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81 Abstract

82 Following detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in
83 Newfoundland, Canada in late 2021, avian influenza surveillance in wild birds was scaled-up across
84  Canada. Herein, we present results of Canada’s Interagency Surveillance Program for Avian Influenza in
85  wild birds during the first year (November 2021 — November 2022) following the incursions of HPAIV from
86 Eurasia. Key objectives of the surveillance program were to (i) detect the presence, distribution and
87 spread of HPAIV and other avian influenza viruses (AlVs), (ii) detect wild bird morbidity and mortality
88  associated with HPAIV, (iii) identify the range of wild bird species infected by HPAIV, and (iv) characterize
89 detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive
90  across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian
91  provinces and territories, with the highest numbers in the Atlantic and Central flyways. Temporally, peak
92 detections differed across flyways, though the national peak occurred in April 2022. In an additional
93 11,295 asymptomatic harvested or live captured wild birds, 5.2% were HPAIV positive across 3 taxonomic
94  orders and 19 species. Whole genome sequencing identified HPAIV of Eurasian origin as most prevalent
95 in the Atlantic flyway, along with multiple reassortants of mixed Eurasian and North American origins
96  distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and
97  reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples
98 from sick and dead, as well as live and harvested birds to provide insights into the dynamics and potential
99  impacts of the HPAIV H5N1 outbreak. This dramatic shift in presence and distribution of HPAIV in wild
100  birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration

101  across One Health partners.

102  Keywords: highly pathogenic avian influenza virus, H5SN1, low pathogenicity avian influenza virus, wild

103 birds, reservoir, surveillance
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104 Introduction

105  Since the detection of highly pathogenic avian influenza (HPAI) H5N1 virus clade 2.3.4.4b in
106  Canada in December 2021, there have been significant impacts for wildlife and domestic

107  poultry health. Globally, this clade is associated with unprecedented impacts on wild birds and
108 mammals compared to previous H5Nx highly pathogenic avian influenza virus (HPAIV) in that it
109  has a wider host range (1), a larger geographic range, facilitated by multiple instances of inter-
110 and intracontinental spread (2-5), higher mortality levels of wild birds, mesocarnivores, and
111  marine mammals (6—8), and longer persistence in wild bird populations in Europe (9). In

112 Canada, this virus is also associated with unprecedented impacts on commercial, small flock,
113  and other captive poultry facilities that far surpass the mortality and economic losses

114  associated with the only other HPAIV incursion into North America in 2014/2015, which

115  resulted in outbreaks on 16 premises in two provinces (10, 11). As of September 2023, 7.7

116  million domestic birds have been destroyed on 319 premises across nine Canadian provinces

117 (12).

118  Canada’s Interagency Surveillance Program for Avian Influenza Viruses in Wild Birds (previously
119  called Canada’s Interagency Wild Bird Influenza Survey) has been operating since 2005 (13). The
120  program consists primarily of two core components: (i) morbidity and mortality surveillance in
121 wild birds submitted opportunistically, often by members of the public, and (ii) surveillance in
122 live and hunter-harvested wild birds sampled, often in conjunction with existing banding,

123 research, or monitoring programs. Since late 2021, Environment and Climate Change Canada

124  (ECCC) has worked with the Canadian Wildlife Health Cooperative (CWHC), provincial/territorial
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government agencies, other federal departments (Canadian Food Inspection Agency (CFIA),
Public Health Agency of Canada, Parks Canada, and Indigenous Services Canada), and
Indigenous and academic partners to increase surveillance for HPAIV in wild birds across the

country (Supplemental Document 1).

Herein we describe the epidemiology of the HPAIV outbreak in wild birds in Canada from
November 2021 to November 2022 by addressing several of the primary surveillance objectives
related to reporting spatiotemporal dynamics, host taxonomic representation, and

characterizing viral genetic diversity.

Materials and Methods

Morbidity and Mortality Surveillance

Morbidity and mortality surveillance of wild birds in Canada was largely opportunistic, requiring
that sick or dead birds be found, reported, and samples submitted to the CWHC, provincial or
territorial agencies or laboratories, often by the public. Avian carcasses were submitted fresh or
frozen for processing. In some cases, sick birds were admitted to rehabilitation facilities prior to
the submission of the carcass for AlV testing. Because of the increased volume of carcass
submissions in 2021 and 2022, carcass testing was prioritized across Canada according to field
and diagnostic lab capacity as well as funding (Supplemental Document 1, Appendix D).
Oropharyngeal and cloacal swabs were collected from carcasses selected for avian influenza
testing and pooled into a single vial containing appropriate transport medium. Vials were
stored at temperatures of at least -20 °C until testing, and -70 to -80 °C when available

(Supplemental Document 1, Appendix G). When resources and capacity were available, gross
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146  and histologic examination of carcasses with HPAIV positive swab results was undertaken at the
147  CWHC or provincial or territorial laboratory to confirm HPAIV as the cause of death and to help
148  rule out false positives particularly in the case of new species or new locations. In some cases,
149  tissue samples (brain, lung, and intestine) collected during post-mortem examination were

150 submitted in lieu of swabs for AlV testing.

151 Live and Hunter-Harvested Bird Surveillance

152  Live wild birds were sampled by ECCC, the United States Fish and Wildlife Service, and

153  provincial or territorial, and Indigenous or academic partners. Sampling opportunities were

154  reviewed periodically to prioritize sample collection and ensure they were in line with

155  surveillance objectives, sample size recommendations (Supplemental Document 1, Appendix E),
156  capacity, and resources. All live bird sampling was performed in accordance with approved

157  animal use protocols, appropriate federal or provincial wildlife permits where applicable, and
158  appropriate safe work procedures. Samples from harvested birds were provided by permitted
159  and Indigenous harvesters. For the purposes of this study, harvested birds are considered

160 apparently healthy prior to harvest and are therefore categorized with live birds in our

161  analyses. Live and harvested birds were sampled for AlV as described above.

162  Laboratory Analyses

163  Real-time reverse transcriptase polymerase chain reaction (RT-PCR) testing of swab samples
164  and tissue samples was performed at the diagnostic laboratories of the Canadian Animal Health
165  Surveillance Network (CAHSN), which is a network of federal, provincial, and university animal

166  health laboratories across Canada with the central reference laboratory operating from the
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167  National Centre for Foreign Animal Disease, Canadian Food Inspection Agency (NCFAD-CFIA) in
168  Winnipeg, Manitoba. The CAHSN standard protocol for the detection of type A influenza viruses
169  and avian H5 and H7 hemagglutinin subtypes by RT-PCR Assay (Version 3, January 2020) was
170  utilized. In this protocol, a RT-PCR assay based on the use of fluorescent 5’ nuclease oligoprobes
171 (hydrolysis probes) was used for rapid detection of group A specific Matrix (M1), H5, and H7
172 hemagglutinin subtype avian influenza virus sequences. The matrix assay also employs the use
173  of an exogenous armored RNA-Enterovirus internal control for verification of the RNA

174  extraction step and detection of PCR inhibitors. The matrix RT-PCR is designed to detect M1

175  gene sequences of all group A influenza viruses (birds and mammals). The HSNA/EA RT-PCR

176  Assay in the CAHSN protocol is capable of detecting most North American and Eurasian lineage
177  H5 avian influenza viruses, including Eurasian H5N1 viruses. The H7 2013 RT-PCR has been re-

178  designed to detect H7 influenza viruses from the Americas as well as Eurasia.

179  Automated nucleic acid extraction from samples was performed using Magnetic Particle

180  Processors (MagMax, KingFisher, Roche and others) and appropriate kits, while the manual
181  nucleic acid extraction was done using Qiagen vacuum manifold and Qiagen Viral RNA MiniKit.
182  The following RT-PCR Systems were used: Applied Biosystems 7500/7500 Fast, Roche Light
183  Cycler 480, BioRad CFX 96 and Strategene MX3005. The interpretation of test results as

184  outlined in the CAHSN standard protocol was followed.

185  All samples that were positive for Group A specific Matrix RT-PCR and positive, suspect, or non-
186  negative for H5 or H7 were sent to NCFAD-CFIA for confirmatory testing and further genomic

187  characterization.
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188  We assigned AIV sample status as “confirmed or suspect HPAIV-positive” or “confirmed or

189  suspect low pathogenicity avian influenza virus (LPAIV)-positive”. The former includes cases
190 confirmed H5 HPAIV-positive (highly pathogenic virus of the subtype H5Nx confirmed by

191  NCFAD-CFIA) and samples that were non-negative on H5 PCR at the regional laboratory or

192  NCFAD-CFIA, but virus isolation and sequencing were not possible due to sample quality orin a
193  few cases, testing is not yet completed. These samples were categorized as suspect H5 HPAIV-
194  positive because there were few LPAIV H5 detections in Canada over the study period (Y.

195  Berhane, personal communication). Confirmed or suspected LPAIV-positive include cases with
196  low pathogenicity avian influenza virus confirmed by NCFAD-CFIA and those that tested non-
197  negative on matrix PCR and negative on H5 PCR at the regional laboratory or NCFAD-CFIA. In
198  the latter cases, additional virus isolation and sequencing was not possible or is not yet

199 completed.

200  Wild Bird Surveillance Data

201  Metadata and preliminary matrix, H5, and H7 RT-PCR results for sick and dead birds across

202  Canada were received from surveillance partners. Metadata and diagnostic results associated
203  with live and harvested wild birds were managed internally within ECCC. Confirmatory

204  diagnostic results were compiled by NCFAD-CFIA. Data were regularly merged, structured, and
205 samples were assigned additional identifiers (e.g., taxonomic family, flyway, watershed)

206  resulting in a compiled national AIV surveillance dataset (12). Exact (Clopper-Pearson)

207  confidence intervals were calculated in R version 4.2.2 (2022-10-31). The best available data are
208  presented for surveillance conducted between November 2021 - December 2022, extracted

209  from the full dataset on May 15, 2023.
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Influenza Virus Genome Sequencing and Assembly

Full genome segments of the AlVs were amplified either directly from clinical specimens or
isolates as described previously (14). High-throughput sequencing was performed either on an
Oxford Nanopore Technologies (ONT) GridlON sequencer and R9.4.1 Flow Cell following library
(n=921) construction using the ONT rapid barcoding kit (SQK-RBK004 or SQK-RBK110.96) or an
Illumina MiSeq (n=257) using the Nextera XT Library Preparation kit (lllumina) following the
manufacturers’ protocol. The Hamilton Microlab Star Robot was used for lllumina library
preparation prior to sequencing with Illumina MiSeq Reagent Kits (300 cycle or 600 cycle)
paired with either lllumina MiSeq V2 or V3 Flow Cells. The raw Nanopore signal data was
basecalled and demultiplexed with the latest version of Guppy at the time of sequencing
(v5.0.17 — v6.5.7) using the high-accuracy or super-high accuracy models. Basecalled Nanopore
reads were analysed and assembled with the CFIA-NCFAD/nf-flu v3.3.6 Nextflow workflow (15,
16) which ran IRMA (v1.0.2) for initial genome assembly (17); nucleotide BLAST v2.14 (18, 19)
search of IRMA assembled genome segment sequences against all Orthomyxoviridae sequences
from the NCBI FTP site (https://ftp.ncbi.nlm.nih.gov/genomes/Viruses/AllNucleotide/;
1,070,105 sequences downloaded 2023-06-14); selection of appropriate reference sequence for
each genome segment and H/N subtype prediction based on nucleotide BLAST results;
Minimap2 v2.24 (20) read mapping to each genome segment reference sequence; Samtools
v1.15 (21, 22) and Mosdepth v0.3.3 (23) for read mapping and sequencing coverage statistics;
Clair3 v1.0.2 (24) variant calling; Bcftools v1.15.1 (22) variant filtering and depth-masked
consensus sequence generation for each genome segment; and MultiQC v1.12 (25) for

bioinformatics analysis summary report creation. Bcftools generated consensus sequences from
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232 Nanopore analysis with nf-flu were used for further analyses. For lllumina sequencing reads,
233 IRMA (v1.0.2) Influenza genome assembly as part of the CFIA-NCFAD/nf-flu (v3.3.6) workflow
234  was used to generate the consensus sequences used for further analyses. All viral genome

235  sequences generated in this study will be deposited on GISAID before final peer-reviewed

236  publication.

237  Phylogenetic Analyses

238 Individual viral segments (PB2, PB1, PA, HA, NP, NA, M and NS) were trimmed of regions

239  flanking the open reading frames and concatenated. The geographic origin (either Eurasian or
240  North American) of each genome segment prior to concatenation was assessed by BLAST

241  search similarity against reference sequences defined with segment-specific phylogenies from
242  Alkie et al. (26). Concatenated HPAIV H5N1 sequences were aligned using MAFFT v7.49

243  (totaling 13,112 nucleotides in length) (27) and used to build a maximum likelihood

244  phylogenetic tree using IQ-TREE v2.20 (28). A separate partition was designated for each viral
245  segment, allowing each to have its own model of nucleotide substitution and model specific
246 parameters as determined by ModelFinder (29). Node support for the resulting tree was

247  assessed by 5000 ultrafast bootstrap replicates (30). The bootstrap consensus tree was re-
248  rooted on the first HSN1 virus detected in Canada (A/Great_Black-Backed_Gull/NL/OTH-0114-
249  1/2021) and sampling dates for each tip were used to time-scale the tree under a relaxed

250 molecular clock rate in TreeTime (31). Reconstruction of the ancestral hosts’ taxomonic order in
251  the time-calibrated phylogenetic tree was conducted using the TreeTime mugration model. The
252  resulting phylogenetic tree, reassortment pattern, and host taxonomy was visualized using R

253  package ggtree v3.7.2 (32). Inference of segment-specific phylogenies were used to identify

10
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254  unique genome constellations (i.e., reassortant genotypes) for a more detailed phylogeographic
255  reconstruction in a separate manuscript (Signore et al. in prep.).

