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Abstract:

The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied,
yet their contributions in soil ecosystems are unknown. Of particular interest are Asgard archaeal
contributions to methane cycling in wetland soils. To investigate this, we reconstructed two
complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and the first
complete genome of Freyarchaeia, and defined their metabolism in situ. Metatranscriptomics
highlights high expression of [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the
Wood-Ljungdahl pathway genes. Also highly expressed are genes encoding enzymes for amino
acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and glycerol and
carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are
predicted to be non-methanogenic acetogens, likely impacting reservoirs of substrates for methane
production in terrestrial ecosystems.

One-Sentence Summary:

Complete genomes of Asgard archaea, coupled with metatranscriptomic data, indicate roles in
production and consumption of carbon compounds that are known to serve as substrates for
methane production in wetlands.
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Introduction

Wetland soils are hotspots for methane production by methanogenic archaea. The extent
of methane production depends in part on the availability of substrates for methanogenesis (e.g.,
formate, formaldehyde, methanol, acetate, hydrogen), compounds that are both produced and
consumed by co-existing microbial community members. Among the groups of organisms that
coexist with methanogens are Asgard archaea, of recent interest from the perspective of
eukaryogenesis (/—4). To date, numerous lineages of Asgard archaea have been reported from
anaerobic, sedimentary freshwater, marine, and hydrothermal environments (/—15). Predictions
primarily from draft metagenome-assembled genomes (MAGs) indicate metabolic diversity and
flexibility that may enable them to occupy these diverse ecological niches. It appears that Asgard
archaea are not capable of methane production since they lack the key canonical methyl-coenzyme
M reductase (MCR). Although a few complete genomes for Asgard from hydrothermal and
geothermal environments have been reported (9, 15—17), most metabolic analyses of Asgard
archaea are limited by reliance on partial genomes. To date, no Asgard genomes from non-
estuarine wetland soils have been reported. Thus, nothing is known about the ways in which
Asgard archaea directly (via methane production) or indirectly (via metabolic interactions) impact
methane cycling in wetlands.

To investigate the roles of Asgard archaea in carbon cycling in wetland soil, we
reconstructed two complete genomes for a newly defined group, here named Atabeyarchaeia, and
one complete genome for a group named Freyarchaeia. Freyarchaeia MAGs were originally
reconstructed from Guaymas Basin, located in the Gulf of California, México (/4), and from Jinze
Hot Spring (Yunnan, China) (4). Subsequently, another group used the original data to recover
similar genomes and referred to them as Jordarchaeia (/8). Here, we retain the original
nomenclature. The genomes for soil Asgard archaea were initially reconstructed by manual
curation of Illumina short read assemblies and then validated using both Nanopore and PacBio
long reads. These fully curated genomes enabled us to perform comprehensive metabolic analyses,
without the risks associated with reliance on draft genomes, and provided context for
metatranscriptomic measurements of their in situ activity. Our integrated analysis of gene
expression and metabolic predictions revealed roles for Atabeyarchaeia and Freyarchaeia in the
production and consumption of carbon compounds that can serve as substrates for methanogenesis
by coexisting methanogenic archaea.
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88  Results

89

90 Complete genomes and phylogenetic placement of Asgard archaea from wetland soil

91

92  We analyzed Illumina metagenomic data from samples collected from 20 cm to 175 cm depth in

93 the soil of a wetland located in Lake County, California, USA. We previously reported

94  megaphages (/9) and Methanoperedens archaea and their 1 Mb-scale “Borg” extrachromosomal

95 elements from this site (20). From the metagenomic analyses conducted at this site, we determined

96 that archaea account for >45% of the total community below a depth of 60 cm. Archaeal groups

97  detected include members of the Asgardarchaeota, Bathyarchaeia, Methanosarcinia,

