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Abstract

Object recognition by natural and artificial sensory systems requires a combination of
selectivity and invariance. Both natural and artificial neural networks achieve selectivity
and invariance by propagating sensory information though layers of neurons organised
in a functional hierarchy. Both employ computational units performing AND-like
operations for selectivity and OR-like operations for invariance. However, while
biological neurons are intrinsically capable of switching between these operations, their
artificial counterparts are hard-wired to perform only one of them. We wanted to test
whether the flexible mapping between neurons and computations observed in biological
neural networks is compatible with, or perhaps even useful to, artificial neural networks.
To answer this question, we have developed a deep learning layer in which both
selectivity and invariance operations can be performed by the same neurons. As with
biological neurons, the choice of which operation an artificial neuron performs on a
given input can be governed by the input strength. This flexible layer successfully
outputs a combination of the two operations and, surprisingly, confers additional
robustness to adversarial examples, which are inputs deliberately crafted to promote
misclassification. The flexible mapping also improves accuracy when the training
dataset is small, as well as when data are corrupted by certain types of noise. These
results narrow the gap between biological and artificial neural networks and add a new
bio-inspired approach to the arsenal of defenses against adversarial examples, which are
known threats to model-based optimization and network security.

Author summary

The biophysical properties of a biological neuron enable it to perform both OR-like and
AND-like operations over its inputs. In contrast, artificial neural networks use units
that always perform only one specific operation. We wondered whether the flexibility
observed in individual biological neurons could be incorporated into artificial neural
networks without breaking them. If artificial neural networks required their units to
perform single operations, then this requirement would either point to a fundamental
difference between biological and artificial neural networks or indicate that biological
neurons are somehow constrained to perform only one type of operations during object
recognition. If, on the other hand, artificial units can flexibly switch between different
operations, then such a result would indicate that biological and artificial neural
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networks are more similar than previously thought and would be an important step
towards biomimetic AI. To find out, we introduced a new computational structure we
call a flexible layer, in which individual units can switch between operations according
to a rule (e.g., depending on input strength, or even randomly). We found that
inserting the flexible layer in one or several positions in different artificial neural
networks trained on several benchmark datasets not only preserves their accuracy but
also makes them more robust to various perturbations and improves learning when
training data is scarce.

Introduction 1

After the field of Artificial Intelligence (AI) was born in the 20th century and survived 2

the “AI winter” of the 1990s, it has rapidly diverted from its roots in modelling the 3

brain into a myriad of sub-fields such as machine learning, deep learning, reinforcement 4

learning and others. These are now standalone scientific fields with their own 5

methodologies and enormous amounts of accumulated knowledge, but with fewer and 6

weaker direct links to the field of neuroscience [1]. Yet opportunities to establish such 7

links and benefit from them abound today thanks to the rapid development of 8

experimental and theoretical neuroscience [2]. 9

Neuroscience and AI are historically intertwined, with multiple object-recognition 10

models (e.g., HMAX) inspired by the anatomy and physiology of the visual cortex 11

[2, 3, 4]. For instance, Hubel & Wiesel discovered two different types of visual cortical 12

cells which they named simple and complex cells [5]. These cell types display selectivity 13

to stimuli of different spatial orientations and, at the level of complex cells, invariance 14

to the stimulus position within the receptive field. Many years later, state-of-the-art 15

object recognition models such as Convolutional Neural Networks (CNNs) that only 16

distantly mimic the structure of the brain, also use feature recombination functions to 17

achieve selectivity and invariance. In biological systems, selectivity is classically defined 18

in terms of the optimal stimulus for a neuron [6]. For instance, some neurons of the 19

visual cortex are selective to particular orientations of bars in space or more complex 20

features, such as entire objects. Invariance in object recognition is defined as the ability 21

to correctly classify visual objects in their previously learned object-name category, 22

despite variations in object appearance due to object-identity preserving 23

transformations, such as changes in object and viewer position, illumination conditions, 24

and occlusion by other objects [7]. 25

A basic neural operation corresponding to selectivity consists of taking dot products 26

between input vectors and a set of filters whose values can be modified through learning. 27

In a Convolutional Neural Network (CNN), selectivity is achieved by the convolutional 28

layer units. At the same time, common invariance functions in hierarchical models 29

including CNNs are pooling or aggregation functions, such as MAX-pooling [8]. CNNs 30

and other models, however, assume a fixed neuron-to-computation mapping, where each 31

unit performs only one specific operation. Flexible neuron-to-computation mapping was 32

demonstrated previously in the auditory system of songbirds and was shown to be 33

dependent on the strength of inputs received by neurons [9]. Since the flexible mapping 34

is rooted in basic neuronal biophysics and therefore likely to be a general property of 35

various sensory modalities [10], we explore whether hierarchical object-recognition 36

models, in particular CNNs, can benefit from having a similar property. 37

Our Approach 38

We propose a new type of CNN layer, a Flexible Layer, whose units switch according to 39

a specified rule (e.g., in an input-dependent manner) between performing convolution or 40
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pooling operations during the forward pass, both during training and inference. Namely, 41

the strength of the signal coming into the Flexible Layer unit defines whether that unit 42

performs a convolution or pooling operation. Similar to dropout, this method creates 43

sub-networks, but there are two key differences: 1) the sub-networks are not strictly 44

sub-sampled, because the units are not omitted, but are filled with a different operation 45

result and some information is retained; 2) instead of dropping out the units based on 46

probability there is a decision rule that governs when a specific operation is performed. 47

