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Abstract

Background

Antimicrobial resistance (AMR) is a public health emergency in many low and middle-

income countries, including India. To effectively tackle AMR, we need rapid diagnostics,

effective surveillance and new antimicrobial drugs. Whole-genome sequencing of pathogens

is the first definite step towards achieving these goals.

Methods

In this work, we review all the studies published till date that report whole-genome

sequences of select priority AMR pathogens from India. We searched PubMed and Web of

Science databases for the studies that involved whole-genome sequencing of AMR priority

pathogens from India. For the top two highly sequenced pathogens, S. typhiand K.

pneumoniae, we performed phylogenetic analyses to understand the geo-climatic

distribution of genetically diverse strains.

Results

Our search reveals 94 studies that report 2547 unique whole-genome sequences. We find

that most sequences are limited to select priority pathogens isolated from a couple of geo-

climatic zones of India. Our phylogenetic analyses show that available data does not indicate


https://doi.org/10.1101/2023.11.23.568416
http://creativecommons.org/licenses/by-nc-nd/4.0/

30

31

32

33

34

35

36

37

38

39

40

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.23.568416; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

systematic differences between the genomes of isolates from different geo-climatic

zones. Our search also reveals complete absence of travel-related studies tracking possible

movement of AMR pathogens within country. Lastly, we find very few studies that sequence

AMR pathogens isolated from food, soil or other environments.

Conclusion

Together, these observations suggest that India should prioritize sequencing of diverse AMR

pathogens from clinics as well as from environments and travellers rather than extending

the geo-climatic range of already-sequenced pathogens. Our recommendations can be

potentially valuable for other low and middle-income countries with limited resources, high

prevalence of AMR and diverse geo-climatic conditions.
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Introduction

Antimicrobial resistance (AMR) is a global crisis and has been ranked amongst the top ten

health concerns by WHO.! In the year 2019, 1.27 million people died of infections by drug

resistant pathogens.? Antibiotic resistance is more prevalent in low and middle-income

countries owing to lack of hygiene, resource limitation and other socio-economic factors.3=

South Asia has the second largest burden of AMR, surpassed only by the sub-Saharan

African region.? Within South Asia, India is one of the hotspots for resistance. By the year

2050, global annual deaths due to infections by drug resistant pathogens are predicted to

rise to ~10 million with ~2 million deaths in India alone.*® India also has a drug resistance

index of 71, highest for any country in the world, indicating very poor efficacy for the

existing drugs.” AMR is thus a public health emergency for countries like India.

The diverse and dynamic nature of AMR demands continuous surveillance, rapid diagnostics

and robust drug development programs, amongst other things. Traditionally, the first step

of tackling resistant pathogen is antimicrobial susceptibility testing (AST). AST is a gold

standard for determining resistance and is relatively economic to perform. However, AST has

large turnaround times, requires customized workflow for every pathogenic group and
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cannot reveal the molecular mechanisms of resistance. As a result, the outcomes of ASTs are

of little use for drug design or rapid diagnostics or extensive surveillance.

In the recent years, whole-genome sequencing (WGS) has been successfully used for

understanding the molecular mechanisms of AMR2° epidemiology of AMR%1! as well as for

drug discovery.t> WGS-based studies of antimicrobial resistant pathogens offer several

advantages over other traditional approaches. First, WGS gives us a comprehensive picture

of genomic changes in contrast to gene-based studies that are restricted to a few well-

characterized genes.!® Second, WGS data can help establish the trajectories and timelines of

resistance evolution.**1” Third, WGS based approaches can potentially supplement or

replace the traditional methods of AST.131822 Fourth, current WGS technologies promise

shorter turnaround times than traditional approaches.?® Short turnaround times are

especially useful for slow-growing pathogens like Mycobacterium?** as well as in the

treatment of conditions like septicemia where faster diagnosis can increase the patient

survival rates significantly. Lastly, WGS-based approaches can also accurately identify

pathogens that may have been misidentified by traditional methods. For instance, it is

challenging to distinguish between £ coli and Shigella by methods other than whole-
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genome sequencing.?® These advantages in terms of diagnostics, therapeutics and

surveillance automatically make genomic sequencing the first step in the fight against AMR

and countries with high prevalence of AMR need a greater focus on genomic sequencing.?’

