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Abstract 

 

The human cerebral cortex is organized into functionally segregated but synchronized regions 

connected by the structural connectivity of white matter pathways. While the structure-function 

coupling has been implicated in cognitive development and neuropsychiatric disorders, it remains 

unclear to what extent the coupling reflects a group-common characteristic or varies across 

individuals at global and regional levels. Leveraging two independent, high-quality datasets, we 

found that the graph neural network predicted unseen individuals9 functional connectivity from 

structural connectivity more accurately than previous studies, reflecting a strong structure-function 

coupling. This coupling was primarily driven by network topology and was substantially stronger 

than linear models. We also found that structure-function coupling was dominated by the group-

common effects, with subtle yet significant individual-specific effects. The regional group and 

individual effects in the coupling were both hierarchically organized across the cortex along a 

sensorimotor-association cortical axis, with lower group effects and higher individual effects in 

association cortices. These findings emphasize the importance of considering the group and 

individual effects in cortical structure-function coupling, suggesting insights into connectivity-

guided therapeutics.    
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Introduction 

The human cerebral cortex is organized into functionally segregated neuronal populations 

connected by the anatomical pathways. White matter fiber tracts form a connectome of structural 

connectivity at the macroscale1. This structural connectome exhibits a complex network topology 

characterized by non-random properties, including small-world architecture2, segregated 

communities3, and a core of densely inter-connected hubs4. These topological patterns support the 

communication dynamics on structural networks and coordinate the temporal synchronization of 

neural activity—termed functional connectivity—between cortical regions5-8. Understanding how 

structural connectivity shapes functional connectivity patterns is central to neuroscience.  

 

Convergent evidence from multiple independent studies indicates a reliable coupling between 

structural and functional connectivity at both global and regional levels using both non-invasive 

MRI techniques and invasive recordings9-24. The structure-function coupling is heterogeneously 

distributed across the cerebral cortex, exhibiting higher coupling in the primary sensorimotor 

cortex and lower coupling in the higher-order association cortex10-12. This spatial distribution 

pattern aligns with the sensorimotor-association cortical hierarchy of cytoarchitectonic structure, 

functional specialization, and evolutionary expansion10,11,25. The structure-function coupling 

shows a developmental increase in regions of association cortex during adolescence with the most 

prominent effects localized in the default mode network10. In contrast, the highly evolutionarily 

conserved sensorimotor regions exhibit age-related decreases in structure-function coupling 

throughout adolescence10 and the whole lifespan13. Moreover, higher structure-function coupling 

has been related to better performance in executive function10,22, and abnormal patterns of the 

coupling are associated with a wide range of psychiatric and neurological disorders, such as major 
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depressive disorder26, bipolar disorder27, attention deficit hyperactivity disorder28, and Parkinson9s 

disease29.    

 

While structure-function coupling has been extensively implicated in development, cognition, and 

clinical outcomes10,13,22,27,28,30, few studies have explicitly examined the extent to which structure-

function coupling reflects a group-common characteristic or varies across individuals. Prior studies 

have reported that functional connectivity is dominated by stable group and individual factors 

equally31, and structural connectivity is even less variable than functional connectivity across 

participants32, suggesting the structure-function coupling could mainly reflect group rather than 

individual characteristics. Using six independent datasets, Zimmermann and colleagues found that 

the individual-specific effects of structure-function coupling can only be observed in one of six 

datasets32. Such a conflicting result could arise from the application of the linear association, which 

solely accounts for the coupling of direct structural connectivity and ignores indirect functional 

communications. Moreover, this prior study only examined global structure-function coupling32; 

how the group and individual effects of regional structure-function coupling are distributed across 

the cortex remains unclear.   

 

Prior studies typically employed linear associations to account for structure-function coupling of 

direct structural connectivity only9,10,29,32, or used interpretable models with explicit assumptions 

for indirect functional communication6,11,13,21. Nevertheless, these studies suffered from limited 

coupling strength between structural and functional connectivity, raising the possibility that the 

current set of interpretable models potentially overlooked important higher-order functional 

communication on structural networks. Recently, Sarwar and colleagues have demonstrated that a 
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powerful feed-forward fully-connected neural network accurately predicted unseen individual9s 

functional connectivity with structural connectivity (group: r = 0.9, individual: r = 0.55)15, 

suggesting a potentially much greater structure-function coupling compared to the interpretable 

communication models. However, randomizing structural networks9 topology only resulted in a 

20% to 50% reduction in prediction accuracy15, suggesting the limited contribution from network 

topology. In contrast to traditional deep learning methods, the graph neural networks (GNN)33 can 

inherently capture the communication between the nodes based on the graph (network) topology 

and have achieved success in the prediction tasks with a variety kinds of topological data, such as 

spatial cellular networks34 and protein-protein networks35. Two recent studies employed GNN to 

predict functional connectivity with structural connectivity, however, they did not explicitly 

evaluate how the network topology contributed to the prediction36,37. 

 

Here, we proposed to use graph neural networks to address the magnitude of group and individual 

effects of the structure-function coupling at both global and regional levels. We aim to test three 

inter-related hypotheses. First, we hypothesized that the graph neural network would accurately 

predict functional connectivity from structural networks. We also hypothesized that this prediction 

would primarily be contributed by higher-order network topology, as graph neural networks 

inherently operate on this aspect33. Second, we hypothesized that structure-function coupling 

would mainly reflect group-common characteristics; however, there still exists a significant 

amount of individual effect given the implications of structure-function coupling in human 

individual differences10,13. Third, we hypothesized that both the group and individual effects at the 

regional level would be distributed across the cortex along the sensorimotor-association axis25. 

Specifically, we expected that the group effects of regional structure-function coupling would be 
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higher in primary sensorimotor cortex, due to relatively minor inter-individual variability in both 

structural and functional connectivity38,39. Conversely, we expected that the individual-specific 

effects of the coupling would be higher in the higher-order association cortex, where the functional 

communication may have become untethered from genetic and anatomical constraints40.    

 

Results 

We utilized two independent datasets, namely the unrelated Human Connectome Project (HCP)-

young adult (HCP-YA, n = 245, 114 males, aged 22335 years)41 and HCP-development (HCP-D, 

n = 404, 176 males, aged 8321 years)42, to evaluate the structure-function coupling. As illustrated 

in Fig. 1a, we first constructed the connectome of functional connectivity (FC) and structural 

connectivity (SC) for each participant, using the a priori Schaefer cortical parcellation atlas of 400 

regions43. Particularly, based on the resting-state fMRI data, FC was defined as the Pearson 

correlation coefficients between each pair of regional time series, resulting in a 400×400 

symmetrical FC matrix for each participant. The matrix consisted of 79,800 unique elements, with 

each element denoted as an <edge= connecting two cortical regions. Fisher r-to-z was applied to 

improve the normality of FC edge strength. Meanwhile, using the diffusion MRI data, we 

reconstructed the whole-brain white matter tracts of individual participants via probabilistic fiber 

tractography with multi-shell, multi-tissue constrained spherical deconvolution (CSD)44. 