256  Additional Data

257  Information on infected domestic bird premises in Canada was obtained from the Canadian

258  Food Inspection Agency (12). Unusual wild bird mortality event information was obtained from
259  the National Environmental Emergencies Centre situation report (33), which includes

260 information received from surveillance partners across Canada throughout the course of the
261  HPAIV epidemic in Canada. These data were supplemented by additional information from

262  provincial/territorial wildlife agencies and information obtained through a regional

263  collaborative effort to document HPAIV-related mortality estimates in Atlantic Canada (Avery-

264  Gomm et al., in prep).

265  We simplified migratory flyway boundaries according to provincial/territorial divisions in
266  Canada (34), acknowledging that migration does not precisely align with administrative
267  boundaries and adjacent flyways overlap in some areas. ArcMap Pro v3.0.0 was used for

268  mapping.

269  Results

270 HPAIV Outbreak Timeline

271  The presumed index case among wild birds of the 2021/2022 outbreak in North America was a
272  first-winter Great Black-Backed Gull (Larus marinus; order Charadriiformes) from
273 Newfoundland. This bird was found exhibiting neurologic signs including inability to fly, head

274  tilt, ataxia, and depression. This and two other birds with similar histories were found alive

11
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between November 4 — 26, 2021, all three died within 24 hours of admission to a wildlife
rehabilitation centre, were submitted to the CWHC in late December, and confirmed HPAIV
positive the same month (Fig. 1). HPAIV was detected within the Atlantic flyway in geese
(Anatidae spp.) or raptors (Accipitriformes, Strigiformes, Falconiformes) in January (Nova
Scotia, Prince Edward Island), February (New Brunswick), and March (Quebec), 2022. A
separate incursion of HPAIV was detected in the Pacific flyway in a Bald Eagle (Haliaeetus
leucocephalus) in British Columbia in February 2022 (Fig. 1) (2), but there were no further
detections in the province until April 2022. These detections represent bicoastal incursions by
early 2022. The first detection in the mid-continental Mississippi flyway was a Red-Tailed Hawk
(Buteo jamaicensis) in Ontario, in March 2022. Detections in southern Manitoba (Mississippi
flyways) and Saskatchewan (Central flyway) were in Snow Geese (Chen caerulescens) and began
in late March 2022 (Fig. 1). Presumed index cases in flyways, provinces, and new areas within
each province typically were sick or dead or apparently healthy members of the order
Anseriformes, sick or dead raptors followed by corvids (Passeriformes; Video 1). Within each
flyway, the subsequent species detected through morbidity and mortality surveillance were
often Charadriiformes, specifically gulls (Larus spp.; Video 1). The first detections in northern
Canada occurred in early May in Yukon Territory, in a Canada Goose (Branta canadensis) and a
Trumpeter Swan (Cygnus buccinator), and in the latter half of June in the Northwest Territories

and Nunavut in Herring Gulls (Larus argentatus).

Multiple notable mortality events associated with HPAIV were reported across the country
beginning in March 2022. Mortality was reported in Red-Breasted Mergansers (Mergus

serrator; <100) in Ontario in mid-March 2022, followed by Green-Winged Teal (Anas
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297  carolinensis; <100) in early April 2022. In the central flyway beginning late March 2022,

298  mortality events were reported in Snow Geese in southern Alberta (hundreds) and Manitoba
299  (unreported number) and Snow Geese, Canada Geese, and Ross’ Geese in Saskatchewan (Anser
300 rossii; hundreds; Fig. 1). Notable mortality in raptor species (e.g., eagles, owls, hawks) was

301 reported in Alberta and Saskatchewan (<100) also beginning in late March 2022 in addition to

302 gulls and corvids in Saskatchewan (<100) (Fig. 1).

303 Notable mortality events were also reported beginning in May 2022, but persisting throughout
304 the spring and into early fall, predominantly in breeding colonial nesting seabirds and most
305 prominently in eastern Canada. This included outbreaks at Northern Gannet (Morus bassanus)
306 breeding colonies in Quebec and Newfoundland and at American Common Eider (Somateria
307 mollissima dresseri) colonies in the Gulf of St. Lawrence, Quebec (Fig. 1; Avery-Gomm et al., in
308 prep.) (35). Across eastern Canada, reported mortalities exceeding 40,000 wild birds, including
309 >25,000 Northern Gannet, >8,000 Common Murre (Uria aalge), >1,700 Common Eider, along
310  with numerous reports of dead gulls (>2,300), cormorants (Phalacrocorax spp.; >900), Atlantic
311 Puffin (Fratercula arctica; >200), Black-legged Kittiwake (Rissa tridactyla; >200), Razorbill (Alca
312  torda; >100), and terns (Fig. 1; Avery-Gomm et al., in prep). Notable mortality events were also
313  reported in other aquatic species. This included Double-crested Cormorant (Nannopterum

314  auritum; hundreds) in Alberta, Quebec, New Brunswick, and Nova Scotia in June 2022, in Eared
315  Grebe (Podiceps nigricollis; hundreds) and Western Grebe (Aechmophorus occidentalis; <100;
316  classified as special concern in Schedule 1 of the Species at Risk Act (36) in Alberta in June, and
317  in multiple American White Pelican (<100, Pelecanus erythrorhynchos) colonies in the

318  Mississippi and Pacific flyways in Canada in June and July 2022 (Fig. 1).
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In fall 2022, notable mortality events were again reported in Geese. Canada Geese and Cackling
Geese (Branta hutchinsii) mortalities were reported in September in the Pacific flyway (British
Columbia) and in Snow Geese in mid-November 2022 in the Atlantic (Quebec) and Pacific
(British Columbia) flyways. It is important to note that, in all cases, the reported wild bird

mortality numbers will represent only a fraction of the total mortality.

Morbidity and Mortality Wild Bird Surveillance Component

A total of 6,246 sick and dead wild birds were collected and tested for the presence of influenza
A genomic material across Canada from November 2021 to November 2022 (Fig. 2A). Overall,
1,710 (27.4%; 95% confidence interval (Cl): 26.3 — 28.5%) were confirmed or suspect positive
for HPAIV (Table 1). Unless otherwise indicated (Table S1), species that tested HPAIV positive
based on pooled swab samples and that underwent gross and histologic examination, had a
majority of individuals with characteristic degenerative and inflammatory lesions consistent
with HPAIV infection. A total of 62 (1.0%; 95% ClI: 0.8 — 1.3%) sick and dead wild birds were
positive for LPAIV. LPAIV was detected in members of the Charadriiformes, Anseriformes, and

Accipitriformes (Tables 1 and S1).

Spatial

Sick and dead birds were submitted from all provinces and territories, with relatively fewer
submissions and detections in sick and dead bird samples from northern regions of provinces or
the Territories (i.e., northern Canada) (Fig. 2A and 2C). Suspect or confirmed HPAIV detections

in sick and dead birds occurred across all flyways but were in the highest numbers in the
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339  Atlantic (particularly Quebec) and Central flyways (particularly Alberta and Saskatchewan)

340 (Table 1, Fig. 2C).

341 Temporal

342  Following the initial incursion in November 2021, carcass submissions and detections began

343  increasing between January and February 2022 (Fig. 3A). At the national scale, the highest

344  number of submissions was in April 2022 (Fig. 3A), but this varied by flyway with the number of
345  submissions peaking earlier in February and March 2022 in the Atlantic flyway and again in June
346 2022 (Fig. S1). The highest number of HPAIV detections was also in April 2022 at the national
347  scale. Within flyways, the number of detections in sick and dead birds also peaked in April in
348  the Central and Mississippi flyways but peaked in May and June in the Pacific and Atlantic

349  flyways, respectively, with a second small peak in the fall (September in the Mississippi flyway,
350 September and October in the Central flyway, and November in the Pacific and Atlantic flyways)

351 (Fig. S1).

352 Taxonomic Order

353  Eighteen different taxonomic orders and 207 different species were screened through

354  morbidity/mortality surveillance (Table S1). Fifty-five carcasses (0.9%) were only identified to
355 the genus level (Table S1). HPAIV was confirmed or suspected in 12 taxonomic orders and 80
356  species (Fig. 4; Table S1). Taxonomic orders or functional groups with the largest number of
357 detections included: Anseriformes (primarily geese, diving ducks and sea ducks, and dabbling
358  ducks), raptors (i.e., Accipitriformes, Falconiformes, Strigiformes; primarily owls, hawks; eagles,

359  and vultures), Passeriformes (primarily corvids), Charadriiformes (primarily gulls, terns, and
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360 murres), and Suliformes (primarily Northern Gannets and cormorants; Fig. 4; Table S1). Small
361 numbers of suspect or confirmed HPAIV-positive Pelecaniformes (primarily in American White
362  Pelicans) and Podicipediformes (primarily Western and Eared Grebes) were also detected (Fig.

363  4; Tables 1 and S1).

364 At the national scale and across the Pacific, Central and Mississippi flyways, sick and dead

365 geese, primarily Snow Geese and Canada Geese, accounted for the most detections (Table 1). A
366 first peak of detections in both Canada Geese and Snow Geese occurred in April 2022 (Fig. S3).
367 A second peak in Canada Geese occurred in September 2022, although detections in this

368  species occurred continuously from January through November 2022 across flyways. The

369 second peak in Snow Geese occurred in November 2022 (Fig. S3); trends in Snow Geese were

370 largely driven by detections in the Central and Atlantic flyways (Fig. S3).

371 At the national scale, peaks in morbidity and mortality for dabbling ducks occurred in the spring
372 (April) and fall (September; Table 1). In diving ducks and seaducks, peaks corresponded with the
373  breeding season in May and June and was largely driven by Common Eiders in eastern Canada

374  (Fig. S4).

375  Peaks in morbidity and mortality for raptors and corvids occurred in the spring, in April and

376  May, with a slight increase in detections in the fall for both functional groups (Fig. S5). The

377  majority of HPAIV detections in corvids occurred in the Central, eastern Mississippi, and Atlantic
378  flyways (Fig. S5). HPAIV detections in raptors occurred across all flyways (Fig. S5), however the

379  majority of detections in Strigiformes were found in the Pacific and Central flyways (Table 1).

380 Live and Hunter-Harvested Wild Bird Surveillance Component
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381  Atotal of 11,295 live and hunter-harvested birds were tested for AlV across Canada between
382  November 2021 and November 2022. Overall, 586 (5.2%; 95% Cl: 4.8 — 5.6%) were confirmed or
383  suspect positive for HPAIV (Table 2), and 1,160 (10.3%; 95% Cl: 9.7 — 10.8%) were confirmed or
384  suspect positive for LPAIV (Table 2). The following sections provide a more detailed breakdown

385  of HPAIV and LPAIV detections in apparently healthy live or hunter-harvested wild birds.

