

1 Title: LDER-GE estimates phenotypic variance component of gene-environment interactions in
2 human complex traits accurately with GE interaction summary statistics and full LD information
3

4 Authors: Zihan Dong, MS^{1,2,*}, Wei Jiang, PhD^{1,*}, Hongyu Li, PhD¹, Andrew T. DeWan, PhD^{2,3,†},
5 Hongyu Zhao, PhD^{1,†}

6 ¹Department of Biostatistics, Yale School of Public Health, New Haven, CT

7 ²Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health,
8 New Haven, CT

9 ³Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT

10

11 * These authors contributed equally to this work.

12 † These authors share senior authorship.

13

14 Corresponding Authors: Hongyu Zhao, Department of Biostatistics, Yale School of Public Health,
15 300 George Street, 5th floor, New Haven, CT 06511, Telephone: 203-785-3613, Fax: 203-785-
16 6912, Email: hongyu.zhao@yale.edu

17 Andrew T. DeWan, Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale
18 School of Public Health, 1 Church Street, 6th Floor, New Haven, CT 06520, Telephone: 203-
19 785-3528, Fax: 203-785-6279, Email: andrew.dewan@yale.edu

20

21 Conflict of Interest: None

22

23 Keywords: Gene-environment interaction, genome-wide interaction scan, missing heritability,
24 linkage disequilibrium, statistical efficiency

25 Abbreviations: GE: gene-environment. GWIS: genome-wide interaction scan. LD: linkage
26 disequilibrium. SNP: single nucleotide polymorphism. E-Y pair: environmental covariate
27 phenotype pair.

28 Word count: 3894 (excluding abstract)

29 Figures: 3

30 Tables: 4

31 Code and data availability: “LDER-GE” and pre-computed LD information can be found at
32 <https://github.com/shuangs0110/LDER>.

33

34

35 **Abstract**

36 Gene-environment (GE) interactions are essential in understanding human complex traits.
37 Identifying these interactions is necessary for deciphering the biological basis of such traits. In
38 this study, we introduce a statistical method Linkage-Disequilibrium Eigenvalue Regression for
39 Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the
40 phenotypic variance component explained by genome-wide GE interactions using large-scale
41 biobank association summary statistics. LDER-GE leverages the complete Linkage
42 Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC
43 (Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate
44 that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency
45 by approximately 23%. This improvement is equivalent to a sample size increase of around 51%.
46 Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We
47 conducted an analysis using UK Biobank data, comprising 307,259 unrelated European-
48 Ancestry subjects and 966,766 variants, across 151 environmental covariate-phenotype (E-Y)
49 pairs. LDER-GE identified 35 significant E-Y pairs while LDSC-based method only identified 25
50 significant E-Y pairs with 23 overlapped with LDER-GE. Furthermore, we employed LDER-GE
51 to estimate the aggregated variance component attributed to multiple GE interactions, leading to
52 an increase in the explained phenotypic variance with GE interactions compared to considering
53 main genetic effects only. Our results suggest the importance of impacts of GE interactions on
54 human complex traits.

55

56 **Introduction**

57 A growing body of literature underscores the significant role of gene-environment (GE)
58 interactions in shaping human complex traits¹⁻⁴. The exploration of GE interactions may
59 elucidate a portion of the 'missing heritability'⁵ — the phenotypic variance not accounted for by
60 known genetic effects. Additionally, the inference of GE interactions and their effects can
61 contribute to our understanding of human disease etiology and mechanisms⁶, and enhance our
62 ability to assess risk and identify high-risk individuals, ultimately supporting the development of
63 personalized medicine¹. Traditionally, environmental exposure variables have been limited to
64 factors like environmental toxins, air pollutants, or viral infections⁶. However, some gene-
65 environment interaction studies^{7,8} also consider other variables, heritable or non-heritable, such
66 as sex, as environmental exposure variables. In this study, we adopt a broad definition,
67 considering both non-heritable covariates and heritable phenotypes as environment interactive
68 variables, as previously discussed².

69

70 Numerous methods and tools have been developed to investigate GE interactions from various
71 angles. One such approach is the genome-wide interaction scan (GWIS), which estimates the
72 interaction effect⁹ between individual genetic variants and environmental factors through
73 regression. GWIS generates interaction summary statistics for each variant, akin to
74 conventional genome-wide association studies (GWAS). However, we note that GE interaction
75 effect sizes tend to be smaller than genetic main effects¹⁰. Consequently, this can lead to
76 reduced statistical power, particularly when challenged by the multiple testing burden across the
77 entire genome¹¹. Several studies have directed their efforts towards estimating the genome-
78 wide contribution of GE interactions through diverse statistical approaches. One such method is
79 the Gene-Environment Interaction Genomic Restricted Maximum Likelihood (GEI-GREML),
80 which leverages restricted maximum likelihood estimation by pre-computing the correlation
81 matrix of the GE term across samples¹². On the other hand, the Multivariate Reaction Norm
82 Model (MRNM) is a reaction norm model that has the capability to distinguish between GE
83 interaction and GE correlation¹³. Both GEI-GREML and MRNM necessitate individual-level
84 genotype data and can be computationally demanding and time-consuming, especially when
85 dealing with extensive biobank datasets.

86

87 To tackle these challenges, researchers have devised alternative methods that make use of
88 GWIS summary statistics. Notably, methods like PIGEON⁷ and GxEsum⁸ build upon the
89 principles of LD-score regression (LDSC)¹⁴. They harness partial linkage disequilibrium (LD)
90 information among genetic variants to estimate the phenotypic impact of GE interactions using
91 the method of moments. However, this approach often results in reduced statistical efficiency
92 when estimating variance components, because the phenotypic variance attributed to GE
93 interactions is often considerably smaller than the narrow-sense heritability. For example,
94 across a dataset encompassing more than 500 traits, the phenotypic variance explained by
95 genetic-sex interactions typically falls within the range of 0% to a maximum of 2%⁷. While this
96 may appear modest, acknowledging and investigating this component remains important for our
97 understanding of complex traits and disease etiology. An inefficient estimation method may fail
98 to detect the contribution of GE interactions. Consequently, there is a need for a more efficient
99 approach to estimate the phenotypic variance explained by GE interactions while effectively
100 managing computational demands. Current LDSC-based frameworks^{7,8,14} make use of the
101 squared variant LD matrix but primarily focus on diagonal information. Previous research^{15,16}
102 has convincingly shown that incorporating the complete LD information can substantially

103 enhance the efficiency of estimating narrow-sense heritability under the genetic additive effect
104 model. Building upon this insight, we introduce the Linkage-Disequilibrium Eigenvalue
105 Regression for Gene-environment interactions (LDER-GE) to estimate the genome-level GE
106 interaction variance component more efficiently.