To establish effective genomic sequencing for AMR in India, it is important to have
information on the available whole-genome sequences from India. A comprehensive review
of whole genome sequences of AMR pathogens from India is lacking. Sequence data
available in most databases suggest that genomic sequencing from India is patchy at best.
For example, according to the Bacterial and Viral Bioinformatics Resource Centre (BV-BRC),%®
India is the third major contributor towards S. #yphi sequences worldwide with the
contribution of nearly 14%. But similar levels of sequencing efforts are lacking for almost all
the other AMR pathogens. For instance, BV-BRC lists 8482 £. coli sequences from the USA as
opposed to 827 sequences from India, which is four times as populated as the USA.

Similarly, BV-BRC lists eight times as many of K pneumoniae sequences from China than

India.
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91 Here we systematically review the studies that report whole-genome sequences of AMR

92  pathogens from India. We focus on the pathogens that demand immediate attention

93  according to the Indian Council of Medical Research.?® We find that the use of whole-

94  genome sequencing in this context is very limited in India. Majority of the data are confined

95 to a couple of geo-climatic zones within the country and is restricted to a few select

96 pathogens. We then perform a phylogenetic analysis for the two pathogenic species that

97  have been sequenced across most geo-climatic zones of India. Our results show that there

98 are no systematic differences between the genomes of pathogens isolated from different

99  geo-climatic zones (but see discussion for the limitations of the available data). This finding

100  suggests that the immediate focus of sequencing efforts should be a number of diverse

101  priority pathogens rather than already-sequenced pathogens from new geo-climatic zones

102  of the country. We also find that the spread of resistance due to human travel remains

103  severely understudied in the country. Lastly, our review shows that genomic studies of

104  pathogens isolated from domestic animals, food and environment are rare in India.

105 Increasing the sequencing efforts in this direction of ‘One health’® can help gain a holistic

106  understanding of resistance spread and evolution in India.
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Methods

Choice of pathogenic species

We selected ten pathogenic species and one pathogenic genus for which immediate action

is recommended.?® Specifically, this included eight species (Escherichia colj, Enterobacter

cloacae, Morganella morganii, Citrobacter koseri, Proteus mirabilis, Providencia rettger;,

Salmonella typhi, Serratia marcescens) and one genus (K/ebsiella) from the order

Enterobacterales, and two other species from diverse taxa (Acinetobacter baumannii and

Candida auris). For the selected pathogens we included the genomic sequence of every

isolate from AMR studies conducted in India, irrespective of the resistance profile of the

pathogen. We reasoned that every sequence of a priority pathogen, resistant or sensitive to

any specific antibiotic, is important for understanding the molecular mechanisms and

evolution of resistance as well as for applications like surveillance and diagnostics.

Literature Search

We searched the databases of PubMed and Web of Science on the 5 May, 2023 for studies

that reported whole-genome sequences of selected AMR pathogens. We included only

those studies that provided the data for pathogens isolated from Indian patients or from
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124  patients with a history of travel to India or environmental/food/veterinary samples collected

125 in India. We followed PRISMA guidelines®! while performing the literature search. Our

126  detailed search strategy is outlined in the supplementary material (Supplementary material

127 1).

128

129  Checking for the uniform availability of whole-genome sequences for selected

130 pathogens across different geo-climatic zones

131  To examine whether the number of available whole-genome sequences are uniform across

132  different geo-climatic zones, we performed the Pearson’s chi square test of homogeneity

133 using RStudio (v2022.07.0). To this end, we considered the pooled number of sequences of

134  all the selected pathogens for each geo-climatic zone. We only used data for those isolates

135  for which geo-climatic zone was known. To ascertain the geo-climatic zone of every isolate,

136  we used the information reported in the corresponding study or the NCBI metadata

137  associated with the genomic sequence. In case of a discrepancy in location mentioned in

138  the study and NCBI metadata, we gave preference to the information provided in the

139  relevant study.

140


https://doi.org/10.1101/2023.11.23.568416
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.23.568416; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

141  Phylogenetic Analysis of S. typhi and K. pneumoniae.

142 To determine whether different lineages of a given organism are prevalent in different

143 zones of India, we conducted a phylogenetic analysis. We chose S. typhi and K. pneumoniae

144  for the phylogenetic analysis, as their genomic sequences were available from most geo-

145 climatic zones of India. We excluded the sequences that lacked the information on the geo-

146  climatic zone (Supplementary material 6), as well as the sequences where the accession

147 numbers were not available.

