Received: 26 May 2021

Revised: 10 November 2021

Accepted: 10 November 2021

DOI: 10.1002/mrm.29104

TECHNICAL NOTE

Magnetic Resonance in Medicine

High-resolution microscopic diffusion anisotropy imaging
in the human hippocampus at 3T

Jiyoon Yoo
Christopher A. Clark

| Leevi Kerkeld | Patrick W. Hales | Kiran K. Seunarine

Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom

Correspondence

Jiyoon Yoo, Developmental Imaging
and Biophysics Section, UCL Great
Ormond Street Institute of Child
Health, 30 Guilford Street, London,
WCIN 1EH, United Kingdom.
Email: jiyoon.yoo.17@ucl.ac.uk

Funding information
Biotechnology and Biological Sciences
Research Council with the London
Interdisciplinary Doctoral Training
Program and National Institute for
Health Research Great Ormond Street
Hospital Biomedical Research Center

Purpose: Several neurological conditions are associated with microstructural
changes in the hippocampus that can be observed using DWI. Imaging studies
often use protocols with whole-brain coverage, imposing limits on image resolu-
tion and worsening partial-volume effects. Also, conventional single-diffusion-
encoding methods confound microscopic diffusion anisotropy with size variance
of microscopic diffusion environments. This study addresses these issues by im-
plementing a multidimensional diffusion-encoding protocol for microstructural
imaging of the hippocampus at high resolution.

Methods: The hippocampus of 8 healthy volunteers was imaged at 1.5-mm
isotropic resolution with a multidimensional diffusion-encoding sequence de-
veloped in house. Microscopic fractional anisotropy (WFA) and normalized size
variance (Cy;p) were estimated using g-space trajectory imaging, and their values
were compared with DTI metrics. The overall scan time was 1 hour. The repro-
ducibility of the protocol was confirmed with scan-rescan experiments, and a
shorter protocol (14 minutes) was defined for situations with time constraints.
Results: Mean uFA (0.47) was greater than mean FA (0.20), indicating orienta-
tion dispersion in hippocampal tissue microstructure. Mean Cy;p was 0.17. The
reproducibility of g-space trajectory imaging metrics was comparable to DTI, and
microstructural metrics in the healthy hippocampus are reported.

Conclusion: This work shows the feasibility of high-resolution microscopic ani-
sotropy imaging in the human hippocampus at 3 T and provides reference values
for microstructural metrics in a healthy hippocampus.
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1 | INTRODUCTION
Because the diffusion of water in the brain is constrained
by the presence of microscopic obstacles such as cell or-
ganelles, myelin, and macromolecules, DWI enables the
study of neural tissue microstructure in vivo by probing
the displacements of water molecules."* Diffusion tensor
imaging is a widely used diffusion MRI (dMRI) approach
in which the mean apparent diffusion propagator in an
imaging voxel is characterized by a diffusion tensor, from
which quantitative metrics such as fractional anisotropy
(FA) and mean diffusivity (MD) can be derived.** Despite
its utility in research and clinical settings, the diffusion ten-
sor cannot capture non-Gaussian diffusion and confounds
orientation dispersion of anisotropic neurites with isotro-
pic diffusion. Since the inception of DTI, significant effort
has been put into the development of data acquisition and
analysis methods that address these limitations.>”
Diffusion tensor imaging belongs to a class of single-
diffusion-encoding methods, in which diffusion is mea-
sured along a single dimension corresponding to the
direction of the applied diffusion-weighting gradient.*’
Single-diffusion-encoding acquisitions confound the
orientation dispersion of anisotropic neurites with size
variance of diffusion microenvironments, resulting in a
lack of specificity.'>*! In contrast to single-diffusion en-
coding, multidimensional diffusion encoding (MDE) ren-
ders the dMRI signal sensitive to the displacements of
water molecules that occur in a plane or in a volume.'***
Multidimensional diffusion encoding enables the disen-
tanglement of microscopic diffusion anisotropy from the
size variance of microenvironments and can be used to
measure microscopic fractional anisotropy (uFA).'*51
The value of uFA is a normalized metric of the average
eigenvalue variance of the microscopic diffusion tensors
that is equal to conventional FA in voxels where all the
microscopic compartments are aligned.'""** The uFA does
not depend on the orientation dispersion of axons, thus
providing more information on tissue microstructure.
The human hippocampus is a complex structure lo-
cated in the medial temporal lobe that plays a key role in
spatial and episodic memory.*~** It has become an import-
ant target in neuroimaging studies for its association in
several neurological disorders. Microstructural changes in
the hippocampus have been studied using DTL* Studies
have reported changes in MD and FA associated with
neurological conditions such as epilepsy,”?® aging,*”**
schizophrenia,zg’30 and Alzheimer’s disease,’"*? indicat-
ing that dMRI signal is sensitive to clinically relevant mi-
crostructural changes. The hippocampus is also further
characterized by distinct sublayers by the cornu ammonis
and the dentate gyrus, and there is increasing interest in
imaging hippocampal substructures, where studies have

