
kallisto, bustools, and kb-python for quantifying bulk,
single-cell, and single-nucleus RNA-seq

Delaney K. Sullivan1,2, Kyung Hoi (Joseph) Min3, Kristján Eldjárn Hjörleifsson4,
Laura Luebbert1, Guillaume Holley5, Lambda Moses1, Johan Gustafsson6,

Nicolas L. Bray6, Harold Pimentel7,8,9, A. Sina Booeshaghi1*, Páll Melsted5,10*,
Lior Pachter1,4*

1 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena,
CA, 91125, USA
2 UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine,
University of California, Los Angeles, Los Angeles, CA, 90095, USA
3 Ginkgo Bioworks, Boston, MA, 02210, USA
4 Department of Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, CA, 91125, USA
5 deCODE Genetics/Amgen Inc., Reykjavik, Iceland
6 Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
7 Department of Computer Science, University of California, Los Angeles, Los Angeles, CA,
90095, USA
8 Department of Computational Medicine, David Geffen School of Medicine, University of
California, Los Angeles, Los Angeles, CA, 90095, USA
9 Department of Human Genetics, David Geffen School of Medicine, University of California,
Los Angeles, Los Angeles, CA, 90095, USA
10 School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

*Address correspondence to sbooeshaghi@gmail.com or pmelsted@hi.is or
lpachter@caltech.edu

Abstract

The term “RNA-seq” refers to a collection of assays based on sequencing experiments that
involve quantifying RNA species from bulk tissue, from single cells, or from single nuclei. The
kallisto, bustools, and kb-python programs are free, open-source software tools for performing
this analysis that together can produce gene expression quantification from raw sequencing
reads. The quantifications can be individualized for multiple cells, multiple samples, or both.
Additionally, these tools allow gene expression values to be classified as originating from
nascent RNA species or mature RNA species, making this workflow amenable to both
cell-based and nucleus-based assays. This protocol describes in detail how to use kallisto and
bustools in conjunction with a wrapper, kb-python, to preprocess RNA-seq data.

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Introduction

Overview

The preprocessing1,2 step of RNA-seq3 experiments involves mapping reads to a reference
genome or transcriptome, followed by gene expression or transcript abundance quantification.4

Many open-source tools exist for bulk RNA-seq preprocessing5–14 as well as single-cell RNA-seq
preprocessing.1,15–22 kallisto8 introduced the pseudoalignment paradigm for improving the
accuracy of alignment and reducing runtimes and memory footprint of bulk RNA-seq
preprocessing and, with the development of bustools23, has been adapted for both single-cell
RNA-seq quantification1 and single-nucleus RNA-seq quantification.24 The bustools suite of tools
operates on the read mapping results of kallisto and processes them to generate quantification
results, which may involve unique molecular identifier (UMI)25,26 collapsing and barcode error
correction for single-cell and single-nucleus assays. While multiple steps are necessary to
process input consisting of FASTQ sequencing files, a reference genome FASTA, and a GTF
annotation27,28, to an output of quantifications using kallisto and bustools, these steps are greatly
facilitated by the wrapper tool, kb-python. kb-python can extract reference transcriptomes from
reference genomes and run kallisto and bustools in workflows optimal for each assay type. The
kb-python tool simplifies the running of kallisto and bustools to the extent that all of this can be
done in two steps: `kb ref` for generating a kallisto index from an annotated reference genome
and `kb count` for mapping and quantification. Thus, kallisto, bustools, and kb-python make
RNA-seq preprocessing efficient, modular, flexible, and simple.1

Box 1: Software tools and their description

Software tools:

● kallisto: Performs pseudoalignment to a reference transcriptome and stores the
mapping results in a BUS file.8

● bustools: Processes the results in the BUS file to correct barcodes, deduplicate UMIs,
and generate quantification files (e.g. count matrices).1,23

● kb-python: A wrapper around kallisto and bustools that facilitates usage of those tools
and facilitates the generation of a reference transcriptome. The kallisto and bustools
binaries come packaged in kb-python.

Installation:

pip install kb_python

Note: To install kallisto and bustools from source code rather than using the precompiled binaries or to install
specific versions of the software, see Supplementary Note 1.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/6uRYn+B6v3S
https://paperpile.com/c/OA1bhn/husWE
https://paperpile.com/c/OA1bhn/y1rU3
https://paperpile.com/c/OA1bhn/wnBvP+CmBYr+Jp6J8+lLMc9+uykdu+Mp3UO+OhBsY+2jgVt+x9FKY+qELTP
https://paperpile.com/c/OA1bhn/6uRYn+wmSRd+OKucn+mEgVW+6o6O1+U98vP+iMWGe+vxmnn+h7nXq
https://paperpile.com/c/OA1bhn/lLMc9
https://paperpile.com/c/OA1bhn/hIUxS
https://paperpile.com/c/OA1bhn/6uRYn
https://paperpile.com/c/OA1bhn/g9TY6
https://paperpile.com/c/OA1bhn/y5WAx+BJUsB
https://paperpile.com/c/OA1bhn/V95x+HSMB
https://paperpile.com/c/OA1bhn/6uRYn
https://paperpile.com/c/OA1bhn/lLMc9
https://paperpile.com/c/OA1bhn/hIUxS+6uRYn
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Index construction

For RNA-seq read mapping, kallisto builds an index from a set of sequences, referred to as
targets, representing the set of sequences that RNA-seq reads can be mapped to. In a standard
analysis, these targets are usually transcript sequences (i.e. each individual target corresponds
to one transcript). However, more generally, users can define targets from any sets of
sequences they wish to map their sequencing reads against. Since kallisto is a tool that
leverages pseudoalignment, the mapping procedure relies on read assignment, such that each
read is deemed to be compatible with a certain set of targets, rather than standard alignment.
The kallisto index is based on the Bifrost29 implementation of the colored de Bruijn graph30,
which enables memory-efficient and rapid read assignment.

kb-python enables the construction of kallisto indices through the kb ref command (Fig. 1).
Different types of kallisto indices can be built by specifying the --workflow argument in kb ref.
The default is --workflow=standard, which is used for bulk and single-cell RNA-seq
quantification as the index built in this workflow contains only the cDNA sequences (the usage
of complementary DNA here follows that of Ensembl31, i.e., the sequences of the mature
transcripts wherein introns are not included as they have been spliced out). The index created
by --workflow=nac (nac: nascent and cDNA) contains both the cDNA and the nascent
transcripts. The nascent transcript sequences consist of the full gene (both exons and introns).
This nac index is suitable for single-nucleus RNA-seq as there exists a high abundance of
non-mature transcripts captured in nucleus-based sequencing assays.32 Additionally, this nac
index should be used for analyses that require jointly modeling nascent and mature RNA
species.33–38 For both the standard and nac workflows, a user supplies a genome FASTA and
GTF annotation, which kb-python uses to extract the relevant sequences. Finally, if one wishes
to index a custom set of targets or of k-mers (Supplementary Note 2), one can use
--workflow=custom which requires only a FASTA file containing the target sequences of
interest to be supplied.

Fig. 1: `kb ref` can be used to generate three different types of kallisto indices.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/6mWMD
https://paperpile.com/c/OA1bhn/WLwrH
https://paperpile.com/c/OA1bhn/YFYDI
https://paperpile.com/c/OA1bhn/mivDk
https://paperpile.com/c/OA1bhn/Hx1AJ+xqGyy+dsED6+cyT4g+DwUHI+DvODb
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Creating the index in kb-python invokes the kallisto index command in the kallisto program
(Box 2). Indexing with kb-python has the advantage that a reference transcriptome is generated
directly from a FASTA and GTF ensuring consistency between the transcriptome reference, its
associated index, and the input FASTA and GTF.

Box 2: kb ref

Below, we show how to run kb ref using three different workflows. Only the underlined files
need to be supplied by the user; the other files are output files generated as part of the
indexing process and may be necessary for the subsequent mapping and quantification step.
The corresponding kallisto index commands that are invoked are shown beneath each kb ref
call (note that, by default, the kallisto index command is invoked using 8 threads).

