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Abstract 
Hypoxia is an important factor in the adaptation of tumor cells to their environment, 

contributes to their malignant progression, and affects tumor prognosis and drug sensitivity. 

Although there is a wealth of transcriptomic data stored in public databases, there is a lack of 

web-based tools for analyzing these data to explore the link between hypoxia and the 

mechanisms of tumorigenesis and progression. To this end, we have developed an interactive 

web-based tool called THER, which is designed to help users easily identify potential targets, 

mechanisms of action and effective drugs for treating hypoxic tumors. THER integrates 63 

transcriptomic tumor hypoxia datasets from the Gene Expression Omnibus (GEO) database, 

covering 3 species, 18 tumor types and 42 cell line types. This web tool provides five modules 

that allow users to perform differential expression analysis, expression profiling analysis, 

correlation analysis, enrichment analysis and drug sensitivity analysis on different datasets 

based on different oxygen statuses. We expect that users will be able to use the tool to 

identify valuable biomarkers, further reveal the molecular mechanisms of tumor hypoxia, and 

identify effective drugs, thus providing a scientific basis for tumor diagnosis and treatment. 

THER is open to all users and can be accessed without login at 

https://smuonco.shinyapps.io/THER/. 
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Introduction 
Tumor hypoxia refers to the gradual decrease in the rate of ATP production in cells or tissues 

when the partial pressure of oxygen drops below a critical level, and hypoxia occurs within the 

tumor, thus contributing to the malignant development of tumor cells to adapt to their 

environment(1). Several studies have shown that a series of changes induced by hypoxia 

play an indispensable role in tumor development; for example, hypoxia-induced acetylation of 

PAK1 and phosphorylation of ATG5 promote brain tumor formation(2). Under the selective 

pressure of hypoxia, tumors can make themselves invasive or metastatic through various 

mechanisms. In addition, hypoxia induces TP53 point mutations and copy number variations 

in many types of tumors, making them more aggressive(3). Hypoxia activates ATAD2 

expression through hypoxia-inducible factor (HIF-1α), leading to increased mitochondrial 

reactive oxygen species (mtROS) levels, which increases the aggressiveness of lung 

cancer(4). 

Based on the importance of hypoxia in tumorigenesis and development, hypoxia phenotypes 

have been used in several studies to explore their importance in tumor prognosis. For 

example, in cervical and head and neck cancers, patients with hypoxic tumors showed poor 

prognosis(5-8). Moreover, hypoxic tumors show resistance to radiotherapy and 

immunotherapy(8-10). However, the effect of hypoxia on the development, progression, and 

sensitivity to drugs may be quite different in different tumors. For example, ACHN, A2780, 

NT2, NCCIT, and 2102 EP cells under hypoxic conditions have decreased sensitivity to most 

drugs, whereas H69 and MCF7 cells have increased sensitivity to most drugs(11,12) but the 

mechanistic differences have not yet been clarified. Therefore, we hope to explore the 

mechanisms of hypoxia-induced tumorigenesis and development, identify new markers for 

assessing hypoxia-induced tumorigenesis and development, and identify effective drugs for 

treating hypoxic tumors, thus providing important guidance for the development of tumor 

diagnosis and treatment strategies. 

Hypoxia is an important topic of interest in the field of oncology; consequently, there is an 

extremely rich amount of transcriptomic data stored in public databases, providing an 

unprecedented possibility to study the effect of hypoxia on tumorigenesis, progression and 

drug resistance. However, analysis of transcriptomic data to explore the link between hypoxia 

and the mechanisms of tumorigenesis and progression still requires a certain programming 

foundation, which poses a great challenge for most clinical researchers who do not have 

basic programming knowledge. Therefore, we developed an online web analysis tool called 

THER. On this platform, users can analyze the results of their research based on tumor 

hypoxia-associated transcriptomic datasets from the GEO database, and based on different 

oxygen states (hypoxia/normoxia), differential expression, expression profiling, correlation, 

enrichment, and drug sensitivity analyses can be easily and quickly performed. This tool can 

enable users to identify potential diagnostic, prognostic, predictive, and pharmacodynamic 

biomarkers of tumor hypoxia to further explore the molecular mechanisms involved in 

hypoxia-induced tumor development to provide an important scientific basis for tumor 

diagnosis and treatment. 
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Material and Methods 
The THER website (https://smuonco.shinyapps.io/THER/) allows users to individually perform 

differential gene expression, expression profiling, correlation, enrichment and drug sensitivity 

analyses. The web tool is built on the shiny package(13) for the R script (version 4.1.1, 

https://www.r-project.org/) and deployed based on shinyapps.io. 