386  Spatial

387 Samples from live and harvested birds were collected in all provinces and two territories (Fig.
388  2B). The Central and Atlantic flyways had the highest prevalence of HPAIV across multiple

389  watersheds in which sampling occurred (Fig. 2D). In the northern portions of the flyways,

390 prevalence of HPAIV in live and harvested birds ranged from 0% in Northwest Territories

391 (n=319; 95% Cl: 0 — 1.1%) to 0.07% in Nunavut (n=1392; 95% Cl: <0.01 — 0.4%). In the southern
392  Canadian portions of the Pacific, Central, Mississippi, and Atlantic flyways, apparent

393  prevalences were 5.7% (n=1109; 95% Cl: 4.4 — 7.2%), 6.3% (n=2011; 95% Cl: 5.2 — 7.4%), 5.2%
394 (n=3191; 95% Cl: 4.5 - 6.0%), and 7.0% (n=3273; 95% Cl: 6.2 — 8.0%), respectively (Table 2, Fig.
395  2D). The highest proportion of confirmed and suspected HPAIV-positive samples occurred in
396  Nova Scotia (Table 2). This high proportion was driven by two separate sampling events of

397  Anseriformes; one that took place in January 2022 (68/100 HPAIV suspect or confirmed

398  positive) in advance of but in close proximity (temporally and geographically) to infected

399 premises (in Canada, defined as premises where HPAIV has been detected and confirmed

400 through laboratory testing(37)) and the second in September 2022 (n=61/94).
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401  Inthe northern portions of the flyways, LPAIV prevalence in apparently healthy birds ranged
402  from 0% in the Northwest Territories (n=319; 95% Cl: 0 — 1.1%) to 2.0% in Nunavut (n=1392;
403  95% Cl: <1.3 — 2.9%), and appeared to increase from west to east across the southern Canadian
404  portion of the flyways (Pacific: 7.5%, 95% Cl: 6.0 — 9.2%; Central: 10.3%, 95% Cl: 9.0 — 11.7%;

405  Mississippi: 12.3%, 95% Cl: 11.2 — 13.5%, and Atlantic: 13.7%, 95% Cl: 12.5 — 14.9%; Table 2).

406  Temporal

407 At the national level and within each flyway, the majority of samples from live birds were

408 collected in July and August (Fig. 3B; Fig. S2). There was a peak in prevalence of HPAIV in

409 apparently healthy birds in January (17.9%; 95% Cl: 14.3 — 22.1%), largely driven by sampling of
410  mallards at a single open water pond in Nova Scotia in proximity to an infected premises

411 (Atlantic flyway; 54.4%; 95% Cl: 45.3 — 63.3%; Fig. S2D). A second peak in HPAIV prevalence in
412  Canada occurred in April (19.9%; 95% Cl: 16.8 — 23.3%) in association with spring migration (Fig.
413  3B), largely driven by the Central flyway (28.1%, 95% ClI: 23.8 — 32.7%; Fig. S2B), and the highest
414  peakin prevalence in Canada occurred in September 2022 (24.3%, 95% CI: 21.6 — 27.3%; Fig.
415  3B) during fall migration, largely in the Mississippi (26.2%; 95% CI: 22.1 — 30.6%) and Atlantic
416  (22.9%; 95% Cl: 18.8 — 27.4%) flyways, and to a lesser extent the Pacific flyway (57.1%, but note
417  small sample size; 95% Cl: 30.4 — 78.2%) (Fig. S2). There was no live bird surveillance in the

418  Central flyway until April 2022, when the HPAIV prevalence was highest in that flyway (Fig.

419  S2B).

420  LPAIV detections in apparently healthy birds were highest in August 2022 at the national scale,

421  and prevalence peaked in August and September (17.7; 95% Cl: 16.6 — 18.9% and 18.3%; 95%
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422  Cl: 15.8 - 21.1%, respectively; Fig. 3B). LPAIV prevalence was highest in August in the Atlantic
423 (29.7%; 95% Cl: 27.0 — 32.5%) flyway, in September in the Central flyway (17.4%; 95% Cl: 7.8 —
424  31.4%), and from August to October in the Mississippi flyway (17.2%; 95% Cl: 15.4 — 19.2% to
425  21.8%; 95% Cl: 15.6 — 29.1%; Fig. S2), largely driven by trends observed in Anseriformes, which

426  had the highest LPAIV prevalence within each flyway (Table 2).

427 Taxonomic Order

428  Seven different taxonomic orders and 59 species were screened through live and hunter-

429  harvested bird surveillance (Table S1). Twenty-seven individuals were only identified to the
430 genus level (0.2%). HPAIV was confirmed or suspected in apparently healthy birds of 19 species
431  from three taxonomic orders, including Anseriformes (5.6%; 95% Cl: 5.2 — 6.1%),

432  Charadriiformes (4.0%; 95% Cl: 2.8 — 5.5%) and Suliformes (1.2%; 95% Cl: 0.3 — 3.2%; Tables 2

433  and S1).

434  Within live or hunter-harvested Anseriformes, dabbling ducks had the highest HPAIV

435  prevalence (8.4%; 95% Cl: 7.7 — 9.2%, Table 2), with the highest found in American Black Duck
436  (Anas rubripes, 13.3%; 95% Cl: 10.0 — 17.3%), Northern Pintail (Anas acuta, 11.4%; 95% Cl: 7.2 —
437  16.9%), and Mallard (10.0%; 95% Cl: 8.9 — 11.3%; Table S1). Lower HPAIV prevalences were

438  found in Blue-Winged Teal (Spatula discors, 2.2%; 95% Cl: 1.3 — 3.5%) and Green-Winged Teal
439  (7.3%; 95% Cl: 5.2 — 9.9%). Overall, 3.0% (95% Cl: 2.5 — 3.6%) of apparently healthy geese were
440  suspected or confirmed positive for HPAIV (Table 2). Out of 1,427 live or harvested Canada

441  Geese across the country, only one sample was suspected or confirmed HPAIV positive in

442  September 2022 in the Central flyway (Table S1). In contrast, out of 2,475 Snow Geese tested,
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443 125 (5.1%; 95% Cl: 4.2 — 6.0%) were suspected or confirmed positive for HPAIV, with the

444  highest peak in prevalence detected in April 2022 (24.2%; 95% Cl: 20.5 — 28.3%), largely in the
445  Central flyway (Fig. S3, Table S1). Overall, 1.3% (95% Cl: 0.6 — 2.5%) of apparently healthy diving
446  ducks and sea ducks were suspected or confirmed positive for HPAIV (Table 2), with positives
447  found in Canvasback (Aythya valisineria, 19.4%; 95% Cl: 8.2 — 36.0%) and Redhead (Aythya

448  americana, 2.0%; 95% Cl: 0.2 — 7.0%; Table S1). All 272 Common Eiders, sampled in New

449  Brunswick, Newfoundland, and Nunavut, tested negative for HPAIV (Table S1).

450  Within live or hunter-harvested Charadriiformes, the highest HPAIV prevalence was in Common
451  Murre (61.9%; 95% Cl: 45.6 — 76.4%,; Table S1), of which 41 were sampled from a single colony
452  in the Atlantic flyway and 31 were sampled over the course of three days during an active

453  outbreak. In contrast, only one Thick-Billed Murre (Uria lomvia) sampled in Nunavut was

454  suspected positive for HPAIV of 174 sampled nationally during the study period. Overall, of 397
455  gulls and terns (family Laridae) sampled, seven (1.8%; 95% Cl: 0.7 — 3.6%) were confirmed or
456  suspect positive for HPAIV, with positives found in only Black-Legged Kittiwake (12.8%; 95% ClI:
457 4.3 -27.4%) and Herring Gull (3.0%; 95% Cl: 0.4 — 10.5%; Table S2). Of 132 apparently healthy
458  shorebirds and waders sampled (families Charadriidae and Scolopacidae), all were negative for

459  HPAIV (Table S1).

460  Within Suliformes, four of 321 apparently healthy Northern Gannets (1.3%; 95% Cl: 0.3 — 3.2%)

461  were confirmed or suspect positive for HPAIV (Table S1).

462  LPAIV was detected in three of the seven taxonomic orders sampled, including Anseriformes

463  (11.7%; 95% Cl: 11.1 — 12.4%), Charadriiformes (2.3%; 95% Cl: 1.4 — 3.5%), and Gruiformes
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(2.5%; 95% Cl: 0.3 — 8.8%; Table 2). Within Anseriformes, apparently healthy dabbling ducks
had the highest LPAIV prevalence (21.3%; 95% Cl: 20.1 — 22.5%; Table 2), with the highest found
in American Black Duck (30.6%; 95% Cl: 25.8 — 35.6%), Blue-Winged Teal (28.5%; 95% Cl: 25.4 —
31.7%), Green-Winged Teal (20.7%; 95% Cl: 17.2 — 24.4%), and Mallard (19.1%; 95% Cl: 17.6 —
20.6%; Table S1). High LPAIV prevalence was observed in Northern Shoveler (41.7%; 95% Cl:
15.2 - 72.3%), but only 12 individuals were sampled from this species (Table S1). Among the
live and harvested geese sampled, 2.1% (95% Cl: 1.7 — 2.6%) were positive for LPAIV, and most
positives were found in Snow Geese (3.4%; 95% Cl: 2.7 — 4.2%), with a few found in Canada
Geese (0.2%; 95% Cl: 0.04 — 0.6%) (Table S1). Only 1.5% (95% Cl: 0.7 — 2.7%) of diving ducks or
sea ducks were positive for LPAIV amongst several species sampled (Table 2 and S1). Among
the apparently healthy Charadriiformes sampled, LPAIV was detected in only Thick-Billed Murre
(19 of 174 tested; 10.9%; 95% Cl: 6.7 — 16.5%) and one of 200 Ring-Billed Gulls sampled (0.5%;
95% Cl: 0.01 — 2.8%; Table S1). All 132 shorebirds and waders were negative for LPAIV. Within
the apparently healthy Gruiformes sampled, two of 64 American Coots (Fulica americana, 3.1%;
95% Cl: 0.4 — 10.8%) were positive for LPAIV, and none of the 15 Whooping Cranes (Grus
americana, classified as endangered in Schedule 1 of the Species at Risk Act (36) were positive

for LPAIV or HPAIV (Table S1).

Viral Reassortment and Phylogenetic Analysis

There was substantial genetic diversity in HPAIV viruses, as 341 (24.8%) were Eurasian AlVs with
the remaining resulting from reassortments between Eurasian and North American viruses,
with evidence of 10 different genome constellations (Table 3, Figs. 6 and 7). Identification of

unique genome constellations was based on the pattern of monophyletic clades from individual
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486  gene segments (Signore et al., in prep.). The majority of reassortants detected involved one to
487  four of the five internal gene segments (i.e., PB2, PB1, PA, NP, and NS) originating from North
488  American LPAIVs, and none involved reassortment of the HA gene. Only a single virus (Pattern
489  10) in an apparently healthy Blue-Winged Teal in Manitoba in August 2022 involved

490 reassortment of the NA and M genes. However, while this HSN6 virus showed reassortment
491 involving all but the HA gene, it was sequenced directly from the swab material from this bird
492  and virus isolation was unsuccessful. In swabs collected from birds at the same location during
493  the same month, virus isolation yielded either Eurasian H5N1 or North American H4NG6 virus.
494  The most common gene segments involved in reassortment were NP, PB2, and PB1, which
495  were involved in eight, seven, and five of the 10 genome constellation patterns, respectively
496  (Table 3). The most common genome constellations detected in Canada in the first year since
497 incursion included the Eurasian lineage along with Patterns 2, 4, and 5, collectively comprising

498  93.5% of all sequenced viruses (Table 3).

499  Detections of Eurasian-origin virus occurred throughout the full time period and in every

500 flyway, but most Eurasian HPAIV in Canada occurred in sick and dead birds in the Atlantic

501  flyway (Figs. 5, 6, and 7). Only a small proportion of viruses sequenced from live and harvested
502  birds were Eurasian, and all were detected in the Atlantic flyway in August and September 2022
503 (Fig. 6). Following the first detection of reassortment in March 2022 in the Atlantic flyway, the
504  proportion of Eurasian viruses detected decreased in April, increased again every month until
505 July when the majority of detections were Eurasian virus, and then decreased again to zero by
506  November 2022 (Fig. 6). Charadriiformes and Suliformes hosts made up the greatest proportion

507  of Eurasian virus detections. The Eurasian virus, more so than reassortant viruses, showed
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508 phylogenetic segregation by host group, as viruses sequenced from Suliformes tended to be

509 genetically distinct from those sequenced from Charadriiformes (Fig. 7).

510 The most commonly detected genome constellation overall was Pattern 2 (n=367), which is the
511  most closely related to the Eurasian virus of the main genome constellations detected. Both
512  Pattern 2 and the Eurasian H5N1 were distributed across Canada, however Pattern 2 was

513  widely distributed in western Canada, as it was the most common genome constellation found
514  inthe Pacific and Central flyways (Figs. 5 and 6). Pattern 2 (including viruses from the Pacific
515 flyway referenced as clusters 1, 2, 4, and 5 in Andrew et al., submitted) was first detected in the
516  Central and Atlantic flyways in March 2022, and in April 2022 in the Mississippi and Pacific

517  flyways (Fig. 6). Pattern 2 detections decreased to zero in both the Atlantic and Mississippi

518 flyways by June 2022; however, they remained prominent in the Central and Pacific flyways
519  (Fig. 6). Like the Eurasian virus, Pattern 2 showed genetic distinctions by flyway, as viruses

520 collected from the Central flyway cluster separately from those from the Pacific flyway (Fig. 7).
521  However, unlike the Eurasian virus, there is limited phylogenetic structure by host, as viruses
522  from each host group form much smaller monophyletic groups than those infected with the

523  Eurasian virus (Fig. 7).

524  Pattern 4 (including viruses from the Pacific flyway referenced as cluster 3 in Andrew et al.,
525 submitted) was among the most commonly detected genome constellations across Canada
526  (n=212). This reassortant, which is one of the most divergent genome constellations from the
527  Eurasian virus (Fig. 7), was first detected in April 2022 in adjacent Central and Mississippi

528 flyways and represented a high proportion of detections particularly in the Central flyway

529  through to November 2022. Pattern 4 was detected in the Atlantic flyway in a small proportion
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530 of samples starting in May but became dominant by October in live and harvested birds, and by
531  November 2022 in sick and dead birds. A small number of viruses with Pattern 4 were detected
532 inearly June 2022 (note: Andrew et al., submitted report these as occurring in late May 2022)
533  in the Pacific flyway and then again in November 2022 in the majority of collected samples (Fig.
534  6). Like the other reassortants, Pattern 4 also showed phylogenetic segregation by flyway, but
535 alsoincluded a large cluster of viruses that almost exclusively infected Anseriformes in the

536  Pacific flyway.

537  Pattern 5, which was among the most commonly detected genome constellation patterns

538 (n=272), was only found in the Mississippi and Atlantic flyways, and continued to be detected
539  through to November 2022 in high proportions in both flyways, including in live and harvested
540  birds (Table 3; Fig. 6). It was the most commonly found genome constellation in the Mississippi
541  flyway overall and peaked in the spring (March to April) and fall (September to October) of
542 2022 (Fig. 6). In the Atlantic flyway, it was second only to the Eurasian H5N1 virus, peaking in
543  spring (April to June) and in fall (September to November), often outnumbering the Eurasian

544  H5N1 within those time periods (Fig. 6).

545  The remaining reassortant patterns (3 and 6-11) were relatively uncommon in Canada,

546  representing only 6.5% of sequenced viruses (Table 3, Figs. 6 and 7).

