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Abstract

Hypoxia is an important factor in the adaptation of tumor cells to their environment,
contributes to their malignant progression, and affects tumor prognosis and drug sensitivity.
Although there is a wealth of transcriptomic data stored in public databases, there is a lack of
web-based tools for analyzing these data to explore the link between hypoxia and the
mechanisms of tumorigenesis and progression. To this end, we have developed an interactive
web-based tool called THER, which is designed to help users easily identify potential targets,
mechanisms of action and effective drugs for treating hypoxic tumors. THER integrates 63
transcriptomic tumor hypoxia datasets from the Gene Expression Omnibus (GEO) database,
covering 3 species, 18 tumor types and 42 cell line types. This web tool provides five modules
that allow users to perform differential expression analysis, expression profiling analysis,
correlation analysis, enrichment analysis and drug sensitivity analysis on different datasets
based on different oxygen statuses. We expect that users will be able to use the tool to
identify valuable biomarkers, further reveal the molecular mechanisms of tumor hypoxia, and
identify effective drugs, thus providing a scientific basis for tumor diagnosis and treatment.
THER is open to all users and can be accessed without Ilogin at
https.//smuonco.shinyapps.io/ THER/.
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Introduction

Tumor hypoxia refers to the gradual decrease in the rate of ATP production in cells or tissues
when the partial pressure of oxygen drops below a critical level, and hypoxia occurs within the
tumor, thus contributing to the malignant development of tumor cells to adapt to their
environment(1). Several studies have shown that a series of changes induced by hypoxia
play an indispensable role in tumor development; for example, hypoxia-induced acetylation of
PAK1 and phosphorylation of ATG5 promote brain tumor formation(2). Under the selective
pressure of hypoxia, tumors can make themselves invasive or metastatic through various
mechanisms. In addition, hypoxia induces TP53 point mutations and copy number variations
in many types of tumors, making them more aggressive(3). Hypoxia activates ATAD2
expression through hypoxia-inducible factor (HIF-1a), leading to increased mitochondrial
reactive oxygen species (mtROS) levels, which increases the aggressiveness of lung
cancer(4).

Based on the importance of hypoxia in tumorigenesis and development, hypoxia phenotypes
have been used in several studies to explore their importance in tumor prognosis. For
example, in cervical and head and neck cancers, patients with hypoxic tumors showed poor
prognosis(5-8). Moreover, hypoxic tumors show resistance to radiotherapy and
immunotherapy(8-10). However, the effect of hypoxia on the development, progression, and
sensitivity to drugs may be quite different in different tumors. For example, ACHN, A2780,
NT2, NCCIT, and 2102 EP cells under hypoxic conditions have decreased sensitivity to most
drugs, whereas H69 and MCF7 cells have increased sensitivity to most drugs(11,12) but the
mechanistic differences have not yet been clarified. Therefore, we hope to explore the
mechanisms of hypoxia-induced tumorigenesis and development, identify new markers for
assessing hypoxia-induced tumorigenesis and development, and identify effective drugs for
treating hypoxic tumors, thus providing important guidance for the development of tumor
diagnosis and treatment strategies.

Hypoxia is an important topic of interest in the field of oncology; consequently, there is an
extremely rich amount of transcriptomic data stored in public databases, providing an
unprecedented possibility to study the effect of hypoxia on tumorigenesis, progression and
drug resistance. However, analysis of transcriptomic data to explore the link between hypoxia
and the mechanisms of tumorigenesis and progression still requires a certain programming
foundation, which poses a great challenge for most clinical researchers who do not have
basic programming knowledge. Therefore, we developed an online web analysis tool called
THER. On this platform, users can analyze the results of their research based on tumor
hypoxia-associated transcriptomic datasets from the GEO database, and based on different
oxygen states (hypoxia/normoxia), differential expression, expression profiling, correlation,
enrichment, and drug sensitivity analyses can be easily and quickly performed. This tool can
enable users to identify potential diagnostic, prognostic, predictive, and pharmacodynamic
biomarkers of tumor hypoxia to further explore the molecular mechanisms involved in
hypoxia-induced tumor development to provide an important scientific basis for tumor
diagnosis and treatment.
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Material and Methods
The THER website (https.//smuonco.shinyapps.io/THER/) allows users to individually perform
differential gene expression, expression profiling, correlation, enrichment and drug sensitivity

analyses. The web tool is built on the shiny package(13) for the R script (version 4.1.1,
https.//www.r-project.org/) and deployed based on shinyapps.io.