107

108 LDER-GE mimics the original LDER framework¹⁵, which harnesses the full potential of LD
109 information through eigen-decomposition of the LD matrix. This process transforms the original
110 GWIS summary statistics and consolidates the association information. Notably, LDER-GE
111 relies on summary statistics and the LD matrix constructed using a reference panel.
112 Consequently, it efficiently manages large-scale Biobank data without imposing substantial
113 computational demand. Extensive simulations provide evidence that both LDER-GE and the
114 LDSC-based method effectively control the type-I error rate and deliver unbiased estimates.
115 However, LDER-GE excels in terms of statistical efficiency compared to the LDSC-based
116 method in all simulation scenarios. In a real-data application involving 151 E-Y pairs from the
117 UK-Biobank¹⁷, the LDSC-based method identified 25 GE interaction signals, whereas LDER-GE
118 identified 35 E-Y pairs (40% increase). For a more precise assessment of the contribution of GE
119 interactions to missing heritability, we estimate the aggregated GE interaction variance involving
120 multiple environmental covariates and the analyzed phenotypes. In this regard, LDER-GE
121 facilitates more accurate estimation. In summary, the missing heritability contributed by the
122 aggregated multi-covariate GE interaction variance represents a substantial addition to the
123 narrow-sense heritability.

124

125 **Results**

126 **Method overview**

127 We propose LDER-GE to improve statistical efficiency with summary-level association statistics.
128 Under the polygenic GE model where each standardized variant-by-E term has small effect, the
129 expectation of cross-variant level GE interaction association chi-square statistics is (details in
130 methods and supplementary note 1)

$$E(\mathbf{Z}\mathbf{Z}^T) = Nh_I^2 \mathbf{L}/M + (c + 2(h_I^2 + \sigma_1^2)) \mathbf{R}, \quad (1)$$

131 where \mathbf{Z} is the original GWIS Z-score vector, \mathbf{R} is the LD matrix, $\mathbf{L} = \mathbf{R}^T \mathbf{R}$ is the LD score matrix,
132 N is the sample size of the GWAS summary statistics, c is the unconstrained intercept with
133 potential inflation, σ_1^2 is the non-genetic environment interaction variance and h_I^2 is the explained
134 variance of the GE interaction. We incorporate full LD information by conducting eigen-
135 decompose the LD matrix as $\mathbf{R} = \mathbf{U}\mathbf{D}\mathbf{U}^T$, with \mathbf{U} being the orthogonal matrix of eigenvectors and

136 **D** being the diagonal eigen value matrix, and transforming the original GWIS Z-score vector **Z**: $\tilde{\mathbf{Z}}$
137 $= \mathbf{D}^{-1/2} \mathbf{U}^T \mathbf{Z}$, yielding

$$E(\tilde{Z}_j^2) = Nh_I^2 D_{jj}/M + (c + 2(h_I^2 + \sigma_1^2)). \quad (2)$$

138 We run iterative weighted least squares to estimate h_I^2 and the intercept, followed by delete-
139 block-wise jackknife to estimate the standard error.

140

141 **Simulation results using real genotype panel**

142 Figure 1 and Table 1 compare the performance of LDER-GE and the LDSC-based method
143 across various parameter combinations. Across all simulation scenarios, the LDER-GE method
144 consistently had better performance than the LDSC-based method, whether utilizing an UKBB
145 in-sample or 1000 Genomes project out-sample reference panel. We assessed performance
146 using precision, which is the inverse of the standard deviation, and root mean squared error.
147 Notably, this precision improvement was, on average, equivalent to a 51% increase in sample
148 size when analyzing continuous simulated phenotypes during in-sample estimation. Table 2
149 shows that the type-I error rates were well-controlled for all three methods: LDER-GE using an
150 in-sample LD panel, LDER-GE using an out-sample LD panel, and LDSC-based in-sample LD
151 panel. This held true both in scenarios with and without the presence of non-genetic residual-
152 environment interaction effects.

153

154 The transformation from observed-scale variance to liability-scale variance, as achieved by the
155 Roberston transformation¹⁸, relies on the normality assumption of the liability distribution.
156 However, this assumption is violated with the non-normal GE term. Our simulations, considering
157 various prevalence and GE interaction variance settings, suggest that the transformation
158 provides reasonably unbiased results (S. Figure 1, Panels B, C, and D) when the disease is not
159 rare, with a prevalence exceeding 10%, or when the GE interaction variance remains relatively
160 small, at or below 5%. Nevertheless, in cases where the disease is rare, and the GE interaction
161 variance is non-trivial (S. Figure 1, Panels A and B), the transformed liability-scale GE
162 interaction variance estimate tends to be overestimated. This trend becomes more pronounced
163 as the disease prevalence decreases. Despite the potential bias introduced by the Roberston
164 transformation¹⁸ in the presence of the GE term, the type-I error rate for tests involving binary
165 phenotypes remained well-controlled (Table 3) across varying prevalence settings. Our findings
166 related to the estimation of GE liability-scale variance and the results of type-I error rate
167 simulations for binary phenotypes align with a previous study⁸, except that LDER-GE achieved

168 better estimation accuracy than LDSC-based method using in-sample and out-sample LD
169 reference panels (S Table 1).