547  The highest peaks in diversity of genome constellation detections in a given flyway (e.g., >4
548  patterns) occurred in April and May in the Central, Mississippi, and Atlantic flyways, with

549  additional increases in the number of patterns relative to preceding months in the fall (October
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550 and November) in the Pacific and Mississippi flyways (Fig. 6). These peaks in diversity often

551  coincided with peaks in total numbers of detections (Fig. 6).

552  North American LPAIVs (n=99) were detected across all flyways, but the majority were detected
553  in August and September 2022 in live and harvested birds in the Atlantic flyway (Fig. 5 and 6).
554  To date, a total of 28 different LPAIV subtypes (i.e., HXNx combinations) were detected in wild
555  birds during the 2021-2022 outbreak event including H2N3, H2N9, H3N2, H3N6, H3N8, H4N2,
556  H4NG6, HANS, HANS, H5N2, H6N4, H6NS8, H7N3, H7N4, H7N5, H7N7, H7N8, HON2, HON4, HONS,

557  H1O0N7, H11N2, H11N3, H11N9, H12N5, H12N6, H13N6, and H16N3.

558 Discussion

559  The incursion of H5N1 HPAIV of clade 2.3.4.4b into Canada resulted in unprecedented

560 detections in asymptomatic wild birds and large-scale wild bird mortality, affecting a wide
561 range of species. Based on the authors’ collective knowledge, no other infectious disease,
562 including the previous HPAIV incursion in 2014-15, has caused this magnitude of mortality in
563  such a large diversity of bird species in Canada. While not the manuscript’s primary focus,
564  characteristic lesions were associated with HPAIV-positive PCR results in most wild birds that
565 underwent gross and histopathological examination, supporting the assumption that the

566  majority of HPAIV-positive dead birds died as a result of infection. However, because we rely
567 heavily on opportunistic reporting of mortality events, the data presented here provide only
568  conservative estimates of the scope and scale of HPAIV-associated wild bird mortality in

569  Canada. The field capacity and resources necessary to complete structured surveys are
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570  prohibitive during multiple and large-scale mortality events occurring simultaneously across the

571 country.

572  Wild Birds: Victims and Reservoirs

573  Inthe first year of the 2021-2022 outbreak, H5N1 HPAIV was detected in 1,710 sick or dead

574  wild birds from 80 species across 12 taxonomic orders. Most of the sick and dead HPAIV-

575  positive birds submitted for testing were Anseriformes (primarily geese) and raptors (owls,

576  hawks, eagles), followed by corvids and Charadriiformes (primarily gulls and murres). However,
577  the largest recorded mortality events, during which only a subset of carcasses get submitted for
578  testing, occurred in Canada Geese and Snow Geese, and during the breeding season in colonial
579  nesting species in eastern Canada, including Northern Gannet, Common Murre, and Common
580 Eider. Where wild bird mortality was notable throughout the first year of the 2021-2022

581  outbreak with a wide taxonomic distribution, distinct peaks in detections among asymptomatic
582  wild birds were observed in the spring and fall primarily in dabbling ducks. Peaks in AIV

583  prevalence in dabbling ducks during spring and fall have been well-described for LPAIVs (38, 39)
584  and correspond with northward wild bird migration and southward migration in conjunction
585  with an influx of naive juveniles, respectively. Increased abundance and density of wild

586  migratory birds during migration facilitates viral transmission through close contact and

587 environmental contamination.

588  Anseriformes and Charadriiformes, in particular, have been recognized as reservoirs for LPAIVs
589 (40, 41). Our data from Canada along with other studies (9), indicate that candidate wild bird

590 species may also act as reservoirs for HSN1 HPAIV. Amongst apparently healthy birds sampled
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591  through live or hunter-harvested bird surveillance, dabbling ducks had the highest prevalence
592  of both HPAIV (8.4%; specifically American Black Duck, Mallard, their hybrids, and Northern

593  Pintail) and LPAIV (21.3%). This was not surprising for LPAIV, as dabbling ducks have one of the
594  highest LPAIV prevalence worldwide (41), and the largest number and diversity of AlV subtypes
595 isolated globally (42). There were also no large-scale mortalities and few HPAIV detections in
596  sick and dead dabbling ducks, corroborating that these species exhibit less morbidity and

597  mortality compared to other Anseriformes (43). Exposure to LPAIVs has the potential to provide
598 some level of heterosubtypic cross-protective immunity against HPAIV (44). Captive studies

599  have demonstrated that pre-exposure to specific LPAIVs can confer partial cross-protective

600 heterosubtypic immunity to other LPAIVs (45—-47), as well as HPAIVs (44, 48, 49), which can

601  result in reduced viral loads, duration of shedding, and, in the case of HPAIV, reduced morbidity
602  and mortality. With their high prevalence of both HPAIV and LPAIV, together with their large
603  population sizes (at least 25 million dabbling ducks; USFWS 2022), dabbling ducks are likely

604 candidates as reservoirs of HPAIV in Canada.

605 Conversely amongst Anseriformes, geese, diving ducks and sea ducks appeared to be highly

606  susceptible to morbidity and mortality. High numbers of sick or dead Canada Geese and Snow
607  Geese tested positive for HPAIV, and HPAIV detections in apparently healthy geese were low
608 compared to dabbling ducks, with only one Canada Goose testing positive out of 1,427 tested,
609 and 125 (5.1%) Snow Geese positive out of 2,475 tested. Large mortality events were also

610 reported in Common Eider. Of 96 Common Eider tested through sick and dead bird surveillance,
611 60 were HPAIV-positive, however none tested positive for HPAIV through live bird surveillance.

612  Thus, Canada Geese and Common Eider do not appear to be strong candidates as reservoir
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613  species and have the potential to be significantly impacted by this virus if population level

614  immunity does not develop or is not sustained over time. Conversely, Snow Geese have the
615  potential to play an important role as sources of transmission and spread, particularly given
616  their large population sizes (e.g., the mid-continental Snow Goose population was estimated at
617  over 16.2 million (+/-1.6M) in 2022; USFWS, 2022), their gregarious behaviour during migration
618 and breeding, the long distances traveled during migration which include arctic breeding

619  grounds (i.e., potential areas of flyway overlap, including with trans-Atlantic migrants), and the
620 significant overlap in ranges and habitats with other waterfowl species including dabbling

621  ducks.

622  Charadriiformes have been proposed as potential candidates for the spread of AIV within and
623  between colonies or foraging sites during the breeding season (50, 51), as well as over long

624  distances during migration (4). Gulls, including several species identified as candidates for the
625 movement of HPAIV from Europe to Canada in 2021 (2, 4), were the first cases detected in

626  Canada and were often the index cases detected as the virus moved north. However, the

627  contribution of Charadriiformes as a reservoir species is less clear than for dabbling ducks.

628  While several species of Charadriiformes, particularly murres, gulls, and terns, were susceptible
629 to HPAIV-related mortality, HPAIV detections through live and hunter-harvested surveillance
630  were generally low. Notably, a self-limiting HPAIV outbreak with low mortality was reported in
631 summer 2022 among Herring Gulls on Kent Island, New Brunswick, Canada (52). Similarly, a

632 large proportion of apparently healthy Common Murre tested positive for HPAIV within a short
633  time frame from a single colony experiencing an active outbreak (McLaughlin et al., submitted),

634  yet no mortalities were observed based on re-sightings days later (J. Cunningham, personal
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635 communication). In contrast, Common Murre mortality events were reported at several other
636  colonies in the Atlantic region during the same time period (Avery-Gomm et al., in prep),

637  suggesting colony-level differences in virus dynamics and susceptibility.

638 Beyond gulls and Common Murre, certain seabird species, such as the Northern Gannet,

639  exhibited remarkable susceptibility to HPAIV. Large-scale mortality was observed in a number
640  of colonial nesting seabird species during the breeding season in Atlantic Canada and across the
641  North Atlantic (53). Colonial nesting behaviour, characterized by dense populations, a high

642  degree of social interaction, and shared foraging areas, can facilitate extensive transmission
643  among conspecifics, leading to focal and large-scale die-offs following introduction of highly
644  transmissible pathogens like HPAIV (54). However, there is evidence of exposure and survival in
645  some of these highly susceptible colonial nesting species (53). While an in-depth analysis of the
646  impacts to seabirds in Atlantic Canada is the focus of Avery-Gomm et al., in prep and falls

647  outside the scope of this manuscript, we wish to emphasize the importance of continued

648  targeted AlIV surveillance in these populations in order to understand the interacting

649  mechanisms driving species- and colony- level differences in virus dynamics, transmission, and
650  susceptibility. Ongoing serologic surveillance can also contribute to expanding our knowledge
651  of exposure and survival in these populations, advancing our understanding of heterosubtypic
652  immunity, and enhancing our ability to forecast mass mortality following exposure to H5Nx

653  HPAIVs.

654  Podicipediformes, or grebes, are diving waterbirds with previously demonstrated susceptibility
655  to HPAIV (55), as corroborated by the current results. However, there is little evidence that

656  Podicipediformes play an important role as LPAIV or HPAIV reservoir hosts with the caveats that
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657 these species are generally not well-studied. In our surveillance, Horned grebes (Podiceps
658  auritus) were the only grebe species for which apparently healthy individuals were sampled.
659  Among these individuals, there were no detections of HPAIV or LPAIV. Although there were
660 relatively few samples (n=83), they were collected during the same month (June) and in the
661  same flyway (Central) as reported grebe mortality, which was primarily observed in Eared (P.
662  nigricollis) and Western grebes (Aechmophorus occidentalis). These colonial species have

663  similar habitat preferences to dabbling ducks, especially Eared grebe, which rely on large

664  shallow ponds with dense vegetation during breeding (56). Therefore, in areas of range

665 overlap, there is an increased likelihood of exposure to HPAIV-contaminated habitat coupled
666  with increased risk of transmission related to colonial nesting dynamics. In comparison, there
667  was no reported HPAIV related mortality in Horned grebe, which may be less likely to occur in
668  proximity to dabbling ducks, because they are highly territorial during breeding and are more
669 likely to nest in isolation on smaller ponds with open water (57). As Podicipediformes are

670 identified as priority species for conservation and stewardship in one or more locations in
671 Canada (58) and two species appear in Schedule 1 of the Species at Risk Act (36), a better

672  understanding of factors influencing HPAIV-related mortality events for birds in this order is
673  warranted.

674  Raptors and corvids have demonstrated a pronounced susceptibility to HPAIV during the

675  current outbreak and in the previous HPAIV outbreak in North America (59). The underlying
676  reason is not known but is likely related to the route and dose of exposure. The most likely
677  routes of exposure are through scavenging of infected carcasses and, in the case of raptors,

678  through predation of infected prey (60) (Andrew et al., submitted). Infected prey that are
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679  displaying signs of weakness or abnormal behaviour may be preferentially targeted (61-63).
680  While there are no samples in the national dataset from apparently healthy raptors and corvids,
681  the role that these species play as reservoirs is likely to be minimal given that most species are
682 relatively solitary. They may, however, play a role in subsequent spread to conspecifics at

683  shared roosting or feeding sites, where some species can occur in high numbers, or to offspring
684  during the breeding season (e.g., through parental feeding of infected prey items).

685  The current outbreak reflects a significant shift in HPAIV dynamics, highlighting the dual role of
686  wild birds as victims and reservoirs of this virus. Based on the data presented, there are

687  differences in species susceptibility between and within wild bird taxonomic orders

688 emphasizing the importance of a species-level approach to data interpretation and conclusions.
689  The observed taxonomic and temporal patterns are also important to interpret in the context
690 of a novel AlV, to which Canada’s migratory bird populations were immunologically naive.

