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Abstract

Gene-environment (GE) interactions are essential in understanding human complex traits.
Identifying these interactions is necessary for deciphering the biological basis of such traits. In
this study, we introduce a statistical method Linkage-Disequilibrium Eigenvalue Regression for
Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the
phenotypic variance component explained by genome-wide GE interactions using large-scale
biobank association summary statistics. LDER-GE leverages the complete Linkage
Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC
(Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate
that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency
by approximately 23%. This improvement is equivalent to a sample size increase of around 51%.
Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We
conducted an analysis using UK Biobank data, comprising 307,259 unrelated European-
Ancestry subjects and 966,766 variants, across 151 environmental covariate-phenotype (E-Y)
pairs. LDER-GE identified 35 significant E-Y pairs while LDSC-based method only identified 25
significant E-Y pairs with 23 overlapped with LDER-GE. Furthermore, we employed LDER-GE
to estimate the aggregated variance component attributed to multiple GE interactions, leading to
an increase in the explained phenotypic variance with GE interactions compared to considering
main genetic effects only. Our results suggest the importance of impacts of GE interactions on

human complex traits.

Introduction

A growing body of literature underscores the significant role of gene-environment (GE)
interactions in shaping human complex traits*™. The exploration of GE interactions may
elucidate a portion of the 'missing heritability'> — the phenotypic variance not accounted for by
known genetic effects. Additionally, the inference of GE interactions and their effects can
contribute to our understanding of human disease etiology and mechanisms®, and enhance our
ability to assess risk and identify high-risk individuals, ultimately supporting the development of
personalized medicine’. Traditionally, environmental exposure variables have been limited to
factors like environmental toxins, air pollutants, or viral infections®. However, some gene-
environment interaction studies”® also consider other variables, heritable or non-heritable, such
as sex, as environmental exposure variables. In this study, we adopt a broad definition,
considering both non-heritable covariates and heritable phenotypes as environment interactive

variables, as previously discussed?.
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Numerous methods and tools have been developed to investigate GE interactions from various
angles. One such approach is the genome-wide interaction scan (GWIS), which estimates the
interaction effect® between individual genetic variants and environmental factors through
regression. GWIS generates interaction summary statistics for each variant, akin to
conventional genome-wide association studies (GWAS). However, we note that GE interaction
effect sizes tend to be smaller than genetic main effects'®. Consequently, this can lead to
reduced statistical power, particularly when challenged by the multiple testing burden across the
entire genome™*. Several studies have directed their efforts towards estimating the genome-
wide contribution of GE interactions through diverse statistical approaches. One such method is
the Gene-Environment Interaction Genomic Restricted Maximum Likelihood (GEI-GREML),
which leverages restricted maximum likelihood estimation by pre-computing the correlation
matrix of the GE term across samples®?. On the other hand, the Multivariate Reaction Norm
Model (MRNM) is a reaction norm model that has the capability to distinguish between GE
interaction and GE correlation®®. Both GEI-GREML and MRNM necessitate individual-level
genotype data and can be computationally demanding and time-consuming, especially when

dealing with extensive biobank datasets.

To tackle these challenges, researchers have devised alternative methods that make use of
GWIS summary statistics. Notably, methods like PIGEON’ and GxEsum® build upon the
principles of LD-score regression (LDSC)'. They harness partial linkage disequilibrium (LD)
information among genetic variants to estimate the phenotypic impact of GE interactions using
the method of moments. However, this approach often results in reduced statistical efficiency
when estimating variance components, because the phenotypic variance attributed to GE
interactions is often considerably smaller than the narrow-sense heritability. For example,
across a dataset encompassing more than 500 traits, the phenotypic variance explained by
genetic-sex interactions typically falls within the range of 0% to a maximum of 2%’. While this
may appear modest, acknowledging and investigating this component remains important for our
understanding of complex traits and disease etiology. An inefficient estimation method may fail
to detect the contribution of GE interactions. Consequently, there is a need for a more efficient
approach to estimate the phenotypic variance explained by GE interactions while effectively