This decision rule can be, for example, threshold-based. Figure 1 shows a schematic 48

representation of the proposed architecture which uses a threshold on the input signal 49

strength to switch between performing a convolution operation and a MAX-pooling 50

operation. Thus, such a Flexible Layer possesses a new type of parameter (shown as T ), 51

which is, in principle, learnable and defines the threshold at the level of a single unit 52

(neuron). 53

Recent advancements in CNNs have led to performance at a level equal to or above 54

that achievable by humans in object recognition. Nonetheless, modern deep learning 55

architectures have been shown to be susceptible to adversarial attacks [11, 12, 13], 56

which are based on adversarial examples. Adversarial examples are input perturbations 57

that are found by optimizing the input to maximize the prediction error and are 58

generally (but not necessarily) visually undetectable by humans [14]. One can 59

distinguish white-box attacks, which assume complete knowledge of the model under 60

attack, and black-box attacks, which assume knowledge of only the model’s 61

input-output characteristics. 62

Some work has also been done on transferability of black-box attacks that can fool 63

multiple machine learning models and demonstrated that it can also fool time-limited 64

humans [15]. These findings indicate a promising avenue of study on whether 65

computational mechanisms deployed by the brain might contribute to adversarial attack 66

robustness and can be translated to better object recognition models. Similarly to how 67

dropout was inspired by the mixability theory in evolutionary biology [16] and proposed 68

in machine learning to reduce overfitting [17] along with defensive dropout mechanism 69

to protect against adversarial attacks [18], we suggest flexible mapping architecture as a 70

possible bio-inspired defence mechanism for CNNs. 71

Materials and methods 72

Flexible Layer Structure 73

The Flexible Layer outputs a combination of the output of a convolutional layer and 74

MAX-pooling layer computed in parallel (Fig. 1). The specific selection between 75

convolution and MAX-pooling on the element-level is decided by an element-wise 76

comparison between the MAX-pooling output and a threshold tensor, T . This yields a 77

boolean mask which can be applied to select the units for which the MAX-pooling result 78

will be chosen. Similarly, the logical complement of this mask is used to select the units 79

for which the convolution result will be used. The final output is thus a combination of 80

both convolutional filtering and MAX-pooling. This is called the standard Flexible 81

Layer, and is used in all Flexible Networks unless specified otherwise. 82

We define two additional thresholding schemes. The first one includes fixed, uniform 83

thresholds for the threshold tensor, T . These values are defined during network 84

initialisation and are not updated during the training procedure. The second scheme 85

uses a threshold tensor, T , with random values. These values randomly change between 86

0 and 1 with equal probability at each forward pass during both training and inference. 87

Similarly, the parameters for the threshold assignment in this case are not adjusted 88

during the training process. 89
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Fig 1. Schematic representation of the Flexible Layer input-output

relationship. For each input image, convolutional filtering is applied, and in addition
MAX-pooling is performed in parallel. The result of the MAX-pooling operation is
compared with a threshold T to create a conditional mask. The mask is used to select
the units for which the result of the MAX-pooling operation will be used in the layer
output. To select which units will use the convolutional output, we use the logical
complement of the conditional mask.

Operation Selection Implementation 90

All operations in a neural network are required to be differentiable to maintain the
ability to perform backpropagation in order to calculate the gradients used to learn the
network parameters. With this in mind, we implement the boolean less-than (<)
operation and subsequent conditional masking as a sum of sigmoidal functions, where
each sigmoidal function acts as a pseudo-binary factor to either input (either the
convolution or max pooling output). Mathematically, this can be described as:

fflex = σ((T − fMAX) ∗ s) ∗ fMAX + σ(−(T − fMAX) ∗ s) ∗ fconv (1)

where fflex is the output of the Flexible Layer, σ() is the sigmoidal function, T is the 91

threshold tensor, s is a scaling factor, fMAX is the output for the MAX-pooling 92

operation and fconv is the output of convolution on the input. The scaling factor s is a 93

constant to drive the input into the saturation region of the sigmoid. In our 94

implementation, s was chosen to be 50. 95

Network Architectures 96

The Flexible Layer was incorporated into three different baseline architectures to 97

explore its effects on each model’s performance. The specific location of the Flexible 98

Layer within each network is shown in Figure 2. The main tests were performed on the 99

VGG16 network, where we replaced the second convolutional layer in the first block 100

(Fig. 2A). We call this architecture the Single Flexible Layer VGG16 network. We 101

define the baseline network as this same network with the Flexible Layer inserted, but 102

with the threshold tensor set such that convolution is chosen for all inputs, thereby 103

making the resulting output equal to that of a regular convolution layer. We train the 104

VGG16 networks on the CIFAR10 dataset [19] for the adversarial attack tests, and on 105

Imagenette [20] for the frequency response analysis. 106

In addition, we train a smaller network (Fig. 2B) with a Flexible Layer on the 107

FMNIST dataset [21]. Again we compare the performance against a baseline where the 108

threshold is inactivated, so that only convolution is returned from the layer. 109
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A

B C

Fig 2. Schematics for incorporating the Flexible Layer into existing
architectures. (A) Schematic of the VGG16 architecture with the Flexible Layer
inserted. Numbers indicate depth of the tensor at each step.(B) Schematic of the
architecture used for the FMNIST dataset. (C) Schematic for the HMAX model with
Flexible Layers instead of the C1 and S2 units. There are 7 such units in the HMAX
model.