98  Nitrososphaeria, Thermoplasmata, Micrarchaeia, Diapherotrites, Aenigmatarchaeia,

99  Methanomicrobia, Aenigmarchaeia, Nanoarchaeia, Hadarchaeia and Methanomethylicia (Fig. 1A-
100 B)
101 From 60 cm, 80 cm, and 100 cm deep wetland soil, we recovered four draft Asgard
102  genomes, three of which were manually curated to completion using methods described previously
103  (21). Taxonomic classification using the Silva DB placed the 3,576,204 bp genome as Freyachaeia.
104  16S rRNA gene sequence analysis showed the two other complete genomes were distinct from
105  Freyarchaeia (16S rRNA genes are <75% identical), thus representing organisms from a separate,
106  new lineage. These genomes are 2,808,651 and 2,756,679 bp in length (table S1) with an average
107  amino acid identity (AAI) of ~70% (table S2).
108 Phylogenetic analyses using several sets of marker genes (“see materials and methods”)
109  placed our two novel complete genomes in a monophyletic group within the Asgard clade as a
110  sister group to Freyarchaeaia (Fig. 1C). We performed phylogenetic analyses using concatenated
111 marker sets of 47 arCOG and 15 ribosomal protein (RP15) gene cluster (fig. S1), as well as 16S
112  rRNA (fig. S2). The new genomes share only 40-45% AAI when compared to other Asgard
113  genomes, consistent with their assignment to a new phylum. Although our analyses provide
114  evidence for distinction at the phylum level, we chose to adhere to the Genome Taxonomy
115  Database (GTDB) for standardized microbial genome nomenclature (table S3). Here, we propose
116 the name Candidatus ““Atabeyarchaeia" for this new group, where 'Atabey’ is a goddess in of Taino
117  Puerto Rican mythology. Atabeyarchaeia is represented by the complete Atabeyarchaeia group 1
118  (Atabeya-1) and group 2 (Atabeya-2) genomes. Included in this group are 2 MAGs from a highly
119  fragmented, partial Asgard Lake Cootharaba Group (ALCG) draft genome (/2). The cumulative
120 GC skew of the Freyarchaeia and Atabeyarchaeia genomes is consistent with bidirectional
121 replication. This style of replication is typical of bacterial genomes but has not been widely
122  reported in Archaea, and has never been described in the Asgard group (Fig. 1D and fig. S3).
123 Unexpectedly, we found that 92% to 95% of tRNA genes from all three genomes contain
124  at least one intron. This contrasts with the general estimate that 15% of archaeal tRNA harbor
125  introns (22), and with Thermoproteales (another order of archaea), where 70% of the tRNAs
126  contain introns (23). In total, there are 228 tRNA introns across the three new Asgard genomes
127  (table S4). Unlike most archaeal tRNA introns that occur in the anticodon loop at position 37 / 38
128 (24, 25), Atabeyarchaeia and Freyarchaeia introns often occur at non-canonical positions, and over
129  half of their tRNA genes have multiple introns (table S4).
130 Subsequently, we acquired and independently assembled Oxford Nanopore and PacBio
131  long-reads from a subset of the samples to generate three circularized genomes that validate the
132  overall topology of all three curated Illumina read-based genomes (fig. S4, table S1). These
133  complete genomes allowed us to genomically describe two Atabeya-2 strain variants from 100 cm
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134  and 175 cm depth soil. In addition, we used Illumina reads to curate a draft Nanopore genome for
135 another Atabeyarchaeia species, Atabeya-3, from 75 cm and 175 cm depth soil (fig. S5). The
136  Atabeyarchaeia-3 genome is most closely related to the Asgard Lake Cootharaba Group (ALCG)
137  fragments (/8). To further solidify the phylogenetic position of Atabeyarchaiea, we included the
138  Atabeyarchaeia-3 genome and another draft genome (Atabeyarchaeia-4) from Illumina reads in
139  the phylogenetic analysis.

140 Using the Asgard clusters of orthologous genes (AsCOGS) database and functional
141 classification, we identified eukaryotic signature proteins (ESPs) in the complete and public
142  genomes of Atabeyarchaeia and Freyarchaeia (2, 3). Atabeyarchaeia and Freyarchaeia genomes
143  had the highest percentage of hits for 'Intracellular trafficking, secretion, and vesicular transport'
144  (U) among the AsCOG functional classes, accounting for 84.3% of the hits to the database. Within
145  this class, we identified key protein domains such as Adaptin, ESCRT-I-III complexes, Gelsolin
146  family protein, Longin domain, Rab-like GTPase, Ras family GTPase, and Roadblock/LC7
147  domain (table S5, fig. S6). The 'Post Translational modification, protein turnover, and chaperones'
148  category (O) followed with a count of 101 (15.8%), highlighting domains like Ubiquitin,
149  Jabl/MPN domain-containing protein, and the RING finger domain. The presence of ESPs in the
150 newly described Atabeyarchaeia lineage and their presence in Freyarchaeia aligns with previous
151 findings for Asgardarchaeota (/, 3, 4).

152

153  Expression of energy conservation pathways constrain key metabolisms in situ

154

155  We analyzed the metabolic potential of the three complete genomes and investigated their activity
156  in situ through metatranscriptomics of soil samples (“see materials and methods”, Fig. 2, table
157  S6, table S7). The metatranscriptomic data indicate high expression of genes involved in key
158  energy conservation pathways (Fig. 3A). Most highly transcribed genes are soluble heterodisulfide
159  reductase (HdrABC), [NiFe] hydrogenases (groups 3 and 4), ATP synthase, numerous aldehyde
160  ferredoxin oxidoreductase genes, genes for phosphoenolpyruvate (PEP) and pyruvate metabolism,
161  and carbon monoxide dehydrogenase/acetyl CoA synthetase (CODH/ACS). Notably, the Hdr, the
162  group 3 and group 4 hydrogenase (including up to eight NADH-quinone oxidoreductase subunits,
163  e.g., Nuo-like) as well as the ATP synthase are co-encoded in a syntenic block in all of the genomes
164  (Fig.4A). Phylogenetic analysis of the large subunit of group 4 [NiFe]-hydrogenases suggests they
165  are closely related to those of Odinarchaeia, Heimdallarchaia, and Hermodarchaeia (Fig. 4B, table
166  S8). However, the exact function of this unclassified Asgard group has not been validated
167  biochemically (26). One clue relies on the identification of eight genes homologous to the
168  hydrophobic subunits of complex I NuoL, M, and N (E. coli nomenclature) and Mrp-type Na+/H+
169  antiporters. Thus, these Asgard archaea may mediate Na+/H+ translocation coupled to energy
170  generation via ATP synthase (27-29).