Anatomically constrained tractography (ACT)45 and spherical deconvolution informed filtering of 

tractograms (SIFT)46 were applied to improve the biological accuracy of fiber reconstruction. For 

each participant, we quantified the number of streamlines connecting every pair of cortical regions 

from the Schaefer atlas to construct a structural connectome of streamline counts. The edge 

weights of the SC matrix were log-transformed. 
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To fully investigate the indirect functional communication and non-linear association between 

structural and functional connectomes, we used a graph neural network (GNN) framework to 

capture the structure-function coupling by predicting the empirical FC from SC36,37. The GNN 

framework treats each FC edge as higher-order communication through the SC between the 

corresponding two nodes. Specifically, our GNN model employed a 2-layer graph convolutional 

network47, which takes SC as input and aggregates the 2-hop neighboring SC for each node to 

construct its node embeddings. Then, a 2-layer multilayer perceptron takes each pair of node 

embeddings as input to predict their connected FC (Fig. 1a). For both HCP-YA and HCP-D 

datasets, we randomly split the participants into two subsets, with one as the training set and the 

other as the testing set. We used the model trained from the training set to predict the FC in the 

testing set. We defined the Pearson correlation between the predicted and empirical FC as the 

structure-function coupling for each participant in the testing set. The following GNN-based 

coupling analyses were restricted to the testing set.   

 

We presented the group-averaged connectivity matrices of SC, empirical FC, and predicted FC 

from GNN in the HCP-YA dataset as examples (Fig. 1b). The connectivity matrix was organized 

based on the large-scale functional network affiliations of the 400 cortical regions to the Yeo 7 

networks48, which consists of the visual, somatomotor, dorsal attention, ventral attention, 

frontoparietal, limbic, and default mode networks. We observed that the predicted FC matrix was 

very similar to the empirical FC matrix (Fig. 1b), suggesting the effectiveness of our GNN model. 

See Fig. S1 for both the empirical and predicted connectivity matrices of the HCP-D dataset. 
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Fig. 1 | The GNN-based framework predicts functional connectivity from structural 

connectivity. a, For each individual, the white matter structural connectivity (SC) and resting-

state functional connectivity (FC) were constructed using the Schaefer-400 atlas. Both structural 

and functional connectivity can be characterized as a 400×400 matrix, respectively. We applied a 

graph neural network (GNN) model to predict FC from SC. Specifically, the GNN employs a two-

layer graph convolutional network (GCN) to get the node embedding for each node and uses a 

two-layer multilayer perceptron (MLP) to predict each FC edge from the corresponding two node 

embeddings. b, The group-averaged connectivity matrix of SC, empirical FC, and predicted FC in 

the HCP-YA dataset. Visual inspection suggests a highly consistent connectional pattern between 

the empirical and predicted FC matrices. HCP-YA, HCP young adult; VIS, visual network; SMN, 

somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LIM, 

limbic network; FPN, frontoparietal network; DMN, default mode network. 

 

GNN accurately captures the coupling between structural and functional network topology  

Prior studies have consistently demonstrated a robust coupling between structural and functional 

connectivity using a linear association9-11. Here, we evaluated if this is true in our dataset. We 

acquired the group-average empirical FC and SC matrices and flattened the upper triangle elements 
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into a vector for both matrices. The linear association (i.e., Pearson correlation) demonstrated a 

positive coupling between FC and SC across all the edges with non-zero SC strength in both HCP-

YA (r = 0.408, P < 1×10-16; Fig. 2a) and HCP-D (r = 0.429, P < 1×10-16; Fig. 2b) datasets at the 

group level. These results were consistent with prior reported effect size of group-level structure-

function coupling using the linear association10.   

 

The linear association model only accounts for the direct connections between nodes, while 

functional connectivity can emerge from polysynaptic communication on structural connectome5,6. 

A recent study indicated that a feed-forward fully-connected neural network accurately predicted 

FC from SC with a higher accuracy than the coupling with linear association. However, in this 

work, the network topology had limited contribution to the prediction49. We extended these results 

by applying the GNN model to predict FC with SC, which has the potential to capture more 

information about the structural network topology33. We found that, at the group level, the 

correlation between the predicted and empirical FCs was r = 0.942 (P < 1×10-16; Fig. 2c) for HCP-

YA and r = 0.953 (P < 1×10-16; Fig. 2d) for HCP-D dataset. This result suggested that GNN 

captured a much higher structure-function coupling compared to the linear association at the group 

level. Moreover, this group-level prediction accuracy was also slightly higher than that from a 

fully-connected neural network as reported in the prior work (i.e., r = 0.9)15.       

 

We next evaluated whether GNN outperformed traditional approaches at the individual level. 

Using the linear association, we found that the correlation between FC and SC ranges from Pearson 

r = 0.233 to r = 0.414 (r = 0.315 ± 0.029; Fig. 2e) across HCP-YA participants and ranges from r 

= 0.228 to r = 0.427 (r = 0.321 ± 0.027; Fig. 2f) across HCP-D participants. In contrast, GNN 
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predicted FC from SC with an accuracy ranging from 0.518 to 0.800 (r = 0.715 ± 0.052; Fig. 2e) 

across HCP-YA participants and ranging from 0.475 to 0.775 (r = 0.684 ± 0.047; Fig. 2f) across 

HCP-D participants. The lowest individual-level structure-function coupling from GNN was 

higher than the highest coupling from the linear association in both datasets. Moreover, our 

individualized prediction accuracy from GNN was higher than that from fully-connected deep 

neural network as reported in prior work (i.e., r = 0.55 ± 0.1)15. Overall, these results indicated that 

the GNN framework detected the structure-function coupling better than both a linear association 

and a traditional fully-connected neural network. 

 

We further explored how the network topology contributed to structure-function coupling. To do 

this, we rewired the SC to randomize the network topology but keep the distribution of nodal 

degree and strength50. Using the linear association, we found that the coupling between FC and 

rewired SC was r = 0.014 ± 0.006 (Fig. 2e) for HCP-YA participants and r = 0.018 ± 0.007 (Fig. 

2f) for HCP-D participants. To evaluate how the network topology contributed to GNN-based 

structure-function coupling, we trained a GNN model with rewired SC using training data to 

predict the FC in the testing data. Similarly, we found GNN trained by rewired SC could only 

predict FC with an accuracy of r = 0.262 ± 0.045 (Fig. 2e) for individual participants in HCP-YA 

and r = 0.268 ± 0.038 (Fig. 2f) in HCP-D. Numerically, rewiring SC reduced the structure-function 

coupling by 64% (i.e., empirical: mean r = 0.715, rewired: mean r = 0.259) on average in HCP-

YA, and by 61% (i.e., empirical: mean r = 0.684, rewired: mean r = 0.267) in HCP-D. As an 

alternative method to directly compare with one previous study15, we kept the original SC in the 

training dataset to train the GNN model but rewired the SC in the testing set. As a result, the 

prediction performance was r = 0.080 ± 0.060 for testing participants in HCP-YA and r = 0.024 ± 
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0.012 in HCP-D. Therefore, rewiring SC in the testing set reduced the structure-function coupling 

by 89% (i.e., empirical: mean r = 0.715, rewired: mean r = 0.080) on average in HCP-YA, and by 

96% (i.e., empirical: mean r = 0.684, rewired: mean r = 0.024) in HCP-D. In contrast, the study 

using fully-connected neural network reported that rewiring SC in the testing set reduced the 

coupling by 20% to 50%15. This comparison indicated that our GNN captured more higher-order 

network topological information in the coupling compared to the traditional fully-connected neural 

network. Overall, these results suggested that network topology drives the structure-function 

coupling.  