148

149  We performed two separate phylogenetic analyses, one for 503 S. typh/ genomic sequences

150  and other for 231 K pneumoniae genomic sequences. We first downloaded the genomic

151 sequences from NCBI as complete genomes, raw reads or contigs. Using a custom script,

152  we re-named all the downloaded sequences to denote their geo-climatic zone and the year

153 of the study. We pre-processed all the raw reads, both single and paired-end, and checked

154  the quality with FastQC v0.12.1.32 We then filtered the low-quality reads and adapters using

155  Trimmomatic, v0.39.33 We used PhaME (Phylogenetics and Molecular evolution analysis tool,

156  v1.0.2)** for phylogenetic tree building. For the phylogenetic analysis of S. typhi sequences,

157  we used S. typhi CT18 as the outgroup reference.3>-38 Similarly, we used K. pneumoniae
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158 MGH78578 as an outgroup reference strain for the phylogenetic analysis of K. pneumoniae

159 sequences and SPAdes genome assembler v3.15.5,% for getting the draft genomes. We also

160 performed a genotype analysis for S. typhi sequences using Genotyphi v2 scheme,* and

161  Kleborate v2.3.2% for the genotype analysis of K pneumoniae sequences. We used Iroki*?

162  for visualization of the phylogenetic trees.
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163 Results

164 Literature Search

g Studies identified by each database
=
. - f— i i =
5 PubMed = 379 (142 unique studies) Duplicate studies excluded = 114
E Web of Science = 457 (229 unique studies)
o]
E l
| Studies screened = 257 }—D Studies excluded after screening based on
title & abstract (& brief look at the full text
in some cases) = 159
Exclusion criteria:
Irrelevant studies = 75
Not the pathogen of interest = 47
Samples sequenced were not Indian = 30
Did not include WGS =4
Not AMR based study =3
U]
% ‘ Studies retained after first screening = 98 }_. Studies excluded after full text screening = 9
w
g Exclusion criteria:
Vi Irrelevant = 4
Not Indian =2
Not AMR based study = 1
Studies retained after second screening = 89 Not sufficient data =1
Other=1
Studies from other sources including, but
not limited to, back referencing =5
Studies included in meta-analysis = 94
o
w
= 94 studies included 2547 unigue whole-genome
=
g sequences

v

| S. typhi =560 | ‘ K. pneumoniae = 811 || E. coli=458 H A. baumannii = 222 H C. guris =72 H Others =24 ‘

165

166 Figure 1. PRISMA flowchart describing the literature search strategy and outcomes for AMR related studies
167 reporting whole-genome sequences of the selected pathogens. We searched PubMed and Web of Science
168 databases for the relevant studies (see Supplementary material 1 for the search phrases). We screened 257

169 unique studies after removing duplicates within and between the search results from the two databases. We

170 excluded 159 studies after screening the title and abstract. We further excluded 9 studies after the scrutiny of the
171  full text. This resulted in 89 studies matching our inclusion criteria. We added 5 studies found by back-

172 referencing or other sources. Together, we retained 94 studies for this systematic review. After removing the

173 overlapping sequences across studies, the search yielded 2547 unique whole-genome sequences of the selected
174 pathogens. The boxes in the bottom row show the number of genomic sequences for pathogenic species S.

175 typhi, K. pneumoniae, E. coly A. baumannii and C. auris. We found very few genomic sequences of K

176 quasipneumoniae, S. marcescens, K. aerogenes, E. cloacae, M. morganii that are clubbed together as ‘Others’.
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177  The preliminary literature search for the selected pathogens yielded a total of 836 studies.

178  We did not find any studies from India with WGS information on three species from our list,

179  namely Citrobacter koseri, Proteus mirabilis and Providencia rettgeri. After exclusion of

180  duplicates, we obtained 257 unique studies. From this subset, we further excluded 159

181  studies during the first screening based on the title, abstract and a brief view of full text

182  wherever needed. Nine more studies were excluded during the second screening where we

183  scrutinized the full text for the relevance to our review. This resulted in a total of 89 studies

184  matching our inclusion criteria. We found 5 additional studies via back-referencing. In all we

185 included 94 studies (that spanned over 9 years, from 2014 to 2023) in this systematic review

