

Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness

Jitse S. Amelink,^a Merel C. Postema,^a Xiang-Zhen Kong,^{a,b,c} Dick Schijven,^a Amaia Carrion Castillo,^a Sourena Soheili-Nezhad,^a Zhiqiang Sha,^a Barbara Molz,^a Marc Joliot,^d Simon E. Fisher,^{a,e} Clyde Francks^{a,e,f,1}

^aLanguage and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands

^bDepartment of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China

^cDepartment of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China

^dGroupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293,

Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux, France

^eDonders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

^fDepartment of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands

¹To whom correspondence may be addressed. E-mail: clyde.francks@mpi.nl

November 21, 2023

1 Abstract

2 Language is supported by a distributed network of brain regions with a particular contribution from the left hemi-
3 sphere. A multi-level understanding of this network requires studying the genetic architecture of its functional con-
4 nectivity and hemispheric asymmetry. We used resting state functional imaging data from 29,681 participants from
5 the UK Biobank to measure functional connectivity between 18 left-hemisphere regions implicated in multimodal
6 sentence-level processing, as well as their homotopic regions in the right-hemisphere, and interhemispheric connec-
7 tions. Multivariate genome-wide association analysis of this total network, based on common genetic variants (with
8 population frequencies above 1%), identified 14 loci associated with network functional connectivity. Three of these
9 loci were also associated with hemispheric differences of intrahemispheric connectivity. Polygenic dispositions to lower
10 language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry
11 of functional connectivity, but with some trait- and connection-specific exceptions. Exome-wide association analysis
12 based on rare, protein-altering variants (frequencies $\leq 1\%$) suggested 7 additional genes. These findings shed new light
13 on the genetic contributions to language network connectivity and its asymmetry based on both common and rare
14 genetic variants, and reveal genetic links to language-related traits and hemispheric dominance for hand preference.

15 Introduction

16 The degree of sophistication in verbal communicative capacities is a uniquely defining trait of human beings compared
17 to other primates. A distinctive feature of the neurobiology of language is its hemispheric dominance. Language
18 lateralization starts when language is learned and intensifies during development into adulthood [1], resulting in
19 leftward hemispheric dominance in about 85 percent of adults [2]. Most remaining adults have no clear dominant
20 hemisphere for language, while roughly one percent show rightward hemispheric language dominance [2]. The left-
21 hemisphere language network comprises various distributed regions including hubs in the inferior frontal gyrus and
22 superior temporal sulcus[3, 4]. However, to a lesser extent, the right hemisphere homotopic regions are also active
23 during language tasks, especially during language comprehension rather than production[3].

24 Language-related cognitive performance is highly heritable [5–10], and genetic factors also play a substantial role
25 in susceptibility to language-related neurodevelopmental disorders such as childhood apraxia of speech [11], develop-
26 mental language disorder (previously referred to as specific language impairment) and dyslexia [12–14]. In addition,
27 hemispheric dominance for language builds on structural and functional asymmetries that are already present in
28 neonates [15]. This suggests an early developmental basis for such asymmetries that is driven by a genetic develop-
29 mental program [16–18].

30 Genome-wide association studies (GWAS) in tens or hundreds of thousands of individuals have begun to iden-
31 tify individual genomic loci associated with language- and/or reading-related performance [9], dyslexia [14], brain
32 structural asymmetry [18] and/or left- or mixed-handedness [19]. Handedness is a behavioural manifestation of brain
33 asymmetry with subtle and complex relations to hemispheric language dominance and language-related cognition and
34 disorders [2, 14, 20]. The implicated genes in these GWAS tend to be most strongly expressed in the embryonic and
35 fetal brain rather than postnatally. All together, these findings suggest that genetic contributions to inter-individual
36 variation in language-related performance, and functional and structural brain asymmetries, exert their effects mostly
37 early in life.

38 The genetic variants identified so far explain only a small proportion of the heritable variance in language-related
39 performance or its structural underpinnings in the brain. A complementary approach to finding genes involved in
40 language is to measure functional connectivity within the network of regions that support language in the brain, in
41 many thousands of individuals, in order to perform well-powered GWAS. There are no existing datasets of this size that
42 have collected functional imaging data during language task performance, but resting state functional connectivity is
43 predictive of task-related functional activation [21–23] and also reveals meaningful organisation of the human cortex
44 [24, 25]. The resting state functional connectivity approach involves identifying similarities between different brain
45 regions in terms of their time course variation in the deoxyhemoglobin to hemoglobin ratio during the resting state, i.e.
46 while participants are awake but not performing any particular task during functional magnetic resonance imaging
47 (fMRI). The task-free nature of resting state fMRI makes it insensitive to choices in task design that can affect
48 lateralization estimates [26], and is potentially more useful for studying the language network as a whole rather
49 than circuits activated by one specific task. In addition, task-based fMRI has tended to find generally less heritable
50 measures compared to resting state fMRI [27], making the latter perhaps more suitable for genetic investigation.

51 Previous work by Mekki et al. [28] found 20 loci in a genome-wide association study of functional language

52 network connectivity based on resting state fMRI. The 25 brain regions used in their analyses to capture the brain's
53 language network were defined based on a meta-analysis of language-task activation across multiple previous task
54 fMRI studies [29]. Of these 25 brain regions, 20 are in the left hemisphere and only 5 in the right hemisphere. The
55 25 regions were then analysed jointly with no further attention to hemispheric differences. However, given the early
56 developmental basis of functional asymmetries [15], we reasoned that it may be informative for genetic association
57 analysis to consider connectivity and hemispheric differences between all bilateral pairs of involved regions. For the
58 present study we therefore chose a functional atlas with left and right hemisphere homotopies [30], developed in the
59 BIL&GIN cohort, which consists of approximately 300 young adults roughly balanced for handedness. In previous
60 work in this cohort, a core language network was defined in right handers (N=144) based on three language tasks
61 (reading, listening, and language production) and a resting state paradigm [3]. A consensus multimodal language
62 network called SENSAAS was defined, consisting of 18 regions in the left hemisphere that were active during all three
63 language tasks.

64 For the purpose of the present gene mapping study, the right hemisphere homotopic regions were also included,
65 yielding 36 regions in total (18 per hemisphere). We derived functional connectivity measures between these 36
66 regions (figure S1) in 29,681 participants from the UK Biobank who had genetic and brain imaging data available,
67 yielding 630 intra- and interhemispheric connectivity measures and 153 hemispheric differences between left and
68 right intrahemispheric connectivity. We then investigated multivariate associations of these functional connectivity
69 phenotypes with common genetic variants, as well as polygenic scores for language-related abilities [9], dyslexia [14]
70 and left-handedness [19].

71 In addition, we hypothesized that rare, protein-altering variants could also contribute to functional language
72 connectivity, with relatively large effects in the few people who carry them. Such variants could give more direct
73 clues to biological mechanisms underlying the formation of the brain's language network. Previous large-scale genetic
74 studies of both brain [20, 28] and cognitive or behavioural language-related traits [9, 10, 14] only analyzed common
75 genetic variants (allele frequency in the population $\leq 1\%$). Tentative evidence for rare variant associations with
76 right-hemisphere language dominance, involving actin cytoskeleton genes, was found in an exploratory study of 66
77 unrelated participants [31]. The first exome-wide association studies of the UK Biobank [32, 33] included structural
78 brain imaging metrics, but not functional metrics. Therefore, the possible contributions of rare protein-coding variants
79 to functional language connectivity had yet to be investigated in a biobank-sized data set, prior to the present study.

80 Results

81 After quality control (see Methods) we included 29,681 participants from the UK Biobank between ages 45 and 82
82 years, for whom single nucleotide polymorphism (SNP) genotyping array data, exome sequences, and resting state
83 fMRI data were available, and that were in a previously defined 'white British' ancestry cluster [34] (by far the largest
84 single cluster in the data set). For these participants we derived 630 Pearson correlations between the time courses of
85 the 36 regions in the language network (hereafter language network edges) and 153 hemispheric differences between
86 left and right intrahemispheric homotopies (L-R, hereafter hemispheric differences) (figure S1). Positive hemispheric
87 differences correspond to stronger connectivity on the left and negative hemispheric differences correspond to stronger
88 connectivity on the right. We excluded language network edges or hemispheric differences with no significant heritability
89 (nominal $p \leq 0.05$) (see figure S2 and Methods section), which left 629 edges and 103 hemispheric differences (table
90 S1), among which the median SNP-based heritability was 0.070 (min: 0.018, max: 0.165) for language network
91 connectivity and 0.026 (min: 0, max: 0.070) for hemispheric differences.

92 Common genetic variant associations with language network connectivity and asymme- 93 try

94 The 629 language network edges were entered into a multivariate genome-wide association scan (mvGWAS) with
95 8,735,699 biallelic SNPs (genome build hg19) that passed variant quality control (see Methods), using the MOSTest
96 software [35] (see Methods), after controlling for potential confounders including age and sex (Methods). Using the
97 standard GWAS multiple comparison threshold (5×10^{-8}), 14 independent genomic loci showed significant multivari-
98 ate associations with language network edges (figure 1A, table S2, figure S3). Subsequent gene mapping based on
99 positional, eQTL and chromatin interaction information of SNPs (using FUMA [36]) found 111 associated genes (of
100 which 40 were protein-coding, table S3). In addition, tissue expression analysis with MAGMA [37] showed preferential
101 expression of language network associated genetic effects in prenatal development in the Brainspan gene expression
102 data [38], which was significant at 21 weeks post conception but also generally elevated prenatally (figure 1C). Enrich-
103 ment analysis against 11,404 gene sets (gene ontology and other curated sets) [39, 40] found no significant associations
104 after correction for multiple comparisons, and cross-tissue enrichment analysis with respect to postmortem whole-body
105 expression levels from GTEx [41] also found no significantly higher expression in any particular tissue of the body
106 (figure S4 and table S4).

107 To probe the genetic effects on language network connectivity of our lead multivariate findings, we plotted the
108 underlying univariate beta effect estimates across connectivity measures for each of the 14 lead SNPs (1E, figure S8).
109 These showed heterogeneous effects on language network connectivity (1E). For example, lead SNP rs35124509 of the
110 most significantly associated genomic locus on chromosome 3 was an exonic SNP in the *EPHA3* gene, where minor
111 allele carriers (C, minor allele frequency (MAF) = 0.39) had on average generally reduced connectivity, i.e. lower
112 time series correlations between regions, compared to non-carriers (1E, figure S5, figure S8). However, connectivity
113 could also be higher on average for a minority of edges in these variant carriers (1E, figure S7). For the second most
114 significantly associated genomic locus, minor allele carriers (T, MAF = 0.21) of lead SNP rs2279829 (on chromosome
115 3) displayed increased connectivity on average compared to non-carriers (1E, figure S6, figure S8). This SNP was

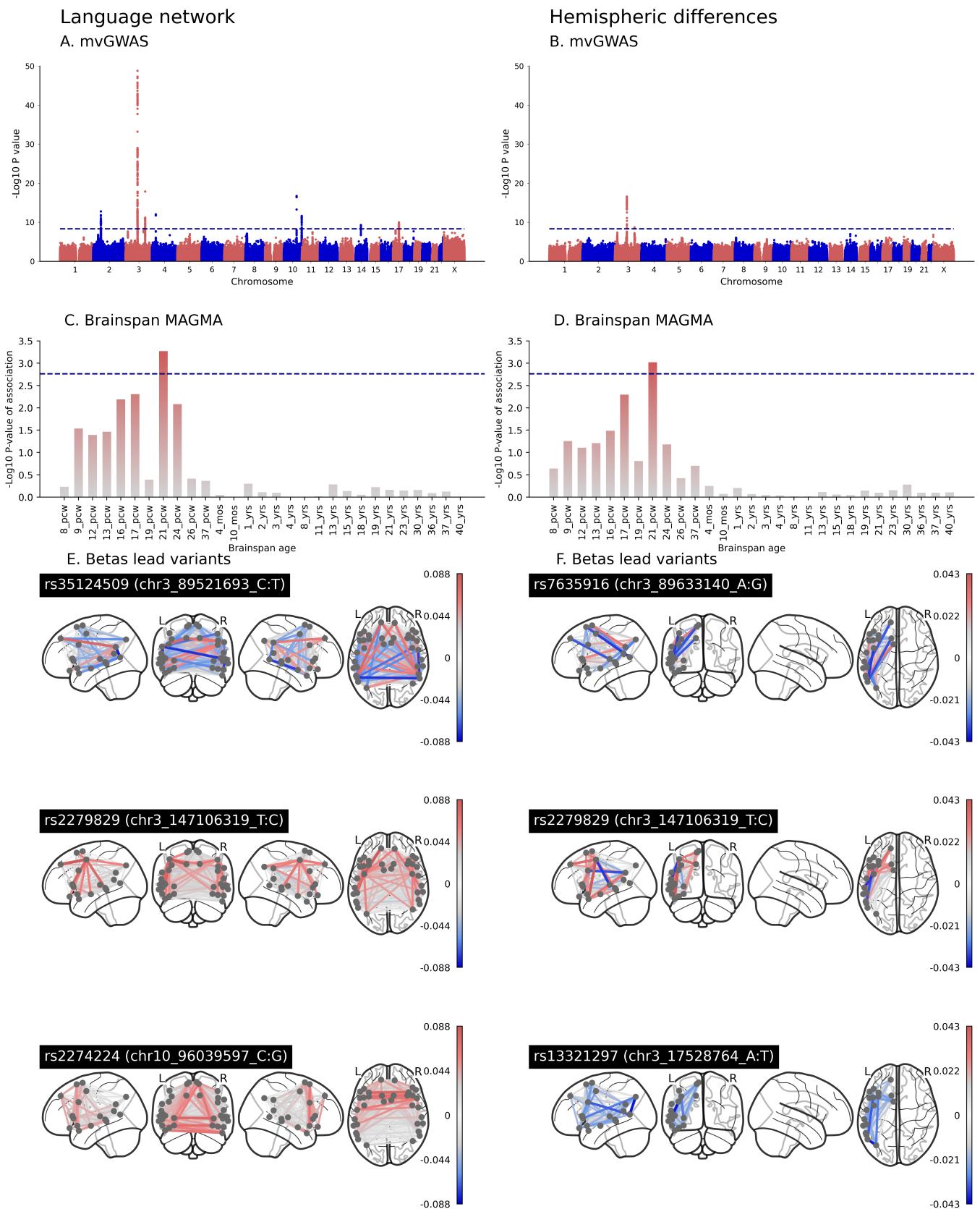


Figure 1: Associations with language network connectivity and asymmetry, for genetic variants with population frequencies ≥ 1 percent.

A & B: Multivariate GWAS Manhattan plots for language network edges (A) and hemispheric differences (B). The genome is represented along the X axis of each Manhattan plot, with chromosomes in ascending numerical order and their p-to-q arms arranged from left to right. The Y axis of each Manhattan plot shows the pointwise significance of multivariate association, and each dot represents a single variant in the genome. The horizontal dashed line represents the threshold $p \leq 5 \times 10^{-8}$ for genome-wide multiple-testing correction.

C & D: Genes associated with language network edges (C) and hemispheric differences (D) tend to be most strongly expressed in prenatal brain tissue compared to postnatal brain tissue, according to MAGMA analysis of the Brainspan gene expression database. PCW: post conception week. YRS: years. The horizontal dashed line represents the threshold for multiple testing correction across all developmental stages separately.

E & F: Underlying univariate beta weights for the three most significant lead SNPs for language network edges, and the three most significant lead SNPs for hemispheric differences (E and F). Red indicates a positive association of a given edge or hemispheric difference with increasing numbers of the minor allele of the genetic variant, and blue indicates a negative association. Plots for all lead SNPs can be found in figure S8.

116 located upstream from the *ZIC4* gene (figure S5). Lead SNP rs2274224 of the third most significantly associated
117 genomic locus (on chromosome 10) is an exonic SNP in *PLCCE1:PLCE1-AS1*, (figure S7-8). That SNP showed an
118 increase especially in interhemispheric connectivity in minor allele carriers (C, MAF = 0.44) compared to non-carriers
119 (1E, figure S7-8). Brain spatial pattern plots for all 14 lead SNPs can be found in figure S8.

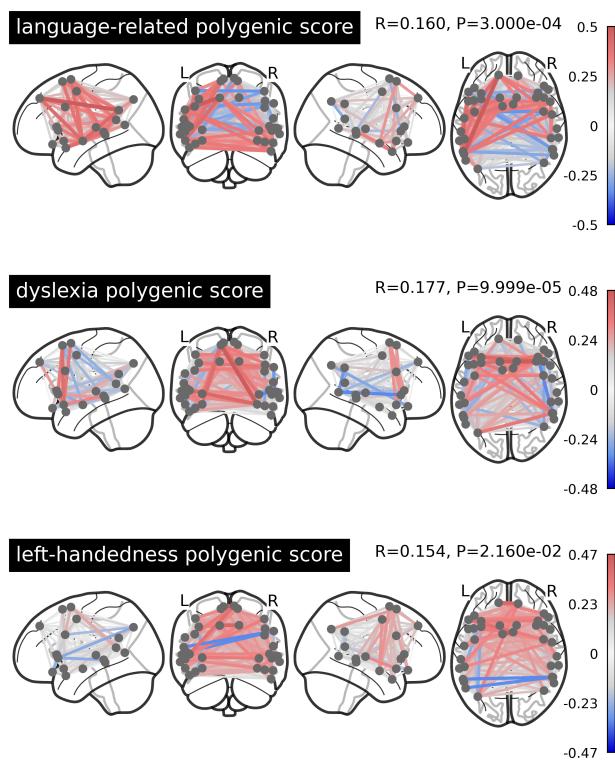
120 Separately, 103 hemispheric differences were also entered into a single mvGWAS, using the same procedure as for
121 the language network edges. Three independent genomic loci were significantly associated with hemispheric differences
122 (1B, table S5-6, figure S9), all of which were located on chromosome 3, and had also shown significant associations
123 in the mvGWAS of language network edges. Lead SNP rs7625916, a different SNP in the same broader locus that
124 encompasses *EPHA3*, showed a broadly rightward shift in hemispheric differences for carriers of the minor allele (A,
125 MAF = 0.40), although not for all hemispheric differences (1F). This SNP was located in an intergenic region of
126 *RP11-91A15.1* (figure S10). The lead SNP of the second locus rs2279829, located upstream of *ZIC4* was the same
127 as for the language network edge results. Carriers of minor effect allele (C, MAF = 0.39) displayed heterogeneous
128 changes in hemispheric differences (figure 1F, figure S11). The lead SNP for the third locus, rs13321297, located in
129 an intronic region near *TBC1D5*, was associated with a broadly rightward shift in hemispheric differences for carriers
130 of the minor allele (A, MAF = 0.31, figure S12). Using gene-based association mapping in FUMA we identified 9
131 genes associated with hemispheric differences, of which 4 were protein-coding, namely *EPHA3*, *TBC1D5*, *ZIC1* and
132 *ZIC4*. Tissue expression of genes associated with hemispheric differences, using MAGMA as implemented in FUMA,
133 was enriched prenatally in the Brainspan developmental data [38], reaching significance at post-conception week 21
134 (figure 1D). Analysis of postmortem cross-tissue expression levels from GTEx [41], and gene set analysis against 11,404
135 ontology and other curated sets [39, 40], showed no significant associations after correction for multiple comparisons
136 (figure S13 and table S7).