170

171 **Real data analysis using UKBB data**

172 We examined 151 E-Y pairs involving 307,259 unrelated European ancestry individuals and a
173 total of 966,766 genetic variants from the UK Biobank (UKBB). We employed both the LDER-
174 GE and LDSC-based methods. Following Bonferroni correction, LDER-GE identified 35
175 significant pairs, of which 23 overlapped with the 25 pairs identified by the LDSC-based method
176 (Figure 2). Further details about the 12 E-Y pairs exclusively identified by LDER-GE and the two
177 E-Y pairs uniquely identified by the LDSC-based method can be found in S Table 2. Previous
178 research has provided evidence of gene-age interaction effects on blood pressure through
179 extensive GWAS data from three blood pressure consortia¹⁹ and linkage analysis²⁰. In our
180 analysis, LDER-GE successfully captured signals from both systolic blood pressure (SBP) and
181 diastolic blood pressure (DBP), while the LDSC-based method failed to detect the DBP signal.
182 Additionally, gene-sex interaction effects have been reported for traits such as height²¹,
183 depression^{22,23} and cholesterol level²⁴, all of which were exclusively detected by LDER-GE. In
184 summary, the estimated values obtained using LDER-GE and the LDSC-based method
185 exhibited strong overall consistency. However, we note that the standard error of LDER-GE was,
186 on average, 21% lower than that of the LDSC-based method, a result consistent with our
187 simulation findings. For a comprehensive overview of the analysis results for all 151 E-Y pairs,
188 see S Table 3. Among the seven environmental covariates investigated, sex, Body Mass Index
189 (BMI), and age exhibited relatively larger genome-level GE interaction effects and lower P-
190 values compared to the other covariates (S Table 3). On the other hand, the pollution covariate
191 pm2.5 did not exhibit statistically significant GE interactions across all tested phenotypes,
192 including several lung-related traits. This can be a consequence of small GE interaction
193 magnitudes and inaccuracy of air pollution indicator measurements.

194

195 For each of the 22 phenotypes, we estimated the aggregated multi-GE interaction variance
196 using ordered covariates (age, sex, BMI, packed years of smoking, Townsend deprivation index,
197 alcohol intake frequency). Post Bonferroni correction, LDSC-based method identified 13
198 phenotypes, while LDER-GE identified 16 phenotypes which covered all the 13 phenotypes
199 discovered by LDSC-based method (S Table 4, S Figure 2). The additional 3 phenotypes
200 identified are height, normalized FVC and neuroticism score, whose aggregated GE interaction
201 variances were estimated around 1%. Notably, some phenotypes like depression and male

202 genital tract cancer exhibited significant single-covariate GE interactions but were not detected
203 with multi-GE interaction variance. This discrepancy may be due to noise introduced by other
204 weak covariates during multi-covariate aggregation. Similar to single-covariate GE analysis,
205 LDER-GE consistently yielded results comparable to the LDSC-based method in assessing
206 multi-GE interaction variance but reported an average standard error 21% smaller than the
207 LDSC-based method. We also estimated narrow-sense heritability h^2 and compared it to the
208 aggregated multi-GE interaction variance. Notably, 13 of the 22 phenotypes exhibited
209 substantial multi-GE interaction variance, contributing more than 10% relatively to the narrow-
210 sense heritability. For conditions like type-II diabetes (T2D) and coronary artery disease (CAD),
211 the multi-GE interaction variance approached the magnitude of the narrow-sense heritability,
212 providing valuable insights into disease etiology. However, we caution that when interpreting
213 results for binary diseases, as the liability-scale transformation may introduce bias. We reversed
214 the covariate order and used the set (alcohol intake frequency, Townsend deprivation index,
215 packed years of smoking, BMI, sex, age) for the same analysis. It turned out that the order of
216 covariates did not substantially affect the results (S Table 5).

217

218 **Discussion**

219 In this study, we introduce LDER-GE to improve the precision of estimating GE interaction
220 variance of complex traits using summary statistics. LDER-GE leverages full LD information
221 from the LD panel while LDSC-based methods^{7,8} rely solely on the LD panel's diagonal
222 information. Our simulations and analysis of UK Biobank data demonstrate LDER-GE's
223 superiority over LDSC-based approaches in terms of estimation accuracy and root mean square
224 error. LDER-GE's improved accuracy enables the detection of more genome-level GE
225 interactions that might go undetected by LDSC-based methods.

226

227 From real data analysis, sex and BMI had more detectable GE interaction effects over various
228 health-related traits, consistent with results from other studies. For example, several studies
229 reported that sex modifies genetic effects on lipid traits²⁵, obesity^{26,27}, and hypertension²⁸ from
230 different perspectives. BMI is known to be causal to multiple health-related traits such as T2D
231 and hypertension^{29,30}, part of which could be reasoned from the GE interaction effects⁸. While
232 biological sex is almost fixed for most individuals in the population throughout the lifetime as
233 well as its associated GE interaction variance, BMI varies during different life stages. The gene-
234 BMI interaction study potentially brings additional significance to the clinical prevention or
235 treatment to diseases such as T2D and hypertension, given their considerable GE interaction

236 variance estimate. The higher statistical efficiency of LDER-GE allows us to better estimate the
237 aggregated multi-GE interaction variance, which is comparable to narrow sense heritability,
238 especially for T2D and Coronary Artery Disease (CAD). However, such interpretation must be
239 accompanied with caution, due to the normality and additive effect assumption violations of
240 Roberston transformation^{18,31,32}. Empirically, simulations demonstrate the true aggregated multi-
241 GE interaction variance is lower than the transformed liability-scale variance when the disease
242 is rare (<=5%), but the magnitude difference is not considerable.

243

244 Our real data analysis highlighted the significant gene by SEX and gene by BMI interaction
245 effects over various health-related traits, a finding consistent with diverse studies. For instance,
246 sex has been shown to modify genetic effects on traits like lipid²⁵, obesity^{26,27}, and
247 hypertension²⁸. Additionally, BMI, a known causal factor for multiple health-related traits such as
248 T2D and hypertension^{29,30}, may exert some of its influence through gene-environment (GE)
249 interactions⁸. While biological sex remains relatively constant throughout an individual's lifetime,
250 BMI is subject to regulation. Investigating BMI's GE interaction implications could have clinical
251 significance, particularly in preventing or treating diseases like T2D and hypertension, given
252 their substantial GE interaction variance estimates. LDER-GE's enhanced statistical efficiency
253 enables more accurate estimation of aggregated multi-GE interaction variance, which, notably,
254 often approaches the magnitude of narrow-sense heritability, especially for T2D and CAD.
255 However, it's crucial to exercise caution in interpreting these findings, as they hinge on the
256 normality and additive effect assumptions of the Roberston transformation^{18,31,32}. Empirical
257 simulations reveal that in cases of rare diseases (prevalence <= 5%), the true aggregated multi-
258 GE interaction variance tends to be lower than the estimated liability-scale variance, though the
259 difference in magnitude is not substantial.

