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Abstract1

Language is supported by a distributed network of brain regions with a particular contribution from the left hemi-2

sphere. A multi-level understanding of this network requires studying the genetic architecture of its functional con-3

nectivity and hemispheric asymmetry. We used resting state functional imaging data from 29,681 participants from4

the UK Biobank to measure functional connectivity between 18 left-hemisphere regions implicated in multimodal5

sentence-level processing, as well as their homotopic regions in the right-hemisphere, and interhemispheric connec-6

tions. Multivariate genome-wide association analysis of this total network, based on common genetic variants (with7

population frequencies above 1%), identified 14 loci associated with network functional connectivity. Three of these8

loci were also associated with hemispheric differences of intrahemispheric connectivity. Polygenic dispositions to lower9

language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry10

of functional connectivity, but with some trait- and connection-specific exceptions. Exome-wide association analysis11

based on rare, protein-altering variants (frequencies ≤ 1%) suggested 7 additional genes. These findings shed new light12

on the genetic contributions to language network connectivity and its asymmetry based on both common and rare13

genetic variants, and reveal genetic links to language-related traits and hemispheric dominance for hand preference.14
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Introduction15

The degree of sophistication in verbal communicative capacities is a uniquely defining trait of human beings compared16

to other primates. A distinctive feature of the neurobiology of language is its hemispheric dominance. Language17

lateralization starts when language is learned and intensifies during development into adulthood [1], resulting in18

leftward hemispheric dominance in about 85 percent of adults [2]. Most remaining adults have no clear dominant19

hemisphere for language, while roughly one percent show rightward hemispheric language dominance [2]. The left-20

hemisphere language network comprises various distributed regions including hubs in the inferior frontal gyrus and21

superior temporal sulcus[3, 4]. However, to a lesser extent, the right hemisphere homotopic regions are also active22

during language tasks, especially during language comprehension rather than production[3].23

Language-related cognitive performance is highly heritable [5–10], and genetic factors also play a substantial role24

in susceptibility to language-related neurodevelopmental disorders such as childhood apraxia of speech [11], develop-25

mental language disorder (previously referred to as specific language impairment) and dyslexia [12–14]. In addition,26

hemispheric dominance for language builds on structural and functional asymmetries that are already present in27

neonates [15]. This suggests an early developmental basis for such asymmetries that is driven by a genetic develop-28

mental program [16–18].29

Genome-wide association studies (GWAS) in tens or hundreds of thousands of individuals have begun to iden-30

tify individual genomic loci associated with language- and/or reading-related performance [9], dyslexia [14], brain31

structural asymmetry [18] and/or left- or mixed-handedness [19]. Handedness is a behavioual manifestation of brain32

asymmetry with subtle and complex relations to hemispheric language dominance and language-related cognition and33

disorders [2, 14, 20]. The implicated genes in these GWAS tend to be most strongly expressed in the embryonic and34

fetal brain rather than postnatally. All together, these findings suggest that genetic contributions to inter-individual35

variation in language-related performance, and functional and structural brain asymmetries, exert their effects mostly36

early in life.37

The genetic variants identified so far explain only a small proportion of the heritable variance in language-related38

performance or its structural underpinnings in the brain. A complementary approach to finding genes involved in39

language is to measure functional connectivity within the network of regions that support language in the brain, in40

many thousands of individuals, in order to perform well-powered GWAS. There are no existing datasets of this size that41

have collected functional imaging data during language task performance, but resting state functional connectivity is42

predictive of task-related functional activation [21–23] and also reveals meaningful organisation of the human cortex43

[24, 25]. The resting state functional connectivity approach involves identifying similarities between different brain44

regions in terms of their time course variation in the deoxyhemoglobin to hemoglobin ratio during the resting state, i.e.45

while participants are awake but not performing any particular task during functional magnetic resonance imaging46

(fMRI). The task-free nature of resting state fMRI makes it insensitive to choices in task design that can affect47

lateralization estimates [26], and is potentially more useful for studying the language network as a whole rather48

than circuits activated by one specific task. In addition, task-based fMRI has tended to find generally less heritable49

measures compared to resting state fMRI [27], making the latter perhaps more suitable for genetic investigation.50

Previous work by Mekki et al. [28] found 20 loci in a genome-wide association study of functional language51
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network connectivity based on resting state fMRI. The 25 brain regions used in their analyses to capture the brain’s52

language network were defined based on a meta-analysis of language-task activation across multiple previous task53

fMRI studies [29]. Of these 25 brain regions, 20 are in the left hemisphere and only 5 in the right hemisphere. The54

25 regions were then analysed jointly with no further attention to hemispheric differences. However, given the early55

developmental basis of functional asymmetries [15], we reasoned that it may be informative for genetic association56

analysis to consider connectivity and hemispheric differences between all bilateral pairs of involved regions. For the57

present study we therefore chose a functional atlas with left and right hemisphere homotopies [30], developed in the58

BIL&GIN cohort, which consists of approximately 300 young adults roughly balanced for handedness. In previous59

work in this cohort, a core language network was defined in right handers (N=144) based on three language tasks60

(reading, listening, and language production) and a resting state paradigm [3]. A consensus multimodal language61

network called SENSAAS was defined, consisting of 18 regions in the left hemisphere that were active during all three62

language tasks.63

For the purpose of the present gene mapping study, the right hemisphere homotopic regions were also included,64

yielding 36 regions in total (18 per hemisphere). We derived functional connectivity measures between these 3665

regions (figure S1) in 29,681 participants from the UK Biobank who had genetic and brain imaging data available,66

yielding 630 intra- and interhemispheric connectivity measures and 153 hemispheric differences between left and67

right intrahemispheric connectivity. We then investigated multivariate associations of these functional connectivity68

phenotypes with common genetic variants, as well as polygenic scores for language-related abilities [9], dyslexia [14]69

and left-handedness [19].70

In addition, we hypothesized that rare, protein-altering variants could also contribute to functional language71

connectivity, with relatively large effects in the few people who carry them. Such variants could give more direct72

clues to biological mechanisms underlying the formation of the brain’s language network. Previous large-scale genetic73

studies of both brain [20, 28] and cognitive or behavioural language-related traits [9, 10, 14] only analyzed common74

genetic variants (allele frequency in the population ≤ 1%). Tentative evidence for rare variant associations with75

right-hemisphere language dominance, involving actin cytoskeleton genes, was found in an exploratory study of 6676

unrelated participants [31]. The first exome-wide association studies of the UK Biobank [32, 33] included structural77

brain imaging metrics, but not functional metrics. Therefore, the possible contributions of rare protein-coding variants78

to functional language connectivity had yet to be investigated in a biobank-sized data set, prior to the present study.79
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Results80