7814 make use of the

managing computational demands. Current LDSC-based frameworks
squared variant LD matrix but primarily focus on diagonal information. Previous research®>*®

has convincingly shown that incorporating the complete LD information can substantially
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103  enhance the efficiency of estimating narrow-sense heritability under the genetic additive effect
104  model. Building upon this insight, we introduce the Linkage-Disequilibrium Eigenvalue
105 Regression for Gene-environment interactions (LDER-GE) to estimate the genome-level GE
106 interaction variance component more efficiently.
107
108  LDER-GE mimics the original LDER framework", which harnesses the full potential of LD
109 information through eigen-decomposition of the LD matrix. This process transforms the original
110 GWIS summary statistics and consolidates the association information. Notably, LDER-GE
111  relies on summary statistics and the LD matrix constructed using a reference panel.
112  Consequently, it efficiently manages large-scale Biobank data without imposing substantial
113  computational demand. Extensive simulations provide evidence that both LDER-GE and the
114 LDSC-based method effectively control the type-I error rate and deliver unbiased estimates.
115 However, LDER-GE excels in terms of statistical efficiency compared to the LDSC-based
116  method in all simulation scenarios. In a real-data application involving 151 E-Y pairs from the
117 UK-Biobank!’, the LDSC-based method identified 25 GE interaction signals, whereas LDER-GE
118 identified 35 E-Y pairs (40% increase). For a more precise assessment of the contribution of GE
119 interactions to missing heritability, we estimate the aggregated GE interaction variance involving
120  multiple environmental covariates and the analyzed phenotypes. In this regard, LDER-GE
121 facilitates more accurate estimation. In summary, the missing heritability contributed by the
122  aggregated multi-covariate GE interaction variance represents a substantial addition to the
123 narrow-sense heritability.
124
125 Results
126  Method overview
127  We propose LDER-GE to improve statistical efficiency with summary-level association statistics.
128  Under the polygenic GE model where each standardized variant-by-E term has small effect, the
129  expectation of cross-variant level GE interaction association chi-square statistics is (details in
130 methods and supplementary note 1)

E(ZZ") = NR?L/M + (c + 2(h? + o2))R, (1)
131  where Z is the original GWIS Z-score vector, R is the LD matrix, L = R'R is the LD score matrix,
132 N s the sample size of the GWAS summary statistics, c is the unconstrained intercept with
133 potential inflation, o2 is the non-genetic environment interaction variance and h? is the explained
134  variance of the GE interaction. We incorporate full LD information by conducting eigen-

135  decompose the LD matrix as R = UDUT, with U being the orthogonal matrix of eigenvectors and
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D being the diagonal eigen value matrix, and transforming the original GWIS Z-score vector Z: Z
= DUz, yielding

E(Z?) = NhiD;;/M + (c + 2(h? + 01)). (2)
We run iterative weighted least squares to estimate h? and the intercept, followed by delete-

block-wise jackknife to estimate the standard error.

Simulation results using real genotype panel

Figure 1 and Table 1 compare the performance of LDER-GE and the LDSC-based method
across various parameter combinations. Across all simulation scenarios, the LDER-GE method
consistently had better performance than the LDSC-based method, whether utilizing an UKBB
in-sample or 1000 Genomes project out-sample reference panel. We assessed performance
using precision, which is the inverse of the standard deviation, and root mean squared error.
Notably, this precision improvement was, on average, equivalent to a 51% increase in sample
size when analyzing continuous simulated phenotypes during in-sample estimation. Table 2
shows that the type-I error rates were well-controlled for all three methods: LDER-GE using an
in-sample LD panel, LDER-GE using an out-sample LD panel, and LDSC-based in-sample LD
panel. This held true both in scenarios with and without the presence of non-genetic residual-

environment interaction effects.

The transformation from observed-scale variance to liability-scale variance, as achieved by the
Roberston transformation®®, relies on the normality assumption of the liability distribution.
However, this assumption is violated with the non-normal GE term. Our simulations, considering
various prevalence and GE interaction variance settings, suggest that the transformation
provides reasonably unbiased results (S. Figure 1, Panels B, C, and D) when the disease is not
rare, with a prevalence exceeding 10%, or when the GE interaction variance remains relatively
small, at or below 5%. Nevertheless, in cases where the disease is rare, and the GE interaction
variance is non-trivial (S. Figure 1, Panels A and B), the transformed liability-scale GE
interaction variance estimate tends to be overestimated. This trend becomes more pronounced
as the disease prevalence decreases. Despite the potential bias introduced by the Roberston
transformation®® in the presence of the GE term, the type-I error rate for tests involving binary
phenotypes remained well-controlled (Table 3) across varying prevalence settings. Our findings
related to the estimation of GE liability-scale variance and the results of type-I error rate

simulations for binary phenotypes align with a previous study?, except that LDER-GE achieved
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better estimation accuracy than LDSC-based method using in-sample and out-sample LD

reference panels (S Table 1).