Data Collection 
We searched the GEO database with the keyword “hypoxia” and filtered the results. We only 

included (i) tumor datasets, (ii) samples treated with hypoxia or normoxia only, (iii) datasets 

with more than 3 samples in both the hypoxia and normoxia groups, (iv) data for Homo 

sapiens, Mus musculus or Rattus norvegicus, and (v) transcriptomic datasets. We finally 

collected 63 datasets as built-in datasets, including 18 tumor types and 42 cell line types. 

  

Data Preprocessing 
High-Throughput Sequencing 

We preprocessed the raw count data using the DESeq package(14), constructed the 

DESeqDataSet object by the DESeqDataSetFromMatrix function, filtered the low abundance 

data, performed the differential expression analysis by the DESeq function and normalized 

the matrix of expression values by the rlog function. 

Affymetrix Arrays 

We used the affy package(15) to preprocess the raw data of the HGU95, HGU133 and 

MGU74 series, read the raw data with the ReadAffy function, and perform background 

correction, normalization and expression calculation with the rma function on the raw data. 

We used the oligo package(16) to preprocess the raw data of other series, read the raw data 

with the read. celfiles function, and perform background correction, normalization and 

expression value calculation with the rma function on the raw data. 

Illumina BeadArray 

We used the lumiR.batch function and the lumiExpresso function in the lumi package(17) to 

read, background correct and quantile standardize the raw data. 

Agilent arrays 

We used the backgroundCorrect function and normalizeBetweenArrays function in the limma 

package(18) to background correct and quantile standardize the raw data, respectively. 

  

Analysis Modules 
Data 

We used the DT package (https://rstudio.github.io/DT/shiny.html) to present specific 

information about the 63 built-in datasets and set the table styles with css. Using the 

shinydashboard package, the number of datasets, hypoxia sample sizes, and normoxia 

sample sizes were presented in the table. 

Differential Expression Analysis 

We used the limma package for gene expression differential analysis, and the p value 

obtained from the t test was linked to the mean expression of the hypoxia group minus the 

mean expression of the normoxia group (i.e., log2FC) to determine whether the genes were 

significantly different genes. The p value cutoff was set to 0.05 by default, and the |log2FC| 
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value cutoff was set to 1 by default. We then displayed the results of the differential 

expression analyses in visual charts using the ggplot2 (version 3.3.5, https://cran.r-

project.org/web/packages/ggplot2/index.html) and ggrepel packages for volcano plots, the 

pheatmap package(19) for heatmaps, and the DT package for tables. 

Expression Analysis 

The p value indicating the significance of differentially expressed genes was calculated by the 

Mann�Whitney U test. We presented the results of the expression profiles in visual charts, 

using the ggplot2 package to draw boxplots and barplots, using the ggpubr package to 

display the p values in graphs, and using the DT package to generate tables. 

Correlation Analysis 

We downloaded GO terms, KEGG pathways, Reatome pathways, and Wikipathways from the 

Molecular Signatures Database (MsigDB)(20). The relative expression activity of the 

pathways was calculated by including all genes in the selected dataset using the ssgsea 

method with the gsva function in the GSVA package(21). Our correlation analyses use the 

Spearman method by default and allow the user to select the Pearson method. We then 

presented the results of the correlation analysis in visual charts, using the ggplot2 package to 

plot scatter plots and the ggpubr package(22) to display the correlation coefficients and p 

values in the plots, using the corrplot package(23) to generate correlation heatmaps, and 

using the circlize package(24) to establish chord diagrams. 