171 We employed AlphaFold2 to model the hydrogenase and associated complex I-like
172  modules. Overall, the predicted structure has a cytosolic and membrane-associated portion (Fig.
173  4C). The cytosolic portion aligned with the respiratory membrane-bound hydrogenase (MBH)
174 from Pyrococcus furiosus (27) with high confidence (Fig. 4D). When superimposed, the calculated
175  structures of the membrane-associated hydrophobic L, M, K, and S chains aligned to bacterial
176  complex I. In the canonical complex I (30, 31), Chain L, Nqo12, as well as M, N, and K translocate
177  proteins (31, 32), a process that is facilitated by an arm, helix HL that is part of chain L. This helix
178  HL is also present in the L-like subunit of the Asgard complexes (Fig. 4E). The helix HL, and the
179  antiporter subunits located between chain L and the subunit that connects to the cytosolic
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180  hydrogenase portion, are absent in all characterized respiratory membrane-bound hydrogenases
181  (Fig. 4E, fig. S7).

182 The Group 3c cofactor-coupled bidirectional [NiFe] hydrogenase (fig. S8A) in
183  combination with HdrABC suggests the capability to bifurcate electrons from H> to ferredoxin and
184  an unidentified heterodisulfide compound. This capacity has been observed in methanogenic
185  archaea via the MvhADG-HdrABC system (33, 34). Atabeyarchaeia genomes encode two
186  independent gene clusters of the Group 3b NADP-coupled [NiFe] hydrogenases (fig. S8B). Their
187  presence suggests the capacity to maintain redox equilibrium and, potentially, grow
188  lithoautotrophically by using H2 as an electron donor, as suggested for other Asgardarchaeota
189  members (10, 14, 26).

190 Atabeyarchaeia and Freyarchaeia encode both the tetrahydromethanopterin (H4sMPT)
191  methyl branch and the carbonyl branch of the Wood—Ljungdahl pathway (WLP) (fig. S9). This
192  reversible pathway can be used to reduce CO2 to acetyl coenzyme A (acetyl CoA), which can be
193  further converted to acetate. This last conversion can lead to energy conservation in both Asgard
194  lineages via substrate-level phosphorylation when mediated by acetate-CoA ligase (see below).
195  We confirmed the expression of almost all of the genes of the methyl and carbonyl branches,
196  including the acetate-CoA ligase, in all complete genomes. When H2 is present in the ecosystem,
197  these archaea could use the WLP for the reduction of CO:2 or formate and thereby conserving
198  energy. Alternatively, they could use the WLP in reverse to oxidize acetate. In both scenarios, the
199  expression of energy-converting hydrogenases and the ATP synthases suggest a potential role in
200 energy conservation. This involvement may include coupling exergonic electron transfer to
201  establish an ion gradient that fuels the ATP synthase for ATP generation. The metabolic inferences
202  along with the transcriptional data including the expression of por genes in all three Asgard
203  genomes, indicates a reliance on an archaeal version of the WLP to perform acetogenesis (34, 35).
204  This acetogenic lifestyle appears to to involve energy conservation through a hydrogenase-
205  dependent chemiosmotic mechanism similar to that observed in some acetogenic bacteria (36).
206

207  Potential for non-methanogenic methylotrophic life-style and carboxydotrophy

208

209  Despite the absence of the MCR complex, Freyarchaeia genomes have all the necessary genes to
210  synthesize coenzyme-M from sulfopyruvate via the ComABC pathway similar to methanogens
211 (37, 38). Most methanogens conserve energy via the Na+-translocating MtrA-H complex, which
212  is encoded by an eight-gene cluster (39). Although Atabeyarchaeia and Freyarchaeia do not have
213  the genes for the full complex, Atabeyarchaeia-1 has two copies of the CH3-HsMPT-dependent
214  methyltransferase subunit A-like (MtrA) and both Freyarchaeia and Atabeyarchaeia also encode
215  the CH3-HsMPT-dependent methyltransferase subunit H (MtrH), along with a phylogenetically
216  distinct fused polypeptide of MtrA-like and MtrH (Figure SA). Under the conditions prevalent at
217  the time of sampling, the mtr genes were only weakly expressed (table S6, S8). While the
218  biochemical activity of these divergent non-methanogen-associated MtrA-like and MtrH-like
219  enzymes remain unclear, our phylogenetic analyses suggest they are phylogenetically related to
220  methanogenic MtrA, MtrH, and MtrAH sequences. This suggests their potential role in converting
221  CH3-H4sMPT to HsMPT, transferring a methyl group to an acceptor —possibly coenzyme-M, which
222  can be produced by Freyarchaeia—. As they lack the MCR complex, the subsequent fate of the
223  methyl group remains uncertain.

224 Although Atabeyarchaeia and Freyarchaeia genomes do not encode MrtE, we identified
225  genes associated with methyltransferase systems encoded in close proximity to the MtrH gene.
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226  Specifically, the genomes encode trimethylamine methyltransferase (MttB-like, COGS5598
227  superfamily), undefined corrinoid protein (MtbC-like), and putative glycine cleavage system H
228 (gcvH) (table S9). Both Atabeyarchaeia and Freyarchaeia genomes encode trimethylamine
229  methyltransferase MttB (COG5598). Phylogenetic analysis suggests that MttB (fig. S10) and
230 MtbC (fig. S11) belong to a previously uncharacterized group of methyltransferases, similar to
231 those found in Njordarchaeales, Helarchaeales, Odinarchaeia and TACK members, including
232  Brockarchaeia and Thermoproteota. In methanogens that encode mi#B, this gene has an amber
233  codon encoding the amino acid pyrrolysine in the active site (40, 41). The archaea from this study
234  do not encode pyrrolysine, suggesting Freyarchaeia and Atabeyarchaeia encode a non-pyrrolysine
235  MitB homolog, likely a quaternary amine (QA) dependent methyltransferase (42). Only a fraction
236  of QA methyltransferase substrates have been identified, and these include glycine betaine, proline
237  Dbetaine, carnitine, and butyrobetaine (42—45). The methyl group from the QA may be transferred
238 to THF or HsMPT branches of the WLP, akin to the mechanisms described in archaea with the
239  capacity for non-methanogenic anaerobic methylotrophy, including Freyarchaeia (Jordarchaeia),
240  Sifarchaeia, Brockarchaeia, and Culexarchaeia (11, 12, 46, 47). Consumption of QA compounds
241  may reduce the pool of potential substrates for methanogenic methane production.