691  Although widespread transmission should result in the development of immunity, and

692  consequently reduced infection and mortality, the duration and extent of this immunity

693  remains uncertain. Mortality events may continue to be pronounced in highly susceptible

694  species, as a high case fatality rate may limit transmission and delay population-level immunity.
695  Factors like food scarcity and extreme weather events can further impact the health and

696  resilience of populations, rendering them more susceptible to mortality following HPAIV

697 infection. This is of particular importance because many of the species identified here as highly
698  susceptible to HPAIV share the characteristics of being relatively long-lived with low annual

699  reproduction and high levels of parental care. Mortality of adults during the breeding season, as

700 seen for the majority of seabirds, sea ducks, grebes, and raptors, would also indirectly impact
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701  reproductive success through increased nest failures from reduced hatching success or

702  increased mortality of nestlings. The combination of increased mortality and decreased

703  reproduction can result in significant population-level impacts, particularly for species or

704  populations that are vulnerable, or are already experiencing multiple concurrent stressors (e.g.,
705  reduced food abundance or quality, increasing industrial or agricultural activity, urban

706  encroachment, and other large-scale environmental changes associated with climate change).
707  Concurrent stressors can also impact the ability of many of these populations to recover from

708  mortality and reproductive failure associated with HPAIV.

709 Genome Constellations

710  Reassortment is a recurring phenomenon among LPAIVs within wild waterfowl populations (64,
711  65), and H5 subtypes of clades 2.3.4.4 and 2.3.4.4b have demonstrated a high propensity to
712 reassort with LPAIVs (44, 66). The co-circulation of HPAIV and LPAIV among wild bird reservoir
713  species (e.g., dabbling ducks) increases opportunities for mixed infections and the emergence
714  of reassortants (64). This is consistent with observations in the year following the first HPAIV
715  incursion into Canada, where increased detection rates of new genome constellation patterns
716  coincided with periods of increased LPAIV prevalence and concentrated wild bird abundance on
717  the landscape during the spring and fall of 2022. In addition to these temporal patterns, there
718  was evidence of geographic structuring of genome constellations at the flyway scale, whereas
719  distinct geographic trends were not evident at the ecoprovincial scale within the Pacific flyway
720  (Andrew et al. submitted). These temporal and spatial relationships underscore the dynamic
721  interplay between virus prevalence, wild bird reservoir abundance, and movement (i.e.,

722 migration timing and pathways) in shaping reassortment dynamics. With the continued
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723  circulation and spread of H5N1 HPAIV and reassortants across Canada, homotypic and

724  heterotypic immunity in wild bird reservoirs will also likely impact HPAIV dynamics (67),

725 influencing the frequency and diversity of viral reassortants. Therefore, longitudinal

726  surveillance targeted during periods of concentrated reservoir abundance, coordinated at the
727  flyway scale, and incorporating serologic sampling, will collectively be needed if we wish to

728  track and understand the complex, dynamic and rapid evolution of this virus.

729  The majority of reassortants detected in the first year since emergence resulted from the

730  exchange of internal gene segments with North American LPAIVs, which is consistent with
731 reports from the USA (68). The majority of sequences detected in Canada in the first year of
732 surveillance post-incursion were categorized into four broad genome constellations including
733 Eurasian H5N1 and Patterns 2, 4, and 5. The two most frequently detected genome

734  constellations detected in the USA from December 2021 to April 2022, as similarly observed in
735  Canada, were Eurasian H5N1 (genotype Al in (68)) and Pattern 2 (genotype B2, B3.1, and B4),
736  however Pattern 7 (B1.1 and B1.2) was also among the most common patterns found along
737  with Pattern 4 (B3.2), and Pattern 5 was not detected in the USA in that time period (68).

738 Interestingly, the persistence of Eurasian virus was particularly notable in the Atlantic flyway
739  throughout the first year following the first incursion. Although Eurasian viruses were

740  sporadically detected in other flyways, their presence was transient, and they were quickly
741  outnumbered by reassortant viruses. It is not clear what ecological, evolutionary, or viral

742  factors were driving this persistence in the Atlantic flyway. Potential drivers could include

743  variation in the prevalence and composition of LPAIVs subtypes circulating within the Atlantic

744  region compared to other flyways, differences in survival following infection with subsequent
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impact on opportunities for virus reassortment, or species-specific interactions unique to the
Atlantic flyway. However, sampling biases in the composition of species, locations, and timing,
in addition to diagnostic considerations (e.g., samples yielding lower PCR cycle threshold values
were more likely to result in higher quality sequence data and subsequent inclusion in
analyses), mean that observed patterns reflect available sequences and are therefore unlikely

to represent the complete diversity and distribution of viruses present in wild bird populations.

Surveillance Components and Sampling Limitations

It is important to note that while live and hunter-harvested (i.e., ‘active’) and sick and dead (i.e.,
‘scanning’ or ‘passive’) wild bird surveillance methods can be complementary and contribute
data from different subsets of wild birds (i.e., those that do and do not survive infection), each
surveillance method has limitations and biases that are critical to understand to contextualize

the results presented here (69).

The majority of sick and dead wild bird carcass submissions are opportunistically submitted by
members of the public and therefore originate from more populous areas of Canada (Fig. 2).
Geographic proximity to diagnostic centers and higher human population densities increase the
likelihood of carcass detection and submission (70). Biases in species detectability (e.g., size,
habitat with dense vegetation vs. open parkland) and the likelihood of submission based on
social (e.g., perceived as a nuisance vs. highly valued) or other factors (e.g., disparate levels of
awareness between communities) can also influence which samples are processed through this
surveillance component (71). Therefore, absence of detection through sick and dead bird

surveillance does not imply the absence of infection and mortality.
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Live and hunter-harvested wild bird surveillance is also opportunistic in that it is carried out in
conjunction with existing banding and monitoring programs. By strategically targeting wild birds
during periods and in areas of high abundance, banding and monitoring programs are well-
aligned with locations and time periods expected to have increased AlV prevalence. However,
these programs are often conducted over short time frames (days or weeks), only during
certain months, and limited to focal areas. Consequently, this can limit our ability to detect
infection, which for AIV consists of a relatively short viral shedding period (72), and to track
changes in incidence and prevalence within these high-risk areas and time periods. Despite
these limitations, the continued integration of both sick and dead as well as live and harvested

wild bird surveillance remains crucial to understand HPAIV dynamics in wild birds.
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Tables

Table 1. Number of sick and dead wild birds submitted for testing and suspect or confirmed highly pathogenic avian influenza virus (HPAIV) or low
pathogenicity avian influenza virus (LPAIV) positive in Canada between November 2021 — November 2022. Colour shading reflects general administrative
migratory flyway routes (orange = Pacific, green = Central, blue = Mississippi, yellow = Atlantic).

N suspect or confirmed positive/total sampled

Taxonomic Order British Yukon Alberta Saskatchewan Northwest Manitoba  Ontario  Nunavut Quebec New Newfoundland Nova Prince Edward Total
Columbia Territories Brunswick and Labrador Scotia Island
HPAIV
Accipitriformes 44/164 2/14 33/63 48/84 0/1 33/46 43/135 - 55/143 5/16 2/11 12/64 11/32 288/773
Anseriformes 114/192 4/7 78/134 85/125 0/9 20/32 89/306 0/26 160/288 8/58 9/38 21/105 1/6 589/1326
Dabbling Ducks 15/38 0/1 11/28 4/17 - 6/13 15/56 - 12/56 1/14 0/15 3/44 0/1 67/283
Diving Ducks and Seaducks 1/5 == 0/7 0/6 0/4 1/1 4/30 = 46/59 3/37 9/20 12/29 0/1 76/199
Geese 87/121 3/3 65/97 79/100 0/5 13/18 67/168 0/26 102/173 4/7 0/2 6/32 1/4 427/756
Swans 11/28 1/3 2/2 2/2 = == 3/52 = = = 0/1 = == 19/88
Apodiformes 0/7 -- -- - - -- - - -- - - - 0/4 0/11
Caprimulgiformes - -- -- - - -- - - -- - - 0/3 -- 0/3
Charadriiformes 4/58 0/5 10/47 2/25 1/6 0/2 6/74 2/4 44/77 27/77 87/241 20/220 4/14 207/850
Columbiformes 0/27 - 0/10 2/94 - 0/1 0/31 - - 0/3 1/5 0/22 0/9 3/202
Coraciiformes - -- 0/1 - 0/1 -- 0/3 - -- - -- 0/1 -- 0/6
Falconiformes 7/10 0/1 4/19 4/14 0/1 3/9 1/17 0/1 3/49 0/2 0/1 0/4 == 22/128
Galliformes 0/2 0/1 0/4 0/5 0/2 0/1 0/29 0/1 2/13 0/16 2/13 1/49 0/7 5/143
Gaviiformes = == == 0/2 0/1 0/2 0/11 = 0/7 0/1 0/4 0/10 0/1 0/39
Gruiformes 0/2 -- 0/4 0/1 0/3 -- - - -- - - - 0/1 0/11
Passeriformes 10/96 1/28 31/190 71/328 0/20 26/81 7/261 - 25/163 18/116 7/46 7/265 21/137 224/1731
Pelecaniformes 15/39 -- 6/12 3/6 - 7/11 12/25 - 1/8 0/2 -- 0/6 0/4 44/113
Piciformes 0/5 0/2 0/9 0/4 - - 0/4 - -- 0/2 = - -- 0/26
Podicipediformes 1/3 0/1 27/35 2/6 -- 3/3 0/2 - -- -- - -- -- 33/50
Procellariiformes -- -- - -- -- - -- -- - 0/4 2/30 0/34 - 2/68
Strigiformes 21/98 0/10 50/88 29/59 0/3 9/16 9/62 = 5/63 4/27 1/20 0/31 1/6 129/483
Suliformes 0/1 - 19/23 9/14 - 1/1 0/16 - 23/57 21/23 50/79 16/39 25/30 164/283
Total 216/704 7/69 258/639 255/767 1/47 102/205 167/976 2/32 318/868 83/347 161/488 77/853 63/251 1710/6246
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LPAIV

Accipitriformes 2/164 0/14 3/63 2/84 0/1 1/46 1/135 - 4/143 0/16 0/11 0/64 0/32 13/773
Anseriformes 0/192 0/7 1/134 4/125 0/9 0/32 2/306 0/26 3/288 3/58 0/38 0/105 0/6 13/1326
Dabbling Ducks 0/38 0/1 0/28 0/17 - 0/13 1/56 - 1/56 3/14 0/15 0/44 0/1 5/283
Diving Ducks and Seaducks 0/5 - 1/7 0/6 0/4 0/1 0/30 - 1/59 0/37 0/20 0/29 0/1 2/199
Geese 0/121 0/3 0/97 4/100 0/5 0/18 1/168 0/26 1/173 0/7 0/2 0/32 0/4 6/756
Swans 0/28 0/3 0/2 0/2 = == 0/52 = = = 0/1 = == 0/88
Apodiformes 0/7 - -- - - -- - - -- - -- - 0/4 0/11
Caprimulgiformes -- - - -- -- - -- -- - -- -- 0/3 - 0/3
Charadriiformes 0/58 0/5 3/47 3/25 0/6 0/2 6/74 0/4 3/77 1/77 3/241 1/220 1/14 21/850
Columbiformes 0/27 -- 0/10 1/94 - 0/1 0/31 - -- 0/3 0/5 0/22 0/9 1/202
Coraciiformes -- -- 0/1 -- 0/1 - 0/3 -- - -- -- 0/1 - 0/6
Falconiformes 0/10 0/1 0/19 0/14 0/1 0/9 0/17 0/1 0/49 0/2 0/1 0/4 = 0%
Galliformes 0/2 0/1 0/4 0/5 0/2 0/1 0/29 0/1 0/13 0/16 0/13 0/49 0/7 0/143
Gaviiformes = = = 0/2 0/1 0/2 0/11 = 0/7 0/1 0/4 0/10 0/1 0/39
Gruiformes 0/2 -- 1/4 0/1 0/3 - -- -- - -- -- -- 0/1 1/11
Passeriformes 0/96 0/28 1/190 0/328 0/20 1/81 1/261 = 4/163 0/116 0/46 0/265 1/137 8/1731
Pelecaniformes 0/39 - 0/12 0/6 - 0/11 1/25 - 0/8 0/2 - 0/6 0/4 1/113
Piciformes 0/5 0/2 0/9 0/4 - - 0/4 - - 0/2 - - - 0/26
Podicipediformes 0/3 0/1 0/35 0/6 -- 0/3 0/2 -- -- - -- - -- 0/50
Procellariiformes - - - -- - - - - - 0/4 1/30 0/34 - 1/68
Strigiformes 0/98 0/10 0/88 1/59 0/3 0/16 0/62 - 1/63 0/27 0/20 0/31 0/6 2/483
Suliformes 0/1 = 0/23 0/14 = 0/1 0/16 = 0/57 0/23 1/79 0/39 0/30 1/283
Total 2/704 0/69 9/639 11/767 o/47 2/205 11/976 0/32 15/868 4/347 5/488 1/853 2/251 62/6246
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1030 Table 2. Number of live and hunter-harvested wild birds submitted for testing, and suspect or confirmed highly pathogenic avian influenza virus (HPAIV) or low
1031 pathogenicity avian influenza virus (LPAIV) positive in Canada between November 2021 — November 2022. Colour reflects migratory flyway routes (orange =
1032 Pacific, green = Central, blue = Mississippi, yellow = Atlantic).

