

1 **Genomic sequencing should extend to diverse priority pathogens for effective study**
2 **and surveillance of antimicrobial resistance: a systematic review of whole-genome**
3 **sequencing studies from India**

4 Nazneen Gheewalla¹, Jaisri Jagannadham^{1,2}, Rintu Kutum^{1,3}, Shraddha Karve^{1*}

5

6 ¹ Trivedi school of biology, Ashoka University, NH 44, Rajiv Gandhi Education City, Sonipat

7 131029, India.

8 ² Centre for Bioinformatics and Computational Biology, Ashoka University, NH 44, Rajiv

9 Gandhi Education City, Sonipat 131029, India.

10 ³ Department of computer science, Ashoka University, NH 44, Rajiv Gandhi Education City,

11 Sonipat 131029, India.

12 *for correspondence: shraddha.karve@ashoka.edu.in

13 **Abstract**

14 **Background**

15 Antimicrobial resistance (AMR) is a public health emergency in many low and middle-
16 income countries, including India. To effectively tackle AMR, we need rapid diagnostics,
17 effective surveillance and new antimicrobial drugs. Whole-genome sequencing of pathogens
18 is the first definite step towards achieving these goals.

19 **Methods**

20 In this work, we review all the studies published till date that report whole-genome
21 sequences of select priority AMR pathogens from India. We searched PubMed and Web of
22 Science databases for the studies that involved whole-genome sequencing of AMR priority
23 pathogens from India. For the top two highly sequenced pathogens, *S. typhi* and *K.*
24 *pneumoniae*, we performed phylogenetic analyses to understand the geo-climatic
25 distribution of genetically diverse strains.

26 **Results**

27 Our search reveals 94 studies that report 2547 unique whole-genome sequences. We find
28 that most sequences are limited to select priority pathogens isolated from a couple of geo-
29 climatic zones of India. Our phylogenetic analyses show that available data does not indicate

30 systematic differences between the genomes of isolates from different geo-climatic
31 zones. Our search also reveals complete absence of travel-related studies tracking possible
32 movement of AMR pathogens within country. Lastly, we find very few studies that sequence
33 AMR pathogens isolated from food, soil or other environments.

34 **Conclusion**

35 Together, these observations suggest that India should prioritize sequencing of diverse AMR
36 pathogens from clinics as well as from environments and travellers rather than extending
37 the geo-climatic range of already-sequenced pathogens. Our recommendations can be
38 potentially valuable for other low and middle-income countries with limited resources, high
39 prevalence of AMR and diverse geo-climatic conditions.

40

41 **Introduction**

42 Antimicrobial resistance (AMR) is a global crisis and has been ranked amongst the top ten
43 health concerns by WHO.¹ In the year 2019, 1.27 million people died of infections by drug
44 resistant pathogens.² Antibiotic resistance is more prevalent in low and middle-income
45 countries owing to lack of hygiene, resource limitation and other socio-economic factors.³⁻⁵
46 South Asia has the second largest burden of AMR, surpassed only by the sub-Saharan
47 African region.² Within South Asia, India is one of the hotspots for resistance. By the year
48 2050, global annual deaths due to infections by drug resistant pathogens are predicted to
49 rise to ~10 million with ~2 million deaths in India alone.^{4,6} India also has a drug resistance
50 index of 71, highest for any country in the world, indicating very poor efficacy for the
51 existing drugs.⁷ AMR is thus a public health emergency for countries like India.

52

53 The diverse and dynamic nature of AMR demands continuous surveillance, rapid diagnostics
54 and robust drug development programs, amongst other things. Traditionally, the first step
55 of tackling resistant pathogen is antimicrobial susceptibility testing (AST). AST is a gold
56 standard for determining resistance and is relatively economic to perform. However, AST has
57 large turnaround times, requires customized workflow for every pathogenic group and

58 cannot reveal the molecular mechanisms of resistance. As a result, the outcomes of ASTs are
59 of little use for drug design or rapid diagnostics or extensive surveillance.

60

61 In the recent years, whole-genome sequencing (WGS) has been successfully used for
62 understanding the molecular mechanisms of AMR,^{8,9} epidemiology of AMR^{10,11} as well as for
63 drug discovery.¹² WGS-based studies of antimicrobial resistant pathogens offer several
64 advantages over other traditional approaches. First, WGS gives us a comprehensive picture
65 of genomic changes in contrast to gene-based studies that are restricted to a few well-
66 characterized genes.¹³ Second, WGS data can help establish the trajectories and timelines of
67 resistance evolution.^{14–17} Third, WGS based approaches can potentially supplement or
68 replace the traditional methods of AST.^{13,18–22} Fourth, current WGS technologies promise
69 shorter turnaround times than traditional approaches.²³ Short turnaround times are
70 especially useful for slow-growing pathogens like *Mycobacterium*^{24,25} as well as in the
71 treatment of conditions like septicemia where faster diagnosis can increase the patient
72 survival rates significantly. Lastly, WGS-based approaches can also accurately identify
73 pathogens that may have been misidentified by traditional methods. For instance, it is
74 challenging to distinguish between *E. coli* and *Shigella* by methods other than whole-

75 genome sequencing.²⁶ These advantages in terms of diagnostics, therapeutics and
76 surveillance automatically make genomic sequencing the first step in the fight against AMR
77 and countries with high prevalence of AMR need a greater focus on genomic sequencing.²⁷

78

79 To establish effective genomic sequencing for AMR in India, it is important to have
80 information on the available whole-genome sequences from India. A comprehensive review
81 of whole genome sequences of AMR pathogens from India is lacking. Sequence data
82 available in most databases suggest that genomic sequencing from India is patchy at best.

83 For example, according to the Bacterial and Viral Bioinformatics Resource Centre (BV-BRC),²⁸
84 India is the third major contributor towards *S. typhi* sequences worldwide with the
85 contribution of nearly 14%. But similar levels of sequencing efforts are lacking for almost all
86 the other AMR pathogens. For instance, BV-BRC lists 8482 *E. coli* sequences from the USA as
87 opposed to 827 sequences from India, which is four times as populated as the USA.
88 Similarly, BV-BRC lists eight times as many of *K. pneumoniae* sequences from China than
89 India.

90

91 Here we systematically review the studies that report whole-genome sequences of AMR
92 pathogens from India. We focus on the pathogens that demand immediate attention
93 according to the Indian Council of Medical Research.²⁹ We find that the use of whole-
94 genome sequencing in this context is very limited in India. Majority of the data are confined
95 to a couple of geo-climatic zones within the country and is restricted to a few select
96 pathogens. We then perform a phylogenetic analysis for the two pathogenic species that
97 have been sequenced across most geo-climatic zones of India. Our results show that there
98 are no systematic differences between the genomes of pathogens isolated from different
99 geo-climatic zones (but see discussion for the limitations of the available data). This finding
100 suggests that the immediate focus of sequencing efforts should be a number of diverse
101 priority pathogens rather than already-sequenced pathogens from new geo-climatic zones
102 of the country. We also find that the spread of resistance due to human travel remains
103 severely understudied in the country. Lastly, our review shows that genomic studies of
104 pathogens isolated from domestic animals, food and environment are rare in India.
105 Increasing the sequencing efforts in this direction of 'One health'³⁰ can help gain a holistic
106 understanding of resistance spread and evolution in India.

107 **Methods**

108 **Choice of pathogenic species**

109 We selected ten pathogenic species and one pathogenic genus for which immediate action
110 is recommended.²⁹ Specifically, this included eight species (*Escherichia coli*, *Enterobacter*
111 *cloacae*, *Morganella morganii*, *Citrobacter koseri*, *Proteus mirabilis*, *Providencia rettgeri*,
112 *Salmonella typhi*, *Serratia marcescens*) and one genus (*Klebsiella*) from the order
113 *Enterobacterales*, and two other species from diverse taxa (*Acinetobacter baumannii* and
114 *Candida auris*). For the selected pathogens we included the genomic sequence of every
115 isolate from AMR studies conducted in India, irrespective of the resistance profile of the
116 pathogen. We reasoned that every sequence of a priority pathogen, resistant or sensitive to
117 any specific antibiotic, is important for understanding the molecular mechanisms and
118 evolution of resistance as well as for applications like surveillance and diagnostics.

119

120 **Literature Search**

121 We searched the databases of PubMed and Web of Science on the 5 May, 2023 for studies
122 that reported whole-genome sequences of selected AMR pathogens. We included only
123 those studies that provided the data for pathogens isolated from Indian patients or from

124 patients with a history of travel to India or environmental/food/veterinary samples collected
125 in India. We followed PRISMA guidelines³¹ while performing the literature search. Our
126 detailed search strategy is outlined in the supplementary material (Supplementary material
127 1).

128

129 **Checking for the uniform availability of whole-genome sequences for selected
130 pathogens across different geo-climatic zones**

131 To examine whether the number of available whole-genome sequences are uniform across
132 different geo-climatic zones, we performed the Pearson's chi square test of homogeneity
133 using RStudio (v2022.07.0). To this end, we considered the pooled number of sequences of
134 all the selected pathogens for each geo-climatic zone. We only used data for those isolates
135 for which geo-climatic zone was known. To ascertain the geo-climatic zone of every isolate,
136 we used the information reported in the corresponding study or the NCBI metadata
137 associated with the genomic sequence. In case of a discrepancy in location mentioned in
138 the study and NCBI metadata, we gave preference to the information provided in the
139 relevant study.

