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Abstract

Aim. To quantify the intra-community variability of leaf-out (ICVLo) among dominant trees in
temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its
environmental drivers, and deduce its ecological consequences with regard to radiation received

and exposure to late frost.

Location. Eastern North America (ENA) and Europe (EUR).

Time period. 2009-2022

Major taxa studied. Temperate deciduous forest trees.

Methods. We developed an approach to quantify ICVLo through the analysis of RGB images
taken from phenological cameras. We related ICVLo to species richness, phylogenetic diversity
and environmental conditions. We quantified the intra-community variability of the amount of

radiation received and of exposure to late frost.

Results. Leaf-out occurred over a longer time interval in ENA than in EUR. The sensitivity
of leaf-out to temperature was identical in both regions (-3.4 days per °C). The distributions
of ICVLo were similar in EUR and ENA forests, despite the latter being more species-rich and
phylogenetically diverse. In both regions, cooler conditions and an earlier occurrence of leaf-out
resulted in higher ICVLo. ICVLo resulted in a ca. 8% difference of radiation absorption over
spring among individual trees. Forest communities in ENA had shorter safety margins as regards

the exposure to late frosts, and were actually more frequently exposed to late frosts.

Main conclusions. We conducted the first intercontinental analysis of the variability of leaf-out
at the scale of tree communities. North American and European forests showed similar ICV Lo,
in spite of their differences in terms of species richness and phylogenetic diversity, highlighting
the relevance of environmental controls on ICVLo. We quantified two ecological implications of

ICVLo (difference in terms of radiation absorption and exposure to late frost), which should be
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explored in the context of ongoing climate change, which affects trees differently according to their

phenological niche.

Keywords

leaf-out, phenology, intra-community variability, temperate forests, dominant trees, Europe,

North-America

1 Introduction

1.1 Intra-community variability of leaf phenology in temperate forests

The phenology of the tree canopy strongly influences the functioning of forests (Barr et al.,
2007; Delpierre et al., 2009; Richardson et al., 2010) and of the climate system (Richardson et al.,
2013) by modulating the exchange of matter and energy with the atmosphere. A wealth of study
has been devoted to identify the environmental and biological drivers of spring leaf-out. These
studies have highlighted the central roles of temperature and photoperiod (see Delpierre et al.,
2016 for a review). Almost all these studies have focused on the average date of leaf-out in the
ecosystem. Yet, when conducting phenological observations in a forest, one can observe a large
inter-individual variability of leaf-out among conspecifics. In a preceding study, we showed that
the average variability of leaf-out within a population of trees is 19 days, which corresponds to
75% of the variability observed at the scale of the continent (considered species were temperate

oaks and beech, see Delpierre et al., 2017).

Such a wide range in leaf-out date could arise from phenology being a neutral trait for the
tree, not affecting its fitness and therefore not being the object of natural selection. This idea is
currently an object of debate, with little data documenting the link between phenology and fruit
productivity (as a direct measure of fitness). Some studies have investigated the link between phe-

nology and growth (an indirect measure of fitness) but their results are partly contradictory, with
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some showing no link between interannual variations of ring width indices and leaf phenology for
a given tree (Cufar et al., 2015; de Sauvage et al., 2022), and others showing a globally significant,
but not systematic, link between basal area increment and leaf phenology among dominant con-
specifics in a given population (Delpierre et al., 2017). Leaving that debate aside, it is likely that
the wide range of leaf-out dates observed in forests is due to the process of stabilising selection in
which environmental conditions will impose limits to the acceptable variability achievable in phe-
nological traits, while within-community interactions will favor inter-individual variability (Violle
et al., 2012). In that context, fluctuating interactions and hazards may favor a large variability
of phenological traits in a population (Alberto et al., 2011). For instance, individual trees that
leaf-out late will probably be advantaged in years with a late frost, but may logically be disad-
vantaged in years when early spring conditions are favorable, or when pathogens flourish (Dantec
et al., 2015). Ongoing climate change is accompanied by changes in the probability of exposure to
late frost (Zohner et al., 2020), which could influence communities differently in areas where the
probability is increasing (e.g. Europe, but see Lin et al., prep) than in areas where it is decreasing

(e.g. North America).

The factors determining the intra-population variability of leaf-out have been little studied,
but it is established that edaphic conditions (nature of the soil in Arend et al., 2016, soil water
content in Delpierre et al., 2017), microclimate (e.g. local seasonal air temperature in Donnelly
et al., 2017), genetic variability (Bontemps et al., 2015) and ontogeny (Vitasse, 2013) are involved.
Furthermore, the intra-population variability in leaf-out itself varies between years, depending on
the prevailing micrometeorological conditions. Thus, intra-population variability is all the more
marked the colder the temperature conditions during leaf-out (Denéchere et al., 2021; Delpierre

et al., 2020).