 

After demonstrating the topological-driven structure-function coupling at the global (whole-brain) 

level, we next evaluated structure-function coupling at the regional level for both linear and GNN 

models. Specifically, we defined the structural profile of each cortical region as its connected SC 

edges for the linear model and its connected predicted FC edges for the GNN model. The 

functional profile for each cortical region was defined as all connected actual FC edges. Regional 

structure-function coupling was measured as the Pearson correlation between structural and 

functional profiles for each cortical region. We found that the regional structure-function coupling 

ranged from 0.086 to 0.587 for HCP-YA (Fig. 2g) and ranged from 0.070 to 0.654 for HCP-D 

(Fig. 2h) across all 400 cortical regions for the linear model. Using the GNN model, the regional 

structure-function coupling substantially increased, ranging from 0.316 to 0.829 for HCP-YA (Fig. 

2i) and ranging from 0.287 to 0.817 for HCP-D (Fig. 2j) across the cortical regions. Importantly, 

for both linear and GNN models, regional structure-function coupling was heterogeneously 

distributed across the cortex, with a higher value in the primary sensorimotor cortices and a lower 
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value in the higher-order association cortices. This cortical pattern of structure-function coupling 

was consistent with prior literatures10,11.  
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Fig. 2 | Structure-function coupling based on linear and GNN models. a,b, The group mean 

SC was significantly correlated with mean FC in the HCP-YA (a, r = 0.408, P < 1×10-16) and 

HCP-D (b, r = 0.429, P < 1×10-16) datasets, based on the linear Pearson correlation. c,d, GNN 

accurately predicted the group mean FC from the mean SC in both datasets. The predicted mean 

FC was significantly correlated with mean empirical FC in the HCP-YA (c, r = 0.942, P < 1×10-

16) and HCP-D (d, r = 0.953, P < 1×10-16) datasets. e,f, At the individual participant level, GNN 

returned a much higher structure-function coupling than linear association in both HCP-YA (e, 

linear: r = 0.315 ± 0.029; GNN: r = 0.715 ± 0.052) and HCP-D (f, linear: r = 0.321 ± 0.027; GNN: 

0.684 ± 0.047) datasets. Moreover, rewiring the SC network by disrupting the network topology 

and keep the degree and strength distribution substantially reduced individuals9 structure-function 

coupling from both linear and GNN models in both HCP-YA (e, linear: r =0.014 ± 0.006; GNN: r 

= 0.262 ± 0.045) and HCP-D (f, linear: r =0.018 ± 0.007; GNN: 0.268 ± 0.038) datasets. This 

suggested the structure-function couplings were mainly driven by the network topology. g,h, The 

regional structure-function coupling by linear association for HCP-YA (g) and HCP-D (h) datasets. 

i,j, The regional structure-function coupling by the GNN model for HCP-YA (i) and HCP-D (j) 

datasets. 

 

Structure-function coupling is primarily dominated by group-common effects, with subtle 

but significant individual effects 

Having found that structure-function coupling was reliable and driven by network topology, we 

next examined the magnitudes of group-common and individual-specific effects in structure-

function coupling, utilizing both linear and GNN models. To achieve this, we constructed a 

participant-by-participant matrix of structure-function coupling for both models. The diagonal 

elements of the matrix quantify the structure-function coupling within individuals, while the off-

diagonal elements quantify the coupling between one participant9s SC (or predicted FC when using 

GNN) and another participant9s FC (Fig. 3a). We designated the within-individual coupling as 

8matched coupling9 and the between-individual coupling as 8mismatched coupling9.  

 

As expected, we observed that the average of all pairs of matched coupling (Linear: HCP-YA: r = 

0.315; HCP-D: r = 0.321; GNN: HCP-YA: r = 0.715; HCP-D: r = 0.684) was higher than the 

average of all pairs of mismatched coupling (Linear: HCP-YA: r = 0.312; HCP-D: r = 0.318; GNN: 
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HCP-YA: r = 0.702; HCP-D: r = 0.666) for both linear and GNN models. We defined the total 

effects of structure-function coupling as the average matched coupling, the group-common effects 

as the average mismatched coupling, and individual-specific effects as the difference between the 

average matched coupling and the average mismatched coupling. A similar approach has been 

used to evaluate the group and individual effects in functional networks31. Our results revealed 

that using the linear model, the individual effects accounted for 1.18% of the total effects of 

structure-function coupling in HCP-YA and 0.94% in HCP-D (Fig. 3b). In contrast, with the GNN 

model, the individual effects accounted for 1.74% of total effects in HCP-YA and 2.65% in HCP-

D (Fig. 3c). These results indicated that GNN outperformed the linear association in capturing 

individual effects, suggesting some individual effects of structure-function coupling were 

explained by the non-linear high-order network topology. Moreover, both models demonstrated 

that structure-function coupling was primarily dominated by group-common factors (more than 

97%) rather than individual-specific traits (less than 3%).  

 

As the individual effects of structure-function coupling were minor for both models, we next 

evaluated whether the individual effects were statistically significant. To test this, we extracted the 

matched coupling and the average of all mismatched coupling for each participant (Fig. 3d). We 

compared the matched coupling and the average mismatched coupling across all participants 

statistically using two-tailed paired t-tests. The results indicated that the matched coupling was 

significantly higher than the mismatched coupling in both the linear model (HCP-YA: P < 0.001; 

HCP-D: P < 0.0001; Fig. 3e) and the GNN model (HCP-YA: P < 0.0001; HCP-D: P < 0.0001; 

Fig. 3f). These findings confirmed that the individual effects of structure-function coupling were 

statistically significant, as demonstrated in two independent datasets and two distinct approaches.      
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Overall, our findings suggested that individual structure-function coupling primarily reflected the 

group-common characteristics, with subtle yet significant individual-specific effects. 

 

 

Fig. 3 | The group-common and individual-specific effects of structure-function coupling. a, 

The matrix of structure-function coupling between each pair of participants. Diagonal elements 

(cold color) represent the within-subject coupling (i.e., matched coupling), while off-diagonal 

elements (warm color) represent the coupling between one participant9s SC or Predicted FC and 

another participant9s FC (i.e., mismatched coupling). SC was used for the linear model and the 

predicted FC was used for GNN model to calculate the structure-function coupling. The total 

effects were defined as the average value of the diagonal elements; the group-common effects were 

defined as the average value of the off-diagonal elements; and the individual-specific effects were 

defined as their difference. b,c, The group and individual effects were estimated using the linear 

model (b, HCP-YA: 0.312/0.004; HCP-D: 0.318/0.003) and the GNN model (c, HCP-YA: 

0.702/0.012; HCP-D: 0.666/0.018). d, The matched coupling and the average of all mismatched 

coupling were extracted for each participant and then were statistically compared across 

participants using two-tailed paired t-tests. e, f, The matched individual coupling was significantly 

higher than the mismatched coupling for both the linear model (e) and the GNN model (f), 
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suggesting statistically significant individual-specific effects of structure-function coupling. ** 

indicates P < 0.001, *** indicates P < 0.0001, two-tailed paired t-test. 