140

141 **Phylogenetic Analysis of *S. typhi* and *K. pneumoniae*.**

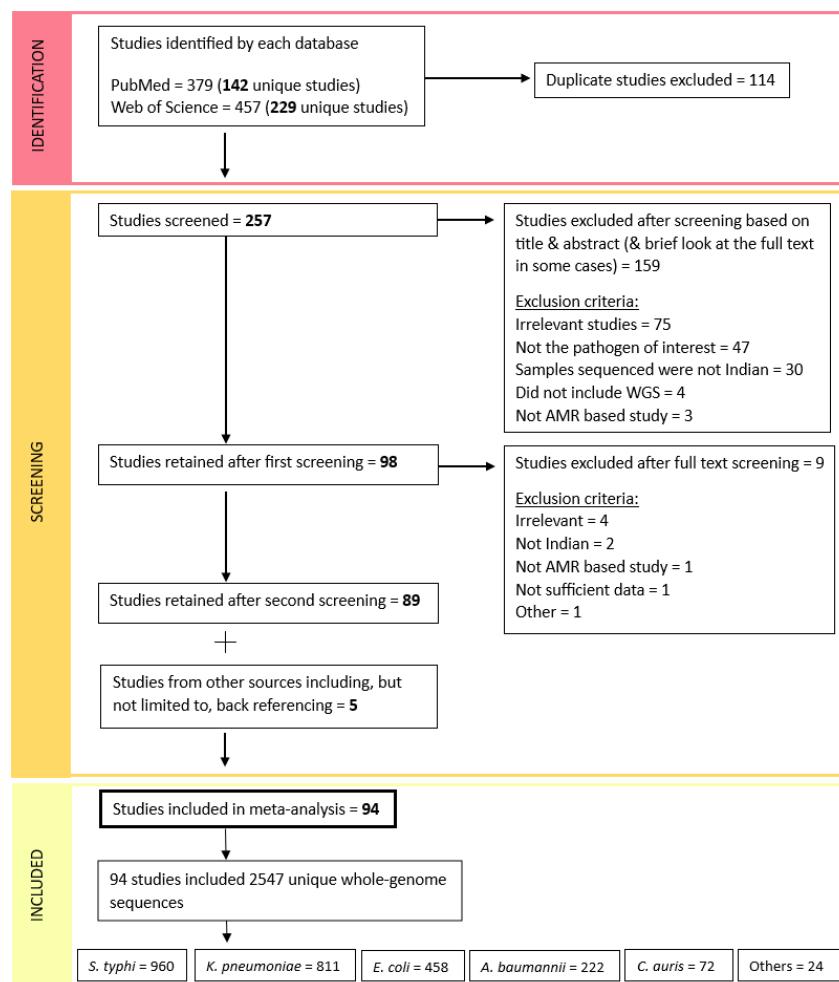
142 To determine whether different lineages of a given organism are prevalent in different
143 zones of India, we conducted a phylogenetic analysis. We chose *S. typhi* and *K. pneumoniae*
144 for the phylogenetic analysis, as their genomic sequences were available from most geo-
145 climatic zones of India. We excluded the sequences that lacked the information on the geo-
146 climatic zone (Supplementary material 6), as well as the sequences where the accession
147 numbers were not available.

148

149 We performed two separate phylogenetic analyses, one for 503 *S. typhi* genomic sequences
150 and other for 231 *K. pneumoniae* genomic sequences. We first downloaded the genomic
151 sequences from NCBI as complete genomes, raw reads or contigs. Using a custom script,
152 we re-named all the downloaded sequences to denote their geo-climatic zone and the year
153 of the study. We pre-processed all the raw reads, both single and paired-end, and checked
154 the quality with FastQC v0.12.1.³² We then filtered the low-quality reads and adapters using
155 Trimmomatic, v0.39.³³ We used PhaME (Phylogenetics and Molecular evolution analysis tool,
156 v1.0.2)³⁴ for phylogenetic tree building. For the phylogenetic analysis of *S. typhi* sequences,
157 we used *S. typhi* CT18 as the outgroup reference.³⁵⁻³⁸ Similarly, we used *K. pneumoniae*

158 *MGH78578* as an outgroup reference strain for the phylogenetic analysis of *K. pneumoniae*

159 *sequences* and SPAdes genome assembler v3.15.5,³⁹ for getting the draft genomes. We also


160 performed a genotype analysis for *S. typhi* sequences using Genotyphi v2 scheme,⁴⁰ and

161 Kleborate v2.3.2⁴¹ for the genotype analysis of *K. pneumoniae* sequences. We used Iroki⁴²

162 for visualization of the phylogenetic trees.

163 **Results**

164 **Literature Search**

165

166 **Figure 1. PRISMA flowchart describing the literature search strategy and outcomes for AMR related studies**
167 **reporting whole-genome sequences of the selected pathogens.** We searched PubMed and Web of Science
168 databases for the relevant studies (see Supplementary material 1 for the search phrases). We screened 257
169 unique studies after removing duplicates within and between the search results from the two databases. We
170 excluded 159 studies after screening the title and abstract. We further excluded 9 studies after the scrutiny of the
171 full text. This resulted in 89 studies matching our inclusion criteria. We added 5 studies found by back-
172 referencing or other sources. Together, we retained 94 studies for this systematic review. After removing the
173 overlapping sequences across studies, the search yielded 2547 unique whole-genome sequences of the selected
174 pathogens. The boxes in the bottom row show the number of genomic sequences for pathogenic species *S.*
175 *typhi*, *K. pneumoniae*, *E. coli*, *A. baumannii* and *C. auris*. We found very few genomic sequences of *K.*
176 *quasipneumoniae*, *S. marcescens*, *K. aerogenes*, *E. cloacae*, *M. morganii* that are clubbed together as 'Others'.

177 The preliminary literature search for the selected pathogens yielded a total of 836 studies.

178 We did not find any studies from India with WGS information on three species from our list,

179 namely *Citrobacter koseri*, *Proteus mirabilis* and *Providencia rettgeri*. After exclusion of

180 duplicates, we obtained 257 unique studies. From this subset, we further excluded 159

181 studies during the first screening based on the title, abstract and a brief view of full text

182 wherever needed. Nine more studies were excluded during the second screening where we

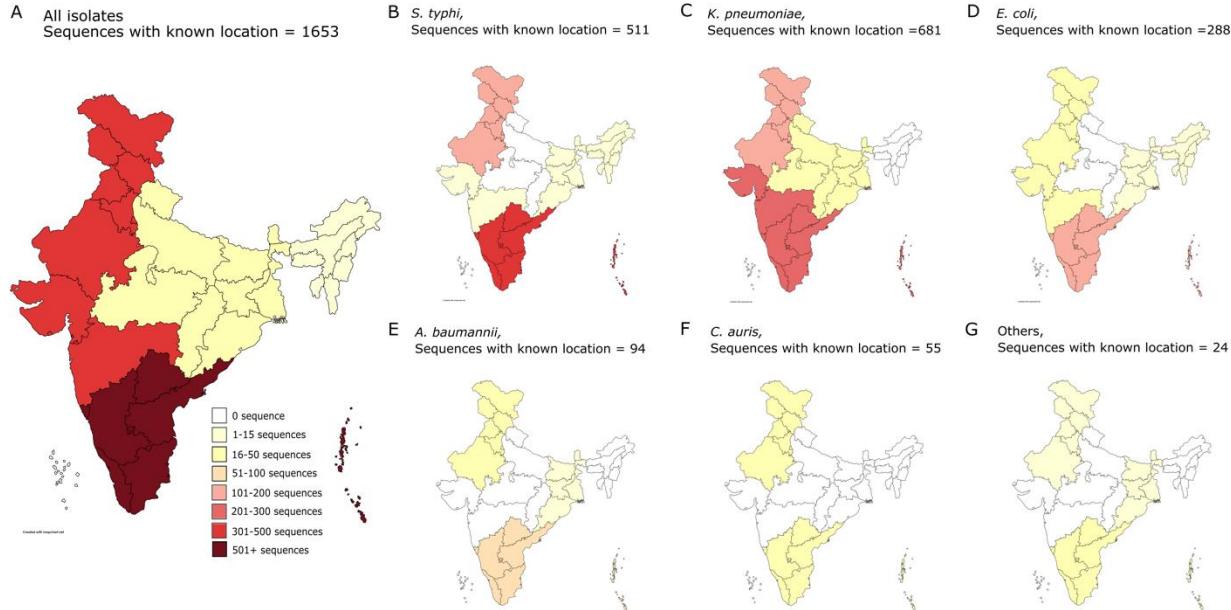
183 scrutinized the full text for the relevance to our review. This resulted in a total of 89 studies

184 matching our inclusion criteria. We found 5 additional studies via back-referencing. In all we

185 included 94 studies (that spanned over 9 years, from 2014 to 2023) in this systematic review

186 that provided sequences and other data for 2547 isolates.

Organism	Number of studies	Number of genome sequences	Sample categories	References
<i>Salmonella typhi</i>	14	960	Clinical isolates, travel-associated clinical isolates	43–56
<i>Klebsiella pneumoniae</i>	35	811	Clinical isolates, travel-associated clinical isolates	57–91
<i>Escherichia coli</i>	31	458	Clinical isolates, travel-associated clinical isolates, food-associated isolates, environmental (hospital sewage water) isolates, veterinary clinical (milk from cows suffering from mastitis) isolates	59,62,65,77,79,91–116
<i>Acinetobacter baumannii</i>	9	222	Clinical isolates	59,62,65,77,117–121
<i>Candida auris</i>	10	72	Clinical isolates, travel-associated clinical isolates, environmental isolates, food-associated isolates	14,79,122–129
<i>Serratia marcescens</i>	1	17	Clinical and hospital environmental isolates	130
<i>Klebsiella</i> spp (other than <i>K. pneumoniae</i>)	4	4	Clinical isolates, environmental isolates	80,81,131,132
<i>Enterobacter cloacae</i>	2	2	Clinical isolates, environmental isolates	133,134
<i>Morganella morganii</i>	1	1	Clinical isolates	135


187

188 **Table 1:** Number of studies and number of unique whole-genome sequences therein for the selected pathogenic
189 groups. The column 'Sample category' indicates whether the isolates were from patients from India (clinical) or
190 from patients with a travel history to India (travel-associated clinical) or from environmental/ food/ veterinary
191 samples collected in India.

192

193 **Number of whole-genome sequences for any selected pathogen vary widely across**
194 **different geo-climatic zones of India**

195

196

197 **Figure 2: Number of whole-genome sequences of selected pathogens from every geo-climatic zone of**
198 **India. A.** The geo-climatic distribution of the all the 1653 whole-genome sequences with known locations. Panels
199 **B-G** depict the distributions of number of isolates for individual pathogenic groups of *S. typhi*, *K. pneumoniae*, *E.*
200 *coli*, *A. baumannii*, *C. auris* and others respectively. The group 'others' includes the species that have very few
201 whole genome sequences, namely, *S. marcescens*, *K. quasipneumoniae*, *K. aerogenes*, *E. cloacae* and *M. morganii*.
202 Only the isolates with known location are included. The colour of each geo-climatic zone in every panel (A-G)
203 represents the range for the number of sequences as per the legend in the panel A. Exact number of sequences
204 and their locations for each pathogenic group are in the supplementary materials 2 and 6 as well as in
205 supplementary dataset. We used mapchart.net for the design and colour of the map, and mapsofindia.com as a
206 reference for determining the geo-climatic zones of India.