1. standard workflow (default):

kb ref -i index.idx -g t2g.txt -f1 cdna.fasta genome.fasta genome.gtf

kallisto index -t 8 -i index.idx --d-list=genome.fasta cdna.fasta

2. nac workflow:

kb ref --workflow=nac -i index.idx -g t2g.txt -c1 cdna.txt -c2 nascent.txt \
-f1 cdna.fasta -f2 nascent.fasta genome.fasta genome.gtf

kallisto index -t 8 -i index.idx --d-list=genome.fasta cdna.fasta nascent.fasta

3. custom workflow:

kb ref --workflow=custom -i index.idx custom.fasta

kallisto index -t 8 -i index.idx custom.fasta

Explanation of output files:
● index.idx: The kallisto index that is generated
● t2g.txt: The transcript-to-gene mapping file
● cdna.fasta: The generated FASTA file containing the extracted cDNA sequences
● nascent.fasta: The generated FASTA file with extracted nascent transcript sequences
● cdna.txt: The transcript names of the cDNA sequences
● nascent.txt: The nascent transcript names (which are simply the gene names)

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Additionally, using kb-python (via the --include-attributes and --exclude-attributes options) allows
specific biotypes to be selected from the GTF file, making possible filtering of entries such as
pseudogenes, which can improve read mapping accuracy39 and reduce memory usage
(Supplementary Note 3). It is recommended to perform GTF filtering, especially for the nac
workflow where there will be many overlapping segments among annotated regions in the
genome. The kallisto index command has a --d-list option which improves the mapping
specificity by isolating certain sequences, known as distinguishing flanking k-mers (DFKs), that
may cause erroneous read mapping.24 The DFKs that are identified depend on the FASTA file
supplied to the --d-list option. While the --d-list option can be entered by the user directly into kb
ref, kb ref already by default calls kallisto index with the --d-list option set to the genome FASTA
supplied but can be disabled by specifying --d-list=None in kb ref.

Mapping and quantification

The kb count command within kb-python enables mapping and quantification of bulk,
single-cell, and single-nucleus RNA-seq reads (Fig. 2). As different sequencing assays have
different read structures, strandedness, parity, and barcodes, one must provide the
specifications for the technology which produced the sequencing reads.

Fig. 2: `kb count` can be used to produce quantifications in the form of count matrices for bulk,
single-cell, and single-nucleus RNA-seq.

The specifications for sequencing assay technology within kb-python are as follows:
● Technology string: A technology string for a particular type of assay can be supplied

via the -x option. The technology string can be used in one of three ways:
○ Option 1: Several assays are predefined within the software (the list is viewable

by calling kb --list) so one can name one of those directly (e.g. one can specify
-x 10xv3).

○ Option 2: One can use seqspec40,41 which contains machine-readable
specifications for a wide range of sequencing assays.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/vqwCq
https://paperpile.com/c/OA1bhn/g9TY6
https://paperpile.com/c/OA1bhn/G6XeW+Bl3s
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

○ Option 3: One can format their own custom technology string specifying the read
locations of the barcodes, unique molecular identifiers (UMIs), and the biological
sequence that is to be mapped (Box 3).

● Strandedness: If a read (or the first read in the case of paired-end reads) is to be
mapped in forward orientation, one should specify --strand=forward. If it is to be
mapped in reverse orientation, one should specify --strand=reverse. If one does not
want to map reads with strand-specificity, then one should specify
--strand=unstranded. If a predefined name is used in the technology string -x option
(option 1), then kb-python uses a default stranded option for that technology (e.g. for
10xv3, the default is forward); otherwise, the default is unstranded. Setting the --strand
option explicitly will overrule the default option.

● Parity: If the technology involves two biological read files that are derived from
paired-end sequencing (as is the case with Smartseq242,43 and Smartseq344 and many
bulk RNA sequencing kits), one should specify --parity=paired to perform mapping that
takes into account the fact that the reads are paired-end. Otherwise, one can specify
--parity=single. If a predefined name is used in the -x technology string option
(option 1), then kb-python uses the default parity option for that technology (e.g for
-x Smartseq2, --parity=paired is already enabled by default).

● On list: For single-cell and single-nucleus sequencing assays, barcodes are used to
identify each cell or nucleus. The “on list” of barcodes represents the known barcode
sequences that are included in the assay. Barcodes extracted from the sequencing
reads will be error-tolerantly mapped to this list in a process known as barcode error
correction. The on list filename can be specified with the -w option in kb count. It can
also be obtained by seqspec.40 If an on list is not provided or cannot be found for the
given technology, then an on list is created by bustools via the bustools allowlist
command which identifies repeating barcodes in sequencing reads. If the technology
does not include cell barcodes (as is the case in bulk RNA-seq), the “on list” option is
irrelevant and no barcode processing occurs which should be the case for assays that
don’t include cell/nuclei barcodes (skipping barcode error correction can also be done by
specifying -w NONE). If a predefined name is used in the -x technology string option
(option 1), then kb-python uses the default on list option for that technology.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/D6s2P+XJvnZ
https://paperpile.com/c/OA1bhn/OwkFt
https://paperpile.com/c/OA1bhn/G6XeW
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Box 3: Custom technology string

The custom technology string (supplied to -x) contains the format barcode:UMI:DNA,
representing the locational information of the barcode, UMI, and the DNA (where DNA is the
biological read to be mapped):

-x a,b,c:d,e,f:g,h,i

● a: barcode file number, b: barcode start position, c: barcode end position
● d: UMI file number, e: UMI start position, f: UMI end position
● g: DNA file number, h: DNA start position, i: DNA end position

Important notes: File numbers and positions are zero-indexed. If no specific end position
exists (i.e. the end position is the very end of the read), the end position should be set to 0. If
cell barcodes and/or UMIs are not supported by the technology, the barcode and/or UMI field
can be set to -1,0,0.

Thus, for 10xv3:

-x 0,0,16:0,16,28:1,0,0

Sequences can be stitched together by specifying multiple locations; for example, a
SPLiT-seq45 assay, which contains three separate unlinked barcodes, each of length 8, and a
UMI of length 10 in the second file and the DNA in the first file would look as follows:

-x 1,10,18,1,48,56,1,78,86:1,0,10:0,0,0

Final note about multiple locations: If the paired-end read mapping option is enabled, exactly
two DNA locations should be specified (for the first and second read in the pair).

If a technology does not fit into this format (e.g. due to barcodes or UMIs of variable lengths
and positions), preprocessing of the FASTQ file should be performed beforehand to reformat
the reads into a structure that can be handled by this format.46

If a nac index was generated by kb ref, --workflow=nac should be used in kb count so that the
nascent and mature RNA species are quantified accurately; otherwise that option should be
omitted or --workflow=standard (which is the default) can be explicitly specified. For the nac
workflow, one obtains three count matrices: 1) nascent, 2) mature, and 3) ambiguous. In most
experiments, the plurality of reads will be “ambiguous” since they originate from exons, which
are present in both nascent RNA and mature RNA. Therefore, it is desirable to generate
additional matrices by adding the counts from those three matrices, which users can either do
themselves or by using the --sum option.24 --sum=total adds all three matrices, --sum=cell
adds the mature and ambiguous matrices, and --sum=nucleus adds the nascent and

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/whkfw
https://paperpile.com/c/OA1bhn/4myfI
https://paperpile.com/c/OA1bhn/g9TY6
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

ambiguous matrices. Different matrices may be used for different types of analyses. For
example, in single-cell RNA-seq analysis (where most “ambiguous” counts are likely of mature
RNA origin), jointly modeling the mature+ambiguous count matrix (--sum=cell) with the nascent
count matrix permits biophysical modeling of RNA processing.35,38 In single-nucleus RNA-seq
quantification, one might want to use --sum=nucleus to add up the nascent+ambiguous counts.
The kb-python, kallisto, and bustools commands for the standard workflow and the nac workflow
are shown in Box 4 and Box 5, respectively.

Box 4: kb count (standard workflow)

Below, we show how to run kb count using the standard workflow (which is the default
workflow used if no workflow is explicitly specified). The underlined files need to be supplied
by the user; these include the files generated from the kb ref command as well as the FASTQ
sequencing reads. The corresponding kallisto and bustools commands (as well as Unix
commands to create and remove files/directories) that are called by kb count are shown
beneath each kb count command (note that, by default, 8 threads and 2 gigabytes of memory
are assigned).

kb count -x <tech> -w onlist.txt -o output_dir -i index.idx -g t2g.txt R1.fastq R2.fastq

mkdir -p output_dir/tmp
mkdir -p output_dir
kallisto bus -x <tech> -i index.idx -o output_dir -t 8 R1.fastq R2.fastq
bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 2G output_dir/output.bus
bustools inspect -o output_dir/inspect.json -w onlist.txt output_dir/tmp/output.s.bus
bustools correct -o output_dir/tmp/output.s.c.bus -w onlist.txt output_dir/tmp/output.s.bus
bustools sort -o output_dir/output.unfiltered.bus -T output_dir/tmp -t 8 -m 2G \

output_dir/tmp/output.s.c.bus
mkdir -p output_dir/counts_unfiltered
bustools count -o output_dir/counts_unfiltered/cells_x_genes -g t2g.txt -e output_dir/matrix.ec \