 

Group and individual effects of structure-function coupling organize on the cortex along the 

sensorimotor-association axis  

Having identified the magnitudes of group-common and individual-specific effects in structure-

function coupling at the global level, we evaluated how group and individual effects were 

distributed across the cortex at the regional level. Recent studies have consistently demonstrated 

the sensorimotor-association cortical axis to be a unifying organizing principle of both anatomical 

and functional properties across cortex25. We hypothesized that the cortical distributions of both 

group and individual effects would align with the sensorimotor-association cortical axis. We 

acquired the priori cortical map of sensorimotor-association cortex axis (Fig.4a), which was 

derived by averaging diverse cortical neurobiological properties25. The cortical regions were 

continuously ranked along this axis, with the primary sensorimotor cortices representing the lowest 

ranks and the higher-order association cortices representing the highest ranks.  

 

We next calculated the group and individual effects of GNN-based structure-function coupling at 

the regional level. We constructed a participant-by-participant matrix of GNN-based coupling and 

averaged all mismatched couplings for each cortical region, resulting in the regional group effects. 

We observed that the group effects were higher in the primary sensorimotor cortices and lower in 

the higher-order association cortices in both HCP-YA (Fig.4b) and HCP-D (Fig.4c) datasets. 

Using a Spearman rank correlation and a conservative spin-based spatial permutation test51, we 

found that the cortical distributions of regional group effects were highly reproducible between the 

two datasets (Spearman9s rho = 0.87, Pspin < 0.001). Using the linear model to evaluate the regional 
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structure-function coupling, we observed that the cortical distribution of group effects was similar 

to that using the GNN model in both HCP-YA and HCP-D datasets (Fig.S2a).   

 

We next quantitatively evaluated whether the group effects of regional structure-function coupling 

were organized along the principal sensorimotor-association cortical axis. Using the Spearman 

correlation, we found that the group effects based on the GNN model were negatively correlated 

with the ranks of sensorimotor-association axis across all cortical regions in both HCP-YA 

(Spearman9s rho = -0.48, Pspin < 0.001; Fig. 4d) and HCP-D (Spearman9s rho = -0.32, Pspin = 0.003; 

Fig. 4e) datasets. The sensorimotor pole of the cortical axis showed a higher group effect, and the 

association pole showed a lower group effect. Additionally, using the linear model to evaluate 

structure-function coupling, we consistently observed a negative association between regional 

group effects and sensorimotor-association axis ranks in both HCP-YA (spearman9s rho = -0.53, 

Pspin < 0.001; Fig. S2b) and HCP-D (Spearman9s rho = -0.51, Pspin = 0.001; Fig. S2c). These results 

suggested that the sensorimotor-association cortical axis could potentially constrain the cortical 

distribution of group effects of structure-function coupling.  
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Fig. 4 | GNN-derived regional group-common structure-function effects inversely align with 

the sensorimotor-association cortical axis. a, The cortical map of the priori sensorimotor-

association axis was derived from Sydnor et al.25, where warm color represents association cortices 

with higher ranks and cold color represents sensorimotor cortices with lower ranks. b,c, The 

cortical map of group-common effects in regional structure-function coupling estimated by the 

GNN model in the HCP-YA (b) and HCP-D (c) datasets. d,e, The regional group effects of 

structure-function coupling were negatively correlated with the sensorimotor-association axis 

ranks in the HCP-YA (d, Spearman9s rho = -0.48, Pspin < 0.001) and HCP-D (e, Spearman9s rho = 

-0.32, Pspin = 0.003) datasets. The outliers (mean ± 3×SD) were excluded in the correlation 

analysis. Each point in the scatter plot represents a cortical region and is colored by its rank in 

sensorimotor-association axis. 
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We next examined the cortical distribution of the individual-specific effects of regional structure-

function coupling. With regional participant-by-participant matrices of GNN-based structure-

function coupling, we calculated individual effects as the difference between the average matched 

coupling and the average mismatched coupling for each cortical region. We observed that the 

individual-specific effects were lower in sensorimotor cortices and higher in association cortices 

in both the HCP-YA (Fig. 5a) and HCP-D (Fig. 5b) datasets. This cortical distribution of 

individual effects was significantly aligned between the two datasets (Spearman9s rho = 0.33, Pspin 

< 0.001). Using the linear model, we observed a similar cortical pattern of individual effects as 

that with the GNN model in both datasets (Fig.S2d).   

 

By quantifying the alignment with the sensorimotor-association cortical axis, we found a 

significantly positive correlation between the individual effects and the ranks of this cortical axis 

in both HCP-YA (Spearman9s rho = 0.30, Pspin < 0.001; Fig. 5c) and HCP-D (Spearman9s rho = 

0.18, Pspin = 0.045; Fig. 5d) datasets. These results indicated an opposite cortical pattern in 

individual-specific effects compared to that of group-common effects. The sensorimotor pole of 

the axis had a lower individual effect of structure-function coupling, and the association pole 

showed a higher individual effect. However, using the linear model, the association between 

regional individual effects and cortical axis rank was not significant in either HCP-YA 

(Spearman9s rho = 0.01, Pspin = 0.436; Fig. S2e) or HCP-D (Spearman9s rho = -0.11, Pspin = 0.227; 

Fig. S2f) datasets. These results suggested that the GNN model is better at capturing the 

biologically meaningful individual-specific effects of structure-function coupling in the human 

brain. 
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Fig. 5 | GNN-derived regional individual-specific effects of structure-function positively align 

with the sensorimotor-association cortical axis. a,b, The cortical map of individual-specific 

effects in structure-function coupling estimated by the GNN model in the HCP-YA (a) and HCP-

D (b) datasets. c,d, The individual-specific effects were positively correlated with the ranks in the 

sensorimotor-association axis across all cortical regions in the HCP-YA (c, Spearman9s rho = 0.30, 

Pspin < 0.001) and HCP-D (d, Spearman9s rho = 0.18, Pspin = 0.045) datasets. The outliers (mean 

± 3×SD) were excluded from the correlation analysis. Each point in the scatter plot represents a 

cortical region and is colored by its cortical axis rank. 

 

Sensitivity analyses 

We performed two additional analyses to ensure that our results were robust to the methodological 

choices. In this study, we defined the individual effects of the structure-function coupling by 

subtracting the average mismatched coupling (i.e., between-subject coupling) from the matched 

coupling (i.e., within-subject coupling). This measurement might be influenced by the magnitude 

of the total effects, as larger total effects can potentially generate larger individual effects. To 
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mitigate the potential scaling issue, we defined the normalized individual effects as the proportion 

of the individual effect to the total effect, and re-evaluated the alignment between the normalized 

individual effects and the sensorimotor-association cortical axis ranks. Similar to our main results, 

we found that the normalized individual effects were lower in sensorimotor cortices and higher in 

association cortices (Fig. S3a & S3b). Moreover, we obtained a significant positive correlation 

between individual effects and cortical axis ranks in the HCP-YA (Spearman9s rho = 0.34, Pspin < 

0.001; Fig. S3c) dataset and the HCP-D (Spearman9s rho = 0.22, Pspin = 0.015; Fig. S3d) dataset. 

 

We also tested how robust our result is with respect to the brain parcellation. In the main analyses, 

we constructed the structural and functional connectivity with Schaefer-400 atlas43. Here, we 

validated our GNN model in another Schaefer-200 parcellation. We first confirmed the 

significance of individual-specific structure-function coupling effects. We observed significant 

individual effects of the coupling with Schaefer-200 (Fig. S4a). Furthermore, we demonstrated the 

negative association between group effects and sensorimotor-association cortical axis ranks (Fig. 

