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Abstract 35 

Gene-environment (GE) interactions are essential in understanding human complex traits. 36 

Identifying these interactions is necessary for deciphering the biological basis of such traits. In 37 

this study, we introduce a statistical method Linkage-Disequilibrium Eigenvalue Regression for 38 

Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the 39 

phenotypic variance component explained by genome-wide GE interactions using large-scale 40 

biobank association summary statistics. LDER-GE leverages the complete Linkage 41 

Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC 42 

(Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate 43 

that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency 44 

by approximately 23%. This improvement is equivalent to a sample size increase of around 51%. 45 

Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We 46 

conducted an analysis using UK Biobank data, comprising 307,259 unrelated European-47 

Ancestry subjects and 966,766 variants, across 151 environmental covariate-phenotype (E-Y) 48 

pairs. LDER-GE identified 35 significant E-Y pairs while LDSC-based method only identified 25 49 

significant E-Y pairs with 23 overlapped with LDER-GE. Furthermore, we employed LDER-GE 50 

to estimate the aggregated variance component attributed to multiple GE interactions, leading to 51 

an increase in the explained phenotypic variance with GE interactions compared to considering 52 

main genetic effects only. Our results suggest the importance of impacts of GE interactions on 53 

human complex traits.  54 

 55 

Introduction 56 

A growing body of literature underscores the significant role of gene-environment (GE) 57 

interactions in shaping human complex traits1-4. The exploration of GE interactions may 58 

elucidate a portion of the 'missing heritability'5 — the phenotypic variance not accounted for by 59 

known genetic effects. Additionally, the inference of GE interactions and their effects can 60 

contribute to our understanding of human disease etiology and mechanisms6, and enhance our 61 

ability to assess risk and identify high-risk individuals, ultimately supporting the development of 62 

personalized medicine1. Traditionally, environmental exposure variables have been limited to 63 

factors like environmental toxins, air pollutants, or viral infections6. However, some gene-64 

environment interaction studies7,8 also consider other variables, heritable or non-heritable, such 65 

as sex, as environmental exposure variables. In this study, we adopt a broad definition, 66 

considering both non-heritable covariates and heritable phenotypes as environment interactive 67 

variables, as previously discussed2.  68 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.11.22.568329doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.568329
http://creativecommons.org/licenses/by-nc/4.0/


 3

 69 

Numerous methods and tools have been developed to investigate GE interactions from various 70 

angles. One such approach is the genome-wide interaction scan (GWIS), which estimates the 71 

interaction effect9 between individual genetic variants and environmental factors through 72 

regression. GWIS generates interaction summary statistics for each variant, akin to 73 

conventional genome-wide association studies (GWAS). However, we note that GE interaction 74 

effect sizes tend to be smaller than genetic main effects10. Consequently, this can lead to 75 

reduced statistical power, particularly when challenged by the multiple testing burden across the 76 

entire genome11. Several studies have directed their efforts towards estimating the genome-77 

wide contribution of GE interactions through diverse statistical approaches. One such method is 78 

the Gene-Environment Interaction Genomic Restricted Maximum Likelihood (GEI-GREML), 79 

which leverages restricted maximum likelihood estimation by pre-computing the correlation 80 

matrix of the GE term across samples12. On the other hand, the Multivariate Reaction Norm 81 

Model (MRNM) is a reaction norm model that has the capability to distinguish between GE 82 

interaction and GE correlation13. Both GEI-GREML and MRNM necessitate individual-level 83 

genotype data and can be computationally demanding and time-consuming, especially when 84 

dealing with extensive biobank datasets. 85 

 86 

To tackle these challenges, researchers have devised alternative methods that make use of 87 