Enrichment Analysis 

We used the Over Representative Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) 

algorithms in the clusterProfilter(25) and ReactomePA(26) packages as well as the Gene Set 

Variation Analysis (GSVA) algorithm in the GSVA package to perform enrichment analysis 

based on four annotation databases: GO terms, KEGG pathways, Wikipathways, and 

Reatome pathways. In the GSEA and GSVA algorithms, we included all genes in the selected 

datasets, while in the ORA algorithm, we only included significantly differentially expressed 

genes in the selected datasets. The p value and q-value intercept values were set to 0.05 in 

both the GSEA and ORA algorithms, while the GSVA algorithm set |log2FC| to 1 and the p 

value to 0.05 in both algorithms. Subsequently, we presented the results of the enrichment 

analyses in visual charts, using the enrichplot package(27) to plot dotplots, barplots and 

GSEA plots, the ggplot2 package to plot ridgeplots, the pheatmap package to plot heatmaps, 

and the DT package to produce tables. 

Drug Sensitivity Analysis 

We used the pRRophetic package(28) to calculate the concentration of drug required to 

inhibit half of the tumor cells (IC50). The drug parameter of the pRRopheticPredict function 

has 138 drug names, and calculating these 138 drugs gives us. The result is the IC50 after 

processing with log. Subsequently, we presented the results of the drug sensitivity analysis in 

visual charts, using the ggplot2 package for boxplots, the pheatmap package for heatmaps, 

and the DT package for tables. 

  

Example 
We checked the number of samples of cell line types included in this web tool at the bottom of 

the Home page and selected the cell line with the largest number of samples to be studied. 

Using the "DEG" module, one of the datasets from the cell line under investigation was 
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selected for differential analysis, and the top five significantly differentially expressed genes in 

descending order of |log2FC| values were screened. (|log2FC| > 1; p value ≤ 0.5) as 

candidate marker genes. Subsequently, we searched PubMed for these candidate marker 

genes and found that four of them had been reported as differential hypoxia genes in the cell 

lines under investigation, and the unreported genes were used as differential hypoxia genes 

in the cell lines under investigation. To further verify the reliability of the target genes as 

candidate marker genes, the "DEG" module was used again, and it was found that the 

candidate marker genes were significantly upregulated in six of the seven MCF7 cell line 

datasets. At the same time, to further investigate the role of this gene in the adaptation of 

tumors to hypoxic environments, we used the "Enrichment" module and performed 

enrichment analysis based on the ORA method. In addition, we used the "Correlation" module 

to perform correlation analysis based on the Spearman method to explore the correlation 

between the expression of the candidate marker genes and the expression of the pathway-

related genes to verify the mechanism of the candidate marker genes. 

  
Results 
THER preprocesses 63 hypoxia-associated transcriptome datasets in advance so that users 

can perform analysis and visualization easily and quickly. THER contains five analysis 

modules, namely, the differential expression analysis module, expression profiling module, 

correlation analysis module, enrichment analysis module, and drug sensitivity analysis 

module (Figure 1). Under the five analysis modules, there are 17 subanalysis modules, and a 

description button is designed in the upper left corner of the output page of each subanalysis 

module, which is designed to help the user quickly understand the operation method and 

meaning of each subanalysis module. Users can use these analysis modules to 

autonomously explore various features in tumor samples under hypoxia/normoxia conditions 

to investigate the changes that occur in tumors in hypoxic environments. The analyses are 

available for download, allowing users to export spreadsheets in csv format and high-

resolution images in both png and pdf formats and to customize the length and width of the 

images. 

  

Data 
Below the Data module, general information about the 63 datasets included in THER is 

shown,and more detailed information about the datasets is available to the user by clicking on 

the plus button on the left side of each column in the table; thus, the user can quickly locate 

the dataset of interest and jump directly to the analysis module of the corresponding dataset 

by clicking on the black jump button in the first column of the table. Additionally, this module 

provides users with a search bar for filtering datasets of interest based on cancer types and 

cell line types and displays the number of eligible datasets, the number of samples with 

hypoxia, and the number of samples with normoxia at the top of the page. 

  

Differential Expression Analysis 
The DEG analysis module consists of three submodules, volcano, heatmap and table (limma), 

which allow the user to compare the differences in gene expression between the normoxia 

and hypoxia groups and to present the results of the limma differential expression analysis 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.21.568188
http://creativecommons.org/licenses/by-nc/4.0/


 

 6

according to oxygen status in different formats (Figure 2). 