After quality control (see Methods) we included 29,681 participants from the UK Biobank between ages 45 and 8281

years, for whom single nucleotide polymorphism (SNP) genotyping array data, exome sequences, and resting state82

fMRI data were available, and that were in a previously defined ’white British’ ancestry cluster [34] (by far the largest83

single cluster in the data set). For these participants we derived 630 Pearson correlations between the time courses of84

the 36 regions in the language network (hereafter language network edges) and 153 hemispheric differences between85

left and right intrahemispheric homotopies (L-R, hereafter hemispheric differences) (figure S1). Positive hemispheric86

differences correspond to stronger connectivity on the left and negative hemispheric differences correspond to stronger87

connectivity on the right. We excluded language nework edges or hemispheric differences with no significant heritability88

(nominal p ≤ 0.05) (see figure S2 and Methods section), which left 629 edges and 103 hemispheric differences (table89

S1), among which the median SNP-based heritability was 0.070 (min: 0.018, max: 0.165) for language network90

connectivity and 0.026 (min: 0, max: 0.070) for hemispheric differences.91

Common genetic variant associations with language network connectivity and asymme-92

try93

The 629 language network edges were entered into a multivariate genome-wide association scan (mvGWAS) with94

8,735,699 biallelic SNPs (genome build hg19) that passed variant quality control (see Methods), using the MOSTest95

software [35] (see Methods), after controlling for potential confounders including age and sex (Methods). Using the96

standard GWAS multiple comparison threshold (5× 10−8), 14 independent genomic loci showed significant multivari-97

ate associations with language network edges (figure 1A, table S2, figure S3). Subsequent gene mapping based on98

positional, eQTL and chromatin interaction information of SNPs (using FUMA [36]) found 111 associated genes (of99

which 40 were protein-coding, table S3). In addition, tissue expression analysis with MAGMA [37] showed preferential100

expression of language network associated genetic effects in prenatal development in the Brainspan gene expression101

data [38], which was significant at 21 weeks post conception but also generally elevated prenatally (figure 1C). Enrich-102

ment analysis against 11,404 gene sets (gene ontology and other curated sets) [39, 40] found no significant associations103

after correction for multiple comparisons, and cross-tissue enrichment analysis with respect to postmortem whole-body104

expression levels from GTEx [41] also found no significantly higher expression in any particular tissue of the body105

(figure S4 and table S4).106

To probe the genetic effects on language network connectivity of our lead multivariate findings, we plotted the107

underlying univariate beta effect estimates across connectivity measures for each of the 14 lead SNPs (1E, figure S8).108

These showed heterogeneous effects on language network connectivity (1E). For example, lead SNP rs35124509 of the109

most significantly associated genomic locus on chromosome 3 was an exonic SNP in the EPHA3 gene, where minor110

allele carriers (C, minor allele frequency (MAF) = 0.39) had on average generally reduced connectivity, i.e. lower111

time series correlations between regions, compared to non-carriers (1E, figure S5, figure S8). However, connectivity112

could also be higher on average for a minority of edges in these variant carriers (1E, figure S7). For the second most113

significantly associated genomic locus, minor allele carriers (T, MAF = 0.21) of lead SNP rs2279829 (on chromosome114

3) displayed increased connectivity on average compared to non-carriers (1E, figure S6, figure S8). This SNP was115
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Figure 1: Associations with language network connectivity and asymmetry, for genetic variants with population frequencies ≥ 1 percent.
A & B: Multivariate GWAS Manhattan plots for language network edges (A) and hemispheric differences (B). The genome is represented
along the X axis of each Manhattan plot, with chromosomes in ascending numerical order and their p-to-q arms arranged from left to
right. The Y axis of each Manhattan plot shows the pointwise significance of multivariate association, and each dot represents a single
variant in the genome. The horizontal dashed line represents the threshold p ≤ 5× 10−8 for genome-wide multiple-testing correction. C
& D: Genes associated with language network edges (C) and hemispheric differences (D) tend to be most strongly expressed in prenatal
brain tissue compared to postnatal brain tissue, according to MAGMA analysis of the Brainspan gene expression database. PCW: post
conception week. YRS: years. The horizontal dashed line represents the threshold for multiple testing correction across all developmental
stages separately. E & F: Underlying univariate beta weights for the three most significant lead SNPs for language network edges, and the
three most significant lead SNPs for hemispheric differences (E and F). Red indicates a positive association of a given edge or hemispheric
difference with increasing numbers of the minor allele of the genetic variant, and blue indicates a negative association. Plots for all lead
SNPs can be found in figure S8.

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.22.568256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.568256
http://creativecommons.org/licenses/by-nc-nd/4.0/


located upstream from the ZIC4 gene (figure S5). Lead SNP rs2274224 of the third most significantly associated116

genomic locus (on chromosome 10) is an exonic SNP in PLCCE1:PLCE1-AS1, (figure S7-8). That SNP showed an117

increase especially in interhemispheric connectivity in minor allele carriers (C, MAF = 0.44) compared to non-carriers118

(1E, figure S7-8). Brain spatial pattern plots for all 14 lead SNPs can be found in figure S8.119

Separately, 103 hemispheric differences were also entered into a single mvGWAS, using the same procedure as for120

the language network edges. Three indepedent genomic loci were significantly associated with hemispheric differences121

(1B, table S5-6, figure S9), all of which were located on chromosome 3, and had also shown significant associations122

in the mvGWAS of language network edges. Lead SNP rs7625916, a different SNP in the same broader locus that123

encompasses EPHA3, showed a broadly rightward shift in hemispheric differences for carriers of the minor allele (A,124

MAF = 0.40), although not for all hemispheric differences (1F). This SNP was located in an intergenic region of125

RP11-91A15.1 (figure S10). The lead SNP of the second locus rs2279829, located upstream of ZIC4 was the same126

as for the language network edge results. Carriers of minor effect allele (C, MAF = 0.39) displayed heterogeneous127

changes in hemispheric differences (figure 1F, figure S11). The lead SNP for the third locus, rs13321297, located in128

an intronic region near TBC1D5, was associated with a broadly rightward shift in hemispheric differences for carriers129

of the minor allele (A, MAF = 0.31, figure S12). Using gene-based association mapping in FUMA we identified 9130

genes associated with hemispheric differences, of which 4 were protein-coding, namely EPHA3, TBC1D5, ZIC1 and131

ZIC4. Tissue expression of genes associated with hemispheric differences, using MAGMA as implemented in FUMA,132

was enriched prenatally in the Brainspan developmental data [38], reaching significance at post-conception week 21133

(figure 1D). Analysis of postmortem cross-tissue expression levels from GTEx [41], and gene set analysis against 11,404134

ontology and other curated sets [39, 40] , showed no significant associations after correction for multiple comparisons135

(figure S13 and table S7).136

Polygenic scores for language-related abilities, dyslexia and handedness137

We used PRS-CS [42] to calculate genome-wide polygenic scores for language-related abilities [9], dyslexia [14] and138

left-handedness [19] for each of the 29,681 UK Biobank participants, using summary statistics from previous large-scale139