The amplitude of leaf-out (i.e. the duration from the earliest to latest tree to leaf out) is likely
to increase as one moves from the population to the community, encompassing a wider range of

phenological niches. These niches are distributed vertically (e.g. dominant vs. understory tree


https://doi.org/10.1101/2023.11.21.568089
http://creativecommons.org/licenses/by-nc-nd/4.0/

GWhCh vias ot GorHRe oy RS raview) IS e SatToHder. Who Pas rantEel PIOFDRY  BGEe 1 ASpiey (he rabredt I PErpetity. It s made
available under aCC-BY-NC-ND 4.0 International license.
species, Richardson and O’Keefe, 2009) and horizontally (e.g. early vs. late species in the overstory,
Cole and Sheldon, 2017). The evolutionary history of species (i.e. genetic determinism) explains
the inter-specific differences in leaf-out within a community. In this context, a more species-rich
community would also be expected to have a greater phenological range, the phenological range
of the community being composed of the specific phenological ranges (Fig. S1). In addition to
species richness, the phylogenetic diversity of communities deserves to be considered, as plants
display a certain phylogenetic conservatism (whereby phylogenetically close species display similar
phenological traits, Davies et al., 2013; Panchen et al., 2014). For example, one would expect a
larger intra-community variability of leaf-out (ICVLo) in North American forests than in European
forests, all else being equal, because they are more species-rich (Liang et al., 2022; Latham and
Ricklefs, 1993) and display a higher phylogenetic diversity (Eiserhardt et al., 2015). The ICVLo is
itself susceptible to variations from year to year (Fig. S1). By extending the results obtained at the
population level (Denéchere et al., 2021) to the community, we hypothesize that cold temperatures

during the leaf-out period would increase the ICVLo.

1.2 Using phenocams to study the intra-community variability of leaf

phenology

A large part of the literature on forest leaf phenology is based on ground observation data.
These data are historically the oldest and have been collected in national to continental databases
(e.g. PEP725 Templ et al., 2018, NPN-usa Betancourt et al., 2007) that cover a period of several
decades (e.g. from the 1950’s in the PEP725 database). In the late 2000’s, the use of ”digital
repeat photography” to document the phenology of plant canopies became widespread (Richard-
son et al., 2007, 2009). These studies were initially based on the analysis of data obtained by
automated photographic instruments, most often mounted on towers overhanging the canopy (i.e.
phenological cameras or ”phenocams”). Networks of phenocams have been set up (notably the
PhenoCam Network, Richardson, 2019, see also Wingate et al., 2015), which has enabled data

to be centralized and harmonized. Image data are more complex than ground observation data.
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They have to be processed to extract an analysable phenological signal (e.g. critical dates in the
development of the foliage). The development and public sharing of algorithms for processing
phenocam images (e.g. R packages phenopiz Filippa et al., 2016 and zROI Seyednasrollah et al.,
2019b) has increased the use and impact of these data. Several studies have been dedicated to the
comparison of critical phenological dates observed from the ground and inferred from the analysis
of phenocam datasets at a common site (e.g. Keenan et al., 2014; Soudani et al., 2021). They
show a very good match between ground-observed and phenocam-inferred leaf-out dates at the
community scale. More recently, we have shown by comparing ground observation and phenocam
data that the analysis of phenocam data also allows quantifying the intra-population variability of
leaf-out (Delpierre et al., 2020). For this purpose, we subdivided the phenocam scene (i.e. Region
Of Interest, ROI at the canopy scale) into several sub-ROls (each targeting a particular tree) and
analysed the data at this scale. The idea of analysing intra-canopy (i.e. intra-community) vari-
ability in bud break is not new, and had previously appeared in site-scale studies (Ahrends et al.,
2008; Richardson et al., 2009; Filippa et al., 2016). To our knowledge, it has not been deployed in

the context of a regional study yet.

1.3 Objectives

Here, we analysed phenocam data obtained over North American and European forests with the
aim to investigate the determinants and ecological consequences of ICVLo in temperate deciduous

forests. Specifically, we answered the following four questions:

1. Do variations in spring temperature influence similarly the date of leaf-out in North American

and European temperate deciduous forests?

2. Is the higher species richness and/or phylogenetic diversity of North American forests asso-

ciated with a higher ICVLo?

3. What are the environmental controls of ICVLo?
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4. What are the ecological implications of ICVLo, in terms of light absorption and exposure to

late frosts?

2 Materials and Methods

2.1 Study sites

We analysed images taken by phenological cameras over 17 sites located in Europe (EUR, 8
sites) and Eastern North America (ENA, 9 sites) (Fig. 1, Table 1). The sites were distributed
between 36°N to 56°N, and classified into Koppen-Geiger climate zones using the kgc package
(Bryant et al., 2017), with zone names from Kottek et al., 2006. We selected these sites on the
basis of the length of the image time series available and the general quality of the images (main
criteria were : fixed field of view including a large proportion of forest cover, and good image
sharpness). The quality of the images was not always consistent between years for the same site,
which led us to keep some years and discard others for a given site (Table 1). Analysed images

were acquired from 2009 to 2022.
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Fig. 1: Location of study sites. Colors indicate classification into Koéppen climate zones. The size of points on the
map scales with the number of years, ranging from 2 (smallest) to 10 (largest). The inset graph represents daily
average air temperature climatologies (T, in °C) established over January to June; temperature data were binned
according to day of year (DoY) and averaged across all study site-years of the corresponding climate zone. Climate
zones are: Cfa = warm temperate with hot summer, Cfb = warm temperate with warm summer, Dfb = snow with
warm summer.
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Table 1: Characteristics of study sites. Npix refers to the number of sub-ROIs analysed at each site. SD is the standard deviation of
leaf-out dates. Columns Leaf-out and SD contain the mean / minimum / maximum values observed at each site across the measuring
time period (Years). Koppen climate zones: Cfa = warm temperate with hot summer, Cfb = warm temperate with warm summer,
Dfb = snow with warm summer. Stardot is for Stardot NetCam SC 5MP, Axis is for Axis P1347, Kodak is for Kodak DC290, Canon

is for Canon Powershot A700. The actual species names are displayed in Table S1.