-t output_dir/transcripts.txt --genecounts --umi-gene output_dir/output.unfiltered.bus
rm -rf output_dir/tmp

● <tech>: The technology string
● onlist.txt: The name of the file containing the “on list” of barcodes

○ Specify NONE to skip barcode error correction, or omit completely to have
bustools create its own “on list” for correction

Note: In the workflow above, the following options in kb count can be used:
● --parity=single or --parity=paired
● --strand=forward or --strand=reverse or --strand=unstranded

One can alternatively set those options at the end of <tech>, e.g.: <tech>%forward%paired

The R1.fastq and R2.fastq inputs can be replaced with multiple sets of read files listed
consecutively, as long as each pair is in order.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/dsED6+DvODb
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Box 5: kb count (nac workflow)

Below, we show how to run kb count using the nac workflow. The underlined files need to be
supplied by the user;these include the files generated from the kb ref command using
--workflow=nac as well as the FASTQ sequencing reads. The corresponding kallisto and
bustools commands (as well as Unix commands to create and remove files/directories) that
are called are shown beneath each kb count call (note that, by default, 8 threads and 4
gigabytes of memory are used).

kb count -x <tech> --workflow=nac -w onlist.txt -o output_dir -i index.idx -g t2g.txt \
-c1 cdna.txt -c2 nascent.txt --sum=<sum> R1.fastq R2.fastq

mkdir -p output_dir/tmp
mkdir -p output_dir
kallisto bus -x <tech> -i index.idx -o output_dir -t 8 R1.fastq R2.fastq
bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 4G output_dir/output.bus
bustools inspect -o output_dir/inspect.json -w onlist.txt output_dir/tmp/output.s.bus
bustools correct -o output_dir/tmp/output.s.c.bus -w onlist.txt output_dir/tmp/output.s.bus
bustools sort -o output_dir/output.unfiltered.bus -T output_dir/tmp -t 8 -m 4G \

output_dir/tmp/output.s.c.bus
mkdir -p output_dir/counts_unfiltered
bustools count -o output_dir/counts_unfiltered/cells_x_genes -g t2g.txt -e output_dir/matrix.ec \

-t output_dir/transcripts.txt --genecounts --umi-gene \
-s nascent.txt output_dir/output.unfiltered.bus

mv output_dir/counts_unfiltered/cells_x_genes.mtx \
output_dir/counts_unfiltered/cells_x_genes.mature.mtx

mv output_dir/counts_unfiltered/cells_x_genes.2.mtx \
output_dir/counts_unfiltered/cells_x_genes.nascent.mtx

rm -rf output_dir/tmp

● <tech>: The technology string
● onlist.txt: The name of the file containing the “on list” of barcodes

○ Specify NONE to skip barcode error correction, or omit completely to have
bustools create its own “on list” for correction

● <sum>: What additional matrix to create by adding up the output matrices
(options: cell, nucleus, or total)

Note: In the workflow above, we can additionally set the following two options in kb count
(otherwise, the defaults are chosen):

● --parity=single or --parity=paired
● --strand=forward or --strand=reverse or --strand=unstranded

One can alternatively set those options at the end of <tech>, e.g.: <tech>%forward%paired

In addition to single-cell and single-nucleus RNA-seq, kb count can be used for bulk RNA-seq.
Bulk RNA-seq generally does not have UMIs or cell barcodes (although artificial unique
sample-specific barcodes are used to identify each sample) and relies on cDNA mapping. With
-x BULK as the technology string, a workflow specific for bulk RNA-seq quantification is

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

executed (Box 6). This will produce both transcript-level and gene-level abundances that can be
used by DESeq247,48, sleuth49, limma-voom50,51, and other differential gene expression programs.

Box 6: kb count: bulk RNA-seq

Below, we show how to run kb count for preprocessing bulk RNA-seq data (Box 4). The
procedure is similar to the preprocessing of single-cell RNA-seq, but there are some
differences in how quantification is performed and barcode error correction is not performed
due to the lack of cell barcodes in bulk RNA-seq. --tcc specifies that estimated counts should
be produced in accordance with the count estimation algorithm in the original kallisto
publication and --matrix-to-directories means that those quantifications should be
reformatted into directories of “abundance files” with each sample being a different directory.
The abundance files can be directly used by downstream tools designed for bulk RNA-seq
differential gene expression. Below is an example usage for a paired-end unstranded bulk
RNA-seq experiment on one sample.

kb count -x BULK -o output_dir -i index.idx -g t2g.txt \
--parity=paired --strand=unstranded \
--tcc --matrix-to-directories R1.fastq R2.fastq

mkdir -p output_dir/tmp
mkdir -p output_dir
kallisto bus -x <tech> -i index.idx -o output_dir -t 8 --paired R1.fastq R2.fastq
bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 2G output_dir/output.bus
bustools inspect -o output_dir/inspect.json output_dir/tmp/output.s.bus
mkdir -p output_dir/counts_unfiltered
mkdir -p output_dir/quant_unfiltered
bustools count -o output_dir/counts_unfiltered/cells_x_tcc -g t2g.txt -e output_dir/matrix.ec \

-t output_dir/transcripts.txt --multimapping --cm output_dir/output.s.bus
kallisto quant-tcc -o output_dir/quant_unfiltered -i index.idx \

-e output_dir/counts_unfiltered/cells_x_tcc.ec.txt -g t2g.txt -t 8 -f output_dir/flens.txt \
--matrix-to-directories output_dir/counts_unfiltered/cells_x_tcc.mtx

rm -rf output_dir/tmp

To facilitate multi-sample analysis, artificial unique sample-specific barcodes can be created and
stored in the BUS file and the resulting mapping between the artificially generated barcode and
the sample ID is outputted. These sample-specific barcodes are 16-bp in length and are also
stored in the BUS file. Where there exists both a cell barcode (like in single-cell RNA-seq) and a
sample-specific barcode, both sets of barcodes will be outputted so that each entry in the
resulting output count matrix can be associated with a particular cell and a particular sample. To
utilize the multi-sample workflow, a batch file containing the file names of the FASTQ files must
be provided (Box 7).

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/sm0ki+NdA9k
https://paperpile.com/c/OA1bhn/4Ht3L
https://paperpile.com/c/OA1bhn/2UncF+szLtI
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Box 7: kb count (multi-sample analysis using the standard workflow)

Below, we show how to run kb count to perform an analysis of multiple samples using the
standard (default) workflow. This workflow is similar to the single-sample standard workflow
(Box 4). A batch file (batch.txt) should be provided, in lieu of FASTQ files, listing all the
samples to be analyzed with the paths to their respective FASTQ files. The --batch-barcodes
option is provided in order to store the sample-specific barcodes that are created in addition to
the cell barcodes (without this option, only cell barcodes are stored). This option can be
omitted in the case that no cell barcodes exist (as in bulk RNA-seq).

kb count -x <tech> -w onlist.txt -o output_dir -i index.idx -g t2g.txt \
--batch-barcodes batch.txt

The only difference in the underlying kallisto command is in the kallisto bus command.

kallisto bus -x <tech> -i index.idx -o output_dir -t 8 --batch-barcodes --batch batch.txt

The batch.txt file looks as follows:

batch.txt
Sample1 sample1_R1.fastq.gz sample1_R2.fastq.gz
Sample2 sample2_R1.fastq.gz sample2_R2.fastq.gz
Sample3 sample3_R1.fastq.gz sample3_R2.fastq.gz

The sample ID is in the first column. Multiple rows can be provided for the same sample ID
(e.g. if the FASTQ files are divided across multiple lanes). The third column can be omitted if
only one FASTQ file is specified by the technology.