137 Polygenic scores for language-related abilities, dyslexia and handedness

138 We used PRS-CS [42] to calculate genome-wide polygenic scores for language-related abilities [9], dyslexia [14] and
139 left-handedness [19] for each of the 29,681 UK Biobank participants, using summary statistics from previous large-scale
140 GWAS of these traits in combination with UK Biobank genotype data (Methods). Note that the previous GWAS
141 of language-related abilities [9] was a multivariate GWAS that considered several language-related traits that had
142 been quantitatively assessed with different neuropsychological tests: word reading, nonword reading, spelling, and
143 phoneme awareness. After controlling for covariates (see Methods), polygenic disposition towards higher language-
144 related abilities in the UK Biobank individuals was weakly negatively correlated with polygenic disposition towards
145 dyslexia ($r = -0.138, p = 3.504 \times 10^{-126}$). Polygenic disposition towards left-handedness was not correlated with
146 polygenic disposition as regards language-related abilities ($r = -0.008, p = 0.147$) or dyslexia ($r = -0.005, p = 0.310$).

147 We then used canonical correlation analysis (CCA) in combination with permutation testing (see Methods, and
148 figure S14 for the null distributions) to estimate overall associations of polygenic scores with language network edges
149 and hemispheric differences. Polygenic disposition to higher language-related abilities showed a significant multivariate
150 association with language network edges (canonical correlation $r=0.160, p = 3 \times 10^{-4}$) and with hemispheric differences
151 (canonical correlation $r=0.076, p = 9.9 \times 10^{-5}$). The canonical correlation loadings showed that polygenic disposition
152 to higher language-related abilities was most notably associated with stronger left-hemisphere connectivity, with less

A. language network



B. hemispheric differences

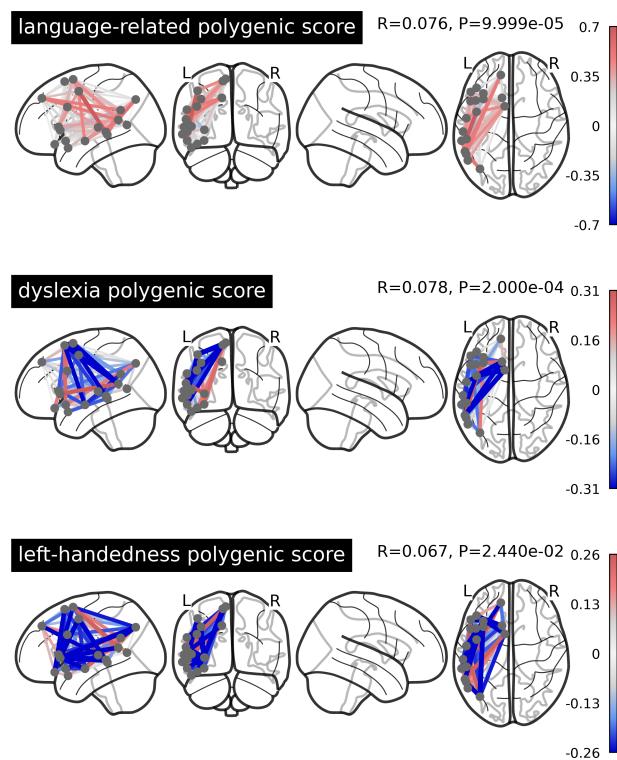


Figure 2: Multivariate associations with genome-wide polygenic dispositions to higher language-related abilities, dyslexia and left-handedness, for **A** the language network and **B** its hemispheric differences. Shown are the loading patterns on the first mode of six different CCA decompositions. Red indicates a positive association between polygenic score and brain phenotype, whereas blue indicates a negative association.

153 impact on right-hemisphere connectivity, which also meant a generally leftward shift in hemispheric differences (figure
154 2A).

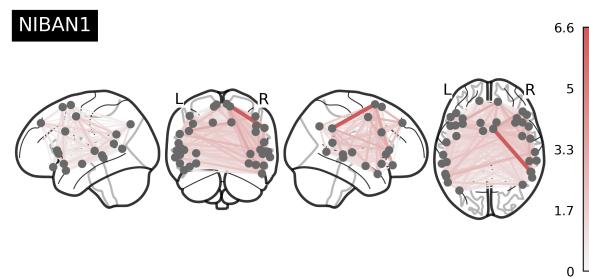
155 Polygenic disposition to dyslexia also showed significant canonical correlations with language network edges
156 ($r=0.177, p = 9.9 \times 10^{-5}$) and hemispheric differences ($r=0.078, p = 2 \times 10^{-4}$), where especially interhemispheric
157 connectivity was higher in those with higher polygenic disposition for this developmental reading disorder (figure 2A).
158 In terms of hemispheric differences, higher polygenic disposition to dyslexia was associated with a broadly rightward
159 shift in asymmetry of connectivity (figure 2B).

160 Polygenic disposition to left-handedness also showed significant canonical correlations: $r=0.154 (p = 2.16 \times 10^{-2})$
161 for language network edges and $r=0.067 (p = 2.44 \times 10^{-2})$ for hemispheric differences. Higher polygenic disposition to
162 left-handedness was associated most notably with increased interhemispheric and right intrahemispheric connectivity,
163 which in terms of hemispheric differences corresponds to a broadly rightward shift in asymmetry of connectivity (figure
164 2B).

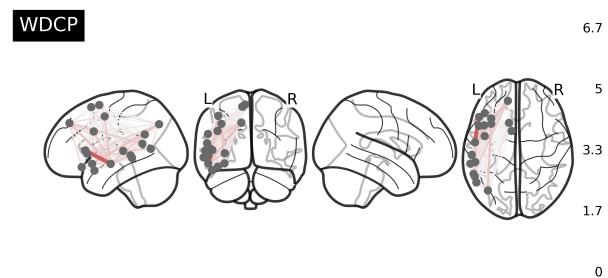
165 Rare, protein-coding variants and functional connectivity

166 The previous analyses were all based on genetic variants with population frequencies > 1 percent. We next performed
167 a gene-based, exome-wide association scan based on protein-coding variants with frequencies < 1 percent, using
168 REGENIE [43]. We used the SKAT-O gene-based test [44] for each of over 18,000 protein-coding genes with respect
169 to 629 language network edges and 103 hemispheric differences as phenotypes, and separately using either broad
170 (inclusive) or strict filtering for the predicted functional impacts of exonic variants (see Methods for details). Per

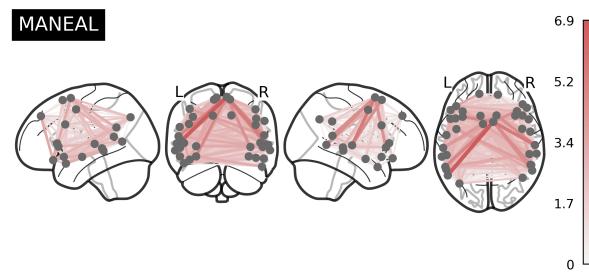
A. -Log10 P SKAT-O language network with broad filter



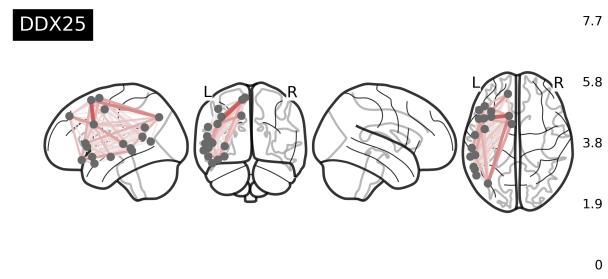
B. -Log10 P SKAT-O hemispheric differences with strict filter



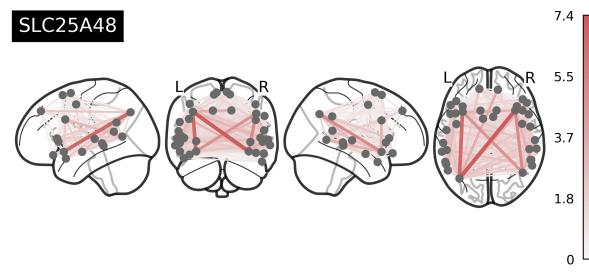
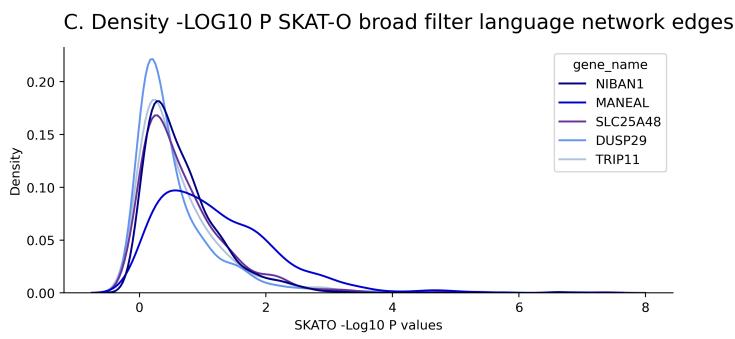
MANEAL



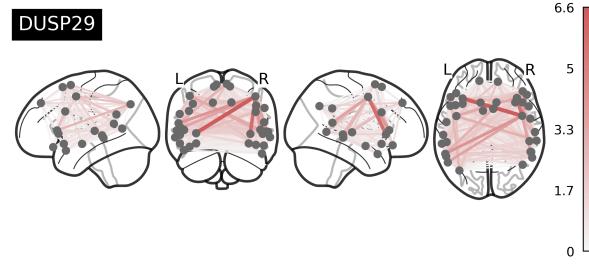
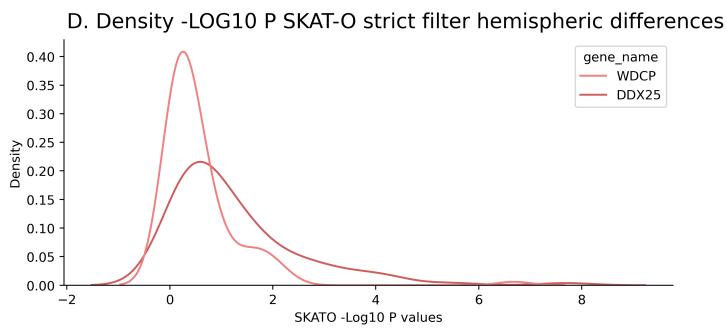
DDX25



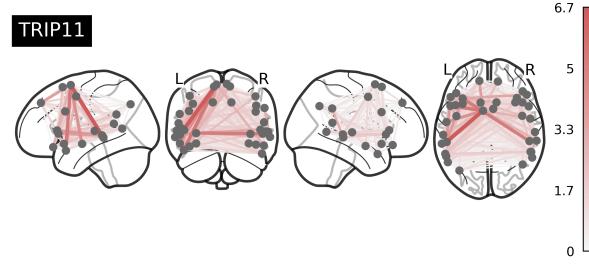
SLC25A48



DUSP29



TRIP11



E. Brainspan gene expression data

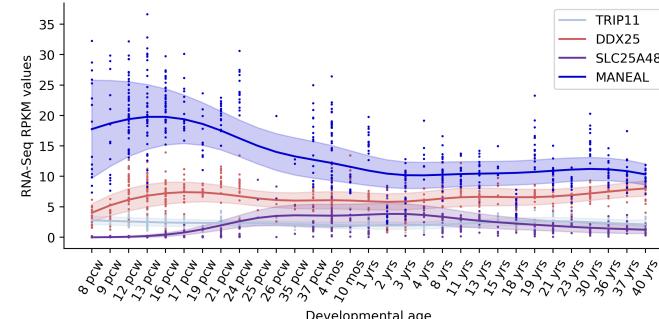


Figure 3: Associations of rare protein-coding variants with language network edges or hemispheric differences. **A & B.** SKAT-O -LOG10 p -values for genes significantly associated with the language network edges (A) and hemispheric differences (B). **C & D.** Distribution of -LOG10 p -values for the significantly associated genes across all brain phenotypes. **E.** RNA expression values are shown over time for all 4 genes that were available from the Brainspan dataset. Each dot represents expression levels at one timepoint in one location in the brain from one sample. Trend averages (line) and variance (shading) are shown.

171 gene we identified the lowest association *p*-value across phenotypes (Tippet's method), and then applied an empirical
172 exome-wide significance threshold of 2.5×10^{-7} to account for multiple testing across genes and phenotypes (previously
173 established using randomized phenotypes and exome data from UK Biobank, and applied in the context of thousands
174 of phenotypes [45]). Five genes, *NIBAN1* ($p = 2.356 \times 10^{-7}$), *MANEAL* ($p = 1.338 \times 10^{-7}$), *SLC25A48* ($p =$
175 4.263×10^{-8}), *DUSP29* ($p = 2.494 \times 10^{-7}$) and *TRIP11* ($p = 2.183 \times 10^{-7}$), were associated with language network
176 edges under a broad filter (figure 3A, figure S15, table S8) and 2 genes, *WDCP* ($p = 2.064 \times 10^{-7}$) and *DDX25*
177 ($p = 2.011 \times 10^{-8}$), were associated with hemispheric differences with a strict filter (figure 3B, figure S16 and table
178 S9).

179 For each of these 7 genes, the associations were based on multiple rare genetic variants present across multiple
180 participants (table S10). The gene with the most distributed association pattern across functional connectivity
181 measures of the language network was *MANEAL*, located on chromosome 1. Rare variants in this gene were most
182 significantly associated with interhemispheric connectivity between the left middle temporal gyrus (G_Temporal_Mid-
183 4-L) and the right supplementary motor area (G_Supp_Motor_Area-3-R), with $p = 1.34 \times 10^{-7}$. SKAT-O testing is
184 flexible for testing association when individual genetic variants might have varying directions and sizes of effects on
185 phenotypes, but its output does not provide direct insight into these directions and effect sizes in the aggregate. We
186 therefore followed up with a burden analysis (Methods) and found that an increased number of rare protein-coding
187 variants in *MANEAL* was associated with generally decreased language network connectivity (figure S17).

188 Another gene with a distributed association pattern was *DDX25*, where rare variants were associated with multiple
189 hemispheric difference measures. The hemispheric difference with the strongest association to this gene was between
190 the inferior frontal sulcus (S_Inf_Frontal-2) and the supplementary motor area (G_Supp_Motor_Area-2), with $p =$
191 2.01×10^{-8} . Follow-up burden analysis showed that an increased number of *DDX25* variants that were predicted to
192 be deleterious was associated with a broadly less leftward / more rightward shift in asymmetry (figure S18).

193 The five remaining genes, *NIBAN1*, *SLC25A48*, *DUSP29*, *TRIP11* and *WDCP* did not display widespread asso-
194 ciations with respect to language network connectivity measures or hemispheric differences (figure 3C and 3D), but
195 rather were driven by one or a few individual edges or hemispheric differences.

196 Discussion

197 Studying the genetics of language-related brain traits, such as language network functional connectivity in the resting
198 state, can yield clues to developmental and neurobiological mechanisms that support the brain's functional architecture
199 for language. In this study we report common genetic variant, polygenic and exonic rare variant associations with
200 language network functional connectivity, and/or hemispheric differences of connectivity. We found 14 genomic
201 loci associated with language network edges and 3 of these loci were also associated with hemispheric differences.
202 *EPHA3* was the most significantly associated gene based on common genetic variants. A polygenic disposition for
203 higher language-related abilities was associated with a leftward shift in functional connectivity asymmetry, while
204 polygenic dispositions to dyslexia and left-handedness were associated with rightward shifts in functional connectivity
205 asymmetry. Lastly, exome-wide scanning suggested 5 genes associated with language network edges and 2 genes
206 with hemispheric differences on the basis of rare, protein-coding variants. *MANEAL* and *DDX25* showed distributed
207 association profiles across multiple regional brain connectivity measures.

208 Common variant associations

209 The most significant association we found was on the 3p11.1 locus, near the *EPHA3* gene, which codes for ephrin
210 type-A receptor 3. *EPHA3* is involved in developmental processes such as neurogenesis, neural crest cell migration,
211 axon guidance and fasciculation [46–48] and is preferentially expressed 8 to 24 weeks post-conception. This genomic
212 locus has previously shown association with individual differences in both resting state functional connectivity [27,
213 28, 49] and white matter connectivity [28, 50] in the frontotemporal semantic network. Here we add to the literature
214 that this locus is also associated with hemispheric differences of language network functional connectivity. *EPHA3*
215 may therefore be involved in development of a left-right axis in the brain that supports hemispheric specialization for
216 language.