186  that provided sequences and other data for 2547 isolates.
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Organism Number Number of | Sample categories References
of studies | genome
sequences
Salmonella typhi 14 960 Clinical isolates, travel-associated clinical isolates 43-56
Klebsiella pneumoniae 35 811 Clinical isolates, travel-associated clinical isolates 5791
Escherichia coli 31 458 Clinical isolates, travel-associated clinical isolates, 39,62,65,77,7
. . . . 9,91-116
food-associated isolates, environmental (hospital ’
sewage water) isolates, veterinary clinical (milk
from cows suffering from mastitis) isolates
Acinetobacter 9 222 Clinical isolates 59,62,65,77,1
. 17-121
baumannii
Candida auris 10 72 Clinical isolates, travel-associated clinical isolates, 14,79,122-
. . . . 12
environmental isolates, food-associated isolates 9
Serratia marcescens 1 17 Clinical and hospital environmental isolates 130
Klebsiella spp (other 4 4 Clinical isolates, environmental isolates 80,81,131,132
than K pneumoniae)
Enterobacter cloacae 2 2 Clinical isolates, environmental isolates 133,134
Morganella morganii 1 1 Clinical isolates 135

Table 1: Number of studies and number of unique whole-genome sequences therein for the selected pathogenic
groups. The column ‘Sample category’ indicates whether the isolates were from patients from India (clinical) or
from patients with a travel history to India (travel-associated clinical) or from environmental/ food/ veterinary

samples collected in India.
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193  Number of whole-genome sequences for any selected pathogen vary widely across

194  different geo-climatic zones of India

A All isolates B s. typhi, C k. pneumoniae, D E coli,
Sequences with known location = 1653 Sequences with known location = 511 Sequences with known location =681 Sequences with known location =288
i ™\
< 2
£ Vo
e ey
4 ! |
£ 1
3 A > 3
E a baumannii, F C. auris, G Others,
S Sequences with known location = 94 Sequences with known location = 55 Sequences with known location = 24
[] 0 sequence B
[] 1-15 sequences !
- [[] 16-50 sequences
S [[] 51-100 sequences
P
3 [ 101-200 sequences %, A J J
[ 201-300 sequences "
St [l 301-500 sequences
[ 501+ sequences
f

197 Figure 2: Number of whole-genome sequences of selected pathogens from every geo-climatic zone of

198 India. A. The geo-climatic distribution of the all the 1653 whole-genome sequences with known locations. Panels
199 B-G depict the distributions of number of isolates for individual pathogenic groups of S. typhi K pneumoniae, E.
200 coli; A. baumannii, C. auris and others respectively. The group ‘others’ includes the species that have very few
201 whole genome sequences, namely, S. marcescens, K. quasipneumoniae, K. aerogenes, E. cloacae and M. morgani.
202 Only the isolates with known location are included. The colour of each geo-climatic zone in every panel (A-G)
203 represents the range for the number of sequences as per the legend in the panel A. Exact number of sequences
204 and their locations for each pathogenic group are in the supplementary materials 2 and 6 as well as in

205 supplementary dataset. We used mapchart.net for the design and colour of the map, and mapsofindia.com as a

206  reference for determining the geo-climatic zones of India.

207

208 The 94 studies that we shortlisted provide WGS data and related information for a total of

209 2547 distinct isolates. With 960 isolates, S. typhi represents a majority (37.69%) of these

210 isolates (Figure 2). This is closely followed by the Klebsiella species which together form

211 31.99% of the isolates for which WGS data are available. For one of the Klebsiella species, K.
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212 pneumoniae, 811 sequences (31.84% of total sequences in our study) are available (Figure

213 2). We also obtained sequence data for 458 £. coliisolates, 222 A. baumannii isolates and 72

214  C auris isolates. We pooled the sequence data for 17 S. marcescens isolates, 2 E. cloacae

215 isolates and 1 isolate of M. morganii, 3 K. quasipneumoniae isolates and 1 K aerogenes

216  isolate during our analysis, (category ‘others’ in Figure 2) due to very low numbers of

217  isolates from each group. Overall, these numbers show that the extent of whole-genome

218 sequencing is highly variable for different pathogenic groups. S. typhi and K. pneumoniae

219 are the most sequenced species among the selected pathogens, together comprising

220 69.53% of the total sequences. In contrast, we could not find even a single whole-genome

221 sequence from India for three priority species from Enterobacterales - F rettgeri, B mirabilis

222  and C koseri.