In the output directory (output_dir), there will be two files: matrix.cells (which contains the
sample ID) and matrix.sample.barcodes (which contains the 16-bp sample-specific barcodes).
Each line in matrix.cells corresponds to the same line in matrix.sample.barcodes. In the
example above, the files look as follows:

matrix.cells
Sample1
Sample2
Sample3

matrix.sample.barcodes
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAC
AAAAAAAAAAAAAAAG

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

The technical details of how kb count utilizes kallisto and bustools are detailed in the following
paragraph. Note that the --dry-run option in kb count outputs the kallisto and bustools
commands that will be run without actually running the programs. Also, the --verbose option in
kb count is helpful for examining the kallisto and bustools commands that are being run as well
as their output.

kb count first invokes the kallisto bus command within kallisto to produce a BUS file, which
stores the read mapping information, and then uses bustools23 commands to process the BUS
file. The kallisto bus command maps RNA-seq reads to a kallisto index, and the resultant BUS
file stores the mapping information, including the barcode, unique molecular identifier (UMI),
and the equivalence class representing the set of transcripts the read is compatible with.23 In
certain RNA-seq assays, barcodes and/or UMIs may not be present, and are therefore not
considered when processing the BUS file. After the mapping step is complete, the BUS file is
sorted via the bustools sort command to facilitate further processing. For single-cell and
single-nucleus experiments with multiplexed barcodes in the sequencing reads, an “on list” of
barcodes, representing the known barcode sequences that are included in the assay, needs to
be provided. If an “on list” is unavailable, the bustools allowlist command can be used to
construct one from a sorted BUS file. The barcodes in the sorted BUS file are error-corrected to
the “on list” via bustools correct, then the BUS file is sorted again with bustools sort. The final
sorted, on list-corrected BUS file is then used to generate quantifications via count matrices
through the bustools count command. At any point, a sorted BUS file can be inputted into
bustools compress to create a compressed BUS file (a BUSZ file), which can be subsequently
decompressed via bustools decompress.52 Other bustools features enable more specialized
workflows beyond what is provided by kb-python (Supplementary Manual).1,53

Quantification of RNA species can be performed in multiple ways as follows:
● Gene-level count matrices: In single-cell and single-nucleus RNA-seq, typically a

gene-level count matrix is produced by collapsing UMIs to the gene level. Here, the
bustools count command is run with the --genecounts option supplied. The --umi-gene
option may also be provided for sequencing technologies where the UMIs are not
expected to be unique within each cell. This ensures that in a case where two reads with
the same UMI sequence map to different genes, they are considered to be two distinct
molecules which were unintentionally labeled with the same UMI, and hence each gene
gets a count. By default, UMIs assigned to multiple genes after collapsing are discarded
in quantification; however, the --multimapping option retains such UMIs and distributes
the count uniformly across the assigned genes. If one wishes to not perform UMI
collapsing (i.e. each mapped read is its own unique molecule regardless of the UMI
sequence), one can supply the --cm option for quantification.

● Transcript-level count matrices: Transcript-compatibility counts (TCCs) are counts
assigned to equivalence classes where each equivalence class is defined by a unique
set of transcripts. For producing a matrix of transcript-compatibility counts (TCCs), the
--genecounts option is not provided, and --multimapping is provided to avoid
discarding reads or collapsed UMIs that are assigned to multiple genes. If UMIs are not
present in the sequencing technology, the --cm option is supplied to perform counting

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/hIUxS
https://paperpile.com/c/OA1bhn/hIUxS
https://paperpile.com/c/OA1bhn/nEs24
https://paperpile.com/c/OA1bhn/6uRYn+PHYpd
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

without UMI collapsing. While downstream analyses can be performed on TCCs54,55, it is
more often useful to produce transcript-level abundances from the TCCs for
technologies where sequencing reads span the full length of transcripts, such as bulk
RNA-seq. In such cases, an expectation-maximization algorithm is typically performed to
probabilistically estimate transcript abundances.14,56 The procedure to generate
transcript-level abundance matrices is performed by running the kallisto quant-tcc
command on the TCC matrices.

Interfacing with genomic data specification and querying tools

seqspec40 provides a specification for the structure of genomic sequencing assays, formatted in
a machine-readable YAML file. The specification can be readily inputted into the
kallisto bustools workflow for preprocessing reads from a given assay (Box 8).

Box 8: Using seqspec specifications

kb count -i index.idx -g t2g.txt \
-x $(seqspec index -t kb -m RNA -r R1.fastq,R2.fastq spec.yaml) \
-o output_dir -w $(seqspec onlist -m RNA -r barcode spec.yaml) R1.fastq R2.fastq

Here, $() is process substitution.

This protocol as a whole can be executed on publicly available sequencing data using as few as
two commands in addition to the installation command. This is made possible by genomic data
and metadata command-line querying tools. Although many such tools exist, here, we utilize
gget ref57, which can fetch reference genome FASTA files and genome annotation GTF files,
and ffq58, which fetches the URL of the sequencing reads based on metadata retrieval (Box 9).

Box 9: Three commands to preprocess public RNA-seq reads with gget and ffq

Example with a mouse (Mus musculus) tissue single-cell RNA sequencing sample (SRA
accession ID: SRR17068590), prepared using 10x (version 3) chemistry.

pip install kb-python gget ffq

kb ref -i index.idx -g t2g.txt -f1 cdna.fasta $(gget ref --ftp -w dna,gtf mus_musculus)

kb count -i index.idx -g t2g.txt -x 10xv3 -o output_dir \
$(ffq --ftp SRR17068590 | jq -r '.[] | .url' | tr '\n' ' ')

Notes: gget version 0.27.9, ffq version 0.3.0

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/RRyK4+b3xYl
https://paperpile.com/c/OA1bhn/4g4RQ+qELTP
https://paperpile.com/c/OA1bhn/G6XeW
https://paperpile.com/c/OA1bhn/c0FvS
https://paperpile.com/c/OA1bhn/zuhKJ
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Anticipated Results

Here, the quantification output of the kb count command is described. While the initial step of kb
count uses kallisto to produce a BUS file located at output_dir/output.bus, the actual
quantification results are located in matrices in subdirectories of output_dir/. All matrices have
the extension .mtx and will be in a sparse matrix (Matrix Market) file format with the barcodes
(i.e. the cells or samples) being the matrix rows and the genes (or transcripts or equivalence
classes or other features59) being the matrix columns.

Gene-level counting

Gene-level counting to produce gene count matrices is the most common form of quantification
for UMI-based single-cell and single-nucleus RNA-seq assays.

The output_dir/counts_unfiltered/ directory contains the following information for
gene count matrices (these are the matrices that are most commonly used for single-cell and
single-nucleus RNA-seq analysis):

● standard workflow
○ cells_x_genes.mtx: The count matrix (in Matrix Market file format); only exonic

reads are counted
○ cells_x_genes.barcodes.txt: The barcodes representing the matrix row names
○ cells_x_genes.genes.txt: The gene IDs representing the matrix column names
○ cells_x_genes.genes.names.txt: Same as cells_x_genes.mtx except with gene

names instead of gene IDs for the matrix columns
○ cells_x_genes.barcodes.prefix.txt: If sample-specific barcodes are generated in

addition to cell barcodes being recorded, then this file will be created and the
sample-specific barcodes will be stored here. The lines of this file correspond to
the lines in the cells_x_genes.barcodes.txt which contains the cell barcodes (both
files will have the same number of lines). The sample-specific barcodes and cell
barcodes can be joined together as a unique identifier for downstream analysis.

● nac workflow: same as the standard workflow except the .mtx files produced are different
○ cells_x_genes.mature.mtx: The mature RNA count matrix
○ cells_x_genes.ambiguous.mtx: The nascent RNA count matrix
○ cells_x_genes.nascent.mtx: The ambiguous RNA count matrix
○ cells_x_genes.cell.mtx: The mature+ambiguous RNA count matrix (note: this is

what is quantified into the count matrix in the standard workflow)
○ cells_x_genes.nucleus.mtx: The nascent+ambiguous RNA count matrix
○ cells_x_genes.total.mtx: The mature+nascent+ambiguous RNA count matrix

Transcript-level counting

For RNA-seq assays (e.g. bulk RNA-seq or Smartseq2) that profile the full length of transcripts
in which case it is desirable to perform transcript-level quantification, the --tcc option is used.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/hGFNg
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

The first step to doing transcript-level quantification is to obtain transcript-compatibility counts
(TCCs) over equivalence classes (ECs). The TCCs will be outputted into
output_dir/counts_unfiltered/ which contains the following files for the standard workflow:

● cells_x_tcc.mtx: The count matrix containing the TCCs
● cells_x_tcc.barcodes.txt: The barcodes representing the matrix row names
● cells_x_tcc.ec.txt: The equivalence classes representing the matrix column names

(note: this file has two columns – the first is the equivalence class numbers, which
represent the column names, and the second is a comma-separated list of transcript
numbers (0 based) for all transcripts within the equivalence class)

The --tcc option will additionally produce transcript-level estimated counts which will be placed in
the output_dir/quant_unfiltered/ directory which contains the following:

● matrix.abundance.mtx: The matrix containing the transcript-level estimated counts
● matrix.abundance.tpm.mtx: The matrix containing the TPM-normalized transcript-level

abundances
● matrix.efflens.mtx: A matrix that contains the transcript effective lengths
● matrix.fld.tsv: A file with two columns, containing the mean and standard deviation,

respectively, of the fragment length distribution used to produce transcript-level
abundances and effective lengths for each row of the matrix.