217 A second locus associated with language network connectivity and asymmetry was located in 3p24.3, near the
218 *TBC1D5* gene, which codes for subunit TBC1 domain family member 5. This gene may act as a GTPase-activating
219 protein for Rab family protein(s), and is expressed in all tissues, including the brain [51]. *TBC1D5* is involved in cell
220 processes related to macroautophagy and receptor metabolism. Recent studies have found associations of this gene
221 with functional language network connectivity [28], white matter [52], dyslexia [14], and health-related associations
222 with Parkinson's Disease [53] and schizophrenia [54]. Again, here we add an association with hemispheric differences
223 that implies a role in development of the left-right axis in the brain that supports language lateralization.

224 In total, of the 14 genomic loci we found, 12 were previously reported in other GWAS of brain traits [27, 28,
225 49, 50]. Two loci that have no previous literature associated with them in the GWAS Catalog [55] were a locus on
226 the pseudo-autosomal part of the X and Y chromosome, with rs2360257 as lead SNP, and a locus on 3q22.2, with
227 rs143322006 as lead SNP. The latter is intergenic to *EPHB1*, and therefore this novel finding underscores a potential
228 role of ephrin receptors in functional connectivity of the brain's language network. The well-known functions of ephrins
229 in axon guidance for nerve fiber tract formation are likely to be relevant in this context.

230 The other 12 loci were found in two prior GWAS studies of functional connectivity [28, 49], both of which differed
231 from each other and from the present study in terms of connectomic methodologies. This suggests that connectome

methodological choices only partially influence the discovery of genetic loci, i.e. some genetic influences on brain functional connectivity can be relatively robustly detected across different methodological choices. Six out of 14 loci were also found in a study of the white matter connectome [50], which confirms that functional and structural connectivity have partially overlapping genetic architectures. The overlap of significant loci from the present study with those found in GWAS studies of dyslexia, language-related abilities and handedness was more limited, which may be expected given that the latter are behavioural traits rather than measures of brain structure or function. The 3p24.3 locus from the present study was found in a large GWAS for dyslexia [14], and the 17q21.31 locus was also associated with left-handedness [56].

Associations with genetic predispositions

Genome-wide polygenic scores for language-related abilities, dyslexia, or left-handedness were significantly but subtly associated at the population-level with language network functional connectivity and asymmetry. These subject-level polygenic scores quantify the cumulative effects of common genetic variants from across the genome on a given trait. The leftward shift of asymmetry in people with polygenic dispositions to higher language-related abilities is consistent with functional asymmetry reflecting an optimal organization for language processing. Although language performance and functional language lateralization do not seem to be strongly correlated in healthy adults [57, 58], an absence of clear hemispheric language dominance has been reported to associate with slightly reduced cognitive functioning across multiple domains [59].

The rightward shift in asymmetry of language network connectivity with higher polygenic disposition to dyslexia is in line with some previous studies in smaller samples that suggested decreased left hemisphere language dominance in dyslexia, although this previous evidence was often inconsistent and inconclusive [60–63]. This association also converges in its direction with the association of *TBC1D5* with hemispheric differences described above. Our study therefore illustrates how large-scale brain imaging genetic analysis of genetic disposition to a human cognitive disorder can inform on the neurobiological correlates of the disorder, even when carried out using general population data.

The rightward shift in asymmetry of language network functional connectivity with higher polygenic scores for left-handedness that we observed is consistent with increased right hemisphere language dominance in left-handers [2, 20, 64]. Causality cannot be determined in a cross-sectional dataset of the kind used in our study. For example, genetic disposition may affect prenatal brain development in ways that alter functional asymmetries, and this seems likely given that many of the relevant genes are upregulated in the prenatal brain, and that functional asymmetries already exist in neonates [15]. However, some functional asymmetries may also follow, or be reinforced through, behaviours that are influenced by genetic disposition [19]. Consistent with this latter possibility, a meta-analysis of neuroimaging studies of dyslexia suggested that reduced left-hemisphere dominance is only present in adults and not in children [61]. The UK Biobank consists of middle-aged and older adults, but future studies of polygenic risk for dyslexia should test the association with brain connectivity in younger samples, to help address the developmental/aging questions.

It is important to recognize that gene-brain associations in general population data are usually subtle [19, 65] and also that canonical correlations tend to increase with the number of variables, due to higher degrees of freedom [66]. However, as we only used the first canonical mode and only tested a single polygenic score on one side of the correlation in each analysis (versus multiple brain traits on the other side), then the freedom of the canonical correlation was

269 relatively restricted. The permutation test that we used showed that all multivariate associations with polygenic
270 scores were greater than expected by chance. Furthermore, the first canonical mode has previously been shown to be
271 the most replicable [67] as it captures the most variance. Cross-validation in canonical correlation analysis is often
272 employed for supervised model evaluations, but our use here was unsupervised and descriptive, for which there is no
273 clear procedure for model evaluation [66]. Our interest was to describe the most accurate overall association between
274 polygenic disposition to a given trait and brain functional connectivity measures in the available sample.

275 **Exome-wide scans**

276 We report associations of 5 genes, *NIBAN1*, *MANEAL*, *SLC25A48*, *DUSP29* and *TRIP11*, with language network
277 connectivity and 2 genes, *WDCP* and *DDX25*, with hemispheric differences on the basis of rare, protein-coding
278 variants from exome sequence data. No previous rare variant associations have been reported with any of these 7
279 genes [32, 33], but *MANEAL* has been previously implicated in a GWAS of mathematical ability based on common
280 genetic variants [68], which testifies broadly to its relevance for cognitive function. The protein encoded by *MANEAL*
281 is found in the Golgi apparatus [69] and may regulate alpha-mannosidase activity. Previous work has shown relatively
282 high expression of this gene in the brain compared to various other tissues [51]. *DDX25* is a DEAD box protein with
283 the Asp-Glu-Ala-Asp motif, involved in RNA processing. Tissue expression for *DDX25* is also relatively high in the
284 brain or testis compared to other tissues [51]. The roles of these 7 genes in brain development and function remain to
285 be studied, for example using model systems such as cerebral organoids or knockout mice.

286 The exome-wide association analysis that we used here involved mass univariate testing with respect to brain
287 connectivity measures, rather than multivariate modelling. For common genetic variants, several multivariate associa-
288 tion frameworks have been developed, one of which we used here for our common variant GWAS (MOTest) [35].
289 Such methods generally provide increased statistical power to detect effects compared to mass univariate testing,
290 when genetic variants are associated with phenotypic covariance. However, such multivariate methods are currently
291 lacking for application to the study of rare, protein-coding variants in Biobank-scale samples, where the effects of
292 individual variants must be aggregated at the gene level and computational feasibility is an important consideration.
293 The development of new multivariate methods for exome-wide analysis is required. As the findings in our exome-wide
294 association scan only surpassed the multiple testing correction threshold by a small amount, we regard these findings
295 as tentative until they might be replicated in the future in other datasets.

296 **Limitations**

297 Resting state functional connectivity does not provide a direct measurement of language lateralization. In this study
298 we quantified resting state functional connectivity between regions that were previously found to be involved in
299 language on the basis of fMRI during sentence-level reading, listening and production tasks [3], and also where left-
300 right homotopic regions were defined for the investigation of hemispheric differences. The use of full correlations as
301 connectivity measures, as is common in the field, means that an increase in connectivity between a pair of regions
302 can also be indirect through other regions [70]. Another caveat is that individual anatomical differences may seep
303 into functional connectivity measures when a hard parcellation is used [70, 71]. However, as the literature has shown
304 more broadly, structural brain properties can make meaningful contributions to functional connectivity and it might

305 not be possible to fully disentangle the two [72–75].

306 Issues with respect to our chosen methods for genetic association testing have been discussed above. A general
307 point is that we used one large discovery sample of 29,681 participants to maximize power in our GWAS, polygenic
308 association analysis, and exome-wide scan. This did not allow for a discovery-replication design. However, using the
309 largest available sample leads to the most accurate estimate of any possible association, including of its effect size. In
310 light of this, the utility of discovery-replication designs has declined in relevance with the rise of biobank-scale data
311 [76].

312 A limitation of the UK Biobank is that participation is on a voluntary basis, which has led to an overrepresentation
313 of healthy participants rather than being fully representative of the general population [65, 77].

314 Conclusion

315 In conclusion, we report 14 genomic loci associated with language network connectivity or its hemispheric differences
316 based on common genetic variants. Polygenic dispositions to lower language-related abilities, dyslexia and left-
317 handedness were associated with generally reduced leftward asymmetry of functional connectivity in the language
318 network. Exome-wide association analysis based on rare, protein-altering variants (frequencies $\leq 1\%$) suggested 7
319 additional genes. These findings shed new light on the genetic contributions to language network connectivity and its
320 hemispheric differences based on both common and rare genetic variants, and reveal genetic links to language- and
321 reading-related abilities and hemispheric dominance for hand preference.

322 Materials and methods

323 Participants

324 Imaging and genomic data were obtained from the UK Biobank [34] as part of research application 16066 from
325 primary applicant Clyde Francks. The UK Biobank received ethical approval from the National Research Ethics
326 Service Committee North West-Haydock (reference 11/NW/0382), and all of their procedures were performed in
327 accordance with the World Medical Association guidelines. Informed consent was obtained for all participants [78].
328 Analyses were conducted on 29,681 participants that remained after quality control of genotype, exome and imaging
329 data (see below).

330 Imaging data

331 Brain imaging data were collected as described previously [79, 80]. In this analysis resting state fMRI data were used
332 (UK Biobank data-field 20227, February 2020 release [79, 80]). Identical scanners and software platforms were used
333 for data collection (Siemens 3T Skyra; software platform VD13). For collection of rs-fMRI data, participants were
334 instructed to lie still and relaxed with their eyes fixed on a crosshair for a duration of 6 minutes. In that timeframe
335 490 datapoints were collected using a multiband 8 gradient echo EPI sequence with a flip angle of 52 degrees, resulting
336 in a TR of 0.735 s with a resolution of 2.4x2.4x2.4mm³ and field-of-view of 88x88x64 voxels. Our study made use of
337 pre-processed image data generated by an image-processing pipeline developed and run on behalf of UK Biobank (see
338 details below).

339 Genetic data

340 Genome-wide genotype data (UK Biobank data category 263) was obtained by the UK Biobank using two different
341 genotyping arrays (for full details see [34]). Imputed array-based genotype data contained over 90 million SNPs and
342 short insertion-deletions with their coordinates reported in human reference genome assembly GRCh37 (hg19). In
343 downstream analyses we used both the unimputed and imputed array-based genotype data in different steps (below).

344 Exome sequencing data were obtained and processed as described in more detail elsewhere [32, 45, 81] (UK
345 Biobank data category 170, genome build GRCh38). Briefly, the IDT xGen Exome Research Panel v.1.0 was used to
346 capture exomes. Samples were sequenced using the Illumina NovaSeq 6000 platform with S2 (first 50,000 samples)
347 or S4 (remaining samples) flow cells and were processed by the UK Biobank team according to the OQFE Protocol
348 (<https://hub.docker.com/r/dnanexus/oqfe>). Analyses using individual-level exome data (UK Biobank data field
349 23157) were conducted on the Research Analysis Platform (<https://UKBiobankbiobank.dnanexus.com>)

350 Sample-level quality control

351 Sample-level quality control at the phenotypic and genetic level was conducted on 40,595 participants who had imaging,
352 genotype and exome data available. In phenotype sample-level quality control, participants were first excluded with
353 imaging data labelled as unusable by UK Biobank quality control. Second, participants were removed based on
354 outliers (here defined as $6 \times$ interquartile range (IQR)) in at least one of the following metrics: discrepancy between

355 rs-fMRI brain image and T1 structural brain image (UK Biobank field 25739), inverted temporal signal-to-noise
356 ratio in preprocessed and artefact-cleaned preprocessed rs-fMRI (data fields 25743 and 25744), scanner X, Y and Z
357 brain position (fields 25756, 25757 and 25758) or in functional connectivity asymmetries (see section* Imaging data
358 preprocessing and phenotype derivation). Third, participants with missing data in the connectivity matrices were
359 excluded. In total 3,472 participants were excluded in the phenotype QC.

360 Subsequently, in genetic sample-level quality control, only participants in the pre-defined white British ancestry
361 cluster were included (data-field 22006) [34], as this was the largest single cluster in terms of ancestral homogeneity – an
362 important consideration for some of the genetic analyses that we carried out (below). Furthermore, participants were
363 excluded when self-reported sex (data-field 31) did not match genetically inferred sex based on genotype data (data-
364 field 22001) or exome data, when sex chromosome aneuploidy was suspected (data-field 22019), or when exclusion
365 thresholds were exceeded in heterozygosity (≥ 0.1903) and/or genotype missingness rate (≥ 0.05) (data-field 22027).
366 Finally, one random member of each pair of related participants (up to third degree, kinship coefficient ≥ 0.0442 ,
367 pre-calculated by UK Biobank) was removed from the analysis. This led to the further exclusion of 7,442 participants.
368 In total 29,681 participants were included in all further analyses.

369 **Imaging data preprocessing and phenotype derivation**

370 Preprocessing was conducted by the UK Biobank and consisted of motion correction using MCFlirt [82], intensity
371 normalization, high-pass filtering to remove temporal drift ($\text{sigma}=50.0\text{s}$), unwarping using fieldmaps and gradient
372 distortion correction. Structured scanner and movement artefacts were removed using ICA-FIX. [83–85] Preprocessed
373 data were registered to a common reference template in order to make analyses comparable (the 6th generation
374 nonlinear MNI152 space, <http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6>).

375 On the local compute cluster at the MPI for Psycholinguistics, network connectivity was derived based on the
376 AICHA atlas [30]. Key properties of the AICHA atlas are its homotopies. For each of the 192 parcels left and right
377 hemisphere functional homotopies were defined. Of these 192 pairs, 7 regions were previously excluded from the atlas
378 due to poor signal on the outside of the brain [30], leaving 185 parcel pairs. Time courses were extracted from the
379 AICHA atlas using invwarp and applywarp from FSL (v. 5.0.10 [86]) and mri_segstats from Freesurfer (v.6.0.0 [87]).
380 Correlations between time courses were derived with numpy (v.1.13.1) using Python 2.7 and were transformed to
381 z-scores using a Fisher transform in order to achieve normality. In addition, only the upper diagonal values were
382 used. These values can be considered a measure of connection strength between two regions. Functional hemispheric
383 differences (L-R) were derived for each connection, and outliers ($6 \times \text{IQR}$) were excluded. Previous work identified 18
384 regions as part of the core language network in multiple language processing domains (reading, listening and speaking
385 [3]). These 18 regions and their homotopies were used in this analysis.

386 Two different types of imaging-derived phenotypes (IDPs) were extracted and used in genetic analyses. First, all
387 630 Z-transformed correlation values were included, including both intra- and interhemispheric connectivity. Second,
388 for all intrahemispheric connectivity edges, hemispheric differences (L-R) were included, yielding 153 edge hemispheric
389 differences. In total this yielded 783 new IDPs for further analysis.

390 Genetic variant-level QC

391 Four different genetic datasets were prepared, as needed for four different analysis processes:

392 1. Array-based genotype data were filtered, maintaining variants with linkage disequilibrium (LD) ≤ 0.9 , minor
393 allele frequency (MAF) ≥ 0.01 , Hardy-Weinberg Equilibrium test p -value $\geq 1 \times 10^{-15}$ (see [43]), and genotype
394 missingness ≤ 0.01 for REGENIE step 1 (below). 2. Imputed genotype data were filtered, maintaining bi-allelic
395 variants with an imputation quality ≥ 0.7 , Hardy-Weinberg Equilibrium test p -value $\geq 1 \times 10^{-7}$ and genotype
396 missingness ≥ 0.05 for association testing in MOSTest (below). 3. For genetic relationship matrices SNPs were only
397 used if they were bi-allelic, had a genotype missingness rate ≤ 0.02 , a Hardy Weinberg Equilibrium p -value $\geq 1 \times 10^{-6}$,
398 an imputation INFO score ≥ 0.9 , a MAF ≥ 0.01 , and a MAF difference ≤ 0.2 between the imaging subset and the
399 whole UK Biobank were used. 4. For exome sequence data, only variants in the 39 Mbp exome sequencing target
400 regions were retained (UK Biobank resource 3803), excluding variants in 100 bp flanking regions for which reads were
401 not checked for coverage and quality standards in the exome processing pipeline. Monoallelic variants (marked with
402 a 'MONOALLELIC' filter flag) were also removed. Then, individual-level genotypes were set to no-call if the read
403 depth was ≤ 7 (for single nucleotide variants) or ≤ 10 (for indel variant sites) and/or if the genotype quality was ≤ 20 .
404 Variant-level filtering comprised removal of variants sites with an average GQ (which is the Phred-scaled probability
405 that the call is incorrect) across genotypes ≤ 35 , variant missingness rate ≥ 0.10 , minor allele count (MAC) ≤ 1 ,
406 and/or low allele balance (only for variants with exclusively heterozygous genotype carriers; ≤ 0.15 for SNV sites,
407 ≤ 0.20 for INDEL variant sites). Transition-transversion ratios were calculated prior to and after variant-level filtering
408 as an indicator of data quality. Filtered pVCF files were converted to PLINK binary format, dropping multi-allelic
409 variants, and then merged per chromosome. For the X chromosome, pseudo-autosomal regions (PAR1: start - base
410 pair 2781479, PAR2: base pair 155701383 – end, genome build GRCh38) were split off from the rest of chromosome
411 X. Any heterozygous haploid genotypes in the non-PAR chr X were set to missing.

412 Heritability analysis

413 Genetic relationship matrices (GRMs) were computed for the study sample. In addition to previous sample-level
414 quality control, individuals with a genotyping rate ≤ 0.98 and one random individual per pair with a kinship coefficient
415 ≥ 0.025 derived from the GRM were excluded from this particular analysis. For all individuals that passed quality
416 control and heritability of each of the 783 newly derived IDPs was estimated using genome-based restricted maximum
417 likelihood (GREML) in GCTA v. 1.93.0beta [88]. Phenotypes that passed a nominal significance heritability filter of
418 $p \leq 0.05$ were included in further analysis.