Data Collection

We searched the GEO database with the keyword “hypoxia” and filtered the results. We only
included (i) tumor datasets, (ii) samples treated with hypoxia or normoxia only, (iii) datasets
with more than 3 samples in both the hypoxia and normoxia groups, (iv) data for Homo

sapiens, Mus musculus or Rattus norvegicus, and (v) transcriptomic datasets. We finally
collected 63 datasets as built-in datasets, including 18 tumor types and 42 cell line types.

Data Preprocessing

High-Throughput Sequencing

We preprocessed the raw count data using the DESeq package(14), constructed the
DESeqgDataSet object by the DESeqgDataSetFromMatrix function, filtered the low abundance
data, performed the differential expression analysis by the DESeq function and normalized
the matrix of expression values by the rlog function.

Affymetrix Arrays

We used the affy package(15) to preprocess the raw data of the HGU95, HGU133 and
MGU74 series, read the raw data with the ReadAffy function, and perform background
correction, normalization and expression calculation with the rma function on the raw data.
We used the oligo package(16) to preprocess the raw data of other series, read the raw data
with the read. celfiles function, and perform background correction, normalization and
expression value calculation with the rma function on the raw data.

Illumina BeadArray

We used the lumiR.batch function and the lumiExpresso function in the lumi package(17) to
read, background correct and quantile standardize the raw data.

Agilent arrays

We used the backgroundCorrect function and normalizeBetweenArrays function in the limma
package(18) to background correct and quantile standardize the raw data, respectively.

Analysis Modules

Data

We used the DT package (https://rstudio.github.io/DT/shiny.html) to present specific
information about the 63 built-in datasets and set the table styles with css. Using the

shinydashboard package, the number of datasets, hypoxia sample sizes, and normoxia
sample sizes were presented in the table.

Differential Expression Analysis

We used the limma package for gene expression differential analysis, and the p value
obtained from the t test was linked to the mean expression of the hypoxia group minus the
mean expression of the normoxia group (i.e., log2FC) to determine whether the genes were
significantly different genes. The p value cutoff was set to 0.05 by default, and the [log2FC|
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value cutoff was set to 1 by default. We then displayed the results of the differential
expression analyses in visual charts using the ggplot2 (version 3.3.5, https.//cran.r-
project.org/web/packages/ggplot2/index.html) and ggrepel packages for volcano plots, the
pheatmap package(19) for heatmaps, and the DT package for tables.

Expression Analysis

The p value indicating the significance of differentially expressed genes was calculated by the
Mann~Whitney U test. We presented the results of the expression profiles in visual charts,
using the ggplot2 package to draw boxplots and barplots, using the ggpubr package to
display the p values in graphs, and using the DT package to generate tables.

Correlation Analysis

We downloaded GO terms, KEGG pathways, Reatome pathways, and Wikipathways from the
Molecular Signatures Database (MsigDB)(20). The relative expression activity of the
pathways was calculated by including all genes in the selected dataset using the ssgsea
method with the gsva function in the GSVA package(21). Our correlation analyses use the
Spearman method by default and allow the user to select the Pearson method. We then
presented the results of the correlation analysis in visual charts, using the ggplot2 package to
plot scatter plots and the ggpubr package(22) to display the correlation coefficients and p
values in the plots, using the corrplot package(23) to generate correlation heatmaps, and
using the circlize package(24) to establish chord diagrams.