Képpen Species
Site Region | Lat (°N) | Lon (°E) | climate zone | number | Camera | Npix Years Leaf-out (DoY) SD (days)
20T1-2016,
Alice-Holt EUR 51.17 0.84 Ctb 2 Stardot | 329 | 2018, 2020 | 121.6/109.7/132.7 | 3.4/1.5/4.7
Barbeau
(FR-Fon) EUR 48.48 2.78 Ctb 2 Axis 153 2012-2022 1()5.6/96.7/115.7 4.1/1.6/9.9
Hainich Kodak,
(DE-Hai) EUR 51.08 10.45 Ctb 3 Canon | 267 | 2011, 2017 | 124.0/114.7/133.3 | 3.9/1.4/6.3
Hohes Holz
(DE-HoH) EUR 52.08 11.21 Ctb 3 Stardot | 426 2016-2018 118.7/110.6/125.5 5.7/1.4/10.4
Leinefelde 2010,
(DE-Lnf) EUR 51.33 10.37 Ctb 1 Stardot | 246 2012-2016 118.5/106.1/128.2 1.5/0.3/2.6
Sorg
(DK-Sor) EUR 55.49 11.64 Ctb 1 Stardot | 149 2014-2018 120.4/112.9/126.5 3.7/2.5/4.5
Hesse
(FR-Hes) EUR 48.67 7.06 Ctb 4 Stardot | 285 | 2012-2018 | 112.5/101.8/120.8 | 2.8/1.0/7.7
Mill Haft EUR 52.80 -2.30 Ctb 2 Stardot | 302 | 2017-2020 | 116.8/110.8/125.5 | 4.6/3.1/7.5
Alligator River
(US-NC4) ENA 35.79 -75.90 Cfa 2 Stardot | 164 | 2013-2020 | 101.2/91.6/107.9 | 2.4/1.4/4.9
Arbutus Lake | ENA | 43.98 | -74.23 Dfb 5 Stardot | 241 | 2009-2014 | 133.8/127.1/139.7 | 3.6/1.6/5.1
Bull shoals ENA 36.56 -93.07 Cfa NA¢ Stardot | 105 2015-2020 105.7/101.3/118.7 2.2/1.4/3.7
Downer woods | ENA | 43.08 | -87.88 Dfb 4 Stardot | 344 | 2013-2020 | 140.4/136.1/145.1 | 3.1/2.0/3.9
Duke HW
(US-Dk2) ENA 35.98 -79.10 Cfa 5 Stardot | 255 | 2014-2017 93.0/83.1/99.3 3.5/2.6/4.3
Harvard Forest
(US-Hal) ENA 42.53 -72.17 Dib 4 Stardot | 176 | 2009-2019 | 131.3/124.5/135.6 | 1.9/0.7/4.7
Morgan Monroe
(US-MMS) ENA 39.32 -86.41 Cfa 5 Stardot | 239 | 2010-2017 | 105.5/86.6/117.8 | 4.7/2.7/7.9
Sanford ENA 42.73 -84.46 Dib 6 Stardot | 322 2015-2020 121.8/109.1/125.7 2.4/0.7/3.8
Willow Creek
(US-WCr) ENA 45.80 -90.07 Dfb 4 Stardot | 367 | 2015-2020 | 139.8/134.7/145.6 | 1.6/0.7/3.2

3SUSOI TeUOeuISI] 0% AN-DN-AG-D)€ JSpun S[qelene

a species number could not be determined at Bull shoals

apeuw si | ‘Aunadiad uruudaid ayy Aejdsip 01 asuadl| B AIxHoIq pajuelh sey oym ‘1spunyioyine ayi si (mainal 19ad Aq paljiniad Jou sem Yyaiym)
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2.2 Processing phenocam images

We obtained images from the phenocam dataset (Seyednasrollah et al., 2019b) for 10 study
sites (all the ENA sites plus Mill Haft). Images for the 7 other sites were provided by the site Pls.
For each site, we delineated a mask (Region Of Interest, ROI) to delimit the deciduous vegetation
zone in the phenocam scene (i.e. excluding roads, buildings, the sky and evergreen trees), thanks
to the R package xROI (Seyednasrollah et al., 2019a). Since our aim was to work on ICVLo, we
adopted a ”pixel-based” approach (Filippa et al., 2016), that has rarely been used to date for the
analysis of phenocam images (but see Ahrends et al., 2008; Delpierre et al., 2020; Richardson et al.,
2009). For this, we subdivided the ROI into sub-ROIs using a systematic hexagonal grid (Fig. 2)
with the R package rgeos (Bivand and Rundel, 2023). The phenological sequence of each sub-ROI
was analysed independently.