S4 b-d) and the positive association between individual effects and cortical ranks (Fig.S4 e-g) 

across all regions. Overall, our main results were robust to the choice of cortical parcellations. 

 

Discussion 

In this study, we proposed a GNN framework to evaluate the magnitude of the group-common and 

individual-specific effects of structure-function coupling. We found that structural connectivity 

accurately predicted unseen individuals9 functional connectivity with the GNN model, and this 

prediction was driven by network topology. We observed that structure-function coupling was 

dominated by the group-common characteristics, simultaneously, the minor individual-specific 

effects were also significant. Finally, we found that the regional group and individual effects both 
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hierarchically patterned across the cortex along the fundamental sensorimotor-association cortical 

axis. The sensorimotor pole of the axis showed a higher group effect and a lower individual effect, 

while the association pole showed a higher individual effect and a lower group effect of the 

structure-function coupling. These results were consistent between two independent, high-quality 

datasets. Our findings emphasized the importance of considering group and individual effects in 

both theoretical research of structure-function coupling and connectivity-based clinical 

therapeutics.  

 

Understanding the dynamical communication process on the connectome of structural connectivity 

is a central goal of neuroscience5,6. Prior studies demonstrated that the structural connectivity of 

macroscale white matter tracts is associated with the functional connectivity measured by the 

correlation between pairs of regional time series9-24. The cortical distribution of the regional 

structure-function coupling aligns with the axis of the fundamental sensorimotor-association 

cortical hierarchy10,11,25. Moreover, the structure-function coupling changes with age and is related 

to individual differences in cognition and psychopathology10,13,22,26,27. Building on these studies, 

our work provided a systematic examination of the group-common and individual-specific effects 

of the structure-function coupling at the global and regional levels using both the linear association 

and the advanced GNN.  

 

We found that, using the GNN framework, structural connectivity reconstructed with diffusion 

MRI accurately predicted unseen individuals9 functional connectivity from resting-state fMRI. 

Consistent with our results, previous studies have consistently demonstrated a robust coupling 

between structure and functional connectivity using a variety of interpretable models, such as 
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linear associations9-12, biophysical models14, communication models6,13,21,23,52, and the network 

control theory53-56. However, these interpretable models typically returned relatively small 

structure-function coupling values even when accounting for indirect communication, suggesting 

potentially imperfect alignment between structural and functional connectivity6,7,24. Recently, 

Sarwar and colleagues found that a fully-connected neural network predicted functional 

connectivity with much higher accuracy than interpretable models15, suggesting the structure-

function coupling could be higher than previously imagined. Two recent studies employed GNN 

to investigate structure-function coupling, however, they did not evaluate how the network 

topology contributed to the coupling36,37. Our results extended these findings by demonstrating 

that the GNN achieved higher structure-function coupling than fully-connected neural networks 

and this improvement was primarily contributed by network topology. Specifically, by 

randomizing the network topology of SC, our GNN model reduced the prediction accuracy by 

more than 89%, whereas the fully-connected neural network reduced 20%~50% as shown in this 

prior work15. This result demonstrated that the prediction using GNN was mainly driven by the 

network topology. Our result was also consistent with prior findings that GNN is better at capturing 

topological representations of network data, such as cellular networks34 and protein networks35, 

compared to traditional deep learning approaches.   

 

Our results also demonstrated that the structure-function coupling was dominated by the group-

common effects, and the remaining minor individual effects were also significant. The robust 

group effects could underlie the past success in the estimation of structure-function coupling at the 

group level9,11,14,16,18-20. This result was also consistent with prior studies showing that the 

functional networks were largely determined by group-common organizational principle31 while 
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structural networks were even less variable than functional networks32. As a direct support for our 

results, one recent study also observed that the structure-function coupling based on a linear 

association was dominated by group effects, which were consistent across six datasets with 

different acquisitions or processing methods32. However, they found that the individual effects of 

structure-function coupling were only observed in one of the six datasets32. Here, using an 

advanced GNN approach and two independent, high-quality datasets, we demonstrated that the 

individual effects of structure-function coupling were also robust and reproducible. Moreover, our 

results indicated that the individual effects with the GNN approach were much larger than those 

with the linear association approach, which potentially explained non-stable individual effects in 

prior study with linear approach32. Future studies are warranted to examine how to improve 

interpretable network communication models to better detect the individual effects of structure-

function coupling.  

 

The sensorimotor-association cortical hierarchy has been proposed to be a unifying cortical 

organizing principle for diverse neurobiological properties, including structure, function, 

metabolic, transcription, and evolution10,11,19,25,57-62. Particularly, recent studies have demonstrated 

that the cortical distribution of structure-function coupling also aligns with the sensorimotor-

association axis10,11. Consistent with these prior accounts, we found that both the group and 

individual effects of the regional structure-function coupling were hierarchically distributed across 

the cortex along the sensorimotor-association cortical axis. More specifically, we observed that 

the higher-order association cortex, which sits at the top end of the cortical axis, displayed the 

highest individual effects and the lowest group effects, while the primary sensorimotor cortex 

displayed the highest group effects and the lowest individual effects. Both structural and functional 
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connectivity exhibited the highest inter-individual variability in the association cortex and the 

lowest in the sensorimotor cortex38,39, which could partly support our findings. Moreover, the 

sensorimotor cortex primarily comprises circuits with relatively simple and canonical feedforward 

and feedback connectivity patterns63, which could potentially resulted in a high cross-individual 

similarity of structure-function coupling. In contrast, the association cortex exhibits a noncanonical 

circuit architecture with complicated and distributed connections64, which could lead to individual 

diversity in the structure-function coupling.     

 

Several potential limitations should be noted. First, precisely reconstructing individuals9 white 

matter structural connectivity is challenging owing to the inherent limitations of diffusion MRI-

based fiber tractography. In this study, we used a currently state-of-the-art probabilistic fiber 

tractography with multi-shell, multi-tissue constrained spherical deconvolution44 and applied the 

anatomically constrained tractography45 and spherical deconvolution informed filtering of 

tractograms46 to improve the biological accuracy. Moreover, we used a consistency-based 

thresholding to reduce the influence of false positive connections10. Second, the current study did 

not analyze the structure-function coupling of subcortical and cerebellar structures, as these 

regions require specialized analysis procedures that are different from those applied to the cortex. 

Future studies may evaluate the group and individual effects of structure-function coupling in the 

subcortical and cerebellar regions. Finally, while the graph neural network accurately predicted 

functional connectivity with structural network topology, its black-box nature prevents us from 

understanding the underlying communication mechanism supporting the prediction. However, this 

result still provides a benchmark to optimize the interpretable models to explicitly explain how the 

structural connectome supports the functional connectivity.  
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Notwithstanding these limitations, we demonstrated that GNN captured a stronger topology-driven 

coupling between structural and functional connectivity than previous models, suggesting an 

avenue to improve current coupling models. Our results indicated that the individual effects of 

structure-function coupling were the highest in the association cortex, which was related to 

prolonged development of higher-order cognitions and confers to diverse psychopathologies25. 

This result implied that structure-function coupling could be a potential neuromarker to track 

individual differences in cognitive development and vulnerability to mental disorders. As 

structural connectivity pathway facilitated the propagation of neurostimulation-induced 

activity21,65, our findings could have implications in clinical practice of neurostimulation. The 

dominated group effects in structure-function coupling could explain the experience that the same 

neurostimulation target (i.e., dorsal lateral pre-frontal cortex) has benefited many different 

patients66. Simultaneously, the significant individual-specific effects could explain that the 

personalized stimulation targets have improved the intervention effects for certain patients67.        