Enrichment Analysis

We used the Over Representative Analysis (ORA) and Gene Set Enrichment Analysis (GSEA)
algorithms in the clusterProfilter(25) and ReactomePA(26) packages as well as the Gene Set
Variation Analysis (GSVA) algorithm in the GSVA package to perform enrichment analysis
based on four annotation databases: GO terms, KEGG pathways, Wikipathways, and
Reatome pathways. In the GSEA and GSVA algorithms, we included all genes in the selected
datasets, while in the ORA algorithm, we only included significantly differentially expressed
genes in the selected datasets. The p value and g-value intercept values were set to 0.05 in
both the GSEA and ORA algorithms, while the GSVA algorithm set |log2FC| to 1 and the p
value to 0.05 in both algorithms. Subsequently, we presented the results of the enrichment
analyses in visual charts, using the enrichplot package(27) to plot dotplots, barplots and
GSEA plots, the ggplot2 package to plot ridgeplots, the pheatmap package to plot heatmaps,
and the DT package to produce tables.

Drug Sensitivity Analysis

We used the pRRophetic package(28) to calculate the concentration of drug required to
inhibit half of the tumor cells (IC50). The drug parameter of the pRRopheticPredict function
has 138 drug names, and calculating these 138 drugs gives us. The result is the IC50 after
processing with log. Subsequently, we presented the results of the drug sensitivity analysis in
visual charts, using the ggplot2 package for boxplots, the pheatmap package for heatmaps,
and the DT package for tables.

Example

We checked the number of samples of cell line types included in this web tool at the bottom of
the Home page and selected the cell line with the largest number of samples to be studied.
Using the "DEG" module, one of the datasets from the cell line under investigation was
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selected for differential analysis, and the top five significantly differentially expressed genes in
descending order of |log2FC| values were screened. (|log2FC| > 1; p value < 0.5) as
candidate marker genes. Subsequently, we searched PubMed for these candidate marker
genes and found that four of them had been reported as differential hypoxia genes in the cell
lines under investigation, and the unreported genes were used as differential hypoxia genes
in the cell lines under investigation. To further verify the reliability of the target genes as
candidate marker genes, the "DEG" module was used again, and it was found that the
candidate marker genes were significantly upregulated in six of the seven MCF7 cell line
datasets. At the same time, to further investigate the role of this gene in the adaptation of
tumors to hypoxic environments, we used the "Enrichment" module and performed
enrichment analysis based on the ORA method. In addition, we used the "Correlation" module
to perform correlation analysis based on the Spearman method to explore the correlation
between the expression of the candidate marker genes and the expression of the pathway-
related genes to verify the mechanism of the candidate marker genes.

Results

THER preprocesses 63 hypoxia-associated transcriptome datasets in advance so that users
can perform analysis and visualization easily and quickly. THER contains five analysis
modules, namely, the differential expression analysis module, expression profiling module,
correlation analysis module, enrichment analysis module, and drug sensitivity analysis
module (Figure 1). Under the five analysis modules, there are 17 subanalysis modules, and a
description button is designed in the upper left corner of the output page of each subanalysis
module, which is designed to help the user quickly understand the operation method and
meaning of each subanalysis module. Users can use these analysis modules to
autonomously explore various features in tumor samples under hypoxia/normoxia conditions
to investigate the changes that occur in tumors in hypoxic environments. The analyses are
available for download, allowing users to export spreadsheets in csv format and high-
resolution images in both png and pdf formats and to customize the length and width of the
images.

Data

Below the Data module, general information about the 63 datasets included in THER is
shown,and more detailed information about the datasets is available to the user by clicking on
the plus button on the left side of each column in the table; thus, the user can quickly locate
the dataset of interest and jump directly to the analysis module of the corresponding dataset
by clicking on the black jump button in the first column of the table. Additionally, this module
provides users with a search bar for filtering datasets of interest based on cancer types and
cell line types and displays the number of eligible datasets, the number of samples with
hypoxia, and the number of samples with normoxia at the top of the page.