Using the sub-ROI approach in a previous work, we showed it was possible to retrieve intra-scene
variability of leaf-out dates that were very close to the inter-tree variability of leaf-out observed
from the ground (Delpierre et al., 2020). In our systematic grid approach, the mesh size was
specifically chosen for each site according to the proximity and size of the tree crowns (Fig. 2A).
We chose mesh sizes that were slightly smaller than the average tree crown size observed on the
grid, approximating one sub-ROI to represent one tree. The idea here was to reduce the risk of an
under-estimation of the intra-community variability of leaf-out that would result from choosing too
coarse mesh sizes (i.e. that would lead to confound canopy crowns), bearing in mind that the intra-
crown variability of leaf-out is lower than the inter-crown variability (e.g. Smith, 2018, their table
A3.3). We conducted preliminary evaluation of the method on a subset of four sites, comparing the
intra-scene variation of leaf-out obtained from the systematic grid vs. a more detailed approach
into which we identified sub-ROI at the scale of the tree (Suppl. Notes S2). The error arising
from the use of the systematic grid was of 0.36 days (see Fig. S2.2), which yields a signal-to-noise
ratio of 8.6 (calculated as the ratio of the average standard deviation (SD) of leaf-out, see below,
to the error of 0.36 days). We considered this value high enough to be confident in the quality of

the analyses conducted on data obtained from the systematic grid approach.
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Fig. 2: Processing of the phenocam data. (A) representation of a scene onto which a gridded Region Of Interest
(ROI) has been applied; (B) data extracted from one of the grid elements (i.e. one sub-ROI), where the blue
horizontal line marks the minimum spring Green Chromatic Coordinate (GCC) value, green horizontal line is the
maximum GCC value considered, and the black horizontal line represents 30% of the amplitude between the blue
and green lines. Red vertical line is the leaf-out date determined for this particular grid element. Images and data
are from Arbutus Lake site (NY, USA) in 2012.

2.3 Retrieving leaf-out from the GCC signal

In each sub-ROI, we determined the date of leaf-out from the analysis of the Green Chromatic
Coordinate (GCC) time series (Keenan et al., 2014). GCC uses red (R), green (G), and blue
(B) digital numbers to calculate the ratio of green within the image (GCC = G/(R+G+B)).
Specifically, we determined the "date of leaf-out” of each sub-ROI with a threshold approach
(Keenan et al., 2014), using 30% of the spring signal amplitude as a threshold (Fig. 2B). We
computed the lower bound of the signal amplitude as the 95th percentile of the GCC data obtained
from day of year (DoY) 1 to 80 (blue line in Fig. 2B). We computed the upper bound of the signal
amplitude as the 98th percentile of the GCC data obtained over the whole year (green line in Fig.
2B). After establishing the date of leaf-out for each sub-ROI, we first cross-checked the minimum
and maximum dates of leaf-out against phenocam images. In eight site-years out of 106 site-years
present in the dataset, the analysis of the GCC data produced too early or too late leaf-out dates
in some sub-ROIs as compared to our visual inspections of the phenocam images. We removed
those outliers from the distributions of leaf-out dates determined at the sub-ROI scale. These
outliers represented 3% of the sub-ROIs on average for the eight site-years considered. Then,

we computed community-scale phenological metrics for each site-year in the dataset, namely the

10
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minimum, maximum and average leaf-out date (DoY), the leaf-out standard deviation (in days)

and the amplitude (i.e. maximum-minimum, in days). In the following, we use the standard

deviation of leaf-out (SD, in days) for quantifying ICVLo. Standard deviation is a measure of the

average duration between each sub-ROI leaf-out date and the average date established over the

whole community.

2.4 Meteorological data

We retrieved air temperature and radiation data of each site from nearby meteorological stations
for ENA sites (except Bull shoals, for which we used data from the DAYMET database (Thornton
et al., 2021)) as well as for two European sites (Alice-Holt and Mill Haft), and from the ICOS
community for the other European sites (”Warm Winter 2020 ecosystem eddy covariance flux
product”, https://doi.org/10.18160/2G60-ZHAK). In order to assess the influence of temperature
conditions on ICVLo, we computed for each site-year the average temperature (Tmean, in °C) and
the absolute minimum temperature occurring during the period of leaf-out. Preliminary analyses
(Fig. S3) identified that ICVLo was more strongly related to the minimum temperature measured
during the period extending from the 5th to the 95th percentile of the sub-ROI distribution of
leaf-out (hereafter Tmin, in °C).

In order to quantify how treewise light absorption was influenced by ICVLo, we compared the sum
of radiation received by the community from (i) the leaf-out date of the earliest sub-ROI and (ii)
the leaf-out date of the latest sub-ROI and October 1.

In order to compare the exposure of the earliest and latest trees in the community to late frosts,
we quantified their respective ”safety margins”. For this purpose, we calculate the duration (in
days) between the leaf-out date of the earliest and latest sub-ROI and the occurrence of minimum
temperatures below the critical threshold of -3°C, below which frost damage on emerging leaves is

irreversible (Lin et al., 2023).
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2.5 Community diversity metrics

One of our objectives was to evaluate the influence of the community diversity on ICVLo, with
the hypothesis that more diverse canopies would display higher ICVLo. For this, we considered
two metrics for the diversity of the community. First, we considered the number of dominant
tree species (Spnum) that were visible in the site ROIs. Yet, the species number could be less
informative than phylogenetically-informed metric of the diversity, because leaf-out is a trait that
is conserved in some clades (Panchen et al., 2014). Hence we also considered the mean pairwise
distance (MPD) as a metric for community diversity. MPD is the mean phylogenetic distance (i.e.
branch length) among all pairs of species within a community. Because all species composing a
community do not have the same abundance in the analysed ROIs, we weighted the contribution
of each species pair in MPD by the product of the individual species abundances (see Table S1).
Calculations of MPD were done with the picante package (Kembel et al., 2010), using the tree
phylogeny from Zanne et al., 2014. Since we could not identify the species identity and proportional
contribution to ROI at Bull shoals, we included data from this site only in analyses that do not
require these metrics (i.e. Fig. 3, Fig. 4A,C.D and Fig. 5 in the main text, Fig. S4 in the

supplementary materials).