suggested there are substructure-specific microstructural

Recent advances in dMRI protocol using partial brain
coverage have enabled the acquisition of 1-mm isotropic
resolution DTI of the hippocampus.”® However, due to
DTT’s lack of specificity, there is a need to apply more ad-
vanced dMRI methods in the study of the hippocampus.
In this study, an imaging protocol for characterizing mi-
crostructural properties of the human hippocampus at 3
T using optimized MDE gradient waveforms was defined.
Using the partial brain coverage strategy,”* spatial resolu-
tion of 1.5 mm isotropic was achieved, as MDE required
higher diffusion weightings. The protocol was applied in
healthy volunteers and used to estimated microscopic dif-
fusion anisotropy and isotropic size variance within the
hippocampus using q-space trajectory imaging (QTI)."!
Furthermore, a shorter protocol for situations with time
constraints was defined, and the scan-rescan reproduc-
ibility of the protocol was assessed.

2 | METHODS

2.1 | Participants

Eight healthy adults (4 males; 4 females; age range 25-
40 years) volunteered for the study (REC #2780/001). All
participants underwent diffusion-weighted MRI scans.
Before the scan, a health check questionnaire and metal
checklist were filled out by the volunteers to make sure
the volunteers were suitable for an MRI and had no health
restrictions precluding the MRI scan. Signed consent was
obtained from all volunteers, in which they agreed that
the data could be used for research purposes.

2.2 | Image acquisition

Participants were scanned on a Siemens Magnetom
Prisma 3T with maximum gradient strength of 80 mT/m,
maximum slew rate of 200 T/m/s, and a 20-channel head
receive coil (Siemens Healthcare, Erlangen, Germany).
Two volunteers were scanned again 7 weeks after the first
scan to assess the reproducibility of the protocol.

Before the diffusion-weighted sequence, a T,-weighted
MPRAGE sequence with an isotropic resolution of 1 mm?
was acquired to locate 30 slices (no gap) parallel to the
long axis of the hippocampus, to be used in the diffusion-
weighted acquisition.*

The diffusion-weighted data were acquired using an
in-house-developed EPI sequence that enables measure-
ments with arbitrary gradient waveforms. Optimized*® and
Maxwell-compensated®’ gradient waveforms (duration
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of 77 = ms, max gradient strength ~ 75 mT/m, max slew
rate = 100 T/m/s) encoding linear and spherical b-tensors
(Figure 1) were used with b-values 200, 750, 1000, 1250,
1500, 1750, and 2000 s/mm? The acquisitions with lin-
ear tensor encoding (LTE) and spherical tensor encoding
(STE) were interleaved to reduce the pressure on the gradi-
ent hardware. For both b-tensors, 12 directions uniformly
distributed on the surface of half a sphere were used for
b-values less than 1500, and 32 directions were uniformly
distributed on the surface of half a sphere for the rest.
Additionally, 41 images were acquired with no diffusion
weighting. Partial brain coverage aligned along the long
axis of the hippocampus was chosen to increase the res-
olution to 1.5 X 1.5 X 1.5 mm®. Other relevant imaging
parameters were TR = 4.6 seconds, TE = 101 ms, FOV =
216 X 216 mmz, partial Fourier = 6/8, and GRAPPAR =2.
Every acquisition was repeated twice to increase the SNR.
The total scan session duration was 1 hour (Supporting
Information Table S1).

A subsampled data set containing 24% of the data was
defined to assess the feasibility of the protocol in clinical sit-
uations with time constraints. The subsampled data set con-
tained b-values of 200, 750, 1250, 1500, 1750, and 2000 s/mm?>
with 4, 4, 4, 16, 16, and 32 directions, respectively. The di-
rections were chosen so that the directions for shells from
200 to 1250 s/mm? and from 1500 to 1750 s/mm? are uni-
formly distributed around the surface of half a sphere. The
acquisitions in the subsampled data set can be acquired in
14 minutes (Supporting Information Table S1).