242  We identified genes in the Freyarchaeia genome that potentially encode an aerobic carbon-
243  monoxide dehydrogenase complex (CoxLLMS) and associated cofactors. Phylogenetic analysis
244  places the putative CoxL in a monophyletic group with other archaea including
245  Thermoplasmatales, Marsarchaeota, and Culexarchaeia (fig. S12). The gene cassette arrangement
246  suggests these archaea may possess the ability to use carbon monoxide as a growth substrate
247  (carboxydotrophy). However, analysis of the protein sequence reveals that the putative large-
248  subunit aerobic CO dehydrogenases (CoxL) are missing the characteristic VAYRCSFR motif,
249  which is critical for CO binding in the form I Cox proteins (48, 49). Nevertheless, the modeled
250  protein structure, along with the operon organization of the cox genes, points to a novel type of
251  Cox system in archaea (fig. S13). Alternatively, it is possible that this complex enables the
252  utilization of alternative substrates, such as aldehydes or purines, as a member of the aldehyde
253  oxidase superfamily (47, 49, 50).

254

255

256  Carbon compound metabolic pathways

257

258 There are indications that Freyarchaeia and Atabeyarchaeia display distinct metabolic

259  preferences for various soil carbon compounds (Fig. 2;fig. S13). Freyarchaeia exhibit a genetic
260 repertoire to break down various extracellular lignin-derived compounds including 5-
261  carboxyvanillate. Other substrates that we predict can be metabolized by Freyarchaeia
262  carbohydrate-active enzymes include hemicellulose (C5), cellobiose, maltose, and cellulose (C12).
263  We predict that cellodextrin (C18) compounds can be converted to glucose via beta-glucosidase
264  (BgIlBX). The findings implicate Freyarchaeia in the metabolism of plant-derived soil carbon
265  compounds. Glucose, resulting from the degradation of complex carbohydrates, as well as ribulose
266  and other carbon substrates, likely enters the modified Embden-Meyerhof-Parnas (EMP) pathway,
267  yet the genes of this EMP pathway genes are only weakly expressed (fig. S14, table S6, S8).
268  Additionally, Freyarchaeia encode and express an array of genes for the uptake of carbohydrates
269  including major facilitator superfamily sugar transporters and ABC-sugar transporters suggesting
270 an active role in efficiently assimilating diverse carbon substrates from soil environments
271  Atabeyarchaeia also harbor genes of the EMP glycolytic pathway, producing ATP through the
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272  conversion of acetyl-CoA to acetate (fig. S13). Unlike Freyarchaeia which likely feed glucose into
273  the EMP pathway, the entry point for Atabeyarchaeia to the EMP pathway appears to be fructose
274  6-phosphate (F6P). This is relatively uncommon for Asgard archaea but is reminiscent of the
275  pathway in Helarchaeales (7), an order of Lokiarchaeia. We identified Atabeyarchaeia transcripts
276  for all but one of the genes for the steps from G6P to acetate (table S8).

277 Atabeyarchaeia and Freyarchaeia utilize different enzymes to produce pyruvate.
278  Atabeyarchaeia encode the oxygen-sensitive reversible enzyme, pyruvate:phosphate dikinase
279  (PpdK); whereas Freyarchaeia encodes unidirectional pyruvate water

280  dikinase/phosphoenolpyruvate synthase (PpS) and pyruvate kinase (Pk), producing
281  phosphoenolpyruvate and pyruvate (57), respectively. Pyruvate generated via EMP pathway can
282  be then converted to acetyl-CoA by pyruvate:ferredoxin oxidoreductase (PorABCDG) complex
283  using a low-potential electron carrier such as a ferredoxin as the electron donor. Alternatively,
284  acetyl-CoA can also be generated via pyruvate formate-lyase (pflD) generating formate as a
285  byproduct. The final step involves the conversion of acetyl-CoA to acetate via acetate-CoA ligase
286  (ADP-forming) producing ATP via substrate level phosphorylation- a crucial energy conserving
287  step during fermentation of carbon compounds in both lineages.