419 Common variant association testing

420 Multivariate common variant association testing (mvGWAS) was performed using the MOSTest toolbox [35] for all
421 heritable measures separately for all 629 heritable language network edges and all 103 heritable hemispheric differences.
422 MOSTest fully accounts for the multivariate nature by estimating the correlation structure on permuted genotype
423 data and then computing the Mahalanobis norm as the sum of squared de-correlated z-values across univariate GWAS
424 summary statistics and then fitting a null distribution using a gamma cumulative density function to extrapolate

425 beyond the permuted data to significant findings. The multivariate z-statistic from MOSTest is always positive and
426 does not provide information on directionality. We used imputed genotype array data and the following covariates:
427 sex, age, age², age × sex, the first 10 genetic principle components that capture genome-wide ancestral diversity,
428 genotype array (binary variable) and various scanner-related quality measures (scanner X, Y and Z-position, inverted
429 temporal signal to noise ratio and mean displacement as an indication of head motion) (see table S11 for UK Biobank
430 field IDs). For directionality purposes we used the underlying univariate associations (beta estimates) and plotted
431 these to describe the directionality. Genome-wide significant variants were annotated using the online FUMA platform
432 (version 1.5.2) [36]. MAGMA (version 1.08) [37] gene analysis in FUMA was used to calculate gene-based *p*-values
433 and for gene-property analyses, to investigate potential gene sets of interest [39, 40] and to map the expression of
434 associated genes in a tissue-specific [41] and time-specific [38] fashion. Gene sets smaller than 10 were excluded from
435 the analysis, due to risk for statistical inflation.

436 **Associations with genetic predispositions**

437 In order to understand how language network edges and hemispheric differences relate to genetic predisposition for
438 language-related abilities (quantitatively assessed in up to 33,959 participants from the GenLang consortium) [9],
439 dyslexia (51,800 cases and 1,087,070 controls) from 23andMe, Inc. [14] and left-handedness (33,704 cases and 272,673
440 controls) from UK Biobank participants without imaging data [19], we used polygenic scores and canonical correlation
441 analysis (CCA) for each polygenic score separately. Polygenic scores were calculated with PRS-CS [42], which uses
442 a Bayesian regression framework to infer posterior effect sizes of autosomal SNPs based on genome-wide association
443 summary statistics. PRS-CS was applied using default parameters and a recommended global shrinkage parameter
444 phi = 0.01, combined with LD information from the 1000 Genomes Project phase 3 European-descent reference
445 panel. PRS-CS performed in a similar way to other polygenic scoring methods, with noticeably better out-of-sample
446 prediction than an clumping and thresholding approach [89, 90]. Before entering polygenic scores into a CCA analysis,
447 they were residualised for these covariates: sex, age, age², age × sex, the first 10 genetic principle components that
448 capture genome-wide ancestral diversity, genotype array (binary variable) and various scanner-related quality measures
449 (scanner X, Y and Z-position, inverted temporal signal to noise ratio and mean displacement as an indication of head
450 motion) (see table S11 for UK Biobank field IDs). Polygenic scores were then normalized using quantile_transform
451 from scikit-learn v.1.0.1 and entered into a CCA analysis, also using scikit-learn. As correlation values in CCA tend
452 to increase with the number of variables, we permuted the polygenic scores 10,000 times to build a null distribution
453 of correlation values between IDPs and permuted polygenic scores and tested whether the correlation values of the
454 first mode were outside the 95th percentile of the null distribution.

455 **Exome-wide scan**

456 For rare variant association testing REGENIE v.3.2.1 was used [43]. In brief, REGENIE is a two-step machine learning
457 method that fits a whole genome regression model and uses a block-based approach for computational efficiency. In
458 REGENIE step 1, array-based genotype data were used to estimate the polygenic signal in blocks across the genome
459 with a two-level ridge regression cross-validation approach. The estimated predictors were combined into a single
460 predictor, which was then decomposed into 23 per-chromosome predictors using a leave one chromosome out (LOCO)

461 approach, with a block size of 1000, 4 threads and low-memory flag. Phenotypes were transformed to a normal
462 distribution in both REGENIE step 1 and 2. Covariates for both steps included sex, age, age², age × sex, the first
463 10 genetic principle components that capture genome-wide ancestral diversity, genotype array (binary variable) and
464 various scanner-related quality measures (scanner X, Y and Z-position, inverted temporal signal to noise ratio and
465 mean displacement as an indication of head motion) (see table S11 for UK Biobank field IDs). Common and rare
466 variant association tests were run conditional upon the LOCO predictor in REGENIE step 2. Functional annotation
467 of variants was conducted using snpEff v5.1d (build 2022-04-19) [91]. Physical position in the genome was used to
468 assign variants to genes and were annotated with Ensembl release 105. Combined Annotation Dependent Depletion
469 (CADD) Phred scores for variants were taken from the database for nonsynonymous functional prediction (dbNSFP)
470 (version 4.3a) [92] using snpSift 5.1d(build 2022-04-19). Variants were then classified for downstream analysis based
471 on their functional annotations to either be included in a 'Strict' or 'Broad' filter or be excluded from further analysis.
472 The 'Strict'-filter only included variants that were annotated with a 'High' impact on a canonical gene transcript
473 (variant types include highly disruptive mutations like frameshifts) outside of the 5% tail end of the corresponding
474 protein (high-impact variants in the 5% tail ends usually escape nonsense-mediated decay) or a 'Moderate' effect on
475 a canonical gene transcript combined with CADD Phred score ≥ 20 (these include likely deleterious protein-altering
476 missense variants). The second 'Broad' set of variants also included 'High' annotated variants affecting alternative
477 gene transcripts outside of 5% tail ends, 'Moderate' annotated variants that affected canonical or alternative gene
478 transcripts with CADD Phred scores of at least 1, and 'Modifier' variants that affected canonical or alternative gene
479 transcripts with CADD Phred scores of at least 1 (see table S12). A higher CADD score entails higher predicted
480 deleteriousness of a SNP [93]. In REGENIE step 2, we performed a gene-based SKAT-O test [44] with strict and
481 broad variant filters based on functional annotation with all heritable IDPs. A SKAT-O test is most appropriate in
482 our study design as we had no a priori hypothesis about the direction of the genetic effect. Multivariate exome testing
483 was conducted separately for language network edges and hemispheric differences by using Tippet's method which
484 involves taking the lowest *p*-value across the phenotypes of interest. This was previously used as validation method
485 for development of MOSTest [35] and was shown to be less sensitive than multivariate genetic association testing in
486 common variants. We adjusted for the exome-wide gene-based multiple comparison burden using an empirical *p*-value
487 threshold for Type 1 error control from previous work (2.5×10^{-7} [33]). This was computed as $0.05 \times$ the average
488 *p*-value from 300 random phenotypes with varying heritabilities and UK Biobank exome data and approximates 0.05
489 expected false positives per phenotype. We then followed up significant results using (i) burden testing for assessing
490 the effect of genetic mutation burden on brain connectivity and (ii) confirmatory variant-level association testing on
491 the significant genes to describe which variants drove the gene-based associations.

492 Data and code availability

493 The primary data used in this study are from the UK Biobank. These data can be provided by UK Biobank pending
494 scientific review and a completed material transfer agreement. Requests for the data should be submitted to the
495 UK Biobank: <https://www.ukbiobank.ac.uk>. Specific UK Biobank data field codes are given in Materials and
496 Methods. Other publicly available data sources and applications are cited in Materials and Methods. We have made
497 our mvGWAS summary statistics available online within the GWAS catalog: <https://ebi.ac.uk/gwas/>. This study

498 used openly available software and codes, specifically GCTA (<https://cnsgenomics.com/software/gcta/#GREML>),
499 MOSTest (<https://github.com/precimed/mostest>), FUMA (<https://fuma.ctglab.nl/>), MAGMA (<https://ctg.cnrc.nl/software/magma>, also implemented in FUMA), PRS-CS (<https://github.com/getian107/PRScs>),
500 REGENIE (<https://rgcgithub.github.io/regenie/install/>) and LD score regression (<https://github.com/bulik/ldsc>). Custom code for this study is available from https://github.com/jsamalink/langnet_paper. All
501 other data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary
502 Materials.

505 **Author contributions**

506 Conceptualization - J.S.A, M.C.P., X.Z.K., M.J., S.E.F., C.F; Methodology - J.S.A, X.Z.K., Z.S., D.S., A.C.C., B.M.,
507 S.S-N., M.J.; Software - J.S.A., X.Z.K., D.S, M.J.; Formal analysis - J.S.A., M.C.P., X.Z.K., D.S., Z.S.; Data curation
508 - J.S.A., X.Z.K., D.S.; Writing - original draft - J.S.A.; Writing - review & editing - M.C.P., X.Z.K., A.C.C., S-S.N.,
509 Z.S., D.S., B.M., M.J., S.E.F., C.F.; Visualization - J.S.A.; Project administration - C.F.; Resources - S.E.F, C.F.;
510 Funding acquisition - C.F., S.E.F., M.J., ; Supervision - S.E.F., C.F.

511 **Supporting Information Appendix (SI)**

512 All supplementary figures and tables can be found in accompanying PDF (figures) and Excel (tables/supplementary
513 data) files. Genome-wide multivariate summary statistics from our GWAS based on common genetic variants are
514 available online within the GWAS catalog (<https://ebi.ac.uk/gwas/>).

515 **Disclosures**

516 No competing interests to declare.

517 **Acknowledgements**

518 This research was funded by the Max Planck Society (Germany), together with grants from the Netherlands Organisa-
519 tion for Scientific Research (NWO) (054-15-101) and French National Research Agency (ANR, grant No. 15-HBPR-
520 0001-03) as part of the FLAG-ERA consortium project 'MULTI-LATERAL', a Partner Project to the European
521 Union's Flagship Human Brain Project. The study was conducted using the UK Biobank resource under application
522 no. 16066 with C.F. as the principal applicant. Our study made use of quality-controlled brain images generated
523 by an image-processing pipeline developed and run on behalf of the UK Biobank. The funders had no role in study
524 design, data collection and analysis, and the decision to publish or preparation of the manuscript. The authors thank
525 Else Eising, Giacomo Bignardi and Tristan Looden for their thoughts on the methodology. The authors thank Fabrice
526 Crivello and Antonietta Pepe for their involvement in the inception of this project. The authors would like to thank
527 the research participants and employees of 23andMe, Inc. for making this work possible.

528 References

- 529 1. Olulade, O. A. *et al.* The neural basis of language development: Changes in lateralization over age. *Proceedings*
530 *of the National Academy of Sciences* **117**. Publisher: Proceedings of the National Academy of Sciences, 23477–
531 23483. <https://www.pnas.org/doi/full/10.1073/pnas.1905590117> (2023) (Sept. 2020).
- 532 2. Mazoyer, B. *et al.* Gaussian Mixture Modeling of Hemispheric Lateralization for Language in a Large Sample of
533 Healthy Individuals Balanced for Handedness. en. *PLOS ONE* **9**. Publisher: Public Library of Science, e101165.
534 ISSN: 1932-6203. <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101165> (2023)
535 (June 2014).
- 536 3. Labache, L. *et al.* A SENTence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation
537 mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. en. *Brain Structure and*
538 *Function* **224**, 859–882. ISSN: 1863-2653, 1863-2661. <http://link.springer.com/10.1007/s00429-018-1810-2> (2022) (Mar. 2019).
- 540 4. Malik-Moraleda, S. *et al.* An investigation across 45 languages and 12 language families reveals a universal
541 language network. en. *Nature Neuroscience* **25**. Number: 8 Publisher: Nature Publishing Group, 1014–1019.
542 ISSN: 1546-1726. <https://www.nature.com/articles/s41593-022-01114-5> (2023) (Aug. 2022).
- 543 5. Dale, P. *et al.* Genetic influence on language delay in two-year-old children. en. *Nature Neuroscience* **1**. Number:
544 4 Publisher: Nature Publishing Group, 324–328. ISSN: 1546-1726. https://www.nature.com/articles/nn0898_324 (2023) (Aug. 1998).
- 546 6. Le Guen, Y., Amalric, M., Pinel, P., Pallier, C. & Frouin, V. Shared genetic aetiology between cognitive perfor-
547 mance and brain activations in language and math tasks. en. *Scientific Reports* **8**. Number: 1 Publisher: Nature
548 Publishing Group, 17624. ISSN: 2045-2322. <https://www.nature.com/articles/s41598-018-35665-0> (2023)
549 (Dec. 2018).
- 550 7. Newbury, D. F., Bishop, D. V. M. & Monaco, A. P. Genetic influences on language impairment and phonological
551 short-term memory. English. *Trends in Cognitive Sciences* **9**. Publisher: Elsevier, 528–534. ISSN: 1364-6613,
552 1879-307X. [https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613\(05\)00262-7](https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(05)00262-7) (2023)
553 (Nov. 2005).
- 554 8. Andreola, C. *et al.* The heritability of reading and reading-related neurocognitive components: A multi-level meta-
555 analysis. *Neuroscience & Biobehavioral Reviews* **121**, 175–200. ISSN: 0149-7634. <https://www.sciencedirect.com/science/article/pii/S0149763420306503> (2023) (Feb. 2021).
- 557 9. Eising, E. *et al.* Genome-wide analyses of individual differences in quantitatively assessed reading- and language-
558 related skills in up to 34,000 people. *Proceedings of the National Academy of Sciences* **119**. Publisher: Proceedings
559 of the National Academy of Sciences, e2202764119. <https://www.pnas.org/doi/abs/10.1073/pnas.2202764119> (2023) (Aug. 2022).
- 561 10. Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S. & St Pourcain, B. The developmental origins of genetic
562 factors influencing language and literacy: Associations with early-childhood vocabulary. en. *Journal of Child*

563 *Psychology and Psychiatry* **62**. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcpp.13327>, 728–738.

564 ISSN: 1469-7610. <https://onlinelibrary.wiley.com/doi/abs/10.1111/jcpp.13327> (2023) (2021).

565 11. Eising, E. *et al.* A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted
566 speech development. en. *Molecular Psychiatry* **24**. Number: 7 Publisher: Nature Publishing Group, 1065–1078.
567 ISSN: 1476-5578. <https://www.nature.com/articles/s41380-018-0020-x> (2023) (July 2019).

568 12. Deriziotis, P. & Fisher, S. E. Speech and Language: Translating the Genome. English. *Trends in Genetics* **33**.
569 Publisher: Elsevier, 642–656. ISSN: 0168-9525. [https://www.cell.com/trends/genetics/abstract/S0168-9525\(17\)30111-7](https://www.cell.com/trends/genetics/abstract/S0168-9525(17)30111-7) (2023) (Sept. 2017).

570 13. Bates, T. C. *et al.* Genetic and environmental bases of reading and spelling: A unified genetic dual route model.
571 en. *Reading and Writing* **20**, 147–171. ISSN: 1573-0905. <https://doi.org/10.1007/s11145-006-9022-1> (2023)
572 (Feb. 2007).

573 14. Doust, C. *et al.* Discovery of 42 genome-wide significant loci associated with dyslexia. en. *Nature Genetics* **54**.
574 Number: 11 Publisher: Nature Publishing Group, 1621–1629. ISSN: 1546-1718. <https://www.nature.com/articles/s41588-022-01192-y> (2023) (Nov. 2022).

575 15. Williams, L. Z. J. *et al.* Structural and functional asymmetry of the neonatal cerebral cortex. en. *Nature Human
576 Behaviour* **7**. Number: 6 Publisher: Nature Publishing Group, 942–955. ISSN: 2397-3374. <https://www.nature.com/articles/s41562-023-01542-8> (2023) (June 2023).

577 16. De Kovel, C. G. F., Carrión-Castillo, A. & Francks, C. A large-scale population study of early life factors
578 influencing left-handedness. en. *Scientific Reports* **9**. Number: 1 Publisher: Nature Publishing Group, 584. ISSN:
579 2045-2322. <https://www.nature.com/articles/s41598-018-37423-8> (2023) (Jan. 2019).

580 17. Francks, C. Exploring human brain lateralization with molecular genetics and genomics. en. *Annals of the
581 New York Academy of Sciences* **1359**. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/nyas.12770>, 1–
582 13. ISSN: 1749-6632. <https://onlinelibrary.wiley.com/doi/abs/10.1111/nyas.12770> (2023) (2015).

583 18. Sha, Z. *et al.* The genetic architecture of structural left–right asymmetry of the human brain. en. *Nature Human
584 Behaviour* **5**. Number: 9 Publisher: Nature Publishing Group, 1226–1239. ISSN: 2397-3374. <https://www.nature.com/articles/s41562-021-01069-w> (2023) (Sept. 2021).

585 19. Sha, Z. *et al.* Handedness and its genetic influences are associated with structural asymmetries of the cerebral
586 cortex in 31,864 individuals. *Proceedings of the National Academy of Sciences* **118**. Publisher: Proceedings of
587 the National Academy of Sciences, e2113095118. <https://www.pnas.org/doi/abs/10.1073/pnas.2113095118>
588 (2023) (Nov. 2021).

589 20. Wiberg, A. *et al.* Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and
590 genetics. *Brain* **142**, 2938–2947. ISSN: 0006-8950. <https://doi.org/10.1093/brain/awz257> (2023) (Oct. 2019).

591 21. Tavor, I. *et al.* Task-free MRI predicts individual differences in brain activity during task performance. *Science*
592 **352**. Publisher: American Association for the Advancement of Science, 216–220. <https://www.science.org/doi/10.1126/science.aad8127> (2023) (Apr. 2016).