Real data analysis using UKBB data

We examined 151 E-Y pairs involving 307,259 unrelated European ancestry individuals and a
total of 966,766 genetic variants from the UK Biobank (UKBB). We employed both the LDER-
GE and LDSC-based methods. Following Bonferroni correction, LDER-GE identified 35
significant pairs, of which 23 overlapped with the 25 pairs identified by the LDSC-based method
(Figure 2). Further details about the 12 E-Y pairs exclusively identified by LDER-GE and the two
E-Y pairs uniquely identified by the LDSC-based method can be found in S Table 2. Previous
research has provided evidence of gene-age interaction effects on blood pressure through
extensive GWAS data from three blood pressure consortia'® and linkage analysis®. In our
analysis, LDER-GE successfully captured signals from both systolic blood pressure (SBP) and
diastolic blood pressure (DBP), while the LDSC-based method failed to detect the DBP signal.
Additionally, gene-sex interaction effects have been reported for traits such as height®*,

2223 and cholesterol level?*, all of which were exclusively detected by LDER-GE. In

depression
summary, the estimated values obtained using LDER-GE and the LDSC-based method
exhibited strong overall consistency. However, we note that the standard error of LDER-GE was,
on average, 21% lower than that of the LDSC-based method, a result consistent with our
simulation findings. For a comprehensive overview of the analysis results for all 151 E-Y pairs,
see S Table 3. Among the seven environmental covariates investigated, sex, Body Mass Index
(BMI), and age exhibited relatively larger genome-level GE interaction effects and lower P-
values compared to the other covariates (S Table 3). On the other hand, the pollution covariate
pm2.5 did not exhibit statistically significant GE interactions across all tested phenotypes,
including several lung-related traits. This can be a consequence of small GE interaction

magnitudes and inaccuracy of air pollution indicator measurements.

For each of the 22 phenotypes, we estimated the aggregated multi-GE interaction variance
using ordered covariates (age, sex, BMI, packed years of smoking, Townsend deprivation index,
alcohol intake frequency). Post Bonferroni correction, LDSC-based method identified 13
phenotypes, while LDER-GE identified 16 phenotypes which covered all the 13 phenotypes
discovered by LDSC-based method (S Table 4, S Figure 2). The additional 3 phenotypes
identified are height, normalized FVC and neuroticism score, whose aggregated GE interaction

variances were estimated around 1%. Notably, some phenotypes like depression and male
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202  genital tract cancer exhibited significant single-covariate GE interactions but were not detected
203  with multi-GE interaction variance. This discrepancy may be due to noise introduced by other
204  weak covariates during multi-covariate aggregation. Similar to single-covariate GE analysis,
205 LDER-GE consistently yielded results comparable to the LDSC-based method in assessing
206 multi-GE interaction variance but reported an average standard error 21% smaller than the
207 LDSC-based method. We also estimated narrow-sense heritability h* and compared it to the
208 aggregated multi-GE interaction variance. Notably, 13 of the 22 phenotypes exhibited

209  substantial multi-GE interaction variance, contributing more than 10% relatively to the narrow-
210 sense heritability. For conditions like type-Il diabetes (T2D) and coronary artery disease (CAD),
211  the multi-GE interaction variance approached the magnitude of the narrow-sense heritability,
212 providing valuable insights into disease etiology. However, we caution that when interpreting
213  results for binary diseases, as the liability-scale transformation may introduce bias. We reversed
214  the covariate order and used the set (alcohol intake frequency, Townsend deprivation index,
215 packed years of smoking, BMI, sex, age) for the same analysis. It turned out that the order of
216  covariates did not substantially affect the results (S Table 5).

217

218 Discussion

219 In this study, we introduce LDER-GE to improve the precision of estimating GE interaction

220 variance of complex traits using summary statistics. LDER-GE leverages full LD information
221  from the LD panel while LDSC-based methods’® rely solely on the LD panel's diagonal

222  information. Our simulations and analysis of UK Biobank data demonstrate LDER-GE's

223  superiority over LDSC-based approaches in terms of estimation accuracy and root mean square
224  error. LDER-GE's improved accuracy enables the detection of more genome-level GE

225 interactions that might go undetected by LDSC-based methods.