288 Lacking the ability to phosphorylate C6 carbon sources, Atabeyarchaeia converts ribulose-
289  5-phosphate (C5) and fixes formaldehyde (C1) into hexulose-6-phosphate (H6P) via the ribulose
290  monophosphate (RuMP) and non-oxidative pentose phosphate (NO-PPP) pathways (Fig.2, fig.
291  S14). The Atabeyarchaeia RuMP pathway bifunctional enzymes (HPS-PH and Fae-HPS) are
292  common in archaea and similar to methylotrophic bacterial homologs (52). The RuMP pathway in
293  these Asgard archaea can modulate the formaldehyde availability, a byproduct of methanol
294  oxidation, microbial organic matter decomposition, and combustion. High expression of aldehyde-
295  ferredoxin oxidoreductases (AOR) genes suggest another mechanism for the interconversion of
296  organic acids to aldehydes. For example, aldehyde detoxification (e.g., formaldehyde to formate)
297  and source of acetate from acetaldehyde Atabeyarchaeia-1, Atabeyarchaeia-2, and Freyarchaeia
298 encode multiple AOR gene copies 5, 6, and 8 respectively. Phylogenetic analyses (fig. S15)
299  suggest that both Asgard lineages encode AOR genes related to the FOR family that oxidize C1-
300 (3 aldehydes or aliphatic and aromatic aldehydes (e.g. formaldehyde or glyceraldehyde) (53-55).
301  Furthermore, Freyarchaeia also encodes a tungsten-based AOR-type enzyme (XOR family) found
302 in cellulolytic anaerobes with undefined substrate specificity (56) (fig. S15). Of the classified
303 AORs, only one gene is expressed in Atabeyarchaeia-2 (Figure 3). Yet, some of the unclassified
304  AOR genes are among the most highly expressed genes in the Atabeyarchaeia genomes. Despite
305 the lack of biochemical characterization for most AOR families, these observations suggest a key
306 role of multiple aldehydes in the generation of reducing power in the form of reduced ferredoxin.
307 Similar to other Asgard archaea (7, 10, 26), Atabeyarchaeia and Freyarchaeia encode genes
308 for the large subunit of type IV and methanogenic type III Ribulose 1,5-bisphosphate carboxylase
309  (RbcL) (fig. S16) a key enzyme in the partial nucleotide salvage pathway. This pathway facilitates
310 the conversion of adenosine monophosphate (AMP) to 3-phosphoglycerate (3-PG), potentially
311 leading to further metabolism into acetyl-CoA (57).

312 Anaerobic glycerol (C3) metabolism by Atabeyarchaeia and Freyarchaeia is predicted
313  Dbased on the presence of glycerol kinase (GlpK), which forms glycerol-3-phosphate (3PG) from
314  glycerol. 3PG (along with F6P) can be broken down via the EMP pathway or 3PG can be converted
315  to dihydroxyacetone phosphate (DHAP) via GIpABC. DHAP can also serve as a precursor for sn-
316  glycerol-1-phosphate (G1P), the backbone of archaeal phospholipids. Freyarchaeia have an extra
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317 GIpABC operon, the GIpA subunit of which clusters phylogenetically with GIpA of
318  Halobacteriales, the only known archaeal group capable of glycerol assimilation (fig. S17).

319 All three genomes have a partial TCA cycle similar to other anaerobic archaeal groups such
320 as methanogens (58). They encode succinate dehydrogenase, succinyl-CoA synthetase, 2-
321  oxoglutarate ferredoxin reductase that are important intermediates for amino acid degradation
322  (e.g., glutamate). Only Atabeyarchaeia can convert fumarate to malate via fumarate hydratase. The
323  only portion of TCA cycle transcribed in any genome is 2-oxoglutarate/2-oxoacid ferredoxin
324  oxidoreductase, which can produce reducing power in the form of NADH.

325 A clue suggesting that amino acids are an important resource for Atabeyarchaeia and
326  Freyarchaeia is the high expression of genes for protein and peptide breakdown (Figure 2). All
327  three organisms are predicted to have the capacity to break down fatty acids via beta oxidation
328 including crotonate (short-chain fatty acid) via the poorly described crotonate pathway.
329  Furthermore they encode some enzymes involved in fermenting amino acids to H+, ammonium,
330 acetate, and NAD(P)H via the hydroxyglutarate pathway (table S7). The genomes also encode
331  amino acid transporters and these are also highly transcribed in both archaeal groups. The ability
332  to anaerobically degrade amino acids is consistent with predictions of the metabolism of the last
333  Asgard common ancestor (4, 9).

334 Additionally, Freyarchaeia and Atabeyarchaeia can reverse the step in the formyl branch
335  of the WLP that transforms glycine into methylenetetrahydrofolate (methylene-THF). Methylene-
336 THF may then be converted to methyl-THF and then to formyl-THF, producing reducing power
337  (Figure 2). Ultimately, the methyl group may be used to form acetate via the WLP. Interestingly
338  Atabeyarchaeia-2 and Freyarchaeia expressed methylenetetrahydrofolate reductase (MTHFR) that
339  is homologous to the enzyme used in the bacterial WLP and also plays a role in folate biosynthesis.
340

341  Environmental protection and adaptations

342

343 We predict that Atabeyarchaeia and Freyarchaeia are anaerobes expressing genes that
344  encode oxygen-sensitive enzymes and proteins that protect against oxidative and other
345  environmental stressors. Interestingly, all three organisms encode an ancestral version of clade I
346  catalases (KatE) (fig. S18), Fe-Mn superoxide dismutase (SOD2), and unique to Freyarchaeia, a
347  catalase-peroxidase (fig. S19) for protection against reactive oxygen species (ROS) (fig. S20).
348  Previous analyses have described these expressed enzymes in acetogenic and sulfate-reducing
349  bacteria and methanogenic archaea, but to our knowledge, not in Asgard archaea, indicating a
350 potential adaptation to soil environments(59). We also identified transcription for other
351  environmental and stress responses, including transporters (e.g., nickel, arsenite, magnesium, iron,
352  and copper), and heat shock proteins.