2.3 | Image processing

Using MRtrix3, the raw data were denoised using
Marchenko-Pastur random matrix denoising,38 and Gibbs

Linear encoding

ringing artifacts were estimated and corrected for using a
subvoxel-shift algorithm.* Susceptibility and eddy current-
induced distortions were corrected using topup and eddy
in FSL.* The hippocampus was automatically segmented
using volBrain*" on diffusion-weighted images registered
with high-resolution T;-weighted MPRAGE using the HIPS
pipeline.** For the scan-rescan analysis, using NiftyReg,*
the data were registered to the half-way space between the
two time points using nonlinear transformation. The hip-
pocampus was automatically segmented, and the segmen-
tation was transformed back to original diffusion space.

2.4 | Parameter estimation

In QTI, the tissue is modeled as a distribution of micro-
scopic diffusion tensors, and the signal is expressed as

S=SOeXp(—b:D+%(b®b):C>, 1)

where S, is the signal without diffusion weighting; b is the
b-tensor; D is the voxel-level diffusion tensor; C is the cova-
riance tensor of microscopic diffusion tensors; denotes an
inner product; and ® denotes an outer product.11

The values of S, D, and C were estimated as

(InSy, D,C)" = (XT HX) ™ (X"H) S @)

where
1 -] 2 (b,®b,)"

X = (3)
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FIGURE 1 Optimized gradient waveforms encoding linear and spherical b-tensors. A 180° refocusing pulse was applied between the

two parts of the waveform where gradient magnitude is zero
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and
S = (InS, ... ,lnSn)T 4)

where S; is the signal in the ith acquisition; n is the
number of acquisitions; tensors are represented as col-
umn vectors in Voigt notation as described by Westin
et al''; and the diagonal matrix H with elements H;; = S;
was used to correct for heteroscedasticity in the log-
transformed data. The matrix inversion in Equation 2
was performed using the Moore-Penrose pseudoinver-
sion in Numpy.**

The MD and FA were calculated from the estimated
diffusion tensor eigenvalues. The value of pFA and mea-
sure of normalized size variance (Cyp) were calculated
from the estimated covariance tensor elements according
to

WFA = 4/ (C+D ®D): Egpeny )
2 (C+D®D):Ey

and

C: Epu

Cup = , 6
MD \/(C + D ® D) IEbulk ( )

where Egear, Eior and Epy were defined as specified by
Westin et al.!

2.5 | Statistical analysis

Bland-Altman plot was used to assess the robustness of
the subsampled data by doing a voxel-wise comparison of
microstructural maps using the full data set and subsam-
pled data set.

The reproducibility of the protocol was assessed using
the coefficient of variation (CV): CV(%) = p/oc * 100, where
p is the sample mean and o is the within-subject SD that
was estimated using one-way repeated-measures analysis
of variance in Pingouin.*’

3 | RESULTS

Figure 2 shows the hippocampal internal architecture in
mean diffusion-weighted images of both b-tensor shapes
over multiple slices. At 1.5-mm isotropic resolution, con-
trast within the hippocampus allows visualization of hip-
pocampal digitations (arrow), white-matter structures
known as stratum lacunosum moleculare (SLM; arrow-
heads), and its exterior outline.

Figure 3 shows the powder-averaged signal (ie, signal
averaged over all gradient directions) for both b-tensor
shapes and their difference. The divergence between the
powder-averaged signals with an increasing b-value, the
hallmark effect of microscopic anisotropy, was observed
in the hippocampus. Additionally, the powder-averaged
signal acquired with spherical tensors did not follow a
mono-exponential decay (Figure 3B), indicating isotropic
size variance.

The FA, MD, uFA, and Cy;, maps in one of the vol-
unteers are shown in Figure 4A-D alongside the his-
tograms of the values of the microstructural metrics
across all 8 volunteers over the whole hippocampal
voxel, left and right sides combined. Averaged across the
hippocampus volumes of all volunteers, MD was 1.06 +
0.37 umz/ms, FA was 0.20 + 0.09, uFA was 0.47 + 0.13,
and Cyp was 0.17 + 0.05, where the reported numbers
correspond to the mean and SD, respectively. The mag-
nitude of pFA was significantly higher than FA (two-
tailed paired t-test, p < .05), indicating an orientation
dispersion in the microscopic diffusion environments in
the hippocampus.

The subsampled data set for FA, MD, uFA, and Cyp
maps in one of the volunteers is shown in Figure 4E-H
alongside a Bland-Altman plot showing the differences be-
tween the metrics extracted from the full data set against
their mean value across all volunteers’ hippocampal vol-
ume. The mean difference was 0.02 for MD, 0.12 for FA,
0.04 for uFA, and 0.01 for Cyp, suggesting that the mini-
mal protocol can be reliably applied in quantifying mean
DTI and QTI metrics over the hippocampus in situations
with time constraints. Because the differences are not nor-
mally distributed, the 95% central range of the differences
was used to assess the limits of agreement, which were
[—0.21, 0.29] for MD, [—0.34, 0.06] for FA, [—0.22, 0.10] for
WFA, and [—0.08, 0.10] for Cyp.