 

Methods 

HCP young adult (HCP-YA) dataset  

We acquired multi-modal neuroimaging data from 339 unrelated participants (156 males, aged 

22337) from the HCP young adult (HCP-YA) dataset (release S900), including T1-weighted 

structural, resting-state functional MRI (fMRI) and diffusion MRI41. All imaging data were 

acquired by a multiband sequence on a Siemens 3T Skyra scanner. Two resting-state fMRI 

sessions, with two runs in each session (left-right and right-left phase-encoding), were acquired 

for each participant with a resolution of 3 mm isotropic. Each resting-state run comprised 1,200 
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frames for approximately 15 min in length. For diffusion MRI, data were acquired in two runs 

with opposite phase-encoding directions for each participant. Each run included 270 non-collinear 

directions with 3 non-zero shells (b = 1000, 2000, and 3000 s/mm2). Other details regarding the 

HCP-YA dataset and MRI acquisition parameters have been described in prior study41. 

 

HCP development dataset (HCP-D) 

This study also comprised 633 participants (294 males, aged 8321) obtained from the HCP-

development (HCP-D) dataset (Release 2.0)42. All data were collected using a multiband EPI 

sequence on a 3T Siemens Prisma scanner. Two resting-state fMRI sessions were acquired for 

each participant, with two runs in each session, using anterior-posterior (AP) and posterior-anterior 

(PA) phase-encoding, respectively. Each resting-state run was approximately 6.5 min with 488 

frames. Diffusion MRI data included two sessions, each with two non-zero shells (b = 1500, 3000 

s/mm2) and 185 diffusion-weighted directions. Further details about the HCP-D dataset have been 

described in previous study42. 

 

Structural and functional MRI data processing 

Minimally preprocessed T1-weighted structural and functional MRI data were acquired from the 

HCP-D and HCP-YA datasets68. Briefly, structural MRI data were corrected for intensity non-

uniformity, skull-stripped, and then used for cortical surface reconstruction. Volume-based 

structural images were segmented into cerebrospinal fluid (CSF), white matter, and gray matter, 

and spatially normalized to the standard MNI space. Functional MRI data were preprocessed with 

slice-timing, motion and distortion correction, co-registration to structural data, normalization to 
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MNI space, and projection to cortical surface. Functional timeseries were resampled to 

FreeSurfer9s fsaverage space, and grayordinates files containing 91k samples were generated. 

 

We then followed the post-processed protocols of eXtensible Connectivity Pipelines (XCP-D; 

https://xcp-d.readthedocs.io/en/latest/)69. Volumes with framewise-displacement (FD) greater than 

0.3 were flagged as outliers and excluded70-72. We regressed out 36 nuisance regressors from the 

BOLD time series, including six motion parameters, global signal, mean white matter signal, and 

mean CSF signal, along with their temporal derivatives, quadratic terms, and quadratic 

derivatives73. Residual timeseries were then band-pass filtered (0.0130.08 Hz) and spatially 

smoothed with a kernel size of FWHM = 6 mm. We further reduced the potential effects of head 

motion by excluding subjects with two criteria74. First, we dropped those fMRI runs that included 

more than 25% of the frames with FD > 0.2 mm. Second, we calculated the mean FD distribution 

for each fMRI run by pooling frames of all participants. Then, we derived the third quartile (Q3) 

and interquartile range (IQR) of this distribution. Runs with mean FD greater than 8Q3+1.5×IQR9 

were excluded. We excluded 218 HCP-D and 91 HCP-YA participants based on these two criteria. 

Additionally, three participants from the HCP-YA were excluded because of incomplete resting-

state fMRI runs (less than 1,200 frames). Consequently, 415 participants (179 males, aged 8321) 

from the HCP-D and 245 participants (114 males, aged 22335) from the HCP-YA datasets were 

included in subsequent analyses. 

 

Functional connectivity construction with functional MRI 

Functional connectivity (FC) refers to the temporal correlation of functional MRI signals. For 

HCP-YA and HCP-D datasets, we constructed FC by the following procedures. First, we extracted 
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regional BOLD timeseries based on the a priori Schaefer parcellation with 400 parcels43. Next, FC 

was calculated as the Pearson correlation coefficient between each pair of regional BOLD 

timeseries, resulting in a 400×400 symmetrical FC matrix for each participant. We then applied 

Fisher9s z-transformation to each FC value in the matrix. Finally, the 400 parcels were mapped 

onto the seven intrinsic networks from Yeo atlas48, including the visual network (VIS), 

somatomotor network (SMN), dorsal attention network (DAN), ventral attention network (VAN), 

frontoparietal network (FPN), limbic network (LIM), and default mode network (DMN). 

 

Diffusion MRI data processing 

We used minimally preprocessed diffusion MRI data from the HCP-YA dataset41. The minimal 

preprocessing pipeline comprises b0 image intensity normalization across runs, EPI distortion 

correction, eddy current and motion correction, gradient nonlinearity correction, and registration 

to the native structural space (1.25 mm). The processed diffusion MRI data were further corrected 

for B1 field inhomogeneity using MRtrix3. Diffusion MRI data from HCP-D were preprocessed 

by QSIPrep (https://qsiprep.readthedocs.io/), an integrative platform for preprocessing and 

reconstructing diffusion MRI data75, including tools from MRtrix3 (https://www.mrtrix.org/)76. 

Prior to preprocessing, we concatenated the two AP runs and the two PA runs, respectively, and 

selected the frames with b-value < 100 s/mm2 as the b0 image. Next, we applied MP-PCA 

denoising, Gibbs unringing, and B1 field inhomogeneity correction through MRtrix39s 

dwidenoise77, mrdegibbs78, and dwibiascorrect79 functions. FSL9s eddy was then used for head 

motion correction and Eddy current correction80. Finally, the preprocessed DWI timeseries was 

resampled to ACPC space at a resolution of 1.5 mm isotropic. Particularly, a total of 11 participants 

from the HCP-D were excluded from subsequent structural connectivity analyses due to 
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incomplete DWI data (5 participants), tissue segmentation failure (5 participants), or the 

identification of isolated regions after tractography (1 participant). Therefore, a total of 245 

participants from HCP-YA and 404 participants from HCP-D were analyzed in subsequent 

structure-function coupling analyses. 

 

White matter structural network construction with diffusion MRI 

We reconstructed whole-brain whiter matter tracts from preprocessed diffusion MRI data to 

construct the structural connectivity (SC). Reconstruction was conducted by the 

mrtrix_multishell_msmt_ACT-hsvs method in MRtrix376, which implements a multi-shell and 

multi-tissue constrained spherical deconvolution (CSD) to estimate the fiber orientation 

distribution (FOD) of each voxel44. Then, we followed the anatomically constrained tractography 

(ACT) framework to improve the biological accuracy of fiber reconstruction45. This tractography 

was performed by tckgen, which generates 40 million streamlines (length range from 30 to 250 

mm, FOD power = 0.33) via a refined probabilistic streamlines tractography (iFOD2) based on the 

second-order integration over FOD. The streamlines were filtered from the tractogram based on 

the spherical deconvolution of the diffusion signal. We estimated the streamline weights using the 

command tcksift246. Next, the SC matrix was constructed by tck2connectome based on the 

Schaefer-400 atlas for each participant. The edge weight of SC indicates the number of streamlines 

connecting two regions. For each connection, we normalized the edge weight by dividing the 

average volume of the corresponding two regions81. Furthermore, the edge weight of the SC matrix 

was log-transformed, which is commonly used to shift the non-Gaussian SC distribution to the 

Gaussian distribution in previous studies7. Finally, we obtained a 400×400 symmetric SC matrix 

for each participant. To address potential issues with spurious SC edges arising from probabilistic 
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tractography82, we adopted a group-consistency thresholding approach as in previous studies10,83. 