GWAS of these traits in combination with UK Biobank genotype data (Methods). Note that the previous GWAS140

of language-related abilities [9] was a multivariate GWAS that considered several language-related traits that had141

been quantitatively assessed with different neuropsychological tests: word reading, nonword reading, spelling, and142

phoneme awareness. After controlling for covariates (see Methods), polygenic disposition towards higher language-143

related abilities in the UK Biobank individuals was weakly negatively correlated with polygenic disposition towards144

dyslexia (r = −0.138, p = 3.504 × 10−126). Polygenic disposition towards left-handedness was not correlated with145

polygenic disposition as regards language-related abilities (r = −0.008, p = 0.147) or dyslexia (r = −0.005, p = 0.310).146

We then used canonical correlation analysis (CCA) in combination with permutation testing (see Methods, and147

figure S14 for the null distributions) to estimate overall associations of polygenic scores with language network edges148

and hemispheric differences. Polygenic disposition to higher language-related abilities showed a significant multivariate149

association with language network edges (canonical correlation r=0.160, p = 3×10−4) and with hemispheric differences150

(canonical correlation r=0.076, p = 9.9× 10−5). The canonical correlation loadings showed that polygenic disposition151

to higher language-related abilities was most notably associated with stronger left-hemisphere connectivity, with less152
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Figure 2: Multivariate associations with genome-wide polygenic dispositions to higher language-related abilities, dyslexia and left-
handedness, for A the language network and B its hemispheric differences. Shown are the loading patterns on the first mode of six
different CCA decompositions. Red indicates a positive association between polygenic score and brain phenotype, whereas blue indicates
a negative association.

impact on right-hemisphere connectivity, which also meant a generally leftward shift in hemispheric differences (figure153

2A).154

Polygenic disposition to dyslexia also showed significant canonical correlations with language network edges155

(r=0.177, p = 9.9 × 10−5) and hemispheric differences (r=0.078, p = 2 × 10−4), where especially interhemispheric156

connectivity was higher in those with higher polygenic disposition for this developmental reading disorder (figure 2A).157

In terms of hemispheric differences, higher polygenic disposition to dyslexia was associated with a broadly rightward158

shift in asymmetry of connectivity (figure 2B).159

Polygenic disposition to left-handedness also showed significant canonical correlations: r=0.154 (p = 2.16× 10−2)160

for language network edges and r=0.067 (p = 2.44×10−2) for hemispheric differences. Higher polygenic disposition to161

left-handedness was associated most notably with increased interhemispheric and right intrahemispheric connectivity,162

which in terms of hemispheric differences corresponds to a broadly rightward shift in asymmetry of connectivity (figure163

2B).164

Rare, protein-coding variants and functional connectivity165

The previous analyses were all based on genetic variants with population frequencies > 1 percent. We next performed166

a gene-based, exome-wide association scan based on protein-coding variants with frequencies < 1 percent, using167

REGENIE [43]. We used the SKAT-O gene-based test [44] for each of over 18,000 protein-coding genes with respect168

to 629 language network edges and 103 hemispheric differences as phenotypes, and separately using either broad169

(inclusive) or strict filtering for the predicted functional impacts of exonic variants (see Methods for details). Per170
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Figure 3: Associations of rare protein-coding variants with language network edges or hemispheric differences. A & B. SKAT-O -LOG10
p-values for genes significantly associated with the language network edges (A) and hemispheric differences (B). C & D. Distribution of
-LOG10 p-values for the significantly associated genes across all brain phenotypes. E. RNA expression values are shown over time for all 4
genes that were available from the Brainspan dataset. Each dot represents expression levels at one timepoint in one location in the brain
from one sample. Trend averages (line) and variance (shading) are shown.
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gene we identified the lowest association p-value across phenotypes (Tippet’s method), and then applied an empirical171

exome-wide significance threshold of 2.5×10−7 to account for multiple testing across genes and phenotypes (previously172

established using randomized phenotypes and exome data from UK Biobank, and applied in the context of thousands173

of phenotypes [45]). Five genes, NIBAN1 (p = 2.356 × 10−7), MANEAL (p = 1.338 × 10−7), SLC25A48 (p =174

4.263× 10−8), DUSP29 (p = 2.494× 10−7) and TRIP11 (p = 2.183× 10−7), were associated with language network175

edges under a broad filter (figure 3A, figure S15, table S8) and 2 genes, WDCP (p = 2.064 × 10−7) and DDX25176

(p = 2.011 × 10−8), were associated with hemispheric differences with a strict filter (figure 3B, figure S16 and table177

S9).178

For each of these 7 genes, the associations were based on multiple rare genetic variants present across multiple179

participants (table S10). The gene with the most distributed association pattern across functional connectivity180

measures of the language network was MANEAL, located on chromosome 1. Rare variants in this gene were most181

significantly associated with interhemispheric connectivity between the left middle temporal gyrus (G Temporal Mid-182

4-L) and the right supplementary motor area (G Supp Motor Area-3-R), with p = 1.34 × 10−7. SKAT-O testing is183

flexible for testing association when individual genetic variants might have varying directions and sizes of effects on184

phenotypes, but its output does not provide direct insight into these directions and effect sizes in the aggregate. We185

therefore followed up with a burden analysis (Methods) and found that an increased number of rare protein-coding186

variants in MANEAL was associated with generally decreased language network connectivity (figure S17).187

Another gene with a distributed association pattern was DDX25, where rare variants were associated with multiple188

hemispheric difference measures. The hemispheric difference with the strongest association to this gene was between189

the inferior frontal sulcus (S Inf Frontal-2) and the supplementary motor area (G Supp Motor Area-2), with p =190

2.01× 10−8. Follow-up burden analysis showed that an increased number of DDX25 variants that were predicted to191

be deleterious was associated with a broadly less leftward / more rightward shift in asymmetry (figure S18).192

The five remaining genes, NIBAN1, SLC25A48, DUSP29, TRIP11 and WDCP did not display widespread asso-193

ciations with respect to language network connectivity measures or hemispheric differences (figure 3C and 3D), but194

rather were driven by one or a few individual edges or hemispheric differences.195
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Discussion196

Studying the genetics of language-related brain traits, such as language network functional connectivity in the resting197

state, can yield clues to developmental and neurobiological mechanisms that support the brain’s functional architecture198

for language. In this study we report common genetic variant, polygenic and exonic rare variant associations with199

language network functional connectivity, and/or hemispheric differences of connectivity. We found 14 genomic200

loci associated with language network edges and 3 of these loci were also associated with hemispheric differences.201

EPHA3 was the most significantly associated gene based on common genetic variants. A polygenic disposition for202

higher language-related abilities was associated with a leftward shift in functional connectivity asymmetry, while203

polygenic dispositions to dyslexia and left-handedness were associated with rightward shifts in functional connectivity204

asymmetry. Lastly, exome-wide scanning suggested 5 genes associated with language network edges and 2 genes205

with hemispheric differences on the basis of rare, protein-coding variants. MANEAL and DDX25 showed distributed206

association profiles across multiple regional brain connectivity measures.207

Common variant associations208

The most significant association we found was on the 3p11.1 locus, near the EPHA3 gene, which codes for ephrin209

type-A receptor 3. EPHA3 is involved in developmental processes such as neurogenesis, neural crest cell migration,210

axon guidance and fasciculation [46–48] and is preferentially expressed 8 to 24 weeks post-conception. This genomic211

locus has previously shown association with individual differences in both resting state functional connectivity [27,212