2.6 Statistics

Comparing distributions among climate zones. We used boxplots for graphical represen-
tations of the data. They display the median, first and third quartiles (box), and go up to the
largest / lowest value, no further than 1.5 times the inter-quartile range (whiskers). Data beyond
the end of the whiskers are plotted individually. When comparing distributions of data among

climate zones, we applied non-parametric rank sum Wilcoxon tests.

Statistical models. In order to answer Question 1 (see Objectives), we tested the link between
the average leaf-out date and spring temperature, taking into account a possible interaction of

the climate zone (i.e. relation between average leaf-out date and temperature could differ among
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climate zones) :

where DLO; is the average date of leaf-out (DoY) for site-year i, M ST is the mean spring (March-

May) temperature (°C) and C'Z is the site climate zone.

Questions 2 and 3 were related to the influence of the community diversity and the environment
on ICVLo. We first hypothesized that ICVLo, quantified as the SD of leaf-out dates, would be
related to temperature and the date of leaf-out, perhaps differently across climate zones. Hence

we formulated a first model:

SD; ~ (Tmin; + MinLO;) x CZ; (2)

In order to test the hypothesis that more diverse communities display a higher SD, we further

formulated two models:

SD; ~ (Tmin; + MinLO; + Spnum;) x CZ; (3)

and

SD; ~ (Tmin; + MinLO; + MPD;) x CZ, (4)

where SD; is standard deviation of leaf-out (in days) for site-year i, T'min is the minimum tem-
perature measured during the period extending from the 5th to the 95th percentile of the sub-ROI
distribution of leaf-out (°C), MinLO is the date of leaf-out of the earliest sub-ROI, Spnum is the
number of tree species contributing to the GCC signal on the phenocam ROIs, and M PD is a
measure of the phylogenetic distance computed over those species (see above).

We used generalized linear models (GLMs) with a gamma error distribution for fitting eq. 2, 3
and 4, because the SD data were non-gaussian but followed a gamma distribution. The coefficients
of a GLM relate to the mean by way of the assumed link function, which is the inverse function

by default for a gamma GLM. Equations 2 to 4 include a number of terms, some of which may
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not be significant and hinder a proper estimation of the remaining, significant effects. In order

to identify model structures including only significant terms, we used the stepAIC procedure in

R. We compared the fitted models using the Akaike Information Criterion (AIC). Data from the

Bull shoals site could not be considered for the model fitting, because we missed informations on

the exact species number and identity, and therefore could not estimate the Spnum and MPD

variables there.

Software version. All analyses were conducted with the R software (version 4.2.2) (R Core

Team, 2023). Figures were plotted with the ggplot2 package (Wickham, 2016).

3 Results and Discussion

3.1 Spring temperature across climate zones.

Temperatures during the first half of the year (Jan-Jun) differed markedly among the study
climate zones (Fig.1 inset). Sites in the Dfb zone (snowy climate, with warm summer) of ENA
experienced negative temperatures, averaging -7°C from DoY 1 to 50, followed by a steep increase
with positive temperature reached from DoY 75, and +5°C reached on DoY 100. Temperatures
remained positive from DoY 1 in the Cfa zone (warm temperate climate, with hot summer) of
ENA and the Cfb zone (warm temperate climate, with warm summer) of EUR, with a steeper
increase from DoY 50 in Cfa, as compared to Cfb. Temperatures reached +8°C and +15°C on
DoY 100 in EUR-Cfb and ENA-Cfa, respectively.

3.2 Comparing the leaf-out dates in ENA and EUR, and their rela-

tionships to temperature.

Leaf-out dates averaged over the community spanned a larger range in ENA (from DoY 83,
March 24, to DoY 146, May 26) than in EUR (DoY 97, April 7, to DoY 133, May 13) (Fig. 3). The
distributions of leaf-out dates were significantly different among climate zones (pairwise Wilcoxon

tests all returned p<0.001, Fig. 3A). Communities in ENA-Cfa leafed out on average on DoY 102
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Fig. 3: Comparing leaf-out dates in EUR and ENA. Both plots display the average leaf-out dates (day of year,
DoY) determined for each site-year at the scale of the community. The data are grouped by climate zone (colors).
(A) Boxplots of the site-year average leaf-out; (B) Relation of leaf-out with mean spring (March-May) temperature
(MST). In (A), p-values of Wilcoxon’s tests are shown (p<0.001 *** p<0.01 ** p<0.05 *, p<0.10 -, p=0.10 ns).
In (B), linear regressions of leaf-out against MST are shown.

(April 12), 13 days earlier than EUR-Cfb (DoY 115, Apr 25) and 31 days earlier than ENA-Dfb
(DoY 133, May 13). The three climate zones displayed spring (March-May average) temperature
ranges of about 6 degrees (Fig. 3B), with the warmest spring temperatures in ENA-Cfa, and the
lowest in ENA-Dfb (see also Fig. 1 inset). Noticeably, the slopes of leaf-out to spring temperature
were not significantly different among zones (p<0.14, i.e. no interaction term was retained in eq.

