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Abstract

Object recognition by natural and artificial sensory systems requires a combination of
selectivity and invariance. Both natural and artificial neural networks achieve selectivity
and invariance by propagating sensory information though layers of neurons organised
in a functional hierarchy. Both employ computational units performing AND-like
operations for selectivity and OR-like operations for invariance. However, while
biological neurons are intrinsically capable of switching between these operations, their
artificial counterparts are hard-wired to perform only one of them. We wanted to test
whether the flexible mapping between neurons and computations observed in biological
neural networks is compatible with, or perhaps even useful to, artificial neural networks.
To answer this question, we have developed a deep learning layer in which both
selectivity and invariance operations can be performed by the same neurons. As with
biological neurons, the choice of which operation an artificial neuron performs on a
given input can be governed by the input strength. This flexible layer successfully
outputs a combination of the two operations and, surprisingly, confers additional
robustness to adversarial examples, which are inputs deliberately crafted to promote
misclassification. The flexible mapping also improves accuracy when the training
dataset is small, as well as when data are corrupted by certain types of noise. These
results narrow the gap between biological and artificial neural networks and add a new
bio-inspired approach to the arsenal of defenses against adversarial examples, which are
known threats to model-based optimization and network security.

Author summary

The biophysical properties of a biological neuron enable it to perform both OR-like and
AND-like operations over its inputs. In contrast, artificial neural networks use units
that always perform only one specific operation. We wondered whether the flexibility
observed in individual biological neurons could be incorporated into artificial neural
networks without breaking them. If artificial neural networks required their units to
perform single operations, then this requirement would either point to a fundamental
difference between biological and artificial neural networks or indicate that biological
neurons are somehow constrained to perform only one type of operations during object
recognition. If, on the other hand, artificial units can flexibly switch between different
operations, then such a result would indicate that biological and artificial neural
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networks are more similar than previously thought and would be an important step
towards biomimetic Al. To find out, we introduced a new computational structure we
call a flexible layer, in which individual units can switch between operations according
to a rule (e.g., depending on input strength, or even randomly). We found that
inserting the flexible layer in one or several positions in different artificial neural
networks trained on several benchmark datasets not only preserves their accuracy but
also makes them more robust to various perturbations and improves learning when
training data is scarce.

Introduction

After the field of Artificial Intelligence (AI) was born in the 20th century and survived
the “AI winter” of the 1990s, it has rapidly diverted from its roots in modelling the
brain into a myriad of sub-fields such as machine learning, deep learning, reinforcement
learning and others. These are now standalone scientific fields with their own
methodologies and enormous amounts of accumulated knowledge, but with fewer and
weaker direct links to the field of neuroscience [I]. Yet opportunities to establish such
links and benefit from them abound today thanks to the rapid development of
experimental and theoretical neuroscience [2].

Neuroscience and Al are historically intertwined, with multiple object-recognition
models (e.g., HMAX) inspired by the anatomy and physiology of the visual cortex
[2, 8, []. For instance, Hubel & Wiesel discovered two different types of visual cortical
cells which they named simple and complex cells [5]. These cell types display selectivity
to stimuli of different spatial orientations and, at the level of complex cells, invariance
to the stimulus position within the receptive field. Many years later, state-of-the-art
object recognition models such as Convolutional Neural Networks (CNNs) that only
distantly mimic the structure of the brain, also use feature recombination functions to
achieve selectivity and invariance. In biological systems, selectivity is classically defined
in terms of the optimal stimulus for a neuron [6]. For instance, some neurons of the
visual cortex are selective to particular orientations of bars in space or more complex
features, such as entire objects. Invariance in object recognition is defined as the ability
to correctly classify visual objects in their previously learned object-name category,
despite variations in object appearance due to object-identity preserving
transformations, such as changes in object and viewer position, illumination conditions,
and occlusion by other objects [7].

A basic neural operation corresponding to selectivity consists of taking dot products

between input vectors and a set of filters whose values can be modified through learning.

In a Convolutional Neural Network (CNN), selectivity is achieved by the convolutional
layer units. At the same time, common invariance functions in hierarchical models
including CNNs are pooling or aggregation functions, such as MAX-pooling [8]. CNNs
and other models, however, assume a fixed neuron-to-computation mapping, where each
unit performs only one specific operation. Flexible neuron-to-computation mapping was
demonstrated previously in the auditory system of songbirds and was shown to be
dependent on the strength of inputs received by neurons [9]. Since the flexible mapping
is rooted in basic neuronal biophysics and therefore likely to be a general property of
various sensory modalities [I0], we explore whether hierarchical object-recognition
models, in particular CNNs, can benefit from having a similar property.

Our Approach

We propose a new type of CNN layer, a Flexible Layer, whose units switch according to
a specified rule (e.g., in an input-dependent manner) between performing convolution or

October 26, 2023

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40


https://doi.org/10.1101/2023.10.26.564127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.564127; this version posted October 31, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

pooling operations during the forward pass, both during training and inference. Namely,
the strength of the signal coming into the Flexible Layer unit defines whether that unit
performs a convolution or pooling operation. Similar to dropout, this method creates
sub-networks, but there are two key differences: 1) the sub-networks are not strictly
sub-sampled, because the units are not omitted, but are filled with a different operation
result and some information is retained; 2) instead of dropping out the units based on

probability there is a decision rule that governs when a specific operation is performed.