207

208 The 94 studies that we shortlisted provide WGS data and related information for a total of
209 2547 distinct isolates. With 960 isolates, *S. typhi* represents a majority (37.69%) of these
210 isolates (Figure 2). This is closely followed by the *Klebsiella* species which together form
211 31.99% of the isolates for which WGS data are available. For one of the *Klebsiella* species, *K.*

212 *pneumoniae*, 811 sequences (31.84% of total sequences in our study) are available (Figure
213 2). We also obtained sequence data for 458 *E. coli* isolates, 222 *A. baumannii* isolates and 72
214 *C. auris* isolates. We pooled the sequence data for 17 *S. marcescens* isolates, 2 *E. cloacae*
215 isolates and 1 isolate of *M. morganii*, 3 *K. quasipneumoniae* isolates and 1 *K. aerogenes*
216 isolate during our analysis, (category 'others' in Figure 2) due to very low numbers of
217 isolates from each group. Overall, these numbers show that the extent of whole-genome
218 sequencing is highly variable for different pathogenic groups. *S. typhi* and *K. pneumoniae*
219 are the most sequenced species among the selected pathogens, together comprising
220 69.53% of the total sequences. In contrast, we could not find even a single whole-genome
221 sequence from India for three priority species from *Enterobacteriales* - *P. rettgeri*, *P. mirabilis*
222 and *C. koseri*.

223
224 We found only one study with *S. marcescens* where 17 isolates from patients and hospital
225 environment had been sequenced.¹³⁰ Similarly, for *E. cloacae* we found only two studies that
226 reported the total of two whole genome sequences, while for *M. morganii* and *K. aerogenes*,
227 we found one study with a single sequence each.¹³²⁻¹³⁵

228 We also looked at the geographic distribution of the whole-genome sequences across the
229 six different geo-climatic zones of India (Figure 2). Out of the 2547 sequences, we could
230 locate the geo-climatic zones of 1653 sequences (64.90% of the sequences) based on the
231 information in the reported study or from the NCBI metadata associated with the genomic
232 sequence. The number of sequenced genomes were highly variable across different geo-
233 climatic zones for every selected pathogen (Figure 2). From the 1653 sequences with known
234 locations, 893 (i.e. 54.02%) sequences were from the Southern zone, indicating that almost
235 half the genomic sequences were from a single geo-climatic zone of India. Furthermore, out
236 of these 893 genomic sequences from the southern zone, 581 sequences (i.e. more than
237 65%) belonged to *S. typhi* and *K. pneumoniae* (330 and 251 sequences respectively). These
238 numbers indicate that the majority of the sequenced genomes from India were of two
239 pathogenic species isolated from a single geo-climatic region.

240
241 Out of the remaining 760 genomic sequences from other geo-climatic zones, 362 were from
242 the northern, 308 from western, 50 from eastern, 30 from central and only 10 were from the
243 northeastern regions of India (Supplementary materials 2 and 6 and supplementary dataset).
244 Formal statistical analysis validated our observation of large variation in the number of

245 available whole-genome sequences across different geo-climatic zones for all the selected

246 pathogens combined (Pearson's chi square test for homogeneity, $\chi^2 = 502.25$, $df = 25$,

247 $p < 2.2 \times 10^{-16}$). There is no evidence to indicate that the variation in extent of genomic

248 sequencing reflects the population numbers or the disease burden in the respective geo-

249 climatic zone.

250

251 The disparity in number of sequences is most likely the reflection of the disparity in the

252 number of studies that report genomic sequences from each zone. There were only 2

253 studies which report genomic sequences from the northeastern zone as opposed to 43

254 studies that report WGS data from the southern zone. Similarly, we found only 2 studies

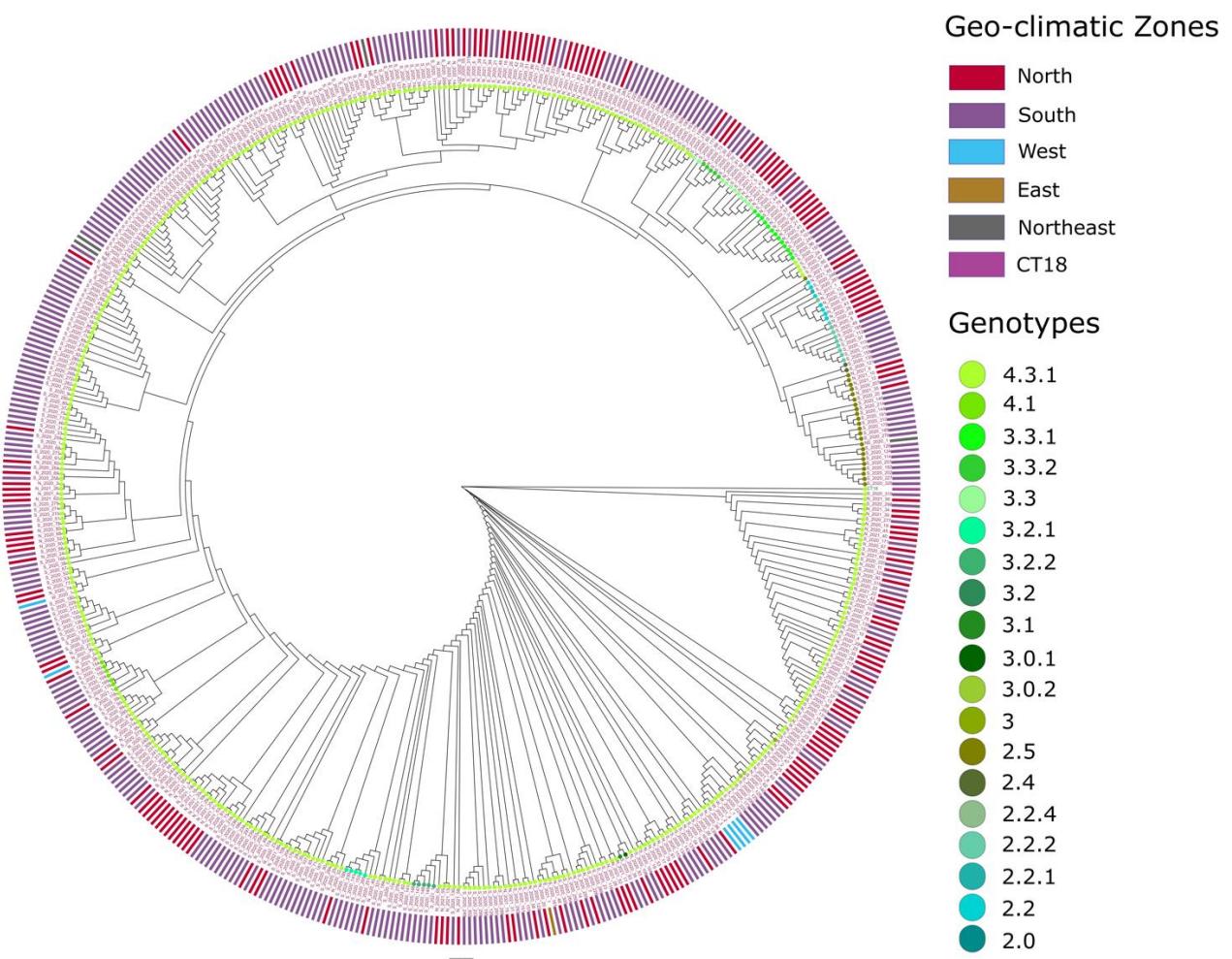
255 from the central zone of India and both reported genomic sequences of *K. pneumoniae*.

256 These numbers along with the other observations from our literature search suggest that

257 often a particular research group focuses on a specific pathogen. A string of studies

258 reporting WGS data of that pathogen then follows. Sequenced pathogenic isolates then

259 typically belong to the same geo-climatic zone and often collected from the same locality.


260

261 In sum, genomic sequencing of pathogenic species is patchy in India and the current
262 sequencing effort is focused on only a couple of pathogens mostly isolated from a couple
263 of geo-climatic zones.

264 Sequences of *S. typhi* from different geo-climatic zones of India do not form

265 phylogenetically distinct clusters

266

267

268 **Figure 3: Phylogenetic analysis of *S. typhi* isolates.** The geo-climatic zone wise distribution (outer circle) along
269 with the genotype distribution (dots at end of leaf tip) and phylogenetic clustering of the 503 *S. typhi* isolates.
270 The genotyping was done using Genotyphi v2, the phylogenetic tree was built using PhaMe v1.0.2, and
271 visualization was created using Iroki. The name of the isolate indicates its geo-climatic zone and the year of
272 study. Similar genotypes predominantly cluster together but not as per the geo-climatic zone of isolation (outer
273 circle).

274

275 Our literature review highlights that whole-genome sequencing of AMR pathogens in India
276 needs to extend to all priority pathogens and cover more geo-climatic zones. But how
277 different are the genomic sequences of isolates from different geo-climatic zones? The
278 literature is equivocal on the sequence-level differences amongst isolates from different
279 geo-climatic conditions with majority of the studies using geographic regions as a proxy for
280 geo-climatic differences.^{47,48,136} Moreover, these studies tend to look at larger geo-climatic
281 differences, often considering data across different countries and continents. Some studies
282 suggest that different geographic regions may harbour genetically distant pathogens^{47,48,136}
283 while others show genetic homogeneity in isolates from different geographic regions.¹³⁶
284 Understandably, conclusions also vary for different pathogenic species.¹³⁶ But little is known
285 about the diversity of whole-genome sequences across different geo-climatic zones within a
286 single country, like India.

287
288 To check whether the isolates from different geo-climatic zones of India form distinct
289 sequence clusters we resorted to phylogenetic analysis of the available sequences. We chose
290 the two priority pathogenic species, *S. typhi* and *K. pneumoniae*, which had isolates
291 sequenced from most of the geo-climatic zones. Phylogenetic analysis of the 503 genomic

292 sequences of *S. typhi* showed that the genomic sequences of isolates from the same geo-

293 climatic zone do not cluster together (Figure 3). The conclusion is also supported by the

294 phylogenetic analysis of 231 genomic sequences of *K. pneumoniae* (Supplementary material

295 3).

296

297 One possible reason for such homogeneity could be the spread of pathogens due to human

298 dispersal across geo-climatic zones. The other reason could be the spread through

299 environmental factors such as soil or water as well as food items. Therefore, we next

300 checked for evidence for both these possibilities in the literature.