1) but the intercept were, albeit marginally (Fig. 3B and Table 2: intercept of the relation was
lower in EUR).

Table 2: Output of a linear model testing the influence of spring temperature and climate zone on
the average date of leaf-out. M ST is mean spring (March-May) temperature, zone identifies the
climate zones.

Parameter Estimate | SE | t-value | p-value

Intercept 151.54 | 557 | 272 | <1071

MST -3.42 0.38 | -9.1 <1071
zone:ENA-Dfb* 3.75 3.47 1.1 0.28
zone:EUR-Cfb® -4.11 246 | -1.7 0.10

a zone:ENA-Cfa set to zero
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Intercontinental analyses of leaf-out dates have mostly been conducted through remote sensing
studies (so-called "start of spring” indexes) (Piao et al., 2019; Jeong et al., 2011). They evidenced
trends to earlier leaf-out with recent climate change, but to our knowledge did not compare the
slopes (in days per degree) that quantify the sensitivity of leaf-out to air temperature. We show
here that the slopes are virtually identical in ENA and EUR, despite peculiarities of the species
compositions of the Furopean and North American floras. The rate of change of leaf-out date per
unit temperature change (-3.4 days per °C, Table 2), established here across continents, is in the
range of those reported for European tree species during the ”pre-season” period (from -2.0 to
-4.5 days per °C, Fu et al., 2015; Zohner et al., 2018). Other works have addressed the leaf-out
of plants in botanical common gardens, and showed that ENA species tend to leaf out later than
EUR species when placed in the same climate conditions (e.g. Zohner et al., 2017, their Fig. 3).
Results from our regression analysis are in line with this. Indeed, for the same spring temperature,
EUR forests leaf out earlier than ENA forests (see Fig. 3B, and the fact that intercept of the

EUR-Ctb is lower than for the ENA site, albeit marginally p<0.097, Table 2).

3.3 Comparing the intra-community variability of leaf-out dates in
ENA and EUR, its dependence on species richness and environ-

mental controls.

The intra-community variability of leaf-out dates (ICVLo) was in the range of 0.3 to 10.4 days,
and averaged 3.1 days (3.2 days in ENA-Cfa, 2.4 days in ENA-Dfb and 3.6 days in EUR-Cfb,
Fig. 4A). The mean ranks between samples of SD were significantly different among climate zones
(Kruskal-Wallis test x?=6.69, p<0.04), with ranks of the SD distribution being significantly lower
in ENA-Dfb than in the two other zones (Fig.4A). We hypothesized that ICVLo would be larger
than the intra-population variability (Fig. S1). However, the average ICVLo of 3.1 days calcu-
lated over our data (all zones grouped) was significantly lower (Wilcoxon rank sum test, p<0.003)
than the average standard deviation of leaf-out in tree populations, that reached 4.0 days (data

from Denéchere et al., 2021 consisting of 37 site-years of ground observations across 12 European
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Fig. 4: The intra-community variability of leaf-out dates in EUR and ENA. All plots display the standard deviation
(SD, in days) of leaf-out dates determined for each site-year at the scale of the community. (A) Distributions of the
SDs of leaf-out in EUR and ENA; Relation of SD with: (B) the phylogenetic diversity of communities, quantified
as mean pairwise distance among species (see text); (C) the minimum temperature recorded over percentiles 5 to
95 of the leaf-out period (D) the minimum date of leaf-out observed on the considered site-year. In (A), p-values
of Wilcoxon’s tests are shown (p<0.001 *** p<0.01 ** p<0.05 *, p<0.10 -, p=0.10 ns). In (B), (C) and (D), the
lines display fits of generalized additive models (GAMs), used here for visualization purposes. In (B), data from
Bull shoals were omitted (see text).

tree populations). More precisely, the distribution of SD established at the community scale from
phenocams in EUR was not different from the distribution of SD established at the population

scale from the analysis of ground observations (Wilcoxon rank sum test, p<0.18, Fig. S4). How-
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ever, the latter was significantly higher than the distribution of SD established from phenocams

in ENA (Wilcoxon rank sum test, p<0.001 for the comparison with ENA-Dfb and p<0.06 for the

comparison with ENA-Cfa, Fig. S4).

Several studies have evaluated the relationship between leaf-out dates obtained from phenocams
and those obtained from ground observation. These studies show that the leaf-out dates obtained
from phenocams have an inter-annual amplitude very close to those obtained from ground obser-
vation (Delpierre et al., 2020; Keenan et al., 2014; Soudani et al., 2021). Hence we hypothesize
that the lower SD we observed at the scale of communities, as compared to SD observed at the
scale of populations (Denéchere et al., 2021), arose from an under-sampling of the actual vari-
ability in our phenocam analysis. Since we observed no systematic under-estimation of SD due
to our grid-definition of sub-ROIs (Suppl. Notes S2), we hypothesize this under-sampling could
arise from the fact that phenocams point mostly to dominant overstory trees, therefore overlooking
inter-individual variations related to tree size (Gressler et al., 2015), developmental stage (Vitasse,
2013) or micro-environmental conditions (Pérot et al., 2021), that are captured when conducting

phenological observations from the ground.