353

354 We infer that Atabeyarchaeia and Freyarchaeia use selenocysteine (Sec), the 21st amino
355 acid, due to the presence of the Sec-specific elongation factor and Sec tRNA in their genomes.
356  Additional Sec components, including phosphoseryl-tRNA kinase (Pstk), Sec synthase (SecS),
357  selenophosphate synthetase (SPS) genes, and multiple Eukaryotic-like Sec Insertion Sequences
358 are also present (table S10). Phylogenetic analysis shows that the Sec elongation factor sequences
359 from Atabeyarchaeia and Freyarchaeia are closely related to other Asgard members and
360 Eukaryotes (fig. S21). We identified multiple selenoproteins encoded within each genome,
361  including CoB-CoM heterodisulfide reductase iron-sulfur subunit (HdrA), peroxiredoxin family
362  protein (Prx-like), selenophosphate synthetase (SPS), and the small subunit (~50 aa) of NiFeSec
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363  (VhuU). In VhuU, Sec plays a crucial role in mitigating oxidative stress (55). Sec can also enhance
364  the catalytic efficiency of redox proteins (56, 58), and the identified selenoproteins have the
365  characteristic CXXU or UXXC sequence (table S11) observed in redox-active motifs (57).

366

367  Discussion

368

369  Here, we reconstructed and validated three complete Asgard archaeal genomes from wetland soils
370  in which these archaea comprise less than 1% of complex microbial communities. We used these
371  genomes to define their chromosome lengths, structure and replication modes. It is relatively
372  common for authors to report circularized genomes as complete, but this may be erroneous due to
373  the prominence of local assembly errors, chimeras, scaffolding gaps and other issues in de novo
374  metagenome assemblies (21, 60). Our genomes were thoroughly inspected, corrected and vetted
375  after circularization, steps previously described to complete genomes from metagenomes (67).
376  These complete genomes are one of the first manual curations of short-read metagenomic data
377  verified entirely with long-read analysis (Oxford Nanopore and/or PacBio) and the first complete
378  short-read environmental Asgard genomes. Two of these genomes are from Atabeyarchaeia, a
379  previously undescribed Asgard group and the first complete genome for Freyarchaeia. We predict
380  bidirectional replication in Freyarchaeia and Atabeyarchaeia, suggesting bidirectional replication
381  could have been present in the last common ancestor of eukaryotes and archaea, potentially playing
382 arole in the emergence of the complex cellular organization characteristic of eukaryotes.

383

384 Overall, prior studies predict that Asgard archaea degrade proteins, carbohydrates, fatty
385 acids, amino acids, and hydrocarbons (35, 6, 10, 62). Lokiarchaeales, Thorarchaeia, Odinarchaeia,
386  and Heimdallarchaeia are primarily organoheterotrophs with varying capacities to consume and
387  produce hydrogen (26). Helarchaeales are proposed to anaerobically oxidize hydrocarbons (7, 10,
388  63), whereas Freyarchaeia and Sifarchaeia are predicted to be heterorganotrophic acetogens
389  capable of utilizing methylated amines (//, 12). Hermodarchaeia are proposed to degrade alkanes
390  and aromatic compounds via the alkyl/benzyl-succinate synthase and benzoyl-CoA pathway (/0).
391  Gerdarchaeales may be facultative anaerobes and utilize both organic and inorganic carbon (§).
392  Atabeyarchaeia and Freyarchaeia share several metabolic pathways with new lineages from the
393  Asgard sister-clade TACK (e.g., Brock- and Culexarchaeia) and other deeply branching Asgard
394  lineages. Based on the genomic and metatranscriptomic analyses, we predict that the soil-
395 associated Atabeyarchaeia and Freyarchaeia are chemoheterotrophs that likely degrade amino
396  acids and other carbon compounds. Both encode the EMP Pathway for cellular respiration and the
397  WLP for CO: fixation.

398 Although Atabeyarchaeia and Freyarchaeia share key central metabolic pathways, they
399  differ in that Freyarchaeia can metabolize compounds such as formaldehyde (C1), glycerol (C3),
400 ribulose (CS5), and glucose (C6), whereas, Atabeyarchaeia can only metabolize C1, C3 and C5
401  compounds (Fig. 2). The ability to metabolize C3 and C5 compounds is rare in Asgard archaea.
402  While the entry points into the EMP pathway differ between the two, both exhibit the genetic
403 repertoire necessary for converting carbohydrates into acetate. Both Atabeyarchaeia and
404  Freyarchaeia may also be capable of growth as anaerobic acetogens via acetate production through
405 the WLP. Similar to other Asgard archaea, they have methyltransferase complexes involved in the
406  catabolism of quaternary amines (or yet unknown methylated substrates). Through the use of
407  methylated compounds, they may compete with methanogens and other anaerobic methylotrophic
408  groups that rely on these substrates for methane production. These results align with recent studies
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409  suggesting a broader presence of methylotrophic metabolisms among archaea (10, 46, 47). It also
410  opens up avenues for exploring the environmental impact of these metabolisms, particularly in
411  relation to carbon cycling and greenhouse gas emissions (64).