28, 49] and white matter connectivity [28, 50] in the frontotemporal semantic network. Here we add to the literature213

that this locus is also associated with hemispheric differences of language network functional connectivity. EPHA3214

may therefore be involved in development of a left-right axis in the brain that supports hemispheric specialization for215

language.216

A second locus associated with language network connectivity and asymmetry was located in 3p24.3, near the217

TBC1D5 gene, which codes for subunit TBC1 domain family member 5. This gene may act as a GTPase-activating218

protein for Rab family protein(s), and is expressed in all tissues, including the brain [51]. TBC1D5 is involved in cell219

processes related to macroautophagy and receptor metabolism. Recent studies have found associations of this gene220

with functional language network connectivity [28], white matter [52], dyslexia [14], and health-related associations221

with Parkinson’s Disease [53] and schizophrenia [54]. Again, here we add an association with hemispheric differences222

that implies a role in development of the left-right axis in the brain that supports language lateralization.223

In total, of the 14 genomic loci we found, 12 were previously reported in other GWAS of brain traits [27, 28,224

49, 50]. Two loci that have no previous literature associated with them in the GWAS Catalog [55] were a locus on225

the pseudo-autosomal part of the X and Y chromosome, with rs2360257 as lead SNP, and a locus on 3q22.2, with226

rs143322006 as lead SNP. The latter is intergenic to EPHB1, and therefore this novel finding underscores a potential227

role of ephrin receptors in functional connectivity of the brain’s language network. The well-known functions of ephrins228

in axon guidance for nerve fiber tract formation are likely to be relevant in this context.229

The other 12 loci were found in two prior GWAS studies of functional connectivity [28, 49], both of which differed230

from each other and from the present study in terms of connectomic methodologies. This suggests that connectome231
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methodological choices only partially influence the discovery of genetic loci, i.e. some genetic influences on brain232

functional connectivity can be relatively robustly detected across different methodological choices. Six out of 14233

loci were also found in a study of the white matter connectome [50], which confirms that functional and structural234

connectivity have partially overlapping genetic architectures. The overlap of significant loci from the present study235

with those found in GWAS studies of dyslexia, language-related abilities and handedness was more limited, which236

may be expected given that the latter are behavioural traits rather than measures of brain structure or function. The237

3p24.3 locus from the present study was found in a large GWAS for dyslexia [14], and the 17q21.31 locus was also238

associated with left-handedness [56].239

Associations with genetic predispositions240

Genome-wide polygenic scores for language-related abilities, dyslexia, or left-handedness were significantly but subtly241

associated at the population-level with language network functional connectivity and asymmetry. These subject-242

level polygenic scores quantify the cumulative effects of common genetic variants from across the genome on a given243

trait. The leftward shift of asymmetry in people with polygenic dispositions to higher language-related abilities is244

consistent with functional asymmetry reflecting an optimal organization for language processing. Although language245

performance and functional language lateralization do not seem to be strongly correlated in healthy adults [57, 58],246

an absence of clear hemispheric language dominance has been reported to associate with slightly reduced cognitive247

functioning across multiple domains [59].248

The rightward shift in asymmetry of language network connectivity with higher polygenic disposition to dyslexia249

is in line with some previous studies in smaller samples that suggested decreased left hemisphere language dominance250

in dyslexia, although this previous evidence was often inconsistent and inconclusive [60–63]. This association also251

converges in its direction with the association of TBC1D5 with hemispheric differences described above. Our study252

therefore illustrates how large-scale brain imaging genetic analysis of genetic disposition to a human cognitive disorder253

can inform on the neurobiological correlates of the disorder, even when carried out using general population data.254

The rightward shift in asymmetry of language network functional connectivity with higher polygenic scores for255

left-handedness that we observed is consistent with increased right hemisphere language dominance in left-handers [2,256

20, 64]. Causality cannot be determined in a cross-sectional dataset of the kind used in our study. For example, genetic257

disposition may affect prenatal brain development in ways that alter functional asymmetries, and this seems likely258

given that many of the relevant genes are upregulated in the prenatal brain, and that functional asymmetries already259

exist in neonates [15]. However, some functional asymmetries may also follow, or be reinforced through, behaviours260

that are influenced by genetic disposition [19]. Consistent with this latter possibility, a meta-analysis of neuroimaging261

studies of dyslexia suggested that reduced left-hemisphere dominance is only present in adults and not in children [61].262

The UK Biobank consists of middle-aged and older adults, but future studies of polygenic risk for dyslexia should test263

the association with brain connectiviy in younger samples, to help address the developmental/aging questions.264

It is important to recognize that gene-brain associations in general population data are usually subtle [19, 65] and265

also that canonical correlations tend to increase with the number of variables, due to higher degrees of freedom [66].266

However, as we only used the first canonical mode and only tested a single polygenic score on one side of the correlation267

in each analysis (versus multiple brain traits on the other side), then the freedom of the canonical correlation was268
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relatively restricted. The permutation test that we used showed that all multivariate associations with polygenic269

scores were greater than expected by chance. Furthermore, the first canonical mode has previously been shown to be270

the most replicable [67] as it captures the most variance. Cross-validation in canonical correlation analysis is often271

employed for supervised model evaluations, but our use here was unsupervised and descriptive, for which there is no272

clear procedure for model evaluation [66]. Our interest was to describe the most accurate overall association between273

polygenic disposition to a given trait and brain functional connectivity measures in the available sample.274

Exome-wide scans275

We report associations of 5 genes, NIBAN1, MANEAL, SLC25A48, DUSP29 and TRIP11, with language network276

connectivity and 2 genes, WDCP and DDX25, with hemispheric differences on the basis of rare, protein-coding277

variants from exome sequence data. No previous rare variant associations have been reported with any of these 7278

genes [32, 33], but MANEAL has been previously implicated in a GWAS of mathematical ability based on common279

genetic variants [68], which testifies broadly to its relevance for cognitive function. The protein encoded by MANEAL280

is found in the Golgi apparatus [69] and may regulate alpha-mannosidase activity. Previous work has shown relatively281

high expression of this gene in the brain compared to various other tissues [51]. DDX25 is a DEAD box protein with282

the Asp-Glu-Ala-Asp motif, involved in RNA processing. Tissue expression for DDX25 is also relatively high in the283

brain or testis compared to other tissues [51]. The roles of these 7 genes in brain development and function remain to284

be studied, for example using model systems such as cerebral organoids or knockout mice.285

The exome-wide association analysis that we used here involved mass univariate testing with respect to brain286

connectivity measures, rather than multivariate modelling. For common genetic variants, several multivariate associ-287

ation frameworks have been developed, one of which we used here for our common variant GWAS (MOSTest) [35].288

Such methods generally provide increased statistical power to detect effects compared to mass univariate testing,289

when genetic variants are associated with phenotypic covariance. However, such multivariate methods are currently290

lacking for application to the study of rare, protein-coding variants in Biobank-scale samples, where the effects of291

individual variants must be aggregated at the gene level and computational feasibility is an important consideration.292