The phenocam scenes included on average more species in ENA than in EUR (median number
of species was 5 in ENA-Cfa, 4 in ENA-Dfb and 2 in EUR-Cfb, Fig. S5A). This difference in
species richness was also reflected in phylogenetic diversity, which was higher in ENA than in EUR
(Fig. S5B). There was no significant correlation between ICVLo and phylogenetic diversity, when
considering all data together (Fig. 4B, see Fig. S3 for correlation analysis). However, ICVLo
tended to increase with phylogenetic diversity in ENA-Dfb (rank correlation 0.38, p<0.03) and
ENA-Cfa (rank correlation 0.67, p<0.002) (Fig. 4B). In both EUR and ENA, SD decreased with
warmer minimum temperatures during leaf-out (Fig. 4C), and with the date of earliest leaf-out in

the community (Fig. 4D).

The model based on eq. 4, incorporating the influences of temperatures, date of leaf-out and a
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measure of the phylogenetic diversity of the community fitted the ICVLo data best (Table 3). The
terms of the full model were generally coherent with the visual depiction from Fig. 4, considering
the model was fitted with an inverse link function (see Methods). For instance, the coefficient
estimates for variables Tmin and MinL O were positive in the model (Table 4), coherent with the
negative correlation of SD with those variables (Fig. 4C,D). The interaction term Tmin*EUR-Ctb
was positive, indicating that the response of SD to temperature in EUR-Cfb was more pronounced
(i.e. with a steeper negative slope) than in ENA-Cfa and ENA-Dfb (see Fig. 4C). The interaction
terms MPD*EUR-Cfb and MPD*ENA-Dfb were both positive, indicating that the response to
MPD was weaker there than in ENA-Cfa (see Fig. 4B).

Table 3: Comparing models fitted to the ICVLo data. df is the number of degrees of freedom,
obtained after model structure simplification by the stepAIC procedure. AIC is the Akaike Infor-
mation Criterion. See text for the description of models.

Model predictors df | AIC | R2
eq. 2 (Tmin + MinLO)*CZ 93 | 301 | 0.65
eq. 3 | (Tmin + MinLO + Spnum)*CZ | 88 | 301 | 0.66
eq. 4 | (Tmin + MinLO + MPD)*CZ | 90 | 296 | 0.70

Table 4: Summary of the best Generalized Linear Model fit to the SD data. The model (eq. 4) was
fitted with a gamma error distribution, using an inverse link function. Only terms of the models
retained by the stepAIC procedure are displayed here. SE is the standard error of the parameter,
MinLO is the minimum leaf-out date, Spnum is the species number, MPD is a measure of the
phylogenetic diversity in the community. See text for details.

Parameter Estimate SE t-value | p-value
Intercept 1.37 0.49 2.78 0.006
Tmin 0.015 0.008 1.93 0.06
MinLO 0.0035 | 0.0012 | 2.89 0.005
MPD -0.008 0.002 | -3.03 0.003
EUR-Cfb® -1.48 0.50 -2.95 0.005
ENA-Dfb* -1.38 0.52 -2.64 0.01
Tmin*EUR-Cfb? 0.029 0.01 3.05 0.003
Tmin*ENA-Dfb? 0.017 0.01 1.73 0.09
MPD*EUR-Cfb¢ 0.007 0.003 2.86 0.005
MPD*ENA-Dfb¢ 0.007 0.003 2.62 0.01

a ENA-Cfa set to zero, b Tmin*ENA-Cfa set to zero, c MPD*ENA-Cfa set to zero

The correlation of ICVLo with minimum temperatures occurring during the leaf-out period
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(Fig. 4C) mirrors earlier results obtained at the scale of tree populations (Denéchere et al., 2021).
Warmer springs have been shown to hasten the speed of leaf-out across scales, from the scale of
the bud (Basler and Korner, 2014), to the individual tree crown (Denéchere et al., 2021), to the
population (Denéchere et al., 2021). Here, we show that this result extends to the scale of the
community. Recently, Lin et al. (2023) developed a model simulating the progress of leaf-out at
the scale of a tree population. In this model, each individual tree has a particular sum of forcing
temperatures to reach for leaf-out to occur. In line with our results, the model predicts a longer
period of time from the first to last tree to leaf-out (hence extended intra-specific variability) dur-

ing cooler springs (see also Fig. S1 of Denéchere et al., 2021).

A study conducted at the scale of Germany showed that warmer springs resulted in a ”loss
of phenological synchrony” (i.e. higher variability of leaf-out) among populations of European
Beech trees (Zohner et al., 2018). Our results could appear to contradict this work, because we
found a negative link between ICVLo and temperature during leaf-out (i.e. warmer temperatures
during leaf-out are associated with smaller ICVLo, that is a higher phenological synchrony in
the communities). This contradiction disappears once we take into account the fact that these
two studies do not consider the effect of temperatures in the same time window. We related
ICVLo to the temperature conditions occurring during the period of leaf-out (Fig. 4C) while
Zohner et al. 2018 considered temperature conditions occurring during the 60 days preceding the
average date of leaf-out. Similar to Zohner et al. 2018 (their Fig. 1E), we found that early
leaf-out (caused by a high ”pre-season” temperature) was associated with a higher variability of
leaf-out (Fig.4D). However, the influence of the date of leaf-out on ICVLo was of second order,
as compared to the influence of temperature conditions during leaf-out (i.e. partial correlations of
SD with temperature, controlling for leaf-out date, were stronger than partial correlations of SD

with date, controlling for temperature, see Table 5).
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Table 5: Partial correlation of SD with temperature and leaf-out date. AwveLO is the average
leaf-out date, MinLO is the minimum leaf-out date. For example, p(SD,Tmin - AveLO) is the
partial correlation of SD with Tmin, controlling for AveL.O.