This decision rule can be, for example, threshold-based. Figure [I| shows a schematic
representation of the proposed architecture which uses a threshold on the input signal
strength to switch between performing a convolution operation and a MAX-pooling
operation. Thus, such a Flexible Layer possesses a new type of parameter (shown as T'),
which is, in principle, learnable and defines the threshold at the level of a single unit
(neuron).

Recent advancements in CNNs have led to performance at a level equal to or above
that achievable by humans in object recognition. Nonetheless, modern deep learning
architectures have been shown to be susceptible to adversarial attacks [111, [12], [13],
which are based on adversarial examples. Adversarial examples are input perturbations
that are found by optimizing the input to maximize the prediction error and are
generally (but not necessarily) visually undetectable by humans [I4]. One can
distinguish white-box attacks, which assume complete knowledge of the model under
attack, and black-box attacks, which assume knowledge of only the model’s
input-output characteristics.

Some work has also been done on transferability of black-box attacks that can fool
multiple machine learning models and demonstrated that it can also fool time-limited
humans [I5]. These findings indicate a promising avenue of study on whether
computational mechanisms deployed by the brain might contribute to adversarial attack
robustness and can be translated to better object recognition models. Similarly to how
dropout was inspired by the mixability theory in evolutionary biology [16] and proposed
in machine learning to reduce overfitting [I7] along with defensive dropout mechanism
to protect against adversarial attacks [I8], we suggest flexible mapping architecture as a
possible bio-inspired defence mechanism for CNNs.

Materials and methods

Flexible Layer Structure

The Flexible Layer outputs a combination of the output of a convolutional layer and
MAX-pooling layer computed in parallel (Fig. . The specific selection between
convolution and MAX-pooling on the element-level is decided by an element-wise
comparison between the MAX-pooling output and a threshold tensor, 7. This yields a
boolean mask which can be applied to select the units for which the MAX-pooling result
will be chosen. Similarly, the logical complement of this mask is used to select the units
for which the convolution result will be used. The final output is thus a combination of
both convolutional filtering and MAX-pooling. This is called the standard Flexible
Layer, and is used in all Flexible Networks unless specified otherwise.

We define two additional thresholding schemes. The first one includes fixed, uniform
thresholds for the threshold tensor, T. These values are defined during network
initialisation and are not updated during the training procedure. The second scheme
uses a threshold tensor, T', with random values. These values randomly change between
0 and 1 with equal probability at each forward pass during both training and inference.
Similarly, the parameters for the threshold assignment in this case are not adjusted
during the training process.
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Fig 1. Schematic representation of the Flexible Layer input-output
relationship. For each input image, convolutional filtering is applied, and in addition
MAX-pooling is performed in parallel. The result of the MAX-pooling operation is
compared with a threshold T to create a conditional mask. The mask is used to select
the units for which the result of the MAX-pooling operation will be used in the layer
output. To select which units will use the convolutional output, we use the logical
complement of the conditional mask.

Operation Selection Implementation

All operations in a neural network are required to be differentiable to maintain the
ability to perform backpropagation in order to calculate the gradients used to learn the
network parameters. With this in mind, we implement the boolean less-than (<)
operation and subsequent conditional masking as a sum of sigmoidal functions, where
each sigmoidal function acts as a pseudo-binary factor to either input (either the
convolution or max pooling output). Mathematically, this can be described as:

friew = 0((T — farax) *s) * farax + o(—(T — farax) * 8) * feonw (1)

where ffie, is the output of the Flexible Layer, o() is the sigmoidal function, T is the
threshold tensor, s is a scaling factor, fi;4x is the output for the MAX-pooling
operation and fe.,n, is the output of convolution on the input. The scaling factor s is a
constant to drive the input into the saturation region of the sigmoid. In our
implementation, s was chosen to be 50.

Network Architectures

The Flexible Layer was incorporated into three different baseline architectures to
explore its effects on each model’s performance. The specific location of the Flexible
Layer within each network is shown in Figure [2l The main tests were performed on the
VGG16 network, where we replaced the second convolutional layer in the first block
(Fig. ) We call this architecture the Single Flexible Layer VGG16 network. We
define the baseline network as this same network with the Flexible Layer inserted, but
with the threshold tensor set such that convolution is chosen for all inputs, thereby
making the resulting output equal to that of a regular convolution layer. We train the
VGG16 networks on the CIFAR10 dataset [19] for the adversarial attack tests, and on
Imagenette [20] for the frequency response analysis.

