated within the samples. Thus, from 135 

the three different clusters highlighted in the analysis, it was possible to 136 

infer the median protein abundance profile of these proteins among the three 137 

groups. For instance, the gene products of SERPINF1, APOE and APOC1 tend to 138 

be less abundant in both disease groups compared to CT samples. Furthermore, 139 

some proteins are more abundant in each disease group, namely the gene 140 

products of PROC and KRT9 in PD samples and the gene products of HBB, APOA1 141 

and FOXM1 in AD samples. Another disease-specific observation was the smaller 142 

amount of immunoglobulin lambda variable 3-19 (IGLV3-19) in AD samples 143 

compared to both other groups. Overall, these tendencies characterize the 144 

unique profiles determined for each disease group, which may be a precursor 145 

to a potential future biomarker panel, more informative than the analysis 146 

based on any single protein. 147 

Finally, STRING analysis (Figure 5d and Supplementary Table 9) revealed that 148 

these ten proteins have more interactions among themselves than what would 149 

be expected for a random set of proteins of the same size and degree of 150 

distribution, indicating that this set of proteins is, at least partially, 151 

biologically connected (PPI enrichment p = 2.07×10-5). This result may be 152 

mainly due to the strong network involving apolipoproteins and Hemoglobin 153 

subunit beta (cluster 1). Again, two out of the ten proteins selected for 154 

the discriminant method revealed to be associated with high-density 155 

lipoproteins (HDL) and chylomicron (ultra-low-density lipoproteins 156 

particles) remodeling and assembly (Figure 5e and Supplementary Table 10), 157 
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highlighting the potential importance of these mechanisms in the 158 

neurodegenerative process, and confirming that the proteins related with 159 

these mechanisms could be good biomarker candidates for their diagnosis. 160 

Given the central role that apolipoproteins appear to play in this model, a 161 

discriminant analysis was performed using data from ten altered proteins 162 

involved in apolipoprotein-related mechanisms to investigate if the 163 

diagnostic model could be limited to this set of functionally related 164 

proteins (Supplementary Figure 5). However, the generated model exhibited 165 

lower diagnostic capacity compared to the combined approach, with only 82.75% 166 

of the samples being correctly classified. The model showed a specificity of 167 

66.7%, and a sensitivity of 86.4% and 87.5% for AD and PD, respectively, 168 

resulting in ROC curves with AUCs equal to or below 0.955. Thus, besides the 169 

importance of apolipoproteins, the results from these proteins alone are not 170 

enough to distinguish the three groups, which emphasizes the importance of 171 

having diagnostic models based on several complementary candidates instead 172 

of a single or just a few candidates. Nonetheless, the identification of 173 

this robust core of functionally related proteins underscores the 174 

significance of the combined approach for identifying new potential 175 

biomarkers, since the dysregulation of Apo-C1 and Apolipoprotein E (Apo-E, 176 

encoded by the APOE gene) was discovered using the HMW fractionation approach 177 

while the dysregulation of Apo-AI was identified using the whole serum 178 

approach.  179 
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Discussion 180 

The present study presents a proof of concept of a novel two-pronged approach 181 

to biomarker discovery in complex peripheral biological fluids. More 182 

specifically, it was demonstrated that through the combination of two 183 

complementary proteomics strategies, the direct analysis of whole serum and 184 

the analysis of serum HMW fraction (above 300 kDa) in non-denaturing 185 

conditions, another level of proteome characterization of the samples could 186 

be achieved resulting in more robust diagnostic models. In this sense, when 187 

applied to serum samples from a cohort of control individuals and individuals 188 