Differential Expression Analysis

The DEG analysis module consists of three submodules, volcano, heatmap and table (imma),
which allow the user to compare the differences in gene expression between the normoxia
and hypoxia groups and to present the results of the limma differential expression analysis
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according to oxygen status in different formats (Figure 2).

Volcano

The submodule volcano allows the user to visualize volcano plots indicating whether the
expression of genes are significantly upregulated, significantly downregulated or not
significantly regulated in the hypoxia group relative to the normoxia group (Figure 2B). Users
are free to select the dataset of interest and can choose to display custom genes or the top
genes in descending order by |log2FC| value, i.e., the most upregulated and downregulated
genes, for visualization. The user can also adjust the plot by selecting the p-value cutoff, the
|log2FC] cutoff and the color scheme of the volcano plots in the panel that expands when the
“Extra Parameters” button is clicked.

Heatmap

The submodule heatmap allows users to visualize heatmaps illustrating the expression levels
of genes in different samples and the results of significant differences in different oxygen
states (Figure 2A). Users are free to select the dataset of interest and can choose to display
custom genes or visualize the top genes in descending order by [log2FC| value, i.e., the most
upregulated and downregulated genes. Users can also adjust the plot by choosing whether to
normalize by rows or columns, whether to show values in heatmaps, whether to cluster by
columns, and the color scheme of the heatmaps in the panel that expands when the “Extra
Parameters” button is clicked.

Table (limma)

The table submodule allows users to view the results of the differential expression analysis in
tabular formats (Figure 2C), including the level of significant difference, |log2FC| value, mean
expression value or count mean, p value and adjusted p value. This module supports not only
the user's choice to display all genes but also the user's choice to display only significantly
differentially expressed genes; thus, the user can quickly filter the results.

Expression Analysis

The expression module consists of three submodules, boxplot, barplot and table (wilcox-test),
which allow users to compare the expression differences of single or multiple genes between
the normoxia and hypoxia groups, to present the expression values of the genes in different
oxygen states in different formats and to determine whether the genes being investigated are
significantly differentially expressed genes between oxygen states by using a Mann_1Whitney
U test (Figure 3). The Mann_Whitney U test was used to determine whether the genes
explored were significantly differentially expressed genes between oxygen states (Figure 3).
Boxplot

In the boxplot submodule, users can select a single gene of interest and show its differential
expression in the hypoxia and normoxia groups as boxplots (Figure 3B). Users can also
adjust the plot by selecting the p value presentation format and the color scheme of the
boxplots in the panel that expands when the “Extra Parameters” button is clicked.

Barplot

The Barplot submodule allows the user to select two to nine genes of interest and present the
differential expression of the selected genes between groups in the form of barplots (Figure
3A). Users can also adjust the image by selecting the p value presentation and the color
scheme of the barplots in the panel that expands when the “Extra Parameters” button is
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clicked.

Table (Wilcox Test)

In this submodule, users can view the expression values, p values, whether the genes are
significantly differentially expressed, and the trend of significantly differentially expressed
genes in the hypoxia and normoxia groups after log2 conversion in tabular formats (Figure
3C).

Correlation Analysis

The correlation analysis module contains three submodules, scatter, correlation heatmap and
chord diagram, which allow the user to freely compare gene-to-gene, gene-to-pathway, and
pathway-to-pathway correlations to explore possible connections (Figure 4).

Scatter

In the scatter submodule, users can freely choose to explore the correlation between the
expression of two different genes, the relative expression activity of a gene and a pathway, or
the relative expression activity of two different pathways and present the visualization results
in the form of scatter plots (Figure 4C). Users can also adjust the plot by selecting the
correlation analysis method, the type of edge plot and the color scheme of the scatter plot in
the panel that expands after clicking the “Extra Parameters” button.

Correlation Heatmap

The correlation heatmap submodule allows users to freely choose to explore the correlation
between the expression of multiple different genes, the expression of multiple genes with the
relative expression activity of multiple pathways, or the relative expression activity of different
pathways with a correlation heatmap. The results are presented graphically (Figure 4A). The
user can also adjust the plot by selecting the correlation analysis method and the visualization
shape of the correlation heatmaps in the panel that expands after clicking on the “Extra
Parameters” button.