GWIS summary statistics. Notably, methods like PIGEON7 and GxEsum8 build upon the 88 

principles of LD-score regression (LDSC)14. They harness partial linkage disequilibrium (LD) 89 

information among genetic variants to estimate the phenotypic impact of GE interactions using 90 

the method of moments. However, this approach often results in reduced statistical efficiency 91 

when estimating variance components, because the phenotypic variance attributed to GE 92 

interactions is often considerably smaller than the narrow-sense heritability. For example, 93 

across a dataset encompassing more than 500 traits, the phenotypic variance explained by 94 

genetic-sex interactions typically falls within the range of 0% to a maximum of 2%7. While this 95 

may appear modest, acknowledging and investigating this component remains important for our 96 

understanding of complex traits and disease etiology. An inefficient estimation method may fail 97 

to detect the contribution of GE interactions. Consequently, there is a need for a more efficient 98 

approach to estimate the phenotypic variance explained by GE interactions while effectively 99 

managing computational demands. Current LDSC-based frameworks7,8,14 make use of the 100 

squared variant LD matrix but primarily focus on diagonal information. Previous research15,16 101 

has convincingly shown that incorporating the complete LD information can substantially 102 
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enhance the efficiency of estimating narrow-sense heritability under the genetic additive effect 103 

model. Building upon this insight, we introduce the Linkage-Disequilibrium Eigenvalue 104 

Regression for Gene-environment interactions (LDER-GE) to estimate the genome-level GE 105 

interaction variance component more efficiently. 106 

 107 

LDER-GE mimics the original LDER framework15, which harnesses the full potential of LD 108 

information through eigen-decomposition of the LD matrix. This process transforms the original 109 

GWIS summary statistics and consolidates the association information. Notably, LDER-GE 110 

relies on summary statistics and the LD matrix constructed using a reference panel. 111 

Consequently, it efficiently manages large-scale Biobank data without imposing substantial 112 

computational demand. Extensive simulations provide evidence that both LDER-GE and the 113 

LDSC-based method effectively control the type-I error rate and deliver unbiased estimates. 114 

However, LDER-GE excels in terms of statistical efficiency compared to the LDSC-based 115 

method in all simulation scenarios. In a real-data application involving 151 E-Y pairs from the 116 

UK-Biobank17, the LDSC-based method identified 25 GE interaction signals, whereas LDER-GE 117 

identified 35 E-Y pairs (40% increase). For a more precise assessment of the contribution of GE 118 

interactions to missing heritability, we estimate the aggregated GE interaction variance involving 119 

multiple environmental covariates and the analyzed phenotypes. In this regard, LDER-GE 120 

facilitates more accurate estimation. In summary, the missing heritability contributed by the 121 

aggregated multi-covariate GE interaction variance represents a substantial addition to the 122 

narrow-sense heritability. 123 

 124 

Results 125 

Method overview 126 

We propose LDER-GE to improve statistical efficiency with summary-level association statistics. 127 

Under the polygenic GE model where each standardized variant-by-E term has small effect, the 128 

expectation of cross-variant level GE interaction association chi-square statistics is (details in 129 

methods and supplementary note 1) 130 

������ � �����/
 � �
 � 2���� � ������, �1� 
where Z is the original GWIS Z-score vector, R is the LD matrix, L = RTR is the LD score matrix, 131 

N is the sample size of the GWAS summary statistics, c is the unconstrained intercept with 132 

potential inflation, ��
� is the non-genetic environment interaction variance and ��

� is the explained 133 

variance of the GE interaction. We incorporate full LD information by conducting eigen-134 

decompose the LD matrix as R = UDUT, with U being the orthogonal matrix of eigenvectors and 135 
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D being the diagonal eigen value matrix, and transforming the original GWIS Z-score vector Z: Z� 136 

= D-1/2UTZ, yielding 137 

������� � �������/
 � �
 � 2���� � �����. �2� 
We run iterative weighted least squares to estimate ��

� and the intercept, followed by delete-138 

block-wise jackknife to estimate the standard error.  139 

 140 

Simulation results using real genotype panel 141 

Figure 1 and Table 1 compare the performance of LDER-GE and the LDSC-based method 142 

across various parameter combinations. Across all simulation scenarios, the LDER-GE method 143 

consistently had better performance than the LDSC-based method, whether utilizing an UKBB 144 

in-sample or 1000 Genomes project out-sample reference panel. We assessed performance 145 

using precision, which is the inverse of the standard deviation, and root mean squared error. 146 