260

261 As previously discussed⁸, it's not recommended to directly estimate the non-genetic-residual-
262 environment interaction variance from the intercept using the formula (intercept – 2*h_i²)/2. This
263 is because the intercept can be inflated by factors such as population stratification and other
264 confounding effects, making it difficult to separate from the non-genetic-residual-environment
265 interaction variance. When analyzing binary phenotypes, there's the additional challenge of
266 unknown prevalence differences between the sampling population and the target population,
267 which can further inflate the estimated intercept¹⁴.

268

269 To expedite computation, we partitioned the entire genome into 1009 approximately
270 independent blocks based on their LD relationships. We derived the block-wise LD matrix using
271 a dataset of 307,259 individuals of European ancestry from the UK Biobank. Alternatively, we
272 also calculated the out-sample LD matrix using 489 subjects from the 1000 Genomes project³³,
273 employing a linear shrinkage method^{34,35}, and the 1703 genomic blocks from LDetect³⁶.
274 Typically, the 1000 Genomes project reference panel is utilized when in-sample LD information
275 is unavailable. For readers' convenience, both computed panels are accessible online. Our
276 simulation results underscore the robustness of LDER-GE, whether LD panels are constructed
277 from the UK Biobank or the 1000 Genomes project. However, it's advisable to prioritize the UK
278 Biobank reference when there's a significant overlap between the variants in the GWIS input
279 summary statistics and the UK Biobank reference panel, mainly due to its larger sample size.
280

281 As an extension of the LDSC-based method, LDER-GE inherits most of its limitations. Firstly, it
282 assumes polygenic GE effects on the phenotype, and a violation of this assumption can result in
283 underestimation of the variance component³⁷. Secondly, our model does not differentiate
284 between GE covariate correlations, potentially introducing estimation bias due to
285 overadjustment⁸. Methods addressing such correlations are available¹³. Thirdly, LDER-GE has
286 not been applied to case-control studies, which often involve oversampling of cases. While
287 efforts are being made to address these limitations, future research could explore incorporating
288 variant functional annotation or allele frequency information to enhance estimation³⁷.
289

290 To summarize, LDER-GE utilizes full LD information and summary statistics to estimate the
291 phenotypic variance explained by GE interactions more accurately than LDSC-based estimation
292 methods. LDER-GE controls the computational burden and time well compared to methods that
293 requires individual-level data input and can be employed to estimate multiple E-Y pairs of large
294 sample size.
295

296 **Material & methods**

297 **LDER-GE modelling & estimation**

298 We consider the following model

$$Y_i = \sum_{j=1}^M G_{ji} \beta_j + \sum_{j=1}^M S_{ji} \gamma_j + \epsilon_{1i} E_i + \epsilon_{0i}, \quad (3)$$

299 where Y_i is the phenotype for subject i already adjusted for fixed effects including the exposure
300 covariate effects. E_i is the exposure covariate for subject i . Suppose there are M variants. G_{ji} is
301 the j th variant for subject i . $S_{ji} = G_{ji} * E_i$ is the GE interaction product term for variant j of subject i ,
302 \square_{1i} is the non-genetic residual that has exposure interaction effect. \square_{0i} is the residual
303 independent from all other parts, β_j is the true additive genetic effect for variant j , γ_j is the true
304 interaction effect for variant j . Following PEGION's⁷ setting, we model β_j and γ_j using the
305 following random effects model:

$$\beta_j \sim N(0, h_g^2/M),$$

$$\gamma_j \sim N(0, h_I^2/M),$$

306 where h_g^2 is the narrow-sense heritability and h_I^2 is the GE interaction variance that we are
307 interested in estimating. And β_j and γ_j may or not be correlated. We model \square_0 and \square_1 using
308 random effects model:

$$\epsilon_0 \sim N(0, \sigma_0^2),$$

$$\epsilon_1 \sim N(0, \sigma_1^2),$$

310 where σ_1^2 is the non-genetic environment interaction variance. Again, \square_0 and \square_1 may or may not
311 be correlated.

312 Under the polygenic GE model, we derive (supplementary note 1), in matrix form, that

$$E(\mathbf{Z}\mathbf{Z}^T) = Nh_I^2 \mathbf{L}/M + (c + (\mathbf{K}(E) - 1)(h_I^2 + \sigma_1^2)) \mathbf{R}, \quad (4)$$

$$E(\mathbf{Z}\mathbf{Z}^T) = Nh_I^2 \mathbf{L}/M + (c + 2(h_I^2 + \sigma_1^2)) \mathbf{R}, \quad (5)$$

313 where \mathbf{Z} is the GWIS Z-score vector, \mathbf{R} is the LD matrix, $\mathbf{L} = \mathbf{R}^T \mathbf{R}$ is the LD score matrix, N is the
314 sample size of the GWAS summary statistics, c is the unconstrained intercept with potential
315 inflation and $\mathbf{K}(E)$ is the kurtosis of the exposure covariate. In the case of E being standard
316 normal, equation (4) reduces to the equation (5). Following the original LDER¹⁵ framework, we
317 eigen-decompose the LD matrix as $\mathbf{R} = \mathbf{U}\mathbf{D}\mathbf{U}^T$, where \mathbf{U} is the orthogonal matrix of eigenvectors
318 and \mathbf{D} is the diagonal eigen value matrix. Then we transform the original GWIS Z-score vector \mathbf{Z} :
319 $\tilde{\mathbf{Z}} = \mathbf{D}^{-1/2} \mathbf{U}^T \mathbf{Z}$ and have

$$E(\tilde{Z}_j^2) = Nh_I^2 D_{jj}/M + (c + 2(h_I^2 + \sigma_1^2)). \quad (6)$$

320 The transformed summary statistic vector contains all LD information, and the estimation
321 efficiency is improved compared to LDSC-based methods as a consequence. The estimation
322 task is accomplished using the iterative least squares and standard error is estimated using
323 delete-block-wise jackknife.