Volcano 

The submodule volcano allows the user to visualize volcano plots indicating whether the 

expression of genes are significantly upregulated, significantly downregulated or not 

significantly regulated in the hypoxia group relative to the normoxia group (Figure 2B). Users 

are free to select the dataset of interest and can choose to display custom genes or the top 

genes in descending order by |log2FC| value, i.e., the most upregulated and downregulated 

genes, for visualization. The user can also adjust the plot by selecting the p-value cutoff, the 

|log2FC| cutoff and the color scheme of the volcano plots in the panel that expands when the 

“Extra Parameters” button is clicked. 

Heatmap 

The submodule heatmap allows users to visualize heatmaps illustrating the expression levels 

of genes in different samples and the results of significant differences in different oxygen 

states (Figure 2A). Users are free to select the dataset of interest and can choose to display 

custom genes or visualize the top genes in descending order by |log2FC| value, i.e., the most 

upregulated and downregulated genes. Users can also adjust the plot by choosing whether to 

normalize by rows or columns, whether to show values in heatmaps, whether to cluster by 

columns, and the color scheme of the heatmaps in the panel that expands when the “Extra 

Parameters” button is clicked. 

Table (limma) 

The table submodule allows users to view the results of the differential expression analysis in 

tabular formats (Figure 2C), including the level of significant difference, |log2FC| value, mean 

expression value or count mean, p value and adjusted p value. This module supports not only 

the user's choice to display all genes but also the user's choice to display only significantly 

differentially expressed genes; thus, the user can quickly filter the results. 

  
Expression Analysis 
The expression module consists of three submodules, boxplot, barplot and table (wilcox-test), 

which allow users to compare the expression differences of single or multiple genes between 

the normoxia and hypoxia groups, to present the expression values of the genes in different 

oxygen states in different formats and to determine whether the genes being investigated are 

significantly differentially expressed genes between oxygen states by using a Mann�Whitney 

U test (Figure 3). The Mann�Whitney U test was used to determine whether the genes 

explored were significantly differentially expressed genes between oxygen states (Figure 3). 

Boxplot 

In the boxplot submodule, users can select a single gene of interest and show its differential 

expression in the hypoxia and normoxia groups as boxplots (Figure 3B). Users can also 

adjust the plot by selecting the p value presentation format and the color scheme of the 

boxplots in the panel that expands when the “Extra Parameters” button is clicked. 

Barplot 

The Barplot submodule allows the user to select two to nine genes of interest and present the 

differential expression of the selected genes between groups in the form of barplots (Figure 

3A). Users can also adjust the image by selecting the p value presentation and the color 

scheme of the barplots in the panel that expands when the “Extra Parameters” button is 
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clicked. 

Table (Wilcox Test) 

In this submodule, users can view the expression values, p values, whether the genes are 

significantly differentially expressed, and the trend of significantly differentially expressed 

genes in the hypoxia and normoxia groups after log2 conversion in tabular formats (Figure 
3C). 

  

Correlation Analysis 
The correlation analysis module contains three submodules, scatter, correlation heatmap and 

chord diagram, which allow the user to freely compare gene-to-gene, gene-to-pathway, and 

pathway-to-pathway correlations to explore possible connections (Figure 4). 

Scatter 

In the scatter submodule, users can freely choose to explore the correlation between the 

expression of two different genes, the relative expression activity of a gene and a pathway, or 

the relative expression activity of two different pathways and present the visualization results 

in the form of scatter plots (Figure 4C). Users can also adjust the plot by selecting the 

correlation analysis method, the type of edge plot and the color scheme of the scatter plot in 

the panel that expands after clicking the “Extra Parameters” button. 

Correlation Heatmap 

The correlation heatmap submodule allows users to freely choose to explore the correlation 

between the expression of multiple different genes, the expression of multiple genes with the 

relative expression activity of multiple pathways, or the relative expression activity of different 

pathways with a correlation heatmap. The results are presented graphically (Figure 4A). The 

user can also adjust the plot by selecting the correlation analysis method and the visualization 

shape of the correlation heatmaps in the panel that expands after clicking on the “Extra 

Parameters” button. 