412 Of particular interest is the predicted metabolic capability of Atabeyarchaeia and
413  Freyarchaeia to degrade aldehydes. Aldehydes in soils come from several sources, including the
414  microbial breakdown of methanol potentially produced from methane oxidation, degradation of
415  plant and animal compounds, and products of industrial combustion and wildfires (e.g., volatile
416  organic compounds). In fact, the California wetland soil that hosts these archaea contain charcoal,
417  likely produced by wildfires. They are also predicted to be capable of growing on glycerol under
418  anaerobic conditions capacity previously undescribed in Asgard archaea. Glycerol may be present
419  insoil by the lysis of bacteria, yeast, and methanogenic archaeal cells that use glycerol as a solute,
420 or by microbial fermentation of plant and animal triglycerides and phospholipids(65). The
421  presence of glycerol kinase and the respiratory glycerol-3-phosphate dehydrogenase (GlpABC) in
422  Atabeyarchaeia and Freyarchaeia indicates these archaea might use with glycerol or glycerol-3-
423  phosphate and fumarate as the terminal electron acceptor associated with proton translocation.
424  This finding suggests a broader role for glycerol in Asgard archaeal energy metabolism and points
425 to a possible conservation of this mechanism across different anaerobic environments.
426  Understanding how these archaea metabolize glycerol will enhance our knowledge of their
427  ecological roles and contributions to the carbon cycle in wetland ecosystems. Atabeyarchaeia and
428  Freyarchaeia also produce and consume small organic molecules and H2 that serve as substrates
429  for methane production by methanogens that coexist in wetland soil.

430 The soil Asgard archaea encodes group 3c [NiFe]-hydrogenase genes, which were shown
431  to be highly expressed in situ. Under specific conditions, autotrophic growth is likely supported
432 by H: oxidation via the WLP. The presence of syntenic blocks encoding heterodisulfide reductase
433  complexes, [NiFe] hydrogenases, and ATP synthase suggests a sophisticated apparatus for energy
434  transduction, resembling mechanisms previously characterized in other archaeal groups (34).
435  Additionally, our results suggest the existence of an electron bifurcation mechanism in both
436  Asgard archaea lineages, where electrons can be transferred from H: to ferredoxin and an
437  unidentified heterodisulfide intermediate (26). Atabeyarchaeia and Freyarchaeia also have
438 membrane-bound group 4 [NiFe]-hydrogenases that likely facilitate the oxidation of reduced
439  ferredoxin generated through fermentative metabolism. However, this complex is novel in that it
440 includes a HL helix on the L-like subunit and two antiporters, neither of which are part of
441  biochemically characterized group 4 respiratory hydrogenases. The functional modeling of these
442  complexes reveals structural congruences with known respiratory enzymes, hinting at a potential
443  for chemiosmotic energy conservation that may be a widespread feature among the Asgard clade.
444  The findings indicate a potential evolutionary connection between hydrogenases and complex I,
445  aligning with the hypothesis that complex I may have evolved from ancestral hydrogenases (30,
446  60).

447 These complete genomes provide insight into the unique metabolic pathways of Asgard
448  archaea in soil environments, previously missed in primarily sediment-based descriptions. Of
449  particular interest is the identification of genes encoding enzymes for oxidative stress response in
450 Dboth Atabeyarchaeia and Freyarchaeia, despite their anaerobic nature. The use of selenocysteine
451  inkey enzymes may provide another mechanism for dealing with increased oxidative stress. These
452  Asgardarchaeota genomes suggest an adaptation to transient oxidative conditions in soil
453  environments and additional competition for methanogenesis and anaerobic methyltrophy
454  substrates.
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455

