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Abstract

The human cerebral cortex is organized into functionally segregated but synchronized regions
connected by the structural connectivity of white matter pathways. While the structure-function
coupling has been implicated in cognitive development and neuropsychiatric disorders, it remains
unclear to what extent the coupling reflects a group-common characteristic or varies across
individuals at global and regional levels. Leveraging two independent, high-quality datasets, we
found that the graph neural network predicted unseen individuals’ functional connectivity from
structural connectivity more accurately than previous studies, reflecting a strong structure-function
coupling. This coupling was primarily driven by network topology and was substantially stronger
than linear models. We also found that structure-function coupling was dominated by the group-
common effects, with subtle yet significant individual-specific effects. The regional group and
individual effects in the coupling were both hierarchically organized across the cortex along a
sensorimotor-association cortical axis, with lower group effects and higher individual effects in
association cortices. These findings emphasize the importance of considering the group and
individual effects in cortical structure-function coupling, suggesting insights into connectivity-

guided therapeutics.
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Introduction

The human cerebral cortex is organized into functionally segregated neuronal populations
connected by the anatomical pathways. White matter fiber tracts form a connectome of structural
connectivity at the macroscale!. This structural connectome exhibits a complex network topology
characterized by non-random properties, including small-world architecture?, segregated
communities®, and a core of densely inter-connected hubs*. These topological patterns support the
communication dynamics on structural networks and coordinate the temporal synchronization of

neural activity—termed functional connectivity—between cortical regions®®. Understanding how

structural connectivity shapes functional connectivity patterns is central to neuroscience.

Convergent evidence from multiple independent studies indicates a reliable coupling between
structural and functional connectivity at both global and regional levels using both non-invasive
MRI techniques and invasive recordings’?*. The structure-function coupling is heterogeneously
distributed across the cerebral cortex, exhibiting higher coupling in the primary sensorimotor
cortex and lower coupling in the higher-order association cortex!®!2, This spatial distribution
pattern aligns with the sensorimotor-association cortical hierarchy of cytoarchitectonic structure,

functional specialization, and evolutionary expansion!®-!!-23

. The structure-function coupling
shows a developmental increase in regions of association cortex during adolescence with the most
prominent effects localized in the default mode network!?. In contrast, the highly evolutionarily
conserved sensorimotor regions exhibit age-related decreases in structure-function coupling
throughout adolescence!® and the whole lifespan!®. Moreover, higher structure-function coupling

10,22

has been related to better performance in executive function'®**, and abnormal patterns of the

coupling are associated with a wide range of psychiatric and neurological disorders, such as major
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depressive disorder?$, bipolar disorder?’, attention deficit hyperactivity disorder?®, and Parkinson’s

disease?’.

While structure-function coupling has been extensively implicated in development, cognition, and
clinical outcomes!%!322.2728.30 fey studies have explicitly examined the extent to which structure-
function coupling reflects a group-common characteristic or varies across individuals. Prior studies
have reported that functional connectivity is dominated by stable group and individual factors
equally’!, and structural connectivity is even less variable than functional connectivity across
participants®2, suggesting the structure-function coupling could mainly reflect group rather than
individual characteristics. Using six independent datasets, Zimmermann and colleagues found that
the individual-specific effects of structure-function coupling can only be observed in one of six
datasets®2. Such a conflicting result could arise from the application of the linear association, which
solely accounts for the coupling of direct structural connectivity and ignores indirect functional
communications. Moreover, this prior study only examined global structure-function coupling??;
how the group and individual effects of regional structure-function coupling are distributed across

the cortex remains unclear.

Prior studies typically employed linear associations to account for structure-function coupling of

direct structural connectivity only®-19-2-32

, or used interpretable models with explicit assumptions
for indirect functional communication®!-!32!. Nevertheless, these studies suffered from limited
coupling strength between structural and functional connectivity, raising the possibility that the

current set of interpretable models potentially overlooked important higher-order functional

communication on structural networks. Recently, Sarwar and colleagues have demonstrated that a
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powerful feed-forward fully-connected neural network accurately predicted unseen individual’s
functional connectivity with structural connectivity (group: » = 0.9, individual: » = 0.55)'°,
suggesting a potentially much greater structure-function coupling compared to the interpretable
communication models. However, randomizing structural networks’ topology only resulted in a
20% to 50% reduction in prediction accuracy!®, suggesting the limited contribution from network
topology. In contrast to traditional deep learning methods, the graph neural networks (GNN)?3 can
inherently capture the communication between the nodes based on the graph (network) topology
and have achieved success in the prediction tasks with a variety kinds of topological data, such as
spatial cellular networks** and protein-protein networks*. Two recent studies employed GNN to
predict functional connectivity with structural connectivity, however, they did not explicitly

evaluate how the network topology contributed to the prediction*®37.

Here, we proposed to use graph neural networks to address the magnitude of group and individual
effects of the structure-function coupling at both global and regional levels. We aim to test three
inter-related hypotheses. First, we hypothesized that the graph neural network would accurately
predict functional connectivity from structural networks. We also hypothesized that this prediction
would primarily be contributed by higher-order network topology, as graph neural networks
inherently operate on this aspect®’. Second, we hypothesized that structure-function coupling
would mainly reflect group-common characteristics; however, there still exists a significant
amount of individual effect given the implications of structure-function coupling in human
individual differences!'®!3. Third, we hypothesized that both the group and individual effects at the
regional level would be distributed across the cortex along the sensorimotor-association axis?.

Specifically, we expected that the group effects of regional structure-function coupling would be
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higher in primary sensorimotor cortex, due to relatively minor inter-individual variability in both
structural and functional connectivity*®°. Conversely, we expected that the individual-specific
effects of the coupling would be higher in the higher-order association cortex, where the functional

communication may have become untethered from genetic and anatomical constraints*.

Results

We utilized two independent datasets, namely the unrelated Human Connectome Project (HCP)-
young adult (HCP-YA, n = 245, 114 males, aged 22-35 years)*! and HCP-development (HCP-D,
n =404, 176 males, aged 8-21 years)*’, to evaluate the structure-function coupling. As illustrated
in Fig. 1a, we first constructed the connectome of functional connectivity (FC) and structural
connectivity (SC) for each participant, using the a priori Schaefer cortical parcellation atlas of 400
regions*. Particularly, based on the resting-state fMRI data, FC was defined as the Pearson
correlation coefficients between each pair of regional time series, resulting in a 400x400
symmetrical FC matrix for each participant. The matrix consisted of 79,800 unique elements, with
each element denoted as an “edge” connecting two cortical regions. Fisher r-to-z was applied to
improve the normality of FC edge strength. Meanwhile, using the diffusion MRI data, we
reconstructed the whole-brain white matter tracts of individual participants via probabilistic fiber
tractography with multi-shell, multi-tissue constrained spherical deconvolution (CSD)*.
Anatomically constrained tractography (ACT)* and spherical deconvolution informed filtering of
tractograms (SIFT)*¢ were applied to improve the biological accuracy of fiber reconstruction. For
each participant, we quantified the number of streamlines connecting every pair of cortical regions
from the Schaefer atlas to construct a structural connectome of streamline counts. The edge

weights of the SC matrix were log-transformed.
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To fully investigate the indirect functional communication and non-linear association between
structural and functional connectomes, we used a graph neural network (GNN) framework to
capture the structure-function coupling by predicting the empirical FC from SC3¢37. The GNN
framework treats each FC edge as higher-order communication through the SC between the
corresponding two nodes. Specifically, our GNN model employed a 2-layer graph convolutional
network?’, which takes SC as input and aggregates the 2-hop neighboring SC for each node to
construct its node embeddings. Then, a 2-layer multilayer perceptron takes each pair of node
embeddings as input to predict their connected FC (Fig. 1a). For both HCP-YA and HCP-D
datasets, we randomly split the participants into two subsets, with one as the training set and the
other as the testing set. We used the model trained from the training set to predict the FC in the
testing set. We defined the Pearson correlation between the predicted and empirical FC as the
structure-function coupling for each participant in the testing set. The following GNN-based

coupling analyses were restricted to the testing set.