Chord Diagram 

In the chord diagram submodule, users can freely choose to explore the correlation between 

the expression of multiple different genes, the expression of multiple genes and the relative 

expression activity of multiple pathways, or the relative expression activity of different 

pathways and present the visualization results in the form of chord diagrams (Figure 4B). 

Users can also adjust the plot by selecting the correlation analysis method and the 

transparency of the central lines of the chord diagrams in the panel that expands after clicking 

the “Extra Parameters” button. 

  

Enrichment Analysis 
The Enrichment Analysis module consists of five submodules: dotplot/barplot, ridgeplot, 

GSEA plot, heatmap (GSVA), and table, which present the results of differentially enriched 

pathways in different formats (Figure 5). This module helps users correlate genes with 

functions and provides an opportunity to discover potential biological pathways related to 

tumor hypoxia. 

Dotplot/Barplot 

This submodule allows users to select either ORA or GSEA methods. Users are free to select 

the dataset of interest and can choose to visualize either the top pathways in ascending order 
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by p value or custom pathways. The visualization of differentially enriched pathways in 

different oxygen states obtained by ORA or GSEA methods is shown as dotplots (Figure 5A). 

The visualization of the differentially enriched pathways obtained by the GSEA method is 

shown as barplots (Figure 5B). Users can also adjust the plot by selecting the variable 

represented by the X-axis and the variable represented by the color in the panel that expands 

after clicking the “Extra Parameters” button. 

Ridgeplot 

The ridgeplot submodule uses the GSEA enrichment analysis method to show the 

visualization results of differential pathways in different oxygen states in the form of ridgeplots 

(Figure 5D). Users are free to select the dataset of interest and can choose the top pathways 

in ascending order by p value or custom pathways for visualization. The user can also adjust 

the plot by selecting the variable represented by the color of the fill in the ridgeplot and the 

transparency of the ridgeplot in the panel that expands after clicking the “Extra Parameters” 

button. 

GSEA Plot 

The GSEA plot submodule uses the GSEA method to show the visualization results of 

differential pathways in different oxygen states in the form of GSEA plots (Figure 5C). Users 

are free to select the dataset of interest and the pathway of interest for visualization. Users 

can also adjust the plot by selecting the form and color of the enrichment curves in the GSEA 

plot in the panel that expands after clicking the “Extra Parameters” button. 

Heatmap (GSVA) 

This submodule uses the GSVA enrichment analysis method to present the results in the form 

of heatmaps (Figure 5E), visualizing the GSVA score levels of the pathways in different 

samples as well as the results of significant differences in different oxygen states. Users are 

free to select the dataset of interest and can choose the top pathways in descending order of 

|log2FC| values or customized pathways for visualization. Users can also adjust the plot by 

selecting whether to normalize by row or column, display values in heatmaps, cluster by 

column and change the color scheme of the heatmaps in the panel that expands when the 

“Extra Parameters” button is clicked. 

Table 

The table submodule allows users to view the enrichment analysis results of the dataset of 

interest performed by the ORA, GSEA and GSVA enrichment methods in tabular form (Figure 

5F-G). 

  

Drug Sensitivity Analysis 

The drug sensitivity analysis module contains three submodules, heatmap, boxplot and table, 

which allow users to compare the differences in drug sensitivity between samples in different 

oxygen states. The three submodules present the results of the drug sensitivity analyses in 

different formats and use the Mann�Whitney U test to determine whether or not the 

differences in the logIC50 values for the drugs presented are significant between samples in 

the hypoxia and normoxia groups (Figure 6). 

Heatmap 

This submodule allows users to visualize the level of semi-inhibitory concentration of the 

drugs in different samples in the form of heatmaps (Figure 6B) and significantly different 
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results in different oxygen states. Users are free to select the dataset of interest and can 

choose to visualize the customized drugs or the top drugs in descending order of |log2FC| 

values, i.e., the drugs with the most upward and downward adjustments. Users can also 

adjust the plot by selecting whether to normalize by row or column, show values in the 

heatmap, cluster by column and change the color scheme of the heatmap in the panel that 

expands after clicking on the “Extra Parameters” button. 