The development of new multivariate methods for exome-wide analysis is required. As the findings in our exome-wide293

association scan only surpassed the multiple testing correction threshold by a small amount, we regard these findings294

as tentative until they might be replicated in the future in other datasets.295

Limitations296

Resting state functional connectivity does not provide a direct measurement of language lateralization. In this study297

we quantified resting state functional connectivity between regions that were previously found to be involved in298

language on the basis of fMRI during sentence-level reading, listening and production tasks [3], and also where left-299

right homotopic regions were defined for the investigation of hemispheric differences. The use of full correlations as300

connectivity measures, as is common in the field, means that an increase in connectivity between a pair of regions301

can also be indirect through other regions [70]. Another caveat is that individual anatomical differences may seep302

into functional connectivity measures when a hard parcellation is used [70, 71]. However, as the literature has shown303

more broadly, structural brain properties can make meaningful contributions to functional connectivity and it might304
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not be possible to fully disentangle the two [72–75].305

Issues with respect to our chosen methods for genetic association testing have been discussed above. A general306

point is that we used one large discovery sample of 29,681 participants to maximize power in our GWAS, polygenic307

association analysis, and exome-wide scan. This did not allow for a discovery-replication design. However, using the308

largest available sample leads to the most accurate estimate of any possible association, including of its effect size. In309

light of this, the utility of discovery-replication designs has declined in relevance with the rise of biobank-scale data310

[76].311

A limitation of the UK Biobank is that participation is on a voluntary basis, which has led to an overrepresentation312

of healthy participants rather than being fully representative of the general population [65, 77].313

Conclusion314

In conclusion, we report 14 genomic loci associated with language network connectivity or its hemispheric differences315

based on common genetic variants. Polygenic dispositions to lower language-related abilities, dyslexia and left-316

handedness were associated with generally reduced leftward asymmetry of functional connectivity in the language317

network. Exome-wide association analysis based on rare, protein-altering variants (frequencies ≤ 1 %) suggested 7318

additional genes. These findings shed new light on the genetic contributions to language network connectivity and its319

hemispheric differences based on both common and rare genetic variants, and reveal genetic links to language- and320

reading-related abilities and hemispheric dominance for hand preference.321
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Materials and methods322

Participants323

Imaging and genomic data were obtained from the UK Biobank [34] as part of research application 16066 from324

primary applicant Clyde Francks. The UK Biobank received ethical approval from the National Research Ethics325

Service Committee North West-Haydock (reference 11/NW/0382), and all of their procedures were performed in326

accordance with the World Medical Association guidelines. Informed consent was obtained for all participants [78].327

Analyses were conducted on 29,681 participants that remained after quality control of genotype, exome and imaging328

data (see below).329

Imaging data330

Brain imaging data were collected as described previously [79, 80]. In this analysis resting state fMRI data were used331

(UK Biobank data-field 20227, February 2020 release [79, 80]). Identical scanners and software platforms were used332

for data collection (Siemens 3T Skyra; software platform VD13). For collection of rs-fMRI data, participants were333

instructed to lie still and relaxed with their eyes fixed on a crosshair for a duration of 6 minutes. In that timeframe334

490 datapoints were collected using a multiband 8 gradient echo EPI sequence with a flip angle of 52 degrees, resulting335

in a TR of 0.735 s with a resolution of 2.4x2.4x2.4mm3 and field-of-view of 88x88x64 voxels. Our study made use of336

pre-processed image data generated by an image-processing pipeline developed and run on behalf of UK Biobank (see337

details below).338

Genetic data339

Genome-wide genotype data (UK Biobank data category 263) was obtained by the UK Biobank using two different340

genotyping arrays (for full details see [34]). Imputed array-based genotype data contained over 90 million SNPs and341

short insertion-deletions with their coordinates reported in human reference genome assembly GRCh37 (hg19). In342

downstream analyses we used both the unimputed and imputed array-based genotype data in different steps (below).343

Exome sequencing data were obtained and processed as described in more detail elsewhere [32, 45, 81] (UK344

Biobank data category 170, genome build GRCh38). Briefly, the IDT xGen Exome Research Panel v.1.0 was used to345

capture exomes. Samples were sequenced using the Illumina NovaSeq 6000 platform with S2 (first 50,000 samples)346

or S4 (remaining samples) flow cells and were processed by the UK Biobank team according to the OQFE Protocol347

(https://hub.docker.com/r/dnanexus/oqfe). Analyses using individual-level exome data (UK Biobank data field348

23157) were conducted on the Research Analysis Platform (https://UKBiobankiobank.dnanexus.com)349

Sample-level quality control350

Sample-level quality control at the phenotypic and genetic level was conducted on 40,595 participants who had imaging,351

genotype and exome data available. In phenotype sample-level quality control, participants were first excluded with352

imaging data labelled as unusable by UK Biobank quality control. Second, participants were removed based on353

outliers (here defined as 6 × interquartile range (IQR)) in at least one of the following metrics: discrepancy between354
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rs-fMRI brain image and T1 structural brain image (UK Biobank field 25739), inverted temporal signal-to-noise355

ratio in preprocessed and artefact-cleaned preprocessed rs-fMRI (data fields 25743 and 25744), scanner X, Y and Z356

brain position (fields 25756, 25757 and 25758) or in functional connectivity asymmetries (see section* Imaging data357

preprocessing and phenotype derivation). Third, participants with missing data in the connectivity matrices were358

excluded. In total 3,472 participants were excluded in the phenotype QC.359

Subsequently, in genetic sample-level quality control, only participants in the pre-defined white British ancestry360

cluster were included (data-field 22006) [34], as this was the largest single cluster in terms of ancestral homogeneity – an361

important consideration for some of the genetic analyses that we carried out (below). Furthermore, participants were362

excluded when self-reported sex (data-field 31) did not match genetically inferred sex based on genotype data (data-363

field 22001) or exome data, when sex chromosome aneuploidy was suspected (data-field 22019), or when exclusion364

thresholds were exceeded in heterozygosity (≥ 0.1903) and/or genotype missingness rate (≥ 0.05) (data-field 22027).365

Finally, one random member of each pair of related participants (up to third degree, kinship coefficient ≥ 0.0442,366

pre-calculated by UK Biobank) was removed from the analysis. This led to the further exclusion of 7,442 participants.367

In total 29,681 participants were included in all further analyses.368

Imaging data preprocessing and phenotype derivation369

Preprocessing was conducted by the UK Biobank and consisted of motion correction using MCFlirt [82], intensity370

normalization, high-pass filtering to remove temporal drift (sigma=50.0s), unwarping using fieldmaps and gradient371

distortion correction. Structured scanner and movement artefacts were removed using ICA-FIX. [83–85] Preprocessed372

data were registered to a common reference template in order to make analyses comparable (the 6th generation373

nonlinear MNI152 space, http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6).374

On the local compute cluster at the MPI for Psycholinguistics, network connectivity was derived based on the375