We presented the group-averaged connectivity matrices of SC, empirical FC, and predicted FC
from GNN in the HCP-Y A dataset as examples (Fig. 1b). The connectivity matrix was organized
based on the large-scale functional network affiliations of the 400 cortical regions to the Yeo 7
networks*®, which consists of the visual, somatomotor, dorsal attention, ventral attention,
frontoparietal, limbic, and default mode networks. We observed that the predicted FC matrix was
very similar to the empirical FC matrix (Fig. 1b), suggesting the effectiveness of our GNN model.

See Fig. S1 for both the empirical and predicted connectivity matrices of the HCP-D dataset.
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Fig. 1 | The GNN-based framework predicts functional connectivity from structural
connectivity. a, For each individual, the white matter structural connectivity (SC) and resting-
state functional connectivity (FC) were constructed using the Schaefer-400 atlas. Both structural
and functional connectivity can be characterized as a 400x400 matrix, respectively. We applied a
graph neural network (GNN) model to predict FC from SC. Specifically, the GNN employs a two-
layer graph convolutional network (GCN) to get the node embedding for each node and uses a
two-layer multilayer perceptron (MLP) to predict each FC edge from the corresponding two node
embeddings. b, The group-averaged connectivity matrix of SC, empirical FC, and predicted FC in
the HCP-YA dataset. Visual inspection suggests a highly consistent connectional pattern between
the empirical and predicted FC matrices. HCP-YA, HCP young adult; VIS, visual network; SMN,
somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LIM,
limbic network; FPN, frontoparietal network; DMN, default mode network.

GNN accurately captures the coupling between structural and functional network topology
Prior studies have consistently demonstrated a robust coupling between structural and functional

connectivity using a linear association’!!. Here, we evaluated if this is true in our dataset. We

acquired the group-average empirical FC and SC matrices and flattened the upper triangle elements
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into a vector for both matrices. The linear association (i.e., Pearson correlation) demonstrated a
positive coupling between FC and SC across all the edges with non-zero SC strength in both HCP-
YA (r = 0.408, P < 1x10°'%; Fig. 2a) and HCP-D (r = 0.429, P < 1x10°'%; Fig. 2b) datasets at the
group level. These results were consistent with prior reported effect size of group-level structure-

function coupling using the linear association!®.

The linear association model only accounts for the direct connections between nodes, while
functional connectivity can emerge from polysynaptic communication on structural connectome™S,
A recent study indicated that a feed-forward fully-connected neural network accurately predicted
FC from SC with a higher accuracy than the coupling with linear association. However, in this
work, the network topology had limited contribution to the prediction*’. We extended these results
by applying the GNN model to predict FC with SC, which has the potential to capture more
information about the structural network topology®*. We found that, at the group level, the
correlation between the predicted and empirical FCs was = 0.942 (P < 1x10°'%; Fig. 2¢) for HCP-
YA and r = 0.953 (P < 1x10'%; Fig. 2d) for HCP-D dataset. This result suggested that GNN
captured a much higher structure-function coupling compared to the linear association at the group
level. Moreover, this group-level prediction accuracy was also slightly higher than that from a

fully-connected neural network as reported in the prior work (i.e., » = 0.9)!°.

We next evaluated whether GNN outperformed traditional approaches at the individual level.
Using the linear association, we found that the correlation between FC and SC ranges from Pearson
r=0.233 tor=0.414 (= 0.315 + 0.029; Fig. 2e) across HCP-Y A participants and ranges from r

=0.228 to r = 0.427 (r = 0.321 £ 0.027; Fig. 2f) across HCP-D participants. In contrast, GNN
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predicted FC from SC with an accuracy ranging from 0.518 to 0.800 (» = 0.715 £ 0.052; Fig. 2e)
across HCP-YA participants and ranging from 0.475 to 0.775 (r = 0.684 + 0.047; Fig. 2f) across
HCP-D participants. The lowest individual-level structure-function coupling from GNN was
higher than the highest coupling from the linear association in both datasets. Moreover, our
individualized prediction accuracy from GNN was higher than that from fully-connected deep
neural network as reported in prior work (i.e., #=0.55 + 0.1)'°. Overall, these results indicated that
the GNN framework detected the structure-function coupling better than both a linear association

and a traditional fully-connected neural network.

We further explored how the network topology contributed to structure-function coupling. To do
this, we rewired the SC to randomize the network topology but keep the distribution of nodal
degree and strength®®, Using the linear association, we found that the coupling between FC and
rewired SC was » = 0.014 £ 0.006 (Fig. 2e) for HCP-Y A participants and » = 0.018 + 0.007 (Fig.
2f) for HCP-D participants. To evaluate how the network topology contributed to GNN-based
structure-function coupling, we trained a GNN model with rewired SC using training data to
predict the FC in the testing data. Similarly, we found GNN trained by rewired SC could only
predict FC with an accuracy of » = 0.262 + 0.045 (Fig. 2e) for individual participants in HCP-YA
and = 0.268 + 0.038 (Fig. 2f) in HCP-D. Numerically, rewiring SC reduced the structure-function
coupling by 64% (i.e., empirical: mean » = 0.715, rewired: mean » = 0.259) on average in HCP-
YA, and by 61% (i.e., empirical: mean » = 0.684, rewired: mean » = 0.267) in HCP-D. As an
alternative method to directly compare with one previous study'>, we kept the original SC in the
training dataset to train the GNN model but rewired the SC in the testing set. As a result, the

prediction performance was » = 0.080 + 0.060 for testing participants in HCP-YA and » = 0.024 +
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0.012 in HCP-D. Therefore, rewiring SC in the testing set reduced the structure-function coupling
by 89% (i.e., empirical: mean » = 0.715, rewired: mean » = 0.080) on average in HCP-YA, and by
96% (i.e., empirical: mean » = 0.684, rewired: mean » = 0.024) in HCP-D. In contrast, the study
using fully-connected neural network reported that rewiring SC in the testing set reduced the
coupling by 20% to 50%!°. This comparison indicated that our GNN captured more higher-order
network topological information in the coupling compared to the traditional fully-connected neural
network. Overall, these results suggested that network topology drives the structure-function

coupling.