593

594

595

596

597

598 22. Joliot, M., Tzourio-Mazoyer, N. & Mazoyer, B. Intra-hemispheric intrinsic connectivity asymmetry and its re-
599 lationships with handedness and language Lateralization. *Neuropsychologia. The Neural Bases of Hemispheric*
600 *Specialisation* **93**, 437–447. ISSN: 0028-3932. <https://www.sciencedirect.com/science/article/pii/S0028393216300768> (2023) (Dec. 2016).

602 23. Labache, L., Ge, T., Yeo, B. T. T. & Holmes, A. J. Language network lateralization is reflected throughout
603 the macroscale functional organization of cortex. eng. *Nature Communications* **14**, 3405. ISSN: 2041-1723 (June
604 2023).

605 24. Smith, S. M. *et al.* Correspondence of the brain's functional architecture during activation and rest. *Proceedings*
606 *of the National Academy of Sciences* **106**. Publisher: Proceedings of the National Academy of Sciences, 13040–
607 13045. <https://www.pnas.org/doi/full/10.1073/pnas.0905267106> (2023) (Aug. 2009).

608 25. Margulies, D. S. *et al.* Situating the default-mode network along a principal gradient of macroscale cortical
609 organization. *Proceedings of the National Academy of Sciences* **113**. Publisher: Proceedings of the National
610 Academy of Sciences, 12574–12579. <https://www.pnas.org/doi/abs/10.1073/pnas.1608282113> (2023) (Nov.
611 2016).

612 26. Bradshaw, A. R., Thompson, P. A., Wilson, A. C., Bishop, D. V. M. & Woodhead, Z. V. J. Measuring language
613 lateralisation with different language tasks: a systematic review. en. *PeerJ* **5**. Publisher: PeerJ Inc., e3929. ISSN:
614 2167-8359. <https://peerj.com/articles/3929> (2023) (Oct. 2017).

615 27. Elliott, L. T. *et al.* Genome-wide association studies of brain imaging phenotypes in UK Biobank. en. *Nature*
616 **562**. Number: 7726 Publisher: Nature Publishing Group, 210–216. ISSN: 1476-4687. <https://www.nature.com/articles/s41586-018-0571-7> (2023) (Oct. 2018).

618 28. Mekki, Y. *et al.* The genetic architecture of language functional connectivity. eng. *NeuroImage* **249**, 118795.
619 ISSN: 1095-9572 (Apr. 2022).

620 29. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis
621 of human functional neuroimaging data. en. *Nature Methods* **8**. Number: 8 Publisher: Nature Publishing Group,
622 665–670. ISSN: 1548-7105. <https://www.nature.com/articles/nmeth.1635> (2023) (Aug. 2011).

623 30. Joliot, M. *et al.* AICHA: An atlas of intrinsic connectivity of homotopic areas. en. *Journal of Neuroscience*
624 *Methods* **254**, 46–59. ISSN: 01650270. <https://linkinghub.elsevier.com/retrieve/pii/S0165027015002678>
625 (2022) (Oct. 2015).

626 31. Carrion-Castillo, A. *et al.* Genome sequencing for rightward hemispheric language dominance. en. *Genes, Brain*
627 *and Behavior* **18**. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/gbb.12572>, e12572. ISSN: 1601-183X.
628 <https://onlinelibrary.wiley.com/doi/abs/10.1111/gbb.12572> (2023) (2019).

629 32. Backman, J. D. *et al.* Exome sequencing and analysis of 454,787 UK Biobank participants. en. *Nature* **599**.
630 Number: 7886 Publisher: Nature Publishing Group, 628–634. ISSN: 1476-4687. <https://www.nature.com/articles/s41586-021-04103-z> (2023) (Nov. 2021).

632 33. Karczewski, K. J. *et al.* Systematic single-variant and gene-based association testing of thousands of phenotypes
633 in 394,841 UK Biobank exomes. en. *Cell Genomics* **2**, 100168. ISSN: 2666979X. <https://linkinghub.elsevier.com/retrieve/pii/S2666979X22001100> (2023) (Sept. 2022).

635 34. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data. en. *Nature* **562**. Number:
636 7726 Publisher: Nature Publishing Group, 203–209. ISSN: 1476-4687. <https://www.nature.com/articles/s41586-018-0579-z> (2023) (Oct. 2018).

638 35. Van der Meer, D. *et al.* Understanding the genetic determinants of the brain with MOSTest. en. *Nature Communications* **11**. Number: 1 Publisher: Nature Publishing Group, 3512. ISSN: 2041-1723. <https://www.nature.com/articles/s41467-020-17368-1> (2023) (July 2020).

641 36. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic
642 associations with FUMA. en. *Nature Communications* **8**. Number: 1 Publisher: Nature Publishing Group, 1826.
643 ISSN: 2041-1723. <https://www.nature.com/articles/s41467-017-01261-5> (2023) (Nov. 2017).

644 37. Leeuw, C. A. d., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS
645 Data. en. *PLOS Computational Biology* **11**. Publisher: Public Library of Science, e1004219. ISSN: 1553-7358.
646 <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004219> (2023) (Apr.
647 2015).

648 38. Sunkin, S. M. *et al.* Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous
649 system. *Nucleic Acids Research* **41**, D996–D1008. ISSN: 0305-1048. <https://doi.org/10.1093/nar/gks1042>
650 (2023) (Jan. 2013).

651 39. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for interpreting genome-
652 wide expression profiles. *Proceedings of the National Academy of Sciences* **102**. Publisher: Proceedings of the
653 National Academy of Sciences, 15545–15550. <https://www.pnas.org/doi/10.1073/pnas.0506580102> (2023)
654 (Oct. 2005).

655 40. Liberzon, A. *et al.* Molecular signatures database (MSigDB) 3.0. *Bioinformatics* **27**, 1739–1740. ISSN: 1367-4803.
656 <https://doi.org/10.1093/bioinformatics/btr260> (2023) (June 2011).

657 41. THE GTEx CONSORTIUM. The GTEx Consortium atlas of genetic regulatory effects across human tissues.
658 *Science* **369**. Publisher: American Association for the Advancement of Science, 1318–1330. <https://www.science.org/doi/10.1126/science.aaz1776> (2023) (Sept. 2020).

660 42. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and
661 continuous shrinkage priors. en. *Nature Communications* **10**. Number: 1 Publisher: Nature Publishing Group,
662 1776. ISSN: 2041-1723. <https://www.nature.com/articles/s41467-019-09718-5> (2023) (Apr. 2019).

663 43. Mbatchou, J. *et al.* Computationally efficient whole-genome regression for quantitative and binary traits. en.
664 *Nature Genetics* **53**. Number: 7 Publisher: Nature Publishing Group, 1097–1103. ISSN: 1546-1718. <https://www.nature.com/articles/s41588-021-00870-7> (2023) (July 2021).

666 44. Lee, S. *et al.* Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample
667 Case-Control Whole-Exome Sequencing Studies. en. *The American Journal of Human Genetics* **91**, 224–237.
668 ISSN: 00029297. <https://linkinghub.elsevier.com/retrieve/pii/S0002929712003163> (2023) (Aug. 2012).

669 45. Szustakowski, J. D. *et al.* Advancing human genetics research and drug discovery through exome sequencing
670 of the UK Biobank. en. *Nature Genetics* **53**. Number: 7 Publisher: Nature Publishing Group, 942–948. ISSN:
671 1546-1718. <https://www.nature.com/articles/s41588-021-00885-0> (2023) (July 2021).

672 46. Pasquale, E. B. Eph-Ephrin Bidirectional Signaling in Physiology and Disease. en. *Cell* **133**, 38–52. ISSN: 0092-
673 8674. <https://www.sciencedirect.com/science/article/pii/S0092867408003863> (2023) (Apr. 2008).

674 47. Gibson, D. A. & Ma, L. Developmental regulation of axon branching in the vertebrate nervous system. eng.
675 *Development (Cambridge, England)* **138**, 183–195. ISSN: 1477-9129 (Jan. 2011).

676 48. Gerstmann, K. & Zimmer, G. The role of the Eph/ephrin family during cortical development and cerebral
677 malformations. en-US. *Medical Research Archives* **6**. ISSN: 2375-1924. <https://esmed.org/MRA/mra/article/view/1694> (2023) (Mar. 2018).

678 49. Zhao, B. *et al.* Common variants contribute to intrinsic human brain functional networks. en. *Nature Genetics*
679 **54**. Number: 4 Publisher: Nature Publishing Group, 508–517. ISSN: 1546-1718. <https://www.nature.com/articles/s41588-022-01039-6> (2023) (Apr. 2022).

680 50. Sha, Z., Schijven, D., Fisher, S. E. & Francks, C. Genetic architecture of the white matter connectome of the
681 human brain. eng. *Science Advances* **9**, eadd2870. ISSN: 2375-2548 (Feb. 2023).

682 51. Fagerberg, L. *et al.* Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics
683 and antibody-based proteomics. eng. *Molecular & cellular proteomics: MCP* **13**, 397–406. ISSN: 1535-9484 (Feb.
684 2014).

685 52. Fan, C. C. *et al.* Multivariate genome-wide association study on tissue-sensitive diffusion metrics highlights
686 pathways that shape the human brain. en. *Nature Communications* **13**. Number: 1 Publisher: Nature Publishing
687 Group, 2423. ISSN: 2041-1723. <https://www.nature.com/articles/s41467-022-30110-3> (2023) (May 2022).

688 53. Nalls, M. A. *et al.* Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a
689 meta-analysis of genome-wide association studies. eng. *The Lancet. Neurology* **18**, 1091–1102. ISSN: 1474-4465
690 (Dec. 2019).

691 54. Trubetskoy, V. *et al.* Mapping genomic loci implicates genes and synaptic biology in schizophrenia. eng. *Nature*
692 **604**, 502–508. ISSN: 1476-4687 (Apr. 2022).

693 55. Sollis, E. *et al.* The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. *Nucleic Acids Research*
694 **51**, D977–D985. ISSN: 0305-1048. <https://doi.org/10.1093/nar/gkac1010> (2023) (Jan. 2023).

695 56. Cuellar-Partida, G. *et al.* Genome-wide association study identifies 48 common genetic variants associated with
696 handedness. en. *Nature Human Behaviour* **5**. Number: 1 Publisher: Nature Publishing Group, 59–70. ISSN: 2397-
697 3374. <https://www.nature.com/articles/s41562-020-00956-y> (2023) (Jan. 2021).

698 57. Knecht, S. *et al.* Behavioural relevance of atypical language lateralization in healthy subjects. *Brain* **124**, 1657–
699 1665. ISSN: 0006-8950. <https://doi.org/10.1093/brain/124.8.1657> (2023) (Aug. 2001).

702 58. Bruckert, L. *Is language laterality related to language abilities?* English. <http://purl.org/dc/dcmitype/Text> (University of Oxford, 2016). <https://ora.ox.ac.uk/objects/uuid:05e80d0d-8d0b-4cb2-8f94-22763603fab5> (2023).

703 59. Mellet, E. *et al.* Weak language lateralization affects both verbal and spatial skills: An fMRI study in 297 subjects. *Neuropsychologia* **65**, 56–62. ISSN: 0028-3932. <https://www.sciencedirect.com/science/article/pii/S0028393214003704> (2023) (Dec. 2014).

704 60. Leonard, C. M. & Eckert, M. A. Asymmetry and Dyslexia. *Developmental Neuropsychology* **33**. Publisher: Routledge eprint: <https://doi.org/10.1080/87565640802418597>, 663–681. ISSN: 8756-5641. <https://doi.org/10.1080/87565640802418597> (2023) (Nov. 2008).

705 61. Richlan, F., Kronbichler, M. & Wimmer, H. Meta-analyzing brain dysfunctions in dyslexic children and adults. *NeuroImage* **56**, 1735–1742. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811911001960> (2023) (June 2011).

706 62. Van der Mark, S. *et al.* The left occipitotemporal system in reading: Disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. *NeuroImage* **54**, 2426–2436. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811910012930> (2023) (Feb. 2011).

707 63. Kershner, J. R. Neuroscience and education: Cerebral lateralization of networks and oscillations in dyslexia. *L laterality* **25**. Publisher: Routledge eprint: <https://doi.org/10.1080/1357650X.2019.1606820>, 109–125. ISSN: 1357-650X. <https://doi.org/10.1080/1357650X.2019.1606820> (2023) (Jan. 2020).

708 64. Zago, L. *et al.* Predicting hemispheric dominance for language production in healthy individuals using support vector machine. en. *Human Brain Mapping* **38**. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.23770>, 5871–5889. ISSN: 1097-0193. <https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23770> (2023) (2017).

709 65. Sha, Z., Schijven, D. & Francks, C. Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. en. *Molecular Psychiatry* **26**. Number: 12 Publisher: Nature Publishing Group, 7652–7660. ISSN: 1476-5578. <https://www.nature.com/articles/s41380-021-01204-z> (2023) (Dec. 2021).

710 66. Wang, H.-T. *et al.* Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. en. *NeuroImage* **216**, 116745. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811920302329> (2023) (Aug. 2020).

711 67. Smith, S. M. *et al.* A positive-negative mode of population covariation links brain connectivity, demographics and behavior. en. *Nature Neuroscience* **18**. Number: 11 Publisher: Nature Publishing Group, 1565–1567. ISSN: 1546-1726. <https://www.nature.com/articles/nn.4125> (2023) (Nov. 2015).

712 68. Lee, J. J. *et al.* Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. eng. *Nature Genetics* **50**, 1112–1121. ISSN: 1546-1718 (July 2018).

713 69. Gaudet, P., Livstone, M. S., Lewis, S. E. & Thomas, P. D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. eng. *Briefings in Bioinformatics* **12**, 449–462. ISSN: 1477-4054 (Sept. 2011).

738 70. Bijsterbosch, J. *et al.* Challenges and future directions for representations of functional brain organization. en. *Nature Neuroscience* **23**. Number: 12 Publisher: Nature Publishing Group, 1484–1495. ISSN: 1546-1726. <https://www.nature.com/articles/s41593-020-00726-z> (2023) (Dec. 2020).

739 71. Bijsterbosch, J. D., Valk, S. L., Wang, D. & Glasser, M. F. Recent developments in representations of the
740 connectome. en. *NeuroImage* **243**, 118533. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811921008065> (2023) (Nov. 2021).

741 72. Bignardi, G. *et al.* *Pervasive inter-individual differences in the sensorimotor-association axis of cortical organization* en. preprint (Neuroscience, July 2023). <http://biorxiv.org/lookup/doi/10.1101/2023.07.13.548817> (2023).

742 73. Llera, A., Wolfers, T., Mulders, P. & Beckmann, C. F. Inter-individual differences in human brain structure
743 and morphology link to variation in demographics and behavior. en. *eLife* **8**, e44443. ISSN: 2050-084X. <https://elifesciences.org/articles/44443> (2023) (July 2019).

744 74. Pang, J. C. *et al.* Geometric constraints on human brain function. en. *Nature* **618**. Number: 7965 Publisher:
745 Nature Publishing Group, 566–574. ISSN: 1476-4687. <https://www.nature.com/articles/s41586-023-06098-1> (2023) (June 2023).

746 75. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking Structure and Function in Macroscale Brain
747 Networks. English. *Trends in Cognitive Sciences* **24**. Publisher: Elsevier, 302–315. ISSN: 1364-6613, 1879-307X.
748 [https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613\(20\)30026-7](https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(20)30026-7) (2023) (Apr.
749 2020).

750 76. Huffman, J. E. Examining the current standards for genetic discovery and replication in the era of mega-biobanks.
751 en. *Nature Communications* **9**. Number: 1 Publisher: Nature Publishing Group, 5054. ISSN: 2041-1723. <https://www.nature.com/articles/s41467-018-07348-x> (2023) (Nov. 2018).

752 77. Fry, A. *et al.* Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants
753 With Those of the General Population. *American Journal of Epidemiology* **186**, 1026–1034. ISSN: 0002-9262.
754 <https://doi.org/10.1093/aje/kwx246> (2023) (Nov. 2017).

755 78. Sudlow, C. *et al.* UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex
756 Diseases of Middle and Old Age. en. *PLOS Medicine* **12**. Publisher: Public Library of Science, e1001779. ISSN:
757 1549-1676. <https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001779> (2023) (Mar. 2015).

758 79. Alfaro-Almagro, F. *et al.* Image processing and Quality Control for the first 10,000 brain imaging datasets from
759 UK Biobank. en. *NeuroImage* **166**, 400–424. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811917308613> (2023) (Feb. 2018).

760 80. Miller, K. L. *et al.* Multimodal population brain imaging in the UK Biobank prospective epidemiological study.
761 en. *Nature Neuroscience* **19**. Number: 11 Publisher: Nature Publishing Group, 1523–1536. ISSN: 1546-1726.
762 <https://www.nature.com/articles/nrn.4393> (2023) (Nov. 2016).

773 81. Van Hout, C. V. *et al.* Exome sequencing and characterization of 49,960 individuals in the UK Biobank. en. *Nature* **586**. Number: 7831 Publisher: Nature Publishing Group, 749–756. ISSN: 1476-4687. <https://www.nature.com/articles/s41586-020-2853-0> (2023) (Oct. 2020).

774 82. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved Optimization for the Robust and Accurate Linear
775 Registration and Motion Correction of Brain Images. en. *NeuroImage* **17**, 825–841. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811902911328> (2023) (Oct. 2002).

776 83. Beckmann, C. & Smith, S. Probabilistic independent component analysis for functional magnetic resonance
777 imaging. *IEEE Transactions on Medical Imaging* **23**. Conference Name: IEEE Transactions on Medical Imaging,
778 137–152. ISSN: 1558-254X (Feb. 2004).

782 84. Griffanti, L. *et al.* ICA-based artefact removal and accelerated fMRI acquisition for improved resting state
783 network imaging. en. *NeuroImage* **95**, 232–247. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811914001815> (2023) (July 2014).

785 85. Salimi-Khorshidi, G. *et al.* Automatic denoising of functional MRI data: Combining independent component
786 analysis and hierarchical fusion of classifiers. en. *NeuroImage* **90**, 449–468. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811913011956> (2023) (Apr. 2014).