301 **Genomic sequencing of the pathogens from travel-associated infections is not common**

302 **in India**

303 Infected individuals traveling from one location to another can spread resistant strains of

304 pathogens and tracking this movement is important to understand the spread of AMR.^{137–}

305 ¹³⁹ Most of the travel-related studies have a few limitations though. First, it is difficult to

306 track the movement within the country, though some novel approaches may allow this.^{140–}

307 ¹⁴² Second, majority of the travel-related studies do not take into account the acquisition of

308 a pathogen prior to or during the travel.⁹⁴ This may lead to incorrect identification of the

309 source of infection as the travel destination. Third, most of these studies consider only

310 symptomatic cases of the disease and asymptomatic carriers might be easily

311 overlooked.^{47,48,52,79,94,115,123} Despite these limitations however, routine sequencing of isolates

312 from the infected travellers can give a better picture of disease dispersal.^{94,115}

313

314 Unfortunately, we found only one study that sequenced the genome of a pathogen

315 possibly acquired during the travel between two geo-climatic zones of India.⁴⁴ The patient,

316 resident of the eastern zone, had a history of travel to the northern zone, but no clear link

317 between the infection and travel could be established in the study. We found another

318 handful of studies that sequenced isolates from the travellers that were visiting India/South
319 Asia (Table 1 and Supplementary material 4). These studies identified the strain of the
320 pathogen and established an association between the strain and specific geographic region.
321 For example, Ingle et al. observed that *S. typhi* sub-lineage 4.3.1.2. was mainly associated
322 with travellers returning from India and carried mutations in the quinolone resistance-
323 determining genomic regions.^{47,48} Similarly, Yaita et al. studied the acquisition of ESBL-
324 producing *E. coli* by travellers returning to Japan. The study found that the majority of the
325 people returning from India (10 out of 14) tested positive for ESBL-producing *E. coli*.⁹⁴ Yet
326 another study found that an individual returning to Switzerland from India was colonised
327 with a carbapenamase-producing *E. coli* harbouring a blaOXA-484, a variant of
328 carbapenemase new to Switzerland.¹¹⁵
329
330 These examples illustrate the effective tracking of the resistance spread from India to other
331 countries. We did not find similar studies for individuals returning to India from other
332 regions of the world or for individuals traveling across different geo-climatic zones of
333 India. These observations demand increased genomic sequencing of pathogens isolated
334 from travellers to better understand the resistance dynamics within the country.

335 **Whole-genome sequencing of AMR isolates from food and environment is limited in**

336 **India**

337 We next looked for the genomic sequences of priority pathogens isolated from

338 environmental and food samples. AMR studies from all over the world have reported

339 widespread presence of resistance genes in water, soil as well as in food items.^{143–145} This

340 'One health' approach of study underlines the importance of tracking resistance across

341 abiotic environments alongside the clinics.³⁰ We thus looked for studies that reported

342 whole-genome sequences of priority pathogens isolated from environments or food items.

343

344 Our search uncovered 3 such studies of environmental samples from India. It was striking

345 that even such handful of studies (Supplementary material 5) reported isolates that harbour

346 antibiotic resistant markers.^{124,132,134} For example, an isolate of *K. aerogenes* from agricultural

347 soil was found to contain ~30 AMR genes.¹³² Another sequencing study demonstrated that

348 23 (out of 24) *C. auris* isolates from marshy wetlands and sandy beach areas of Andaman

349 and Nicobar Islands were resistant to a variety of antifungals.¹²⁴

350 We also found 5 studies from India that reported sequences of AMR pathogens isolated

351 from food sources (Supplementary material 5).^{93,101,104,109,122} For instance, a study reported

352 resistance patterns in the yeast species found on the surface of apples.¹²² Authors found
353 that 73% of the total isolates belonged to *Candida spp.* and 11% of those isolates were of
354 the priority species *C. auris*. Alarmingly, most of these isolates (15 out of 16) had heightened
355 resistance against fluconazole.¹²² Similarly, multiple sequencing studies found ESBL
356 producing *E. coli* from poultry samples and one group demonstrated that 78.5% of their
357 poultry isolates were multi-drug resistant.^{101,104} Another sequencing study from the
358 Banaskantha district of Gujarat reported that 90% of their samples procured from ~30
359 different farms contained *E. coli*. Nearly 80% of these *E. coli* were ESBL producers.¹⁰⁹ There
360 were also a few studies reporting drug-resistant *E. coli* from bovine mastitis raising a
361 concern of pathogens getting into the milk and milk products.^{111,113,114}
362 Overall the results indicate a high prevalence of AMR priority pathogens in the
363 environments and food items but extensive and systematic sequencing studies are needed
364 to obtain a truly comprehensive picture.

365 **Discussion**

366 Our literature search revealed that whole-genome sequencing of AMR priority pathogens

367 from India is patchy, both in terms of species that were sequenced and geo-climatic zones

368 where the pathogens were isolated. For three of the priority pathogens *Citrobacter koseri*,

369 *Proteus mirabilis*, *Providencia rettgeri* we did not find even a single genomic sequence

370 reported from India. Recent evidence suggests that all the three species are clinically

371 important.^{146–152} For example, multi-drug and pan-drug resistant varieties of *P. rettgeri*

372 caused nosocomial infections in India.¹⁴⁸ Similarly, a longitudinal study from a tertiary

373 healthcare centre in western India reported *C. koseri* with beta-lactam and carbapenem

374 resistance over a period of 3 years.¹⁴⁹ Another study found a nosocomial NICU outbreak of

375 multi-drug resistant *P. mirabilis* that resulted in 80% mortality.¹⁵⁰ Yet another study found

376 ESBL positive *P. mirabilis* in food and livestock samples.¹⁵³ Apart from these three pathogens

377 that lack any WGS data from India, we also found other important pathogenic groups that

378 were severely underrepresented. For instance, carbapenem-resistant *Acinetobacter* is a

379 serious threat and leading cause of nosocomial infections in India²⁹ and yet we found only

380 222 whole-genome sequences of *Acinetobacter baumannii* from the whole country.

381

382 We performed phylogenetic analyses on the sequence data of two highly-sequenced priority
383 pathogens *S. typhi* and *K. pneumoniae*. Results showed that genomic sequences of isolates
384 from different geo-climatic zones do not form distinct clusters (Fig 3, Supplementary
385 material 3). In the absence of evidence for distinct sequence diversity across different geo-
386 climatic zones, it might be beneficial to prioritize the sequencing of diverse pathogenic
387 species over the increased coverage of already-sequenced species across different geo-
388 climatic zones of India. However, there are some limitations of the datasets that we used for
389 our phylogenetic analysis, as discussed below.

390
391 Our conclusions are drawn from the limited sequence data that are available from India. The
392 sequences used in the phylogenetic analysis were collected over a period of nine years.
393 Insufficient data for individual years prevented us from performing the analysis separately
394 for each year. Additionally, in many cases there was no clear indication of the month and
395 year of isolation. Adding this information to the phylogenetic analysis may change the
396 inferences drawn. It is reasonable to assume that a particular resistant variant of a pathogen
397 is not likely to arise (or arrive, with an infected individual/food item/environmental agent) in
398 multiple geo-climatic zones at the same time. But how rapidly any resistant variant spreads

399 can be dependent on several factors such as mode of transmission, fitness advantage over
400 the prevalent variants and climatic conditions. Certain resistant variants of any pathogen
401 might already be widespread across all geo-climatic zones. Systematic and continued
402 genome sequencing across all geo-climatic zones is needed to resolve these possibilities for
403 every priority pathogen. It will also help to have a clearer indication of time of isolation and
404 geo-climatic zone for all the reported sequences. For example, from the existing literature,
405 we could not find the geo-climatic zone for 449 sequences of *S. typhi* and adding this
406 information may change the inferences of the phylogenetic analysis.

407
408 We also note that for the phylogenetic analyses we used two gram-negative enteric
409 pathogens, *S. typhi* (Figure 3) and *K. pneumoniae* (Supplementary material 3). Genomic
410 sequences of other non-enteric or gram-positive pathogenic species may cluster according
411 to the geo-climatic zones. It is also known that the ratio of core to accessory (or
412 dispensable) genes varies across different pathogenic species.¹⁵⁴ Such variation can affect
413 the conclusions drawn from phylogenetic and MLST analysis.¹⁵⁵ The predominant nature of
414 the infections, nosocomial vs community-based, may also affect the spread across geo-

415 climatic zones. For instance, *Acinetobacter baumannii* is primarily a nosocomial

416 pathogen^{156,157} and specific strains may dominate species geo-climatic regions.

417

418 At the time of our literature search, only two geo-climatic zones had reasonable

419 representation for *S. typhi* (330 and 170 sequences each from Southern and Northern zones)

420 while remaining zones of West, Northeast, East had reported 6, 4 and 1 genomic sequence

421 respectively. But genomic sequences from even Southern and Northern zones did not

422 cluster separately. A possible reason for this could be that most of the reported genomic

423 sequences (408 out of 503) belonged to the *S. typhi* lineage 4.3.1, suggesting one dominant

424 infectious strain throughout the country. This may not be the case with other important

425 pathogens and may lead to different observations. However, another study⁸⁵, as well as our

426 own analysis with *K. pneumoniae* (Supplementary material 3) genomes, demonstrates lack of

427 distinct clusters for genomic sequences from different geo-climatic regions.

428

429 We reasoned that homogeneity in genomic sequences across different geo-climatic zones

430 might be due to the spread of infectious pathogens/resistance genes through human

431 travellers or food items or other environments. Documentation and sequencing of such

432 instances is important as it can allow effective mapping of the isolates' ancestry and help
433 understand their dispersal patterns. Sequencing the isolates from infected travellers can also
434 uncover the original incidences of certain infections. For example, a recent study discovered
435 that the first incidence of *C. auris* infection was a 54-year-old male travelling to India in
436 2007, which was two years before the supposed first case of *C. auris* infection was reported
437 from Japan.¹²³ This discovery has altered the timeline of emergence of *C. auris* infections.
438 Our literature search revealed very few studies with genomic sequences of pathogens from
439 travel-related infections. Majority of the studies were travellers who acquired the infection in
440 India and travelled abroad. There were almost no studies reporting sequences of pathogens
441 acquired during the incoming travel to India or more importantly, travel within the country.
442 This observation underlines the necessity of tracking travellers for possible infections and
443 extending these investigations to include whole-genome sequencing of the pathogen.

444
445 Whole-genome sequences of isolates from soil, water, other environments and foods were
446 also modest in number. Alarmingly, even these few reports uncovered important resistance
447 markers. For example, we found studies that reported colistin-resistant pathogens from food
448 samples. Colistin is one of the final-resort antibiotics and the presence of colistin resistant

449 *Enterobacteriaceae* (group3 pathogens as per ICMR)²⁹ in food items is concerning. Colistin-
450 resistant *Enterobacteriaceae* (like *Klebsiella*, *Enterobacter*, *Citrobacter*, *E. coli*) and
451 *Pseudomonas* were found in a range of food samples collected from shops and households
452 ⁹³. Moreover, few of these isolates contained the *mcr-1* gene which is responsible for
453 plasmid-mediated spread of colistin resistance. Extrinsic resistance elements, such as
454 plasmids, can spread the resistance rapidly across pathogens.¹⁵⁸ Our
455 results underline the need for comprehensive 'One health' approach in WGS studies with
456 extensive sequencing of isolates from environments.