In addition, we train a smaller network (Fig. ) with a Flexible Layer on the
FMNIST dataset [21I]. Again we compare the performance against a baseline where the
threshold is inactivated, so that only convolution is returned from the layer.
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Fig 2. Schematics for incorporating the Flexible Layer into existing
architectures. (A) Schematic of the VGG16 architecture with the Flexible Layer
inserted. Numbers indicate depth of the tensor at each step.(B) Schematic of the
architecture used for the FMNIST dataset. (C) Schematic for the HMAX model with
Flexible Layers instead of the C1 and S2 units. There are 7 such units in the HMAX
model.

We also insert the Flexible Layer into the HMAX model (Fig. [2C). The HMAX
model of object recognition in the primate ventral stream is historically a very
important model that sits at the intersection between Hubel & Wiesel’s
neurophysiological findings and more modern deep neural networks that are built
around the same underlying principle, namely hierarchies of units dedicated to building
selectivity and invariance. In the standard HMAX model, complex-like C1 cells perform
MAX-pooling with different size kernels, and simple-like S2 cells take the Euclidian
distance between C1 layer output and a convolutional filter that is learned during
training [22] 23]. In our implementation, the Flexible HMAX has Flexible Layers
inserted in the C1 and S2 layers and, in order to ensure any improvement in accuracy is
not due solely to adding convolutional layers into the model, a Convolutional Baseline
with Flexible Layers executing convolution in the C1 and S2 layers was trained for
comparison. Here convolution is performed on inputs above the threshold and
MAZX-pooling on inputs below. A model without any modifications is also trained for
comparison; we call this “Baseline HMAX”. The HMAX networks were trained on the
FMNIST dataset. Additional details of network architectures and training datasets can
be found in the Supplementary Information.
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Adversarial Attacks
FGSM Attacks

One method of attack is the Fast Gradient Sign Method (FGSM), in which the gradient
of the network is not known to the adversarial attacker; it simply adds noise of
magnitude € to the images in the direction which would increase the cost function, to
create perturbed images x,, according to the following equation [24] 25]:

Xp =X+ € X sign(V,J(0,%,y)) (2)

where x are the input images with target labels y, to a network with cost function J
and hyperparameters §. We run FGSM attacks with perturbations € of sizes from 0.05
to 1. Accuracy for one attack is reported on the whole validation dataset of 10,000
examples and average accuracy is calculated from 10 iterations of each attack. We
follow examples provided by the PyTorch FGSM Tutorial [26].

PGD Attacks

Projected Gradient Descent (PGD) attacks use the gradient of a network to find the
direction in which to most efficiently add noise to cause misclassification [27]. PGD
attacks come in both white- and black-box varieties. White box attacks have access to
the model and all its parameters, while black-box attacks use an estimation of the
model, which is often a simplified network. Attacks are made iteratively: first, noise is
added randomly, then that perturbed image is passed through the network and the
direction of the loss gradient is calculated. Then a “step” is taken in the attack: noise is
added in the direction of the gradient to maximise loss. The noise is added with a
certain maximum perturbation magnitude e.

We run white- and black-box PGD attacks on the Single Flexible Layer VGG16
networks. The attacks are run 100 times and averaged accuracies are presented. For
both white- and black-box PGD attacks the settings are: € = 0.031, with 20 steps and
step size of 0.003, tested on the whole validation dataset. For the black-box PGD
attacks we use the “Conv2D model” [27] which has 4 convolutional, 2 max pooling and
2 linear layers, to estimate the network gradient. The details of that model can be
found in Supplementary Information: [Network Definitions Code is based on the work
by Zhang et al.[2§] and Yu [29].

Real-world corruptions

Hendrycks and Dietterich [30] presented a dataset of 19 image corruptions relevant to
natural visual scenes. These corruptions are split into 5 categories: weather, digital,
noise, blur, other (Table . Five levels of corruption severity are available. They were
handcrafted by humans, e.g., in high severity snow corruption, the density of snow is
visually higher and overall visibility is poorer than it is for low severity levels. First, the
Flexible and Baseline Networks were trained on the original unaltered 10 class
ImageNet data. These corruptions were then applied to the validation set and the
inference accuracy on this set of images was recorded.

Spectral analysis

To characterise the frequency responses of our different architectures, we considered the
classification of images with limited spectral content. Networks were trained on

ImageNette data. For inference, the validation set was converted to Fourier space and a
Gaussian bandpass filter was applied to each image in bands of 5 Hz, between 1 and 160
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blur digital noise weather | other
defocus blur | contrast gaussian noise | snow speckle noise
glass blur elastic transform | shot noise frost gaussian blur
motion blur | pixelate impulse noise | fog spatter

zoom blur jpeg compression brightness | saturate

Table 1. Types of real-world corruptions applied to the validation dataset, developed
by Hendrycks and Dietterich [30]. Each corruption type has five levels of severity.

Hz (as 160 Hz is roughly the maximum possible frequency or maximum Euclidean
distance in Fourier space for 224x224 images). Then, the inverse Fourier transform was
applied to the bandpassed images to return to RGB space. The inference accuracy of
the Baseline and Flexible VGG16 models was recorded for each of these bands.