N suspect or confirmed positive/total sampled (%)

Taxonomic Order British Yukon Alberta  Saskatchewan  Northwest Manitoba Ontario Nunavut Quebec New Newfoundland Nova Prince Edward Total
Columbia Territories Brunswick  and Labrador Scotia Island
HPAIV
Anseriformes 63/1039 - 2/529 124/1434 0% 62/1550 104/1463 0/1199 15/925 25/441 9/246 135/291 8/323 547/9700
(6.0%) (0.4%) (8.6%) (0/260) (4.0%) (7.1%) (0%) (1.6%) (5.7%) (3.7%) (46.4%) (2.5%) (5.6%)
Dabbling Ducks 61/899 - 1/492 3/767 - 51/535 104/760 - 15/519 25/356 9/136 135/291 8/130 412/4885
(6.8%) (0.2%) (0.4%) (9.5%) (13.7%) (2.9%) (7.0%) (6.6%) (46.4%) (6.2%) (8.4%)
Diving Ducks and Seaducks 0/81 - 0/20 0/50 - 9/50 0/190 0/98 0/4 0/78 0/105 - - 9/676
(0%) (0%) (0%) (0.18%) (0%) (0%) (0%) (0%) (0%) (1.3%)
Geese 2/59 - 1/17 121/617 0% 2/965 0/513 0/1101 0/395 0/7 0/4 - 0/193 126/4138
(3.4%) (5.9%) (18.7%) (0/260) (0.2%) (0%) (0%) (0%) (0%) (0%) (0%) (3.0%)
Swans - - - - - - - - - - 0/1 - - 0/1
(0%) (0%)
Charadriiformes 0/16 - - - - - 0/176 1/193 0/98 1/85 33/272 0/38 - 35/878
(0%) (0%) (0.5%) (0%) (1.2%) (12.1%) (0%) (4.0%)
Columbiformes - - - - - - - - - - 0/2 - - 0/2
(0%) (0%)
Gruiformes 0/54 - 0/13 - 0% - - - - - - - - 0/79
(0%) (0%) (0/12) (0%)
Podicipediformes = = 0/1 0/34 0% = 0/2 = = = = = = 0/84
(0%) (0%) (0/47) (0%) (0%)
Procellariiformes - - - - - - - - - 0/21 0/164 0/46 - 0/231
(0%) (0%) (0%) (0%)
Suliformes - - - - - - - - 4/291 - 0/30 - - 4/321
(1.4%) (0%) (1.3%)
Total 63/1109 - 2/543 124/1468 0/319 62/1550 104/1641 1/1392 19/1314 26/547 42/714 135/375 8/323 586/11295
(5.7%) (0.4%) (8.5%) (0%) (4.0%) (6.3%) (0.1%) (1.5%) (4.8%) (5.9%) (36.0%) (2.5%) (5.2%)
LPAIV
Anseriformes 81/1039 - 38/529 169/1434 0/260 233/1550 161/1463 9/1199 243/925 85/441 39/246 56/291 24/323 1138/9700
(7.8%) (7.2%) (11.8%) (0%) (15.0%) (11.0%) (0.8%) (26.3%) (19.3%) (15.9%) (19.2%) (7.4%) (11.7%)
Dabbling Ducks 74/899 - 37/492 115/767 - 218/535 158/760 - 236/519 85/356 37/136 56/291 24/130 1040/4885
(8.2%) (7.5%) (15.0%) (40.7%) (20.8%) (45.5%) (23.9%) (27.2%) (19.2%) (18.5%) (21.3%)
Diving Ducks and Seaducks 4/81 - 0/20 0/50 - 2/50 3/190 0/98 0/4 0/78 1/105 - - 10/676
(4.9%) (0%) (0%) (4.0%) (30.0%) (0%) (0%) (0%) (1.0%) (1.5%)
Geese 3/59 - 1/17 54/617 0/260 13/965 0/513 9/1101 7/395 0/7 0/4 - 0/193 87/4138
(5.1%) (5.9%) (8.8%) (0%) (1.3%) (0%) (0.8%) (1.8%) (0%) (0%) (0%) (2.1%)
Swans - - - - - - - - - - 1/1 - - 1/1
(100%) (100%)
Charadriiformes 0/16 - - - - - 0/176 19/193 0/98 0/85 1/272 0/38 - 20/878
(0%) (0%) (9.8%) (0%) (0%) (0.4%) (0%) (2.3%)
Columbiformes - - - - - - - - - - 0/2 - - 0/2
(0%) (0%)
Gruiformes 2/54 - 0/13 - 0/12 - - - - - - - - 2/79
(3.7%) (0%) (0%) (2.5%)
Podicipediformes - - 0/1 0/34 0/47 - 0/2 - - - - - - 0/84
(0%) (0%) (0%) (0%) (0%)
Procellariiformes = = = = = = = = = 0/21 0/164 0/46 - 0/231
(0%) (0%) (0%) (0%)
Suliformes -- - - - - - - - 0/291 - 0/30 - - 0/321
(0%) (0%) (0%)
Total 83/1109 - 38/543 169/1468 0/319 233/1550 161/1641 28/1392 243/1314 85/547 40/714 56/375 24/323 1160/11295
(7.5%) (7.0%) (11.5%) (0%) (15.0%) (9.8%) (2.0%) (18.5%) (15.5%) (5.6%) (14.9%) (7.4%) (10.3%)
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1036

Table 3. The geographic origin of avian influenza virus genome segments (Eurasian — EA or North American — N Am) for genome constellations detected
through wild bird surveillance in Canada between November 2021 — November 2022.

Gene
Genome Constellation n PB2 PB1 PA HA NP NA M NS
Eurasian 341 EA EA EA EA EA EA EA EA
Pattern 2 367 N Am EA EA EA N Am EA EA EA
Pattern 3 20 N Am EA EA EA N Am EA EA N Am
Pattern 4 212 N Am N Am EA EA N Am EA EA N Am
Pattern 5 272 N Am N Am N Am EA N Am EA EA EA
Pattern 6 2 N Am EA EA EA EA EA EA EA
Pattern 7 54 N Am N Am EA EA N Am EA EA EA
Pattern 8 4 EA EA EA EA N Am EA EA EA
Pattern 9 1 EA N Am EA EA N Am EA EA EA
Pattern 10 1 N Am N Am N Am EA N Am N Am N Am N Am
Pattern 11 1 EA EA N Am EA EA EA EA EA
North American 99 N Am N Am N Am N Am N Am N Am N Am N Am
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Fig. 1. Timeline of events between November 2021 and 2022 following the first confirmed case of the clade 2.3.4.4b highly pathogenic avian influenza virus
(HPAIV) in Canada. The timeline is stratified by flyway (Pacific, Central, Mississippi, and Atlantic) and province/territory (BC: British Columbia, YK: Yukon, AB:
Alberta, SK: Saskatchewan, NT: Northwest Territories, MB: Manitoba, ON: Ontario, NU: Nunavut, QC: Quebec, NB: New Brunswick, NS: Nova Scotia, NL:
Newfoundland and Labrador, PE: Prince Edward Island), which are denoted with colors. The first wild bird sample and domestic premise confirmed HPAIV-
positive in each province is indicated with an icon. The identity of the HPAIV detected is indicated with color outline. Unusual wild bird mortalities are indicated
with a solid black line spanning the relevant period of time (AGWT: American Green-Winged Teal, ARTE: Arctic Tern, ATPU: Atlantic Puffin, AWPE: American
White Pelican, BLKI: Black-Legged Kittiwake, CACG: Cackling Goose, CANG: Canada Goose, COEl: Common Eider, COMU: Common Murre, COTE: Common Tern,
DCCO: Double-Crested Cormorant, EAGR: Eared Grebe, NOGA: Northern Gannet, RAZO: Razorbill, RBME: Red-Breasted Merganser, ROGO: Ross’ Goose, SNGO:
Snow Goose, WEGR: Western Grebe).
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Fig. 2. Distribution of A) sick and dead wild birds submitted and tested, B) live and hunter-harvested wild birds tested for avian influenza virus, C) the number of
sick and dead wild birds confirmed or suspected to be positive for highly pathogenic avian influenza virus (HPAIV), and D) the proportion of live and hunter
harvested wild bird samples confirmed or suspected to be positive for HPAIV, in Canada between November 2021 and December 2022, based on RT-PCR.
Internal boundaries indicate watershed (i.e., sub-sub-drainage area) where samples were received for testing. Shapefile was downloaded from the National
Hydro Network (73) on Oct 19, 2022 and was clipped to land boundary.
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1052 Fig. 3. Wild birds tested for avian influenza virus (AlV) between November 2021 and November 2022 across Canada
1053 obtained through A) morbidity/mortality surveillance and B) live and hunter-harvested surveillance.
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Fig. 4. Breakdown of sick and dead wild bird samples that were confirmed or suspected highly pathogenic avian influenza virus (HPAIV) positive between
November 2021 and November 2022 across Canada stratified by taxonomic order and species functional group. The data are shown as a treemap; the area of
each rectangle is proportional to the number of wild bird samples that were confirmed or suspected HPAIV positive. (GA = Galliformes, CO = Columbiformes,
PR = Procellariiformes (N=2), unlabeled Passeriformes = other (N=4), unlabeled Charadriiformes = Sandpipers and Allies (N=2)). Note: the data shown here
reflect the samples that were tested and therefore do not represent the number of birds that died from HPAIV.
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1059 Fig. 5. Distribution of avian influenza viruses characterized from wild birds sampled during the first year of the outbreak (November 2021 — November 2022)
1060  across Canada. Viruses detected included those with A) fully Eurasian or North American origins, and B)-D) and ten reassortant viruses, the genetic composition
1061  of which are described in Table 3. Provinces and territories are colored by the predominant migratory bird flyway.
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1064 Fig. 6. Avian influenza viruses characterized from wild birds sampled during the first year of the outbreak (November 2021 — November 2022) in the A) Pacific
1065 flyway, B) Central flyway, C) Mississippi flyway, and D) Atlantic flyway, stratified by surveillance component, and time. Viruses detected included both Eurasian,
1066 North American, and ten reassortant viruses the genetic composition of which are described in Table 3.
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Table S1. Number of live and hunter-harvested and sick and dead wild birds submitted for testing and suspect or confirmed highly pathogenic avian influenza
virus (HPAIV) or low pathogenicity avian influenza virus (LPAIV) positive in Canada between November 2021 — November 2022.

Suspect/ Suspect/ Total Suspect/ Confirmed Suspect/ Total
Confirmed Confirmed HPAIV? Confirmed
HPAIV LPAIV LPAIV
Accipitriformes Accipitridae Eagles Bald Eagle Haliaeetus leucocephalus - - - 103 (34.7%) 5(1.7%) 297
(Hawks, Eagles, Kites)
Golden Eagle Aquila chrysaetos - - - 0 0 6
Hawks Broad-Winged Hawk Buteo platypterus - - - 2 (16.7%) 0 12
Cooper's Hawk Accipiter cooperii - - - 9(13.2%) 0 68
Northern Goshawk Accipiter gentilis - - - 0 0 13
Northern Harrier Circus hudsonius - - - 0 0 3
Red-Shouldered Hawk Buteo lineatus - - - 1(100.0%) 0 1
Red-Tailed Hawk Buteo jamaicensis - - - 78 (42.2%) 6(3.2%) 185
Rough-Legged Hawk Buteo lagopus - - - 21 (72.4%) 0 29
Sharp-Shinned Hawk Accipiter striatus - - - 0 1(2.4%) 41
Swainson's Hawk Buteo swainsoni - - - 9(52.9%) 0 17
Unidentified Accipiter Hawk - - - - 0 0 1
Cathartidae Other Turkey Vulture Cathartes aura - - - 65 (76.5%) 1(1.2%) 85
(New World Vultures)
Pandionidae Osprey Pandion haliaetus - - - 0 0 15
(Osprey)
Total = - - 288 (37.3%) 13 (1.7%) 773
Accipitriformes
Anseriformes Anatidae Dabbling ducks American Black Duck Anas rubripes 48 (13.3%) 110 (30.6%) 360 2(11.8%) 2(11.8%) 17
(Ducks, Geese Waterfowl)
American Wigeon Mareca americana 3(3.5%) 3(3.5%) 85 2 (50.0%) 0 4
Blue-Winged Teal Spatula discors 18 (2.2%) 231(28.5%) 811 9 (60.0%) 0 15
Cinnamon Teal Spatula cyanoptera 1(100.0%) 0 1 - - -
Eurasian Wigeon Mareca penelope 0 0 2 - - -
Gadwall Mareca strepera 0 1(12.5%) 8 2 (50.0%) 0 4
Green-Winged Teal Anas crecca 38 (7.3%) 107 (20.7%) 518 11 (78.6%) 0 14
Mallard Anas platyrhynchos 269 (10.0%) 511 (19.1%) 2677 22 (11.4%) 2 (1.0%) 193
Mallard X American Black Anas platyrhynchos x 5(14.3%) 5(14.3%) 35 - - -