226

227 From real data analysis, sex and BMI had more detectable GE interaction effects over various
228 health-related traits, consistent with results from other studies. For example, several studies
229  reported that sex modifies genetic effects on lipid traits®, obesity*®?’, and hypertension®® from
230 different perspectives. BMI is known to be causal to multiple health-related traits such as T2D

2930 part of which could be reasoned from the GE interaction effects®. While

231  and hypertension
232  biological sex is almost fixed for most individuals in the population throughout the lifetime as
233  well as its associated GE interaction variance, BMI varies during different life stages. The gene-
234  BMl interaction study potentially brings additional significance to the clinical prevention or

235 treatment to diseases such as T2D and hypertension, given their considerable GE interaction
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236  variance estimate. The higher statistical efficiency of LDER-GE allows us to better estimate the
237  aggregated multi-GE interaction variance, which is comparable to narrow sense heritability,

238 especially for T2D and Coronary Artery Disease (CAD). However, such interpretation must be
239  accompanied with caution, due to the normality and additive effect assumption violations of

240  Roberston transformation®**?, Empirically, simulations demonstrate the true aggregated multi-
241  GE interaction variance is lower than the transformed liability-scale variance when the disease
242  israre (<=5%), but the magnitude difference is not considerable.

243

244 Our real data analysis highlighted the significant gene by SEX and gene by BMI interaction

245  effects over various health-related traits, a finding consistent with diverse studies. For instance,
246  sex has been shown to modify genetic effects on traits like lipid #°, obesity?®%’, and

247  hypertension®®. Additionally, BMI, a known causal factor for multiple health-related traits such as
248  T2D and hypertension®=°, may exert some of its influence through gene-environment (GE)

249 interactions®. While biological sex remains relatively constant throughout an individual's lifetime,
250 BMIl is subject to regulation. Investigating BMI's GE interaction implications could have clinical
251 significance, particularly in preventing or treating diseases like T2D and hypertension, given
252  their substantial GE interaction variance estimates. LDER-GE's enhanced statistical efficiency
253  enables more accurate estimation of aggregated multi-GE interaction variance, which, notably,
254  often approaches the magnitude of narrow-sense heritability, especially for T2D and CAD.

255  However, it's crucial to exercise caution in interpreting these findings, as they hinge on the

256  normality and additive effect assumptions of the Roberston transformation®3*3?, Empirical

257  simulations reveal that in cases of rare diseases (prevalence <= 5%), the true aggregated multi-
258  GE interaction variance tends to be lower than the estimated liability-scale variance, though the
259  difference in magnitude is not substantial.

260

261  As previously discussed?, it's not recommended to directly estimate the non-genetic-residual-
262  environment interaction variance from the intercept using the formula (intercept — 2*h%)/2. This
263  is because the intercept can be inflated by factors such as population stratification and other
264  confounding effects, making it difficult to separate from the non-genetic-residual-environment
265 interaction variance. When analyzing binary phenotypes, there's the additional challenge of
266  unknown prevalence differences between the sampling population and the target population,
267  which can further inflate the estimated intercept™.

268
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269  To expedite computation, we partitioned the entire genome into 1009 approximately

270 independent blocks based on their LD relationships. We derived the block-wise LD matrix using
271 adataset of 307,259 individuals of European ancestry from the UK Biobank. Alternatively, we
272  also calculated the out-sample LD matrix using 489 subjects from the 1000 Genomes project™®,

d*%, and the 1703 genomic blocks from LDetect®.

273  employing a linear shrinkage metho
274  Typically, the 1000 Genomes project reference panel is utilized when in-sample LD information
275 is unavailable. For readers' convenience, both computed panels are accessible online. Our

276  simulation results underscore the robustness of LDER-GE, whether LD panels are constructed
277  from the UK Biobank or the 1000 Genomes project. However, it's advisable to prioritize the UK
278  Biobank reference when there's a significant overlap between the variants in the GWIS input
279  summary statistics and the UK Biobank reference panel, mainly due to its larger sample size.
280

281  As an extension of the LDSC-based method, LDER-GE inherits most of its limitations. Firstly, it
282  assumes polygenic GE effects on the phenotype, and a violation of this assumption can result in
283  underestimation of the variance component®’. Secondly, our model does not differentiate

284  between GE covariate correlations, potentially introducing estimation bias due to

285  overadjustment®. Methods addressing such correlations are available'®. Thirdly, LDER-GE has
286  not been applied to case-control studies, which often involve oversampling of cases. While

287  efforts are being made to address these limitations, future research could explore incorporating
288  variant functional annotation or allele frequency information to enhance estimation®”.

289

290 To summarize, LDER-GE utilizes full LD information and summary statistics to estimate the

291  phenotypic variance explained by GE interactions more accurately than LDSC-based estimation
292 methods. LDER-GE controls the computational burden and time well compared to methods that
293  requires individual-level data input and can be employed to estimate multiple E-Y pairs of large
294  sample size.