The microstructural metrics from scan-rescan ex-
periments are reported, and overlap of the histograms
are plotted in Figure 5. For each volunteer (volunteer 1:
blue/green, volunteer 2: olive/pink), Figure 5A shows the
overlap of microstructural metrics derived from the full
protocol and Figure 5B shows overlap of microstructural
metrics derived from the subsampled protocol. To quan-
tify the reproducibility of the parameter estimates, CV was
calculated to compare the means of the distributions of the
microstructural metrics in the hippocampus (Supporting
Information Table S2). The low CV values show small
fluctuations and suggest that the protocol can be used to
measure subject-specific information reproducibly. In the
reproducibility analysis of both data, the CV of FA (full
data: 4%, subsampled data: 11.5%) was higher than that of
pFA (full data: 1%, subsampled data: 5%) because its value
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Mean linear tensor encoding diffusion-weighted image

Mean spherical tensor encoding diffusion-weighted image
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FIGURE 2 Three sequential axial and coronal sections of mean diffusion-weighted images at 1.5-mm isotropic resolution from one

representative acquired with linear b-tensors (A) and spherical b-tensors (B). Hippocampal internal anatomy, such as the head digitations
(arrow) and the darker lines of stratum lacunosum moleculare (SLM; arrowheads), can be visualized

was lower. The results suggest that the reproducibility of
the QTI metrics is comparable to the DTI metrics.

4 | DISCUSSION

This study demonstrates the capacity of yielding high-
resolution (1.5-mm isotropic) diffusion images of the
human hippocampus at 3 T, allowing visualization of hip-
pocampal details such as digitations in the head as well
as SLM, and provides evidence that MDE methods are
capable of probing microscopic anisotropy in the human
hippocampus in vivo.

The clinical value of microstructural imaging of the
hippocampus has been shown in previous studies.?>***
For example, decreased FA and elevated MD values were
observed in the ipsilateral hippocampus of temporal
lobe epilepsy patients with mesial temporal sclerosis.*"*
Although FA is a sensitive parameter, it has a disadvan-
tage in that it lacks specificity and sensitivity. Our protocol
leverages the most recent advances in MDE and is able to
provide a more detailed characterization of the hippocam-
pal microstructure. The hallmark effect of microscopic
anisotropy (increasing divergence between LTE and STE
with increasing b-value) is demonstrated throughout the
hippocampus across all volunteers (Figure 3). Mean uFA
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FIGURE 3 (A)Powder-averaged data acquired with linear b-tensors (PA; 1), spherical b-tensors (PAgrg), and the difference between
the two (PA; rg-PAgrg), shown in one of the volunteers for three b-values. B, Powder-averaged signal decay averaged over the hippocampus
volume of 8 volunteers. The difference between the powder-averaged signals acquired with the two tensor shapes increases with the b-value

in voxels with microscopic diffusion anisotropy

was greater than mean FA across all volunteers, indicating
that there is anisotropy present in the hippocampus that is
masked by the low FA. For instance, as part of the trisynap-
tic circuit, it is known that the granule cells of the dentate
gyrus project through their mossy fibers to the CA3 sub-
structure of the hippocampus, and orthogonally cross the

apical dendrites of CA3 pyramidal neurons.” Although
these fiber architectures demonstrate coherence, DTI un-
derestimates the FA of non-monopolar coherences due
its confoundment.>* Because uFA may provide a more ac-
curate assessment of microstructural integrity compared
with conventional FA, one can hypothesize that uFA may
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FIGURE 4 (A-D)Microstructural maps for a single, selected volunteer and next to it, distributions of their values in the hippocampus

across all 8 volunteers. The dashed lines in the histograms depict the mean value. Top to bottom: A mean diffusivity (MD) (A), fractional
anisotropy (FA) (B), microscopic fractional anisotropy (LFA) (C), and normalized size variance (Cy;p) (D). E-H, Microstructural maps
calculated from the subsampled data set in one of the volunteers. Next to it, a voxel-wise comparison between the maps calculated using

the full data set and the subsampled data set (*) across all volunteers. The solid line represents the mean difference, and the dashed lines
represent the 2.5th and 97.5th percentiles of the distribution of the differences. Top to bottom: Subsampled MD* (E), FA* (F), pFA* (G), and

Cyp* (H)

help elucidate pathophysiological mechanisms that typ-
ically occur in the hippocampus such as abnormalities
in mossy fibers and the granule cell layer in epilepsy.”
Although this hypothesis will require future clinical stud-
ies, the current study focused on establishing a protocol
with an in-house-developed sequence, and obtaining uFA
measures in healthy volunteers serves as baseline data and
proof of principle.