After demonstrating the topological-driven structure-function coupling at the global (whole-brain)
level, we next evaluated structure-function coupling at the regional level for both linear and GNN
models. Specifically, we defined the structural profile of each cortical region as its connected SC
edges for the linear model and its connected predicted FC edges for the GNN model. The
functional profile for each cortical region was defined as all connected actual FC edges. Regional
structure-function coupling was measured as the Pearson correlation between structural and
functional profiles for each cortical region. We found that the regional structure-function coupling
ranged from 0.086 to 0.587 for HCP-YA (Fig. 2g) and ranged from 0.070 to 0.654 for HCP-D
(Fig. 2h) across all 400 cortical regions for the linear model. Using the GNN model, the regional
structure-function coupling substantially increased, ranging from 0.316 to 0.829 for HCP-YA (Fig.
2i) and ranging from 0.287 to 0.817 for HCP-D (Fig. 2j) across the cortical regions. Importantly,
for both linear and GNN models, regional structure-function coupling was heterogeneously

distributed across the cortex, with a higher value in the primary sensorimotor cortices and a lower
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value in the higher-order association cortices. This cortical pattern of structure-function coupling

was consistent with prior literatures!®!!,
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Fig. 2 | Structure-function coupling based on linear and GNN models. a,b, The group mean
SC was significantly correlated with mean FC in the HCP-YA (a, » = 0.408, P < 1x107!%) and
HCP-D (b, » = 0.429, P < 1x107'%) datasets, based on the linear Pearson correlation. ¢,d, GNN
accurately predicted the group mean FC from the mean SC in both datasets. The predicted mean
FC was significantly correlated with mean empirical FC in the HCP-YA (¢, » = 0.942, P < 1x10
16) and HCP-D (d, = 0.953, P < 1x10°!%) datasets. e,f, At the individual participant level, GNN
returned a much higher structure-function coupling than linear association in both HCP-YA (e,
linear: »=0.315+0.029; GNN: »=0.715 + 0.052) and HCP-D (f, linear: »=0.321 £ 0.027; GNN:
0.684 + 0.047) datasets. Moreover, rewiring the SC network by disrupting the network topology
and keep the degree and strength distribution substantially reduced individuals’ structure-function
coupling from both linear and GNN models in both HCP-YA (e, linear: » =0.014 £ 0.006; GNN: r
= (0.262 £ 0.045) and HCP-D (f, linear: » =0.018 + 0.007; GNN: 0.268 + 0.038) datasets. This
suggested the structure-function couplings were mainly driven by the network topology. g,h, The
regional structure-function coupling by linear association for HCP-Y A (g) and HCP-D (h) datasets.
i,j, The regional structure-function coupling by the GNN model for HCP-YA (i) and HCP-D (j)
datasets.

Structure-function coupling is primarily dominated by group-common effects, with subtle
but significant individual effects

Having found that structure-function coupling was reliable and driven by network topology, we
next examined the magnitudes of group-common and individual-specific effects in structure-
function coupling, utilizing both linear and GNN models. To achieve this, we constructed a
participant-by-participant matrix of structure-function coupling for both models. The diagonal
elements of the matrix quantify the structure-function coupling within individuals, while the off-
diagonal elements quantify the coupling between one participant’s SC (or predicted FC when using

GNN) and another participant’s FC (Fig. 3a). We designated the within-individual coupling as

‘matched coupling’ and the between-individual coupling as ‘mismatched coupling’.

As expected, we observed that the average of all pairs of matched coupling (Linear: HCP-YA: r =
0.315; HCP-D: r = 0.321; GNN: HCP-YA: r = 0.715; HCP-D: r = 0.684) was higher than the

average of all pairs of mismatched coupling (Linear: HCP-YA: »=0.312; HCP-D: »=0.318; GNN:
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HCP-YA: r=0.702; HCP-D: r = 0.666) for both linear and GNN models. We defined the total
effects of structure-function coupling as the average matched coupling, the group-common effects
as the average mismatched coupling, and individual-specific effects as the difference between the
average matched coupling and the average mismatched coupling. A similar approach has been
used to evaluate the group and individual effects in functional networks3!. Our results revealed
that using the linear model, the individual effects accounted for 1.18% of the total effects of
structure-function coupling in HCP-Y A and 0.94% in HCP-D (Fig. 3b). In contrast, with the GNN
model, the individual effects accounted for 1.74% of total effects in HCP-YA and 2.65% in HCP-
D (Fig. 3¢). These results indicated that GNN outperformed the linear association in capturing
individual effects, suggesting some individual effects of structure-function coupling were
explained by the non-linear high-order network topology. Moreover, both models demonstrated
that structure-function coupling was primarily dominated by group-common factors (more than

97%) rather than individual-specific traits (less than 3%).

As the individual effects of structure-function coupling were minor for both models, we next
evaluated whether the individual effects were statistically significant. To test this, we extracted the
matched coupling and the average of all mismatched coupling for each participant (Fig. 3d). We
compared the matched coupling and the average mismatched coupling across all participants
statistically using two-tailed paired t-tests. The results indicated that the matched coupling was
significantly higher than the mismatched coupling in both the linear model (HCP-YA: P <0.001;
HCP-D: P < 0.0001; Fig. 3e) and the GNN model (HCP-YA: P < 0.0001; HCP-D: P < 0.0001;
Fig. 3f). These findings confirmed that the individual effects of structure-function coupling were

statistically significant, as demonstrated in two independent datasets and two distinct approaches.
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Overall, our findings suggested that individual structure-function coupling primarily reflected the

group-common characteristics, with subtle yet significant individual-specific effects.
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Fig. 3 | The group-common and individual-specific effects of structure-function coupling. a,
The matrix of structure-function coupling between each pair of participants. Diagonal elements
(cold color) represent the within-subject coupling (i.e., matched coupling), while off-diagonal
elements (warm color) represent the coupling between one participant’s SC or Predicted FC and
another participant’s FC (i.e., mismatched coupling). SC was used for the linear model and the
predicted FC was used for GNN model to calculate the structure-function coupling. The total
effects were defined as the average value of the diagonal elements; the group-common effects were
defined as the average value of the off-diagonal elements; and the individual-specific effects were
defined as their difference. b,c, The group and individual effects were estimated using the linear
model (b, HCP-YA: 0.312/0.004; HCP-D: 0.318/0.003) and the GNN model (¢, HCP-YA:
0.702/0.012; HCP-D: 0.666/0.018). d, The matched coupling and the average of all mismatched
coupling were extracted for each participant and then were statistically compared across
participants using two-tailed paired t-tests. e, f, The matched individual coupling was significantly
higher than the mismatched coupling for both the linear model (e) and the GNN model (f),
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suggesting statistically significant individual-specific effects of structure-function coupling. **
indicates P < 0.001, *** indicates P < 0.0001, two-tailed paired t-test.