Chord Diagram

In the chord diagram submodule, users can freely choose to explore the correlation between
the expression of multiple different genes, the expression of multiple genes and the relative
expression activity of multiple pathways, or the relative expression activity of different
pathways and present the visualization results in the form of chord diagrams (Figure 4B).
Users can also adjust the plot by selecting the correlation analysis method and the
transparency of the central lines of the chord diagrams in the panel that expands after clicking
the “Extra Parameters” button.

Enrichment Analysis

The Enrichment Analysis module consists of five submodules: dotplot/barplot, ridgeplot,
GSEA plot, heatmap (GSVA), and table, which present the results of differentially enriched
pathways in different formats (Figure 5). This module helps users correlate genes with
functions and provides an opportunity to discover potential biological pathways related to
tumor hypoxia.

Dotplot/Barplot

This submodule allows users to select either ORA or GSEA methods. Users are free to select
the dataset of interest and can choose to visualize either the top pathways in ascending order
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by p value or custom pathways. The visualization of differentially enriched pathways in
different oxygen states obtained by ORA or GSEA methods is shown as dotplots (Figure 5A).
The visualization of the differentially enriched pathways obtained by the GSEA method is
shown as barplots (Figure 5B). Users can also adjust the plot by selecting the variable
represented by the X-axis and the variable represented by the color in the panel that expands
after clicking the “Extra Parameters” button.

Ridgeplot

The ridgeplot submodule uses the GSEA enrichment analysis method to show the
visualization results of differential pathways in different oxygen states in the form of ridgeplots
(Figure 5D). Users are free to select the dataset of interest and can choose the top pathways
in ascending order by p value or custom pathways for visualization. The user can also adjust
the plot by selecting the variable represented by the color of the fill in the ridgeplot and the
transparency of the ridgeplot in the panel that expands after clicking the “Extra Parameters”
button.

GSEA Plot

The GSEA plot submodule uses the GSEA method to show the visualization results of
differential pathways in different oxygen states in the form of GSEA plots (Figure 5C). Users
are free to select the dataset of interest and the pathway of interest for visualization. Users
can also adjust the plot by selecting the form and color of the enrichment curves in the GSEA
plot in the panel that expands after clicking the “Extra Parameters” button.

Heatmap (GSVA)

This submodule uses the GSVA enrichment analysis method to present the results in the form
of heatmaps (Figure 5E), visualizing the GSVA score levels of the pathways in different
samples as well as the results of significant differences in different oxygen states. Users are
free to select the dataset of interest and can choose the top pathways in descending order of
|log2FC| values or customized pathways for visualization. Users can also adjust the plot by
selecting whether to normalize by row or column, display values in heatmaps, cluster by
column and change the color scheme of the heatmaps in the panel that expands when the
“Extra Parameters” button is clicked.

Table

The table submodule allows users to view the enrichment analysis results of the dataset of
interest performed by the ORA, GSEA and GSVA enrichment methods in tabular form (Figure
5F-G).

Drug Sensitivity Analysis

The drug sensitivity analysis module contains three submodules, heatmap, boxplot and table,
which allow users to compare the differences in drug sensitivity between samples in different
oxygen states. The three submodules present the results of the drug sensitivity analyses in
different formats and use the MannJWhitney U test to determine whether or not the
differences in the logIC50 values for the drugs presented are significant between samples in
the hypoxia and normoxia groups (Figure 6).

Heatmap

This submodule allows users to visualize the level of semi-inhibitory concentration of the
drugs in different samples in the form of heatmaps (Figure 6B) and significantly different
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results in different oxygen states. Users are free to select the dataset of interest and can
choose to visualize the customized drugs or the top drugs in descending order of |log2FC|
values, i.e., the drugs with the most upward and downward adjustments. Users can also
adjust the plot by selecting whether to normalize by row or column, show values in the
heatmap, cluster by column and change the color scheme of the heatmap in the panel that
expands after clicking on the “Extra Parameters” button.