456  Conclusions

457

458  We manually curated three complete genomes for Asgard archaea from wetland soils, uncovering
459  bidirectional replication and an unexpected abundance of introns in tRNA genes. These features
460  suggest another facet of the evolutionary relationship between archaea and eukaryotes. Metabolic
461  reconstruction and metatranscriptomic measurements of in sifu activity revealed a non-
462 methanogenic, acetogenic lifestyle and a diverse array of proteins likely involved in energy
463  conservation. The findings point to metabolic flexibility and adaptation to the dynamic soil
464  conditions of wetlands. Finally, they contribute to cycling of carbon compounds that are relevant
465 for methane production by coexisting methanogenic archaea.
466
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861  Figure 1 Archaea dominate deep regions of wetland soil and host novel Asgard archaea A.
862  Photograph of the vernal pool that was metagenomically sampled in this study, in Lake County,
863  California, USA. B. Archaeal genomic abundance excluding bacterial genomes. C. Phylogenetic
864  distribution of Asgard Archaea complete genomes. The maximum-likelihood phylogeny was
865  generated with Iqtree v1.6.1, utilizing 47 concatenated archaeal Clusters of Orthologous Groups
866  of proteins (arCOGs). The best-fit model was determined as LG+F+R10 based on the Bayesian
867  Information Criterion. Non-parametric bootstrapping was conducted with 1,000 replicates for
868  robustness. The filled-in square, circle, and triangle indicate closed complete genomes from short
869 reads, published complete genomes from long reads, and genomes from co-isolated cultured
870  representatives, respectively. The pentagon highlights the long read draft genomes from this site
871  (PacBio or Nanopore). D. Bidirectional replication indication in Atabeyarchaeia complete
872  genomes. The GC skew is shown as a grey plot overlaying the cumulative GC skew, presented as
873  agreen line. The blue lines mark the predicted replication terminus.
874
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877  Figure 2 Metabolic capacities of terrestrial Atabeyarchaeia and Freyarchaeia for overall
878 implications for biogeochemical cycling in wetlands. Inference of the pathways from the
879  complete genomes is based on the comparison of predicted proteins with a variety of functional
880  databases (“see materials and methods”). The extraction depth location within the cores is shown
881  on the left. All reactions are numbers and correspond to table S7. EC/TCDB numbers shaded fully
882  or partially in blue or green are unique to the lineages and complete genomes, whereas the dashed
883  boxes distinguish oxygen-sensitive enzymes. The multi-functional aldehyde ferredoxin
884  oxidoreductase is shown with a star. Proteins marked with a triangle have generated phylogenies
885 to determine their evolutionary histories and substrate specificity. Reactions with mapped
886 transcripts are denoted with red text and arrows. Created using BioRender.com.
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Figure 3. Metatranscriptomic profiling of soil-associated Asgard archaeal genomes A.
Heatmap visualization of normalized Reads Per Kilobase per Million mapped reads (RPKM)
values for ORFs with high sequence similarity (>95%) to the genomes of Atabeyarchaeia-1,
Atabeyarchaeia-2, and Freyarchaeia, across various soil depths. A total of 2,191 open reading
frames (ORFs) were categorized using the Clusters of Orthologous Groups (COG) database, with
Atabeya-1, Atabeya-2, and Freya expressing 465, 804, and 922 unique ORFs, respectively. The
ORFs were annotated and assigned to 15 COG categories, indicating the functional potential of
each archaeal genome in situ. Columns represent metatranscriptomes from different soil depths,
highlighting the spatial variability in the expression of key metabolic and cellular processes. B.
Expanded heatmap of Atabeyarchaeia-1 and Freyarchaeia expressed genes under the category C:
Energy production and conversion. Key genes of the WLP (CODH/ACS, carbon monoxide
dehydrogenase/acetyl-CoA synthase; fwdB, formate dehydrogenase; mtd, 5,10-methylene-H4-
methanopterin dehydrogenase), hydrogenases and associated genes (HdrA, heterodisulfide
reductase and group NiFe-hydrogenase; Mvh, methyl viologen reducing hydrogenase); HyaD
(NiFe-hydrogenase_maturation_factor); HycE and Nuo like subunits, (group 4 NiFe-
hydrogenase), ATP synthase (AtpE, V/A-type H+/Na+-transporting ATPase subunit_K; NtpD,
V/A-type H+/Na+ transporting ATPase subunit D) and aldehyde metabolism (gor,
Aldehyde:ferredoxin oxidoreductases), pyruvate oxidation (porABCD, 2-pyruvate:ferredoxin
oxidoreductase; pflD, pyruvate-formate lyase).
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Figure 4. Phylogeny, genetic organization and structure of the novel group 4 energy-
conservation complex I-like NiFe-hydrogenase from Asgard archaea A. Genetic organization
of the group 4 [NiFe]-hydrogenase module, the proton-translocating membrane module, and ATP
synthase from the Freyarchaeia genome. B. Maximum likelihood phylogeny of group 4 [NiFe]-
hydrogenase large subunit from Asgard archaea and reference sequences. The bolded taxonomic
groups highlight the clades with genomes from this study used for modeling. C. AlphaFold models
of [NiFe]-hydrogenase module and the proton-translocating membrane module where each
candidate subunit is represented by a different color based on the best subunit matched. D.
AlphaFold model of Freyarchaeia hydrogenase complex colored by chains, aligned with cryoEM
structure of a respiratory membrane-bound hydrogenase (MBH) from Pyrococcus furiosus (27)
(PDB ID: 5L8X). E. AlphaFold model of Freyarchaeia hydrogenase complex colored by chains,
aligned with Crystal structure of respiratory complex I from Thermus thermophilus(31) (PDB:
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931 Figure 5 Non-methanogenic MtrA, MtrH and MtrAH fusion methyltransferases A. Maximum
932 likelihood phylogeny of MtrA and the MtrAH fusion, with reference to Tetrahydromethanopterin
933  S-methyltransferase subunit A (MtrA) with the closest corresponding domains being MtrA from
934  the characterized Tetrahydromethanopterin S-methyltransferase subunit A (MtrA) protein (PDB
935 ID:5L8X) (67). The coral colored clade is the novel fusion present in Atabeyarchaeia, Freyarcheia
936  and other Asgardarchaeota members. B. AlphaFold models of Atabeyarchaeia-1 MtrAH (fusion)
937 in coral aligned with the grey corresponding domains of the characterized protein
938  Tetrahydromethanopterin S-methyltransferase subunit A (MtrA) (PDB ID: 5L8X)(68) and
939  Methyltransferase (MtgA) from Desulfitobacterium hafniense in complex with methyl-
940 tetrahydrofolate (PDB ID: 6SK4) at the N terminus. We also modeled the putative MtrA present
941  in Atabeyarchaeia-1 with the closest corresponding domains being MtrA from the characterized
942  Tetrahydromethanopterin S-methyltransferase subunit A (MtrA) protein (PDB ID: SL8X).
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Figure 6. Overview of the wetland soil dynamics and biogeochemical cycling in
Atabeyarchaeia and Freyarchaeia. Complete genomes for Atabeyarchaeia and Freyarchaeia are
shown with green and orange circles, respectively. 2 Atabeyarchaeia genomes (Atabeya-1 and
Atabeya-2) and 1 Freyarchaeia (Freya) genome were isolated and carefully curated and closed
from wetland soil between 60-100 cm. These anaerobic lineages were shown in this study to
encode the Wood-Ljungdahl Pathway for CO: fixation (e.g. methylated compounds such as
quaternary amines) and EMP Pathway, components of chemolithotrophy and heterotrophy,
producing acetate shown in arrows (green and orange), corresponding to the genome colors.
Additionally, these lineages are involved in modulating methanogenesis substrates in these
wetland soils. Detailed description of the specific pathways is found in main text, Fig. 2, and
supplementary materials. Created using BioRender.com.
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