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Multiplex staining enables simultaneous detection of multiple1

protein markers within a tissue sample. However, the in-2

creased marker count increased the likelihood of staining and3

imaging failure, leading to higher resource usage in multi-4

plex staining and imaging. We address this by proposing a5

deep learning-based MArker imputation model for multipleX6

IMages (MAXIM) that accurately impute protein markers by7

leveraging latent biological relationships between markers. The8

model’s imputation ability is extensively evaluated at pixel9

and cell levels across various cancer types. Additionally, we10

present a comparison between imputed and actual marker im-11

ages within the context of a downstream cell classification task.12

The MAXIM model’s interpretability is enhanced by gaining in-13

sights into the contribution of individual markers in the impu-14

tation process. In practice, MAXIM can reduce the cost and15

time of multiplex staining and image acquisition by accurately16

imputing protein markers affected by staining issues.17
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Introduction21

Multiplex staining and imaging, a state-of-the-art technology,22

has revolutionized the simultaneous visualization of multiple23

protein markers within a single tissue sample. Various tech-24

niques have emerged to capture multiplex images with up to25

100 markers, enabling a deeper understanding of complex bi-26

ological processes (1–5). However, the limited availability of27

human tissues and the increased number of markers introduce28

novel challenges, such as a higher likelihood of staining fail-29

ure (missing or aberrant stain), leading to increased costs and30

time required for multiplex image acquisition. Additionally,31

the augmented marker count also amplifies the probability32

of encountering markers with latent biological relationships.33

We hypothesized that these relationships could be leveraged34

to impute protein markers with missing stains in multiplex35

images, ultimately reducing the necessity for tissue restain-36

ing and saving associated extra cost and time.37

Artificial intelligence (AI) has demonstrated remarkable suc-38

cess across diverse fields, including medical image analysis39

(6–10). The field of multiplex imaging has also harnessed40

the power of AI for tasks such as cell segmentation (11, 12),41

cell classification (13–15), and spatial analysis (16, 17). The42

imputation of missing protein markers is a missing data im-43

putation problem, and a number of AI-based methods, partic-44

ularly deep learning methods, have been developed for miss-45

ing data imputation in various domains (18–22). However,46

current literature on image imputation in medical imaging47

primarily focuses on radiology datasets (20–22), with lim-48

ited research exploring the potential of deep learning models49

for marker synthesis in multiplex images (23, 24).50

We present a deep learning-based MArker imputation model51

for multipleX IMages (MAXIM) that harnesses the capabili-52

ties of deep learning to accurately impute a protein marker53

by leveraging the latent relationships between markers in54

multiplex images (Figure 1). We extensively evaluate the55

MAXIM’s performance at both the pixel and cell levels in56

whole slide multiplex images as well as specific regions of in-57

terest, providing a comprehensive understanding of its impu-58

tation capabilities across various cancer types. Additionally,59

we examine the MAXIM’s performance in a downstream task60

of cell classification to demonstrate its practical utility be-61

yond imputation. Lastly, we enhance the interpretability of62

the MAXIM model by investigating the attribution of input63

markers through aggregated gradients (25), unveiling valu-64

able insights into the contribution of each input marker in the65

imputation process.66

Results67

MAXIM was trained and evaluated on a whole slide mul-68

tiplex immunofluorescence (MxIF) imaging dataset, encom-69

passing cases from four different cancer types: Urothelial,70

Anal, Cervical, Head and Neck Squamous Cell Carcinoma71
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Fig. 1. The flow diagram of the proposed method, along with quantitative and visual results for KI67 marker imputation. (A) The proposed model (MAXIM)

takes a multiplex image with N markers as input to impute a marker of interest. Scale bar: 20 µm. (B) The quantitative assessment of MAXIM imputation using the

structural similarity index (SSIM) and mean absolute error (MAE) metrics across three test sets. The width of each violin represents the density of data points (images) with

corresponding SSIM/MAE scores, and the solid line within each violin indicates the median SSIM/MAE score. BL-Zero and BL-Mean are pseudo models used to provide

baseline MEA and SSIM scores in multiplex images with high sparsity and structural similarity across markers. BL-Zero generates an imputed image with zero values, while

BL-Mean creates an imputed image using the mean values of the input markers. MAXIM-Adv is a variant of MAXIM trained with adversarial loss. (C) The hexbin plot shows

the relationship between the MAE scores of BL-Mean and MAXIM models on the Test-ROIs set. Color intensity reflects the density of data points within each hexagon. (D)

Visual results of KI67 marker imputation using BL-Mean and MAXIM models for an examplar input image from Test-HNSCC set. The input image consists of six markers:

DAPI (red), FOXP3 (green), CD4 (yellow), CD8 (cyan), PDL1 (magenta), and CK (blue). Scale bar: 50 µm.