Boxplot

In the boxplot submodule, users can select two to nine drugs of interest and present the
difference in loglC50 values between the hypoxic and normoxic groups in the form of a box
plot (Figure 6A). Users can also adjust the plot by selecting the p value presentation format
and the color scheme of the boxplots in the panel that expands when the “Extra Parameters”
button is clicked.

Table

Users can view the loglC50 values, p values, the level of significant differences, and the trend
of significant differences for drugs in the hypoxia and normoxia groups in a tabular format in
this submodule (Figure 6C).

Example

We chose the cell line MCF7 (Figure 7A), which contains the largest number of samples in
this web tool, for multimodule exploration. One of the datasets of the MCF7 cell line,
GSE70805, was selected for differential expression analysis to screen the top five most
significantly differentially expressed genes (Figure 7B). All except ENO2 have been reported
as differential hypoxia genes in MCF7 cells(29-32) (Figure 7C). Moreover, ENO2 has been
reported to be significantly upregulated in hypoxia-associated solid tumors, including liver
cancer(33), laryngeal cancer(34), gastric cancer(35), glioblastoma(36) and melanoma(37),
and could be a candidate target. However, there is no report on the changes in and role of
ENOZ2 in hypoxia-treated MCF7 breast cancer cells. Based on the above findings, we suggest
that ENO2 could be a candidate marker gene for hypoxia-treated MCF7 cells. Moreover,
ENO2 was found to be significantly upregulated in six of the seven MCF7 cell line datasets
(Figure 7C, Figure S1), which further validated the reliability of ENO2 as a candidate marker
gene. ENO2 has been reported to function in hypoxia-associated tumors through the
glycolytic pathway(33,38). Similarly, enrichment analysis showed that multiple glycolytic
pathways were differential pathways in MCF7 cells (Figure 7E), and all of these pathways
were involved in ENO2 (Figure 7F). To further validate the pathway of ENO2 in tumor
adaptation to a hypoxic environment, we performed Spearman correlation analysis and found
a significant positive correlation between ENO2 and glycolysis-related genes (Figure 7D,
Figure S2). In addition, pathway enrichment analysis revealed that ENO2 plays a role in the
dysregulation of nucleotide metabolism (Figure S3). This may reveal potential pathways for
ENO2 to promote the rapid adaptation of tumor cells to hypoxic environments through its
involvement in glycolytic reprogramming and the dysregulation of nucleotide metabolism.

Discussion
Hypoxia drives tumorigenesis and makes tumors more likely to acquire invasiveness, and it is
particularly important to clarify the molecular mechanisms of hypoxia in tumorigenesis and
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development. In addition, identifying effective drugs during tumor hypoxia and screening for
potential diagnostic, prognostic, predictive, and pharmacodynamic markers has important
research and clinical implications. To address this need, we designed and successfully
developed an online web tool called THER for comprehensive analysis and visualization of
hypoxia-related data. The built-in datasets of the platform are 63 tumor hypoxia-related
transcriptome datasets derived from the GEO database, covering 3 species (Homo sapiens,
Mus musculus and Rattus norvegicus), 18 tumor types, and 42 cell line types.

THER is a feature-rich web tool for tumor hypoxia that provides users with five analysis
modules. First, in the DEG module and expression module, users can screen for potential
biomarkers. Next, in the correlation module and enrichment module, users can explore in
depth the molecular mechanisms of hypoxia-induced tumor development. Subsequently,
users can identify effective drugs against hypoxic tumors in the drug sensitivity module. In
conclusion, this web-based tool explicitly assists clinical doctors and researchers who may
not be adept in programming to easily identify potential targets, function mechanisms and
potentially effective drugs against hypoxic tumors that may lead to discovering new targets
and therapeutic approaches against these tumors.