457 **Conclusion**

458 Our review collates the studies that sequence the genomes of priority AMR pathogens from
459 India. We find that many priority pathogens are not routinely sequenced in India while some
460 have not been sequenced at all. Additionally, most genomic sequences are available from
461 only a couple of geo-climatic zones. With the limited sequence data that is available, we
462 infer that genomic sequence diversity is homogeneous across the geo-climatic zones. To
463 assert or refute this conclusion however, we need systematic genomic sequencing for a few
464 more priority pathogens across all geo-climatic zones. This task is resource-intensive and
465 implementation may take a few years at least. While such comprehensive sequencing data is
466 being generated across the country we need to urgently begin sequencing diverse priority
467 pathogens such as *A. baumannii*, *C. koseri*, *P. mirabilis* and *P. rettgeri*. This should be
468 accompanied by genomic sequencing of isolates from travel-related infections and
469 environment. Our recommendations can be valuable for other low and middle-income
470 countries with diverse geo-climatic conditions, high prevalence of AMR and limited
471 resources.

472

473 **Acknowledgements**

474 This project has received funding from the Rockefeller Foundation, Mphasis M1 Foundation
475 and Axis Bank. We thank Dr. Srikrishna Subramanian for insightful discussions and Dr.
476 Magdalena San Roman as well as Dr. Abhishek Mishra for comments on the manuscript
477 draft. We also thank Dr. Punit Kaur and Dr. Mohit Bhatia for providing sample accession
478 numbers and metadata on request. We thank Centre for Bioinformatics & Computational
479 Biology supported by Department of Biotechnology, for providing computing resources for
480 running the programs/scripts for phylogenetic analysis.

481 **Author contributions**

482 S.K and N.G. conceptualised the study. N.G. carried out the literature review and data
483 screening. N.G and S.K were involved in the analysis, wrote and edited the paper. J.J
484 performed the phylogenetic analysis and commented on the draft of the manuscript. R.K
485 helped with the statistical analysis and phylogenetic analysis and commented on the draft of
486 the manuscript.

487

488 **Conflict of interests**

489 The authors declare no conflict of interests.

490 **References**

491 1. World Health Organization. Antimicrobial resistance. <https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance>. Accessed September 14, 2022.

492 2. Murray CJ, Ikuta KS, Sharara F *et al*. Global burden of bacterial antimicrobial resistance in 493 2019: a systematic analysis. *The Lancet* 2022; **399**: 629–55.

494 3. Klein EY, Tseng KK, Pant S *et al*. Tracking global trends in the effectiveness of antibiotic therapy 495 using the Drug Resistance Index. *BMJ Glob Health* 2019; **4**: e001315.

496 4. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016.

497 5. Pokharel S, Raut S, Adhikari B. Tackling antimicrobial resistance in low-income and middle- 498 income countries. *BMJ Glob Health* 2019; **4**: e002104.

499 6. Dixit A, Kumar N, Kumar S *et al*. Antimicrobial Resistance: Progress in the Decade since 500 Emergence of New Delhi Metallo-β-Lactamase in India. *Indian J Community Med* 2019; **44**: 4.

501 7. The Center for Disease Dynamics, Economics & Policy. ResistanceMap: Drug Resistance Index. 502 2018. <https://resistancemap.onehealthtrust.org/DRI.php>. Accessed August 24, 2023.

503 8. Gomez-Simmonds A, Annavajhala MK, McConville TH *et al*. Carbapenemase-producing 504 Enterobacteriales causing secondary infections during the COVID-19 crisis at a New York City 505 hospital. *J Antimicrob Chemother* 2021; **76**: 380–4.

506 9. Teo JQ-M, Lim JC, Tang CY *et al*. Ceftolozane/Tazobactam Resistance and Mechanisms in 507 Carbapenem-Nonsusceptible *Pseudomonas aeruginosa*. *mSphere* 2021; **6**: e01026-20.

508 10. Cuypers WL, Jacobs J, Wong V *et al*. Fluoroquinolone resistance in *Salmonella*: Insights by 509 whole genome sequencing. *Microb Genom* 2018; **4**: e000195.

511 11. Sabat AJ, Budimir A, Nashev D *et al.* Overview of molecular typing methods for outbreak
512 detection and epidemiological surveillance. *Eurosurveillance* 2013; **18**: 20380.

513 12. Genilloud O. Natural products discovery and potential for new antibiotics. *Curr Opin*
514 *Microbiol* 2019; **51**: 81–7.

515 13. Su M, Satola SW, Read TD. Genome-based prediction of bacterial antibiotic resistance. *J Clin*
516 *Microbiol* 2019; **57**: e01405-18.

517 14. Chow NA, Muñoz JF, Gade L *et al.* Tracing the evolutionary history and global expansion of
518 *candida auris* using population genomic analyses. *MBio* 2020; **11**: 10.1128/mbio.03364-19.

519 15. Dong Y, Zhang F, Wang B *et al.* Laboratory Evolution Assays and Whole-Genome Sequencing
520 for the Development and Safety Evaluation of *Lactobacillus plantarum* With Stable Resistance to
521 Gentamicin. *Front Microbiol* 2019; **10**: 1235.

522 16. Miragaia M. Factors Contributing to the Evolution of *mecA*-Mediated β -lactam Resistance in
523 Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). *Front*
524 *Microbiol* 2018; **9**: 2723.

525 17. Zhang F, Gao J, Wang B *et al.* Whole-genome sequencing reveals the mechanisms for
526 evolution of streptomycin resistance in *Lactobacillus plantarum*. *J Dairy Sci* 2018; **101**: 2867–74.

527 18. Aljeldah MM. Antimicrobial Resistance and Its Spread Is a Global Threat. *Antibiotics*, 2022;
528 **11**: 1082.

529 19. Boolchandani M, D’Souza AW, Dantas G. Sequencing-based methods and resources to study
530 antimicrobial resistance. *Nat Rev Genet* 2019; **20**: 356–70.

531 20. Ellington MJ, Ekelund O, Aarestrup FM *et al.* The role of whole genome sequencing in
532 antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. *Clinical*
533 *Microbiology and Infection* 2017; **23**: 2–22.

534 21. Papp M, Solymosi N. Review and Comparison of Antimicrobial Resistance Gene Databases.
535 *Antibiotics* 2; **11**: 339.

536 22. van Camp PJ, Haslam DB, Porollo A. Bioinformatics approaches to the understanding of
537 molecular mechanisms in antimicrobial resistance. *Int J Mol Sci* 2020; **21**: 1363.

538 23. Cao MD, Ganesamoorthy D, Elliott AG *et al.* Streaming algorithms for identification of
539 pathogens and antibiotic resistance potential from real-time MinION^(TM) sequencing.
540 *Gigascience* 2016; **5**: 32.

541 24. Chatterjee A, Nilgiriwala K, Saranath D *et al.* Whole genome sequencing of clinical strains of
542 *Mycobacterium tuberculosis* from Mumbai, India: A potential tool for determining drug-
543 resistance and strain lineage. *Tuberculosis* 2017; **107**: 63–72.

544 25. Soundararajan L, Kambli P, Priyadarshini S *et al.* Whole genome enrichment approach for
545 rapid detection of *Mycobacterium tuberculosis* and drug resistance-associated mutations from
546 direct sputum sequencing. *Tuberculosis* 2020; **121**: 101915.

547 26. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY *et al.* Accurate
548 differentiation of *Escherichia coli* and *Shigella* serogroups: challenges and strategies. *New*
549 *Microbes New Infect* 2018; **21**: 58–62.

550 27. NIHR Global Health Research Unit on Genomic Surveillance of AMR. Whole-genome
551 sequencing as part of national and international surveillance programmes for antimicrobial
552 resistance: a roadmap. *BMJ Glob Health* 2020; **5**: e002244.

553 28. Olson RD, Assaf R, Brettin T *et al.* Introducing the Bacterial and Viral Bioinformatics Resource
554 Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. *Nucleic Acids Res* 2023; **51**: D678–
555 89.

556 29. ICMR. *Antimicrobial Resistance Research and Surveillance Network Annual Report*. 2020.

557 30. McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. *Microbiol
558 Spectr* 2018; **6**: 10.1128/microbiolspec.ARBA-0009-2017.

559 31. Page MJ, McKenzie JE, Bossuyt PM *et al.* The PRISMA 2020 statement: an updated guideline
560 for reporting systematic reviews. *BMJ* 2021; **372**: n71.

561 32. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010.
562 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

563 33. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
564 *Bioinformatics* 2014; **30**: 2114–20.

565 34. Shakya M, Ahmed SA, Davenport KW *et al.* Standardized phylogenetic and molecular
566 evolutionary analysis applied to species across the microbial tree of life. *Sci Rep* 2020; **10**: 1723.

567 35. Parkhill J, Dougan G, James KD *et al.* Complete genome sequence of a multiple drug
568 resistant *Salmonella enterica* serovar Typhi CT18. *Nature* 2001; **413**: 848–52.

569 36. Alokam S, Liu S-L, Said K *et al.* Inversions over the terminus region in *Salmonella* and
570 *Escherichia coli*: IS200s as the sites of homologous recombination inverting the chromosome of
571 *Salmonella enterica* serovar typhi. *J Bacteriol* 2002; **184**: 6190–7.

572 37. Deng W, Liou S-R, Plunkett G 3rd *et al.* Comparative genomics of *Salmonella enterica* serovar
573 Typhi strains Ty2 and CT18. *J Bacteriol* 2003; **185**: 2330–7.

574 38. Thomson N, Baker S, Pickard D *et al.* The role of prophage-like elements in the diversity of

575 *Salmonella enterica* serovars. *J Mol Biol* 2004; **339**: 279–300.

576 39. Prjibelski A, Antipov D, Meleshko D *et al.* Using SPAdes De Novo Assembler. *Curr Protoc*

577 *Bioinformatics* 2020; **70**: e102.

578 40. Dyson ZA, Holt KE. Five Years of GenoTyphi: Updates to the Global *Salmonella Typhi*

579 Genotyping Framework. *J Infect Dis* 2021; **224**: S775–80.

580 41. Lam MMC, Wick RR, Watts SC *et al.* A genomic surveillance framework and genotyping tool

581 for *Klebsiella pneumoniae* and its related species complex. *Nat Commun* 2021; **12**: 4188.