295

296  Material & methods

297 LDER-GE modelling & estimation

298  We consider the following model

M M
Y, = z G;;p; + Z Siivj + €nE; + €41, (3)
j=1 j=1
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299 where Y;is the phenotype for subject i already adjusted for fixed effects including the exposure
300 covariate effects. E; is the exposure covariate for subject i. Suppose there are M variants. G; is
301 the jth variant for subject i. S; = Gj#Eiis the GE interaction product term for variant j of subject i,
302 0, is the non-genetic residual that has exposure interaction effect. Ly is the residual
303 independent from all other parts, G; is the true additive genetic effect for variant j, y; is the true
304 interaction effect for variant j. Following PEGION’s’ setting, we model B; and y; using the
305 following random effects model:
By~ N(0,hg/M),
306 ¥;~N(0, h} /M),
307  where h; is the narrow-sense heritability and hf is the GE interaction variance that we are
308 interested in estimating. And G; and y; may or not be correlated. We model [J, and [J; using
309 random effects model:
€0~ N (0,04),
310 €, ~ N (0,0?),
311  where o is the non-genetic environment interaction variance. Again, Jo and [J; may or may not
312  Dbe correlated.
313  Under the polygenic GE model, we derive (supplementary note 1), in matrix form, that
314 E(ZZ") = NR?L/M + (c + (K(E) — 1)(h? + c2))R, (4)
315 E(ZZ") = NR?L/M + (c + 2(h} + a2))R, (5)
316  where Z is the GWIS Z-score vector, R is the LD matrix, L = R'R is the LD score matrix, N is the
317 sample size of the GWAS summary statistics, c is the unconstrained intercept with potential
318 inflation and K(E) is the kurtosis of the exposure covariate. In the case of E being standard
319 normal, equation (4) reduces to the equation (5). Following the original LDER™ framework, we
320 eigen-decompose the LD matrix as R = UDU', where U is the orthogonal matrix of eigenvectors
321 and D is the diagonal eigen value matrix. Then we transform the original GWIS Z-score vector Z:
322 Z=D"U"Zand have
E(Z?) = NhiD;;/M + (c + 2(h + o). (6)
323  The transformed summary statistic vector contains all LD information, and the estimation
324  efficiency is improved compared to LDSC-based methods as a consequence. The estimation
325 task is accomplished using the iterative least squares and standard error is estimated using

326  delete-block-wise jackknife.
327

10
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328 To analyze binary outcomes, we transformed the observed-scale heritability to liability-scale
329 heritability using Roberston transformation®®. It has been pointed out that when the GE
330 interaction variance is large, the normality assumption of the phenotype liability may be violated,
331 resulting in biased results of Roberston transformation®3¢. However, our simulation results
332  showed that when the GE interaction variance proportion was small Roberston transformation
333  still yielded reasonably accurate result (S Figure 1, S Table 1), consistent with previous studies®.
334
335 The regression weight of the transformed summary statistics vector takes the same form as
336 LDER™ except the additional intercept inflation component (Supplementary note),

w; = min(Dy;, 1)/(1 + 2(h? + o) + NhiD;; /M)?,(7)
337  where (1+ 2(h* + &%) + Nh*D;/M)? is proportional to the variance of Z (supplementary note 2)
338 and the shrinkage operation min (Dj,1) reduces the noise from big eigenvalues from LD matrix
339  with lower sample sizes.
340
341 UKBB data for simulation and real data analysis
342  The research conducted in this study utilized data from the UK Biobank Resource. The genomic
343  partitioning and simulation analysis was conducted using UKBB dataset with application number
344  29900. The real data analysis was conducted using UKBB dataset with application number
345  32285. Detailed information regarding data access, ethical approval, quality control procedures,
346  and phenotype definitions can be found in the supplementary note 2.
347
348 Reference panel construction:
349  We first took the intersection between UKBB'’ imputed genotype panel, 1000 Genomes
350 project® genotype panel and hapmap3 project®® variant list, resulting in M = 396,330 common
351  variants. Then, we partitioned the entire human genome into 1009 roughly independent blocks
352  using the panel of 396,330 common variants from UKBB European ancestry (N=276,050). We
353 partitioned the genome such that the linked SNP pairs (squared LD coefficient r> 2/sqrt(276050)
354  =0.0038) are within 100 kilobases within each block. For simulations, in-sample reference
355  panel was constructed using the intersected UKBB genotype panel (N=276,050, M = 396,330)
356 and the 1009 genomic blocks. Out-sample reference panel was constructed using the same set
357  of variants but from 1000 Genome project genotype panel (N=489, M = 396,330), with the
358 genome partition being the 1703 genomic blocks generated previously™ for reducing the noise
359  of low sample size. A linear shrinkage method****> was employed for out-sample reference panel