We also insert the Flexible Layer into the HMAX model (Fig. 2C). The HMAX 110

model of object recognition in the primate ventral stream is historically a very 111

important model that sits at the intersection between Hubel & Wiesel’s 112

neurophysiological findings and more modern deep neural networks that are built 113

around the same underlying principle, namely hierarchies of units dedicated to building 114

selectivity and invariance. In the standard HMAX model, complex-like C1 cells perform 115

MAX-pooling with different size kernels, and simple-like S2 cells take the Euclidian 116

distance between C1 layer output and a convolutional filter that is learned during 117

training [22, 23]. In our implementation, the Flexible HMAX has Flexible Layers 118

inserted in the C1 and S2 layers and, in order to ensure any improvement in accuracy is 119

not due solely to adding convolutional layers into the model, a Convolutional Baseline 120

with Flexible Layers executing convolution in the C1 and S2 layers was trained for 121

comparison. Here convolution is performed on inputs above the threshold and 122

MAX-pooling on inputs below. A model without any modifications is also trained for 123

comparison; we call this “Baseline HMAX”. The HMAX networks were trained on the 124

FMNIST dataset. Additional details of network architectures and training datasets can 125

be found in the Supplementary Information. 126
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Adversarial Attacks 127

FGSM Attacks 128

One method of attack is the Fast Gradient Sign Method (FGSM), in which the gradient
of the network is not known to the adversarial attacker; it simply adds noise of
magnitude ϵ to the images in the direction which would increase the cost function, to
create perturbed images xp according to the following equation [24, 25]:

xp = x+ ϵ× sign(∇xJ(¹,x, y)) (2)

where x are the input images with target labels y, to a network with cost function J 129

and hyperparameters ¹. We run FGSM attacks with perturbations ϵ of sizes from 0.05 130

to 1. Accuracy for one attack is reported on the whole validation dataset of 10,000 131

examples and average accuracy is calculated from 10 iterations of each attack. We 132

follow examples provided by the PyTorch FGSM Tutorial [26]. 133

PGD Attacks 134

Projected Gradient Descent (PGD) attacks use the gradient of a network to find the 135

direction in which to most efficiently add noise to cause misclassification [27]. PGD 136

attacks come in both white- and black-box varieties. White box attacks have access to 137

the model and all its parameters, while black-box attacks use an estimation of the 138

model, which is often a simplified network. Attacks are made iteratively: first, noise is 139

added randomly, then that perturbed image is passed through the network and the 140

direction of the loss gradient is calculated. Then a “step” is taken in the attack: noise is 141

added in the direction of the gradient to maximise loss. The noise is added with a 142

certain maximum perturbation magnitude ϵ. 143

We run white- and black-box PGD attacks on the Single Flexible Layer VGG16 144

networks. The attacks are run 100 times and averaged accuracies are presented. For 145

both white- and black-box PGD attacks the settings are: ϵ = 0.031, with 20 steps and 146

step size of 0.003, tested on the whole validation dataset. For the black-box PGD 147

attacks we use the “Conv2D model” [27] which has 4 convolutional, 2 max pooling and 148

2 linear layers, to estimate the network gradient. The details of that model can be 149

found in Supplementary Information: Network Definitions. Code is based on the work 150

by Zhang et al.[28] and Yu [29]. 151

Real-world corruptions 152

Hendrycks and Dietterich [30] presented a dataset of 19 image corruptions relevant to 153

natural visual scenes. These corruptions are split into 5 categories: weather, digital, 154

noise, blur, other (Table 1). Five levels of corruption severity are available. They were 155

handcrafted by humans, e.g., in high severity snow corruption, the density of snow is 156

visually higher and overall visibility is poorer than it is for low severity levels. First, the 157

Flexible and Baseline Networks were trained on the original unaltered 10 class 158

ImageNet data. These corruptions were then applied to the validation set and the 159

inference accuracy on this set of images was recorded. 160

Spectral analysis 161

To characterise the frequency responses of our different architectures, we considered the 162

classification of images with limited spectral content. Networks were trained on 163

ImageNette data. For inference, the validation set was converted to Fourier space and a 164

Gaussian bandpass filter was applied to each image in bands of 5 Hz, between 1 and 160 165
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blur digital noise weather other

defocus blur contrast gaussian noise snow speckle noise
glass blur elastic transform shot noise frost gaussian blur
motion blur pixelate impulse noise fog spatter
zoom blur jpeg compression brightness saturate

Table 1. Types of real-world corruptions applied to the validation dataset, developed
by Hendrycks and Dietterich [30]. Each corruption type has five levels of severity.