(HNSCC). A separate MAXIM model was trained for each72

marker in MxIF images, using the remaining markers as in-73

put. The model’s performance is evaluated on images of74

size 1396 × 1860 pixels from three distinct test sets: Test-75

WSIs (1920 images from 4 HNSCC whole slide multiplex76

images), Test-ROIs (1097 images from 9 cases of different77

cancer types), and Test-HNSCC (623 images from 13 cases78

of HNSCC).79

MAXIM performance is evaluated using structural similarity80

index (SSIM) and mean absolute error (MAE) between the81

imputed marker images and corresponding real marker im-82

ages. MAXIM achieved high median SSIM and low median83

MAE scores (Figure 1B and Extended Data Figure 1). The84

results of two baseline pseudo models (BL-Zero, and BL-85

Mean) were included to contextualize MEA and SSIM scores86

in multiplex images with high inherent sparsity and struc-87

tural similarity across markers. The BL-Zero model utilized88

zero-valued images as imputed images, while the BL-Mean89

model employed mean images of the input markers as im-90

puted images. MAXIM and its variant MAXIM-Adv, trained91

with an adversarial loss, exhibited higher performance over92

baseline results for KI67 marker imputation (Figure 1B),93

particularly on Test-WSIs and Test-HNSCC sets. However,94

BL-Zeros and BL-Mean also exhibit higher SSIM scores and95

lower MAE scores in certain images, particularly those with96

limited tissue structure leading to high sparsity. To con-97

duct a more detailed performance analysis between BL-Mean98

and the MAXIM models in these particular cases, we em-99
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Fig. 2. Performace and interpretability analysis of MAXIM. (A-B) Evaluation of MAXIM at cell and pixel level on subsets of Test-ROIs and Test-HNSCC sets. The

difference in mean expression of each cell is used for cell level evaluation. The height of the bars indicates the average absolute error, whereas error bars represent the

standard deviation. (C) The precision-recall curve for classifying KI67 cells as positive or negative in MAXIM-based imputed images. The ground truth labels for positive

and negative cells were determined using real KI67 marker images. (D) The boxplots show the distribution of gradient-based attribution/contribution of each marker towards

the KI67 marker imputation. The line inside the box represents the median, the edges of the box represent the interquartile range, and the whiskers extend to 1.5 times the

interquartile range to represent the range of the attribution values. (E) Pearson correlation between attribution values of input marker pairs. (F) Comparison of MAXIM model’s

performance using violin plots when trained only using markers with high attribution and low attribution for KI67 marker imputation. The width of each violin represents

the density of data points (images), and the solid line within each violin indicates the median attribution. (G) Evaluation of MAXIM at case level on Test-ROIs set. (H)

Two-dimentional projection of all input images for KI67 marker inputation in Test-ROIs set. The 2D PCA projections are calculated from the mean intensities of each marker

in the input images. (I) Evaluation of MAXIM models when trained using different subsets of the training set.