afflicted by neurodegenerative diseases, this strategy allowed for a strong 189 

discriminant model to be built, able to distinguish all studied groups more 190 

effectively than the models generated from a single proteomics analysis. The 191 

most noticeable findings from this model showed that several, otherwise 192 

overlooked, proteins may yet serve as potential biomarkers of disease, in 193 

this case, AD and PD, particularly when analyzed together in a model created 194 

using the two different approaches. Thus, these results confirm the 195 

importance of having a panel of potential candidates rather than a single 196 

protein biomarker, and besides that, it also demonstrates that the biomarker 197 

discovery field will also benefit from combining data from the sample 198 

obtained through different sample processing strategies. Although not 199 

sufficient to be considered as a biomarker by itself, the substantial 200 

influence of apolipoproteins, namely Apo-AI, Apo-CI, and Apo-E, in the 201 

aforementioned discriminant model points out for a possible disease-specific 202 

dysregulation of the lipoprotein metabolism in AD and PD patients. 203 

HMW fractionation may reveal a potentially altered macromolecular and 204 

macromolecular-complex organization 205 

In this work it was demonstrated that interrogating serum samples with the 206 

HMW fractionation method adds an extra layer of information capable of 207 

bringing new insight into the behavior of the serum proteins, particularly 208 
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regarding their potential macromolecular organization. Because the 209 

fractionation procedure took place under non-denaturing conditions and since 210 

aberrant protein aggregation [8] is a common hallmark of both AD and PD, it 211 

was hypothesized that macromolecular complexes, potentially altered between 212 

the studied groups, could be captured through the HMW fractionation approach. 213 

The present results confirmed this premise, as evidenced by the fact that 214 

although no variation was observed in the overall serum protein captured by 215 

both strategies, proteins exclusively altered in the HMW fraction accounted 216 

for 40% of the total list of altered proteins. Furthermore, with the exception 217 

of one protein (Centrosome-associated protein CEP250), all proteins had a MW 218 

below 90 kDa, which is considerably lower than the 300 kDa cut-off filter 219 

used. It is worth noting that 72% of proteins altered in the HMW fraction 220 

did not exhibit alterations in their total levels. This supports the 221 

possibility that different regulatory mechanisms of these proteins, apart 222 

from expression and degradation, are being revealed and studied using this 223 

approach. 224 

Moreover, the results show that most of these proteins have several reported 225 

interactors and thus may be involved in the formation of large complexes. An 226 

example is the protein clusterin (CLU gene), also known as apolipoprotein J, 227 

which has been reported to be involved in the metabolism of aggregation-228 

prone proteins, such as those involved in NDs [26-28]. For instance, the 229 

interaction of clusterin with Aβ42 has been shown to increase its clearance 230 

from the brain through the blood-brain barrier (BBB) [26]. Moreover, 231 

clusterin has already been pointed out as being related to different stages 232 

of PD disease, including a potential neuroprotective role arising from its 233 

interaction with α-synuclein aggregates [27]. Additionally, the interaction 234 

of clusterin with α-synuclein has already been detected in plasma samples 235 

[28]. Besides this specific example, the generic functional analysis of the 236 

altered proteins, particularly those from the HMW serum strategy, reveals 237 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.568435doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568435
http://creativecommons.org/licenses/by-nc/4.0/


34 

 

that those protein are highly related with the amyloids and clot formation, 238 

which can be large structures.  239 

On the other hand, some of these proteins may instead, or additionally, be 240 

present in large biological structures not composed exclusively of proteins, 241 

like exosomes or lipoproteins, which would not only likewise justify their 242 

presence in this HMW serum fraction but also give further understanding of 243 

the potentially altered mechanisms related to the diseases being studied. 244 

Such may be the case of the proteins clusterin and serum amyloid A-4 (SAA4 245 

gene), which were found to be altered in serum neuron-derived exosomes of AD 246 

patients [29]. Additionally, exosomal clusterin was found to be altered in 247 

patients at different stages of PD when compared to controls [30]. Thus, 248 

although the presence of exosomes in the HMW fraction was not confirmed, 249 

given the MWCO of the filters used in this work, it is feasible that some of 250 

the proteins being analyzed in the HMW fraction may correspond to proteins 251 

linked to the extracellular vesicles.  252 

Altogether, these findings support the notion that the HMW fractionation 253 

approach can provide a new level of information that may provide new insights 254 

into how proteins are organized within a given sample. 255 

Altered lipoprotein metabolism can be a peripherical marker of AD and PD 256 

Importantly, the combination of the two approaches in this study led to a 257 

robust and promising potential biomarker panel composed of ten proteins, 258 

quantified in whole serum or HMW serum. A major finding revealed by this 259 

model was the involvement of several lipoproteins in discriminating the 260 

studied groups. Among the ten proteins used in the best discriminant model, 261 

three are apolipoproteins: Apo-AI from whole serum, and Apo-CI and Apo-E 262 

from HMW serum. Besides those three proteins, other altered apolipoproteins 263 

were observed in this study but not included in the model, namely: i) the 264 

Apo-AII, Apo-LI and clusterin highlighted in the HMW serum strategy; ii) the 265 

Apo-AIV from the whole serum; and, iii) beta-2-glycoprotein 1 in both 266 
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approaches. Furthermore, a lipoprotein-related enzyme, lecithin-cholesterol 267 