partial-r | p-value
p(SD,Tmin - AveLO) | -0.63 | <0.001
p(SD, AveLO - Tmin) | -0.21 <0.03

p(SD, Tmin - MinLO) | -0.60 | <0.001
p(SD, MinLO - Tmin) | -0.42 | <«0.001
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Fig. 5: Functional impacts of the intra-community variability of leaf-out. (A) shows the relative amount of excess
radiation absorbed by the earliest compared to the latest sub-ROI in the community; (B) shows the safety margin
(in days) of the earliest and latest sub-ROI (two panels), as regards exposure of emerging leaves to temperatures
lower than -3°C. In panel (B) data points are displayed over their respective boxplots in order to highlight the
spread, and identify clearly cases with a negative safety margin.

3.4 Ecological implications of the intra-community variability of leaf-

out

Individual trees leafing-out first in the community received on average 8% more radiation (from
7% in ENA-Cfa to 10% in ENA-Dfb) over spring than the last trees leafing-out (remembering we
focused here on the dominant overstory trees) (Fig. 5A). Under the naive hypothesis that photo-
synthesis scales with incoming radiation, as in a simple light-use efficiency (LUE) model (Baldocchi
and Penuelas, 2019), and that NPP (net primary productivity, or biomass productivity) is propor-

tional to GPP (gross primary productivity, the gross amount of carbon fixed by photosynthesis)
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(Collalti and Prentice, 2019), and ignoring intraspecific and leaf age variation in LUE, this would
straightforwardly translate in a 8% difference in tree growth. This potential 8% difference is much
smaller than the variability observed in basal area increment of tree growth we compute, e.g. at the
Barbeau (FR-Fon) forest (Table 1) for which we could access individual tree growth data (coeffi-
cient of variation of tree basal area increment, normalized by crown area was 35% among dominant
trees). Along with other evidence (e.g. the fact that phenological rank in tree populations are
not systematically correlated with growth, Delpierre et al., 2017), this points to a second-order

influence of leaf phenology in determining the inter-individual growth of trees (see also Cufar et al.,

2015 and de Sauvage et al., 2022).

Table 6: Percent of the community affected by late spring frost. We report here the percentage of
sub-ROIs that had already leafed-out when late frost (Tmin<-3°C) occurred.

Zone Site Year | Tmin (°C) | Percent frost (%)
ENA-Dfb | Arbutus Lake | 2009 -3.3 56
ENA-Dfb | Arbutus Lake | 2010 -3.3 74
ENA-Dfb | Arbutus Lake | 2013 -4.4 1
ENA-Dfb Sanford 2020 -3.8 90
EUR-Cfb Barbeau 2021 -3.0 1

The safety margin against exposure to frost was significantly smaller in ENA than in EUR (Fig.
5B). As expected considering the trend to increasing temperatures in spring, early sub-ROIs had
a smaller safety margin than late sub-ROIs, whatever the climate zone (Fig. 5B, average safety
margins in the ”earliest” sub-ROI were smaller than in the ”latest” sub-ROI). In EUR, we detected
1 site-year (i.e. 2% of the EUR data, Table 6) for which the earliest sub-ROI was exposed to a frost
below -3°C. In ENA, this rose to 4 site-years (6% of the ENA data), belonging to two sites, both
located in the cooler ENA-Dfb zone (Fig. 1 inset). This result is consistent with calculations of a
higher probability of frost exposure for North American, as compared to European species (Zohner
et al., 2020), and suggests that North American temperate forests, indeed, experience late frosts
more frequently than European forests. Not only the frequency, but also the extent of exposure
to frost of ENA vs. EUR forests differed in our dataset. When late frost struck ENA forests, it

could affect a large proportion of the community (Table 6).
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Conclusions and perspectives.

We were able to characterize the intra-community variability of leaf-out dates through the anal-
ysis of images acquired automatically by phenological cameras. This methodological achievement
is a promising step in the process of characterizing the current and past variability of ecological
traits in tree communities (e.g. the grid-based analysis of images could be applied to other eco-
logical traits such as detecting variations in the health status, differential attacks by herbivores
etc.) with implications on the forest biocenosis (e.g. the timing of leaf emergence determines the
availability of food for many herbivorous insect species). It complements other attempts to char-
acterize the variability of phenology at the scale of a landscape, using UAVs (Klosterman et al.,
2018; Berra et al., 2019) or satellite data (Moon et al., 2022).

We found ample ICVLo at all study sites. The ICVLo was comparable in ENA and EUR, despite
ENA forests being more species-rich and phylogenetically diverse, pointing to a stronger environ-
mental than biotic control of ICVLo. The ecological consequences of ICVLo are at least two-fold:
(1) on average, trees that leaf-out the earliest in a community were exposed to about 8% more ra-
diation over spring than the latest trees, (2) those early trees have a lower safety margin regarding
exposure to late frost, and the safety margin was smaller in ENA as compared to EUR. Further
ecological consequences of ICVLo remain to be explored, for example the impact of ICVLo on soil
water content in a context of drier environmental conditions. The approaches developed in this
work could also be extended to the analysis of the intra-community variability in leaf senescence,
which is even greater than ICVLo (Delpierre et al., 2017) and whose determinants are probably

more complex.
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