AICHA atlas [30]. Key properties of the AICHA atlas are its homotopies. For each of the 192 parcels left and right376

hemisphere functional homotopies were defined. Of these 192 pairs, 7 regions were previously excluded from the atlas377

due to poor signal on the outside of the brain [30], leaving 185 parcel pairs. Time courses were extracted from the378

AICHA atlas using invwarp and applywarp from FSL (v. 5.0.10 [86]) and mri segstats from Freesurfer (v.6.0.0 [87]).379

Correlations between time courses were derived with numpy (v.1.13.1) using Python 2.7 and were transformed to380

z-scores using a Fisher transform in order to achieve normality. In addition, only the upper diagonal values were381

used. These values can be considered a measure of connection strength between two regions. Functional hemispheric382

differences (L-R) were derived for each connection, and outliers (6× IQR) were excluded. Previous work identified 18383

regions as part of the core language network in multiple language processing domains (reading, listening and speaking384

[3]). These 18 regions and their homotopies were used in this analysis.385

Two different types of imaging-derived phenotypes (IDPs) were extracted and used in genetic analyses. First, all386

630 Z-transformed correlation values were included, including both intra- and interhemispheric connectivity. Second,387

for all intrahemispheric connectivity edges, hemispheric differences (L-R) were included, yielding 153 edge hemispheric388

differences. In total this yielded 783 new IDPs for further analysis.389
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Genetic variant-level QC390

Four different genetic datasets were prepared, as needed for four different analysis processes:391

1. Array-based genotype data were filtered, maintaining variants with linkage disequilibrium (LD) ≤ 0.9, minor392

allele frequency (MAF) ≥ 0.01, Hardy-Weinberg Equilibrium test p-value ≥ 1 × 10−15 (see [43]), and genotype393

missingness ≤ 0.01 for REGENIE step 1 (below). 2. Imputed genotype data were filtered, maintaining bi-allelic394

variants with an imputation quality ≥ 0.7, Hardy-Weinberg Equilibrium test p-value ≥ 1 × 10−7 and genotype395

missingness ≥ 0.05 for association testing in MOSTest (below). 3. For genetic relationship matrices SNPs were only396

used if they were bi-allelic, had a genotype missingness rate ≤ 0.02, a Hardy Weinberg Equilibrium p-value ≥ 1×10−6,397

an imputation INFO score ≥ 0.9, a MAF ≥ 0.01, and a MAF difference ≤ 0.2 between the imaging subset and the398

whole UK Biobank were used. 4. For exome sequence data, only variants in the 39 Mbp exome sequencing target399

regions were retained (UK Biobank resource 3803), excluding variants in 100 bp flanking regions for which reads were400

not checked for coverage and quality standards in the exome processing pipeline. Monoallelic variants (marked with401

a ’MONOALLELIC’ filter flag) were also removed. Then, individual-level genotypes were set to no-call if the read402

depth was ≤ 7 (for single nucleotide variants) or ≤ 10 (for indel variant sites) and/or if the genotype quality was ≤ 20.403

Variant-level filtering comprised removal of variants sites with an average GQ (which is the Phred-scaled probability404

that the call is incorrect) across genotypes ≤ 35, variant missingness rate ≥ 0.10, minor allele count (MAC) ≤ 1,405

and/or low allele balance (only for variants with exclusively heterozygous genotype carriers; ≤ 0.15 for SNV sites,406

≤ 0.20 for INDEL variant sites). Transition-transversion ratios were calculated prior to and after variant-level filtering407

as an indicator of data quality. Filtered pVCF files were converted to PLINK binary format, dropping multi-allelic408

variants, and then merged per chromosome. For the X chromosome, pseudo-autosomal regions (PAR1: start - base409

pair 2781479, PAR2: base pair 155701383 – end, genome build GRCh38) were split off from the rest of chromosome410

X. Any heterozygous haploid genotypes in the non-PAR chr X were set to missing.411

Heritability analysis412

Genetic relationship matrices (GRMs) were computed for the study sample. In addition to previous sample-level413

quality control, individuals with a genotyping rate ≤ 0.98 and one random individual per pair with a kinship coefficient414

≥ 0.025 derived from the GRM were excluded from this particular analysis. For all individuals that passed quality415

control and heritability of each of the 783 newly derived IDPs was estimated using genome-based restricted maximum416

likelihood (GREML) in GCTA v. 1.93.0beta [88]. Phenotypes that passed a nominal significance heritability filter of417

p ≤ 0.05 were included in further analysis.418

Common variant association testing419

Multivariate common variant association testing (mvGWAS) was performed using the MOSTest toolbox [35] for all420

heritable measures separately for all 629 heritable language network edges and all 103 heritable hemispheric differences.421

MOSTest fully accounts for the multivariate nature by estimating the correlation structure on permuted genotype422

data and then computing the Mahalanobis norm as the sum of squared de-correlated z-values across univariate GWAS423

summary statistics and then fitting a null distribution using a gamma cumulative density function to extrapolate424
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beyond the permuted data to significant findings. The multivariate z-statistic from MOSTest is always positive and425

does not provide information on directionality. We used imputed genotype array data and the following covariates:426

sex, age, age2, age × sex, the first 10 genetic principle components that capture genome-wide ancestral diversity,427

genotype array (binary variable) and various scanner-related quality measures (scanner X, Y and Z-position, inverted428

temporal signal to noise ratio and mean displacement as an indication of head motion) (see table S11 for UK Biobank429

field IDs). For directionality purposes we used the underlying univariate associations (beta estimates) and plotted430

these to describe the directionality. Genome-wide significant variants were annotated using the online FUMA platform431

(version 1.5.2) [36]. MAGMA (version 1.08) [37] gene analysis in FUMA was used to calculate gene-based p-values432

and for gene-property analyses, to investigate potential gene sets of interest [39, 40] and to map the expression of433

associated genes in a tissue-specific [41] and time-specific [38] fashion. Gene sets smaller than 10 were excluded from434

the analysis, due to risk for statistical inflation.435

Associations with genetic predispositions436

In order to understand how language network edges and hemispheric differences relate to genetic predisposition for437

language-related abilities (quantitatively assessed in up to 33,959 participants from the GenLang consortium) [9],438

dyslexia (51,800 cases and 1,087,070 controls) from 23andMe, Inc. [14] and left-handedness (33,704 cases and 272,673439

controls) from UK Biobank participants without imaging data [19], we used polygenic scores and canonical correlation440

analysis (CCA) for each polygenic score separately. Polygenic scores were calculated with PRS-CS [42], which uses441

a Bayesian regression framework to infer posterior effect sizes of autosomal SNPs based on genome-wide association442

summary statistics. PRS-CS was applied using default parameters and a recommended global shrinkage parameter443

phi = 0.01, combined with LD information from the 1000 Genomes Project phase 3 European-descent reference444

panel. PRS-CS performed in a similar way to other polygenic scoring methods, with noticeably better out-of-sample445

prediction than an clumping and thresholding approach [89, 90]. Before entering polygenic scores into a CCA analysis,446

they were residualised for these covariates: sex, age, age2, age × sex, the first 10 genetic principle components that447

capture genome-wide ancestral diversity, genotype array (binary variable) and various scanner-related quality measures448