Code availability

PyTorch code for the Flexible Layer and example notebooks for the analyses are
available online: https://gitlab.com/kozlovlabcode/flexible-networks

Results

Flexible computation and network accuracy

First we test the effect of the Flexible Layer when inserted into a simple small
convolutional network (Fig. ) We observe that introducing flexible mapping leads to
validation accuracy that is 2-6% lower compared to the baseline network (Table .

To test whether the network optimises around the values of a threshold, we train
several of these small flexible networks (Fig. [2B) with fixed, uniform thresholds. We
then test these trained networks with different fixed uniform threshold values set at the
time of inference to see whether they have become optimised for their given T' values.
The results confirm that the network optimises around the values of the threshold, and
performs worse if a different fixed uniform threshold is used for validation (Fig. .
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Fig 3. Validation accuracy of a small flexible layer network (Fig. )
trained with fixed uniform thresholds. (A) Small flexible layer network trained
with a fixed uniform threshold of 0.1. (B) Small flexible layer network trained with a
fixed uniform threshold of 0.6. Fixed uniform threshold was varied at the inference

stage during validation.

Second, after inserting the Flexible Layer into the HMAX network, the Flexible
HMAX outperforms both the Baseline and Convolutional Baseline HMAX networks by
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20% and 6% test accuracy respectively after 150 epochs (Fig. ) To explore the effect

of the Flexible Layer in a more complex architecture, we add it to the VGG16 network.

The Flexible Layer does not compromise the validation accuracy compared to the
baseline in all of its configurations (Fig. [4B).

Lastly, we show the benefit conferred by the Flexible Layer on training with small
amounts of data. We trained 10 VGG16 networks on datasets of approximately 1000
images. The datasets were the CIFAR10 dataset downsampled 50 times, with images
sampled evenly from each of the 10 classes. We show that the Flexible Layer performs
better than the baseline network during all the epochs of the training procedure (Fig.
), and regardless of random seed used to generate the training data.

Overall, these results show that the bio-inspired, flexible operations can be
successfully incorporated into various artificial neural networks. In general, they do not
compromise network accuracy and can even lead to an improvement compared to the
baseline, especially when training data is scarce.

Flexible computation confers robustness against a range of
perturbations

Adversarial robustness was tested on the small convolutional network (Fig. [2B) and the
VGG16 network. The adversarial robustness of the small network was tested by
employing an FGSM attack with e = 0.1. We observe that the robustness against
FGSM attack is 6-15% greater than that of the baseline model (Table . This effect
weakens when we reverse the operation selection of the Flexible Layer.

Table 2. Comparison of validation accuracy after training, and FGSM attack accuracy between different implementations of
thresholds in the small network. Uniform and standard thresholds are defined in Methods. The standard reverse threshold
performs MAX-pooling above threshold instead of convolution. We use a simple single-shot FGSM attack with e = 0.1, and
report the accuracy on images in the validation set. We trained 10 different initialisations of each network and report the
mean accuracy of all the models and the corresponding standard error of the mean (SEM) with and without FGSM attack.

Architecture Description Validation Accuracy (%) | SEM (%) | FGSM (%) | SEM (%)
Baseline Network 87.7 0.54 27.3 0.89
Uniform Threshold Network 86.3 0.50 44.4 0.82
Standard Threshold Network 85.2 0.53 36.4 0.85
Standard Reverse Threshold Network | 84.6 0.93 31.9 1.12

For the VGG16 network, adding a Flexible Layer led to an increase in validation
accuracy compared to the Baseline under a simple FGSM attack for disturbance length
e > 0.22 (Fig. ) For the PGD attacks, adding a Flexible Layer increased test
accuracy, relative to the Baseline network, after the white-box attack (Table [3)) by
8.76%. The test accuracy after the relatively weaker black-box PGD showed little
difference in comparison with the Baseline network; in both cases the accuracy was
greater than after the white-box attack, as expected.

Table 3. Comparison of PGD classification accuracies between the Baseline VGG16
model and the Flexible VGG16 model trained on CIFAR10. Accuracies for both the
white- and black-box configurations are presented.

Model Natural | PGD white-box | PGD black-box
Baseline VGG16 | 91.42% 24.81% 60.21%
Flexible VGG16 [ 90.18% 33.57% 60.41%

Given the existence of flexible computation in biological systems, we sought to
determine whether this computational principle would confer added robustness to

October 26, 2023

Ja

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215


https://doi.org/10.1101/2023.10.26.564127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.564127; this version posted October 31, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

A Validation Accuracy of HMAX Networks B Validation Accuracy of VGG16 Networks
80 i |
g g
Z 70 Z
° e
5 5
c 60 c
= =}
I} e}
2 2
£ 50 e
— Baseline HMAX — Baseline VGG16
Convolutional Baseline HMAX 20 Flexible Threshold VGG16
40 Flexible HMAX — Random Threshold VGG16
r v r v T v r v 10 1+ r v r v r v r
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epoch Epoch Number
Validation Accuracy of 50x Downsampled VGG16 Validation Accuracy after FGSM Attack
—— Baseline VGG16 %0 —f~ Baseline VGG16
22 Flexible Threshold VGG16 Flexible Threshold VGG16
—— Random Threshold VGG16 €0 —f~ Random Threshold VGG16
2
20 =70
9 by
< i
g 18] g%
5 <
5
g =
= 16 ©
2 2 40
S s
s g
o
124 20
10
104
0-+— T T T T T T T T T
0 20 40 60 80 100 120 140 00 01 02 03 04 05 06 07 08 09