ployed hexbin plots to compare the paired mean absolute er-100

ror (MAE) for KI67 marker imputation on the Test-ROI set.101

The results show that the MAXIM model’s MAE scores are102

either lower or comparable to those of the BL-Mean model103

(Figure 1C). Figure 1D and Extended Data Figure 2 visu-104

ally exemplify the MAXIM’s ability to accurately impute the105

markers of interest. These results highlight the effectiveness106

of MAXIM in leveraging latent correlations and patterns to107

accurately impute a marker of interest.108

Next, we proceed to evaluate the performance of MAXIM at109

the cell level on subsets of the Test-ROIs and Test-HNSCC110

sets (Figure 2A & Extended Data Figure 3). These subsets111

comprise a substantial number of cells, totaling more than112

400,000, extracted from 245 images. To assess MAXIM’s113

performance accurately, we compare the mean cell expres-114

sion of each cell in real images with corresponding cells in115

the imputed images. Again, MAXIM shows lower MAE116

compared to the two baseline methods on both Test-ROIs and117

Test-HNSCC subsets. Notably, the results obtained at the cell118

level align closely with the performance patterns observed119

at the pixel level when evaluated on the same set of images120

(Figure 2B & Extended Data Figure 3). Furthermore, we121

evaluate the utility of imputed images in a downstream task122

of cell classification. To establish ground truth cell labels,123

we utilized the HALO software to categorize cells as either124

positive or negative based on the mean cell expression of the125

KI67 marker in real images. Subsequently, we generated a126

precision-recall curve and determined the average precision127
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by comparing the mean cell expression of each cell in the im-128