324

328 To analyze binary outcomes, we transformed the observed-scale heritability to liability-scale
329 heritability using Roberston transformation¹⁸. It has been pointed out that when the GE
330 interaction variance is large, the normality assumption of the phenotype liability may be violated,
331 resulting in biased results of Roberston transformation^{8,38}. However, our simulation results
332 showed that when the GE interaction variance proportion was small Roberston transformation
333 still yielded reasonably accurate result (S Figure 1, S Table 1), consistent with previous studies⁸.
334

335 The regression weight of the transformed summary statistics vector takes the same form as
336 LDER¹⁵ except the additional intercept inflation component (Supplementary note),

$$w_i = \min(D_{ii}, 1)/(1 + 2(h_I^2 + \sigma_1^2) + Nh_I^2 D_{ii}/M)^2, \quad (7)$$

337 where $(1 + 2(h_I^2 + \sigma_1^2) + Nh_I^2 D_{ii}/M)^2$ is proportional to the variance of \bar{Z}_i (supplementary note 2)
338 and the shrinkage operation $\min(D_{ii}, 1)$ reduces the noise from big eigenvalues from LD matrix
339 with lower sample sizes.

340

341 **UKBB data for simulation and real data analysis**

342 The research conducted in this study utilized data from the UK Biobank Resource. The genomic
343 partitioning and simulation analysis was conducted using UKBB dataset with application number
344 29900. The real data analysis was conducted using UKBB dataset with application number
345 32285. Detailed information regarding data access, ethical approval, quality control procedures,
346 and phenotype definitions can be found in the supplementary note 2.

347

348 **Reference panel construction:**

349 We first took the intersection between UKBB¹⁷ imputed genotype panel, 1000 Genomes
350 project³³ genotype panel and hapmap3 project³⁹ variant list, resulting in $M = 396,330$ common
351 variants. Then, we partitioned the entire human genome into 1009 roughly independent blocks
352 using the panel of 396,330 common variants from UKBB European ancestry ($N=276,050$). We
353 partitioned the genome such that the linked SNP pairs (squared LD coefficient $r^2 > 2/\sqrt{276050}$)
354 = 0.0038) are within 100 kilobases within each block. For simulations, in-sample reference
355 panel was constructed using the intersected UKBB genotype panel ($N=276,050$, $M = 396,330$)
356 and the 1009 genomic blocks. Out-sample reference panel was constructed using the same set
357 of variants but from 1000 Genome project genotype panel ($N=489$, $M = 396,330$), with the
358 genome partition being the 1703 genomic blocks generated previously¹⁵ for reducing the noise
359 of low sample size. A linear shrinkage method^{34,35} was employed for out-sample reference panel
360 construction to further reduce the noise. For UKBB real data analysis, the in-sample reference

361 panel was constructed using the union of UKBB imputed genotype panel and UKBB array
362 genotype panel, intersected with hapmap3 project³⁹ variant list (N=307,259, M = 966,766) and
363 the 1009 genomic blocks. For real data analysis, the variant inclusion criteria was (a):
364 imputation score > 0.8; (b): minor allele frequency > 0.05; (c): missing rate < 0.01; (d): Hardy-
365 Weinberg Equilibrium P-value > 5*10⁻⁸. The details of quality control procedure of simulation
366 dataset and real analysis dataset can be found in the supplementary materials.

367

368 **Simulations**

369 The data generation process followed equation X, with narrow-sense heritability h^2_g fixed at 0.2,
370 GE interaction contribution proportion h^2_I varying from 0 to 0.05, non-genetic-residual-covariate
371 interaction variance σ_1^2 being 0 or 0.02, E is standard normal:

$$Y_i = \sum_{j=1}^M G_{ji} \beta_j + \sum_{j=1}^M S_{ji} \gamma_j + \epsilon_{1i} E_i + \epsilon_{0i},$$

372 For each simulation from the pool of intersected UKBB genotype panel (N=276,050, M =
373 396,330), we randomly chose 50,000 subjects and 19,816 (5%) causal GE variants for data
374 generation, association analysis (linear regression on M = 396,330 variants using PLINK2⁴⁰)
375 and GE interaction variance estimation analysis. Each parameter combination had 300
376 replicated simulations. To simulate the binary outcome, we used the liability model based on
377 corresponding critical cutoff with respect to the specified population prevalence.

378

379 **Single-covariate GE interaction variance analysis of UKBB**

380 We ran GWIS analysis through “--glm interaction --variance-standardize” command of PLINK2⁴⁰
381 pre-adjusted for age, sex, 40 genetic PCs and the specific environmental covariate of interest if
382 not age or sex using linear regression. We analyzed 22 phenotypes and 7 environmental
383 covariates, resulting in a total of 151 (154 - 3) E-Y pairs with the 3 sex-specific phenotypes. The
384 22 phenotypes included 14 continuous phenotypes and 8 binary phenotypes. LDER-GE and
385 LDSC-based analysis were conducted using the resulted GWIS summary statistics and pre-
386 computed LD information.

387

388 **Aggregated multi-covariate GE interaction variance analysis of UKBB**

389 Suppose there is a covariate set of interest (A, B, C, ...), we first run linear regression of B~A to
390 get residuals of B net A: B|A, being independent from A, and we run another linear regression of
391 C~A+B to get residuals of C net A and B: C|A & B, being independent from A and B. We

392 continue the process until all residuals are independent from each other. We then run single-
393 covariate GE interaction variance analysis on each residuals the same way but preadjust for
394 age, sex, 40 genetic PCs and all covariates in the set excluding age and sex. By eliminating the
395 dependency of covariates, the estimated single-covariate GE interaction variances are
396 independent, and we summed up the estimated GE interaction variances and their variances of
397 estimation to conduct straightforward statistical test. We explored the set (age, sex, BMI,
398 packed years of smoking, Townsend deprivation index, Alcohol intake frequency) to capture
399 more missing heritability explained by GE interactions because these 6 covariates yielded
400 nonminimally significant GE interaction signals at $P < 0.05$ on more than three phenotype (S
401 table 6). The narrow-sense heritability of each phenotype was estimated using LDER and the
402 main genetic effect GWAS summary statistics of the same UKBB cohort as GE analysis.
403
404
405
406
407
408
409
410