acyltransferase, was also altered in HMW serum. This is further supported by 268 

the functional enrichment analysis of the altered proteins discovered in 269 

both strategies that highlight the involvement of those proteins in 270 

lipoprotein metabolism and HDL-mediated lipid transport pathways. 271 

Cumulatively, all these findings point to the relevance of lipoproteins in 272 

the context of NDs and, although not absolutely clear, the link between these 273 

diseases, in particularly AD, and apolipoproteins has been the focus of many 274 

studies [26-28, 31-40]. 275 

Both Apo-AI and Apo-E have an established relation to toxic species clearance 276 

from the brain in the context of AD and PD [26, 28, 31, 41-44]. Additionally, 277 

regarding AD, our findings for both proteins are contrary to what can be 278 

found in the literature [32, 37]. For Apo-AI, we found an increase in 279 

abundance in AD patients as opposed to the decrease reported for most studies 280 

[32]. However, in another study where no significant alterations in total 281 

serum Apo-AI content of AD patients were reported, further investigation 282 

revealed that some proteoforms of this protein were significantly increased 283 

compared to the levels observed in the controls [33]. This has been suggested 284 

as a possible explanation for the different observations regarding this 285 

protein in the context of AD, which might be related to the use of different 286 

detection methods within different studies [32]. Regarding this protein’s 287 

connection to clearance mechanisms, evidence suggests that for HDLs 288 

containing Apo-AI (APOA1-HDL), the structure seems to influence not only the 289 

disaggregation of Aβ fibrils but also its ability to cross the BBB, with 290 

lipid-poor discoidal APOA1-HDL having the best performance when compared to 291 

APOA1-HDL in other lipidation states [31]. Moreover, in the present study, 292 

phosphatidylcholine-sterol acyltransferase, an enzyme known to affect HDL 293 

structure through lipidation of Apo-AI in plasma [39], was also found to be 294 

altered in AD patients. As this enzyme participates in HDL maturation in 295 

plasma [45], this result could reflect the dysregulation of lipoproteins in 296 
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AD. For Apo-E, we found a decrease in abundance in AD patients as opposed to 297 

the increase reported for MCI patients in a previous study [37]. Isoform and 298 

lipidation status of Apo-E is also crucial for the Aβ clearance, with the 299 

Apo-E4 isoform, the genetic risk factor most associated with the onset of AD 300 

[26, 42], and higher lipidation having detrimental effects on the process 301 

[26, 42]. Further investigation using the combined approach presented in 302 

this study, particularly in the context of AD, should also involve a lipid 303 

profile analysis and APOE genotyping of the participants to enable a more 304 

comprehensive characterization of serum HDLs and Apo-E content, respectively. 305 

Although systemic lipid abnormalities have also been implicated in PD, there 306 

are much fewer findings connecting it to HDL-related proteins, as compared 307 

to AD [27]. Nonetheless, a previous report observed significantly decreased 308 

values of Apo-AI in mild PD patients when compared to healthy controls, but 309 

much like what we observed for this protein, a less impactful and non-310 

significant decrease was observed in moderate/severe PD patients [46]. In 311 

fact, most research indicates that Apo-AI may have a protective role in PD 312 

[27] and it has been hypothesized that APOA1-HDL could take part in the 313 

efflux of α-synuclein from the brain [28]. Additionally, both Apo-AI and 314 

Apo-E have been reported to interact with α-synuclein [28].  315 

Finally, HDL size and plasma levels have been shown to be dependent on the 316 

levels of Apo-CI [47], another apolipoprotein included in the best diagnostic 317 

model generated in this study. Besides that, a previous study also shows 318 

that the dysregulation of this protein can lead to impaired memory processes 319 

in mice [48]. This suggests that the regulation of Apo-CI can be pivotal in 320 

the brain and that a systemic disruption of this process could have effects 321 

detectable beyond the CNS, particularly in lipoprotein metabolism, that could 322 