THER serves as an online web tool that can provide users with an opportunity to explore
potential tumor hypoxia-associated biomarkers and investigate their underlying mechanisms.
For example, ENO2 may promote tumor progression toward malignancy through the
glycolytic pathway and may act synergistically with other glycolysis-related genes, which is
consistent with existing reports(11,33). ENO2 encodes a glycolytic enzyme involved in the
energy release phase of glycolysis(39,40). Under hypoxic conditions, breast cancer cells
exhibit an enhanced glycolytic phenotype, resulting in upregulation of the expression of genes
encoding glycolytic enzymes, including ENO2, and increased glycolytic energy production(38).
Moreover, silencing ENO2 shows synergistic effects with anti-glycolytic drugs(41).
Furthermore, in breast cancer cells, simultaneous inhibition of ENO2 and the activity of
another glycolytic gene, ALDOC, significantly suppresses lactate production and reduces the
adaptability of tumor cells to the hostile environment(11). This example demonstrates the
significant value of the THER web tool in studying tumor hypoxia-related biomarkers and
mechanisms to discover potential targets for tumor therapy.

Notably, THER only explores the effect of direct oxygen status on tumor cells and does not
yet address factors that indirectly affect oxygen status (e.g., different altitude levels and HIF-
la expression levels). In addition, THER has some shortcomings: 1) The sample size of the
dataset is limited, so there is a risk that the error distribution may deviate from the normal
distribution(42). 2) The number of datasets included for some cancer types or cell lines is
small. Nevertheless, the datasets will be continuously updated in THER. 3) Many studies
have already demonstrated that the effect of hypoxia on the tumor microenvironment and the
interaction between hypoxia and immune cell infiltration is very complex(43-45). Therefore,
the THER immune infiltration analysis module will be updated.

Conclusion

In this study, an online web tool called THER was successfully designed and developed to
comprehensively analyze and visualize hypoxia-related data. The web tool has 63 built-in
transcriptomic datasets for 18 cancer types derived from the GEO database and allows users
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to individually and systematically perform differential expression analysis, expression profiling
analysis, correlation analysis, enrichment analysis, and drug sensitivity analysis. We
demonstrate, through an example, the value of the THER web tool in studying tumor hypoxia-
related biomarkers and mechanisms to identify potential targets for tumor therapy. This web
tool explicitly helps clinicians and researchers with no programming background to easily
explore the changes that occur in tumors in hypoxic environments to delve into the potential
targets, mechanisms of action and potentially effective drugs for treating hypoxic tumors, thus
providing important guidance for the development of tumor diagnosis and treatment strategies.

Data Availability

The THER website is available as a web-accessible open resource at
https.//smuonco.shinyapps.io/ THER/. This website is built on R Studio (https.//www.r-
project.org/) and the shiny R package (https://github.com/rstudio/shiny). The raw data for
THER's built-in datasets were derived from the Gene Expression Omnibus database
(https://www.nchi.nlm.nih.gov/gds). All data analysed in this study are available upon
reasonable request from the corresponding authors.
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Figure Legend

Figure 1. Analysis modules of THER. THER provides users with five analysis modules,
including a differential gene expression analysis module, an expression profiling module, a
correlation analysis module, an enrichment analysis module, and a drug sensitivity analysis
module.

Figure 2: Visualization of the results of differential expression analysis obtained from limma
analysis, showing whether specific genes were significantly upregulated or downregulated
between the hypoxia and normoxia groups in different visualizations. (A) In the heatmap, the
z-score-transformed gene expression values for each sample are shown in the cells, and the
significance and trend of significance of the genes are shown in the right-hand labels. (B) In
the volcano plot, red dots represent significantly upregulated genes, blue dots represent
significantly downregulated genes, and gray dots represent nonsignificant genes. (C)
Summary table of the results of differential expression analysis.

Figure 3: Graphical representation of the visualization results of expression profiling, showing
the expression values of specific genes in the hypoxia and normoxia groups in different
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visualization forms, and p values for the differences in expression of genes between the
groups of different oxygen states were obtained by the Mann-Whithey U test. (A)
Visualization of the distribution of expression values of multiple genes among different oxygen
status groups in the form of a barplot. (B) Visualization of the distribution of expression values
of individual genes among different oxygen status groups in the form of a boxplot. (C)
Summary table of expression profiling results.