582 42. Moore RM, Harrison AO, McAllister SM *et al.* Iroki: automatic customization and

583 visualization of phylogenetic trees. *PeerJ* 2020; **8**: e8584.

584 43. Rodrigues C, Kapil A, Sharma A *et al.* Whole-Genome Shotgun Sequencing of Cephalosporin-

585 Resistant *Salmonella enterica* Serovar Typhi. *Genome Announc* 2017; **5**: e01639-16.

586 44. Samajpati S, Pragasam AK, Mandal S *et al.* Emergence of ceftriaxone resistant *Salmonella*

587 *enterica* serovar Typhi in Eastern India. *Infection, Genetics and Evolution* 2021; **96**: 105093.

588 45. Carey ME, Jain R, Yousuf M *et al.* Spontaneous Emergence of Azithromycin Resistance in

589 Independent Lineages of *Salmonella Typhi* in Northern India. *Clinical Infectious Diseases* 2021;

590 **72**: E120–7.

591 46. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Shankar BA *et al.* Draft genome

592 sequence of blaTEM-1-mediated cephalosporin-resistant *Salmonella enterica* serovar Typhi

593 from bloodstream infection. *J Glob Antimicrob Resist* 2016; **7**: 11–2.

594 47. Ingle DJ, Andersson P, Valcanis M *et al.* Genomic epidemiology and antimicrobial resistance
595 mechanisms of imported typhoid in Australia. *Antimicrob Agents Chemother* 2021; **65**:
596 e0120021.

597 48. Ingle DJ, Nair S, Hartman H *et al.* Informal genomic surveillance of regional distribution of
598 *Salmonella Typhi* genotypes and antimicrobial resistance via returning travellers. 2019; **13**:
599 e0007620.

600 49. Sah R, Donovan S, Seth-Smith HMB *et al.* A Novel Lineage of Ceftriaxone-resistant
601 *Salmonella Typhi* From India That Is Closely Related to XDR *S. Typhi* Found in Pakistan. *Clinical*
602 *Infectious Diseases* 2020; **71**: 1327–30.

603 50. Katiyar A, Sharma P, Dahiya S *et al.* Genomic profiling of antimicrobial resistance genes in
604 clinical isolates of *Salmonella Typhi* from patients infected with Typhoid fever in India. *Sci Rep*
605 2020; **10**: 8299.

606 51. Pragasam AK, Pickard D, Wong V *et al.* Phylogenetic Analysis Indicates a Longer Term
607 Presence of the Globally Distributed H58 Haplotype of *Salmonella Typhi* in Southern India.
608 *Clinical Infectious Diseases* 2020; **71**: 1856–63.

609 52. Shin E, Park J, Jeong HJ *et al.* Emerging high-level ciprofloxacin-resistant *Salmonella enterica*
610 serovar *typhi* haplotype H58 in travelers returning to the Republic of Korea from India. *PLoS*
611 *Negl Trop Dis* 2021; **15**: e0009170.

612 53. Britto CD, Dyson ZA, Mathias S *et al.* Persistent circulation of a fluoroquinolone-resistant
613 *Salmonella enterica* *Typhi* clone in the Indian subcontinent. *Journal of Antimicrobial*
614 *Chemotherapy* 2020; **75**: 337–41.

615 54. Tanmoy AM, Saha C, Sajib MSI *et al.* CRISPR-Cas Diversity in Clinical *Salmonella enterica*
616 Serovar Typhi Isolates from South Asian Countries. *Genes* 2020; **11**: 1365.

617 55. Wong VK, Baker S, Pickard DJ *et al.* Phylogeographical analysis of the dominant multidrug-
618 resistant H58 clade of *Salmonella Typhi* identifies inter- and intracontinental transmission
619 events. *Nat Genet* 2015; **47**: 632–9.

620 56. Jacob JJ, Pragasam AK, Vasudevan K *et al.* *Salmonella Typhi* acquires diverse plasmids from
621 other Enterobacteriaceae to develop cephalosporin resistance. *Genomics* 2021; **113**: 2171–6.

622 57. Shankar C, Basu S, Lal B *et al.* Aerobactin Seems To Be a Promising Marker Compared With
623 Unstable RmpA2 for the Identification of Hypervirulent Carbapenem-Resistant *Klebsiella*
624 *pneumoniae*: In Silico and In Vitro Evidence. *Front Cell Infect Microbiol* 2021; **11**: 709681.

625 58. Bir R, Gautam H, Arif N *et al.* Analysis of colistin resistance in carbapenem-resistant
626 Enterobacterales and XDR *Klebsiella pneumoniae*. *Ther Adv Infect Dis* 2022; **9**:
627 20499361221080650.

628 59. Sands K, Carvalho MJ, Portal E *et al.* Characterization of antimicrobial-resistant Gram-
629 negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. *Nat*
630 *Microbiol* 2021; **6**: 512–23.

631 60. Shankar C, Jacob JJ, Sugumar SG *et al.* Distinctive Mobile Genetic Elements Observed in the
632 Clonal Expansion of Carbapenem-Resistant *Klebsiella pneumoniae* in India. *Microbial Drug*
633 *Resistance* 2021; **27**: 1096–104.

634 61. Shankar C, Kumar S, Venkatesan M *et al.* Emergence of ST147 *Klebsiella pneumoniae*
635 carrying blaNDM-7 on IncA/C2 with ompK35 and ompK36 mutations in India. *J Infect Public*
636 *Health* 2019; **12**: 741–3.

637 62. Pragasam AK, Jennifer S, Solaimalai D *et al.* Expected plazomicin susceptibility in India based
638 on the prevailing aminoglycoside resistance mechanisms in Gram-negative organisms derived
639 from whole-genome sequencing. *Indian J Med Microbiol* 2020; **38**: 313–8.

640 63. Mathur P, Veeraraghavan B, Devanga Ragupathi NK *et al.* First Report on a Cluster of Colistin-
641 Resistant Klebsiella pneumoniae Strains Isolated from a Tertiary Care Center in India: Whole-
642 Genome Shotgun Sequencing. *Genome Announc* 2017; **5**: e01466-16.

643 64. Paul M, Narendrakumar L, Vasanthakumary AR, Joseph I *et al.* Genome sequence of a
644 multidrug-resistant Klebsiella pneumoniae ST78 with high colistin resistance isolated from a
645 patient in India. *J Glob Antimicrob Resist* 2019; **17**: 187–8.

646 65. Kumari N, Kumar M, Katiyar A *et al.* Genome-wide identification of carbapenem-resistant
647 Gram-negative bacterial (CR-GNB) isolates retrieved from hospitalized patients in Bihar, India.
648 *Sci Rep* 2022; **12**: 8477.

649 66. Dey S, Gaur M, Sahoo RK *et al.* Genomic characterization of XDR Klebsiella pneumoniae
650 ST147 co-resistant to carbapenem and colistin – The first report in India. *J Glob Antimicrob
651 Resist* 2020; **22**: 54–6.

652 67. Rodrigues C, Desai S, Passet V *et al.* Genomic evolution of the globally disseminated
653 multidrug-resistant Klebsiella pneumoniae clonal group 147. *Microb Genom* 2022; **8**: 000737.

654 68. Nagaraj G, Shamanna V, Govindan V *et al.* High-Resolution Genomic Profiling of
655 Carbapenem-Resistant Klebsiella pneumoniae Isolates: A Multicentric Retrospective Indian
656 Study. *Clinical Infectious Diseases* 2021; **73**: S300–7.

657 69. Shankar C, Vasudevan K, Jacob JJ *et al.* Hybrid Plasmids Encoding Antimicrobial Resistance
658 and Virulence Traits Among Hypervirulent *Klebsiella pneumoniae* ST2096 in India. *Front Cell*
659 *Infect Microbiol* 2022; **12**: 875116.

660 70. Shankar C, Shankar BA, Manesh A *et al.* KPC-2 producing ST101 *Klebsiella pneumoniae* from
661 bloodstream infection in India. *J Med Microbiol* 2018; **67**: 927–30.

662 71. Naha S, Sands K, Mukherjee S *et al.* KPC-2-producing *Klebsiella pneumoniae* ST147 in a
663 neonatal unit: Clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC
664 pump. *Int J Antimicrob Agents* 2020; **55**: 105903.

665 72. Bhatia M, Shamanna V, Nagaraj G *et al.* Molecular characterisation of carbapenem-resistant
666 *Klebsiella pneumoniae* clinical isolates: preliminary experience from a tertiary care teaching
667 hospital in the Himalayas. *Trans R Soc Trop Med Hyg* 2022; **116**: 655–62.

668 73. Pragasam AK, Shankar C, Veeraraghavan B *et al.* Molecular Mechanisms of Colistin
669 Resistance in *Klebsiella pneumoniae* Causing Bacteremia from India-A First Report. *Front*
670 *Microbiol* 2017; **7**: 2135.

671 74. Mathur P, Khurana S, De Man TJB *et al.* Multiple importations and transmission of colistin-
672 resistant *Klebsiella pneumoniae* in a hospital in northern India. *Infect Control Hosp Epidemiol*
673 2019; **40**: 1387–93.

674 75. Mathur P, Veeraraghavan B, Devanga Ragupathi NK *et al.* Multiple mutations in lipid-A
675 modification pathway & novel fosA variants in colistin-resistant *Klebsiella pneumoniae*. *Future*
676 *Sci OA* 2018; **4**: FSO319.

677 76. Naha S, Sands K, Mukherjee S *et al.* OXA-181-Like Carbapenemases in *Klebsiella pneumoniae*

678 ST14, ST15, ST23, ST48, and ST231 from Septicemic Neonates: Coexistence with NDM-5,

679 Resistome, Transmissibility, and Genome Diversity. *mSphere* 2021; **6**: e01156-20.

680 77. Ragupathi NKD, Bakthavatchalam YD, Mathur P *et al.* Plasmid profiles among some ESKAPE

681 pathogens in a tertiary care centre in south India. *Indian Journal of Medical Research* 2019; **149**:

682 222–31.

683 78. Shankar C, Mathur P, Venkatesan M *et al.* Rapidly disseminating blaOXA-232 carrying

684 *Klebsiella pneumoniae* belonging to ST231 in India: Multiple and varied mobile genetic

685 elements. *BMC Microbiol* 2019; **19**: 137.

686 79. Khan A, Shropshire WC, Hanson B *et al.* Simultaneous infection with Enterobacteriaceae and

687 *Pseudomonas aeruginosa* harboring multiple carbapenemases in a returning traveler colonized

688 with *candida auris*. *Antimicrob Agents Chemother* 2020; **64**: e01466-19.