Epoch Epsilon

Fig 4. Comparison of performance between Baseline and Flexible Layer
networks. (A) HMAX models [22] trained on the FMNIST dataset, the Flexible
HMAX has Flexible Layers inserted in the S2 and C1 layers, the Convolutional Baseline
has convolutional layers in the S2 and C1 layers. (B) Validation accuracy of the
different VGG16 networks trained on CIFAR10. The Baseline VGG16 network (blue),
the Single Layer Flexible network with trained threshold values (orange) and the
Flexible network with randomly chosen threshold values (green). (C) A VGG16 model
with a single Flexible Layer in Block 1, whether the threshold is learned or random
shows increased validation accuracy during training on the CIFAR10 dataset that has

been downsampled 50 times. Shading is standard error of the mean across 10 networks.

(D) Average validation accuracy of VGG16 Networks trained on the CIFAR10 dataset
after FGSM attacks. Accuracy for one attack is reported on the whole validation
dataset of 10 000 examples and average accuracy is calculated from 100 iterations of
each attack. € = 0 is the same as no attack. Error bars are standard error of the mean.

naturally occurring visual perturbations by testing our flexible network performance on
a natural perturbation benchmark [30]. As illustrated by Fig. , Single Layer Flexible
VGG16 shows similar or marginally higher robustness accuracy over the 5 corruption
categories of the Real-World Corruptions dataset, compared to Baseline VGG16. All
Layer Flexible VGG16 is the least robust for “blur”, “digital” and “weather”, but the
most robust for “noise” (7% over Baseline at highest severity).

We wondered whether the robustness of Flexible Networks to adversarial attacks and
noise, under certain conditions, could be due to the effect of the Flexible mapping
causing the network to rely more on low-frequency information in the images, rather
than high-frequency information, making it more similar to humans who are not
perturbed by the addition of high-frequency noise [24]. To test this idea, we performed
a spectral analysis of the Flexible and Baseline networks on validation images from
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Fig 5. Performance on real-world corruptions dataset and spectral analysis
of Baseline and Flexible Layer networks. (A) Validation accuracy of Baseline,
Single Layer Flexible and All Layers Flexible VGG16 networks on the real-world
corruptions dataset. Accuracy is averaged over all ImageNet classes and categories of
corruptions (blur, digital, noise, weather and other, as seen in Table|[l)). Six levels of
severity are shown for each of the five corruption categories, where severity = 0
represents uncorrupted images. (B) Increasing bandwidth, by corrupting the images,
results in increasing validation accuracy of the All Layer Flexible VGG16 network
relative to the Baseline VGG16 network. Relative accuracy is denoted as the fold
increase in classification accuracy of the All Layer Flexible VGG16 over Baseline
VGG16 at corruption severity 5. Fold increase in bandwidth is quantified as the ratio of
the full width at half maximum (FWHM) value of the spatial Fourier decomposition at
corruption severity 5 to the FHWM of the uncorrupted image. This ratio is averaged
over every image within each of the corruption categories. An increase in bandwidth
represents stronger high frequency content in an image. (C) Validation accuracy of
Baseline, Single Flexible Layer and All Layers Flexible VGG16 models on ImageNet
with respect to the center frequency of a Gaussian bandpass filter applied to the input
images. Bandwidth of Gaussian bandpass filters was set to 5 Hz.

ImageNet and found a positive correlation between the increase in bandwidth of
corrupted images and the increase of robustness accuracy of Flexible Networks relative
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to Baseline (Fig. ) All corruptions alter spectral content of images, but “shot noise”,
“gaussian noise”, “impulse noise” from the “noise” category and “speckle noise” from the
“other” category (see Table[l)) produce the biggest increases in high frequency content

(top right of Fig. [fB).

Single Flexible Layer network has a similar response to Baseline when low-frequency
image content is removed. Accuracy of All Layers Flexible network drops sharply when
5-20 Hz information is absent, as shown in Fig. [IC, indicating that it indeed relies on
this low-frequency information.

We hypothesised that this improved performance on lower frequency components
within images implies that classification outcome is largely driven by general shapes of
objects rather than fine textural details. This in turn would imply that the network
would generalise better to out-of-distribution examples. We tested the flexible network
on data generated by Evans, Malhotra and Bowers [31]. This dataset stylised images
derived from the CIFAR-10 dataset. The stylised images are categorised as
“contours”, “line drawings”, “silhouettes”. As the images were 224x224, the standard
32x32 training set of CIFAR-10 had to be upscaled using Lanczos resampling, following
the original methodology [31]. All Layers Flexible VGG16 indeed achieved better
generalisation by 6%, 14% and 7% in “contours”, “line drawings” and “silhouettes”,
respectively (Fig. [6).