Notably, this precision improvement was, on average, equivalent to a 51% increase in sample 147 

size when analyzing continuous simulated phenotypes during in-sample estimation. Table 2 148 

shows that the type-I error rates were well-controlled for all three methods: LDER-GE using an 149 

in-sample LD panel, LDER-GE using an out-sample LD panel, and LDSC-based in-sample LD 150 

panel. This held true both in scenarios with and without the presence of non-genetic residual-151 

environment interaction effects. 152 

 153 

The transformation from observed-scale variance to liability-scale variance, as achieved by the 154 

Roberston transformation18, relies on the normality assumption of the liability distribution. 155 

However, this assumption is violated with the non-normal GE term. Our simulations, considering 156 

various prevalence and GE interaction variance settings, suggest that the transformation 157 

provides reasonably unbiased results (S. Figure 1, Panels B, C, and D) when the disease is not 158 

rare, with a prevalence exceeding 10%, or when the GE interaction variance remains relatively 159 

small, at or below 5%. Nevertheless, in cases where the disease is rare, and the GE interaction 160 

variance is non-trivial (S. Figure 1, Panels A and B), the transformed liability-scale GE 161 

interaction variance estimate tends to be overestimated. This trend becomes more pronounced 162 

as the disease prevalence decreases. Despite the potential bias introduced by the Roberston 163 

transformation18 in the presence of the GE term, the type-I error rate for tests involving binary 164 

phenotypes remained well-controlled (Table 3) across varying prevalence settings. Our findings 165 

related to the estimation of GE liability-scale variance and the results of type-I error rate 166 

simulations for binary phenotypes align with a previous study8, except that LDER-GE achieved 167 
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better estimation accuracy than LDSC-based method using in-sample and out-sample LD 168 

reference panels (S Table 1). 169 

 170 

Real data analysis using UKBB data 171 

We examined 151 E-Y pairs involving 307,259 unrelated European ancestry individuals and a 172 

total of 966,766 genetic variants from the UK Biobank (UKBB). We employed both the LDER-173 

GE and LDSC-based methods. Following Bonferroni correction, LDER-GE identified 35 174 

significant pairs, of which 23 overlapped with the 25 pairs identified by the LDSC-based method 175 

(Figure 2). Further details about the 12 E-Y pairs exclusively identified by LDER-GE and the two 176 

E-Y pairs uniquely identified by the LDSC-based method can be found in S Table 2. Previous 177 

research has provided evidence of gene-age interaction effects on blood pressure through 178 

extensive GWAS data from three blood pressure consortia19 and linkage analysis20. In our 179 

analysis, LDER-GE successfully captured signals from both systolic blood pressure (SBP) and 180 

diastolic blood pressure (DBP), while the LDSC-based method failed to detect the DBP signal. 181 

Additionally, gene-sex interaction effects have been reported for traits such as height21, 182 

depression22,23 and cholesterol level24, all of which were exclusively detected by LDER-GE. In 183 

summary, the estimated values obtained using LDER-GE and the LDSC-based method 184 

exhibited strong overall consistency. However, we note that the standard error of LDER-GE was, 185 

on average, 21% lower than that of the LDSC-based method, a result consistent with our 186 

simulation findings. For a comprehensive overview of the analysis results for all 151 E-Y pairs, 187 

see S Table 3. Among the seven environmental covariates investigated, sex, Body Mass Index 188 

(BMI), and age exhibited relatively larger genome-level GE interaction effects and lower P-189 

values compared to the other covariates (S Table 3). On the other hand, the pollution covariate 190 

pm2.5 did not exhibit statistically significant GE interactions across all tested phenotypes, 191 

including several lung-related traits. This can be a consequence of small GE interaction 192 

magnitudes and inaccuracy of air pollution indicator measurements. 193 

 194 

For each of the 22 phenotypes, we estimated the aggregated multi-GE interaction variance 195 

using ordered covariates (age, sex, BMI, packed years of smoking, Townsend deprivation index, 196 

alcohol intake frequency). Post Bonferroni correction, LDSC-based method identified 13 197 

phenotypes, while LDER-GE identified 16 phenotypes which covered all the 13 phenotypes 198 

discovered by LDSC-based method (S Table 4, S Figure 2). The additional 3 phenotypes 199 

identified are height, normalized FVC and neuroticism score, whose aggregated GE interaction 200 

variances were estimated around 1%. Notably, some phenotypes like depression and male 201 
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genital tract cancer exhibited significant single-covariate GE interactions but were not detected 202 

with multi-GE interaction variance. This discrepancy may be due to noise introduced by other 203 

weak covariates during multi-covariate aggregation. Similar to single-covariate GE analysis, 204 