Boxplot 

In the boxplot submodule, users can select two to nine drugs of interest and present the 

difference in logIC50 values between the hypoxic and normoxic groups in the form of a box 

plot  (Figure 6A). Users can also adjust the plot by selecting the p value presentation format 

and the color scheme of the boxplots in the panel that expands when the “Extra Parameters” 

button is clicked. 

Table 

Users can view the logIC50 values, p values, the level of significant differences, and the trend 

of significant differences for drugs in the hypoxia and normoxia groups in a tabular format in 

this submodule (Figure 6C). 

  

Example 

We chose the cell line MCF7 (Figure 7A), which contains the largest number of samples in 

this web tool, for multimodule exploration. One of the datasets of the MCF7 cell line, 

GSE70805, was selected for differential expression analysis to screen the top five most 

significantly differentially expressed genes (Figure 7B). All except ENO2 have been reported 

as differential hypoxia genes in MCF7 cells(29-32) (Figure 7C). Moreover, ENO2 has been 

reported to be significantly upregulated in hypoxia-associated solid tumors, including liver 

cancer(33), laryngeal cancer(34), gastric cancer(35), glioblastoma(36) and melanoma(37), 

and could be a candidate target. However, there is no report on the changes in and role of 

ENO2 in hypoxia-treated MCF7 breast cancer cells. Based on the above findings, we suggest 

that ENO2 could be a candidate marker gene for hypoxia-treated MCF7 cells. Moreover, 

ENO2 was found to be significantly upregulated in six of the seven MCF7 cell line datasets 

(Figure 7C, Figure S1), which further validated the reliability of ENO2 as a candidate marker 

gene. ENO2 has been reported to function in hypoxia-associated tumors through the 

glycolytic pathway(33,38). Similarly, enrichment analysis showed that multiple glycolytic 

pathways were differential pathways in MCF7 cells (Figure 7E), and all of these pathways 

were involved in ENO2 (Figure 7F). To further validate the pathway of ENO2 in tumor 

adaptation to a hypoxic environment, we performed Spearman correlation analysis and found 

a significant positive correlation between ENO2 and glycolysis-related genes (Figure 7D, 

Figure S2). In addition, pathway enrichment analysis revealed that ENO2 plays a role in the 

dysregulation of nucleotide metabolism (Figure S3). This may reveal potential pathways for 

ENO2 to promote the rapid adaptation of tumor cells to hypoxic environments through its 

involvement in glycolytic reprogramming and the dysregulation of nucleotide metabolism. 

  

Discussion 
Hypoxia drives tumorigenesis and makes tumors more likely to acquire invasiveness, and it is 

particularly important to clarify the molecular mechanisms of hypoxia in tumorigenesis and 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.21.568188
http://creativecommons.org/licenses/by-nc/4.0/


 

 10

development. In addition, identifying effective drugs during tumor hypoxia and screening for 

potential diagnostic, prognostic, predictive, and pharmacodynamic markers has important 

research and clinical implications. To address this need, we designed and successfully 

developed an online web tool called THER for comprehensive analysis and visualization of 

hypoxia-related data. The built-in datasets of the platform are 63 tumor hypoxia-related 

transcriptome datasets derived from the GEO database, covering 3 species (Homo sapiens, 

Mus musculus and Rattus norvegicus), 18 tumor types, and 42 cell line types. 

THER is a feature-rich web tool for tumor hypoxia that provides users with five analysis 

modules. First, in the DEG module and expression module, users can screen for potential 

biomarkers. Next, in the correlation module and enrichment module, users can explore in 

depth the molecular mechanisms of hypoxia-induced tumor development. Subsequently, 

users can identify effective drugs against hypoxic tumors in the drug sensitivity module. In 

conclusion, this web-based tool explicitly assists clinical doctors and researchers who may 

not be adept in programming to easily identify potential targets, function mechanisms and 

potentially effective drugs against hypoxic tumors that may lead to discovering new targets 

and therapeutic approaches against these tumors. 

THER serves as an online web tool that can provide users with an opportunity to explore 

potential tumor hypoxia-associated biomarkers and investigate their underlying mechanisms. 