A Contours B Line drawings C Silhouettes D contours

2]

Line drawings

60

8

Accuracy (%)
8

Silhouettes

Fig 6. Out-of-distribution performance of Flexible Layer networks.
Classification accuracy on out-of-distribution images of Baseline models versus Flexible
VGG16 models. Classification accuracy of Baseline and Flexible Layer networks on
o0.0.d images (contours (A), line drawings (B) and silhouettes (C)). (D) Examples of
the different types of 0.0.d. images of each of the three categories.

N
S

-
S

Baseline Single Layer All Layers Baseline Single Layer All Layers Baseline Single Layer All Layers
Flex Flex Flex Flex Flex Flex

Discussion

Deep learning has its roots in basic neuroscience, and this study was motivated by a
basic neuroscience question. Historically, since Hubel & Wiesel’s work [5], the dichotomy
between simple and complex cells led to a commonly held view about how selectivity
and invariance are achieved in biological and artificial neural networks, as well as to
specific implementations in various biologically-inspired artificial neural networks.
Every biological neuron receives synaptic input, and every spiking neuron converts
this input into a firing rate. The input-output relationship between the synaptic current
and the firing rate is non-linear. The action-potential threshold, in particular, will result
in AND-like operations performed on weak inputs (inputs that individually are
sub-threshold) and OR-like operations performed on strong inputs. Given that the
strength of input is not fixed but can change, how can a neuron be assigned a specific
operation, or a feature recombination function, and not switch between them? Perhaps
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a neuron does not need to be assigned a specific operation and can freely switch
between them?

In principle, there are at least three possibilities. First, it is possible that, just as in
the HMAX model, there must be separate AND-like and OR-like neurons implementing
selectivity and invariance, respectively. In this case, it is unclear how this dichotomy
can survive when synaptic weights change, e.g., during adaptation. There would have to
be some mechanisms that maintain the fixed neuron-to-computation mapping. No such
mechanisms are known. Attention could be one such mechanism: it would provide
additional input current to otherwise adapted neurons. The operations could then
“survive” in the locus of attention. This possibility was mentioned in Kozlov & Gentner
[9). Based on our results here, we feel that this scheme is too complicated and
unnecessary, given the alternatives. The second possibility is that neurons perform one
or the other operation depending on the strength of the input. For example, they could
perform an AND-like operation when inputs are sufficiently weak and an OR-like
operation when they are strong. In this case, when a (non-adapted) neuron is presented
with its preferred stimulus, it will receive a strong input and will therefore perform an
OR-like computation, for example a MAX, thus achieving some invariance or resistance
to corruptions of this preferred stimulus. This scenario is supported by well-understood
biophysics and can be implemented by the same canonical circuit [I0]. The mapping
between neurons and computations would be not fixed, but flexible. Our results here
show that a neural network with such a binary mask works as well as, or even better
than the same network but without the flexible mapping.

The third possibility is that no specific mapping between individual neurons and
computations is required, and each neuron is free to randomly “choose” its
instantaneous feature recombination function based on its intrinsic excitability and the
overall excitation-inhibition balance. This ”choice”, however, is inconsequential,
provided the population of such neurons as a whole performs operations for selectivity
and invariance. In this scenario, even a unimodal distribution of synaptic input
strengths and the spiking nonlinearity can still produce an apparent functional
dichotomy that can be interpreted as simple-like and complex-like cells (see [32]), but
such a dichotomy would be superficial and of no real functional significance. This
possibility is attractive in its simplicity. Our results with the random binary mask
(random switching between the operations) show that this implementation not only
works but provides an additional benefit, compared to both the baseline and the
non-random flexible mapping, at greater values of input corruption (greater epsilon in
Fig. D).

Spectral analysis has revealed that Flexible Layers focus on low-frequency content in
images. In both adversarial and natural settings, uncorrelated high frequency noise
tends to obscure some features that neural networks can exploit for classification. Jo &
Bengio [33] highlighted the tendency of ANNs to learn superficial statistical regularities
from the data, rather than higher-level abstractions. We have confirmed this bias
(removal of high frequency content degrades performance, Fig. ) and demonstrated
the ability of flexible computations to alleviate the deterioration of accuracy in response
to increased noise intensity. This implies that Flexible Networks have a more robust
encoding of information contained in lower frequency range, which relates to
higher-level semantic concepts.

The “blocky” pattern in activation maps (likely to be associated to MAX-pooling)
emerging in relatively shallow layers of the Flexible architectures suggests their
tendency to extract representations which are more invariant (Fig. . This comes,
however, with a price: networks miss out on selectively recognising high frequency
textural features that could potentially yield higher validation accuracy. Nevertheless,
downplayed learning of the dataset statistics is independent from generalisation
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performance, which is increased.