Hz (as 160 Hz is roughly the maximum possible frequency or maximum Euclidean 166

distance in Fourier space for 224x224 images). Then, the inverse Fourier transform was 167

applied to the bandpassed images to return to RGB space. The inference accuracy of 168

the Baseline and Flexible VGG16 models was recorded for each of these bands. 169

Code availability 170

PyTorch code for the Flexible Layer and example notebooks for the analyses are 171

available online: https://gitlab.com/kozlovlabcode/flexible-networks 172

Results 173

Flexible computation and network accuracy 174

First we test the effect of the Flexible Layer when inserted into a simple small 175

convolutional network (Fig. 2B). We observe that introducing flexible mapping leads to 176

validation accuracy that is 2-6% lower compared to the baseline network (Table 2). 177

To test whether the network optimises around the values of a threshold, we train 178

several of these small flexible networks (Fig. 2B) with fixed, uniform thresholds. We 179

then test these trained networks with different fixed uniform threshold values set at the 180

time of inference to see whether they have become optimised for their given T values. 181

The results confirm that the network optimises around the values of the threshold, and 182

performs worse if a different fixed uniform threshold is used for validation (Fig. 3). 183

Fig 3. Validation accuracy of a small flexible layer network (Fig. 2B)
trained with fixed uniform thresholds. (A) Small flexible layer network trained
with a fixed uniform threshold of 0.1. (B) Small flexible layer network trained with a
fixed uniform threshold of 0.6. Fixed uniform threshold was varied at the inference
stage during validation.

Second, after inserting the Flexible Layer into the HMAX network, the Flexible 184

HMAX outperforms both the Baseline and Convolutional Baseline HMAX networks by 185
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20% and 6% test accuracy respectively after 150 epochs (Fig. 4A). To explore the effect 186

of the Flexible Layer in a more complex architecture, we add it to the VGG16 network. 187

The Flexible Layer does not compromise the validation accuracy compared to the 188

baseline in all of its configurations (Fig. 4B). 189

Lastly, we show the benefit conferred by the Flexible Layer on training with small 190

amounts of data. We trained 10 VGG16 networks on datasets of approximately 1000 191

images. The datasets were the CIFAR10 dataset downsampled 50 times, with images 192

sampled evenly from each of the 10 classes. We show that the Flexible Layer performs 193

better than the baseline network during all the epochs of the training procedure (Fig. 194

4C), and regardless of random seed used to generate the training data. 195

Overall, these results show that the bio-inspired, flexible operations can be 196

successfully incorporated into various artificial neural networks. In general, they do not 197

compromise network accuracy and can even lead to an improvement compared to the 198

baseline, especially when training data is scarce. 199

Flexible computation confers robustness against a range of 200

perturbations 201

Adversarial robustness was tested on the small convolutional network (Fig. 2B) and the 202

VGG16 network. The adversarial robustness of the small network was tested by 203

employing an FGSM attack with ϵ = 0.1. We observe that the robustness against 204

FGSM attack is 6-15% greater than that of the baseline model (Table 2). This effect 205

weakens when we reverse the operation selection of the Flexible Layer. 206

Table 2. Comparison of validation accuracy after training, and FGSM attack accuracy between different implementations of
thresholds in the small network. Uniform and standard thresholds are defined in Methods. The standard reverse threshold
performs MAX-pooling above threshold instead of convolution. We use a simple single-shot FGSM attack with ϵ = 0.1, and
report the accuracy on images in the validation set. We trained 10 different initialisations of each network and report the
mean accuracy of all the models and the corresponding standard error of the mean (SEM) with and without FGSM attack.

Architecture Description Validation Accuracy (%) SEM (%) FGSM (%) SEM (%)

Baseline Network 87.7 0.54 27.3 0.89
Uniform Threshold Network 86.3 0.50 44.4 0.82
Standard Threshold Network 85.2 0.53 36.4 0.85
Standard Reverse Threshold Network 84.6 0.93 31.9 1.12

For the VGG16 network, adding a Flexible Layer led to an increase in validation 207

accuracy compared to the Baseline under a simple FGSM attack for disturbance length 208

ϵ > 0.22 (Fig. 4D). For the PGD attacks, adding a Flexible Layer increased test 209

accuracy, relative to the Baseline network, after the white-box attack (Table 3) by 210

8.76%. The test accuracy after the relatively weaker black-box PGD showed little 211

difference in comparison with the Baseline network; in both cases the accuracy was 212

greater than after the white-box attack, as expected. 213

Table 3. Comparison of PGD classification accuracies between the Baseline VGG16
model and the Flexible VGG16 model trained on CIFAR10. Accuracies for both the
white- and black-box configurations are presented.