Group and individual effects of structure-function coupling organize on the cortex along the
sensorimotor-association axis

Having identified the magnitudes of group-common and individual-specific effects in structure-
function coupling at the global level, we evaluated how group and individual effects were
distributed across the cortex at the regional level. Recent studies have consistently demonstrated
the sensorimotor-association cortical axis to be a unifying organizing principle of both anatomical
and functional properties across cortex?. We hypothesized that the cortical distributions of both
group and individual effects would align with the sensorimotor-association cortical axis. We
acquired the priori cortical map of sensorimotor-association cortex axis (Fig.4a), which was
derived by averaging diverse cortical neurobiological properties?>. The cortical regions were
continuously ranked along this axis, with the primary sensorimotor cortices representing the lowest

ranks and the higher-order association cortices representing the highest ranks.

We next calculated the group and individual effects of GNN-based structure-function coupling at
the regional level. We constructed a participant-by-participant matrix of GNN-based coupling and
averaged all mismatched couplings for each cortical region, resulting in the regional group effects.
We observed that the group effects were higher in the primary sensorimotor cortices and lower in
the higher-order association cortices in both HCP-YA (Fig.4b) and HCP-D (Fig.4¢) datasets.
Using a Spearman rank correlation and a conservative spin-based spatial permutation test!, we
found that the cortical distributions of regional group effects were highly reproducible between the

two datasets (Spearman’s rho = 0.87, Pspin < 0.001). Using the linear model to evaluate the regional
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structure-function coupling, we observed that the cortical distribution of group effects was similar

to that using the GNN model in both HCP-Y A and HCP-D datasets (Fig.S2a).

We next quantitatively evaluated whether the group effects of regional structure-function coupling
were organized along the principal sensorimotor-association cortical axis. Using the Spearman
correlation, we found that the group effects based on the GNN model were negatively correlated
with the ranks of sensorimotor-association axis across all cortical regions in both HCP-YA
(Spearman’s rho =-0.48, Psin < 0.001; Fig. 4d) and HCP-D (Spearman’s rtho =-0.32, Pgpin = 0.003;
Fig. 4e) datasets. The sensorimotor pole of the cortical axis showed a higher group effect, and the
association pole showed a lower group effect. Additionally, using the linear model to evaluate
structure-function coupling, we consistently observed a negative association between regional
group effects and sensorimotor-association axis ranks in both HCP-YA (spearman’s rho = -0.53,
Pyin<0.001; Fig. S2b) and HCP-D (Spearman’s tho =-0.51, Pspin = 0.001; Fig. S2¢). These results
suggested that the sensorimotor-association cortical axis could potentially constrain the cortical

distribution of group effects of structure-function coupling.
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Fig. 4 | GNN-derived regional group-common structure-function effects inversely align with
the sensorimotor-association cortical axis. a, The cortical map of the priori sensorimotor-
association axis was derived from Sydnor et al.?>, where warm color represents association cortices
with higher ranks and cold color represents sensorimotor cortices with lower ranks. b,c¢, The
cortical map of group-common effects in regional structure-function coupling estimated by the
GNN model in the HCP-YA (b) and HCP-D (¢) datasets. d,e, The regional group effects of
structure-function coupling were negatively correlated with the sensorimotor-association axis
ranks in the HCP-YA (d, Spearman’s rho = -0.48, Pspin < 0.001) and HCP-D (e, Spearman’s rho =
-0.32, Psypin = 0.003) datasets. The outliers (mean + 3 xSD) were excluded in the correlation
analysis. Each point in the scatter plot represents a cortical region and is colored by its rank in
sensorimotor-association axis.
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We next examined the cortical distribution of the individual-specific effects of regional structure-
function coupling. With regional participant-by-participant matrices of GNN-based structure-
function coupling, we calculated individual effects as the difference between the average matched
coupling and the average mismatched coupling for each cortical region. We observed that the
individual-specific effects were lower in sensorimotor cortices and higher in association cortices
in both the HCP-YA (Fig. 5a) and HCP-D (Fig. 5b) datasets. This cortical distribution of
individual effects was significantly aligned between the two datasets (Spearman’s rho = 0.33, Pgpin
< 0.001). Using the linear model, we observed a similar cortical pattern of individual effects as

that with the GNN model in both datasets (Fig.S2d).

By quantifying the alignment with the sensorimotor-association cortical axis, we found a
significantly positive correlation between the individual effects and the ranks of this cortical axis
in both HCP-YA (Spearman’s rho = 0.30, Pspin < 0.001; Fig. 5¢) and HCP-D (Spearman’s rho =
0.18, Pspin = 0.045; Fig. 5d) datasets. These results indicated an opposite cortical pattern in
individual-specific effects compared to that of group-common effects. The sensorimotor pole of
the axis had a lower individual effect of structure-function coupling, and the association pole
showed a higher individual effect. However, using the linear model, the association between
regional individual effects and cortical axis rank was not significant in either HCP-YA
(Spearman’s rho = 0.01, Pgpin = 0.436; Fig. S2e) or HCP-D (Spearman’s rho = -0.11, Pspin = 0.227;
Fig. S2f) datasets. These results suggested that the GNN model is better at capturing the
biologically meaningful individual-specific effects of structure-function coupling in the human

brain.
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Fig. 5| GNN-derived regional individual-specific effects of structure-function positively align
with the sensorimotor-association cortical axis. a,b, The cortical map of individual-specific
effects in structure-function coupling estimated by the GNN model in the HCP-YA (a) and HCP-
D (b) datasets. ¢,d, The individual-specific effects were positively correlated with the ranks in the
sensorimotor-association axis across all cortical regions in the HCP-YA (¢, Spearman’s rho = 0.30,
Pgspin < 0.001) and HCP-D (d, Spearman’s rho = 0.18, Pgpin = 0.045) datasets. The outliers (mean
+ 3xSD) were excluded from the correlation analysis. Each point in the scatter plot represents a
cortical region and is colored by its cortical axis rank.

Sensitivity analyses

We performed two additional analyses to ensure that our results were robust to the methodological
choices. In this study, we defined the individual effects of the structure-function coupling by
subtracting the average mismatched coupling (i.e., between-subject coupling) from the matched

coupling (i.e., within-subject coupling). This measurement might be influenced by the magnitude

of the total effects, as larger total effects can potentially generate larger individual effects. To
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mitigate the potential scaling issue, we defined the normalized individual effects as the proportion
of the individual effect to the total effect, and re-evaluated the alignment between the normalized
individual effects and the sensorimotor-association cortical axis ranks. Similar to our main results,
we found that the normalized individual effects were lower in sensorimotor cortices and higher in
association cortices (Fig. S3a & S3b). Moreover, we obtained a significant positive correlation
between individual effects and cortical axis ranks in the HCP-YA (Spearman’s tho = 0.34, Pspin <

0.001; Fig. S3c¢) dataset and the HCP-D (Spearman’s rho = 0.22, Pgpin = 0.015; Fig. S3d) dataset.

We also tested how robust our result is with respect to the brain parcellation. In the main analyses,
we constructed the structural and functional connectivity with Schaefer-400 atlas*. Here, we
validated our GNN model in another Schaefer-200 parcellation. We first confirmed the
significance of individual-specific structure-function coupling effects. We observed significant
individual effects of the coupling with Schaefer-200 (Fig. S4a). Furthermore, we demonstrated the
negative association between group effects and sensorimotor-association cortical axis ranks (Fig.
S4 b-d) and the positive association between individual effects and cortical ranks (Fig.S4 e-g)

across all regions. Overall, our main results were robust to the choice of cortical parcellations.