Out-of-distribution generalisation is particularly illustrative. CNNs have shown to
exhibit a texture-bias [34], but as noted by Malhotra, Evans, and Bowers [35],
biomimetic modifications (e.g., Gabor filters in the front end) can rectify that bias.
Shape-texture distinction is related to the importance of low-frequency information:
Flexible Networks appear to have a stronger shape bias, quantitatively shown by 14%
improvement over baseline on 0.0.d. line drawings of the same classes of data (Fig. @

Prior studies that aimed at introducing biologically-inspired computations into
CNNs reported increased adversarial robustness. Reddy et al. [36] used non-uniform
sampling, mimicking non-uniform photoreceptor density in the retina, as well as
spatially varying receptive-field sizes inspired by the visual cortex, and they found that
such mechanisms could improve adversarial robustness with white-box PGD attacks.
Dapello et al. [37] used a front-end that simulated the primary visual cortex before
feeding images into CNNs, and they found an increase in both adversarial robustness
under white-box PGD attacks as well as increased robustness to common image
corruptions (the same ones we used in our study). Our approach is different in that we
did not simulate any specific property of the visual system but instead allowed units in
the flexible layer to switch between operations depending on input, or even randomly,
an approach that is inspired by the basic biophysics of biological neurons.

A recent work [38], which pursued an interesting direction of neural manifold
matching by ANN regularisation, corroborates our finding of low frequency preference of
biomimetic models. The emergence of several links to this idea, such as blurry image
training [39] and low-norm image perturbations capable of biasing human perception in
a targeted way [40] hints that ANNs, in general, may be faithful models of robustness in
biological visual systems. Particular approaches granting robustness might vary, but
appear to have shared frequency preference properties, with the biophysically-grounded
Flexible Layer fitting into this framework.

Conclusion

Reminiscent of the broader field of biomimetics, the interplay between nature and
engineering has provided Al systems with some valuable insights with regards to
architecture and design. Just as aviation has initially benefited from studying avian
flight mechanics, or the development of hydrophobic surfaces was inspired by the lotus
leaf, the first neural networks were inspired by the organisation of the brain. By
incorporating flexible recombination functions, one of our objectives is to enhance the
adaptability and robustness of CNNs, better equipping them to the challenges posed by
real-world problems. Specifically, we have shown that introducing flexible recombination
functions observed in biological neurons into artificial neural networks improves learning
when training data are scarce and increases robustness to adversarial as well as
real-world perturbations.
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Acronyms

AT Artificial Intelligence.

ANN Artificial Neural Network.

CNN Convolutional Neural Network.

CNNs Convolutional Neural Networks.

FGSM Fast Gradient Sign Method.
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Supporting information

Network Definitions

Layers are defined as:
Conv2d(number of input channels, number of output channels, kernel size, stride,
padding)
MaxPool2d(kernel size, stride, padding)

BatchNorm2d(number of features, momentum)

Dropout2d(probability to be zeroed)

Linear(in features, out features). All linear layers learn bias.

Single Layer Baseline/Flexible VGG16:

L=

Conv2d(3, 64, (3, 3), (1, 1), (1, 1))

BatchNorm2d (64, 0.1)
ReLU()
Flexible Layer

(a) Conv2d(64, 64, (3, 3), (1, 1), 0)

(b) MaxPool2d(3, 1, 0)
(c) Sigmoid()
BatchNorm2d (64, 0.1)

ReLU()
Dropout2d(0.3)

Conv2d (64, 128, (3, 3), (1, 1), (1, 1))

BatchNorm2d(128, 0.1)
ReLU()

. Conv2d(128, 128, (3, 3), (1, 1),(1, 1))
. BatchNorm2d(128, 0.1)
. ReLU()

. MaxPool2d(2, 2, 0)

. Dropout2d(0.4)

. Conv2d(128, 256, (3, 3), (1,
. BatchNorm2d(256, 0.1)
. ReLU()

. Conv2d(256, 256, (3, 3), (1,
. BatchNorm2d(256, 0.1)
. ReLU()

. Conv2d(256, 256, (3, 3), (1,
. BatchNorm2d (256, 0.1)
. ReLU()

. MaxPool2d(2, 2, 0)

. Dropout2d(0.4)

. Conv2d(256, 512, (3, 3), (1,
. BatchNorm2d(512, 0.1)
. ReLU()

. Conv2d(512, 512, (3, 3), (1,
. BatchNorm2d(512, 0.1)
. ReLU()

. Conv2d(512, 512, (3, 3), (1,
. BatchNorm2d (512, 0.1)
. ReLU()

. MaxPool2d(2, 2, 0)
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37. Dropout2d(0.4)

38. Conv2d(512, 512, (3, 3), (1, 1), (1, 1))
39. BatchNorm2d(512, 0.1)

40. ReLU()

41. Conv2d(512, 512, (3, 3), (1, 1), (1, 1))
42. BatchNorm2d(512, 0.1)

43. ReLU()

44. Convad(512, 512, (3, 3), (1, 1), (1, 1))
45. BatchNorm2d(512, 0.1)

46. ReLU()

47. MaxPool2d(2, 2, 0)

48. Dropout2d(0.5)

49. Linear(512, 100)

50. Dropout(0.5)

51. BatchNorm1d(100, 0.1)

52. ReLU()

53. Dropout(0.5)

54. Linear(100, 10)

Small Network for FMNIST experiments:

1. Flexible Layer

(a) Conv2d(1, 12, (5, 5), (1, 1), 0)
(b) MaxPool2d(5, 1, 0)
(¢) Sigmoid()

2. Linear(6912, 120)

3. Linear(120, 60)
4. Linear(60, 10)

HMAX Model: The HMAX architecture is as defined in [41], 42]. Its performance
is explained as follows: The first layer, which takes in raw pixel data is composed of S1
cells, and each S1 cell is a Gabor filter of different wavelength. A Gabor filter is a
bandpass filter: a sinusoid with some wavelength, multiplied by an envelope which is a
Gaussian of some standard deviation. In the HMAX network the standard deviation of
the Gaussian envelope scales with the wavelength, so the resulting filter detects different
thicknesses of edges with those different wavelengths. There are also 4 orientations (90,
-45, 0, 45) of each edge. Next, each complex-like C1 cell max pools the output of two S1
cells (each with their 4 different orientations). A different size of max pooling kernel is
used for each C1 unit, which accounts for different sizes of objects in the image. Then
the simple-like S2 cells take the Fuclidean distance between C1 layer output and a
convolutional filter which is learned during training. Finally, the C2 cells again max
pool the S2 layer output over different size max pool filters.

The convolutional filters in the HMAX model use various kernel sizes (8, 10, 12, 14,
16, 18, 20, 22), as the network is designed to pool over different spatial scales in parallel.

Conv2d Model [27]:

1. Conv2d(3, 64, (3, 3), (1, 1), 1)
2. ReLU()

3. Conv2d(64, 64, (3, 3), (1, 1), 1)
4. ReLU()

5. MaxPool2d(2, 2, 0)

6. Conv2d(64, 128, (3, 3), (1, 1), 1)
7. ReLU()
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8. Convad(128, 128, (3, 3), (1, 1), 1)
9. ReLU()

10. MaxPool2d(2, 2, 0)

11. Linear(8192, 256)

12. ReLU()

13. Linear(256, 10)

Experiment Details and Hyperparameters
VGG16 Networks

The Single Flexible Layer VGG16 networks use stochastic gradient descent with a
learning rate = 0.001, momentum = 0.9 and weight decay = 0.006 for all parameters,
except the Flexible Layer threshold which has weight decay = 0. A learning rate
schedule is implemented with step size = 20 and gamma (the decay factor) = 0.7. The
loss function is cross entropy loss. The networks are trained on the CIFAR-10 dataset
for 150 epochs with batch size = 100. All images from the CIFAR-10 dataset are
normalised and the images from the training set are also subject to random horizontal
flip, with probability 0.5.

The All Flexible Layer networks are trained as above, but with learning rate = 0.01
and for 500 epochs on the CIFAR-10 dataset.

The Single Flexible Layer Networks trained on a subset of ImageNet use learning
rate = 0.001, and batch size 50 due to memory constraints. The scheduler and other
parameters are the same as above.

Small Network and HMAX Network

For the Small Network and the HMAX network, stochastic gradient descent with the
same hyperparameters and schedule as used for the VGG16 networks is implemented.
These networks are trained for 150 epochs on the FMNIST dataset. The batch size is
always 100, and images from the FMNIST dataset are normalised.

Datasets
Fashion-MNIST

Fashion-MNIST (FMNIST) [2I] is a common benchmark dataset consisting of 60,000
images of clothing belonging to 10 classes. It was developed to provide more realism
and difficulty to the benchmark MNIST dataset, performance on which has largely
saturated in modern deep learning models. Each example is a 28x28 greyscale image.
Validation is performed on an additional test set of 10,000 examples.

CIFAR-10

CIFAR-10 dataset [I9] is an established computer-vision dataset used for object
recognition. The training set consists of 50,000 32x32 colour images (3 colour channels)
of 10 object classes. The validation set consists of an additional 10,000 examples.

Imagenette

Imagenette [20] is a subset of ImageNet [43], composed of the following 10 classes:
tench, English springer, cassette player, chain saw, church, French horn, garbage truck,
gas pump, golf ball, parachute. Images are cropped to 254x254 pixels for training and
validation.
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Distinct activation patterns drive classification in flexible

networks

In Fig. a distinct, input-agnostic pattern can be observed in Flexible Layer’s feature
maps in VGG16 network. Activations cluster in a "blocky” pattern which can appear as

early as block 2.

D) Baseline Block 4

C) Baseline Block 3

A) Baseline Block 1 B) Baseline Block 2

E) All Layers Flexible Block 1 F) All Layers Flexible Block 2 G) All Layers Flexible Block 3 H) All Layers Flexible Block 4

Fig S1. Example activation maps of consecutive layers in the network. (A-D)
Activation maps of the convolution layer for an example image in block 1-4 respectively
in the baseline VGG16 network. (E-H) Activation maps for an example image in a
VGG16 network were all convolution layers have been replaced by flexible layers.
Activations from block 1-4 respectively are shown.
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