788 86. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. en. *NeuroImage. 20 YEARS OF fMRI* **62**, 782–790. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811911010603> (2023) (Aug. 2012).

791 87. Fischl, B. FreeSurfer. en. *NeuroImage. 20 YEARS OF fMRI* **62**, 774–781. ISSN: 1053-8119. <https://www.sciencedirect.com/science/article/pii/S1053811912000389> (2023) (Aug. 2012).

793 88. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A Tool for Genome-wide Complex Trait Analysis.
794 en. *The American Journal of Human Genetics* **88**, 76–82. ISSN: 0002-9297. <https://www.sciencedirect.com/science/article/pii/S0002929710005987> (2023) (Jan. 2011).

796 89. Ni, G. *et al.* A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple
797 Cohorts. eng. *Biological Psychiatry* **90**, 611–620. ISSN: 1873-2402 (Nov. 2021).

798 90. Zheutlin, A. B. *et al.* Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients
799 Across Four Health Care Systems. eng. *The American Journal of Psychiatry* **176**, 846–855. ISSN: 1535-7228 (Oct.
800 2019).

801 91. Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide polymorphisms,
802 SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. eng. *Fly* **6**, 80–92. ISSN:
803 1933-6942 (2012).

804 92. Liu, X., Li, C., Mou, C., Dong, Y. & Tu, Y. dbNSFP v4: a comprehensive database of transcript-specific functional
805 predictions and annotations for human nonsynonymous and splice-site SNVs. eng. *Genome Medicine* **12**, 103.
806 ISSN: 1756-994X (Dec. 2020).

807 93. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness
808 of variants throughout the human genome. *Nucleic Acids Research* **47**, D886–D894. ISSN: 0305-1048. <https://doi.org/10.1093/nar/gky1016> (2023) (Jan. 2019).

809

Supplementary figures Amelink et al. 2023

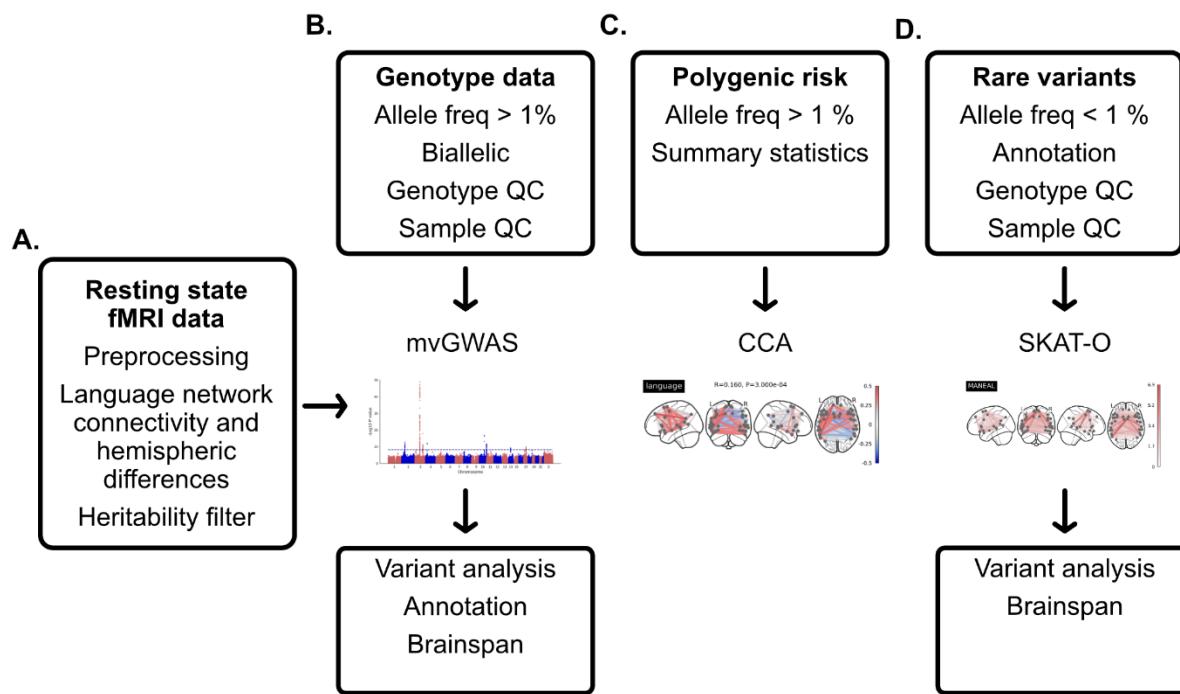


Figure S1 - Abbreviated overview of the analysis pipelines used. **A.** We derived connectivity values and their hemispheric differences from resting state connectivity from the SENSAAS atlas that was previously developed based on several language tasks (see Introduction), filtered for heritability, and then applied three different genetic analyses to both these phenotype sets. **B.** The first analysis was a multivariate genome-wide association study (mvGWAS) based on common variant genotype data, which was annotated using FUMA, MAGMA and Brainspan data. **C.** The second analysis involved deriving of polygenic scores based on large-scale GWAS summary statistics for three phenotypes of interest: language-related performance, dyslexia, and left-handedness. We then used canonical correlation analysis (CCA) in combination with a permutation test to test the multivariate association patterns between these scores and our language network connectivity and hemispheric differences. **D.** The third analysis was an exome-wide scan using a gene-based SKAT-O test (an optimized sequence kernel association test), which was followed-up with variant association testing and annotation using Brainspan data. Allele freq represents allele frequency. Quality control is abbreviated as QC.

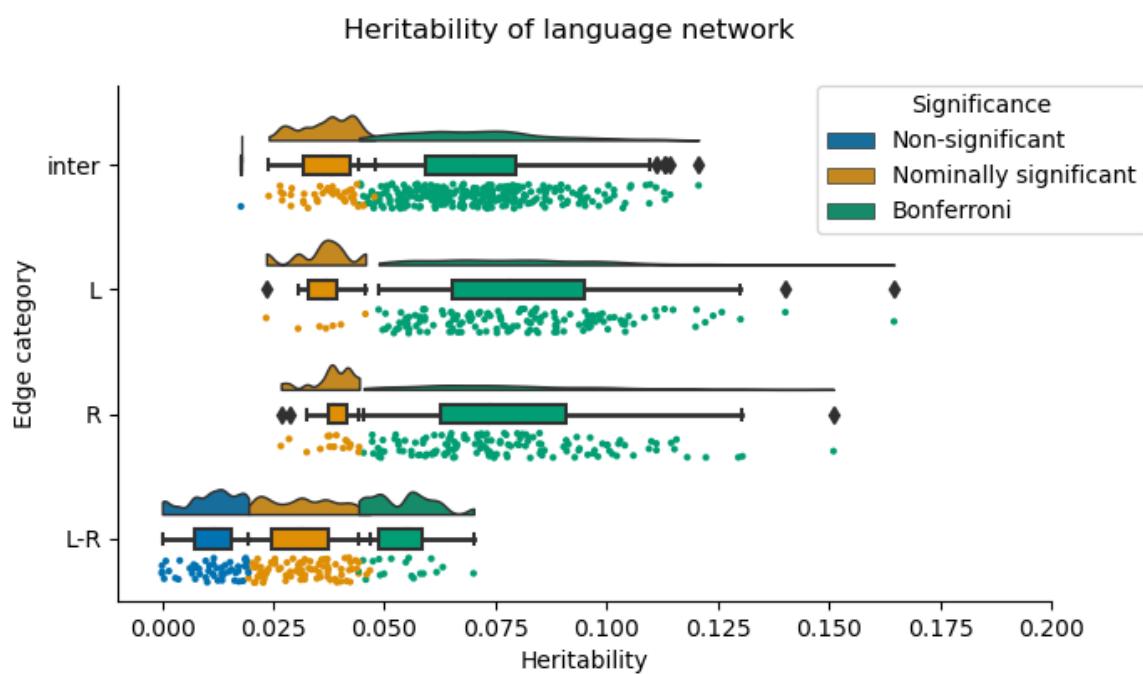


Figure S2 – Heritability estimates from GCTA for all derived phenotypes. All non-significant phenotypes (blue) were omitted from all further analyses.

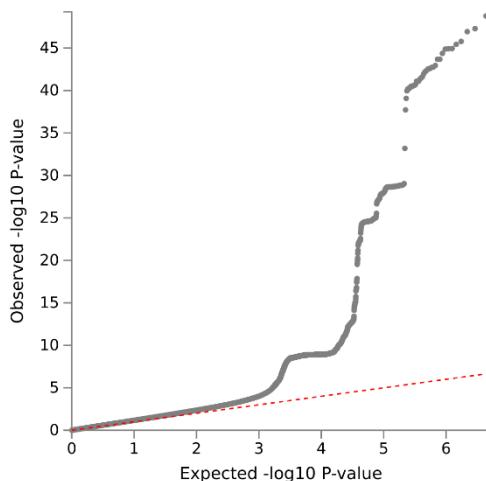


Figure S3 – QQ plot for mvGWAS results for language network

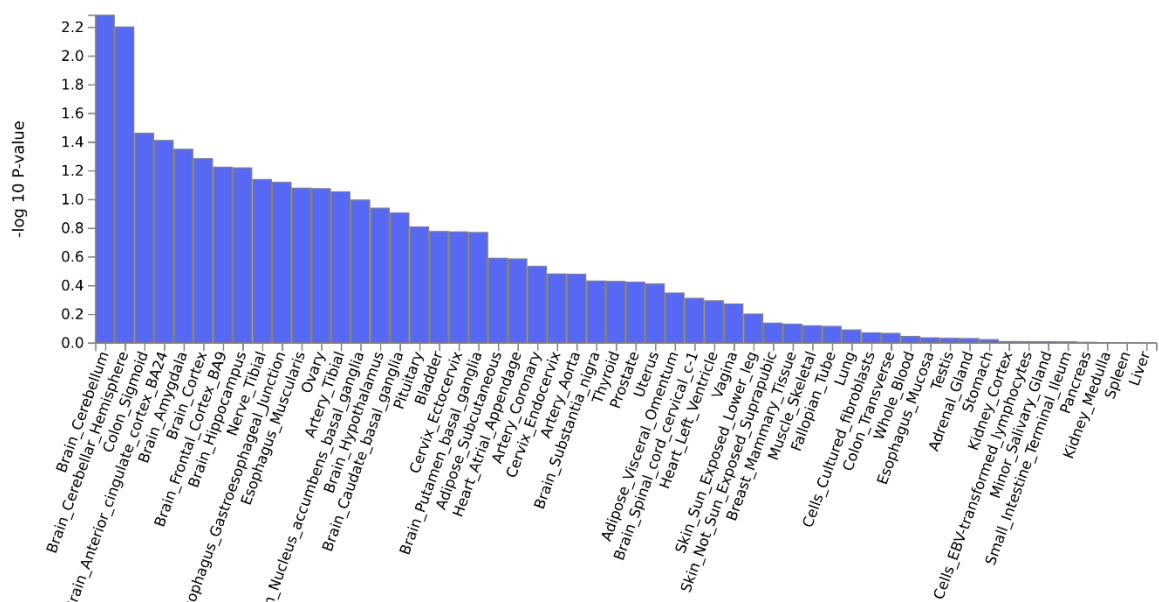


Figure S4 – GTEX v8 53 tissue types for language network

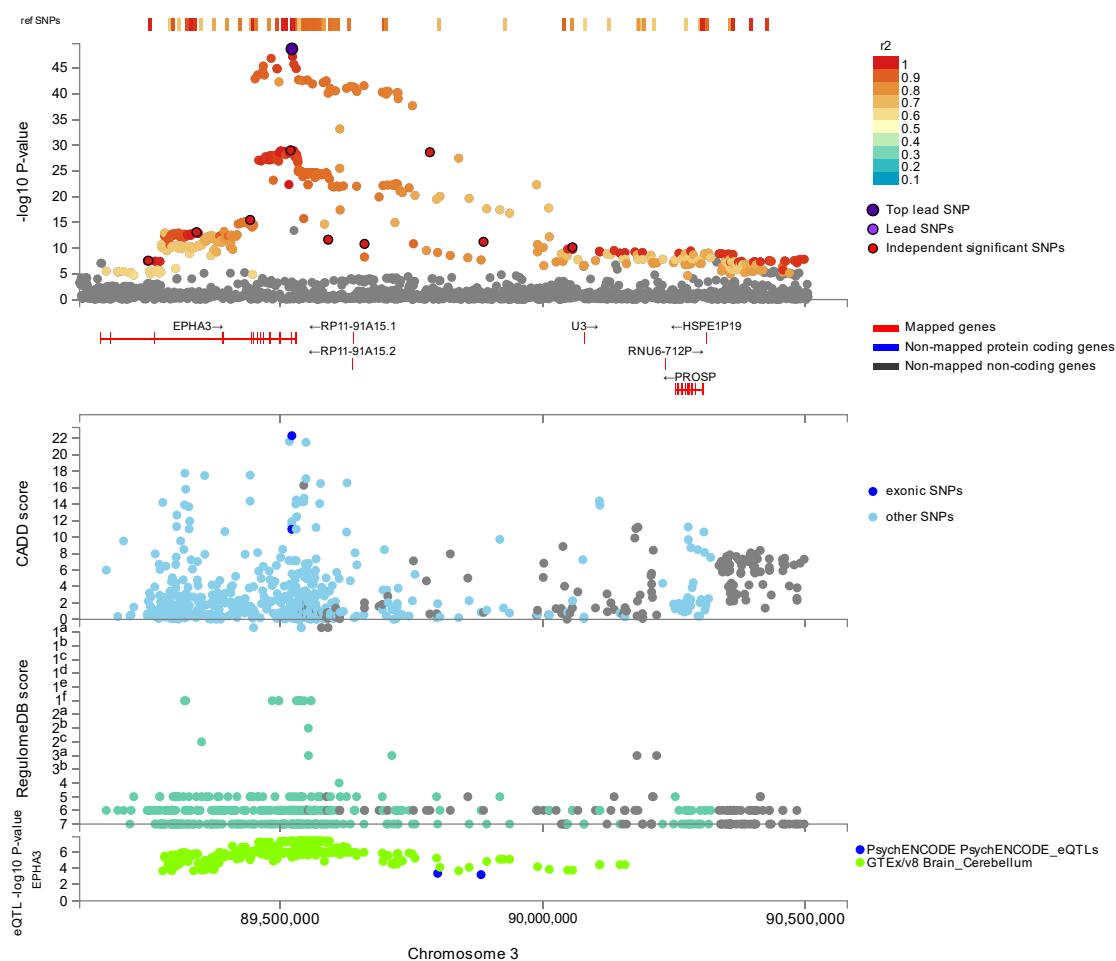


Figure S5 – Locuszoom plot for language network results of rs35124509 on chromosome 3. Top: a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r^2). Middle: Combined Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression.

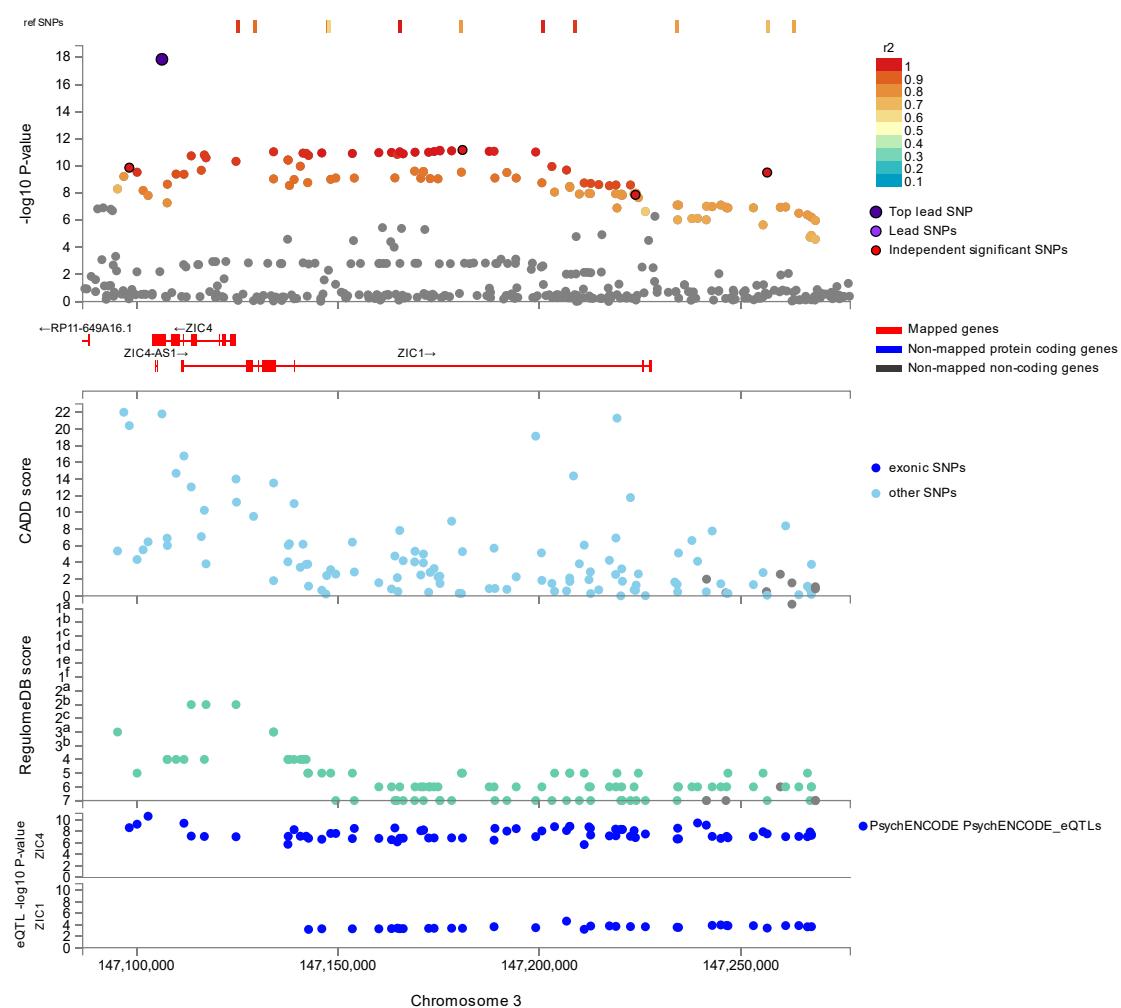


Figure S6 – Locuszoom plot for language network results of rs2279829 on chromosome 3. Top: a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r^2). Middle: Combined Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression.