Duck

rubripes
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Suspect/ Suspect/ Total Suspect/ Confirmed Suspect/ Total
Confirmed Confirmed HPAIV? Confirmed
HPAIV LPAIV LPAIV
Northern Pintail Anas acuta 21 (11.4%) 34 (18.5%) 184 2 (50.0%) 0 4
Northern Shoveler Spatula clypeata 0 5(41.7%) 12 3(75.0%) 1(25.0%) 4
Wood Duck Aix sponsa 7 (4.1%) 29 (17.0%) 171 12 (57.1%) 0 21
Unidentified Duck - 2(8.0%) 4(19.1%) 21 2(28.6%) 0 7
Diving ducks and Black Scoter Melanitta americana 0 0 5 1(33.3%) 0 3
seaducks
Bufflehead Bucephala albeola 0 1(2.9%) 35 1(20.0%) 0 5
Canvasback Aythya valisineria 7 (19.4%) 2 (5.6%) 36 1(50.0%) 0 2
Common Eider Somateria mollissima 0 1(0.4%) 272 60 (62.5%) 1(1.0%) 96
Common Goldeneye Bucephala clangula 0 1(12.5%) 8 1(10.0%) 1(10.0%) 10
Common Merganser Mergus merganser - - - 2(28.6%) 0 7
Greater Scaup Aythya marila - - - 0 0 1
Hooded Merganser Lophodytes cucullatus 0 0 2 3(33.3%) 0 9
King Eider Somateria spectabilis 0 0 4 - - -
Lesser Scaup Aythya affinis 0 0 18 0 0 5
Long-Tailed Duck Clangula hyemalis - - - 1(4.2%) 0 24
Red-Breasted Merganser Mergus serrator - - - 4(33.3%) 0 12
Redhead Aythya americana 2 (2.0%) 0 101 1(16.7%) 0 6
Ring-Necked Duck Aythya collaris 0 1(0.7%) 155 - - -
Ruddy Duck Oxyura jamaicensis - - - 0 0 5
Surf Scoter Melanitta perspicillata 0 2 (20.0%) 10 1(12.5%) 0 8
Tufted Duck Aythya fuligula - - - 0 0 2
White-Winged Scoter Melanitta deglandi 0 1(4.2%) 24 0 0 4
Unidentified Scaup - 0 1(16.7%) 6 - - -
Geese Atlantic Brant Branta bernicla hrota 0 0 160 - - -
Black Brant Branta bernicla nigricans 0 0 a3 1(50.0%) 0 2
Cackling Goose Branta hutchinsii 0 0 11 13 (72.2%) 0 18
Canada Goose Branta canadensis 1(0.1%) 3(0.2%) 1427 248 (47.4%) 3(0.6%) 523
Greater White-Fronted Goose Anser albifrons 0 0 6 0 0 10
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Suspect/ Suspect/ Total Suspect/ Confirmed Suspect/ Total
Confirmed Confirmed HPAIV? Confirmed
HPAIV LPAIV LPAIV
Ross's Goose Anser rossii 0 0 16 13 (81.3%) 2 (12.5%) 16
Snow Goose Anser caerulescens 125 (5.1%) 84 (3.4%) 2475 152 (81.3%) 1(0.5%) 187
Swans Mute Swan Cygnus olor 0 1(100.0%) 1 0 0 18
Trumpeter Swan Cygnus buccinator - - - 13(21.3%) 0 61
Tundra Swan Cygnus columbianus - - - 6 (66.7%) 0 9
Total Anseriformes 547 (5.6%) 1138 9700 589 (44.4%) 13 (1.0%) 1326
(11.7%)
Apodiformes Trochilidae (Hummingbirds) Anna's Hummingbird Calypte anna - - - 0 0 2
Ruby-Throated Hummingbird Archilochus colubris - - - 0 0 4
Rufous Hummingbird Selasphorus rufus - - - 0 0 5
Total Apodiformes - - - 0 0 11
Caprimulgiformes Caprimulgidae (Nightjars and Common Nighthawk Chordeiles minor - - - 0 0 3
Allies)
Total - - - 0 0 3
Caprimulgiformes
Charadriiformes Alcidae Ancient Murrelet Synthliboramphus - - - 0 0 1
(Auks, Murres, Puffins) antiquus
Atlantic Puffin Fratercula arctica 1(1.6%) 0 64 5(20.0%) 0 25
Black Guillemot Cepphus grylle 0 0 69 0 0 2
Common Murre Uria aalge 26 (61.9%) 0 42 48 (59.3%) 1(1.2%) 81
Dovekie Alle alle - - - 3(12.0%) 0 25
Marbeled Murrelet Brachyramphus - - - 0 0 2
marmoratus
Razorbill Alca torda - - - 9 (47.4%) 0 19
Rhinoceros Auklet Cerorhinca monocerata - - - 0 0 1
Thick-Billed Murre Uria lomvia 1(0.6%) 19 (10.9%) 174 1(1.5%) 1(1.5%) 65
Charadriidae Killdeer Charadrius vociferus - - - 0 0 1
(Plovers, Lapwings)
Piping Plover Charadrius melodus - - - 0 0 2
Semipalmated Plover Charadrius semipalmatus 0 0 7 - - -
Laridae Arctic Tern Sterna paradisaea 0 0 16 2 (8.7%) 0 23
(Gulls, Terns, Skimmers)
Black Tern Chlidonias niger 0 0 16 - - -
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Suspect/ Suspect/ Total Suspect/ Confirmed Suspect/ Total
Confirmed Confirmed HPAIV? Confirmed
HPAIV LPAIV LPAIV
Black-Legged Kittiwake Rissa tridactyla 5(12.8%) 0 39 10 (76.9%) 1(7.7%) 13
California Gull Larus californicus - - - 4 (25.0%) 2(12.5%) 16
Common Tern Sterna hirundo 0 0 20 6 (14.6%) 0 41
Franklin's Gull Leucophaeus pipixcan - - - 2(13.3%) 2 (13.3%) 15
Glaucous Gull Larus hyperboreus 0 0 1 1(50.0%) 0 2
Glaucous-Winged Gull Larus glaucescens - - - 5(14.7%) 0 34
Gray Gull Leucophaeus modestus - - - 0 0 1
Great Black-Backed Gull Larus marinus 0 0 13 43 (42.2%) 1(1.0%) 102
Herring Gull Larus argentatus 2 (3.0%) 0 66 46 (25.8%) 4(2.3%) 178
Iceland Gull Larus glaucoides 0 0 24 2(22.2%) 0 9
Lesser Black-Backed Gull Larus fuscus - - - 0 0 1
Ring-Billed Gull Larus delawarensis 0 1(0.5%) 200 14 (10.0%) 9 (6.4%) 140
Roseate Tern Sterna dougallii 0 0 2 0 0 1
Unidentified Charadriiformes Unidentified Larus Gull - - - - 4(12.5%) 0 32
Recurvirostridae American Avocet Recurvirostra americana - - - 0 0 1
(Stilts, Avocets)
Black-Necked Stilt Himantopus mexicanus - - - 0 0 1
Scolopacidae (Sandpipers, Allies) American Woodcock Scolopax minor - - - 0 0 9
Dunlin Calidris alpina 0 0 23 - - -
Greater Yellowlegs Tringa melanoleuca - - - 1(100.0%) 0 1
Least Sandpiper Calidris minutilla 0 0 1 - - -
Pectoral Sandpiper Calidris melanotos - - - 0 0 1
Red Knot Calidris canutus 0 0 38 - - -
Red-Necked Phalarope Phalaropus lobatus - - - 0 0 1
Semipalmated Sandpiper Calidris pusilla 0 0 26 0 0 2
White-Rumped Sandpiper Calidris fuscicollis 0 0 37 - - -
Willet Tringa semipalmata - - - 1(100.0%) 0 1
Stercorariidae Pomarine Jaeger Stercorarius pomarinus - - - 0 0 1
(Skuas, Jaegers)
Total 35 (4.0%) 20 (2.3%) 878 207 (24.4%) 21 (2.5%) 850

Charadriiformes



https://doi.org/10.1101/2023.11.23.565566
http://creativecommons.org/licenses/by-nc-nd/4.0/

Taxonomic Order

Taxonomic Family

Species Group

Common Name

Scientific Name

Live/Harvest

Morbidity/Mortality

Suspect/ Suspect/ Total Suspect/ Confirmed Suspect/ Total
Confirmed Confirmed HPAIV? Confirmed
HPAIV LPAIV LPAIV
Columbiformes Columbidae Eurasian Collared Dove Streptopelia decaocto - - - 0 0 7
(Pigeons, Doves)
Mourning Dove Zenaida macroura - - - 0 0 29
Rock Pigeon Columba livia 0 0 2 3 (1.8%)° 1(0.60%) 166
Total 0 0 2 3 (1.5%) 1(0.5%) 202
Columbiformes
Coraciiformes Alcedinidae (Kingfishers) Belted Kingfisher Megaceryle alcyon - - - 0 0 6
Total Coraciiformes - - - (1] 0 6
Falconiformes Falconidae American Kestrel Falco sparverius - - - 0 0 8
(Falcons, Caracaras)
Merlin Falco columbarius - - - 0 0 81
Peregrine Falcon Falco peregrinus - - - 22 (56.4%) 0 39
Total Falconiformes - - - 18 (14.52%) 0 124
Galliformes Odontophoridae Northern Bobwhite Colinus virginianus - - - 0 0 1
(New World Quail)
Phasianidae (Pheasants, Grouse, Gray Partridge Perdix perdix - - - 0 0 5
Allies)
Greater Sage-Grouse Centrocercus - - - 0 0 1
urophasianus
Ring-Necked Pheasant Phasianus colchicus - - - 1(2.9%) 0 35
Rock Ptarmigan Lagopus muta - - - 0 0 2
Ruffed Grouse Bonasa umbellus - - - 2(2.9%) 0 69
Sharp-Tailed Grouse Tympanuchus - - - 0 0 2
phasianellus
Spruce Grouse Canachites canadensis - - - 0 0 2
Wild Turkey Meleagris gallopavo - - - 2 (8.7%)° 0 23
Unidentified Galliformes Unidentified Phasianidae - - - - 0 0 3
Total Galliformes - - - 5(3.5%) 0 143
Gaviiformes Gaviidae Common Loon Gavia immer - - - 0 0 36
(Loons)
Red-Throated Loon Gavia stellata - - - 0 0 3
Total Gaviiformes - - - 0 0 39
Gruiformes Gruidae Sandhill Crane Antigone canadensis - - - 0 0 2
(Cranes)
Whooping Crane Grus americana 0 0 15 0 0 1
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Rallidae American Coot Fulica americana 0 2(3.1%) 64 0 1(14.3%) 7
(Rails, Gallinules, Coots)
Common Moorhen Gallinula chloropus - - - 0 0 1
Total Gruiformes 0 2(2.5%) 79 - 1(9.1%) 11
Passeriformes Corvidae Corvids American Crow Corvus brachyrhynchos - - - 136 (17.5%) 4 (0.5%) 776
(Crows, Jays, Magpies)
Black-Billed Magpie Pica hudsonia - - - 39(30.2%) 0 129
Blue Jay Cyanocitta cristata - - - 4 (4.9%) 0 81
Common Raven Corvus corax - - - 41 (29.5%) 0 139
Steller’s Jay Cyanocitta stelleri - - - 0 0 1
Alaudidae Other Horned Lark Eremophila alpestris - - - 0 0 1
(Larks)
Bombycillidae (Waxwings) Bohemian Waxwing Bombycilla garrulus - - - 1(4.6%) 0 22
Cedar Waxwing Bombycilla cedrorum - - - 0 0 15
Calcariidae Chestnut-Collared Longspur Calcarius ornatus - - - 0 0 1
(Longspurs, Snow Buntings)
Snow Bunting Plectrophenax nivalis - - - 0 0 1
Cardinalidae Northern Cardinal Cardinalis cardinalis - - - 0 0 5
(Cardinals, Allies)
Rose-Breasted Grosbeak Pheucticus ludovicianus - - - 0 0 2
Fringillidae American Goldfinch Spinus tristis - - - 0 0 13
(Finches, Euphonias, Allies)
Common Redpoll Acanthis flammea - - - 0 0 23
House Finch Haemorhous mexicanus - - - 0 0 12
Pine Grosbeak Pinicola enucleator - - - 0 0 1
Pine Siskin Spinus pinus - - - 0 0 21
Purple Finch Haemorhous purpureus - - - 0 0 5
Red Crossbill Loxia curvirostra - - - 0 0 3
White-Winged Crossbill Loxia leucoptera - - - 0 0 3
Hirundinidae (Swallows) Barn Swallow Hirundo rustica - - - 0 0 8
Cliff Swallow Petrochelidon pyrrhonota - - - 0 0 1
Purple Martin Progne subis - - - 0 0 11
Tree Swallow Tachycineta bicolor - - - 0 0 9
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Icteridae Baltimore Oriole Icterus galbula - - - 0 0 1
(Troupials, Allies)
Brewer's Blackbird Euphagus cyanocephalus - - - 0 0 2
Brown-Headed Cowbird Molothrus ater - - - 0 0 4
Common Grackle Quiscalus quiscula - - - 2 (4.4%) 2 (4.4%) 45
Red-Winged Blackbird Agelaius phoeniceus - - - 0 0 4
Laniidae Loggerhead Shrike Lanius ludovicianus - - - 0 0 12
(Shrikes)
Northern Shrike Lanius borealis - - - 0 0 1
Mimidae Gray Catbird Dumetella carolinensis - - - 0 0 1
(Mockingbirds, Thrashers)
Paridae Black-Capped Chickadee Poecile atricapillus - - - 0 0 25
(Tits, Chickadees, Titmice)
Parulidae Bay-Breasted Warbler Setophaga castanea - - - 0 0 3
(New World Warblers)
Magnolia Warbler Setophaga magnolia - - - 0 0 1
Northern Waterthrush Parkesia noveboracensis - - - 0 0 2
Orange-Crowned Warbler Leiothlypis celata - - - 0 0 2
Tennessee Warbler Leiothlypis peregrina - - - 0 0 2
Wilson's Warbler Cardellina pusilla - - - 0 0 1
Yellow Warbler Setophaga petechia - - - 0 0 2
Yellow-Rumped Warbler Setophaga coronata - - - 0 0 7
Passerellidae American Tree Sparrow Spizelloides arborea - - - 0 0 5
(New World Sparrows)
Chipping Sparrow Spizella passerina - - - 0 0 6
Dark-Eyed Junco Junco hyemalis - - - 0 0 17
Fox Sparrow Passerella iliaca - - - 0 0 1
Song Sparrow Melospiza melodia - - - 0 0 1
Spotted Towhee Pipilo maculatus - - - 0 0 2
Swamp Sparrow Melospiza georgiana - - - 0 0 1
White-Crowned Sparrow Zonotrichia leucophrys - - - 0 0 4
White-Throated Sparrow Zonotrichia albicollis - - - 0 0 7
Passeridae House Sparrow Passer domesticus - - - 1(2.3%)¢ 0 a4