411 **References**

- 412 1. Hunter, D.J. Gene–environment interactions in human diseases. *Nature reviews genetics* **6**, 287-298 (2005).
- 413 2. Manuck, S.B. & McCaffery, J.M. Gene-environment interaction. *Annual review of*
414 *psychology* **65**, 41-70 (2014).
- 415 3. Favé, M.-J. et al. Gene-by-environment interactions in urban populations modulate risk
416 phenotypes. *Nature communications* **9**, 827 (2018).
- 417 4. Dunn, A.R., O'Connell, K.M. & Kaczorowski, C.C. Gene-by-environment interactions in
418 Alzheimer's disease and Parkinson's disease. *Neuroscience & Biobehavioral Reviews* **103**,
419 73-80 (2019).
- 420 5. Van IJzendoorn, M.H. et al. Gene-by-environment experiments: a new approach to
421 finding the missing heritability. *Nature Reviews Genetics* **12**, 881-881 (2011).
- 422 6. Virolainen, S.J., VonHandorf, A., Viel, K.C., Weirauch, M.T. & Kottyan, L.C. Gene–
423 environment interactions and their impact on human health. *Genes & Immunity* **24**, 1-11
424 (2023).
- 425 7. Miao, J. et al. Reimagining Gene-Environment Interaction Analysis for Human Complex
426 Traits. *bioRxiv*, 2022.12. 11.519973 (2022).
- 427 8. Shin, J. & Lee, S.H. GxEsum: a novel approach to estimate the phenotypic variance
428 explained by genome-wide GxE interaction based on GWAS summary statistics for
429 biobank-scale data. *Genome biology* **22**, 1-17 (2021).
- 430 9. Gauderman, W.J., Zhang, P., Morrison, J.L. & Lewinger, J.P. Finding novel genes by
431 testing G × E interactions in a genome – wide association study. *Genetic epidemiology*
432 **37**, 603-613 (2013).
- 433 10. Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on
434 phenotypic variability in the UK Biobank. *Science advances* **5**, eaaw3538 (2019).
- 435 11. Zhang, P., Lewinger, J.P., Conti, D., Morrison, J.L. & Gauderman, W.J. Detecting gene–
436 environment interactions for a quantitative trait in a genome – wide association study.
437 *Genetic epidemiology* **40**, 394-403 (2016).
- 438 12. Robinson, M.R. et al. Genotype–covariate interaction effects and the heritability of adult
439 body mass index. *Nature genetics* **49**, 1174-1181 (2017).
- 440 13. Ni, G. et al. Genotype–covariate correlation and interaction disentangled by a whole-
441 genome multivariate reaction norm model. *Nature communications* **10**, 2239 (2019).
- 442 14. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from
443 polygenicity in genome-wide association studies. *Nature genetics* **47**, 291-295 (2015).
- 444 15. Song, S., Jiang, W., Zhang, Y., Hou, L. & Zhao, H. Leveraging LD eigenvalue regression to
445 improve the estimation of SNP heritability and confounding inflation. *The American*
446 *Journal of Human Genetics* **109**, 802-811 (2022).
- 447 16. Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic
448 correlations across human complex traits. *Nature genetics* **52**, 859-864 (2020).
- 449 17. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a
450 wide range of complex diseases of middle and old age. *PLoS medicine* **12**, e1001779
451 (2015).
- 452

453 18. Dempster, E.R. & Lerner, I.M. Heritability of threshold characters. *Genetics* **35**, 212
454 (1950).

455 19. Simino, J. et al. Gene-age interactions in blood pressure regulation: a large-scale
456 investigation with the CHARGE, Global BPgen, and ICBP Consortia. *The American Journal
457 of Human Genetics* **95**, 24-38 (2014).

458 20. Shi, G. et al. Genetic effect on blood pressure is modulated by age: the Hypertension
459 Genetic Epidemiology Network Study. *Hypertension* **53**, 35-41 (2009).

460 21. Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin
461 cohorts in eight countries. *Twin Research and Human Genetics* **6**, 399-408 (2003).

462 22. Sjöberg, R.L. et al. Development of depression: sex and the interaction between
463 environment and a promoter polymorphism of the serotonin transporter gene.
464 *International Journal of Neuropsychopharmacology* **9**, 443-449 (2006).

465 23. Hornung, O.P. & Heim, C.M. Gene–environment interactions and intermediate
466 phenotypes: early trauma and depression. *Frontiers in endocrinology* **5**, 14 (2014).

467 24. Cupido, A.J., Asselbergs, F.W., Schmidt, A.F. & Hovingh, G.K. Low - Density Lipoprotein
468 Cholesterol Attributable Cardiovascular Disease Risk Is Sex Specific. *Journal of the
469 American Heart Association* **11**, e024248 (2022).

470 25. Taylor, K.C. et al. Investigation of gene-by-sex interactions for lipid traits in diverse
471 populations from the population architecture using genomics and epidemiology study.
472 *BMC genetics* **14**, 1-10 (2013).

473 26. Reddon, H., Guéant, J.-L. & Meyre, D. The importance of gene–environment interactions
474 in human obesity. *Clinical science* **130**, 1571-1597 (2016).

475 27. Nakamura, S. et al. Gene–environment interactions in obesity: implication for future
476 applications in preventive medicine. *Journal of human genetics* **61**, 317-322 (2016).

477 28. Lim, J.E. et al. Gene–environment interactions related to blood pressure traits in two
478 community - based Korean cohorts. *Genetic Epidemiology* **43**, 402-413 (2019).

479 29. Hyppönen, E., Mulugeta, A., Zhou, A. & Santhanakrishnan, V.K. A data-driven approach
480 for studying the role of body mass in multiple diseases: a phenome-wide registry-based
481 case-control study in the UK Biobank. *The Lancet Digital Health* **1**, e116-e126 (2019).

482 30. Larsson, S.C., Bäck, M., Rees, J.M., Mason, A.M. & Burgess, S. Body mass index and body
483 composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian
484 randomization study. *European heart journal* **41**, 221-226 (2020).

485 31. Lee, S.H., Wray, N.R., Goddard, M.E. & Visscher, P.M. Estimating missing heritability for
486 disease from genome-wide association studies. *The American Journal of Human
487 Genetics* **88**, 294-305 (2011).

488 32. Van Vleck, L. Estimation of heritability of threshold characters. *Journal of Dairy Science*
489 **55**, 218-225 (1972).

490 33. Siva, N. 1000 Genomes project. *Nature biotechnology* **26**, 256-257 (2008).

491 34. Ledoit, O. & Wolf, M. Spectrum estimation: A unified framework for covariance matrix
492 estimation and PCA in large dimensions. *Journal of Multivariate Analysis* **139**, 360-384
493 (2015).