Model Natural PGD white-box PGD black-box

Baseline VGG16 91.42% 24.81% 60.21%
Flexible VGG16 90.18% 33.57% 60.41%

Given the existence of flexible computation in biological systems, we sought to 214

determine whether this computational principle would confer added robustness to 215
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A

C

B

D

Fig 4. Comparison of performance between Baseline and Flexible Layer
networks. (A) HMAX models [22] trained on the FMNIST dataset, the Flexible
HMAX has Flexible Layers inserted in the S2 and C1 layers, the Convolutional Baseline
has convolutional layers in the S2 and C1 layers. (B) Validation accuracy of the
different VGG16 networks trained on CIFAR10. The Baseline VGG16 network (blue),
the Single Layer Flexible network with trained threshold values (orange) and the
Flexible network with randomly chosen threshold values (green). (C) A VGG16 model
with a single Flexible Layer in Block 1, whether the threshold is learned or random
shows increased validation accuracy during training on the CIFAR10 dataset that has
been downsampled 50 times. Shading is standard error of the mean across 10 networks.
(D) Average validation accuracy of VGG16 Networks trained on the CIFAR10 dataset
after FGSM attacks. Accuracy for one attack is reported on the whole validation
dataset of 10 000 examples and average accuracy is calculated from 100 iterations of
each attack. ϵ = 0 is the same as no attack. Error bars are standard error of the mean.

naturally occurring visual perturbations by testing our flexible network performance on 216

a natural perturbation benchmark [30]. As illustrated by Fig. 5A, Single Layer Flexible 217

VGG16 shows similar or marginally higher robustness accuracy over the 5 corruption 218

categories of the Real-World Corruptions dataset, compared to Baseline VGG16. All 219

Layer Flexible VGG16 is the least robust for “blur”, “digital” and “weather”, but the 220

most robust for “noise” (7% over Baseline at highest severity). 221

We wondered whether the robustness of Flexible Networks to adversarial attacks and 222

noise, under certain conditions, could be due to the effect of the Flexible mapping 223

causing the network to rely more on low-frequency information in the images, rather 224

than high-frequency information, making it more similar to humans who are not 225

perturbed by the addition of high-frequency noise [24]. To test this idea, we performed 226

a spectral analysis of the Flexible and Baseline networks on validation images from 227
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Fig 5. Performance on real-world corruptions dataset and spectral analysis
of Baseline and Flexible Layer networks. (A) Validation accuracy of Baseline,
Single Layer Flexible and All Layers Flexible VGG16 networks on the real-world
corruptions dataset. Accuracy is averaged over all ImageNet classes and categories of
corruptions (blur, digital, noise, weather and other, as seen in Table 1). Six levels of
severity are shown for each of the five corruption categories, where severity = 0
represents uncorrupted images. (B) Increasing bandwidth, by corrupting the images,
results in increasing validation accuracy of the All Layer Flexible VGG16 network
relative to the Baseline VGG16 network. Relative accuracy is denoted as the fold
increase in classification accuracy of the All Layer Flexible VGG16 over Baseline
VGG16 at corruption severity 5. Fold increase in bandwidth is quantified as the ratio of
the full width at half maximum (FWHM) value of the spatial Fourier decomposition at
corruption severity 5 to the FHWM of the uncorrupted image. This ratio is averaged
over every image within each of the corruption categories. An increase in bandwidth
represents stronger high frequency content in an image. (C) Validation accuracy of
Baseline, Single Flexible Layer and All Layers Flexible VGG16 models on ImageNet
with respect to the center frequency of a Gaussian bandpass filter applied to the input
images. Bandwidth of Gaussian bandpass filters was set to 5 Hz.

ImageNet and found a positive correlation between the increase in bandwidth of 228

corrupted images and the increase of robustness accuracy of Flexible Networks relative 229
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to Baseline (Fig. 5B). All corruptions alter spectral content of images, but “shot noise”, 230

“gaussian noise”, “impulse noise” from the “noise” category and “speckle noise” from the 231

“other” category (see Table 1) produce the biggest increases in high frequency content 232

(top right of Fig. 5B). 233

Single Flexible Layer network has a similar response to Baseline when low-frequency 234

image content is removed. Accuracy of All Layers Flexible network drops sharply when 235

5-20 Hz information is absent, as shown in Fig. 5C, indicating that it indeed relies on 236

this low-frequency information. 237

We hypothesised that this improved performance on lower frequency components 238

within images implies that classification outcome is largely driven by general shapes of 239

objects rather than fine textural details. This in turn would imply that the network 240

would generalise better to out-of-distribution examples. We tested the flexible network 241

on data generated by Evans, Malhotra and Bowers [31]. This dataset stylised images 242

derived from the CIFAR-10 dataset. The stylised images are categorised as 243

“contours”,“line drawings”, “silhouettes”. As the images were 224x224, the standard 244

32x32 training set of CIFAR-10 had to be upscaled using Lanczos resampling, following 245

the original methodology [31]. All Layers Flexible VGG16 indeed achieved better 246

generalisation by 6%, 14% and 7% in “contours”, “line drawings” and “silhouettes”, 247

respectively (Fig. 6). 248

Fig 6. Out-of-distribution performance of Flexible Layer networks.
Classification accuracy on out-of-distribution images of Baseline models versus Flexible
VGG16 models. Classification accuracy of Baseline and Flexible Layer networks on
o.o.d images (contours (A), line drawings (B) and silhouettes (C)). (D) Examples of
the different types of o.o.d. images of each of the three categories.