We calculated the coefficient of variation (CV) for edge weight across participants and 

subsequently applied a threshold to individual structural connectivity matrices at the 75th 

percentile for edge weight CV. The top quartile of inconsistent connections were removed.   

 

Predicting functional connectivity from structural connectivity using graph neural networks 

The graph neural network (GNN) is a deep learning framework tailored for data of topological 

structure84. Different from other deep learning methodologies, such as fully-connected neural 

networks and convolutional neural networks, GNNs extract features based on the topological 

structure of the network. Since both SC and FC are topological data, a GNN can be used to 

investigate their topological relationship. To this end, we introduced a GNN framework to predict 

the empirical FC from SC and output the predicted FC. Our proposed GNN framework consists of 

two parts: (1) a two-layer graph convolutional network (GCN) to obtain node embeddings from 

the SC; (2) a two-layer multi-layer perceptron (MLP) that takes two node embeddings as inputs 

and predict the FC between them (Fig.1a).  

 

Graph convolutional network. The main component of our graph neural network is the graph 

convolutional network (GCN)47. GCN generates node embeddings, representing the neighboring 

topological structure for each node. We denoted the node embedding generated from �th layer GCN 

as �! * ="×$! , where � * {1, & , �} represents the layer index and �!  represents the embedding 

dimension of layer �. �% is the exception representing the dimension of the input features of GCN. 

The input features are one-hot vectors that indicate the brain region of each node. Through message 

passing, the node embedding from the �th layer will pass along the network connectivity, denoted 
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its adjacency matrix as �, towards their neighboring nodes, convoluted by a GCN layer to get the 

node embedding of the (� + 1)th layer. In our work, � is the adjacency matrix of SC, i.e., � *
	=&×&. � = 400 is the number of nodes for the Schaefer-400 atlas. Therefore, the update equation 

of the node embedding from the �th layer to the (� + 1)th layer is denoted as: 

�!'( 	= GCN(�! , �) 
With � layers in total, this message passing allows each node to embed its L-hop topological 

neighborhood. The concrete equation is formulated as: 

�!'( 	= PReLU(�?)
(
*	�?	�?(

*	�! 	�+,-
! ) 

where �+,-
! * =$!×$!"# is the trainable weight at the �th layer. �?	is the adjacency matrix with self-

loop added, i.e., �? 	= � + �& , where �& * =&×&  is the K-dimension identity matrix. �?  is the 

diagonal matrix, with the diagonal value �?.. equals to the nodal strength of node � in �. As such, 

�?)(/*	�?	�?(/*  is the symmetric normalized Laplacian of the SC. We adopted the PReLU 

(Parametric Rectified Linear Unit) as the activation function due to its superior performance85: 

PReLU(�) = E�												� g 0
��									� < 0	, �	is	trainable 

 

Multilayer perceptron. Subsequently, we used a pair of node embeddings as input to predict the 

functional connectivity between them by a two-layer multi-layer perceptron (MLP) with ReLU 

(Rectified Linear Unit) as the activation function (i.e., ReLU(�) = max(0, �)) after the first output 

layer. No activation function was used for the second layer. Specifically, for two node embeddings 

of node � and �, represented by /. , /0 * �, the predicted FC, termed pFC.0 * ���, between them 

is calculated as: 

pFC.0 = MLPY/.	, /0 ,�234Z * ��� 
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Model training and validation. To train our graph neural network model, we minimized the mean 

square error between the predicted FC and empirical FC with L2-regularizaion: 

�256 =
1
�7

\ 1
�(� 2 1) \ YpFC.0 2 eFC.0Z*

	

.,09(&&;	.<0

	

=9(&"$

	+ �	|�234|* 

where eFC.0 * ��� is the empirical FC between node � and �. We adopted L2-regularization on 

the MLP9s weights with regularization parameter � . We trained the model through batched 

gradient descent with a batch of �7 subjects and the Adam optimizer86. In addition, since FC is a 

symmetric matrix, we employed the (pFC.0 +	pFC0.)/2 as the final predicted FC between node � 

and � for testing and further analysis. For both datasets, we randomly split 50% of the subjects as 

the training set, with the remaining 50% for testing and subsequent structure-function coupling 

analysis. By grid search based on the model9s performance for 5-fold cross validation on the 

training set, we set the hyperparameter as: layer number (L=2), dimension for GCN 

(400×256×256), dimension for MLP (512×64×1), batch size (2), learning rate (0.0001), 

regularization parameter (�=0.0001), and training epochs (400). The graph network model was 

built and trained using Pytorch and PyTorch Geometric. More details about implementations could 

be found in the code repository at https://github.com/PeiyuChen2023/GNN_SC_FC.  

 

Structure-function coupling measured by linear and GNN models 

In this work, we evaluated the structure-function coupling using both a linear model and our 

proposed GNN model. The linear model assesses the Pearson correlation between SC and FC, 

focusing solely on direct connections with nonzero edge strength. However, functional 

connectivity can emerge from polysynaptic communication on structural connectome5,6. The GNN 
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has the capability to capture both the direct and indirect functional communications based on the 

sparse SC. For each dataset, all participants were split into two subsets with one used as training 

and another used as testing set. The GNN model trained on all participants in the training set was 

used to predict the FC for the testing participants with their SC as input. The structure-function 

coupling was calculated as the Pearson correlation between the predicted and empirical FC for 

each participant in the testing set. At the group level, we used the model from training data and all 

testing participants9 average SC as input to predict the average FC. We calculated the Pearson 

correlation between the predicted and empirical average FC as the structure-function coupling at 

the group level.   

 

We also estimated the structure-function coupling at both the whole-brain and regional levels. At 

the whole-brain level, we extracted the upper triangle elements (79,800 unique edges) from either 

the 400×400 SC matrix or the predicted FC matrix, creating a structural profile vector. 

Simultaneously, we extracted the upper triangle elements from the empirical FC matrix, forming 

a functional profile vector. We calculated the Pearson correlation between the structural profile 

and functional profile across all connections at global level. At the regional level, we first defined 

the regional structural and functional profiles.  For the �>? cortical region, we defined its structural 

or functional profile as the connections to all other cortical regions, which were represented by the 

�>?  row (399×1) from the connection matrix. The regional structure-function coupling was 

determined by calculating the Pearson correlation between the structural profile and functional 

profile of each cortical region, enabling us to generate a cortical map of regional structure-function 

coupling for both the linear and GNN models. Notably, all participants were involved and analyzed 
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in the linear model based coupling, whereas the structure-function coupling based on the GNN 

model were derived from the testing set, comprising 50% of the participants.  