(scanner X, Y and Z-position, inverted temporal signal to noise ratio and mean displacement as an indication of head449

motion) (see table S11 for UK Biobank field IDs). Polygenic scores were then normalized using quantile transform450

from scikit-learn v.1.0.1 and entered into a CCA analysis, also using scikit-learn. As correlation values in CCA tend451

to increase with the number of variables, we permuted the polygenic scores 10,000 times to build a null distribution452

of correlation values between IDPs and permuted polygenic scores and tested whether the correlation values of the453

first mode were outside the 95th percentile of the null distribution.454

Exome-wide scan455

For rare variant association testing REGENIE v.3.2.1 was used [43]. In brief, REGENIE is a two-step machine learning456

method that fits a whole genome regression model and uses a block-based approach for computational efficiency. In457

REGENIE step 1, array-based genotype data were used to estimate the polygenic signal in blocks across the genome458

with a two-level ridge regression cross-validation approach. The estimated predictors were combined into a single459

predictor, which was then decomposed into 23 per-chromosome predictors using a leave one chromosome out (LOCO)460
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approach, with a block size of 1000, 4 threads and low-memory flag. Phenotypes were transformed to a normal461

distribution in both REGENIE step 1 and 2. Covariates for both steps included sex, age, age2, age × sex, the first462

10 genetic principle components that capture genome-wide ancestral diversity, genotype array (binary variable) and463

various scanner-related quality measures (scanner X, Y and Z-position, inverted temporal signal to noise ratio and464

mean displacement as an indication of head motion) (see table S11 for UK Biobank field IDs). Common and rare465

variant association tests were run conditional upon the LOCO predictor in REGENIE step 2. Functional annotation466

of variants was conducted using snpEff v5.1d (build 2022-04-19) [91]. Physical position in the genome was used to467

assign variants to genes and were annotated with Ensembl release 105. Combined Annotation Dependent Depletion468

(CADD) Phred scores for variants were taken from the database for nonsynonymous functional prediction (dbNSFP)469

(version 4.3a) [92] using snpSift 5.1d(build 2022-04-19). Variants were then classified for downstream analysis based470

on their functional annotations to either be included in a ’Strict’ or ’Broad’ filter or be excluded from further analysis.471

The ’Strict’-filter only included variants that were annotated with a ’High’ impact on a canonical gene transcript472

(variant types include highly disruptive mutations like frameshifts) outside of the 5% tail end of the corresponding473

protein (high-impact variants in the 5% tail ends usually escape nonsense-mediated decay) or a ’Moderate’ effect on474

a canonical gene transcript combined with CADD Phred score ≥ 20 (these include likely deleterious protein-altering475

missense variants). The second ’Broad’ set of variants also included ‘High’ annotated variants affecting alternative476

gene transcripts outside of 5% tail ends, ‘Moderate’ annotated variants that affected canonical or alternative gene477

transcripts with CADD Phred scores of at least 1, and ‘Modifier’ variants that affected canonical or alternative gene478

transcripts with CADD Phred scores of at least 1 (see table S12). A higher CADD score entails higher predicted479

deleteriousness of a SNP [93]. In REGENIE step 2, we performed a gene-based SKAT-O test [44] with strict and480

broad variant filters based on functional annotation with all heritable IDPs. A SKAT-O test is most appropriate in481

our study design as we had no a priori hypothesis about the direction of the genetic effect. Multivariate exome testing482

was conducted separately for language network edges and hemispheric differences by using Tippet’s method which483

involves taking the lowest p-value across the phenotypes of interest. This was previously used as validation method484

for development of MOSTest [35] and was shown to be less sensitive than multivariate genetic association testing in485

common variants. We adjusted for the exome-wide gene-based multiple comparison burden using an empirical p-value486

threshold for Type 1 error control from previous work (2.5 × 10−7 [33]). This was computed as 0.05 × the average487

p-value from 300 random phenotypes with varying heritabilities and UK Biobank exome data and approximates 0.05488

expected false positives per phenotype. We then followed up significant results using (i) burden testing for assessing489

the effect of genetic mutation burden on brain connectivity and (ii) confirmatory variant-level association testing on490

the significant genes to describe which variants drove the gene-based associations.491

Data and code availability492

The primary data used in this study are from the UK Biobank. These data can be provided by UK Biobank pending493

scientific review and a completed material transfer agreement. Requests for the data should be submitted to the494

UK Biobank: https://www.ukbiobank.ac.uk. Specific UK Biobank data field codes are given in Materials and495

Methods. Other publicly available data sources and applications are cited in Materials and Methods. We have made496

our mvGWAS summary statistics available online within the GWAS catalog: https://ebi.ac.uk/gwas/. This study497
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used openly available software and codes, specifically GCTA (https://cnsgenomics.com/software/gcta/#GREML),498

MOSTest (https://github.com/precimed/mostest), FUMA (https://fuma.ctglab.nl/), MAGMA (https://499

ctg.cncr.nl/software/magma, also implemented in FUMA), PRS-CS (https://github.com/getian107/PRScs),500

REGENIE (https://rgcgithub.github.io/regenie/install/) and LD score regression (https://github.com/501

bulik/ldsc). Custom code for this study is available from https://github.com/jsamelink/langnet_paper. All502

other data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary503

Materials.504
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75. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking Structure and Function in Macroscale Brain753

Networks. English. Trends in Cognitive Sciences 24. Publisher: Elsevier, 302–315. issn: 1364-6613, 1879-307X.754

https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(20)30026-7 (2023) (Apr.755

2020).756

76. Huffman, J. E. Examining the current standards for genetic discovery and replication in the era of mega-biobanks.757

en. Nature Communications 9. Number: 1 Publisher: Nature Publishing Group, 5054. issn: 2041-1723. https:758

//www.nature.com/articles/s41467-018-07348-x (2023) (Nov. 2018).759

77. Fry, A. et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants760

With Those of the General Population. American Journal of Epidemiology 186, 1026–1034. issn: 0002-9262.761

https://doi.org/10.1093/aje/kwx246 (2023) (Nov. 2017).762

78. Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex763

Diseases of Middle and Old Age. en. PLOS Medicine 12. Publisher: Public Library of Science, e1001779. issn:764

1549-1676. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001779765

(2023) (Mar. 2015).766

79. Alfaro-Almagro, F. et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from767

UK Biobank. en. NeuroImage 166, 400–424. issn: 1053-8119. https://www.sciencedirect.com/science/768

article/pii/S1053811917308613 (2023) (Feb. 2018).769

80. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study.770

en. Nature Neuroscience 19. Number: 11 Publisher: Nature Publishing Group, 1523–1536. issn: 1546-1726.771

https://www.nature.com/articles/nn.4393 (2023) (Nov. 2016).772

26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.22.568256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.568256
http://creativecommons.org/licenses/by-nc-nd/4.0/


81. Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. en.773

Nature 586. Number: 7831 Publisher: Nature Publishing Group, 749–756. issn: 1476-4687. https://www.774

nature.com/articles/s41586-020-2853-0 (2023) (Oct. 2020).775

82. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved Optimization for the Robust and Accurate Linear776

Registration and Motion Correction of Brain Images. en. NeuroImage 17, 825–841. issn: 1053-8119. https:777

//www.sciencedirect.com/science/article/pii/S1053811902911328 (2023) (Oct. 2002).778

83. Beckmann, C. & Smith, S. Probabilistic independent component analysis for functional magnetic resonance779

imaging. IEEE Transactions on Medical Imaging 23. Conference Name: IEEE Transactions on Medical Imaging,780

137–152. issn: 1558-254X (Feb. 2004).781

84. Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state782

network imaging. en. NeuroImage 95, 232–247. issn: 1053-8119. https://www.sciencedirect.com/science/783

article/pii/S1053811914001815 (2023) (July 2014).784

85. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: Combining independent component785

analysis and hierarchical fusion of classifiers. en. NeuroImage 90, 449–468. issn: 1053-8119. https://www.786

sciencedirect.com/science/article/pii/S1053811913011956 (2023) (Apr. 2014).787

86. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. en. NeuroImage. 20788

YEARS OF fMRI 62, 782–790. issn: 1053-8119. https://www.sciencedirect.com/science/article/pii/789

S1053811911010603 (2023) (Aug. 2012).790

87. Fischl, B. FreeSurfer. en. NeuroImage. 20 YEARS OF fMRI 62, 774–781. issn: 1053-8119. https://www.791

sciencedirect.com/science/article/pii/S1053811912000389 (2023) (Aug. 2012).792

88. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A Tool for Genome-wide Complex Trait Analysis.793

en. The American Journal of Human Genetics 88, 76–82. issn: 0002-9297. https://www.sciencedirect.com/794

science/article/pii/S0002929710005987 (2023) (Jan. 2011).795

89. Ni, G. et al. A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple796

Cohorts. eng. Biological Psychiatry 90, 611–620. issn: 1873-2402 (Nov. 2021).797

90. Zheutlin, A. B. et al. Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients798

Across Four Health Care Systems. eng. The American Journal of Psychiatry 176, 846–855. issn: 1535-7228 (Oct.799

2019).800

91. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms,801

SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. eng. Fly 6, 80–92. issn:802

1933-6942 (2012).803

92. Liu, X., Li, C., Mou, C., Dong, Y. & Tu, Y. dbNSFP v4: a comprehensive database of transcript-specific functional804

predictions and annotations for human nonsynonymous and splice-site SNVs. eng. Genome Medicine 12, 103.805

issn: 1756-994X (Dec. 2020).806

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.22.568256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.568256
http://creativecommons.org/licenses/by-nc-nd/4.0/


93. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness807

of variants throughout the human genome. Nucleic Acids Research 47, D886–D894. issn: 0305-1048. https:808

//doi.org/10.1093/nar/gky1016 (2023) (Jan. 2019).809

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.22.568256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.568256
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary figures Amelink et al. 2023 

 

Figure S1 - Abbreviated overview of the analysis pipelines used. A. We derived connectivity values 

and their hemispheric differences from resting state connectivity from the SENSAAS atlas that was 

previously developed based on several language tasks (see Introduction), filtered for heritability, and 

then applied three different genetic analyses to both these phenotype sets. B. The first analysis was a 

multivariate genome-wide association study (mvGWAS) based on common variant genotype data, 

which was annotated using FUMA, MAGMA and Brainspan data. C. The second analysis involved 

deriving of polygenic scores based on large-scale GWAS summary statistics for three phenotypes of 

interest: language-related performance, dyslexia, and left-handedness. We then used canonical 

correlation analysis (CCA) in combination with a permutation test to test the multivariate association 

patterns between these scores and our language network connectivity and hemispheric differences.  D. 

The third analysis was an exome-wide scan using a gene-based SKAT-O test (an optimized sequence 

kernel association test), which was followed-up with variant association testing and annotation using 

Brainspan data. Allele freq represents allele frequency. Quality control is abbreviated as QC. 
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Figure S2 – Heritability estimates from GCTA for all derived phenotypes. All non-significant 

phenotypes (blue) were omitted from all further analyses. 

 

 

Figure S3 – QQ plot for mvGWAS results for language network 
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Figure S4 – GTEx v8 53 tissue types for language network 
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Figure S5 – Locuszoom plot for language network results of rs35124509 on chromosome 3. Top: a 

fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r2). Middle: Combined 

Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. 

Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects 

using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression. 
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Figure S6 – Locuszoom plot for language network results of rs2279829 on chromosome 3. Top: a 

fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r2). Middle: Combined 

Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. 

Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects 

using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression. 
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Figure S7 - Locuszoom plot for language network results of rs2274224 on chromosome 10. Top: a 

fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r2). Middle: Combined 

Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. 

Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects 

using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression. 
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Figure S8 - Underlying univariate beta weights for all 14 significant lead SNPs for language network 

edges. Red indicates a positive association of a given edge or hemispheric difference with increasing 

number of the minor allele of the genetic variant, and blue indicates a negative association. 
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Figure S9 – QQ plot for mvGWAS results hemispheric differences 
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Figure S10 – Locuszoom plot for hemispheric differences results of rs7625916 on chromosome 3. 

Top: a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r2). Middle: Combined 

Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. 

Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects 

using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression. 
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Figure S11 – Locuszoom plot for hemispheric differences results of rs2279829 on chromosome 3. 

Top a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r2). Middle: Combined 

Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. 

Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects 

using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression. 
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Figure S12 – Locuszoom plot for hemispheric differences results of rs1332197 on chromosome 3. 

Top: a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r2). Middle: Combined 

Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. 

Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects 

using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression. 
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Figure S13 - GTEx v8 53 tissue types for hemispheric differences 

 

 

 

 

 

Figure S14 – Null distributions for CCA results with permuted language-related abilities, dyslexia 

and left-handedness polygenic scores. Left distribution is hemispheric differences, right is language 

network. 
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Figure S15 – Miami plot for exome-wide gene-based lowest p-value associations with language 

network. Top results are with a broad variant filter, bottom results are with a strict variant filter. QQ 

plot inserts show genomic inflation for all p-values. 
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Figure S16 - Miami plot for exome-wide gene-based lowest p-value associations with hemispheric 

differences. Top results are with a ‘broad’ variant filter, bottom results are with a ‘strict’ variant filter 

(see Methods). QQ plot inserts show genomic inflation for all p-values. 
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Figure S17 – Language network betas for increased genetic burden with a ‘broad’ variant filter (see 

Methods). Red means an increase in connectivity, blue means a decrease in connectivity. 

824

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.22.568256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.568256
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure S18 – Hemispheric differences betas for increased genetic burden with a ‘strict’ variant filter 

(see Methods). Red means an increase in connectivity, blue means a decrease in connectivity. 
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