Discussion 249

Deep learning has its roots in basic neuroscience, and this study was motivated by a 250

basic neuroscience question. Historically, since Hubel & Wiesel’s work [5], the dichotomy 251

between simple and complex cells led to a commonly held view about how selectivity 252

and invariance are achieved in biological and artificial neural networks, as well as to 253

specific implementations in various biologically-inspired artificial neural networks. 254

Every biological neuron receives synaptic input, and every spiking neuron converts 255

this input into a firing rate. The input-output relationship between the synaptic current 256

and the firing rate is non-linear. The action-potential threshold, in particular, will result 257

in AND-like operations performed on weak inputs (inputs that individually are 258

sub-threshold) and OR-like operations performed on strong inputs. Given that the 259

strength of input is not fixed but can change, how can a neuron be assigned a specific 260

operation, or a feature recombination function, and not switch between them? Perhaps 261
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a neuron does not need to be assigned a specific operation and can freely switch 262

between them? 263

In principle, there are at least three possibilities. First, it is possible that, just as in 264

the HMAX model, there must be separate AND-like and OR-like neurons implementing 265

selectivity and invariance, respectively. In this case, it is unclear how this dichotomy 266

can survive when synaptic weights change, e.g., during adaptation. There would have to 267

be some mechanisms that maintain the fixed neuron-to-computation mapping. No such 268

mechanisms are known. Attention could be one such mechanism: it would provide 269

additional input current to otherwise adapted neurons. The operations could then 270

“survive” in the locus of attention. This possibility was mentioned in Kozlov & Gentner 271

[9]. Based on our results here, we feel that this scheme is too complicated and 272

unnecessary, given the alternatives. The second possibility is that neurons perform one 273

or the other operation depending on the strength of the input. For example, they could 274

perform an AND-like operation when inputs are sufficiently weak and an OR-like 275

operation when they are strong. In this case, when a (non-adapted) neuron is presented 276

with its preferred stimulus, it will receive a strong input and will therefore perform an 277

OR-like computation, for example a MAX, thus achieving some invariance or resistance 278

to corruptions of this preferred stimulus. This scenario is supported by well-understood 279

biophysics and can be implemented by the same canonical circuit [10]. The mapping 280

between neurons and computations would be not fixed, but flexible. Our results here 281

show that a neural network with such a binary mask works as well as, or even better 282

than the same network but without the flexible mapping. 283

The third possibility is that no specific mapping between individual neurons and 284

computations is required, and each neuron is free to randomly “choose” its 285

instantaneous feature recombination function based on its intrinsic excitability and the 286

overall excitation-inhibition balance. This ”choice”, however, is inconsequential, 287

provided the population of such neurons as a whole performs operations for selectivity 288

and invariance. In this scenario, even a unimodal distribution of synaptic input 289

strengths and the spiking nonlinearity can still produce an apparent functional 290

dichotomy that can be interpreted as simple-like and complex-like cells (see [32]), but 291

such a dichotomy would be superficial and of no real functional significance. This 292

possibility is attractive in its simplicity. Our results with the random binary mask 293

(random switching between the operations) show that this implementation not only 294

works but provides an additional benefit, compared to both the baseline and the 295

non-random flexible mapping, at greater values of input corruption (greater epsilon in 296

Fig. 4D). 297

Spectral analysis has revealed that Flexible Layers focus on low-frequency content in 298

images. In both adversarial and natural settings, uncorrelated high frequency noise 299

tends to obscure some features that neural networks can exploit for classification. Jo & 300

Bengio [33] highlighted the tendency of ANNs to learn superficial statistical regularities 301

from the data, rather than higher-level abstractions. We have confirmed this bias 302

(removal of high frequency content degrades performance, Fig. 5C) and demonstrated 303

the ability of flexible computations to alleviate the deterioration of accuracy in response 304

to increased noise intensity. This implies that Flexible Networks have a more robust 305

encoding of information contained in lower frequency range, which relates to 306

higher-level semantic concepts. 307

The “blocky” pattern in activation maps (likely to be associated to MAX-pooling) 308

emerging in relatively shallow layers of the Flexible architectures suggests their 309

tendency to extract representations which are more invariant (Fig. S1). This comes, 310

however, with a price: networks miss out on selectively recognising high frequency 311

textural features that could potentially yield higher validation accuracy. Nevertheless, 312

downplayed learning of the dataset statistics is independent from generalisation 313
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performance, which is increased. 314

Out-of-distribution generalisation is particularly illustrative. CNNs have shown to 315

exhibit a texture-bias [34], but as noted by Malhotra, Evans, and Bowers [35], 316

biomimetic modifications (e.g., Gabor filters in the front end) can rectify that bias. 317

Shape-texture distinction is related to the importance of low-frequency information: 318