A shorter acquisition that is feasible in a clinical set-
ting by subsampling the full data was also defined. The
full acquisition had a scan time of 1 hour, whereas the
subsampled data could be acquired in just 14 minutes.
The subsampled data had slightly higher mean and vari-
ance, but it yielded similar maps to the full data with small
mean differences (Figure 4E-H). The subsampled protocol

could therefore be feasibly added on to an existing proto-
col for measure of novel microstructural information in
clinical studies.

Two subjects were rescanned 7 weeks later from their
initial scan, to test the reproducibility of the protocol.
The CV was estimated for the full protocol of scan and
rescan diffusion parameters, regardless of the subject,
and the low CV values demonstrated the reproducibility
of the model fitting (Supporting Information Table S2).
In the subsampled protocol, microstructural metrics
histogram overlap is slightly broader compared with the
full protocol (Figure 5A,B). Volunteer 1’s subsampled
FA (Figure 5B) in particular shows a broader overlap,
which addresses a limitation in the current subsam-
pling method. The subsampling technique here is not
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FIGURE 5 Assessment of scan-rescan reproducibility in subject 1 (in blue/green) and subject 2 (in olive/pink) for full g-space trajectory
imaging (QTI) protocol (1 hour) (A) and for subsampled protocol (14 minutes) (B) reporting MD, FA, uFA, and Cyp

optimized but rather a pragmatic choice with added
constraints. The first constraint was to have a protocol
under 15 minutes, as this is what we consider to be an
acceptable imaging time in the clinical setting. Second
was to have more directions at the higher shells for
model fitting purposes, as the hallmark effect of uFA is
diverging signal between LTE and STE, which increases
with increasing b-value.'® Following these principles,
subsampled directions were chosen to be uniformly dis-
tributed around the surface of half a sphere (see also
Supporting Information Table S1). Therefore, the sub-
sampled protocol is suboptimal in that it is intended for
fitting uFA and estimates noisier maps for FA. This lim-
itation will be addressed in the future for an optimized

subsampled protocol that accurately estimates both QTI
and DTI metrics.

Other limitations should be addressed in future re-
search. In terms of acquisition, the current protocol
suffers from a long TE. This can be reduced by imple-
menting planar tensor encoding (PTE) instead of STE.>*
“Planar” b-tensors are shaped like discs. Planar tensor
encoding allows more efficient experimental designs
and waveforms. The current sequence interleaved LTE
and STE so that it was less straining on the gradient am-
plifiers of the scanner, but with PTE, more efficient in-
terleaving could be achieved, such as high b-value PTE
followed by low b-value LTE. Planar tensor encoding
would allow reduction of the current TE, which will
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overall help to further reduce scan time. Furthermore,
one could yield a faster, optimized protocol by reduc-
ing the directions used with STE, as they are redundant
and only increasing SNR.>>® This could also enable an
increase in spatial resolution, allowing investigation
of hippocampal substructures. However, one must be
cautious when using automated segmentation methods
for hippocampal subfield selection, as even with 1-mm
isotropic resolution, substructures can be difficult to
visualize.”” Future work will involve ways to manually
segment the hippocampal subregions to derive QTI met-
rics, as examination of more specific microstructural
parameters may give a better indication of hippocam-
pal connectivity and how abnormalities such as hippo-
campal sclerosis can be better characterized using MDE
sequences.

Overall, this work shows the feasibility of high-
resolution microscopic anisotropy imaging in the healthy
hippocampus. This provides microstructural informa-
tion that cannot be acquired by conventional diffusion
encoding.

5 | CONCLUSION

In this study, a multidimensional diffusion imaging pro-
tocol was developed and applied to image the healthy
human hippocampus with high resolution at 3 T. g-Space
trajectory imaging was used to estimate microscopic dif-
fusion anisotropy, and isotropic size variance in the hip-
pocampus and reference values were reported.
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TABLE S1 The diffusion sequence consisting of inter-
leaved LTE and STE waveforms for full dataset (1 hour)
and subsampled dataset (14 minutes)

TABLE S2 Scan-rescan microstructural metrics derived
from full dataset and the subsampled dataset (*) across
volunteer 1 and 2 showing mean, standard deviation (SD)
and coefficient of variation (CV)
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