puted images with the corresponding cell label in the real im-129

ages (Figure 2C). MAXIM exhibited high average precision130

in both test sets, affirming its capability in precisely imput-131

ing marker values that can be reliably used for downstream132

analysis.133

To investigate MAXIM’s ability to leverage latent relation-134

ships among markers for accurate imputation, we assess the135

attributions of input markers for marker imputation using136

the aggregated gradient (25) method on the Test-WSIs set137

(Figure 2D & Extended Data Figure 4). The analysis re-138

veals that CK, PDL1, and DAPI markers exhibit higher con-139

tributions to KI67 marker imputation than CD8, CD4, and140

FOXP3 markers. Additionally, the high correlation in attri-141

bution scores between pairs of input markers suggests con-142

sistent attribution patterns across images (Figure 2E). We143

train separate models excluding markers with high attribution144

scores for KI67 marker imputation to further validate these145

attributions. The results in Figure 2F demonstrate a perfor-146

mance decrease in models trained without markers with high147

attribution scores, while models without markers exhibiting148

low attribution scores consistently perform well. These find-149

ings indicate that input markers with high attribution scores150

possess latent relationships effectively exploited by MAXIM151

for accurate KI67 marker imputation.152

The investigation of MAXIM’s performance at the case level153

reveals the potential reason for the relatively high variance in154

its performance on the Test-ROIs set. MAXIM fails to accu-155

rately impute markers in two cases, as shown in Figure 2F156

& Extended Data Figure 5. To further explore the reasons157

behind these failures, we represent each image by calculat-158

ing the mean expression of each input marker. By using the159

mean expression of all images for principal component anal-160

ysis (PCA) and plotting the top two components, we visualize161

the differences in the distribution of cases (Figure 2G & Ex-162

tended Data Figure 6). Interestingly, the two cases where163

MAXIM fails to perform well appear as a separate cluster,164

especially for the KI67 marker, indicating that these cases165

exhibit distinct distributions compared to the remaining cases166

in the Test-ROIs set. Finally, we demonstrate that MAXIM167

can maintain its high performance even when trained using a168

limited dataset, as illustrated in Figure 2H. This finding high-169

lights the robustness of MAXIM, indicating that it can still170

effectively impute marker values even with a smaller training171

dataset.172

Discussion173

We demonstrate the effectiveness of MAXIM, a deep gen-174

erative model, in marker imputation for multiplex images.175

Specifically, we show that MAXIM can accurately impute the176

values of a protein marker with pixel-level precision by lever-177

aging the latent relationships between available markers. Ad-178

ditionally, we showcase the utility of imputed marker images179

for cell classification, a common downstream task in multi-180

plex image analysis. Furthermore, we present the analysis of181

individual marker importance in MAXIM marker imputation182

process.183

The effectiveness of the MAXIM method in accurately im-184

puting a marker hinges on both input and output markers.185

When a latent biological relationship exists between the set186

of input markers and the output marker, our model excels187

in generating highly reliable imputed images for the output188

marker. It is worth noting that assessing imputed images189

on a pixel-by-pixel basis poses a challenge for markers ex-190

hibiting notably sparse responses, such as CD4, CD8, and191

PDL1. In such cases, both SSIM and MAE scores converge192

across MAXIM, BL-Zero, and BL-Mean methods. We ap-193

plied MAXIM to multiplex immunofluorescence images fea-194

turing seven markers. Nevertheless, the versatility of our pro-195

posed method allows for seamless retraining and testing on196

images with varying marker counts. Likewise, it can be read-197

ily adapted for use with multiplex images obtained through198

diverse multiplex imaging technologies, including CODEX199

(2), MIBI (4), and others.200

The MAXIM’s practical utility is threefold. First, the lab-201

oratories utilizing multiplexed images can seamlessly train202

an in-house MAXIM model using images devoid of staining203

issues. The trained model can then be employed to accu-204

rately impute markers in multiplexed images that are marred205

by staining problems. Second, MAXIM can serve as a valu-206

able tool for quality control in newly generated multiplex im-207

ages, aiding in the detection of staining failures. The strong208

correlation between imputed and real markers in new images209

will be an indicator of staining integrity. Finally, the inter-210

pretability of MAXIM provides the opportunity to uncover211

previously unknown latent biological relationships between212

different protein markers, leading to new insights in the field.213

Material and Methods214

Dataset215

This study utilized a diverse dataset comprising tissue sam-216

ples from four cancer types: Urothelial, Anal, Cervical, and217

Head and Neck. The dataset comprised 83 tissue samples218

from 27 cases derived from three separate studies, one specif-219

ically focused on Head and Neck cases (Supplementary Ta-220

ble 1). To acquire multiplex immunofluorescence (MxIF)221

image, formalin-fixed paraffin-embedded 5 µm sections222

from tissue samples were immune-stained using Opal 6-223

plex kits, according to the manufacturer’s protocol (Akoya224

Biosciences), for a panel of DAPI, CD4, CD8, FOXP3,225

PDL1, KI67, and CK. Deparaffinizing, rehydration, epitope226

retrieval, and staining of slides were performed using Leica227

BOND RX Autostainer (Leica). The optimum staining con-228

dition for each antibody was determined using immunohisto-229

chemistry and single-immunofluorescence before combina-230

tion. Details on antibodies, protocol, and opals used in this231

panel are described in Supplementary Table 2. The MxIF232

images were scanned at a high resolution of 40×, with a233

microns-per-pixel (mpp) value of 0.25. Among the 83 tis-234

sue samples, 29 samples from 5 cases were scanned entirely235

to produce whole slide MxIF images, while the remaining236

samples underwent separate scanning as regions of interest237

(ROI), resulting in ROI MxIF images of size 1396×1860238

pixels. The images were unmixed using InForm version239
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2.5 software (Akoya Biosciences), enabling the identification240