LDER-GE consistently yielded results comparable to the LDSC-based method in assessing 205 

multi-GE interaction variance but reported an average standard error 21% smaller than the 206 

LDSC-based method. We also estimated narrow-sense heritability h2 and compared it to the 207 

aggregated multi-GE interaction variance. Notably, 13 of the 22 phenotypes exhibited 208 

substantial multi-GE interaction variance, contributing more than 10% relatively to the narrow-209 

sense heritability. For conditions like type-II diabetes (T2D) and coronary artery disease (CAD), 210 

the multi-GE interaction variance approached the magnitude of the narrow-sense heritability, 211 

providing valuable insights into disease etiology. However, we caution that when interpreting 212 

results for binary diseases, as the liability-scale transformation may introduce bias. We reversed 213 

the covariate order and used the set (alcohol intake frequency, Townsend deprivation index, 214 

packed years of smoking, BMI, sex, age) for the same analysis. It turned out that the order of 215 

covariates did not substantially affect the results (S Table 5). 216 

 217 

Discussion 218 

In this study, we introduce LDER-GE to improve the precision of estimating GE interaction 219 

variance of complex traits using summary statistics. LDER-GE leverages full LD information 220 

from the LD panel while  LDSC-based methods7,8 rely solely on the LD panel's diagonal 221 

information. Our simulations and analysis of UK Biobank data demonstrate LDER-GE's 222 

superiority over LDSC-based approaches in terms of estimation accuracy and root mean square 223 

error. LDER-GE's improved accuracy enables the detection of more genome-level GE 224 

interactions that might go undetected by LDSC-based methods. 225 

 226 

From real data analysis, sex and BMI had more detectable GE interaction effects over various 227 

health-related traits, consistent with results from other studies. For example, several studies 228 

reported that sex modifies genetic effects on lipid traits25, obesity26,27, and hypertension28 from 229 

different perspectives. BMI is known to be causal to multiple health-related traits such as T2D 230 

and hypertension29,30, part of which could be reasoned from the GE interaction effects8. While 231 

biological sex is almost fixed for most individuals in the population throughout the lifetime as 232 

well as its associated GE interaction variance, BMI varies during different life stages. The gene-233 

BMI interaction study potentially brings additional significance to the clinical prevention or 234 

treatment to diseases such as T2D and hypertension, given their considerable GE interaction 235 
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variance estimate. The higher statistical efficiency of LDER-GE allows us to better estimate the 236 

aggregated multi-GE interaction variance, which is comparable to narrow sense heritability, 237 

especially for T2D and Coronary Artery Disease (CAD). However, such interpretation must be 238 

accompanied with caution, due to the normality and additive effect assumption violations of 239 

Roberston transformation18,31,32. Empirically, simulations demonstrate the true aggregated multi-240 

GE interaction variance is lower than the transformed liability-scale variance when the disease 241 

is rare (<=5%), but the magnitude difference is not considerable.  242 

 243 

Our real data analysis highlighted the significant gene by SEX and gene by BMI interaction 244 

effects over various health-related traits, a finding consistent with diverse studies. For instance, 245 

sex has been shown to modify genetic effects on traits like lipid 25, obesity26,27, and 246 

hypertension28. Additionally, BMI, a known causal factor for multiple health-related traits such as 247 

T2D and hypertension29,30, may exert some of its influence through gene-environment (GE) 248 

interactions8. While biological sex remains relatively constant throughout an individual's lifetime, 249 