494 35. Ledoit, O. & Wolf, M. Numerical implementation of the QuEST function. *Computational
495 Statistics & Data Analysis* **115**, 199-223 (2017).

496 36. Berisa, T. & Pickrell, J.K. Approximately independent linkage disequilibrium blocks in
497 human populations. *Bioinformatics* **32**, 283 (2016).

498 37. Speed, D. & Balding, D.J. SumHer better estimates the SNP heritability of complex traits
499 from summary statistics. *Nature genetics* **51**, 277-284 (2019).

500 38. Di Scipio, M. et al. A versatile, fast and unbiased method for estimation of gene-by-
501 environment interaction effects on biobank-scale datasets. *Nature Communications* **14**,
502 5196 (2023).

503 39. Gibbs, R.A. et al. The international HapMap project. (2003).

504 40. Chang, C.C. et al. Second-generation PLINK: rising to the challenge of larger and richer
505 datasets. *Gigascience* **4**, s13742-015-0047-8 (2015).

506

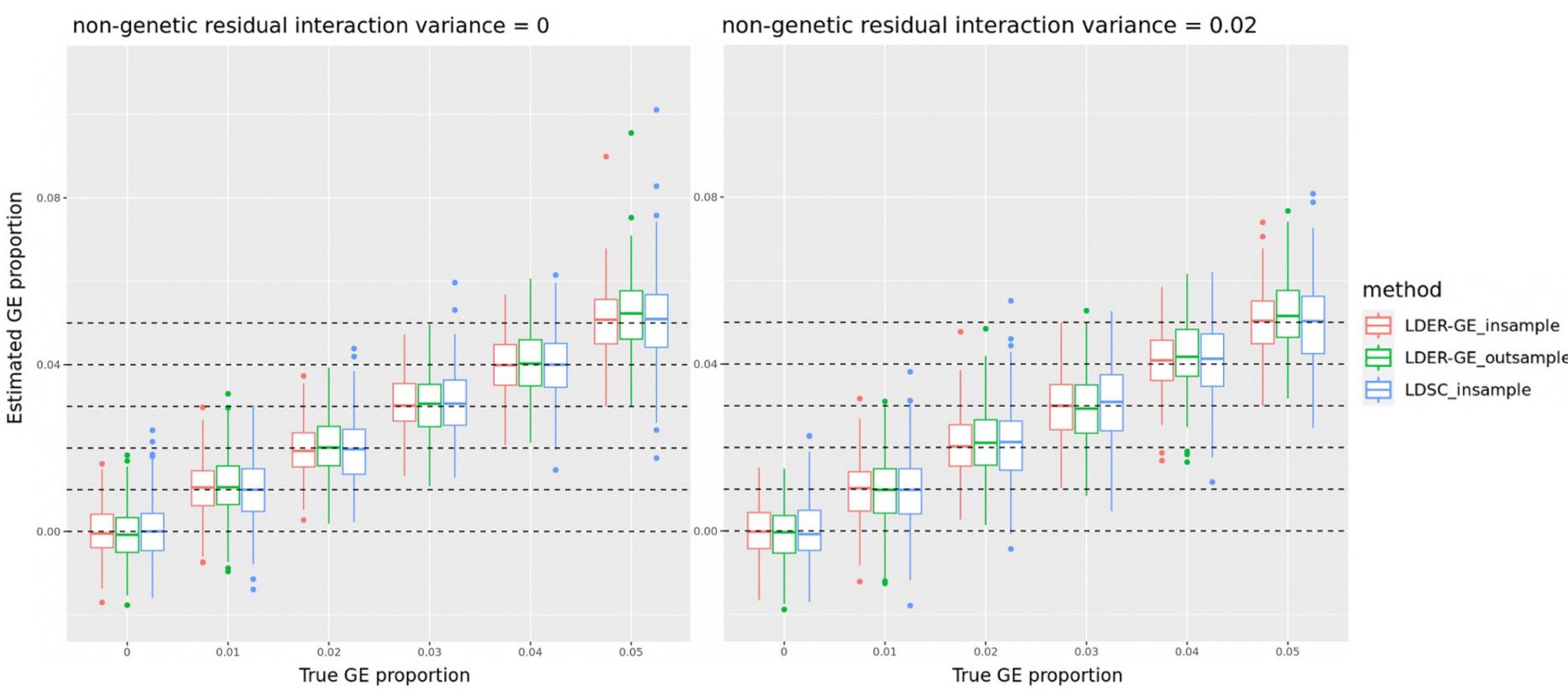


Figure 1: Histogram comparison of LDSC-based method and LDER-GE with in-sample and out-sample reference panel on simulations from real genotype panel, continuous phenotype.