● matrix.abundance.gene.mtx: A matrix that is the same as the matrix.abundance.mtx
matrix except counts are aggregated to gene-level

● matrix.abundance.gene.tpm.mtx: A matrix that is the same as the
matrix.abundance.tpm.mtx matrix except TPMs are aggregated to gene-level

● transcripts.txt: The transcript names representing the matrix column names for the
transcript-level quantification matrices

● genes.txt: The gene IDs representing the matrix column names for the gene-level
aggregation quantification matrices

● transcript_lengths.txt: The transcript names along with their lengths

*Note: The row names are the individual samples and will be the same as those in
output_dir/counts_unfiltered/cells_x_tcc.barcodes.txt - The output_dir/matrix.cells and
output_dir/matrix.sample.barcodes files provide a mapping between the sample name
and the sample barcode.

*Note: The --matrix-to-directories option will output each row of the matrix into a separate
subdirectory. In other words, using this option will produce multiple new directories within
output_dir/quant_unfiltered/. Each one will be named abundance_{n} (where {n} is the
sample number, corresponding to the rows in the matrix files). Within each subdirectory,
an abundance.tsv text file and abundance.h5 HDF5 file will be created containing the
quantifications for that particular sample. These abundance files are identical to the
abundance files produced by the original version of kallisto for bulk RNA-seq.

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Loading single-cell output into downstream tools

To load the quantification results into SCANPY60 for downstream processing in python, an
anndata61 object needs to be created (Box 10).

Box 10: Loading count matrices into scanpy

The standard workflow produces a single count matrix (in output_dir/counts_unfiltered/) which
can be loaded into scanpy via an anndata object as follows:

import kb_python.utils as kb_utils

adata = kb_utils.import_matrix_as_anndata("cells_x_genes.mtx",
"cells_x_genes.barcodes.txt",
"cells_x_genes.genes.names.txt")

The nac workflow produces multiple count matrices. If one wishes to investigate different RNA
species separately, one can load multiple count matrices as layers into the anndata object.
The first layer will always be named “spliced” and the second layer will always be named
“unspliced”. Below, we load in the “spliced” layer (from the cells_x_genes.cell.mtx count
matrix which represents mature+ambiguous counts) and the “unspliced” layer (from the
cells_x_genes.nascent.mtx count matrix, which represents the nascent counts).

import kb_python.utils as kb_utils

adata_spliced = kb_utils.import_matrix_as_anndata("cells_x_genes.cell.mtx",
"cells_x_genes.barcodes.txt",
"cells_x_genes.genes.names.txt")

adata_unspliced = kb_utils.import_matrix_as_anndata("cells_x_genes.nascent.mtx",
"cells_x_genes.barcodes.txt",
"cells_x_genes.genes.names.txt")

adata = kb_utils.overlay_anndatas(adata_spliced, adata_unspliced)

If one wishes to write an anndata object to a loom file, one can simply do:

adata.write_loom("/path/to/loom/file.loom")

Note: If sample-specific barcodes are specified in addition to cell barcodes, one can add
batch_barcodes_path="cells_x_genes.barcodes.prefix.txt" to
import_matrix_as_anndata to concatenate the two barcodes together.
Note: anndata version 0.9.2; python version 3.8.0

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/qpRRZ
https://paperpile.com/c/OA1bhn/7CYrc
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

For downstream processing in R, one can load the quantification results into Seurat62 (Box 11).
Additionally, in R, one can create a Bioconductor SingleCellExperiment63 object for use with
single-cell analysis R packages such as scran64 and scater65 (Box 12).

Box 11: Loading count matrices into Seurat

The standard workflow produces a single count matrix (in output_dir/counts_unfiltered/),
which can be loaded into Seurat as follows:

library(Seurat)

expression_matrix <- ReadMtx(mtx="cells_x_genes.mtx",
features = "cells_x_genes.genes.names.txt",
cells = "cells_x_genes.barcodes.txt",
feature.column=1,
mtx.transpose = TRUE)

For single-nucleus RNA-seq, one would use the nac workflow and the count matrix that
should be loaded in would be cells_x_genes.nucleus.mtx (or cells_x_genes.total.mtx if one
wishes to add in the mature RNA counts).

Notes: Seurat version 4.0.5; R version 4.1.1

Box 12: Loading count matrices into SingleCellExperiment

Here, we show how to build a SingleCellExperiment object in R from the standard workflow
output count matrix (in output_dir/counts_unfiltered/):

library(SingleCellExperiment)
library(Matrix)

counts <- Matrix::readMM("cells_x_genes.mtx")
gene_ids <- readLines("cells_x_genes.genes.txt")
gene_symbols <- readLines("cells_x_genes.genes.names.txt")
barcodes <- readLines("cells_x_genes.barcodes.txt")

sce <- SingleCellExperiment(list(counts=t(counts)),
colData=DataFrame(Barcode=barcodes),
rowData=DataFrame(ID=gene_ids,SYMBOL=gene_symbols))
rownames(sce) <- gene_ids

Notes: SingleCellExperiment version 4.0.5; R version 4.1.1

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/0WVAu
https://paperpile.com/c/OA1bhn/QH2lp
https://paperpile.com/c/OA1bhn/PZWOo
https://paperpile.com/c/OA1bhn/qDwdO
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

The count matrices are initially unfiltered, which makes them very large and inefficient to
process. After filtering for cells with sufficient UMI counts (among other criteria), the matrices
that are loaded in will become much smaller and more efficient to process.

Materials

● A 64-bit computer running either macOS, Windows, or a Linux/Unix operating system.
● kb-python version 0.28.0 or later

○ kallisto version 0.50.1 or later (which comes packaged with kb-python)
○ bustools version 0.43.1 or later (which comes packaged with kb-python)

● Python 3.7 or later (for kb-python version 0.28.0)
● Bulk, single-cell, or single-nucleus RNA sequencing reads in (possibly gzip) FASTQ

format.

Timing

The runtime depends on the size of the reference being indexed, the number and length of the
sequencing reads being processed, other properties of the dataset being quantified, system
hardware, and the number of threads allotted. The kb ref command only needs to be run once
to create the index against which reads will be mapped. With 8 threads on a server with x86-64
architecture and 32 Intel Xeon CPUs (E5-2667 v3 @ 3.20GHz), kb ref takes approximately 15
minutes to generate a standard index from the GRCm39 mouse genome (using the respective
raw unfiltered GTF file) and an hour to generate the nac index. For the preprocessing of
800 million Illumina sequencing reads (stored in a single pair of fastq.gz files) produced by
single-cell RNA-seq from 10x Genomics, kb count with the nac workflow can take under an hour
on 8 threads and under 40 minutes on 16 threads, with an even lower runtime for the standard
workflow.

Troubleshooting

The --verbose option in kb ref and kb count is helpful for examining the kallisto and bustools
commands that are being run as well as their output. This can be used to troubleshoot errors.

The --overwrite option in kb ref and kb count can be used to regenerate output files and
directories that were produced from a previous kb-python run.

The output directory of a kb count run contains multiple JSON66 files that contain quality control
values such as the percentage of reads pseudoaligned.

If one receives an “Error: incompatible indices”, either the index file being supplied is corrupted,
is not an actual kallisto index file, or was an index file generated by a version of kallisto that
utilized a different index format; kallisto version 0.50.1 utilizes a different index format than

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/PfGjF
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

previous versions and future versions of kallisto may likely adopt a newer index format. In any
case the index should be regenerated.

The t2g (transcripts-to-gene mapping) file created by kb ref should be the exact file used by kb
count when running kb count on that index. All the transcripts in the t2g file must be exactly the
same as the transcripts present in the kallisto index. Incompatibilities can lead to unpredictable
behavior in the bustools quantification step.

When using kb ref to generate a kallisto index, a genome FASTA file (not a transcriptome
FASTA file) should be supplied along with the genome annotation GTF file. A transcriptome file
will automatically be generated by kb ref and be indexed by kallisto. In general, the Ensembl31

.dna.toplevel.fa.gz files or the GENCODE67 .primary_assembly.genome.fa.gz files should be
used as the reference genome. Use of FASTA files incompatible with the supplied GTF will lead
to errors.

When performing multiple kb-python runs simultaneously, a different temporary directory must
be specified via the --tmp option for each run. The temporary directory also must not exist
beforehand.

Finally, one should make sure that the value supplied to the -x technology string option matches
the assay from which the sequencing reads were generated.

Note: If the technology string begins with a -, for example: -1,0,0:0,0,5:0,5,0, one would need to write
-x " -1,0,0:0,0,5:0,5,0" to avoid the string being misinterpreted as a command-line flag.

Procedure

Here, we describe the procedures to use for mouse samples of paired-end bulk RNA-seq, 10x
(version 3) single-cell RNA-seq, and 10x (version 3) single-nucleus RNA-seq.