Discussion

In this study, we proposed a GNN framework to evaluate the magnitude of the group-common and
individual-specific effects of structure-function coupling. We found that structural connectivity
accurately predicted unseen individuals’ functional connectivity with the GNN model, and this
prediction was driven by network topology. We observed that structure-function coupling was
dominated by the group-common characteristics, simultaneously, the minor individual-specific

effects were also significant. Finally, we found that the regional group and individual effects both
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hierarchically patterned across the cortex along the fundamental sensorimotor-association cortical
axis. The sensorimotor pole of the axis showed a higher group effect and a lower individual effect,
while the association pole showed a higher individual effect and a lower group effect of the
structure-function coupling. These results were consistent between two independent, high-quality
datasets. Our findings emphasized the importance of considering group and individual effects in
both theoretical research of structure-function coupling and connectivity-based clinical

therapeutics.

Understanding the dynamical communication process on the connectome of structural connectivity
is a central goal of neuroscience®®. Prior studies demonstrated that the structural connectivity of
macroscale white matter tracts is associated with the functional connectivity measured by the
correlation between pairs of regional time series’?*. The cortical distribution of the regional
structure-function coupling aligns with the axis of the fundamental sensorimotor-association
cortical hierarchy!®!-?>, Moreover, the structure-function coupling changes with age and is related

to individual differences in cognition and psychopathology!®:!3-22:26.27

. Building on these studies,
our work provided a systematic examination of the group-common and individual-specific effects

of the structure-function coupling at the global and regional levels using both the linear association

and the advanced GNN.

We found that, using the GNN framework, structural connectivity reconstructed with diffusion
MRI accurately predicted unseen individuals’ functional connectivity from resting-state fMRI.
Consistent with our results, previous studies have consistently demonstrated a robust coupling

between structure and functional connectivity using a variety of interpretable models, such as
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6.13.21.23.52 " and the network

linear associations’ 2, biophysical models'*, communication models
control theory®-%. However, these interpretable models typically returned relatively small
structure-function coupling values even when accounting for indirect communication, suggesting

potentially imperfect alignment between structural and functional connectivity®’->*

. Recently,
Sarwar and colleagues found that a fully-connected neural network predicted functional
connectivity with much higher accuracy than interpretable models!®, suggesting the structure-
function coupling could be higher than previously imagined. Two recent studies employed GNN
to investigate structure-function coupling, however, they did not evaluate how the network
topology contributed to the coupling®®”. Our results extended these findings by demonstrating
that the GNN achieved higher structure-function coupling than fully-connected neural networks
and this improvement was primarily contributed by network topology. Specifically, by
randomizing the network topology of SC, our GNN model reduced the prediction accuracy by
more than 89%, whereas the fully-connected neural network reduced 20%~50% as shown in this
prior work!>. This result demonstrated that the prediction using GNN was mainly driven by the
network topology. Our result was also consistent with prior findings that GNN is better at capturing

topological representations of network data, such as cellular networks** and protein networks®,

compared to traditional deep learning approaches.

Our results also demonstrated that the structure-function coupling was dominated by the group-
common effects, and the remaining minor individual effects were also significant. The robust
group effects could underlie the past success in the estimation of structure-function coupling at the
group level®!1141618-20 " Thig result was also consistent with prior studies showing that the

functional networks were largely determined by group-common organizational principle®! while
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structural networks were even less variable than functional networks?2. As a direct support for our
results, one recent study also observed that the structure-function coupling based on a linear
association was dominated by group effects, which were consistent across six datasets with
different acquisitions or processing methods*?. However, they found that the individual effects of
structure-function coupling were only observed in one of the six datasets®’. Here, using an
advanced GNN approach and two independent, high-quality datasets, we demonstrated that the
individual effects of structure-function coupling were also robust and reproducible. Moreover, our
results indicated that the individual effects with the GNN approach were much larger than those
with the linear association approach, which potentially explained non-stable individual effects in
prior study with linear approach®. Future studies are warranted to examine how to improve
interpretable network communication models to better detect the individual effects of structure-

function coupling.

The sensorimotor-association cortical hierarchy has been proposed to be a unifying cortical
organizing principle for diverse neurobiological properties, including structure, function,
metabolic, transcription, and evolution!®!1:19:25:57-62 Particularly, recent studies have demonstrated
that the cortical distribution of structure-function coupling also aligns with the sensorimotor-

10.11 " Consistent with these prior accounts, we found that both the group and

association axis
individual effects of the regional structure-function coupling were hierarchically distributed across
the cortex along the sensorimotor-association cortical axis. More specifically, we observed that
the higher-order association cortex, which sits at the top end of the cortical axis, displayed the

highest individual effects and the lowest group effects, while the primary sensorimotor cortex

displayed the highest group effects and the lowest individual effects. Both structural and functional
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connectivity exhibited the highest inter-individual variability in the association cortex and the

lowest in the sensorimotor cortex3%3°

, which could partly support our findings. Moreover, the
sensorimotor cortex primarily comprises circuits with relatively simple and canonical feedforward
and feedback connectivity patterns®, which could potentially resulted in a high cross-individual
similarity of structure-function coupling. In contrast, the association cortex exhibits a noncanonical

circuit architecture with complicated and distributed connections®, which could lead to individual

diversity in the structure-function coupling.

Several potential limitations should be noted. First, precisely reconstructing individuals’ white
matter structural connectivity is challenging owing to the inherent limitations of diffusion MRI-
based fiber tractography. In this study, we used a currently state-of-the-art probabilistic fiber
tractography with multi-shell, multi-tissue constrained spherical deconvolution** and applied the
anatomically constrained tractography* and spherical deconvolution informed filtering of
tractograms*® to improve the biological accuracy. Moreover, we used a consistency-based
thresholding to reduce the influence of false positive connections!’. Second, the current study did
not analyze the structure-function coupling of subcortical and cerebellar structures, as these
regions require specialized analysis procedures that are different from those applied to the cortex.
Future studies may evaluate the group and individual effects of structure-function coupling in the
subcortical and cerebellar regions. Finally, while the graph neural network accurately predicted
functional connectivity with structural network topology, its black-box nature prevents us from
understanding the underlying communication mechanism supporting the prediction. However, this
result still provides a benchmark to optimize the interpretable models to explicitly explain how the

structural connectome supports the functional connectivity.
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Notwithstanding these limitations, we demonstrated that GNN captured a stronger topology-driven
coupling between structural and functional connectivity than previous models, suggesting an
avenue to improve current coupling models. Our results indicated that the individual effects of
structure-function coupling were the highest in the association cortex, which was related to
prolonged development of higher-order cognitions and confers to diverse psychopathologies?.
This result implied that structure-function coupling could be a potential neuromarker to track
individual differences in cognitive development and vulnerability to mental disorders. As
structural connectivity pathway facilitated the propagation of neurostimulation-induced
activity?%°, our findings could have implications in clinical practice of neurostimulation. The
dominated group effects in structure-function coupling could explain the experience that the same
neurostimulation target (i.e., dorsal lateral pre-frontal cortex) has benefited many different
patients®. Simultaneously, the significant individual-specific effects could explain that the

personalized stimulation targets have improved the intervention effects for certain patients®’.