BMI is subject to regulation. Investigating BMI's GE interaction implications could have clinical 250 

significance, particularly in preventing or treating diseases like T2D and hypertension, given 251 

their substantial GE interaction variance estimates. LDER-GE's enhanced statistical efficiency 252 

enables more accurate estimation of aggregated multi-GE interaction variance, which, notably, 253 

often approaches the magnitude of narrow-sense heritability, especially for T2D and CAD. 254 

However, it's crucial to exercise caution in interpreting these findings, as they hinge on the 255 

normality and additive effect assumptions of the Roberston transformation18,31,32. Empirical 256 

simulations reveal that in cases of rare diseases (prevalence <= 5%), the true aggregated multi-257 

GE interaction variance tends to be lower than the estimated liability-scale variance, though the 258 

difference in magnitude is not substantial. 259 

 260 

As previously discussed8, it's not recommended to directly estimate the non-genetic-residual-261 

environment interaction variance from the intercept using the formula (intercept – 2*hI
2)/2. This 262 

is because the intercept can be inflated by factors such as population stratification and other 263 

confounding effects, making it difficult to separate from the non-genetic-residual-environment 264 

interaction variance. When analyzing binary phenotypes, there's the additional challenge of 265 

unknown prevalence differences between the sampling population and the target population, 266 

which can further inflate the estimated intercept14. 267 

 268 
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To expedite computation, we partitioned the entire genome into 1009 approximately 269 

independent blocks based on their LD relationships. We derived the block-wise LD matrix using 270 

a dataset of 307,259 individuals of European ancestry from the UK Biobank. Alternatively, we 271 

also calculated the out-sample LD matrix using 489 subjects from the 1000 Genomes project33, 272 

employing a linear shrinkage method34,35, and the 1703 genomic blocks from LDetect36. 273 

Typically, the 1000 Genomes project reference panel is utilized when in-sample LD information 274 

is unavailable. For readers' convenience, both computed panels are accessible online. Our 275 

simulation results underscore the robustness of LDER-GE, whether LD panels are constructed 276 

from the UK Biobank or the 1000 Genomes project. However, it's advisable to prioritize the UK 277 

Biobank reference when there's a significant overlap between the variants in the GWIS input 278 

summary statistics and the UK Biobank reference panel, mainly due to its larger sample size. 279 

 280 

As an extension of the LDSC-based method, LDER-GE inherits most of its limitations. Firstly, it 281 

assumes polygenic GE effects on the phenotype, and a violation of this assumption can result in 282 

underestimation of the variance component37. Secondly, our model does not differentiate 283 

between GE covariate correlations, potentially introducing estimation bias due to 284 

overadjustment8. Methods addressing such correlations are available13. Thirdly, LDER-GE has 285 

not been applied to case-control studies, which often involve oversampling of cases. While 286 

efforts are being made to address these limitations, future research could explore incorporating 287 

variant functional annotation or allele frequency information to enhance estimation37. 288 

 289 

To summarize, LDER-GE utilizes full LD information and summary statistics to estimate the 290 

phenotypic variance explained by GE interactions more accurately than LDSC-based estimation 291 

methods. LDER-GE controls the computational burden and time well compared to methods that 292 

requires individual-level data input and can be employed to estimate multiple E-Y pairs of large 293 

sample size. 294 

 295 

Material & methods 296 

LDER-GE modelling & estimation 297 

We consider the following model 298 

�� � � �����
�

���

� � �����
�

���

� ����� � �	� , �3� 
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where Yi is the phenotype for subject i already adjusted for fixed effects including the exposure 299 

covariate effects. Ei is the exposure covariate for subject i. Suppose there are M variants. Gji is 300 

the jth variant for subject i. Sji = Gji∗Ei is the GE interaction product term for variant j of subject i, 301 

�1i is the non-genetic residual that has exposure interaction effect. �0i is the residual 302 

independent from all other parts, ³j is the true additive genetic effect for variant j, ´j is the true 303 

interaction effect for variant j. Following PEGION’s7 setting, we model ³j and ´j using the 304 

following random effects model: 305 

��  ~ ��0, �
�/
�, 
��~��0, ���/
�, 306 

where ��
� is the narrow-sense heritability and ��

� is the GE interaction variance that we are 307 

interested in estimating. And ³j and ´j may or not be correlated. We model �0 and �1 using 308 

random effects model: 309 

�	 ~ � �0, �	��, 
�� ~ � �0, ����, 310 

where ��
� is the non-genetic environment interaction variance. Again, �0 and �1 may or may not 311 

be correlated. 312 

Under the polygenic GE model, we derive (supplementary note 1), in matrix form, that  313 