(Old World Sparrows)
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Sittidae Red-Breasted Nuthatch Sitta canadensis - - - 0 0 1
(Nuthatches)
White-Breasted Nuthatch Sitta carolinensis - - - 0 0 3
Sturnidae European Starling Sturnus vulgaris - - - 0 2 (6.3%) 32
(Starlings)
Turdidae American Robin Turdus migratorius - - - 0 0 171
(Thrushes, Allies)
Eastern Bluebird Sialia sialis - - - 0 0 1
Hermit Thrush Catharus guttatus - - - 0 0 2
Swainson's Thrush Catharus ustulatus - - - 0 0 11
Varied Thrush Ixoreus naevius - - - 0 0 11
Veery Catharus fuscescens - - - 0 0 1
Western Bluebird Sialia mexicana - - - 0 0 1
Tyrannidae Alder Flycatcher Empidonax alnorum - - - 0 0 1
(Tyrant Flycatchers)
Vireonidae Red-Eyed Vireo Vireo olivaceus - - - 0 0 3
(Vireos, Shrike-Babblers,
Erpornis)
Unidentified Passeriformes Unidentified Songbird - - - - 0 0 4
Unidentified Sparrow - - - - 0 0 3
Total Passeriformes - - - 224 (12.9%) 8(0.5%) 1731
Pelecaniformes Ardeidae American Bittern Botaurus lentiginosus - - - 0 0 5
(Herons, Egrets, Bitterns)
Great Blue Heron Ardea herodias - - - 10 (17.9%) 0 56
Great Egret Ardea alba - - - 0 0 1
Green Heron Butorides virescens - - - 0 0 1
Least Bittern Ixobrychus exilis - - - 0 0 1
Pelecanidae American White Pelican Pelecanus - - - 34 (69.4%) 1(2.0%) 49
(Pelicans) erythrorhynchos
Total - - - 44 (38.9%) 1(0.9%) 113
Pelecaniformes
Piciformes Picidae American Three-Toed Picoides dorsalis - - - 0 0 1
(Woodpeckers) Woodpecker
Downy Woodpecker Dryobates pubescens - - - 0 0 3
Northern Flicker Colaptes auratus - - - 0 0 15
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Pileated Woodpecker Dryocopus pileatus - - - 0 0 3
Red-Breasted Sapsucker Sphyrapicus ruber - - - 0 0 1
Yellow-Bellied Sapsucker Sphyrapicus varius - - - 0 0 2
Unidentified Piciformes Unidentified Woodpecker - - - - 0 0 1
Total Piciformes - - - 0 0 26
Podicipediformes Podicipedidae Eared Grebe Podiceps nigricollis - - - 14 (73.7%) 0 19
(Grebes)
Horned Grebe Podiceps auritus 0 0 83 - - -
Pied-Billed Grebe Podilymbus podiceps 0 0 1 0 0 3
Red-Necked Grebe Podiceps grisegena - - - 2 (25.0%) 0 8
Western Grebe Aechmophorus - - - 17 (89.5%) 0 19
occidentalis
Unidentified Podicipediformes Unidentified Grebe - - - - 0 0 1
Total 0 0 84 33 (66.0%) 0 50
Podicipediformes
Procellariiformes Hydrobatidae (Northern Storm- Leach's Storm-Petrel Hydrobates leucorhous 0 0 231 0 1(4.2%) 24
Petrels)
Procellariidae (Shearwaters, Cory's Shearwater Calonectris diomedea - - - 0 0 12
Petrels)
Great Shearwater Ardenna gravis - - - 1(6.7%) 0 15
Manx Shearwater Puffinus puffinus - - - 0 0 7
Northern Fulmar Fulmarus glacialis - - - 1(20.0%) 0 5
Sooty Shearwater Ardenna grisea - - - 0 0 5
Total 0 0 231 2 (2.9%) 1(1.5%) 68
Procellariiformes
Strigiformes Strigidae Barred Owl Strix varia - - - 2(2.3%) 0 88
(Owls)
Boreal Owl Aegolius funereus - - - 0 0 12
Burrowing Owl Athene cunicularia - - - 0 0 5
Eastern Screech Owl Megascops asio - - - 0 0 14
Great Gray Owl Strix nebulosa - - - 1(6.7%) 0 15
Great-Horned Owl Bubo virginianus - - - 114 (47.9%) 1(0.4%) 238
Long-Eared Owl Asio otus - - - 0 0 8
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Northern Hawk Owl Surnia ulula - - - 0 0 1
Northern Saw-Whet Owl Aegolius acadicus - - - 1(3.6%) 0 28
Short-Eared Owl Asio flammeus - - - 0 0 5
Snowy Owl Bubo scandiacus - - - 10 (18.5%) 1(1.9%) 54
Tytonidae Common Barn Owl Tyto alba - - - 1(8.3%) 0 12
(Barn-Owls)
Unidentified Strigiformes Unidentified Owl - - - - 0 0 3
Total Strigiformes - - - 129 (26.7%) 2(0.4%) 483
Suliformes Phalacrocoracidae (Cormorants, Double-Crested Cormorant Nannopterum auritum - - - 42 (44.2%) 0 95
Shags)
Great Cormorant Phalacrocorax carbo - - - 0 0 3
Sulidae Northern Gannet Morus bassanus 4(1.3%) 0 321 122 (66.0%) 1(0.5%) 185
(Boobies, Gannets)
Total Suliformes 4(1.3%) 0 321 164 (58.0%) 1(0.4%) 283
Grand Total 586 (5.2%) 1160 11295 1710 (27.4%) 62 (1.0%) 6246
(10.3%)

1092 2 Unless otherwise indicated, species that tested HPAIV positive based on pooled swab samples submitted through sick and dead wild bird surveillance, and that
1093 underwent gross and histologic examination, had a majority of individuals with lesions consistent with HPAIV infection.

1094 b Two of the Rock Pigeons did not have lesions consistent with HPAIV on gross and histologic examination. Cause of death in both of these cases was determined to be
1095 avitrol poisoning. The third Rock Pigeon did not undergo histologic examination but gross lesions included: congestion (moderate to marked) predominantly in the
1096 lungs, heart, and brain, in good nutritional condition (moderate fat stores) and no signs of trauma.

1097 ¢ One Wild Turkey did not have lesions consistent with HPAIV on gross and histologic examination. Cause of death was determined to be trauma. Gross and histologic
1098 results not available on the second wild turkey.

1099 d The House Sparrow did not have lesions consistent with HPAIV on gross and histologic examination. Cause of death in this case was determined to be drowning.
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Table S2. Acknowledgements of collaborators that have contributed to the collection and curation of these data but are not listed as co-authors.

Name

Affiliation

Federal

Andrew Kennedy
Sabina Wilhelm
Carina Gjerdrum
Scott Gilliland
Sarah Wong
Bruce Pollard
Matthew English
Andrew Hicks
Ted Barney
Chris Ward

Julie Paquette
Pierre Ryan
Regina Wells
Becky Whittam

Canadian Wildlife Service, Atlantic Region, Environment and Climate Change Canada

Francis St-Pierre
Mathieu Tétreault
Yannick Seyer
Jean-Francois Rail

Canadian Wildlife Service, Quebec Region, Environment and Climate Change Canada

Brigitte Collins
Denby Sadler
Ross Wood
Shawn Meyer

Canadian Wildlife Service, Ontario Region, Environment and Climate Change Canada

Mark Schuster
Blake Bartzen
Keith Warner
Owen Andrushuk
Darin Walker

Pat Bergen
Ferguson Moore

Canadian Wildlife Service Aquatic Unit, Prairie Region, Environment and Climate Change Canada

William O’Shea
Xiao Jun (Jim) Song
Jacob Hubner

Canadian Wildlife Service, Pacific Region, Environment and Climate Change Canada
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Ray Alisauskas
Jamille McLeod
Landon McPhee
Alana Weber
Karen Gesy

Josh Cunningham

Science and Technology Branch, Environment and Climate Change Canada

Julie Pare

Noel Harrington

NCFAD avian diseases, genomics
and sample receiving unit staff

Canadian Food Inspection Agency

Dave McRuer and staff

Atlantic and Quebec Field Units, Parks Canada

Provincial/Territorial

Garry Gregory
Matt Ginns
Ross Bernard
and other staff

Government of Prince Edward Island, Department of Environment, Water and Climate Change

Beverly Dawe
Blair Adams
Chuck Porter
Tina Leonard
and other staff

Government of Newfoundland and Labrador, Department of Fisheries, Forestry and Agriculture,
Forestry and Wildlife Branch

Lee Millett

All DNRR Regional Services staff
involved in incident responses
and wildlife specimen

Government of Nova Scotia, Department of Natural Resources and Renewables

collections
Staff Government of New Brunswick, Department of Natural Resources and Energy Development
Staff Government of New Brunswick, Department of Agriculture, Aquaculture, and Fisheries

Kelsey Saboraki

Manitoba Department of Natural Resources and Northern Development, Wildlife Branch

Tracy Scammell-Lafleur
Virology Section Staff

Manitoba Department of Agriculture, Veterinary Diagnostic Services

Staff of the reporting center
Staff of the Laboratoire de santé
animale de Saint-Hyacinthe

Ministére de I’Agriculture, des Pécheries et de I’Alimentation du Québec

Frédérick Leliévre
Christine Thibault

Ministére de I'Environnement, de la Lutte contre les changements climatiques, de la Faune et des
Parcs du Québec
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Wildlife officers, biologists, and
technicians in regions

Ayden McGuire Sherritt
Kim Bennett

Airboat Waterfowl Banding
Team

Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section

Maud Henaff
Kristenn Magnusson
Michelle Thompson
Mary VanderKop

Animal Health Unit, Environment Yukon

Kandis Villebrun

Government of Northwest Territories, Department of Environment and Climate Change

Sammy Angnaluak
Monica Angohiatok
Johanne Coutu-Autut
Erik Ikoe

Desmond Inaksajak
Alexander Kadlutsiak
Peter Kattegatsiak
Brad Mclnnes

Jonah Qittusuk
James Simonee

Jack Skillings
Candice Sudlovenick
Kevin Sudlovenick
Russell Toolooktook

Wildlife Operations Division, Department of Environment, Government of Nunavut

Academic, Other

Robyn MacPhee
Sarah Ogilvie

AVC Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island,
Charlottetown, Prince Edward Island

Bill Montevecchi and students

Memorial University of Newfoundland

Staff

Canadian Wildlife Health Cooperative, National Office

Viviane Casaubon
Judith Viau

Emilie L. Couture
Kathleen Brown
Shannon Ferrell
Ariane Guertin-Cabana

Canadian Wildlife Health Cooperative, Québec
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Magella Guillemette Université du Québec a Rimouski

Jean-Francois Giroux Université du Québec a Montréal
Pierre Legagneux Université Laval
Lenny Shirose Canadian Wildlife Health Cooperative, Ontario-Nunavut

Laura Dougherty
Communication Team

Mitch Weegman University of Saskatchewan

Erin Moffat Canadian Wildlife Health Cooperative, Western Northern Region
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1102  Additional Supplementary Material
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1104 Video 1. Time series of sick and dead wild birds confirmed to be highly pathogenic avian influenza virus (HPAIV) positive in Canada between
1105 November 2021 and December 2022. Taxonomic grouping represented by coloured symbology.
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1107  Supplemental Document. Canada’s Interagency Surveillance Program for Avian Influenza Viruses in Wild Birds: 2022-2023 Implementation Plan.
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