be observable in peripheral biofluids. Interestingly, in this study, it was 323 

found that Apo-CI was significantly decreased in the HMW serum fraction of 324 

AD in comparison to PD patients, but only a slight and non-significant 325 

decrease was observed when compared to CT patients. Similarly, only a small 326 
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non-significant decrease in HMW serum Apo-CI was observed for controls in 327 

comparison to PD patients, which is in accordance to what was already reported 328 

for whole plasma [34]. Since impairment of memory is a hallmark of AD and is 329 

not a predominant feature among the PD patients [49], these results may be 330 

impacted, at least in part, by the age discrepancies observed between the 331 

patients from the PD group and the other two groups. In fact, the PD patients 332 

are on average younger than the other two groups that have a similar age-333 

distribution among them. In this sense, the lower levels of Apo-CI in 334 

comparison to PD may be in part linked with some memory impairment associated 335 

to natural aging [50]. On the other hand, the results of Apo-CI may also be 336 

influenced by the individual Apo-CI and Apo-E isoforms. In fact, the APOE 337 

and APOC1 genes are in linkage disequilibrium [51], and carriers of the 338 

APOE(ε4) and APOC1(H2) alleles have been shown to have an increased risk of 339 

developing AD [40]. This was further confirmed in an study using human APOE-340 

carrying mice, which demonstrated that those animals carrying the APOE(ε4) 341 

allele were found to have decreased serum Apo-CI content when compared to 342 

those carrying the APOE(ε3) allele [52]. However, Apo-CI has also been 343 

suggested to potentially play a modulatory role in the development of AD, 344 

with reported effects on mice cognitive function independent of Apo-E 345 

expression [53]. Again, these observations strengthen the importance of 346 

combining these results with further characterization of the individuals, 347 

including genotyping of the apolipoproteins’ isoforms. 348 

Despite of the connection between these three apolipoproteins to AD and PD, 349 

as evidenced by previously mentioned studies, and their relevance for the 350 

discriminant model, the use of these proteins alone or in combination with 351 

other proteins associated with apolipoprotein-related mechanisms did not 352 

result in a robust diagnostic model capable of effectively distinguishing 353 

between the studied groups (as shown in Supplementary Figure 5). This 354 

indicates that these three apolipoproteins had to be combined with other 355 

seemingly unrelated proteins to be used as potential biomarkers. Further 356 
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studies should be directed towards elucidating this potential relationship 357 

to understand: i) the importance of the identified proteins/mechanisms for 358 

the pathophysiology of the studied NDs, and ii) to which extent these 359 

mechanisms are differently altered between the two diseases. 360 

In summary, in this work it was demonstrated that the combination of two 361 

complementary sample processing approaches is a more effective strategy to 362 

reach potential biomarkers rather than a single approach. Besides that, the 363 

strategies used here, that combine the analysis of the whole serum and the 364 

HMW fractionation of non- denaturing serum, can also identifying proteins 365 

being differentially modulated besides the conventional alteration in their 366 

total levels. In this work, this new strategy was applied to a cohort of NDs 367 

patients and respective CT individuals, being able to build a good predictive 368 

model capable of distinguishing all the three groups studied (AD, PD and 369 

CT). This predictive model highlighted the linkage of the apolipoprotein 370 

family and NDs, with three out of the ten proteins included in this model 371 

being apolipoproteins. Nevertheless, further validation in a larger and 372 

independent cohort is needed to confirm the soundness of the model, as well 373 

as more studies to link the alterations observed and these pathologies. 374 

Controlling the lipid profile of each individual included in future studies 375 

is also advised, as altered lipid metabolism was a major finding of the 376 

present work. Another interesting aspect to be further explored would be the 377 

identification of protein complexes in the HMW fraction to better understand 378 

the origin of the protein alterations observed. This is particularly relevant 379 

since many of the proteins captured in this fraction have a molecular weight 380 

that would normally exclude them from analysis through the 300kDa cut off 381 

fractionation approach. Overall, the results of this study demonstrate that 382 

HMW fractionation under non-denaturing conditions could be a valuable 383 

addition to routine biofluid analysis.  384 
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