Methods

HCP young adult (HCP-YA) dataset

We acquired multi-modal neuroimaging data from 339 unrelated participants (156 males, aged
22-37) from the HCP young adult (HCP-YA) dataset (release S900), including T1-weighted
structural, resting-state functional MRI (fMRI) and diffusion MRI*!. All imaging data were
acquired by a multiband sequence on a Siemens 3T Skyra scanner. Two resting-state fMRI
sessions, with two runs in each session (left-right and right-left phase-encoding), were acquired

for each participant with a resolution of 3 mm isotropic. Each resting-state run comprised 1,200
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frames for approximately 15 min in length. For diffusion MRI, data were acquired in two runs
with opposite phase-encoding directions for each participant. Each run included 270 non-collinear
directions with 3 non-zero shells (b = 1000, 2000, and 3000 s/mm?). Other details regarding the

HCP-YA dataset and MRI acquisition parameters have been described in prior study*!.

HCP development dataset (HCP-D)

This study also comprised 633 participants (294 males, aged 8-21) obtained from the HCP-
development (HCP-D) dataset (Release 2.0)*2. All data were collected using a multiband EPI
sequence on a 3T Siemens Prisma scanner. Two resting-state fMRI sessions were acquired for
each participant, with two runs in each session, using anterior-posterior (AP) and posterior-anterior
(PA) phase-encoding, respectively. Each resting-state run was approximately 6.5 min with 488
frames. Diffusion MRI data included two sessions, each with two non-zero shells (b = 1500, 3000
s/mm?) and 185 diffusion-weighted directions. Further details about the HCP-D dataset have been

described in previous study*?.

Structural and functional MRI data processing

Minimally preprocessed T1-weighted structural and functional MRI data were acquired from the
HCP-D and HCP-YA datasets®®. Briefly, structural MRI data were corrected for intensity non-
uniformity, skull-stripped, and then used for cortical surface reconstruction. Volume-based
structural images were segmented into cerebrospinal fluid (CSF), white matter, and gray matter,
and spatially normalized to the standard MNI space. Functional MRI data were preprocessed with

slice-timing, motion and distortion correction, co-registration to structural data, normalization to


https://doi.org/10.1101/2023.11.22.568257
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.22.568257; this version posted November 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MNI space, and projection to cortical surface. Functional timeseries were resampled to

FreeSurfer’s fsaverage space, and grayordinates files containing 91k samples were generated.

We then followed the post-processed protocols of eXtensible Connectivity Pipelines (XCP-D;

https://xcp-d.readthedocs.io/en/latest/)*°. Volumes with framewise-displacement (FD) greater than

0.3 were flagged as outliers and excluded’’72. We regressed out 36 nuisance regressors from the
BOLD time series, including six motion parameters, global signal, mean white matter signal, and
mean CSF signal, along with their temporal derivatives, quadratic terms, and quadratic
derivatives”. Residual timeseries were then band-pass filtered (0.01-0.08 Hz) and spatially
smoothed with a kernel size of FWHM = 6 mm. We further reduced the potential effects of head
motion by excluding subjects with two criteria’®. First, we dropped those fMRI runs that included
more than 25% of the frames with FD > 0.2 mm. Second, we calculated the mean FD distribution
for each fMRI run by pooling frames of all participants. Then, we derived the third quartile (Q3)
and interquartile range (IQR) of this distribution. Runs with mean FD greater than ‘Q3+1.5%IQR’
were excluded. We excluded 218 HCP-D and 91 HCP-Y A participants based on these two criteria.
Additionally, three participants from the HCP-Y A were excluded because of incomplete resting-
state fMRI runs (less than 1,200 frames). Consequently, 415 participants (179 males, aged 8-21)
from the HCP-D and 245 participants (114 males, aged 22-35) from the HCP-YA datasets were

included in subsequent analyses.

Functional connectivity construction with functional MRI
Functional connectivity (FC) refers to the temporal correlation of functional MRI signals. For

HCP-Y A and HCP-D datasets, we constructed FC by the following procedures. First, we extracted
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regional BOLD timeseries based on the a priori Schaefer parcellation with 400 parcels*’. Next, FC
was calculated as the Pearson correlation coefficient between each pair of regional BOLD
timeseries, resulting in a 400x400 symmetrical FC matrix for each participant. We then applied
Fisher’s z-transformation to each FC value in the matrix. Finally, the 400 parcels were mapped
onto the seven intrinsic networks from Yeo atlas*®, including the visual network (VIS),
somatomotor network (SMN), dorsal attention network (DAN), ventral attention network (VAN),

frontoparietal network (FPN), limbic network (LIM), and default mode network (DMN).

Diffusion MRI data processing

We used minimally preprocessed diffusion MRI data from the HCP-YA dataset*!. The minimal
preprocessing pipeline comprises b0 image intensity normalization across runs, EPI distortion
correction, eddy current and motion correction, gradient nonlinearity correction, and registration
to the native structural space (1.25 mm). The processed diffusion MRI data were further corrected

for B1 field inhomogeneity using MRtrix3. Diffusion MRI data from HCP-D were preprocessed

by QSIPrep (https:/gsiprep.readthedocs.io/), an integrative platform for preprocessing and

reconstructing diffusion MRI data’”, including tools from MRtrix3 (https://www.mrtrix.org/)’®.
Prior to preprocessing, we concatenated the two AP runs and the two PA runs, respectively, and
selected the frames with b-value < 100 s/mm? as the b0 image. Next, we applied MP-PCA
denoising, Gibbs unringing, and Bl field inhomogeneity correction through MRtrix3’s
dwidenoise’’, mrdegibbs™, and dwibiascorrect’”® functions. FSL’s eddy was then used for head
motion correction and Eddy current correction®. Finally, the preprocessed DWI timeseries was
resampled to ACPC space at a resolution of 1.5 mm isotropic. Particularly, a total of 11 participants

from the HCP-D were excluded from subsequent structural connectivity analyses due to
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incomplete DWI data (5 participants), tissue segmentation failure (5 participants), or the
identification of isolated regions after tractography (1 participant). Therefore, a total of 245
participants from HCP-YA and 404 participants from HCP-D were analyzed in subsequent

structure-function coupling analyses.