������ � �����/
 � �
 � �#��� $ 1����� � ������, �4�  314 

������ � �����/
 � �
 � 2���� � ������, �5�  315 

where Z is the GWIS Z-score vector, R is the LD matrix, L = RTR is the LD score matrix, N is the 316 

sample size of the GWAS summary statistics, c is the unconstrained intercept with potential 317 

inflation and K(E) is the kurtosis of the exposure covariate. In the case of E being standard 318 

normal, equation (4) reduces to the equation (5). Following the original LDER15 framework, we 319 

eigen-decompose the LD matrix as R = UDUT, where U is the orthogonal matrix of eigenvectors 320 

and D is the diagonal eigen value matrix. Then we transform the original GWIS Z-score vector Z: 321 

Z� = D-1/2UTZ and have 322 

������� � �������/
 � �
 � 2���� � �����. �6� 
The transformed summary statistic vector contains all LD information, and the estimation 323 

efficiency is improved compared to LDSC-based methods as a consequence. The estimation 324 

task is accomplished using the iterative least squares and standard error is estimated using 325 

delete-block-wise jackknife.  326 

 327 
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To analyze binary outcomes, we transformed the observed-scale heritability to liability-scale 328 

heritability using Roberston transformation18. It has been pointed out that when the GE 329 

interaction variance is large, the normality assumption of the phenotype liability may be violated, 330 

resulting in biased results of Roberston transformation8,38. However, our simulation results 331 

showed that when the GE interaction variance proportion was small Roberston transformation 332 

still yielded reasonably accurate result (S Figure 1, S Table 1), consistent with previous studies8. 333 

 334 

The regression weight of the transformed summary statistics vector takes the same form as 335 

LDER15 except the additional intercept inflation component (Supplementary note),  336 

(� � )*+���� , 1�/�1 � 2���� � ���� � �������/
��, �7� 
where (1+ 2(h2

I + σ1
2) + Nh2

IDii/M)2 is proportional to the variance of Z�i (supplementary note 2) 337 

and the shrinkage operation min (Dii,1) reduces the noise from big eigenvalues from LD matrix 338 

with lower sample sizes.  339 

 340 

UKBB data for simulation and real data analysis 341 

The research conducted in this study utilized data from the UK Biobank Resource. The genomic 342 

partitioning and simulation analysis was conducted using UKBB dataset with application number 343 

29900. The real data analysis was conducted using UKBB dataset with application number 344 

32285. Detailed information regarding data access, ethical approval, quality control procedures, 345 

and phenotype definitions can be found in the supplementary note 2.  346 

 347 

Reference panel construction: 348 

We first took the intersection between UKBB17 imputed genotype panel, 1000 Genomes 349 

project33 genotype panel and hapmap3 project39 variant list, resulting in M = 396,330 common 350 

variants. Then, we partitioned the entire human genome into 1009 roughly independent blocks 351 

using the panel of 396,330 common variants from UKBB European ancestry (N=276,050). We 352 

partitioned the genome such that the linked SNP pairs (squared LD coefficient r2> 2/sqrt(276050) 353 

= 0.0038) are within 100 kilobases within each block. For simulations, in-sample reference 354 

panel was constructed using the intersected UKBB genotype panel (N=276,050, M = 396,330) 355 

and the 1009 genomic blocks. Out-sample reference panel was constructed using the same set 356 

of variants but from 1000 Genome project genotype panel (N=489, M = 396,330), with the 357 

genome partition being the 1703 genomic blocks generated previously15 for reducing the noise 358 

of low sample size. A linear shrinkage method34,35 was employed for out-sample reference panel 359 

construction to further reduce the noise. For UKBB real data analysis, the in-sample reference 360 
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panel was constructed using the union of UKBB imputed genotype panel and UKBB array 361 

genotype panel, intersected with hapmap3 project39 variant list (N=307,259, M = 966,766) and 362 

the 1009 genomic blocks. For real data analysis, the variant inclusion criteria was (a): 363 

imputation score > 0.8; (b): minor allele frequency > 0.05; (c): missing rate < 0.01; (d): Hardy-364 