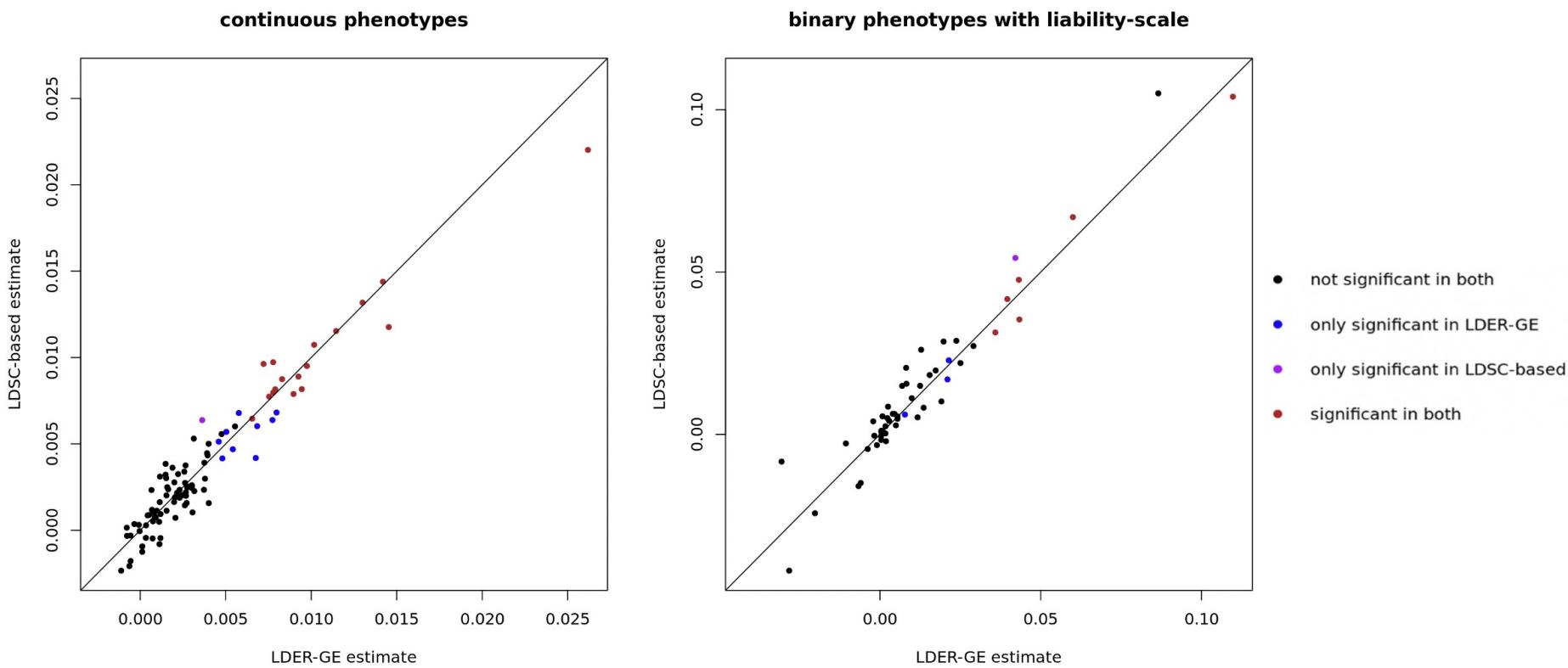


Figure 2: GE interaction variance estimates from LDSC-based method and LDER-GE of 151 environmental covariate-phenotype pairs in UKBB dataset. For binary phenotypes, GE interaction variance is reported on the liability-scale.

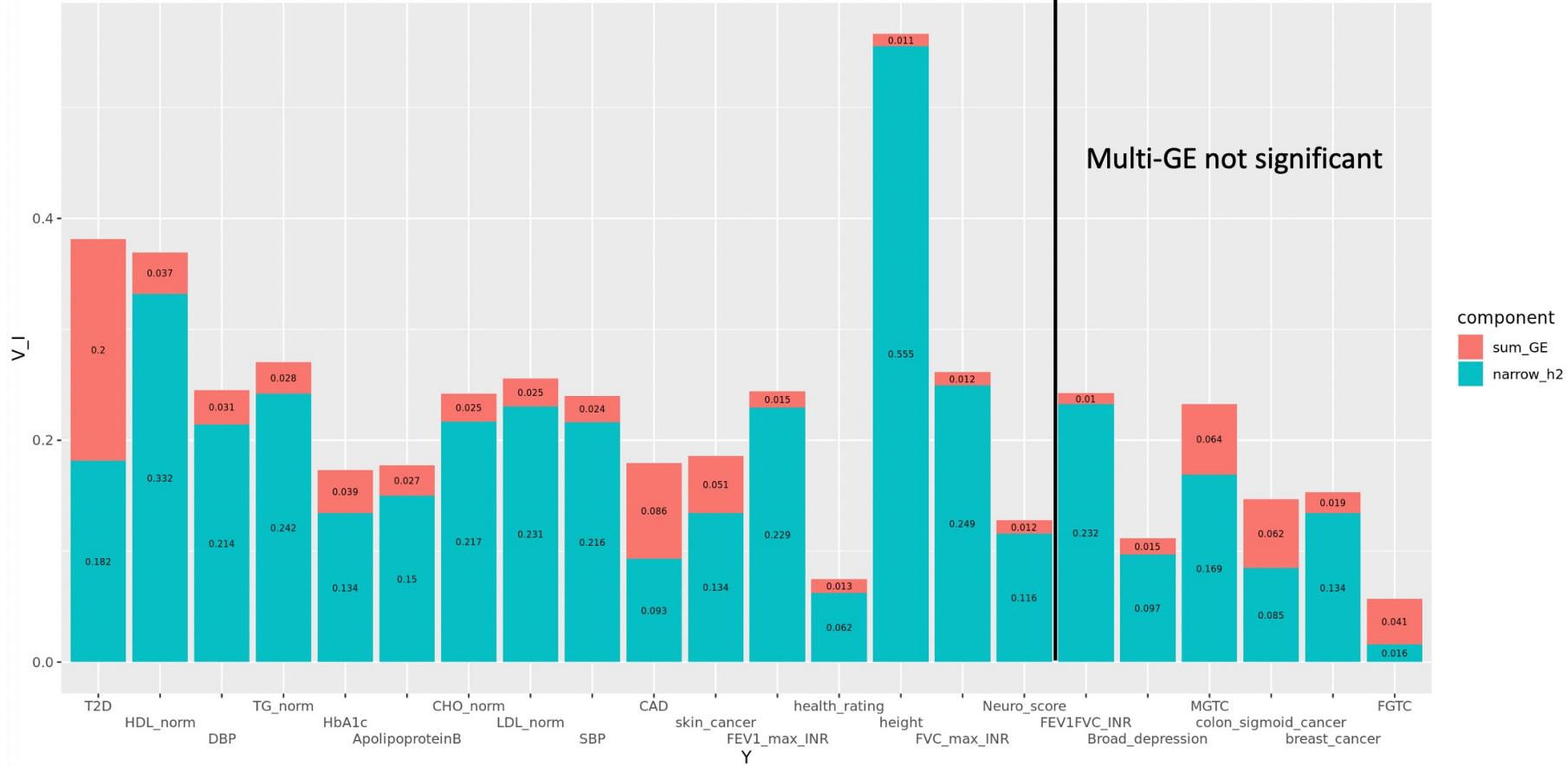


Figure 3: Phenotypic variance explained by narrow-sense heritability and aggregated multi-GE interactions for the 22 phenotypes, ordered by increasing P value of multi-GE interactions. Right of the solid black line, 6 phenotypes are not significant. For binary phenotypes, proportion is reported on the liability-scale.

FGTC: Female genital tract cancer
 MGTC: Male genital tract cancer