689 80. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Triplicane Dwarakanathan H *et al.* The

690 Influence of Biofilms on Carbapenem Susceptibility and Patient Outcome in Device Associated K.

691 *pneumoniae* Infections: Insights Into Phenotype vs Genome-Wide Analysis and Correlation.

692 *Front Microbiol* 2020; **11**: 591679.

693 81. Shankar C, Veeraraghavan B, Nabarro LEB *et al.* Whole genome analysis of hypervirulent

694 *Klebsiella pneumoniae* isolates from community and hospital acquired bloodstream infection.

695 *BMC Microbiol* 2018; **18**: 1–9.

696 82. Manesh A, Shankar C, George MM *et al.* Clinical and Genomic Evolution of Carbapenem-

697 Resistant *Klebsiella pneumoniae* Bloodstream Infections over Two Time Periods at a Tertiary

698 Care Hospital in South India: A Prospective Cohort Study. *Infect Dis Ther* 2023; **12**: 1319–35.

699 83. Veeraraghavan B, Perumalla SK, Ragupathi NKD *et al.* Coexistence of Fosfomycin and Colistin
700 Resistance in *Klebsiella pneumoniae*: Whole-Genome Shotgun Sequencing. *Genome Announc*
701 2016; **4**: e01303-16.

702 84. Raj S, Sharma T, Pradhan D *et al.* Comparative Analysis of Clinical and Genomic
703 Characteristics of Hypervirulent *Klebsiella pneumoniae* from Hospital and Community Settings:
704 Experience from a Tertiary Healthcare Center in India. *Microbiol Spectr* 2022; **10**: e0037622.

705 85. Shukla S, Desai S, Bagchi A *et al.* Diversity and Distribution of β -Lactamase Genes Circulating
706 in Indian Isolates of Multidrug-Resistant *Klebsiella pneumoniae*. *Antibiotics* 2023; **12**: 449.

707 86. Bir R, Mohapatra S, Kumar A *et al.* Genomic analysis of Fosfomycin resistance in multi-drug
708 resistant uropathogens and comparison of in-vitro susceptibility methods uropathogens. *Iran J*
709 *Microbiol* 2022; **14**: 636–44.

710 87. Mukherjee S, Bhadury P, Mitra S *et al.* Hypervirulent *Klebsiella pneumoniae* Causing
711 Neonatal Bloodstream Infections: Emergence of NDM-1-Producing Hypervirulent ST11-K2 and
712 ST15-K54 Strains Possessing pLVPK-Associated Markers. *Microbiol Spectr* 2023; **11**: e0412122.

713 88. Naha S, Sands K, Mukherjee S *et al.* A 12 year experience of colistin resistance in *Klebsiella*
714 *pneumoniae* causing neonatal sepsis: two-component systems, efflux pumps,
715 lipopolysaccharide modification and comparative phylogenomics. *J Antimicrob Chemother* 2022;
716 **77**: 1586–91.

717 89. Bean DC, Agarwal A, Cherian BP *et al.* Hypermucoviscous polymyxin-resistant *Klebsiella*
718 *pneumoniae* from Kolkata, India: Genomic and phenotypic analysis. *J Glob Antimicrob Resist*
719 2019; **17**: 1–2.

720 90. Rafiq Z, Sam N, Vaidyanathan R. Whole genome sequence of *Klebsiella pneumoniae* U25, a
721 hypermucoviscous, multidrug resistant, biofilm producing isolate from India. *Mem Inst Oswaldo
722 Cruz* 2016; **111**: 144–6.

723 91. Avershina E, Sharma P, Taxy AM *et al.* AMR-Diag: Neural network based genotype-to-
724 phenotype prediction of resistance towards β -lactams in *Escherichia coli* and *Klebsiella*
725 *pneumoniae*. *Comput Struct Biotechnol J* 2021; **19**: 1896–906.

726 92. Ranjan A, Shaik S, Nandanwar N *et al.* Comparative genomics of *Escherichia coli* isolated
727 from skin and soft tissue and other extraintestinal infections. *mBio* 2017; **8**: e01070-17.

728 93. Ghafur A, Shankar C, GnanaSoundari P *et al.* Detection of chromosomal and plasmid-
729 mediated mechanisms of colistin resistance in *Escherichia coli* and *Klebsiella pneumoniae* from
730 Indian food samples. *J Glob Antimicrob Resist* 2019; **16**: 48–52.

731 94. Yaita K, Aoki K, Suzuki T *et al.* Epidemiology of extended-spectrum β -lactamase producing
732 *Escherichia coli* in the stools of returning Japanese travelers, and the risk factors for
733 colonization. *PLoS One* 2014; **9**: e98000.

734 95. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Gajendiran R *et al.* First Indian report of
735 IncX3 plasmid carrying blaNDM-7 in *Escherichia coli* from bloodstream infection: potential for
736 rapid dissemination. *New Microbes New Infect* 2017; **17**: 65–8.

737 96. Ragupathi NKD, Veeraraghavan B, Sethuvel DPM *et al.* First Indian report on genome-wide
738 comparison of multidrug-resistant *Escherichia coli* from blood stream infections. *PLoS One*
739 2020; **15**: e0220428.

740 97. Ranjan A, Shaik S, Hussain A *et al.* Genomic and functional portrait of a highly virulent, CTX-
741 M-15-producing H30-Rx subclone of *Escherichia coli* sequence type 131. *Antimicrob Agents*
742 *Chemother* 2015; **59**: 6087–95.

743 98. Palani GS, Ghafur A, Krishnan P *et al.* Intestinal carriage of colistin resistant
744 Enterobacteriaceae in hospitalized patients from an Indian center. *Diagn Microbiol Infect Dis*
745 2020; **97**: 114998.

746 99. Ranjith K, SaiAbhilash CR, Sai Prashanthi G *et al.* Phylogenetic Grouping of Human Ocular
747 *Escherichia coli* Based on Whole-Genome Sequence Analysis. *Microorganisms* 2020; **8**: 422.

748 100. Sundaramoorthy NS, Suresh P, Selva Ganesan S *et al.* Restoring colistin sensitivity in
749 colistin-resistant *E. coli*: Combinatorial use of MarR inhibitor with efflux pump inhibitor. *Sci Rep*
750 2019; **9**: 19845.

751 101. Hussain A, Shaik S, Ranjan A *et al.* Risk of transmission of antimicrobial resistant
752 *Escherichia coli* from commercial broiler and free-range retail chicken in India. *Front Microbiol*
753 2017; **8**: 2120.

754 102. Karade S, Sen S, Shergill SPS *et al.* Whole genome sequence of colistin-resistant *Escherichia*
755 *coli* from western India. *Med J Armed Forces India* 2021; **77**: 297–301.

756 103. Beg AZ, Khan AU. Genome analyses of blaNDM-4 carrying ST 315 *Escherichia coli* isolate
757 from sewage water of one of the Indian hospitals. *Gut Pathog* 2018; **10**: 1–6.

758 104. Hussain A, Shaik S, Ranjan A *et al.* Genomic and Functional Characterization of Poultry
759 *Escherichia coli* From India Revealed Diverse Extended-Spectrum β -Lactamase-Producing
760 Lineages With Shared Virulence Profiles. *Front Microbiol* 2019; **10**: 2766.

761 105. Ramakrishnan V, Marialouis XA, Sankarasubramanian J *et al.* Whole Genomic analysis of a
762 clinical isolate of Uropathogenic Escherichia coli strain of Sequence Type - 101 carrying the drug
763 resistance NDM-7 in IncX3 plasmid. *Bioinformation* 2021; **17**: 126–31.

764 106. Shaik S, Ranjan A, Tiwari SK *et al.* Comparative genomic analysis of globally dominant
765 ST131 clone with other epidemiologically successful extraintestinal pathogenic Escherichia coli
766 (ExPEC) lineages. *mBio* 2017; **8**: e01596-17.

767 107. Devanga Ragupathi NK, Vasudevan K, Venkatesan M *et al.* First Indian report on B4/H24RxC
768 ST410 multidrug-resistant Escherichia coli from bloodstream infection harbouring blaOXA-181
769 and blaCTX-M-15. *J Glob Antimicrob Resist* 2020; **22**: 568–70.

770 108. Yadav M, Pundir S, Kumari R *et al.* Virulence gene mutations as a differentiator of clinical
771 phenotypes: insights from community-acquired uropathogenic Escherichia coli. *Microbiology*
772 (*United Kingdom*) 2022; **168**: 10.1099/mic.0.001161.

773 109. Patel MA, Pandey A, Patel AC *et al.* Whole genome sequencing and characteristics of
774 extended-spectrum beta-lactamase producing Escherichia coli isolated from poultry farms in
775 Banaskantha, India. *Front Microbiol* 2022; **13**: 996214.

776 110. Bhagwat SS, Hariharan P, Joshi PR *et al.* Activity of cefepime/zidebactam against MDR
777 Escherichia coli isolates harbouring a novel mechanism of resistance based on four-amino-acid
778 inserts in PBP3. *J Antimicrob Chemother* 2020; **75**: 3563–7.

779 111. Chopra M, Bandyopadhyay S, Bhattacharyya D *et al.* Complete genome sequence and
780 comparative analysis of antibiotic resistance plasmids in carbapenem-resistant Escherichia coli
781 from bovine mastitis. *Indian J Biotechnol* 2021; **20**: 13–23.

782 112. Suresh A, Shaik S, Baddam R *et al.* Evolutionary Dynamics Based on Comparative Genomics
783 of Pathogenic *Escherichia coli* Lineages Harboring Polyketide Synthase (pks) Island. *mBio* 2021;
784 **12**: e03634-20.

785 113. Das Mitra S, Bandopadhyay S, Jadhao S *et al.* Genetic characterization and comparative
786 genomics of a multi drug resistant (MDR) *Escherichia coli* SCM-21 isolated from a subclinical
787 case of bovine mastitis. *Comp Immunol Microbiol Infect Dis* 2022; **85**: 101799.

788 114. Chopra M, Bandyopadhyay S, Bhattacharya D *et al.* Genome based phylogeny and virulence
789 factor analysis of mastitis causing *Escherichia coli* isolated from Indian cattle. *Indian J Anim Sci*
790 2021; **90**: 1577–83.

791 115. Moser AI, Campos-Madueno EI, Sendi P *et al.* Repatriation of a patient with COVID-19
792 contributed to the importation of an emerging carbapenemase producer. *J Glob Antimicrob
793 Resist* 2021; **27**: 267–72.