Weinberg Equilibrium P-value > 5*10-8. The details of quality control procedure of simulation 365 

dataset and real analysis dataset can be found in the supplementary materials.  366 

 367 

Simulations 368 

The data generation process followed equation X, with narrow-sense heritability h2
g fixed at 0.2, 369 

GE interaction contribution proportion h2
I varying from 0 to 0.05, non-genetic-residual-covariate 370 

interaction variance σ1
2 being 0 or 0.02, E is standard normal: 371 

�� � � �����
�

���

� � �����
�

���

� ����� � �	� , 

For each simulation from the pool of intersected UKBB genotype panel (N=276,050, M = 372 

396,330), we randomly chose 50,000 subjects and 19,816 (5%) causal GE variants for data 373 

generation, association analysis (linear regression on M = 396,330 variants using PLINK240) 374 

and GE interaction variance estimation analysis. Each parameter combination had 300 375 

replicated simulations. To simulate the binary outcome, we used the liability model based on 376 

corresponding critical cutoff with respect to the specified population prevalence.  377 

 378 

Single-covariate GE interaction variance analysis of UKBB 379 

We ran GWIS analysis through “--glm interaction --variance-standardize” command of PLINK240 380 

pre-adjusted for age, sex, 40 genetic PCs and the specific environmental covariate of interest if 381 

not age or sex using linear regression. We analyzed 22 phenotypes and 7 environmental 382 

covariates, resulting in a total of 151 (154 - 3) E-Y pairs with the 3 sex-specific phenotypes. The 383 

22 phenotypes included 14 continuous phenotypes and 8 binary phenotypes. LDER-GE and 384 

LDSC-based analysis were conducted using the resulted GWIS summary statistics and pre-385 

computed LD information. 386 

 387 

Aggregated multi-covariate GE interaction variance analysis of UKBB 388 

Suppose there is a covariate set of interest (A, B, C, …), we first run linear regression of B~A to 389 

get residuals of B net A: B|A, being independent from A, and we run another linear regression of 390 

C~A+B to get residuals of C net A and B: C|A & B, being independent from A and B. We 391 
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continue the process until all residuals are independent from each other. We then run single-392 

covariate GE interaction variance analysis on each residuals the same way but preadjust for 393 

age, sex, 40 genetic PCs and all covariates in the set excluding age and sex. By eliminating the 394 

dependency of covariates, the estimated single-covariate GE interaction variances are 395 

independent, and we summed up the estimated GE interaction variances and their variances of 396 

estimation to conduct straightforward statistical test. We explored the set (age, sex, BMI, 397 

packed years of smoking, Townsend deprivation index, Alcohol intake frequency) to capture 398 

more missing heritability explained by GE interactions because these 6 covariates yielded 399 

nonminimally significant GE interaction signals at P<0.05 on more than three phenotype (S 400 

table 6). The narrow-sense heritability of each phenotype was estimated using LDER and the 401 

main genetic effect GWAS summary statistics of the same UKBB cohort as GE analysis. 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

  410 
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Figure 1: Histogram comparison of LDSC-based method and  LDER-GE with in-

sample and out-sample reference panel on simulations from real genotype 

panel, continuous phenotype. 
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Figure 2: GE interaction variance estimates from LDSC-based method and 

LDER-GE of 151 environmental covariate-phenotype pairs in UKBB 

dataset. For binary phenotypes, GE interaction variance is reported on 

the liability-scale. 
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Figure 3: Phenotypic variance explained by narrow-sense heritability and 

aggregated multi-GE interactions for the 22 phenotypes, ordered by increasing P 

value of multi-GE interactions. Right of the solid black line, 6 phenotypes are not 

significant. For binary phenotypes, proportion is reported on the liability-scale. 
FGTC: Female genital tract cancer

MGTC: Male genital tract cancer
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