223

224 We found only one study with S. marcescens where 17 isolates from patients and hospital

225  environment had been sequenced.’3° Similarly, for £ cloacae we found only two studies that

226  reported the total of two whole genome sequences, while for M. morganii and K. aerogenes,

227  we found one study with a single sequence each.!3>71%
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228  We also looked at the geographic distribution of the whole-genome sequences across the

229  six different geo-climatic zones of India (Figure 2). Out of the 2547 sequences, we could

230 locate the geo-climatic zones of 1653 sequences (64.90% of the sequences) based on the

231 information in the reported study or from the NCBI metadata associated with the genomic

232 sequence. The number of sequenced genomes were highly variable across different geo-

233 climatic zones for every selected pathogen (Figure 2). From the 1653 sequences with known

234  locations, 893 (i.e. 54.02%) sequences were from the Southern zone, indicating that almost

235  half the genomic sequences were from a single geo-climatic zone of India. Furthermore, out

236  of these 893 genomic sequences from the southern zone, 581 sequences (i.e. more than

237  65%) belonged to S. typhi and K pneumoniae (330 and 251 sequences respectively). These

238 numbers indicate that the majority of the sequenced genomes from India were of two

239  pathogenic species isolated from a single geo-climatic region.

240

241  Out of the remaining 760 genomic sequences from other geo-climatic zones, 362 were from

242 the northern, 308 from western, 50 from eastern, 30 from central and only 10 were from the

243 northeastern regions of India (Supplementary materials 2 and 6 and supplementary dataset).

244  Formal statistical analysis validated our observation of large variation in the number of
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245  available whole-genome sequences across different geo-climatic zones for all the selected

246  pathogens combined (Pearson’s chi square test for homogeneity, x°= 502.25, df = 25,

247  p<2.2x107%). There is no evidence to indicate that the variation in extent of genomic

248  sequencing reflects the population numbers or the disease burden in the respective geo-

249  climatic zone.

250

251  The disparity in number of sequences is most likely the reflection of the disparity in the

252  number of studies that report genomic sequences from each zone. There were only 2

253  studies which report genomic sequences from the northeastern zone as opposed to 43

254  studies that report WGS data from the southern zone. Similarly, we found only 2 studies

255  from the central zone of India and both reported genomic sequences of K pneumoniae.

256  These numbers along with the other observations from our literature search suggest that

257  often a particular research group focuses on a specific pathogen. A string of studies

258 reporting WGS data of that pathogen then follows. Sequenced pathogenic isolates then

259  typically belong to the same geo-climatic zone and often collected from the same locality.

260
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261 In sum, genomic sequencing of pathogenic species is patchy in India and the current

262  sequencing effort is focused on only a couple of pathogens mostly isolated from a couple

263  of geo-climatic zones.
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264  Sequences of S. typhi from different geo-climatic zones of India do not form
265 phylogenetically distinct clusters

266
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268 Figure 3: Phylogenetic analysis of S. fyphi isolates. The geo-climatic zone wise distribution (outer circle) along
269 with the genotype distribution (dots at end of leaf tip) and phylogenetic clustering of the 503 S. #yphi isolates.
270 The genotyping was done using Genotyphi v2, the phylogenetic tree was built using PhaMe v1.0.2, and

271 visualization was created using Iroki. The name of the isolate indicates its geo-climatic zone and the year of
272 study. Similar genotypes predominantly cluster together but not as per the geo-climatic zone of isolation (outer
273 circle).

274
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275  Our literature review highlights that whole-genome sequencing of AMR pathogens in India

276 needs to extend to all priority pathogens and cover more geo-climatic zones. But how

277  different are the genomic sequences of isolates from different geo-climatic zones? The

278  literature is equivocal on the sequence-level differences amongst isolates from different

279  geo-climatic conditions with majority of the studies using geographic regions as a proxy for

280  geo-climatic differences.4’4813¢ Moreover, these studies tend to look at larger geo-climatic

281  differences, often considering data across different countries and continents. Some studies

282  suggest that different geographic regions may harbour genetically distant pathogens*’:48136

283  while others show genetic homogeneity in isolates from different geographic regions.3®

284  Understandably, conclusions also vary for different pathogenic species.3® But little is known

285  about the diversity of whole-genome sequences across different geo-climatic zones within a

286  single country, like India.