Flexible Networks appear to have a stronger shape bias, quantitatively shown by 14% 319

improvement over baseline on o.o.d. line drawings of the same classes of data (Fig. 6). 320

Prior studies that aimed at introducing biologically-inspired computations into 321

CNNs reported increased adversarial robustness. Reddy et al. [36] used non-uniform 322

sampling, mimicking non-uniform photoreceptor density in the retina, as well as 323

spatially varying receptive-field sizes inspired by the visual cortex, and they found that 324

such mechanisms could improve adversarial robustness with white-box PGD attacks. 325

Dapello et al. [37] used a front-end that simulated the primary visual cortex before 326

feeding images into CNNs, and they found an increase in both adversarial robustness 327

under white-box PGD attacks as well as increased robustness to common image 328

corruptions (the same ones we used in our study). Our approach is different in that we 329

did not simulate any specific property of the visual system but instead allowed units in 330

the flexible layer to switch between operations depending on input, or even randomly, 331

an approach that is inspired by the basic biophysics of biological neurons. 332

A recent work [38], which pursued an interesting direction of neural manifold 333

matching by ANN regularisation, corroborates our finding of low frequency preference of 334

biomimetic models. The emergence of several links to this idea, such as blurry image 335

training [39] and low-norm image perturbations capable of biasing human perception in 336

a targeted way [40] hints that ANNs, in general, may be faithful models of robustness in 337

biological visual systems. Particular approaches granting robustness might vary, but 338

appear to have shared frequency preference properties, with the biophysically-grounded 339

Flexible Layer fitting into this framework. 340

Conclusion 341

Reminiscent of the broader field of biomimetics, the interplay between nature and 342

engineering has provided AI systems with some valuable insights with regards to 343

architecture and design. Just as aviation has initially benefited from studying avian 344

flight mechanics, or the development of hydrophobic surfaces was inspired by the lotus 345

leaf, the first neural networks were inspired by the organisation of the brain. By 346

incorporating flexible recombination functions, one of our objectives is to enhance the 347

adaptability and robustness of CNNs, better equipping them to the challenges posed by 348

real-world problems. Specifically, we have shown that introducing flexible recombination 349

functions observed in biological neurons into artificial neural networks improves learning 350

when training data are scarce and increases robustness to adversarial as well as 351

real-world perturbations. 352
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Acronyms

AI Artificial Intelligence.

ANN Artificial Neural Network.

CNN Convolutional Neural Network.

CNNs Convolutional Neural Networks.

FGSM Fast Gradient Sign Method.
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Supporting information

Network Definitions

Layers are defined as:
Conv2d(number of input channels, number of output channels, kernel size, stride,
padding)
MaxPool2d(kernel size, stride, padding)
BatchNorm2d(number of features, momentum)
Dropout2d(probability to be zeroed)
Linear(in features, out features). All linear layers learn bias.

Single Layer Baseline/Flexible VGG16:

1. Conv2d(3, 64, (3, 3), (1, 1), (1, 1))
2. BatchNorm2d(64, 0.1)
3. ReLU()
4. Flexible Layer

(a) Conv2d(64, 64, (3, 3), (1, 1), 0)
(b) MaxPool2d(3, 1, 0)
(c) Sigmoid()

5. BatchNorm2d(64, 0.1)
6. ReLU()
7. Dropout2d(0.3)
8. Conv2d(64, 128, (3, 3), (1, 1), (1, 1))
9. BatchNorm2d(128, 0.1)

10. ReLU()
11. Conv2d(128, 128, (3, 3), (1, 1),(1, 1))
12. BatchNorm2d(128, 0.1)
13. ReLU()
14. MaxPool2d(2, 2, 0)
15. Dropout2d(0.4)
16. Conv2d(128, 256, (3, 3), (1, 1), (1, 1))
17. BatchNorm2d(256, 0.1)
18. ReLU()
19. Conv2d(256, 256, (3, 3), (1, 1), (1, 1))
20. BatchNorm2d(256, 0.1)
21. ReLU()
22. Conv2d(256, 256, (3, 3), (1, 1), (1, 1))
23. BatchNorm2d(256, 0.1)
24. ReLU()
25. MaxPool2d(2, 2, 0)
26. Dropout2d(0.4)
27. Conv2d(256, 512, (3, 3), (1, 1), (1, 1))
28. BatchNorm2d(512, 0.1)
29. ReLU()
30. Conv2d(512, 512, (3, 3), (1, 1), (1, 1))
31. BatchNorm2d(512, 0.1)
32. ReLU()
33. Conv2d(512, 512, (3, 3), (1, 1), (1, 1))
34. BatchNorm2d(512, 0.1)
35. ReLU()
36. MaxPool2d(2, 2, 0)
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37. Dropout2d(0.4)
38. Conv2d(512, 512, (3, 3), (1, 1), (1, 1))
39. BatchNorm2d(512, 0.1)
40. ReLU()
41. Conv2d(512, 512, (3, 3), (1, 1), (1, 1))
42. BatchNorm2d(512, 0.1)
43. ReLU()
44. Conv2d(512, 512, (3, 3), (1, 1), (1, 1))
45. BatchNorm2d(512, 0.1)
46. ReLU()
47. MaxPool2d(2, 2, 0)
48. Dropout2d(0.5)
49. Linear(512, 100)
50. Dropout(0.5)
51. BatchNorm1d(100, 0.1)
52. ReLU()
53. Dropout(0.5)
54. Linear(100, 10)