For example, ENO2 may promote tumor progression toward malignancy through the 

glycolytic pathway and may act synergistically with other glycolysis-related genes, which is 

consistent with existing reports(11,33). ENO2 encodes a glycolytic enzyme involved in the 

energy release phase of glycolysis(39,40). Under hypoxic conditions, breast cancer cells 

exhibit an enhanced glycolytic phenotype, resulting in upregulation of the expression of genes 

encoding glycolytic enzymes, including ENO2, and increased glycolytic energy production(38). 

Moreover, silencing ENO2 shows synergistic effects with anti-glycolytic drugs(41). 

Furthermore, in breast cancer cells, simultaneous inhibition of ENO2 and the activity of 

another glycolytic gene, ALDOC, significantly suppresses lactate production and reduces the 

adaptability of tumor cells to the hostile environment(11). This example demonstrates the 

significant value of the THER web tool in studying tumor hypoxia-related biomarkers and 

mechanisms to discover potential targets for tumor therapy. 

Notably, THER only explores the effect of direct oxygen status on tumor cells and does not 

yet address factors that indirectly affect oxygen status (e.g., different altitude levels and HIF-

1α expression levels). In addition, THER has some shortcomings: 1) The sample size of the 

dataset is limited, so there is a risk that the error distribution may deviate from the normal 

distribution(42). 2) The number of datasets included for some cancer types or cell lines is 

small. Nevertheless, the datasets will be continuously updated in THER. 3) Many studies 

have already demonstrated that the effect of hypoxia on the tumor microenvironment and the 

interaction between hypoxia and immune cell infiltration is very complex(43-45). Therefore, 

the THER immune infiltration analysis module will be updated. 

  

Conclusion 
In this study, an online web tool called THER was successfully designed and developed to 

comprehensively analyze and visualize hypoxia-related data. The web tool has 63 built-in 

transcriptomic datasets for 18 cancer types derived from the GEO database and allows users 
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to individually and systematically perform differential expression analysis, expression profiling 

analysis, correlation analysis, enrichment analysis, and drug sensitivity analysis. We 

demonstrate, through an example, the value of the THER web tool in studying tumor hypoxia-

related biomarkers and mechanisms to identify potential targets for tumor therapy. This web 

tool explicitly helps clinicians and researchers with no programming background to easily 

explore the changes that occur in tumors in hypoxic environments to delve into the potential 

targets, mechanisms of action and potentially effective drugs for treating hypoxic tumors, thus 

providing important guidance for the development of tumor diagnosis and treatment strategies. 

  

Data Availability 
The THER website is available as a web-accessible open resource at 

https://smuonco.shinyapps.io/THER/. This website is built on R Studio (https://www.r-

project.org/) and the shiny R package (https://github.com/rstudio/shiny). The raw data for 

THER's built-in datasets were derived from the Gene Expression Omnibus database 

(https://www.ncbi.nlm.nih.gov/gds). All data analysed in this study are available upon 

reasonable request from the corresponding authors. 
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Figure Legend 
Figure 1: Analysis modules of THER. THER provides users with five analysis modules, 

including a differential gene expression analysis module, an expression profiling module, a 

correlation analysis module, an enrichment analysis module, and a drug sensitivity analysis 

module. 

 

Figure 2: Visualization of the results of differential expression analysis obtained from limma 

analysis, showing whether specific genes were significantly upregulated or downregulated 

between the hypoxia and normoxia groups in different visualizations. (A) In the heatmap, the 

z-score-transformed gene expression values for each sample are shown in the cells, and the 

significance and trend of significance of the genes are shown in the right-hand labels. (B) In 

the volcano plot, red dots represent significantly upregulated genes, blue dots represent 

significantly downregulated genes, and gray dots represent nonsignificant genes. (C) 

Summary table of the results of differential expression analysis. 

  

Figure 3: Graphical representation of the visualization results of expression profiling, showing 

the expression values of specific genes in the hypoxia and normoxia groups in different 
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visualization forms, and p values for the differences in expression of genes between the 

groups of different oxygen states were obtained by the Mann ‒ Whitney U test. (A) 

Visualization of the distribution of expression values of multiple genes among different oxygen 

status groups in the form of a barplot. (B) Visualization of the distribution of expression values 

of individual genes among different oxygen status groups in the form of a boxplot. (C) 

Summary table of expression profiling results. 