287

288 To check whether the isolates from different geo-climatic zones of India form distinct

289  sequence clusters we resorted to phylogenetic analysis of the available sequences. We chose

290 the two priority pathogenic species, S. typhi and K. pneumoniae, which had isolates

291  sequenced from most of the geo-climatic zones. Phylogenetic analysis of the 503 genomic
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292  sequences of S typhi showed that the genomic sequences of isolates from the same geo-

293  climatic zone do not cluster together (Figure 3). The conclusion is also supported by the

294  phylogenetic analysis of 231 genomic sequences of K. pneumoniae (Supplementary material

295 3).

296

297  One possible reason for such homogeneity could be the spread of pathogens due to human

298  dispersal across geo-climatic zones. The other reason could be the spread through

299 environmental factors such as soil or water as well as food items. Therefore, we next

300 checked for evidence for both these possibilities in the literature.
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301 Genomic sequencing of the pathogens from travel-associated infections is not common

302 in India

303 Infected individuals traveling from one location to another can spread resistant strains of

304 pathogens and tracking this movement is important to understand the spread of AMR.137~

305 139 Most of the travel-related studies have a few limitations though. First, it is difficult to

306 track the movement within the country, though some novel approaches may allow this.4%-

307 %2 Second, majority of the travel-related studies do not take into account the acquisition of

308 a pathogen prior to or during the travel.®* This may lead to incorrect identification of the

309 source of infection as the travel destination. Third, most of these studies consider only

310 symptomatic cases of the disease and asymptomatic carriers might be easily

311  overlooked.#4852.79.94115123 Degpite these limitations however, routine sequencing of isolates

312  from the infected travellers can give a better picture of disease dispersal.9%11>

313

314 Unfortunately, we found only one study that sequenced the genome of a pathogen

315  possibly acquired during the travel between two geo-climatic zones of India.** The patient,

316 resident of the eastern zone, had a history of travel to the northern zone, but no clear link

317  between the infection and travel could be established in the study. We found another


https://doi.org/10.1101/2023.11.23.568416
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.23.568416; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

318  handful of studies that sequenced isolates from the travellers that were visiting India/South

319  Asia (Table 1 and Supplementary material 4). These studies identified the strain of the

320 pathogen and established an association between the strain and specific geographic region.

321 For example, Ingle et al. observed that S. #yph/ sub-lineage 4.3.1.2. was mainly associated

322 with travellers returning from India and carried mutations in the quinolone resistance-

323  determining genomic regions.*”4® Similarly, Yaita et al. studied the acquisition of ESBL-

324 producing £. coli by travellers returning to Japan. The study found that the majority of the

325 people returning from India (10 out of 14) tested positive for ESBL-producing £ coli %* Yet

326  another study found that an individual returning to Switzerland from India was colonised

327  with a carbapenamase-producing £ coli harbouring a blaOXA-484, a variant of

328  carbapenemase new to Switzerland.!?®

329

330 These examples illustrate the effective tracking of the resistance spread from India to other

331  countries. We did not find similar studies for individuals returning to India from other

332 regions of the world or for individuals traveling across different geo-climatic zones of

333  India. These observations demand increased genomic sequencing of pathogens isolated

334  from travellers to better understand the resistance dynamics within the country.
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335  Whole-genome sequencing of AMR isolates from food and environment is limited in

336 India

337 We next looked for the genomic sequences of priority pathogens isolated from

338  environmental and food samples. AMR studies from all over the world have reported

339  widespread presence of resistance genes in water, soil as well as in food items.}43-145 This

340  'One health’ approach of study underlines the importance of tracking resistance across

341  abiotic environments alongside the clinics.3° We thus looked for studies that reported

342  whole-genome sequences of priority pathogens isolated from environments or food items.

343

344  Our search uncovered 3 such studies of environmental samples from India. It was striking

345  that even such handful of studies (Supplementary material 5) reported isolates that harbour

346  antibiotic resistant markers.1?4132134 For example, an isolate of K aerogenes from agricultural

347  soil was found to contain ~30 AMR genes.’3? Another sequencing study demonstrated that

348 23 (out of 24) C auris isolates from marshy wetlands and sandy beach areas of Andaman

349  and Nicobar Islands were resistant to a variety of antifungals.1?4

350 We also found 5 studies from India that reported sequences of AMR pathogens isolated

351 from food sources (Supplementary material 5).93101,104109.122 For instance, a study reported
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352  resistance patterns in the yeast species found on the surface of apples.}?? Authors found