794 116. Ranjan A, Shaik S, Mondal A *et al.* Molecular Epidemiology and Genome Dynamics of New
795 Delhi Metallo-β-Lactamase-Producing Extraintestinal Pathogenic *Escherichia coli* Strains from
796 India. *Antimicrob Agents Chemother* 2016; **60**: 6795–805.

797 117. Kumkar SN, Kamble EE, Chavan NS *et al.* Diversity of resistant determinants, virulence
798 factors, and mobile genetic elements in *Acinetobacter baumannii* from India: A comprehensive
799 in silico genome analysis. *Frontiers in Cellular and Infection Microbiology* 2022; **12**: 997897.

800 118. Vijayakumar S, Jacob JJ, Vasudevan K *et al.* Genomic Characterization of Mobile Genetic
801 Elements Associated With Carbapenem Resistance of *Acinetobacter baumannii* From India.
802 *Front Microbiol* 2022; **13**: 869653.

803 119. Naha A, Vijayakumar S, Lal B *et al.* Genome sequencing and molecular characterisation of
804 XDR *Acinetobacter baumannii* reveal complexities in resistance: Novel combination of
805 sulbactam–durlobactam holds promise for therapeutic intervention. *J Cell Biochem* 2021; **122**:
806 1946–57.

807 120. Vijayakumar S, Anandan S, MS DP *et al.* Insertion sequences and sequence types profile of
808 clinical isolates of carbapenem-resistant *A. baumannii* collected across India over four year
809 period. *J Infect Public Health* 2020; **13**: 1022–8.

810 121. Vijayakumar S, S BA, Kanthan K *et al.* Whole-genome shotgun sequences of seven colistin-
811 resistant *Acinetobacter baumannii* isolates from bacteraemia. *J Glob Antimicrob Resist* 2018; **12**:
812 155–6.

813 122. Yadav A, Jain K, Wang Y *et al.* *Candida auris* on Apples: Diversity and Clinical Significance.
814 *mBio* 2022; **13**: e0051822.

815 123. Desnos-Ollivier M, Fekkar A, Bretagne S. Earliest case of *Candida auris* infection imported
816 in 2007 in Europe from India prior to the 2009 description in Japan. *Journal of Medical
817 Mycology* 2021; **31**: 101139.

818 124. Arora P, Singh P, Wang Y *et al.* Environmental Isolation of *Candida auris* from the Coastal
819 Wetlands of Andaman Islands, India. *mBio* 2021; **12**: e03181–20.

820 125. Yadav A, Singh A, Wang Y *et al.* Colonisation and Transmission Dynamics of *Candida auris*
821 among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A
822 Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. *J Fungi (Basel)*
823 2021; **7**: 1–16.

824 126. Lockhart SR, Etienne KA, Vallabhaneni S *et al.* Simultaneous emergence of multidrug-
825 resistant candida auris on 3 continents confirmed by whole-genome sequencing and
826 epidemiological analyses. *Clinical Infectious Diseases* 2017; **64**: 134–40.

827 127. Sharma C, Kumar N, Pandey R *et al.* Whole genome sequencing of emerging multidrug
828 resistant Candida auris isolates in India demonstrates low genetic variation. *New Microbes New*
829 *Infect* 2016; **13**: 77–82.

830 128. Chatterjee S, Alampalli SV, Nageshan RK *et al.* Draft genome of a commonly misdiagnosed
831 multidrug resistant pathogen Candida auris. *BMC Genomics* 2015; **16**: 686.

832 129. Li X, Muñoz JF, Gade L *et al.* Comparing genomic variant identification protocols for
833 Candida auris. *Microb Genom* 2023; **9**: mgen000979.

834 130. Rohit A, Suresh Kumar D, Dhinakaran I *et al.* Whole-genome-based analysis reveals
835 multiclone Serratia marcescens outbreaks in a non-Neonatal Intensive Care Unit setting in a
836 tertiary care hospital in India. *J Med Microbiol* 2019; **68**: 616–21.

837 131. Shankar C, Karunasree S, Manesh A *et al.* First Report of Whole-Genome Sequence of
838 Colistin-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Producing KPC-9 in
839 India. *Microbial Drug Resistance* 2019; **25**: 489–93.

840 132. Mann A, Malik S, Rana JS *et al.* Whole genome sequencing data of Klebsiella aerogenes
841 isolated from agricultural soil of Haryana, India. *Data Brief* 2021; **38**: 107311.

842 133. Mishra M, Panda S, Barik S *et al.* Antibiotic Resistance Profile, Outer Membrane Proteins,
843 Virulence Factors and Genome Sequence Analysis Reveal Clinical Isolates of Enterobacter Are
844 Potential Pathogens Compared to Environmental Isolates. *Front Cell Infect Microbiol* 2020; **10**:
845 54.

846 134. Mishra M, Patole S, Mohapatra H. Draft Genome Sequences of Nonclinical and Clinical
847 Enterobacter cloacae Isolates Exhibiting Multiple Antibiotic Resistance and Virulence Factors.

848 *Genome Announc* 2017; **5**: e01218-17.

849 135. Chanakya PP, Khamari B, Lama M *et al*. Complete genome sequence of an extensively drug
850 resistant (XDR) *M. morganii* SMM01 isolated from a patient with urinary and fecal incontinence.

851 *BMC Genom Data* 2021; **22**: 27.

852 136. Mehrotra T, Konar D, Pragasam AK *et al*. Antimicrobial resistance heterogeneity among
853 multidrug-resistant Gram-negative pathogens: Phenotypic, genotypic, and proteomic analysis.

854 *Proceedings of the National Academy of Sciences* 2023; **120**: e2305465120.

855 137. Bokhary H, Pangesti KNA, Rashid H *et al*. Travel-Related Antimicrobial Resistance: A
856 Systematic Review. *Trop Med Infect Dis* 2021; **6**: 11.

857 138. Frost I, Van Boeckel TP, Pires J *et al*. Global geographic trends in antimicrobial resistance:
858 the role of international travel. *J Travel Med* 2019; **26**: taz036.

859 139. Sridhar S, Turbett SE, Harris JB *et al*. Antimicrobial-resistant bacteria in international
860 travelers. *Curr Opin Infect Dis* 2021; **34**: 423–31.

861 140. Farkas K, Williams R, Alex-Sanders N *et al*. Wastewater-based monitoring of SARS-CoV-2 at
862 UK airports and its potential role in international public health surveillance. *PLOS Global Public
863 Health* 2023; **3**: e0001346.

864 141. Li J, Hosegood I, Powell D *et al*. A global aircraft-based wastewater genomic surveillance
865 network for early warning of future pandemics. *Lancet Glob Health* 2023; **11**: e791–5.

866 142. Agrawal S, Orschler L, Tavazzi S *et al.* Genome Sequencing of Wastewater Confirms the
867 Arrival of the SARS-CoV-2 Omicron Variant at Frankfurt Airport but Limited Spread in the City of
868 Frankfurt, Germany, in November 2021. *Microbiol Resour Announc* 2022; **11**: e0122921.

869 143. Stanley D, Batacan RJ, Bajagai YS. Rapid growth of antimicrobial resistance: the role of
870 agriculture in the problem and the solutions. *Appl Microbiol Biotechnol* 2022; **106**: 6953–62.

871 144. Noman SM, Shafiq M, Bibi S *et al.* Exploring antibiotic resistance genes, mobile gene
872 elements, and virulence gene factors in an urban freshwater samples using metagenomic
873 analysis. *Environ Sci Pollut Res Int* 2023; **30**: 2977–90.

874 145. Adelowo OO, Ikhimiukor OO, Knecht C *et al.* A survey of extended-spectrum beta-
875 lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step
876 towards generating prevalence maps of antimicrobial resistance. *PLoS One* 2020; **15**: e0229451.

877 146. Datta P, Gupta V, Arora S *et al.* Epidemiology of extended-spectrum β -lactamase, AmpC,
878 and carbapenemase production in *Proteus mirabilis*. *Jpn J Infect Dis* 2014; **67**: 44–6.

879 147. Patel NB, Jain G, Chandrakar S *et al.* Ventilator-associated pneumonia due to carbapenem-
880 resistant *Providencia rettgeri*. *BMJ Case Rep* 2021; **14**: e243908.

881 148. Karad DD, Soman Y, Khande H *et al.* Molecular characterization of a multidrug-
882 resistant/pandrug-resistant nosocomial polymicrobial infection with *Klebsiella pneumoniae*,
883 *Providencia rettgeri*, and *Acinetobacter baumannii* from Rural Maharashtra, India. *Acta Biochim
884 Pol* 2020; **67**: 387-392.

885 149. Praharaj AK, Khajuria A, Kumar M *et al.* Phenotypic detection and molecular
886 characterization of beta-lactamase genes among *Citrobacter* species in a tertiary care hospital.
887 *Avicenna J Med* 2016; **6**: 17–27.

888 150. Jain S, Gaind R, Kothari C *et al.* VEB-1 extended-spectrum β -lactamase-producing
889 multidrug-resistant *Proteus mirabilis* sepsis outbreak in a neonatal intensive care unit in India:
890 clinical and diagnostic implications. *JMM Case Rep* 2016; **3**: e005056.

891 151. ICMR. *Antimicrobial Resistance Research and Surveillance Network Annual Report*. 2021.

892 152. Mohan S, Agarwal J, Srivastava R *et al.* Observations on *Citrobacter* species from a tertiary
893 care health center with special reference to multi-drug resistance and presence of CTX-M gene.
894 *Indian J Pathol Microbiol* 2014; **57**: 439–41.

895 153. Chinnam BK, Nelapati S, Tumati SR *et al.* Detection of β -Lactamase–Producing *Proteus*
896 *mirabilis* Strains of Animal Origin in Andhra Pradesh, India and Their Genetic Diversity. *J Food*
897 *Prot* 2021; **84**: 1374–9.

898 154. Brockhurst MA, Harrison E, Hall JPJ *et al.* The Ecology and Evolution of Pangenomes.
899 *Current Biology* 2019; **29**: R1094–103.

900 155. Medini D, Donati C, Tettelin H *et al.* The microbial pan-genome. *Curr Opin Genet Dev* 2005;
901 **15**: 589–94.

902 156. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant
903 *Acinetobacter baumannii*. *Nat Rev Microbiol* 2007; **5**: 939–51.

904 157. Moubareck CA, Halat DH. Insights into *Acinetobacter baumannii*: A Review of
905 Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen.
906 *Antibiotics (Basel)* 2020; **9**: 119.

907 158. Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical
908 environments. *Can J Microbiol* 2019; **65**: 34–44.