White matter structural network construction with diffusion MRI

We reconstructed whole-brain whiter matter tracts from preprocessed diffusion MRI data to
construct the structural connectivity (SC). Reconstruction was conducted by the
mrtrix_multishell msmt ACT-hsvs method in MRtrix3’%, which implements a multi-shell and
multi-tissue constrained spherical deconvolution (CSD) to estimate the fiber orientation
distribution (FOD) of each voxel**. Then, we followed the anatomically constrained tractography
(ACT) framework to improve the biological accuracy of fiber reconstruction®. This tractography
was performed by fckgen, which generates 40 million streamlines (length range from 30 to 250
mm, FOD power = (0.33) via a refined probabilistic streamlines tractography (iFOD2) based on the
second-order integration over FOD. The streamlines were filtered from the tractogram based on
the spherical deconvolution of the diffusion signal. We estimated the streamline weights using the
command fcksift2*6. Next, the SC matrix was constructed by tck2connectome based on the
Schaefer-400 atlas for each participant. The edge weight of SC indicates the number of streamlines
connecting two regions. For each connection, we normalized the edge weight by dividing the
average volume of the corresponding two regions®!. Furthermore, the edge weight of the SC matrix
was log-transformed, which is commonly used to shift the non-Gaussian SC distribution to the
Gaussian distribution in previous studies’. Finally, we obtained a 400x400 symmetric SC matrix

for each participant. To address potential issues with spurious SC edges arising from probabilistic
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tractography®?, we adopted a group-consistency thresholding approach as in previous studies!®83,
We calculated the coefficient of variation (CV) for edge weight across participants and
subsequently applied a threshold to individual structural connectivity matrices at the 75th

percentile for edge weight CV. The top quartile of inconsistent connections were removed.

Predicting functional connectivity from structural connectivity using graph neural networks
The graph neural network (GNN) is a deep learning framework tailored for data of topological
structure®*. Different from other deep learning methodologies, such as fully-connected neural
networks and convolutional neural networks, GNNs extract features based on the topological
structure of the network. Since both SC and FC are topological data, a GNN can be used to
investigate their topological relationship. To this end, we introduced a GNN framework to predict
the empirical FC from SC and output the predicted FC. Our proposed GNN framework consists of
two parts: (1) a two-layer graph convolutional network (GCN) to obtain node embeddings from
the SC; (2) a two-layer multi-layer perceptron (MLP) that takes two node embeddings as inputs

and predict the FC between them (Fig.1a).

Graph convolutional network. The main component of our graph neural network is the graph
convolutional network (GCN)*’. GCN generates node embeddings, representing the neighboring
topological structure for each node. We denoted the node embedding generated from [ layer GCN
as H' € RVt where [ € {1, ..., L} represents the layer index and C, represents the embedding
dimension of layer [. H® is the exception representing the dimension of the input features of GCN.
The input features are one-hot vectors that indicate the brain region of each node. Through message

passing, the node embedding from the [ layer will pass along the network connectivity, denoted
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its adjacency matrix as A, towards their neighboring nodes, convoluted by a GCN layer to get the
node embedding of the (I + 1)™ layer. In our work, 4 is the adjacency matrix of SC, i.e., A €
RE*K K = 400 is the number of nodes for the Schaefer-400 atlas. Therefore, the update equation
of the node embedding from the [ layer to the (I + 1)™ layer is denoted as:

H"™! = GCN(H, A)
With L layers in total, this message passing allows each node to embed its L-hop topological

neighborhood. The concrete equation is formulated as:

11
H'*' = PReLU(D 2 4 D2

H! Wen)

where Wk € REXCi+1 is the trainable weight at the [ layer. 4 is the adjacency matrix with self-
loop added, i.e., A = A + I, where Iy € RX*X is the K-dimension identity matrix. D is the
diagonal matrix, with the diagonal value D;; equals to the nodal strength of node i in A. As such,

D=2 AD'? is the symmetric normalized Laplacian of the SC. We adopted the PReLU

(Parametric Rectified Linear Unit) as the activation function due to its superior performance®’:

X x=0
ax x < 0, a is trainable

PReLU(x) = {
Multilayer perceptron. Subsequently, we used a pair of node embeddings as input to predict the
functional connectivity between them by a two-layer multi-layer perceptron (MLP) with ReLU
(Rectified Linear Unit) as the activation function (i.e., ReLU(x) = max(0, x)) after the first output
layer. No activation function was used for the second layer. Specifically, for two node embeddings
of node i and j, represented by h;, h; € H, the predicted FC, termed pFC;; € pFC, between them

is calculated as:

pFC;; = MLP(h;, hj, Wyp) € pFC
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Model training and validation. To train our graph neural network model, we minimized the mean

square error between the predicted FC and empirical FC with L2-regularizaion:

_ 1 1 2 2
LMSE_N_b Z MM —1) Z (PFCi; — eFCi;)" + 4 Wyl

n=1..Np ij=1..K; i#]
where eFC;; € eFC is the empirical FC between node i and j. We adopted L2-regularization on
the MLP’s weights with regularization parameter A. We trained the model through batched
gradient descent with a batch of N, subjects and the Adam optimizer®. In addition, since FC is a
symmetric matrix, we employed the (pFC;; + pFC;;)/2 as the final predicted FC between node i
and j for testing and further analysis. For both datasets, we randomly split 50% of the subjects as
the training set, with the remaining 50% for testing and subsequent structure-function coupling
analysis. By grid search based on the model’s performance for 5-fold cross validation on the
training set, we set the hyperparameter as: layer number (L=2), dimension for GCN
(400%256%256), dimension for MLP (512x64x1), batch size (2), learning rate (0.0001),
regularization parameter (4=0.0001), and training epochs (400). The graph network model was

built and trained using Pytorch and PyTorch Geometric. More details about implementations could

be found in the code repository at https://github.com/PeiyuChen2023/GNN_SC_FC.

Structure-function coupling measured by linear and GNN models

In this work, we evaluated the structure-function coupling using both a linear model and our
proposed GNN model. The linear model assesses the Pearson correlation between SC and FC,
focusing solely on direct connections with nonzero edge strength. However, functional

connectivity can emerge from polysynaptic communication on structural connectome™S. The GNN
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has the capability to capture both the direct and indirect functional communications based on the
sparse SC. For each dataset, all participants were split into two subsets with one used as training
and another used as testing set. The GNN model trained on all participants in the training set was
used to predict the FC for the testing participants with their SC as input. The structure-function
coupling was calculated as the Pearson correlation between the predicted and empirical FC for
each participant in the testing set. At the group level, we used the model from training data and all
testing participants’ average SC as input to predict the average FC. We calculated the Pearson
correlation between the predicted and empirical average FC as the structure-function coupling at

the group level.

We also estimated the structure-function coupling at both the whole-brain and regional levels. At
the whole-brain level, we extracted the upper triangle elements (79,800 unique edges) from either
the 400400 SC matrix or the predicted FC matrix, creating a structural profile vector.
Simultaneously, we extracted the upper triangle elements from the empirical FC matrix, forming
a functional profile vector. We calculated the Pearson correlation between the structural profile
and functional profile across all connections at global level. At the regional level, we first defined
the regional structural and functional profiles. For the i™" cortical region, we defined its structural
or functional profile as the connections to all other cortical regions, which were represented by the
i™" row (399x1) from the connection matrix. The regional structure-function coupling was
determined by calculating the Pearson correlation between the structural profile and functional

profile of each cortical region, enabling us to generate a cortical map of regional structure-function

coupling for both the linear and GNN models. Notably, all participants were involved and analyzed
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in the linear model based coupling, whereas the structure-function coupling based on the GNN

model were derived from the testing set, comprising 50% of the participants.