Bulk RNA-seq

Input:
● Paired-end unstranded mouse RNA-seq reads (3 samples):

sample1_R1.fastq.gz sample1_R2.fastq.gz
sample2_R1.fastq.gz sample2_R2.fastq.gz
sample3_R1.fastq.gz sample3_R2.fastq.gz

1. Install kb-python

pip install kb_python

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/YFYDI
https://paperpile.com/c/OA1bhn/oJRnh
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

2. Download the mouse genome and annotation files

wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

3. Build the index

kb ref -i index.idx -g t2g.txt -f1 cdna.fasta \
Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \
Mus_musculus.GRCm39.108.gtf.gz

4. Map the input sequencing reads to the index

kb count -x BULK -o output_dir -i index.idx -g t2g.txt \
--parity=paired --strand=unstranded \
--tcc --matrix-to-directories \
sample1_R1.fastq.gz sample1_R2.fastq.gz \
sample2_R1.fastq.gz sample2_R2.fastq.gz \
sample3_R1.fastq.gz sample3_R2.fastq.gz

5. Analyze the output

Output for sample 1:
● output_dir/quant_unfiltered/abundance_1/abundance.tsv
● output_dir/quant_unfiltered/abundance_1/abundance.gene.tsv
● output_dir/quant_unfiltered/abundance_1/abundance.h5

Output for sample 2:
● output_dir/quant_unfiltered/abundance_2/abundance.tsv
● output_dir/quant_unfiltered/abundance_2/abundance.gene.tsv
● output_dir/quant_unfiltered/abundance_2/abundance.h5

Output for sample 3:
● output_dir/quant_unfiltered/abundance_3/abundance.tsv
● output_dir/quant_unfiltered/abundance_3/abundance.gene.tsv
● output_dir/quant_unfiltered/abundance_3/abundance.h5

The abundance.tsv files contain the transcript-level abundances. The abundance.h5 file
contains the same information as the abundance.tsv files except in HDF5 format. The
abundance.gene.tsv files contain the gene-level abundances (taken by summing up the
transcript-level abundances for each gene). These files can be used in downstream differential
gene expression programs.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Single-cell RNA-seq

Input:
● 10x version 3 single-cell RNA-seq reads: R1.fastq.gz and R2.fastq.gz

1. Install kb-python

pip install kb_python

2. Download the mouse genome and annotation files

wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

3. Build the index

kb ref -i index.idx -g t2g.txt -f1 cdna.fasta \
Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \
Mus_musculus.GRCm39.108.gtf.gz

4. Map the input sequencing reads to the index

kb count -x 10xv3 -o output_dir -i index.idx -g t2g.txt \
R1.fastq.gz R2.fastq.gz

5. Analyze the output

Output:
● output_dir/counts_unfiltered/cells_x_genes.mtx
● output_dir/counts_unfiltered/cells_x_genes.barcodes.txt
● output_dir/counts_unfiltered/cells_x_genes.genes.txt
● output_dir/counts_unfiltered/cells_x_genes.genes.names.txt

The cells_x_genes.mtx is the count matrix file with the barcodes (the row names) listed in
cells_x_genes.barcodes.txt and the gene names (the column names) listed in
cells_x_genes.genes.names.txt (for gene IDs instead of gene names, use
cells_x_genes.genes.txt).

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Single-nucleus RNA-seq

Input:
● 10x version 3 single-nucleus RNA-seq reads: R1.fastq.gz and R2.fastq.gz

1. Install kb-python

pip install kb_python

2. Download the mouse genome and annotation files

wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

3. Build the index

kb ref --workflow=nac -i index.idx -g t2g.txt \
-c1 cdna.txt -c2 nascent.txt -f1 cdna.fasta -f2 nascent.fasta \
Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \
Mus_musculus.GRCm39.108.gtf.gz

4. Map the input sequencing reads to the index

kb count -x 10xv3 --workflow=nac -o output_dir \
-i index.idx -g t2g.txt -c1 cdna.txt -c2 nascent.txt \
--sum=total R1.fastq.gz R2.fastq.gz

5. Analyze the output

Output:
● output_dir/counts_unfiltered/cells_x_genes.mature.mtx
● output_dir/counts_unfiltered/cells_x_genes.nascent.mtx
● output_dir/counts_unfiltered/cells_x_genes.ambiguous.mtx
● output_dir/counts_unfiltered/cells_x_genes.cell.mtx
● output_dir/counts_unfiltered/cells_x_genes.nucleus.mtx
● output_dir/counts_unfiltered/cells_x_genes.total.mtx
● output_dir/counts_unfiltered/cells_x_genes.barcodes.txt
● output_dir/counts_unfiltered/cells_x_genes.genes.txt
● output_dir/counts_unfiltered/cells_x_genes.genes.names.txt

This workflow can be used for both single-cell RNA-seq and single-nucleus RNA-seq. Many
count matrix files (.mtx files) are generated. For quantification of total RNA present in each cell

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

or nucleus, one would want to use the cells_x_genes.total.mtx. For biophysical models that
jointly consider spliced and unspliced transcripts, one may want to use cells_x_genes.cell.mtx
(for the “spliced” transcripts) and cells_x_genes.nascent.mtx (for the “unspliced” transcripts).

The barcodes (the matrix row names) are listed in cells_x_genes.barcodes.txt and the gene
names (the matrix column names) are listed in cells_x_genes.genes.names.txt (for gene IDs
instead of gene names, use cells_x_genes.genes.txt).

Additional extensions

There are many ways to extend the standard workflows beyond bulk RNA-seq, 10x single-cell
RNA-seq, and 10x single-nucleus RNA-seq. For an additional, extended example that involves
preprocessing mouse multiplexed single-nucleus SPLiT-seq RNA-seq data with a filtered mouse
genome annotation, see Supplementary Tutorial.

Contributions

All authors contributed either directly to kallisto, bustools, kb-python or to the methods
implemented in the software. D.K.S. led the development of the latest versions (at the time of
writing this manuscript) of kallisto (version 0.50.1), bustools (version 0.43.1), and kb-python
(version 0.28.0). N.L.B. conceived kallisto. A.S.B. conceived kb-python and K.M.H. created,
implemented, and developed kb-python under the supervision of A.S.B. L.M. identified the need
for creating a transcriptome FASTA file coherent with a genome and GTF as implemented in
kb-python. A.S.B and P.M. implemented the initial version of bustools and its interface with
kallisto, which was published in Melsted, Booeshaghi et al., 20211 where early versions of these
software were benchmarked. D.K.S. and K.E.H. implemented the d-list option in kallisto and
adapted kallisto to use the Bifrost de Bruijn graph with help from G.H. L.L. conceived the
translated search (the --aa option) and implemented it with help from D.K.S. and K.E.H. J.G.
augmented the functionalities of bustools. D.K.S. refactored kallisto providing additional
modularity with respect to the expectation-maximization algorithm implemented by H.P., and
unifying the treatment of bulk and single-cell data. P.M. and L.P. supervised the initial
development and coordination of kallisto and bustools. D.K.S. drafted the initial manuscript. All
authors edited and reviewed the final manuscript.

Competing interests

The authors declare no competing financial interests.

Key reference using this protocol

Melsted, P., Booeshaghi, A.S. et al. Modular, efficient and constant-memory single-cell RNA-seq
preprocessing. Nat Biotechnol 39, 813–818 (2021). https://doi.org/10.1038/s41587-021-00870-2

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://paperpile.com/c/OA1bhn/6uRYn
https://doi.org/10.1038/s41587-021-00870-2
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

Acknowledgements

D.K.S. was funded by the UCLA-Caltech Medical Scientist Training Program (NIH NIGMS
training grant T32 GM008042). L.P. was supported in part by the National Institutes of Health
(NIH) grants U19MH114830 and 5UM1HG012077-02. Other contributors to the software and
methods include Vasilis Ntranos, Lauren Liu, Fan Gao, Eduardo da Veiga Beltrame, and
Jase Gehring. The development of kallisto and bustools was also funded in part by a grant
awarded during round 2 of the Essential Open Source Software for Science by the Chan
Zuckerberg Initiative for “Open Source Software for Bulk and Single-cell RNA-seq”.

Code Availability

The kallisto software is available at https://github.com/pachterlab/kallisto. The bustools software
is available at https://github.com/BUStools/bustools. The kb-python software is available at
https://github.com/pachterlab/kb_python.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

https://github.com/pachterlab/kallisto
https://github.com/BUStools/bustools
https://github.com/pachterlab/kb_python
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

References

1. Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq

preprocessing. Nat. Biotechnol. 39, 813–818 (2021).

2. Tian, L. et al. scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell

RNA-sequencing data. PLoS Comput. Biol. 14, e1006361 (2018).

3. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying

mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

4. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17,

13 (2016).

5. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

6. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq

experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

7. Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of

sequencing experiments. Nat. Methods 10, 71–73 (2013).

8. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq

quantification. Nat. Biotechnol. 34, 525–527 (2016).

9. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and

bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

10. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and

better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47,

e47 (2019).

11. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

12. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput

sequencing data. Bioinformatics 31, 166–169 (2015).

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

http://paperpile.com/b/OA1bhn/6uRYn
http://paperpile.com/b/OA1bhn/6uRYn
http://paperpile.com/b/OA1bhn/B6v3S
http://paperpile.com/b/OA1bhn/B6v3S
http://paperpile.com/b/OA1bhn/husWE
http://paperpile.com/b/OA1bhn/husWE
http://paperpile.com/b/OA1bhn/y1rU3
http://paperpile.com/b/OA1bhn/y1rU3
http://paperpile.com/b/OA1bhn/wnBvP
http://paperpile.com/b/OA1bhn/CmBYr
http://paperpile.com/b/OA1bhn/CmBYr
http://paperpile.com/b/OA1bhn/Jp6J8
http://paperpile.com/b/OA1bhn/Jp6J8
http://paperpile.com/b/OA1bhn/lLMc9
http://paperpile.com/b/OA1bhn/lLMc9
http://paperpile.com/b/OA1bhn/uykdu
http://paperpile.com/b/OA1bhn/uykdu
http://paperpile.com/b/OA1bhn/Mp3UO
http://paperpile.com/b/OA1bhn/Mp3UO
http://paperpile.com/b/OA1bhn/Mp3UO
http://paperpile.com/b/OA1bhn/OhBsY
http://paperpile.com/b/OA1bhn/OhBsY
http://paperpile.com/b/OA1bhn/2jgVt
http://paperpile.com/b/OA1bhn/2jgVt
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

13. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression

analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11,

1650–1667 (2016).

14. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or

without a reference genome. BMC Bioinformatics 12, 323 (2011).

15. Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates

accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).

16. He, D. et al. Alevin-fry unlocks rapid, accurate and memory-frugal quantification of

single-cell RNA-seq data. Nat. Methods 19, 316–322 (2022).

17. He, D. & Patro, R. simpleaf : A simple, flexible, and scalable framework for single-cell data

processing using alevin-fry. Bioinformatics (2023) doi:10.1093/bioinformatics/btad614.

18. Kaminow, B., Yunusov, D. & Dobin, A. STARsolo: accurate, fast and versatile

mapping/quantification of single-cell and single-nucleus RNA-seq data. bioRxiv

2021.05.05.442755 (2021) doi:10.1101/2021.05.05.442755.

19. Niebler, S., Müller, A., Hankeln, T. & Schmidt, B. RainDrop: Rapid activation matrix

computation for droplet-based single-cell RNA-seq reads. BMC Bioinformatics 21, 274

(2020).

20. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat.

Commun. 8, 14049 (2017).

21. Liao, Y., Raghu, D., Pal, B., Mielke, L. A. & Shi, W. cellCounts: an R function for quantifying

10x Chromium single-cell RNA sequencing data. Bioinformatics (2023)

doi:10.1093/bioinformatics/btad439.

22. Battenberg, K. et al. A flexible cross-platform single-cell data processing pipeline. Nat.

Commun. 13, 6847 (2022).

23. Melsted, P., Ntranos, V. & Pachter, L. The barcode, UMI, set format and BUStools.

Bioinformatics 35, 4472–4473 (2019).

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

http://paperpile.com/b/OA1bhn/x9FKY
http://paperpile.com/b/OA1bhn/x9FKY
http://paperpile.com/b/OA1bhn/x9FKY
http://paperpile.com/b/OA1bhn/qELTP
http://paperpile.com/b/OA1bhn/qELTP
http://paperpile.com/b/OA1bhn/wmSRd
http://paperpile.com/b/OA1bhn/wmSRd
http://paperpile.com/b/OA1bhn/OKucn
http://paperpile.com/b/OA1bhn/OKucn
http://paperpile.com/b/OA1bhn/mEgVW
http://paperpile.com/b/OA1bhn/mEgVW
http://dx.doi.org/10.1093/bioinformatics/btad614
http://paperpile.com/b/OA1bhn/mEgVW
http://paperpile.com/b/OA1bhn/6o6O1
http://paperpile.com/b/OA1bhn/6o6O1
http://paperpile.com/b/OA1bhn/6o6O1
http://dx.doi.org/10.1101/2021.05.05.442755
http://paperpile.com/b/OA1bhn/6o6O1
http://paperpile.com/b/OA1bhn/U98vP
http://paperpile.com/b/OA1bhn/U98vP
http://paperpile.com/b/OA1bhn/U98vP
http://paperpile.com/b/OA1bhn/iMWGe
http://paperpile.com/b/OA1bhn/iMWGe
http://paperpile.com/b/OA1bhn/vxmnn
http://paperpile.com/b/OA1bhn/vxmnn
http://paperpile.com/b/OA1bhn/vxmnn
http://dx.doi.org/10.1093/bioinformatics/btad439
http://paperpile.com/b/OA1bhn/vxmnn
http://paperpile.com/b/OA1bhn/h7nXq
http://paperpile.com/b/OA1bhn/h7nXq
http://paperpile.com/b/OA1bhn/hIUxS
http://paperpile.com/b/OA1bhn/hIUxS
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

24. Hjörleifsson, K. E., Sullivan, D. K., Holley, G., Melsted, P. & Pachter, L. Accurate

quantification of single-nucleus and single-cell RNA-seq transcripts. bioRxiv

2022.12.02.518832 (2022) doi:10.1101/2022.12.02.518832.

25. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers.

Nat. Methods 9, 72–74 (2011).

26. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique

Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

27. Reese, M. G. et al. Genome annotation assessment in Drosophila melanogaster. Genome

Res. 10, 483–501 (2000).

28. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006

(2002).

29. Holley, G. & Melsted, P. Bifrost: highly parallel construction and indexing of colored and

compacted de Bruijn graphs. Genome Biol. 21, 249 (2020).

30. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and

genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 226–232 (2012).

31. Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).

32. Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl. Acad. Sci. U. S. A.

110, 19802–19807 (2013).

33. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

34. Gorin, G., Fang, M., Chari, T. & Pachter, L. RNA velocity unraveled. PLoS Comput. Biol. 18,

e1010492 (2022).

35. Gorin, G., Vastola, J. J., Fang, M. & Pachter, L. Interpretable and tractable models of

transcriptional noise for the rational design of single-molecule quantification experiments.

Nat. Commun. 13, 7620 (2022).

36. Carilli, M., Gorin, G., Choi, Y., Chari, T. & Pachter, L. Biophysical modeling with variational

autoencoders for bimodal, single-cell RNA sequencing data. bioRxiv (2023)

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

http://paperpile.com/b/OA1bhn/g9TY6
http://paperpile.com/b/OA1bhn/g9TY6
http://paperpile.com/b/OA1bhn/g9TY6
http://dx.doi.org/10.1101/2022.12.02.518832
http://paperpile.com/b/OA1bhn/g9TY6
http://paperpile.com/b/OA1bhn/y5WAx
http://paperpile.com/b/OA1bhn/y5WAx
http://paperpile.com/b/OA1bhn/BJUsB
http://paperpile.com/b/OA1bhn/BJUsB
http://paperpile.com/b/OA1bhn/V95x
http://paperpile.com/b/OA1bhn/V95x
http://paperpile.com/b/OA1bhn/HSMB
http://paperpile.com/b/OA1bhn/HSMB
http://paperpile.com/b/OA1bhn/6mWMD
http://paperpile.com/b/OA1bhn/6mWMD
http://paperpile.com/b/OA1bhn/WLwrH
http://paperpile.com/b/OA1bhn/WLwrH
http://paperpile.com/b/OA1bhn/YFYDI
http://paperpile.com/b/OA1bhn/mivDk
http://paperpile.com/b/OA1bhn/mivDk
http://paperpile.com/b/OA1bhn/Hx1AJ
http://paperpile.com/b/OA1bhn/xqGyy
http://paperpile.com/b/OA1bhn/xqGyy
http://paperpile.com/b/OA1bhn/dsED6
http://paperpile.com/b/OA1bhn/dsED6
http://paperpile.com/b/OA1bhn/dsED6
http://paperpile.com/b/OA1bhn/cyT4g
http://paperpile.com/b/OA1bhn/cyT4g
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

doi:10.1101/2023.01.13.523995.

37. Gorin, G. & Pachter, L. Distinguishing biophysical stochasticity from technical noise in

single-cell RNA sequencing using Monod. bioRxiv 2022.06.11.495771 (2023)

doi:10.1101/2022.06.11.495771.