  

Figure 4: Graphical representation of the visualization results of the correlation analysis, 

showing the results of the correlation analysis in different visualizations. (A) In the correlation 

heatmap, blue indicates a positive correlation, and red indicates a negative correlation, with 

darker colors representing stronger correlations. (B) In the chord plot, red lines represent 

positive correlations, blue lines represent negative correlations, and darker colors or thicker 

lines represent stronger correlations. (C) In the scatter plot, the correlation coefficient R and p 

value are shown in the upper left corner. 

  

Figure 5: Graphical representation of the visualization results of enrichment analysis for 

specific pathways in different visualization forms. (A) Visualization of p.adjust values, 

GeneRatio and Count values for specific pathways in the form of a dotplot. (B) Visualization of 

the p.adjust value and GeneRatio of specific pathways in the form of a barplot. (C) In the 

GSEA plot, the peaks of the red curves are the enrichment scores for the set of genes, with 

positive values indicating top enrichment, genes to the left of the peaks are core genes, and 

the opposite is true for negative values. The black line indicates where the genes in the sorted 

table of expressed genes are located in the currently analyzed set of functionally annotated 

genes. The red and blue heatmaps are expression abundance rankings, where a darker red 

line indicates a larger logFC for the gene at that position, and a darker blue line indicates a 

smaller logFC. (D) Visualization of the p.adjust value and the expression distribution of core-

enriched genes of specific pathways in the form of a ridgeplot. (E) In the heatmap, the GSVA 

scores of pathways transformed by z scores for each sample are shown in the cells, and the 

significance and trend of significance of the pathways are shown in the right-hand labels. (F) 

Summary table of enrichment analysis results by the ORA enrichment method. (G) Summary 

table of enrichment analysis results by the GSEA enrichment method. (H) Summary table of 

enrichment analysis results by the GSVA enrichment method. 

  

Figure 6: Graphical representation of the visualization results of the drug sensitivity analysis. 

The logIC50 values of specific drugs in the hypoxia and normoxia groups are shown in 

different visualizations, and the p values of the differences in drug expression between groups 

of different oxygen statuses were obtained by the Mann�Whitney U test. (A) Visualization of 

the distribution of logIC50 values for multiple drugs among different oxygen status groups in 

the form of a boxplot. (B) In the heatmap, the logIC50 values of the drugs transformed by z 

scores for each sample are shown in the cells, and the significance of the genes and the 

trend of significance are shown in the right-hand labels. (C) Summary table of the results of 

drug sensitivity analyses. 

  

Figure 7: Reliability of ENO2 as a new marker for hypoxic MCF7 cells and its mechanism of 
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action. (A) Stacked histograms showing the total sample sizes, hypoxia sample sizes and 

normoxia sample sizes of the cell lines included in THER's built-in datasets. (B) Significantly 

differentially expressed genes of GSE70805 (breast cancer--MCF7) obtained using limma 

difference analysis based on different oxygen statuses. (C) Reported status of the top five 

most significantly differentially expressed genes of GSE70805 (breast cancer--MCF7). (D) 

Scatter plot showing the correlation between ENO2 and another glycolysis-related gene. (E) 

Demonstration of differential glycolytic pathways in the form of a barplot. (F) Demonstration of 

core genes of differential glycolytic pathways in the form of a table. (H) Demonstration of 

differential nucleotide metabolism pathways in the form of a barplot. 

 

Supplementary Figure 1: (A-D) Significance and trend of significance of ENO2 in the MCF7 

cell line datasets (GSE29406, GSE47533, GSE111246, GSE111259) obtained using limma 

difference analysis. 

 

Supplementary Figure 2: (A-D) Scatter plot showing the correlation between ENO2 and 

glycolysis-related genes (GPI, HK2, ALDOC, PFKFB3). 

 

Supplementary Figure 3: (A) Demonstration of differential nucleotide metabolism pathways in 

the form of a barplot. (B) Demonstration of core genes of differential nucleotide metabolism 

pathways in the form of a table. 
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