and separation of weakly expressing and overlapping signals241

from the background autofluorescence.242

The MxIF imaging dataset was divided into four sets for243

model training and evaluation: Train/Valid, Test-WSIs,244

Test-ROIs, and Test-HNSCC. The Train/Valid set consisted245

of 25 whole slide MxIF images selected from four cases (1246

Urothelial, 1 Anal, and 2 Cervical), encompassing 14,476247

images with dimensions of 1396 × 1860 pixels. To evaluate248

the model’s performance on unseen data, the Test-WSIs set249

comprised 1,920 images extracted from four whole slide250

MxIF images of a Head and Neck case. The Test-ROIs set251

was also created to assess the model’s robustness across252

diverse cases and tissue samples, including 1,097 images253

extracted from 9 cases and 28 tissue samples. Finally, a254

separate Test-HNSCC set was specifically prepared for255

evaluating the model’s performance on Head and Neck256

Squamous Cell Carcinoma (HNSCC) cases, consisting of 13257

cases, 26 tissue samples, and a total of 623 images extracted258

solely from the HNSCC-focused study. These distinct data259

splits allowed for a comprehensive evaluation of the model’s260

generalizability and performance across different cancer261

types, tissue samples, and specific case studies.262

263

MAXIM model architecture264

The MAXIM model is based on the U-Net architecture (26),265

which is an encoder-decoder network with skip connections.266

Let’s denote the input MxIF image as X ∈R
H×W ×N , where267

H and W represent the height and width of the image, re-268

spectively, and N represents the number of markers. Each el-269

ement X(i, j,n) corresponds to the intensity value of marker270

n at the pixel location (i, j). The MAXIM model aims271

to generate an imputed image Y ∈ R
H×W for the output272

marker. The model consists of an encoder path and a decoder273

path connected by skip connections. The encoder path can274

be denoted as a function Fenc : RH×W ×N → R
H

2d
×

W

2d
×C

,275

where d represents the depth of the encoder, and C repre-276

sents the number of channels in the encoded feature map.277

Similarly, the decoder path can be represented as a func-278

tion Fdec : R
H

2d
×

W

2d
×C

→ R
H×W , which impute the output279

marker image. Hence, the overall MAXIM model can be rep-280

resented as a composite function F : RH×W ×N → R
H×W ,281

where F (X) = Fdec(Fenc(X)).282

The MAXIM model was optimized using reconstruction loss,283

which involves minimizing the discrepancy between the im-284

puted image and the ground truth image. In this case, L1 loss285

(mean absolute error) and L2 loss (mean squared error) were286

used as the reconstruction loss functions. Let’s denote the287

predicted imputed and the ground truth image as Y ∈R
H×W

288

and Ygt ∈ R
H×W , respectively. The L1 loss is calculated289

as the mean absolute difference between the predicted and290

ground truth images:291

L1 =
1

H ×W

H∑

i=1

W∑

j=1

|Yi,j −Ygti,j
|,

where H ×W represents the total number of pixels in the im-292

age. Similarly, the L2 loss is computed as the mean squared293

difference between the predicted and ground truth images:294

L2 =
1

H ×W

H∑

i=1

W∑

j=1

(Yi,j −Ygti,j
)2,

The optimization process of the marker imputation model in-295

volves minimizing the combined loss LC , which is a linear296

combination of the L1 and L2 losses:297

LC = α ·L1 +(1−α) ·L2,

where α is weight parameter that control the relative impor-298

tance of the L1 and L2 losses.299

300

MAXIM model with adversarial loss301

The MAXIM model is also trained using an adversarial loss,302

following the training approach commonly used in condi-303

tional generative adversarial networks (27). The genera-304

tor network, G, responsible for imputing the output marker305

image, adopts the same network architecture as described306

above, whereas the discriminator network D employed in the307

model is the same as the discriminator network utilized in308

the Pix2Pix network (28). The discriminator network input309

is a concatenated image of the multiplex input image with N310

markers X ∈ R
H×W ×N , along with either the ground truth311

output marker Ygt or the generated output marker G(X). The312

discriminator network produces a 32 times smaller binary im-313

age as output. The discriminator network consists of six con-314

volutional layers with a kernel size of 4 and a stride size of 2.315

Each convolutional layer is followed by a batch normaliza-316

tion operation and a leaky ReLU activation function, except317

for the first and last layers. The first layer does not include a318

batch normalization operation, and the last layer neither has319

a batch normalization operation nor a leaky ReLU activation.320

The discriminator’s objective is to discriminate and classify321

the input images into two categories: the first represents the322

multiplex input image with the ground truth marker, and the323

second represents the multiplex input image with the imputed324

marker. To achieve this, the discriminator predicts an output325

of all ones (close to one) for the first type of input image, indi-326

cating its high confidence that the image contains real values.327

Conversely, it predicts an output of zeros (close to zero) for328

the second type of input image, expressing its certainty that329

it contains imputed values. The discriminator model was op-330

timized using the average cross-entropy loss (LD) of images331

from both categories:332

LD =
1

2
(LCE(I1,D(X,Ygt))+LCE(I0,D(X,G(X))))

Here, I1 and I0 represent the images with pixel values as ones333

and zeros, respectively. The term LCE(I1,D(X,Ygt)) com-334

putes the cross-entropy loss between the discriminator’s out-335

put when provided with the input image X and ground truth336

marker Ygt, aiming to maximize the probability of the dis-337

criminator correctly classifying them as real. Similarly, the338

term LCE(I0,D(X,G(X))) calculates the cross-entropy loss339

between the discriminator’s output when provided with the340
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input image X and the imputed marker image G(X), aim-341