353  that 73% of the total isolates belonged to Candida spp. and 11% of those isolates were of

354  the priority species C. auris. Alarmingly, most of these isolates (15 out of 16) had heightened

355  resistance against fluconazole.?? Similarly, multiple sequencing studies found ESBL

356  producing £ coli from poultry samples and one group demonstrated that 78.5% of their

357  poultry isolates were multi-drug resistant.1%1% Another sequencing study from the

358 Banaskantha district of Gujarat reported that 90% of their samples procured from ~30

359 different farms contained £ coli. Nearly 80% of these £ coli were ESBL producers.%® There

360 were also a few studies reporting drug-resistant £ col/ from bovine mastitis raising a

361  concern of pathogens getting into the milk and milk products. 11113114

362  Overall the results indicate a high prevalence of AMR priority pathogens in the

363 environments and food items but extensive and systematic sequencing studies are needed

364  to obtain a truly comprehensive picture.
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365 Discussion

366  Our literature search revealed that whole-genome sequencing of AMR priority pathogens

367 from India is patchy, both in terms of species that were sequenced and geo-climatic zones

368 where the pathogens were isolated. For three of the priority pathogens Citrobacter koser;,

369  Proteus mirabilis, Providencia rettgeri we did not find even a single genomic sequence

370 reported from India. Recent evidence suggests that all the three species are clinically

371  important.}46-152 For example, multi-drug and pan-drug resistant varieties of P rettgeri

372  caused nosocomial infections in India.}*® Similarly, a longitudinal study from a tertiary

373  healthcare centre in western India reported C koseri with beta-lactam and carbapenem

374  resistance over a period of 3 years.}*° Another study found a nosocomial NICU outbreak of

375  multi-drug resistant 2 mirabilis that resulted in 80% mortality.?>® Yet another study found

376  ESBL positive 2 mirabilis in food and livestock samples.?>® Apart from these three pathogens

377  that lack any WGS data from India, we also found other important pathogenic groups that

378  were severely underrepresented. For instance, carbapenem-resistant Acinetobacter is a

379  serious threat and leading cause of nosocomial infections in India?® and yet we found only

380 222 whole-genome sequences of Acinetobacter baumannii from the whole country.

381
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382 We performed phylogenetic analyses on the sequence data of two highly-sequenced priority

383 pathogens S. typhi and K. pneumoniae. Results showed that genomic sequences of isolates

384 from different geo-climatic zones do not form distinct clusters (Fig 3, Supplementary

385 material 3). In the absence of evidence for distinct sequence diversity across different geo-

386 climatic zones, it might be beneficial to prioritize the sequencing of diverse pathogenic

387  species over the increased coverage of already-sequenced species across different geo-

388 climatic zones of India. However, there are some limitations of the datasets that we used for

389  our phylogenetic analysis, as discussed below.

390

391  Our conclusions are drawn from the limited sequence data that are available from India. The

392  sequences used in the phylogenetic analysis were collected over a period of nine years.

393 Insufficient data for individual years prevented us from performing the analysis separately

394  for each year. Additionally, in many cases there was no clear indication of the month and

395 year of isolation. Adding this information to the phylogenetic analysis may change the

396 inferences drawn. It is reasonable to assume that a particular resistant variant of a pathogen

397 is not likely to arise (or arrive, with an infected individual/food item/environmental agent) in

398 multiple geo-climatic zones at the same time. But how rapidly any resistant variant spreads
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399 can be dependent on several factors such as mode of transmission, fitness advantage over

400 the prevalent variants and climatic conditions. Certain resistant variants of any pathogen

401 might already be widespread across all geo-climatic zones. Systematic and continued

402 genome sequencing across all geo-climatic zones is needed to resolve these possibilities for

403  every priority pathogen. It will also help to have a clearer indication of time of isolation and

404  geo-climatic zone for all the reported sequences. For example, from the existing literature,

405  we could not find the geo-climatic zone for 449 sequences of S. typh/ and adding this

406 information may change the inferences of the phylogenetic analysis.