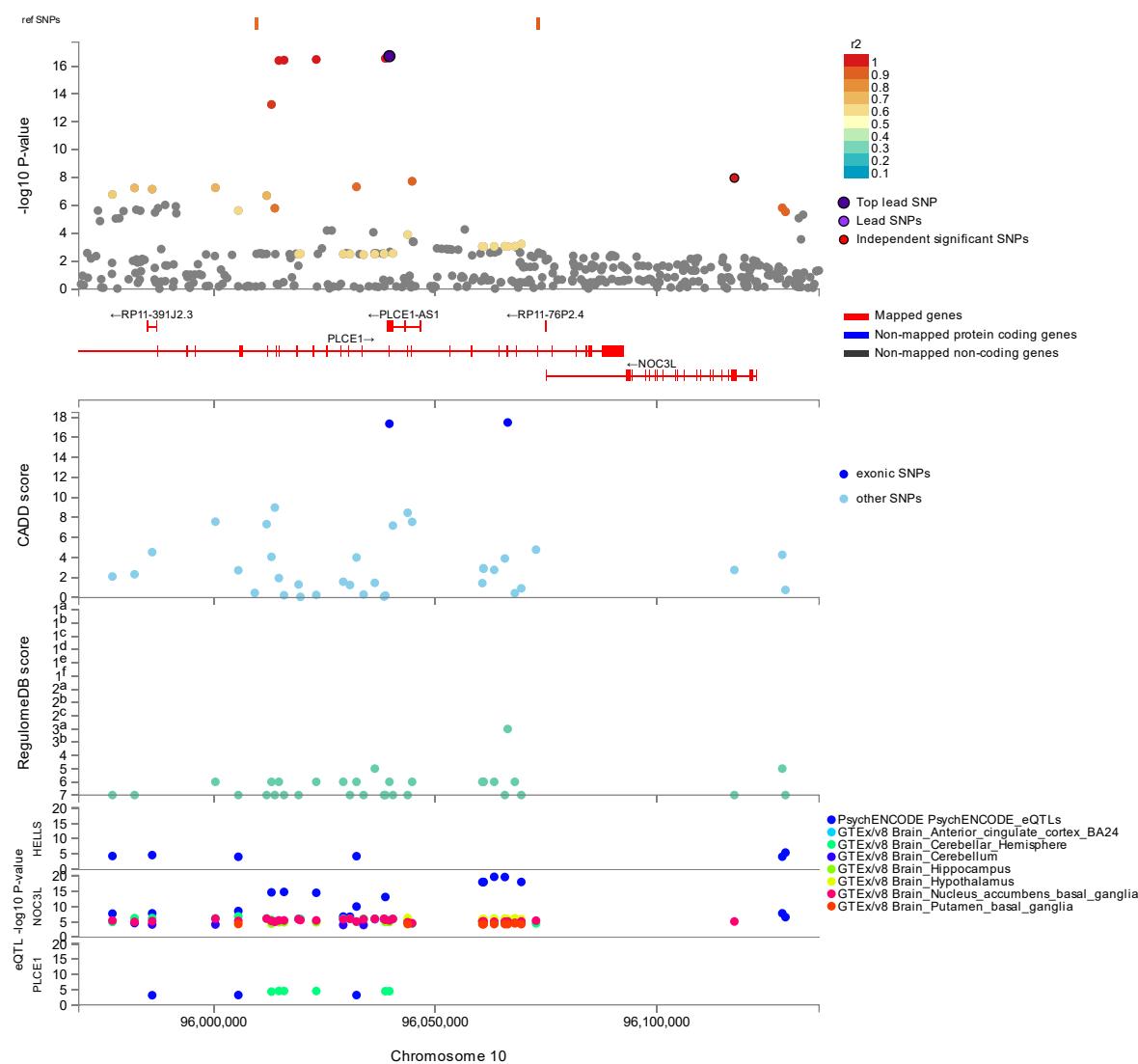


Figure S7 - Locuszoom plot for language network results of rs2274224 on chromosome 10. Top: a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r^2). Middle: Combined Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression.

Betas common lead variants language network

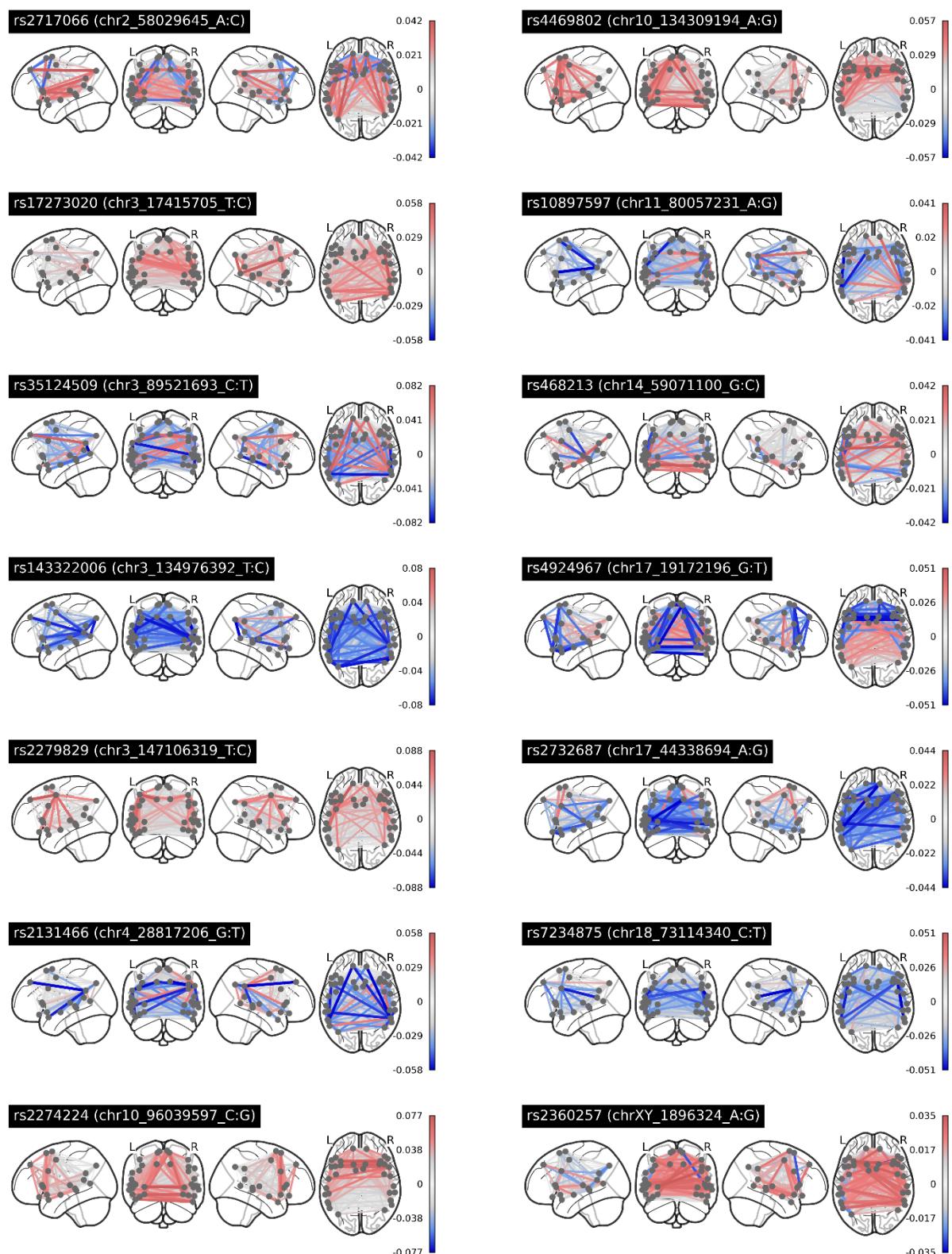


Figure S8 - Underlying univariate beta weights for all 14 significant lead SNPs for language network edges. Red indicates a positive association of a given edge or hemispheric difference with increasing number of the minor allele of the genetic variant, and blue indicates a negative association.



Figure S9 – QQ plot for mvGWAS results hemispheric differences

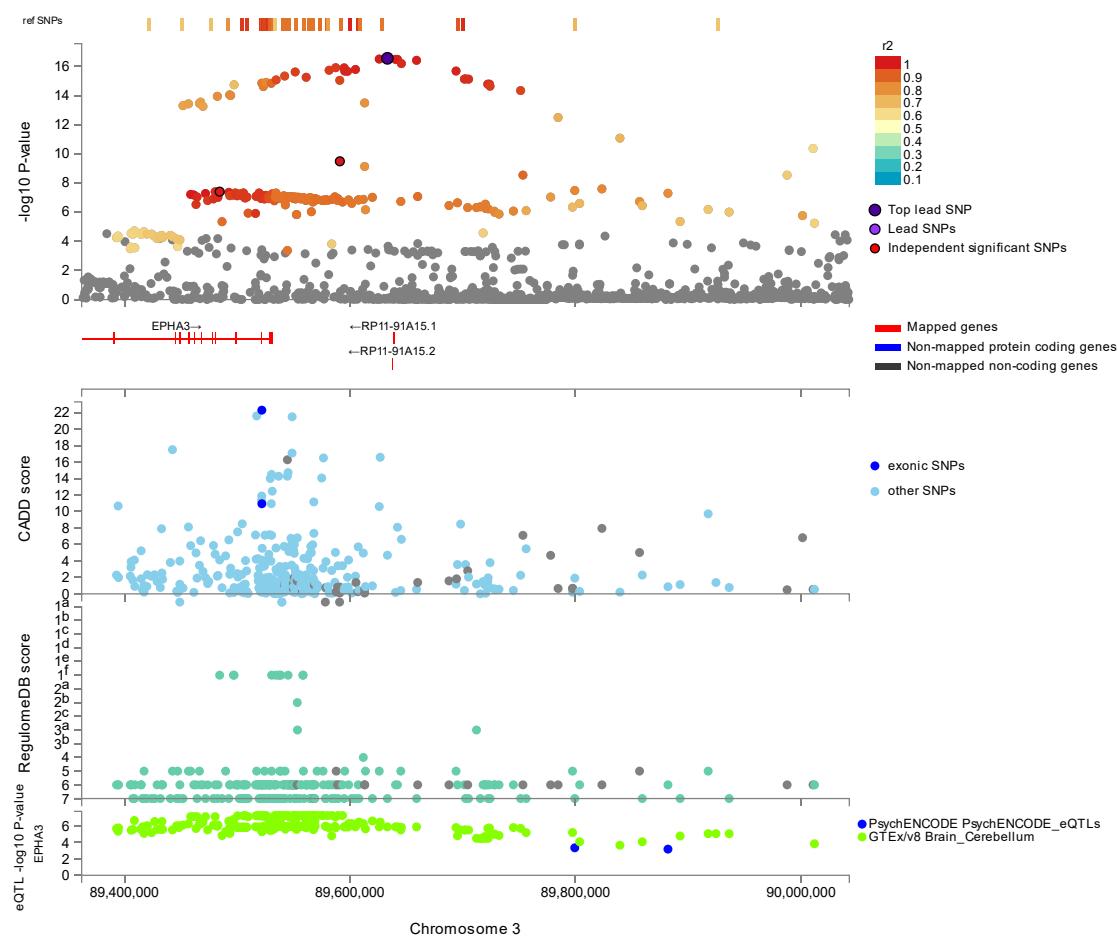


Figure S10 – Locuszoom plot for hemispheric differences results of rs7625916 on chromosome 3. Top: a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r^2). Middle: Combined Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression.

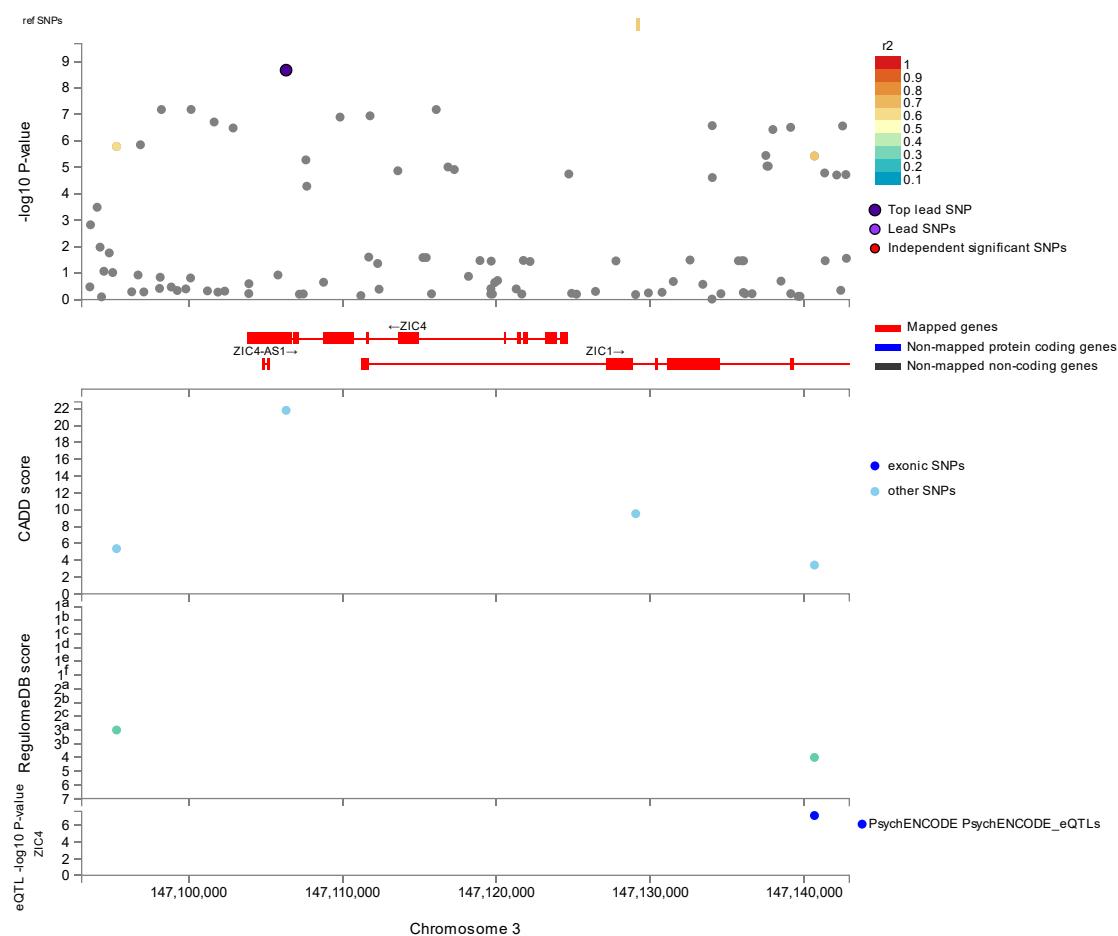


Figure S11 – Locuszoom plot for hemispheric differences results of rs2279829 on chromosome 3. Top a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r^2). Middle: Combined Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression.

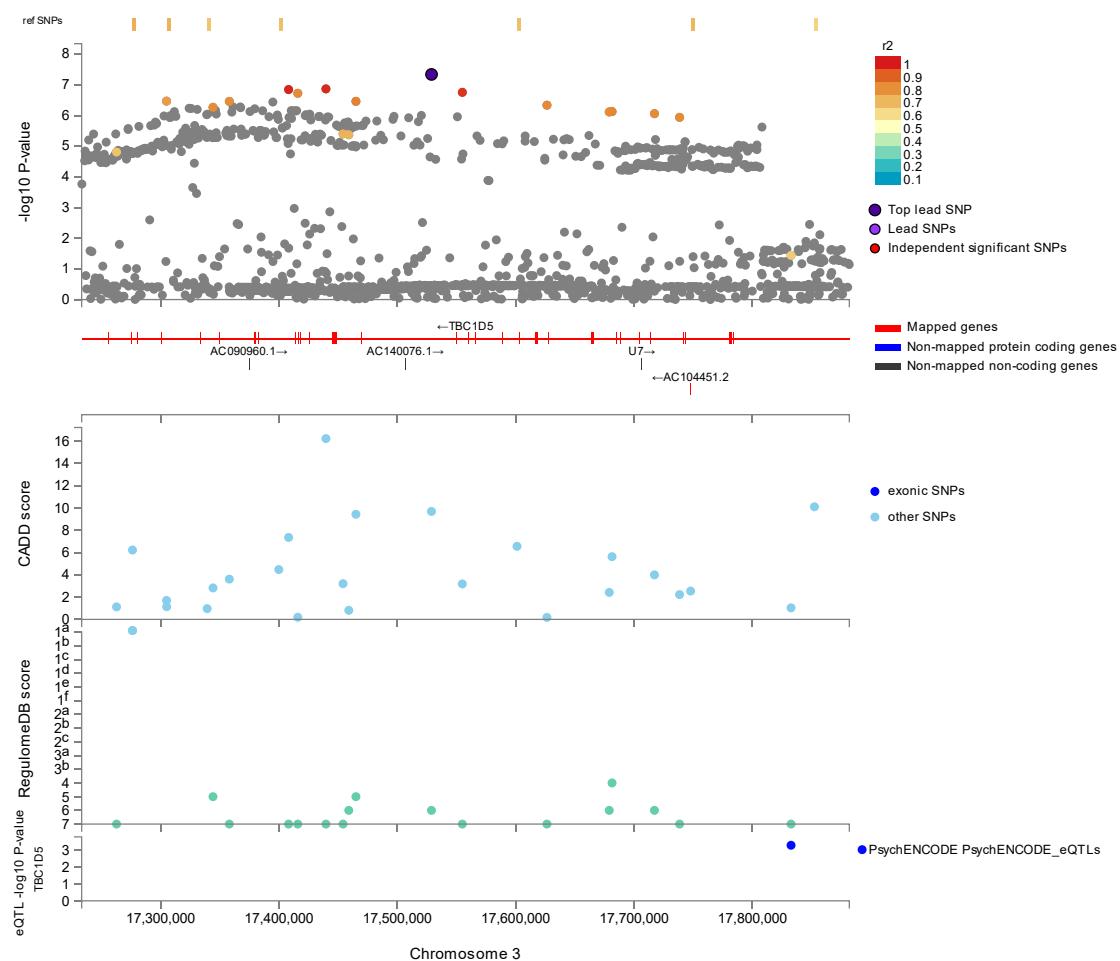


Figure S12 – Locuszoom plot for hemispheric differences results of rs1332197 on chromosome 3. Top: a fine-mapping plot is shown with lead SNPs and linkage disequilibrium (r^2). Middle: Combined Annotation Dependent Depletion (CADD) scores are shown, which predict a functional protein effect. Bottom: RegulomeDB scores are shown, which predict interaction effects and gene expression effects using expression quantitative trait loci (eQTL), relating to psychiatric disorders and brain expression.