38. Gorin, G., Vastola, J. J. & Pachter, L. Studying stochastic systems biology of the cell with

single-cell genomics data. Cell Syst (2023) doi:10.1016/j.cels.2023.08.004.

39. Pool, A.-H., Poldsam, H., Chen, S., Thomson, M. & Oka, Y. Recovery of missing single-cell

RNA-sequencing data with optimized transcriptomic references. Nat. Methods (2023)

doi:10.1038/s41592-023-02003-w.

40. Booeshaghi, A. S., Chen, X. & Pachter, L. A machine-readable specification for genomics

assays. bioRxiv (2023) doi:10.1101/2023.03.17.533215.

41. Booeshaghi, A. S., Sullivan, D. K. & Pachter, L. Universal preprocessing of single-cell

genomics data. bioRxiv (2023) doi:10.1101/2023.09.14.543267.

42. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9,

171–181 (2014).

43. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells.

Nat. Methods 10, 1096–1098 (2013).

44. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using

Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

45. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord

with split-pool barcoding. Science 360, 176–182 (2018).

46. Sullivan, D. K. & Pachter, L. Flexible parsing and preprocessing of technical sequences with

splitcode. bioRxiv (2023) doi:10.1101/2023.03.20.533521.

47. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for

RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

48. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq:

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

http://paperpile.com/b/OA1bhn/cyT4g
http://dx.doi.org/10.1101/2023.01.13.523995
http://paperpile.com/b/OA1bhn/cyT4g
http://paperpile.com/b/OA1bhn/DwUHI
http://paperpile.com/b/OA1bhn/DwUHI
http://paperpile.com/b/OA1bhn/DwUHI
http://dx.doi.org/10.1101/2022.06.11.495771
http://paperpile.com/b/OA1bhn/DwUHI
http://paperpile.com/b/OA1bhn/DvODb
http://paperpile.com/b/OA1bhn/DvODb
http://dx.doi.org/10.1016/j.cels.2023.08.004
http://paperpile.com/b/OA1bhn/DvODb
http://paperpile.com/b/OA1bhn/vqwCq
http://paperpile.com/b/OA1bhn/vqwCq
http://paperpile.com/b/OA1bhn/vqwCq
http://dx.doi.org/10.1038/s41592-023-02003-w
http://paperpile.com/b/OA1bhn/vqwCq
http://paperpile.com/b/OA1bhn/G6XeW
http://paperpile.com/b/OA1bhn/G6XeW
http://dx.doi.org/10.1101/2023.03.17.533215
http://paperpile.com/b/OA1bhn/G6XeW
http://paperpile.com/b/OA1bhn/Bl3s
http://paperpile.com/b/OA1bhn/Bl3s
http://dx.doi.org/10.1101/2023.09.14.543267
http://paperpile.com/b/OA1bhn/Bl3s
http://paperpile.com/b/OA1bhn/D6s2P
http://paperpile.com/b/OA1bhn/D6s2P
http://paperpile.com/b/OA1bhn/XJvnZ
http://paperpile.com/b/OA1bhn/XJvnZ
http://paperpile.com/b/OA1bhn/OwkFt
http://paperpile.com/b/OA1bhn/OwkFt
http://paperpile.com/b/OA1bhn/whkfw
http://paperpile.com/b/OA1bhn/whkfw
http://paperpile.com/b/OA1bhn/4myfI
http://paperpile.com/b/OA1bhn/4myfI
http://dx.doi.org/10.1101/2023.03.20.533521
http://paperpile.com/b/OA1bhn/4myfI
http://paperpile.com/b/OA1bhn/sm0ki
http://paperpile.com/b/OA1bhn/sm0ki
http://paperpile.com/b/OA1bhn/NdA9k
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

49. Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of

RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).

50. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and

microarray studies. Nucleic Acids Res. 43, e47 (2015).

51. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model

analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

52. Einarsson, P. H. & Melsted, P. BUSZ: compressed BUS files. Bioinformatics 39, (2023).

53. Gustafsson, J., Robinson, J., Nielsen, J. & Pachter, L. BUTTERFLY: addressing the pooled

amplification paradox with unique molecular identifiers in single-cell RNA-seq. Genome

Biol. 22, 174 (2021).

54. Ntranos, V., Kamath, G. M., Zhang, J. M., Pachter, L. & Tse, D. N. Fast and accurate

single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol.

17, 112 (2016).

55. Ntranos, V., Yi, L., Melsted, P. & Pachter, L. A discriminative learning approach to

differential expression analysis for single-cell RNA-seq. Nat. Methods 16, 163–166 (2019).

56. Pachter, L. Models for transcript quantification from RNA-Seq. arXiv [q-bio.GN] (2011).

57. Luebbert, L. & Pachter, L. Efficient querying of genomic reference databases with gget.

Bioinformatics 39, (2023).

58. Gálvez-Merchán, Á., Min, K. H. J., Pachter, L. & Booeshaghi, A. S. Metadata retrieval from

sequence databases with ffq. Bioinformatics 39, (2023).

59. Booeshaghi, A. S., Min, K. H. (joseph), Gehring, J. & Pachter, L. Quantifying orthogonal

barcodes for sequence census assays. bioRxiv (2022) doi:10.1101/2022.10.09.511501.

60. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data

analysis. Genome Biol. 19, 15 (2018).

61. Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Alexander Wolf, F. anndata: Annotated

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

http://paperpile.com/b/OA1bhn/NdA9k
http://paperpile.com/b/OA1bhn/4Ht3L
http://paperpile.com/b/OA1bhn/4Ht3L
http://paperpile.com/b/OA1bhn/2UncF
http://paperpile.com/b/OA1bhn/2UncF
http://paperpile.com/b/OA1bhn/szLtI
http://paperpile.com/b/OA1bhn/szLtI
http://paperpile.com/b/OA1bhn/nEs24
http://paperpile.com/b/OA1bhn/PHYpd
http://paperpile.com/b/OA1bhn/PHYpd
http://paperpile.com/b/OA1bhn/PHYpd
http://paperpile.com/b/OA1bhn/RRyK4
http://paperpile.com/b/OA1bhn/RRyK4
http://paperpile.com/b/OA1bhn/RRyK4
http://paperpile.com/b/OA1bhn/b3xYl
http://paperpile.com/b/OA1bhn/b3xYl
http://paperpile.com/b/OA1bhn/4g4RQ
http://paperpile.com/b/OA1bhn/c0FvS
http://paperpile.com/b/OA1bhn/c0FvS
http://paperpile.com/b/OA1bhn/zuhKJ
http://paperpile.com/b/OA1bhn/zuhKJ
http://paperpile.com/b/OA1bhn/hGFNg
http://paperpile.com/b/OA1bhn/hGFNg
http://dx.doi.org/10.1101/2022.10.09.511501
http://paperpile.com/b/OA1bhn/hGFNg
http://paperpile.com/b/OA1bhn/qpRRZ
http://paperpile.com/b/OA1bhn/qpRRZ
http://paperpile.com/b/OA1bhn/7CYrc
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

data. bioRxiv 2021.12.16.473007 (2021) doi:10.1101/2021.12.16.473007.

62. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29

(2021).

63. Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods

17, 137–145 (2020).

64. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis

of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016).

65. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality

control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33,

1179–1186 (2017).

66. Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M. & Vrgoč, D. Foundations of JSON Schema.

in Proceedings of the 25th International Conference on World Wide Web 263–273

(International World Wide Web Conferences Steering Committee, 2016).

67. Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in

2023. Nucleic Acids Res. 51, D942–D949 (2023).

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.568164doi: bioRxiv preprint

http://paperpile.com/b/OA1bhn/7CYrc
http://dx.doi.org/10.1101/2021.12.16.473007
http://paperpile.com/b/OA1bhn/7CYrc
http://paperpile.com/b/OA1bhn/0WVAu
http://paperpile.com/b/OA1bhn/0WVAu
http://paperpile.com/b/OA1bhn/QH2lp
http://paperpile.com/b/OA1bhn/QH2lp
http://paperpile.com/b/OA1bhn/PZWOo
http://paperpile.com/b/OA1bhn/PZWOo
http://paperpile.com/b/OA1bhn/qDwdO
http://paperpile.com/b/OA1bhn/qDwdO
http://paperpile.com/b/OA1bhn/qDwdO
http://paperpile.com/b/OA1bhn/PfGjF
http://paperpile.com/b/OA1bhn/PfGjF
http://paperpile.com/b/OA1bhn/PfGjF
http://paperpile.com/b/OA1bhn/oJRnh
http://paperpile.com/b/OA1bhn/oJRnh
https://doi.org/10.1101/2023.11.21.568164
http://creativecommons.org/licenses/by/4.0/