Calculating group-common and individual-specific effects in structure-function coupling

A previous study indicated that the individual FC is contributed by both group-common and stable
individual-specific factors’!. Following the similar approach, we aimed to distinguish between
group-common and individual-specific effects in structure-function coupling using both linear and
GNN models. To achieve this, we computed the structure-function coupling both within-individual
and between each pair of different participants, resulting in a participant-by-participant
asymmetrical matrix of structure-function coupling (Fig. 3a). In this matrix, the element in the i*?

row (SC or predicted FC from subject i) and j* column (FC from subject j), termed as cp; j>

represents the structure-function coupling between the i*" and j™ participants. The diagonal
elements of the matrix measure the structure-function coupling within individual, while the off-
diagonal elements estimate the coupling between one individual’s SC and another individual’s FC.
We referred to the within-individual coupling and between-individual coupling as 'matched
coupling' and 'mismatched coupling', respectively. In this study, we treated the averaged between-
individual coupling as a group-common variance in the coupling across populations. This strategy
has been used in prior study of effects in function networks®!. We supposed that the total effects
of within-individual coupling encompass both group-common and individual-specific effects.
Therefore, we defined the group-common and individual-specific effects of structure-function

coupling as follows:

1
Cpgroup:m Z CPi,j

ij=1..N; i#]
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1
CPindividual = N Z CPi,i — CPgroup

i=1..N

where N corresponds to the number of participants. Given our finding that individual structure-
function coupling is primarily dominated by the group-common effect, with minor individual-
specific effects (see Results), we proceeded to assess the statistical significance of these individual
effects. For this purpose, we defined the matched coupling and mismatched coupling for each
subject (Fig. 3d). Specifically, the mismatched coupling of subject i was defined by the averaged
coupling from all elements in the i™® row (SC or predicted FC from subject i, FC from other
subjects) and i™® column (FC from subject 7, SC or predicted FC from other subjects), except the
within-individual coupling. The matched and mismatched coupling for each subject i is defined
as:

CPmatch,i = CPii
1
CPmismatch,i = 2IN=1) Z | '(Cpi,j +cpji)
j=1..N; j#i

We considered the individual-specific coupling effects significant if matched coupling were
statistically higher than mismatched coupling across participants. We conducted a two-sided

paired t-test to examine the differences between matched coupling and mismatched coupling

across all participants.

These analyses of group and individual effects in the coupling were first performed at the global
level and then applied to each cortical region. It is noteworthy that only nonzero edges were

examined in the linear model for both whole-brain and regional analyses.
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Alignment between cortical maps of group and individual effects of structure-function
coupling and the sensorimotor-association cortical axis

The sensorimotor-association axis has been consistently reported as a unifying organizing
principle of both anatomical and functional properties across cortex?. A previous study has also
identified a negative association between structure-function coupling and sensorimotor-
association axis rank!?. Here, we further investigated how group-common and individual-specific
coupling align with the sensorimotor-association cortical axis, respectively. We acquired a cortical
map of sensorimotor-association axis parcellated with Schaefer-400 atlas from Sydnor et al.?.
Cortical regions were continuously ranked along this axis, with the primary sensorimotor cortices
representing the lowest ranks and the higher-order association cortices representing the highest
ranks. For both linear and GNN models, we calculated the Spearman’ rank correlation to assess

the alignment between the sensorimotor-association cortical axis and regional group-common

effects as well as individual-specific effects across all cortical regions.

Null models

Rewiring networks. To evaluate the contribution of network topology in structure-function
coupling, we utilized the Maslov-Sneppen rewiring algorithm to rewire individual SC. This
process retained fundamental topological properties such as nodal degree and strength while
randomizing topological structure. Furthermore, rewired networks preserved inter-node
communication without creating isolated nodes. This algorithm was implemented via the Python

version of the Brain Connectivity Toolbox (https://github.com/aestrivex/betpy)®’. For the linear

model, we rewired SC from all individuals and re-evaluated the Pearson correlation between the

rewired SC and FC for each participant. For the GNN model, we employed two strategies to assess
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the impact of network topology. Firstly, we aimed to evaluate how much the GNN model could
learn from the higher-order topology, so we only rewired SC in training data to acquire a
topological-null GNN model. We did not rewire the SC in the testing set. We next used this
topological-null GNN model to predict FC from SC in the testing set. Then, we re-evaluated the
Pearson correlation between the predicted FC and FC for each participant in the testing set.
Secondly, we trained the GNN model with the original SC and utilized the rewired SC to predict
FC in the testing set. We again re-evaluated the Pearson correlation between the predicted FC and
FC for each participant in the testing set. This strategy aimed to directly compare the contribution
of the SC topology to our GNN with its contribution to the fully-connected network in a prior

study'’.

Spin test. We employed the spin test to evaluate the significance of the spatial correspondence
between group-common and individual-specific effects of structure-function coupling and
sensorimotor-association cortical axis’!. Particularly, the spin test generated a null distribution by
randomly rotating brain maps while maintaining the original spatial covariance structure®'. This
approach projected the group and individual effects onto a spherical cortical surface of the
FreeSurfer’s fsaverage space and then randomly rotated 10,000 times to generate a list of rotated
maps. Next, we calculated the Spearman’s rank correlation between each rotated map and the
sensorimotor-association axis map to construct a null distribution. The P value (Pspin) Was
determined by calculating the ratio of instances whose null correlations exceeded the empirical

correlation coefficients.

Sensitivity analyses
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One main result of this study is that the individual-specific effects of structure-function coupling
showed a hierarchical pattern across the cortex that positively aligned with the sensorimotor-
association cortical axis. However, as individual-specific effects are derived by subtracting the
group-common effects from total effects of the coupling, larger total effects might numerically
lead to larger individual-specific effects. To address this potential scaling issue, we defined the
'normalized individual effect' by dividing the individual effect by the total regional structure-
function coupling, representing the proportion of the individual effect to the total effect.
Subsequently, we reevaluated the alignment between the normalized individual effects and the

ranks of the sensorimotor-association cortical axis for the GNN model.

We also assessed the robustness of our main results to another cortical parcellations. In addition
to the Schaefer atlas comprising 400 cortical regions used in our primary analyses, we validated
our GNN models using the Schaefer atlas with 200 cortical regions*’. First, we constructed the
connectome of FC and SC for each participants using the Shcaefer-200 and retrained the GNN
model. Then, we distinguished the group-common and individual-specific effects of structure-
function coupling, and verified the significance of individual-specific effects with Schaefer-200.
Finally, we obtained the cortical maps of group-common and individual-specific effects of
structure-function coupling and re-evaluated their alignment with the sensorimotor-association
cortical axis. Specifically, leveraging the vertex-wise surface map of sensorimotor-association axis
in the fSLR-32k space®®, we computed the parcel-level sensorimotor-association axis rank values

of Schaefer-200 by averaging rank values from all vertices within each parcel.

Data availability

The HCP-Y A and HCP-D datasets are available at https://db.humanconnectome.org/.
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Code availability
All code wused to perform the analyses in this study can be found at

https://github.com/PeiyuChen2023/GNN_SC FC.
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