 

Calculating group-common and individual-specific effects in structure-function coupling 

A previous study indicated that the individual FC is contributed by both group-common and stable 

individual-specific factors31. Following the similar approach, we aimed to distinguish between 

group-common and individual-specific effects in structure-function coupling using both linear and 

GNN models. To achieve this, we computed the structure-function coupling both within-individual 

and between each pair of different participants, resulting in a participant-by-participant 

asymmetrical matrix of structure-function coupling (Fig. 3a). In this matrix, the element in the �>? 

row (SC or predicted FC from subject i) and �>? column (FC from subject j), termed as cp.,0 , 

represents the structure-function coupling between the �>?  and �>?  participants. The diagonal 

elements of the matrix measure the structure-function coupling within individual, while the off-

diagonal elements estimate the coupling between one individual9s SC and another individual9s FC. 

We referred to the within-individual coupling and between-individual coupling as 'matched 

coupling' and 'mismatched coupling', respectively. In this study, we treated the averaged between-

individual coupling as a group-common variance in the coupling across populations. This strategy 

has been used in prior study of effects in function networks31. We supposed that the total effects 

of within-individual coupling encompass both group-common and individual-specific effects. 

Therefore, we defined the group-common and individual-specific effects of structure-function 

coupling as follows: 

cp@ABCD =
1

�(� 2 1) \ cp.,0
	

.,09(&";	.<0
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cpEFGEHEGCIJ =
1
� \ cp.,.

	

.9(&"

2	cp@ABCD 

where N corresponds to the number of participants. Given our finding that individual structure-

function coupling is primarily dominated by the group-common effect, with minor individual-

specific effects (see Results), we proceeded to assess the statistical significance of these individual 

effects. For this purpose, we defined the matched coupling and mismatched coupling for each 

subject (Fig. 3d). Specifically, the mismatched coupling of subject i was defined by the averaged 

coupling from all elements in the �>?  row (SC or predicted FC from subject i, FC from other 

subjects) and �>? column (FC from subject i, SC or predicted FC from other subjects), except the 

within-individual coupling. The matched and mismatched coupling for each subject � is defined 

as: 

cpKI>L?,.	 =	 cp.,.	 

cpKEMKI>L?,.	 =
1

2(� 2 1) \ Ycp.,0	 + cp0,.	Z
	

09(&";	0<.

 

We considered the individual-specific coupling effects significant if matched coupling were 

statistically higher than mismatched coupling across participants. We conducted a two-sided 

paired t-test to examine the differences between matched coupling and mismatched coupling 

across all participants.  

 

These analyses of group and individual effects in the coupling were first performed at the global 

level and then applied to each cortical region. It is noteworthy that only nonzero edges were 

examined in the linear model for both whole-brain and regional analyses. 
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Alignment between cortical maps of group and individual effects of structure-function 

coupling and the sensorimotor-association cortical axis 

The sensorimotor-association axis has been consistently reported as a unifying organizing 

principle of both anatomical and functional properties across cortex25. A previous study has also 

identified a negative association between structure-function coupling and sensorimotor-

association axis rank10. Here, we further investigated how group-common and individual-specific 

coupling align with the sensorimotor-association cortical axis, respectively. We acquired a cortical 

map of sensorimotor-association axis parcellated with Schaefer-400 atlas from Sydnor et al.25. 

Cortical regions were continuously ranked along this axis, with the primary sensorimotor cortices 

representing the lowest ranks and the higher-order association cortices representing the highest 

ranks. For both linear and GNN models, we calculated the Spearman9 rank correlation to assess 

the alignment between the sensorimotor-association cortical axis and regional group-common 

effects as well as individual-specific effects across all cortical regions.  

 

Null models 

Rewiring networks. To evaluate the contribution of network topology in structure-function 

coupling, we utilized the Maslov-Sneppen rewiring algorithm to rewire individual SC. This 

process retained fundamental topological properties such as nodal degree and strength while 

randomizing topological structure. Furthermore, rewired networks preserved inter-node 

communication without creating isolated nodes. This algorithm was implemented via the Python 

version of the Brain Connectivity Toolbox (https://github.com/aestrivex/bctpy)87. For the linear 

model, we rewired SC from all individuals and re-evaluated the Pearson correlation between the 

rewired SC and FC for each participant. For the GNN model, we employed two strategies to assess 
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the impact of network topology. Firstly, we aimed to evaluate how much the GNN model could 

learn from the higher-order topology, so we only rewired SC in training data to acquire a 

topological-null GNN model. We did not rewire the SC in the testing set. We next used this 

topological-null GNN model to predict FC from SC in the testing set. Then, we re-evaluated the 

Pearson correlation between the predicted FC and FC for each participant in the testing set. 

Secondly, we trained the GNN model with the original SC and utilized the rewired SC to predict 

FC in the testing set. We again re-evaluated the Pearson correlation between the predicted FC and 

FC for each participant in the testing set. This strategy aimed to directly compare the contribution 

of the SC topology to our GNN with its contribution to the fully-connected network in a prior 

study15. 

 

Spin test. We employed the spin test to evaluate the significance of the spatial correspondence 

between group-common and individual-specific effects of structure-function coupling and 

sensorimotor-association cortical axis51. Particularly, the spin test generated a null distribution by 

randomly rotating brain maps while maintaining the original spatial covariance structure51. This 

approach projected the group and individual effects onto a spherical cortical surface of the 

FreeSurfer9s fsaverage space and then randomly rotated 10,000 times to generate a list of rotated 

maps. Next, we calculated the Spearman9s rank correlation between each rotated map and the 

sensorimotor-association axis map to construct a null distribution. The P value (Pspin) was 

determined by calculating the ratio of instances whose null correlations exceeded the empirical 

correlation coefficients.  

 

Sensitivity analyses 
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One main result of this study is that the individual-specific effects of structure-function coupling 

showed a hierarchical pattern across the cortex that positively aligned with the sensorimotor-

association cortical axis. However, as individual-specific effects are derived by subtracting the 

group-common effects from total effects of the coupling, larger total effects might numerically 

lead to larger individual-specific effects. To address this potential scaling issue, we defined the 

'normalized individual effect' by dividing the individual effect by the total regional structure-

function coupling, representing the proportion of the individual effect to the total effect. 

Subsequently, we reevaluated the alignment between the normalized individual effects and the 

ranks of the sensorimotor-association cortical axis for the GNN model. 

 

We also assessed the robustness of our main results to another cortical parcellations. In addition 

to the Schaefer atlas comprising 400 cortical regions used in our primary analyses, we validated 

our GNN models using the Schaefer atlas with 200 cortical regions43. First, we constructed the 

connectome of FC and SC for each participants using the Shcaefer-200 and retrained the GNN 

model. Then, we distinguished the group-common and individual-specific effects of structure-

function coupling, and verified the significance of individual-specific effects with Schaefer-200. 

Finally, we obtained the cortical maps of group-common and individual-specific effects of 

structure-function coupling and re-evaluated their alignment with the sensorimotor-association 

cortical axis. Specifically, leveraging the vertex-wise surface map of sensorimotor-association axis 

in the fsLR-32k space25, we computed the parcel-level sensorimotor-association axis rank values 

of Schaefer-200 by averaging rank values from all vertices within each parcel. 

 

Data availability 

The HCP-YA and HCP-D datasets are available at https://db.humanconnectome.org/.  
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Code availability 

All code used to perform the analyses in this study can be found at 

https://github.com/PeiyuChen2023/GNN_SC_FC. 
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