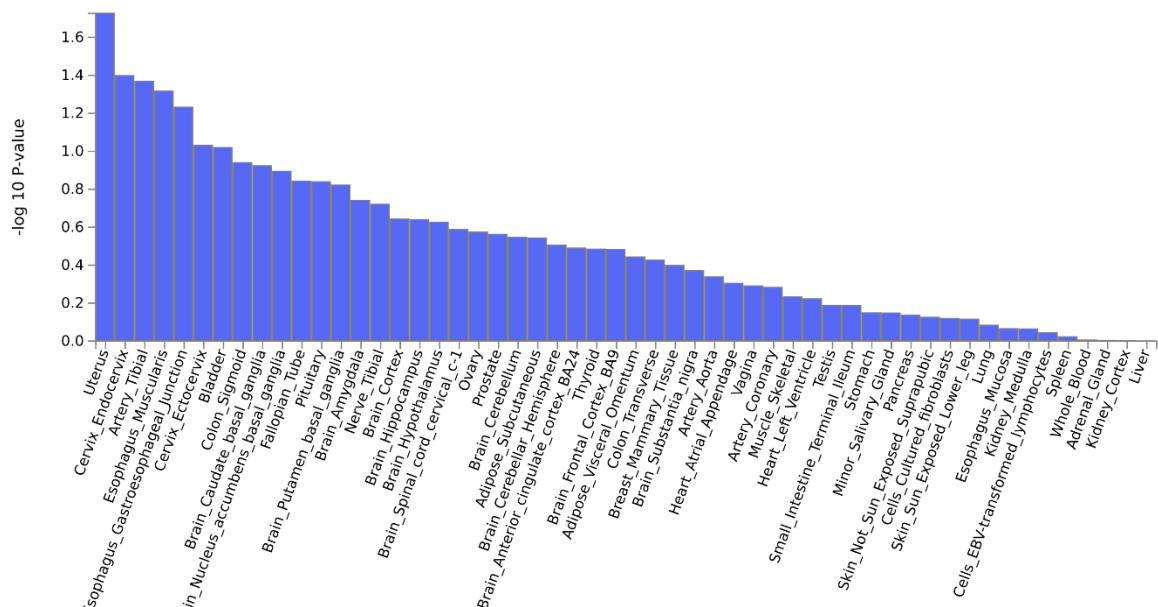


Figure S13 - GTEx v8 53 tissue types for hemispheric differences

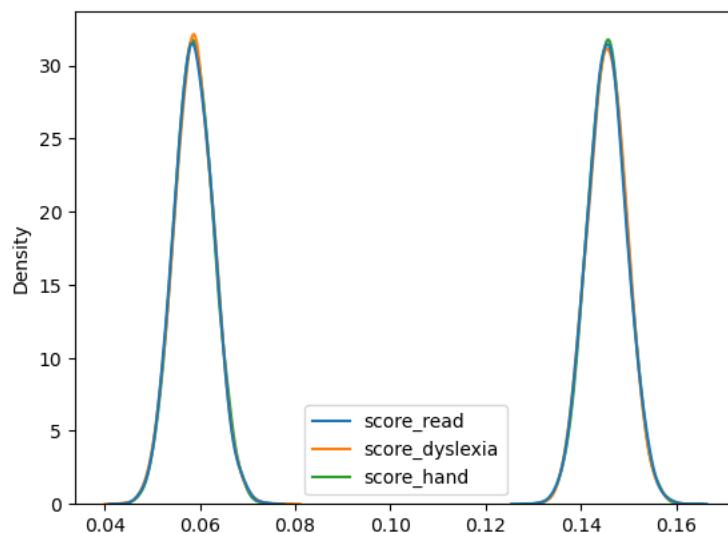


Figure S14 – Null distributions for CCA results with permuted language-related abilities, dyslexia and left-handedness polygenic scores. Left distribution is hemispheric differences, right is language network.

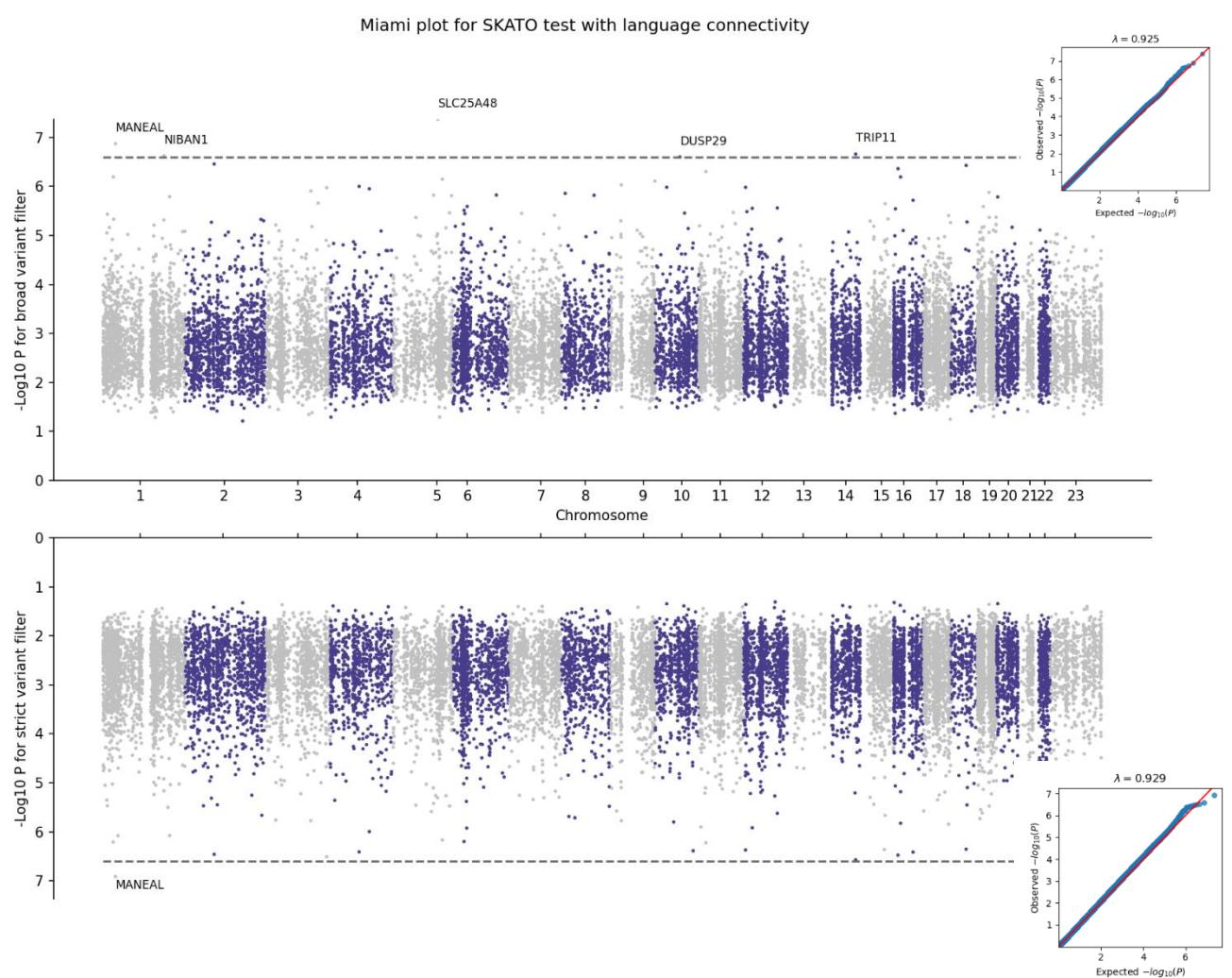


Figure S15 – Miami plot for exome-wide gene-based lowest p -value associations with language network. Top results are with a broad variant filter, bottom results are with a strict variant filter. QQ plot inserts show genomic inflation for all p -values.

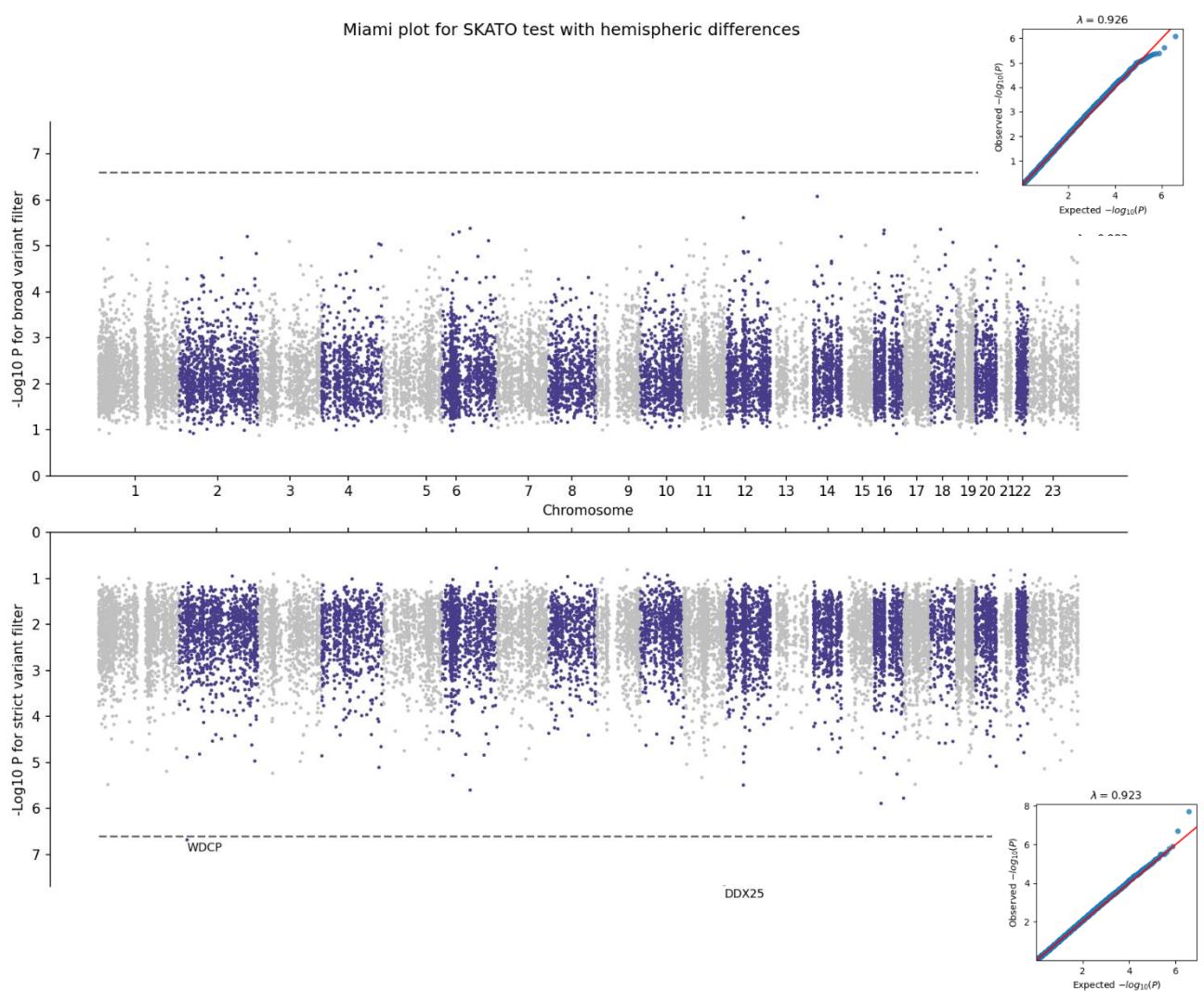


Figure S16 - Miami plot for exome-wide gene-based lowest p -value associations with hemispheric differences. Top results are with a ‘broad’ variant filter, bottom results are with a ‘strict’ variant filter (see Methods). QQ plot inserts show genomic inflation for all p -values.

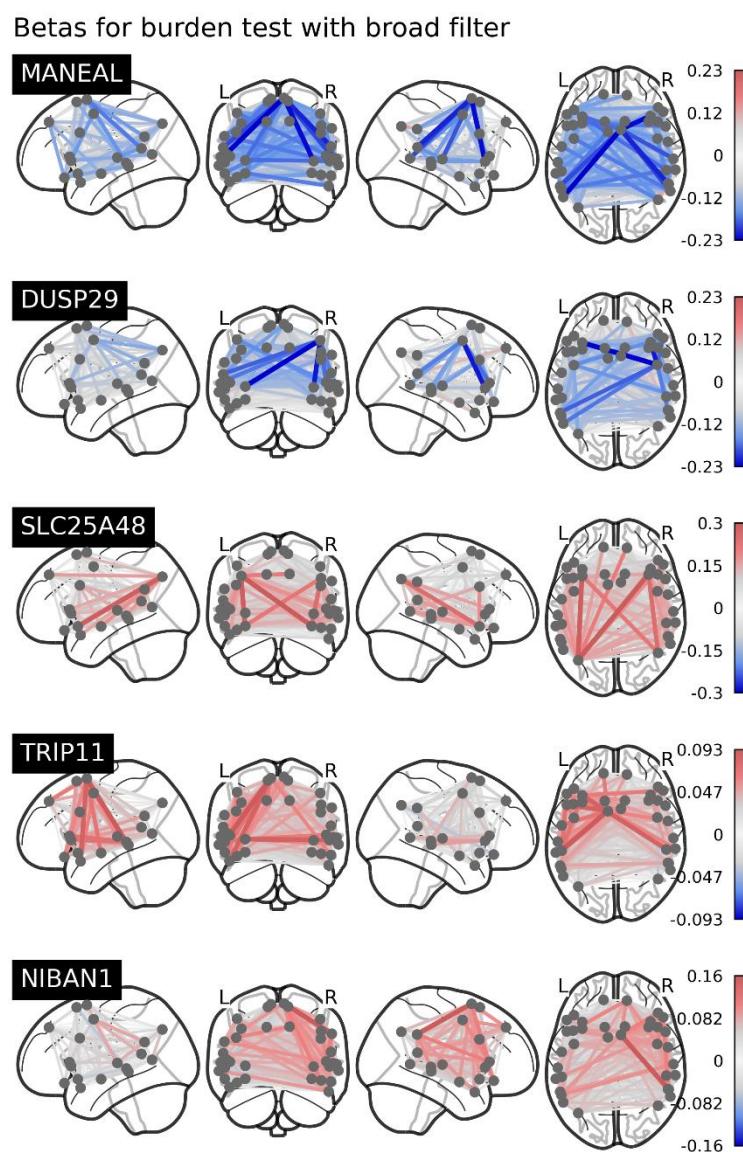


Figure S17 – Language network betas for increased genetic burden with a ‘broad’ variant filter (see Methods). Red means an increase in connectivity, blue means a decrease in connectivity.

Betas for burden test for genes with strict filter

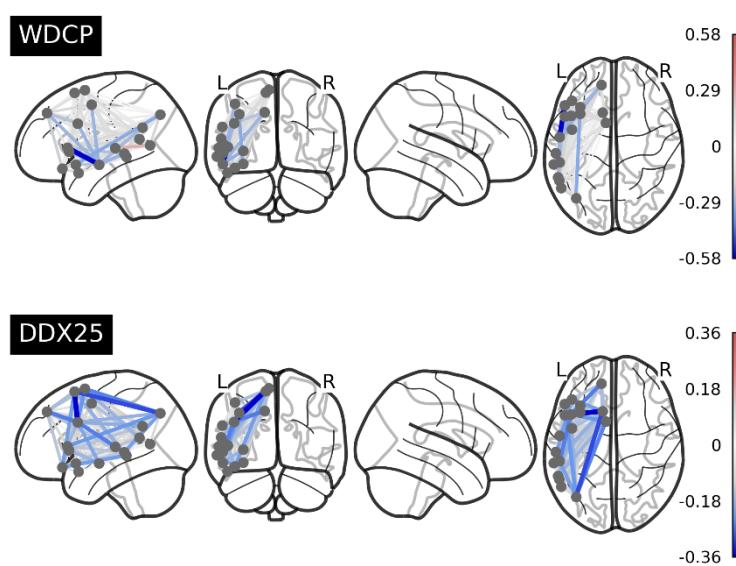


Figure S18 – Hemispheric differences betas for increased genetic burden with a ‘strict’ variant filter (see Methods). Red means an increase in connectivity, blue means a decrease in connectivity.