407

408  We also note that for the phylogenetic analyses we used two gram-negative enteric

409 pathogens, S. typhi (Figure 3) and K pneumoniae (Supplementary material 3). Genomic

410 sequences of other non-enteric or gram-positive pathogenic species may cluster according

411  to the geo-climatic zones. It is also known that the ratio of core to accessory (or

412  dispensable) genes varies across different pathogenic species.’> Such variation can affect

413  the conclusions drawn from phylogenetic and MLST analysis.’>> The predominant nature of

414  the infections, nosocomial vs community-based, may also affect the spread across geo-
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415  climatic zones. For instance, Acinetobacter baumannii is primarily a nosocomial

416  pathogen®®1>7 and specific strains may dominate specifies geo-climatic regions.

417

418 At the time of our literature search, only two geo-climatic zones had reasonable

419  representation for S. #yphi (330 and 170 sequences each from Southern and Northern zones)

420  while remaining zones of West, Northeast, East had reported 6, 4 and 1 genomic sequence

421  respectively. But genomic sequences from even Southern and Northern zones did not

422  cluster separately. A possible reason for this could be that most of the reported genomic

423  sequences (408 out of 503) belonged to the S. #yphilineage 4.3.1, suggesting one dominant

424  infectious strain throughout the country. This may not be the case with other important

425  pathogens and may lead to different observations. However, another study®, as well as our

426  own analysis with K pneumoniae (Supplementary material 3) genomes, demonstrates lack of

427  distinct clusters for genomic sequences from different geo-climatic regions.

428

429  We reasoned that homogeneity in genomic sequences across different geo-climatic zones

430 might be due to the spread of infectious pathogens/resistance genes through human

431  travellers or food items or other environments. Documentation and sequencing of such
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432  instances is important as it can allow effective mapping of the isolates’ ancestry and help

433  understand their dispersal patterns. Sequencing the isolates from infected travellers can also

434  uncover the original incidences of certain infections. For example, a recent study discovered

435  that the first incidence of C auris infection was a 54-year-old male travelling to India in

436 2007, which was two years before the supposed first case of C. auris infection was reported

437  from Japan.!?® This discovery has altered the timeline of emergence of C auris infections.

438  Our literature search revealed very few studies with genomic sequences of pathogens from

439  travel-related infections. Majority of the studies were travellers who acquired the infection in

440 India and travelled abroad. There were almost no studies reporting sequences of pathogens

441  acquired during the incoming travel to India or more importantly, travel within the country.

442  This observation underlines the necessity of tracking travellers for possible infections and

443  extending these investigations to include whole-genome sequencing of the pathogen.

444

445  Whole-genome sequences of isolates from soil, water, other environments and foods were

446  also modest in number. Alarmingly, even these few reports uncovered important resistance

447  markers. For example, we found studies that reported colistin-resistant pathogens from food

448  samples. Colistin is one of the final-resort antibiotics and the presence of colistin resistant
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449  Enterobacteriaceae (group3 pathogens as per ICMR)?° in food items is concerning. Colistin-

450 resistant Enterobacteriaceae (like Klebsiella, Enterobacter, Citrobacter, E. col)) and

451  Pseudomonas were found in a range of food samples collected from shops and households

452 %3, Moreover, few of these isolates contained the mcr-7 gene which is responsible for

453  plasmid-mediated spread of colistin resistance. Extrinsic resistance elements, such as

454  plasmids, can spread the resistance rapidly across pathogens from different groups.t>® Our

455  results underline the need for comprehensive ‘One health’ approach in WGS studies with

456  extensive sequencing of isolates from environments.
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457  Conclusion

458  Our review collates the studies that sequence the genomes of priority AMR pathogens from

459 India. We find that many priority pathogens are not routinely sequenced in India while some

460 have not been sequenced at all. Additionally, most genomic sequences are available from

461  only a couple of geo-climatic zones. With the limited sequence data that is available, we

462  infer that genomic sequence diversity is homogeneous across the geo-climatic zones. To

463  assert or refute this conclusion however, we need systematic genomic sequencing for a few

464  more priority pathogens across all geo-climatic zones. This task is resource-intensive and

465 implementation may take a few years at least. While such comprehensive sequencing data is

466  being generated across the country we need to urgently begin sequencing diverse priority

467  pathogens such as A. baumannii, C. koseri, R mirabilis and P rettgeri. This should be

468  accompanied by genomic sequencing of isolates from travel-related infections and

469 environment. Our recommendations can be valuable for other low and middle-income

470  countries with diverse geo-climatic conditions, high prevalence of AMR and limited

471 resources.

472
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