Small Network for FMNIST experiments:

1. Flexible Layer

(a) Conv2d(1, 12, (5, 5), (1, 1), 0)
(b) MaxPool2d(5, 1, 0)
(c) Sigmoid()

2. Linear(6912, 120)
3. Linear(120, 60)
4. Linear(60, 10)

HMAX Model: The HMAX architecture is as defined in [41, 42]. Its performance
is explained as follows: The first layer, which takes in raw pixel data is composed of S1
cells, and each S1 cell is a Gabor filter of different wavelength. A Gabor filter is a
bandpass filter: a sinusoid with some wavelength, multiplied by an envelope which is a
Gaussian of some standard deviation. In the HMAX network the standard deviation of
the Gaussian envelope scales with the wavelength, so the resulting filter detects different
thicknesses of edges with those different wavelengths. There are also 4 orientations (90,
-45, 0, 45) of each edge. Next, each complex-like C1 cell max pools the output of two S1
cells (each with their 4 different orientations). A different size of max pooling kernel is
used for each C1 unit, which accounts for different sizes of objects in the image. Then
the simple-like S2 cells take the Euclidean distance between C1 layer output and a
convolutional filter which is learned during training. Finally, the C2 cells again max
pool the S2 layer output over different size max pool filters.

The convolutional filters in the HMAX model use various kernel sizes (8, 10, 12, 14,
16, 18, 20, 22), as the network is designed to pool over different spatial scales in parallel.

Conv2d Model [27]:

1. Conv2d(3, 64, (3, 3), (1, 1), 1)
2. ReLU()
3. Conv2d(64, 64, (3, 3), (1, 1), 1)
4. ReLU()
5. MaxPool2d(2, 2, 0)
6. Conv2d(64, 128, (3, 3), (1, 1), 1)
7. ReLU()
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8. Conv2d(128, 128, (3, 3), (1, 1), 1)
9. ReLU()

10. MaxPool2d(2, 2, 0)
11. Linear(8192, 256)
12. ReLU()
13. Linear(256, 10)

Experiment Details and Hyperparameters

VGG16 Networks

The Single Flexible Layer VGG16 networks use stochastic gradient descent with a
learning rate = 0.001, momentum = 0.9 and weight decay = 0.006 for all parameters,
except the Flexible Layer threshold which has weight decay = 0. A learning rate
schedule is implemented with step size = 20 and gamma (the decay factor) = 0.7. The
loss function is cross entropy loss. The networks are trained on the CIFAR-10 dataset
for 150 epochs with batch size = 100. All images from the CIFAR-10 dataset are
normalised and the images from the training set are also subject to random horizontal
flip, with probability 0.5.

The All Flexible Layer networks are trained as above, but with learning rate = 0.01
and for 500 epochs on the CIFAR-10 dataset.

The Single Flexible Layer Networks trained on a subset of ImageNet use learning
rate = 0.001, and batch size 50 due to memory constraints. The scheduler and other
parameters are the same as above.

Small Network and HMAX Network

For the Small Network and the HMAX network, stochastic gradient descent with the
same hyperparameters and schedule as used for the VGG16 networks is implemented.
These networks are trained for 150 epochs on the FMNIST dataset. The batch size is
always 100, and images from the FMNIST dataset are normalised.

Datasets

Fashion-MNIST

Fashion-MNIST (FMNIST) [21] is a common benchmark dataset consisting of 60,000
images of clothing belonging to 10 classes. It was developed to provide more realism
and difficulty to the benchmark MNIST dataset, performance on which has largely
saturated in modern deep learning models. Each example is a 28x28 greyscale image.
Validation is performed on an additional test set of 10,000 examples.

CIFAR-10

CIFAR-10 dataset [19] is an established computer-vision dataset used for object
recognition. The training set consists of 50,000 32x32 colour images (3 colour channels)
of 10 object classes. The validation set consists of an additional 10,000 examples.

Imagenette

Imagenette [20] is a subset of ImageNet [43], composed of the following 10 classes:
tench, English springer, cassette player, chain saw, church, French horn, garbage truck,
gas pump, golf ball, parachute. Images are cropped to 254x254 pixels for training and
validation.
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Distinct activation patterns drive classification in flexible

networks

In Fig. S1, a distinct, input-agnostic pattern can be observed in Flexible Layer’s feature
maps in VGG16 network. Activations cluster in a ”blocky” pattern which can appear as
early as block 2.

Fig S1. Example activation maps of consecutive layers in the network. (A-D)
Activation maps of the convolution layer for an example image in block 1-4 respectively
in the baseline VGG16 network. (E-H) Activation maps for an example image in a
VGG16 network were all convolution layers have been replaced by flexible layers.
Activations from block 1-4 respectively are shown.
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