Figure 4: Graphical representation of the visualization results of the correlation analysis,
showing the results of the correlation analysis in different visualizations. (A) In the correlation
heatmap, blue indicates a positive correlation, and red indicates a negative correlation, with
darker colors representing stronger correlations. (B) In the chord plot, red lines represent
positive correlations, blue lines represent negative correlations, and darker colors or thicker
lines represent stronger correlations. (C) In the scatter plot, the correlation coefficient R and p
value are shown in the upper left corner.

Figure 5: Graphical representation of the visualization results of enrichment analysis for
specific pathways in different visualization forms. (A) Visualization of p.adjust values,
GeneRatio and Count values for specific pathways in the form of a dotplot. (B) Visualization of
the p.adjust value and GeneRatio of specific pathways in the form of a barplot. (C) In the
GSEA plot, the peaks of the red curves are the enrichment scores for the set of genes, with
positive values indicating top enrichment, genes to the left of the peaks are core genes, and
the opposite is true for negative values. The black line indicates where the genes in the sorted
table of expressed genes are located in the currently analyzed set of functionally annotated
genes. The red and blue heatmaps are expression abundance rankings, where a darker red
line indicates a larger logFC for the gene at that position, and a darker blue line indicates a
smaller logFC. (D) Visualization of the p.adjust value and the expression distribution of core-
enriched genes of specific pathways in the form of a ridgeplot. (E) In the heatmap, the GSVA
scores of pathways transformed by z scores for each sample are shown in the cells, and the
significance and trend of significance of the pathways are shown in the right-hand labels. (F)
Summary table of enrichment analysis results by the ORA enrichment method. (G) Summary
table of enrichment analysis results by the GSEA enrichment method. (H) Summary table of
enrichment analysis results by the GSVA enrichment method.

Figure 6: Graphical representation of the visualization results of the drug sensitivity analysis.
The logIC50 values of specific drugs in the hypoxia and normoxia groups are shown in
different visualizations, and the p values of the differences in drug expression between groups
of different oxygen statuses were obtained by the Mann 1Whitney U test. (A) Visualization of
the distribution of loglC50 values for multiple drugs among different oxygen status groups in
the form of a boxplot. (B) In the heatmap, the loglC50 values of the drugs transformed by z
scores for each sample are shown in the cells, and the significance of the genes and the
trend of significance are shown in the right-hand labels. (C) Summary table of the results of
drug sensitivity analyses.

Figure 7: Reliability of ENO2 as a new marker for hypoxic MCF7 cells and its mechanism of
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action. (A) Stacked histograms showing the total sample sizes, hypoxia sample sizes and
normoxia sample sizes of the cell lines included in THER's built-in datasets. (B) Significantly
differentially expressed genes of GSE70805 (breast cancer--MCF7) obtained using limma
difference analysis based on different oxygen statuses. (C) Reported status of the top five
most significantly differentially expressed genes of GSE70805 (breast cancer--MCF7). (D)
Scatter plot showing the correlation between ENO2 and another glycolysis-related gene. (E)
Demonstration of differential glycolytic pathways in the form of a barplot. (F) Demonstration of
core genes of differential glycolytic pathways in the form of a table. (H) Demonstration of
differential nucleotide metabolism pathways in the form of a barplot.

Supplementary Figure 1: (A-D) Significance and trend of significance of ENO2 in the MCF7
cell line datasets (GSE29406, GSE47533, GSE111246, GSE111259) obtained using limma
difference analysis.

Supplementary Figure 2: (A-D) Scatter plot showing the correlation between ENO2 and
glycolysis-related genes (GPI, HK2, ALDOC, PFKFB3).

Supplementary Figure 3: (A) Demonstration of differential nucleotide metabolism pathways in

the form of a barplot. (B) Demonstration of core genes of differential nucleotide metabolism
pathways in the form of a table.
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