360 construction to further reduce the noise. For UKBB real data analysis, the in-sample reference
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361 panel was constructed using the union of UKBB imputed genotype panel and UKBB array

362  genotype panel, intersected with hapmap3 project® variant list (N=307,259, M = 966,766) and
363 the 1009 genomic blocks. For real data analysis, the variant inclusion criteria was (a):

364 imputation score > 0.8; (b): minor allele frequency > 0.05; (c): missing rate < 0.01; (d): Hardy-
365 Weinberg Equilibrium P-value > 5*10®. The details of quality control procedure of simulation
366 dataset and real analysis dataset can be found in the supplementary materials.

367

368 Simulations

369  The data generation process followed equation X, with narrow-sense heritability h%; fixed at 0.2,
370  GE interaction contribution proportion h? varying from 0 to 0.05, non-genetic-residual-covariate

371 interaction variance o;° being 0 or 0.02, E is standard normal:

M M
Y, = z G;ip; + z Sji¥j + €nE; + €qp
=1 =1

372  For each simulation from the pool of intersected UKBB genotype panel (N=276,050, M =

373  396,330), we randomly chose 50,000 subjects and 19,816 (5%) causal GE variants for data
374  generation, association analysis (linear regression on M = 396,330 variants using PLINK2°)
375 and GE interaction variance estimation analysis. Each parameter combination had 300

376 replicated simulations. To simulate the binary outcome, we used the liability model based on
377  corresponding critical cutoff with respect to the specified population prevalence.

378

379 Single-covariate GE interaction variance analysis of UKBB

380 We ran GWIS analysis through “--glm interaction --variance-standardize” command of PLINK2*
381 pre-adjusted for age, sex, 40 genetic PCs and the specific environmental covariate of interest if
382  not age or sex using linear regression. We analyzed 22 phenotypes and 7 environmental

383  covariates, resulting in a total of 151 (154 - 3) E-Y pairs with the 3 sex-specific phenotypes. The
384 22 phenotypes included 14 continuous phenotypes and 8 binary phenotypes. LDER-GE and
385 LDSC-based analysis were conducted using the resulted GWIS summary statistics and pre-
386 computed LD information.

387

388 Aggregated multi-covariate GE interaction variance analysis of UKBB

389  Suppose there is a covariate set of interest (A, B, C, ...), we first run linear regression of B~A to
390 getresiduals of B net A: B|A, being independent from A, and we run another linear regression of
391 C~A+B to get residuals of C net A and B: C|A & B, being independent from A and B. We
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392  continue the process until all residuals are independent from each other. We then run single-
393 covariate GE interaction variance analysis on each residuals the same way but preadjust for
394  age, sex, 40 genetic PCs and all covariates in the set excluding age and sex. By eliminating the
395 dependency of covariates, the estimated single-covariate GE interaction variances are

396 independent, and we summed up the estimated GE interaction variances and their variances of
397  estimation to conduct straightforward statistical test. We explored the set (age, sex, BMI,

398 packed years of smoking, Townsend deprivation index, Alcohol intake frequency) to capture
399  more missing heritability explained by GE interactions because these 6 covariates yielded

400 nonminimally significant GE interaction signals at P<0.05 on more than three phenotype (S

401 table 6). The narrow-sense heritability of each phenotype was estimated using LDER and the
402  main genetic effect GWAS summary statistics of the same UKBB cohort as GE analysis.
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Figure 1: Histogram comparison of LDSC-based method and LDER-GE with in-
sample and out-sample reference panel on simulations from real genotype
panel, continuous phenotype.
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Figure 2: GE interaction variance estimates from LDSC-based method and
LDER-GE of 151 environmental covariate-phenotype pairs in UKBB
dataset. For binary phenotypes, GE interaction variance is reported on
the liability-scale.
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Figure 3: Phenotypic variance explained by narrow-sense heritability and
aggregated multi-GE interactions for the 22 phenotypes, ordered by increasing P
value of multi-GE interactions. Right of the solid black line, 6 phenotypes are not

significant. For binary phenotypes, proportion is reported on the liability-scale.
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