ing to maximize the probability of the discriminator correctly342

classifying them as imputed.343

The generator network, G, is trained to impute marker values344

that closely resemble the ground truth markers and are chal-345

lenging for the discriminator to differentiate. The generator346

network is optimized using the sum of weighted L1 loss (L1)347

and a cross-entropy loss. The generator loss is defined as:348

LG = β ·L1 +LCE(I1,D(X,G(X))),

where β is the weight factor. The cross-entropy loss (LCE)349

encourages the generator to generate marker predictions that350

the discriminator classifies as real. The overall loss ensures351

that the generator network is trained to produce accurate352

imputed marker values while also satisfying the adversarial353

objective.354

355

Training details356

A separate model was trained for each marker using the re-357

maining six as input. The images in the Train/Valid set were358

too large to be directly used for model training. Therefore,359

all images were divided into 24 equally sized patches of size360

349 × 310. Then each model was trained using randomly361

cropped, flipped, and rotated regions of size 256 × 256362

extracted from image patches. All models are optimized363

using Adam optimizer with a learning rate of 0.002. The364

values of α and β hyperparameters are empirically set to365

0.5 and 100, respectively. The batch size was set to 64 for366

each training iteration. The maximum number of epochs367

was set to 200, while the minimum number of epochs was368

set to 50. A stopping criterion was implemented to prevent369

overfitting and ensure a stable training process. Training370

for each marker was stopped if the validation loss did not371

decrease for 25 consecutive epochs, indicating a potential372

plateau in model performance.373

374

Evaluation375

The marker imputation models were evaluated using vari-376

ous evaluation metrics at the image level, considering the377

1396 × 1860 pixel images. To assess the similarity between378

real and imputed marker images, the Structural Similarity In-379

dex (SSIM) was employed as a measure of structural resem-380

blance. Additionally, the Mean Absolute Error (MAE) was381

calculated to quantify the pixel-level intensity differences be-382

tween the real and imputed images. The evaluation of the383

marker imputation model considered the sparsity of marker384

images, which can vary depending on the marker type (nu-385

clear, cytoplasmic, or membrane). Sparse images tend to386

yield higher SSIM scores and lower MAE values. The worst387

achievable SSIM score is 0, indicating no structural resem-388

blance, while the worst MAE score is 255, denoting maxi-389

mum average pixel-level intensity differences. To establish390

baselines for comparison, two sets of results were presented:391

one using images with all zeros and the other using images392

representing mean images of the input markers. These base-393

lines provided the lowest achievable SSIM and highest MAE394

scores in the test sets. The MAXIM’s performance is ex-395

pected to surpass these baseline results, demonstrating its396

ability to impute more accurate and realistic marker images.397

In addition to evaluating the MAXIM’s performance based398

on pixels, we also conducted a cell-level assessment to mit-399

igate potential biases arising from numerous zero or near-400

zero pixel values in both real and imputed marker images.401

HALO image analysis software (Indica Lab), specifically the402

automated Highplex FL module, was utilized to calculate the403

mean expression of each cell in the real and imputed mark-404

ers. Initially, the software identified and segmented the cell405

nucleus using the real DAPI channel and then expanded the406

segmented region using a heuristic approach to encompass407

the entire cell, including the cell membrane. Subsequently,408

it determined the average intensity or expression within each409

cell for both the real and imputed marker images.410

To quantify the intensity differences between the real and411

imputed marker cells, we computed the MAE at the cell level412

by comparing the mean cell expression values. Additionally,413

we assessed the model’s performance in cell classification414

by utilizing the mean cell expression of the real marker. The415

HALO software facilitated this classification task, wherein416

an expert-defined threshold was set. If the mean expression417

of the pixels belonging to a cell exceeded the threshold, the418

cell was classified as positive for that marker. Using the419

resulting cell labels and the mean cell expression of the im-420

puted marker images, we generated precision-recall curves421

to illustrate the trade-off between precision and recall. The422

average precision (AP) score served as a summary measure423

of the model’s ability to distinguish between positive and424

negative cells based on the imputed marker values.425

426

Model Interpretability427

Model interpretability was explored by calculating aggre-428

gated gradient-based image attributions (25) of each marker429

in the input images to the imputed marker image. These at-430

tributions, derived from the model’s internal computations,431

could take both positive and negative values, indicating the432

contribution of each pixel to the imputed marker image. The433

absolute sum of attributions was computed for each marker434

to assess the overall attribution of each input marker for a435

given output marker. This yielded a measure of the impor-436

tance or influence of each marker in the model’s decision-437

making process. Furthermore, the aggregated attributions of438

each marker were converted into percentage values by divid-439

ing the total absolute attribution of the input image. This440

conversion provided a more interpretable representation of441

the relative significance of each marker in the context of the442

entire image. In addition to calculating aggregated gradient-443

based pixel attributions, the correlation between pairs of in-444

put markers’ attributions was also computed to identify any445

patterns of co-occurrence in marker imputation. This analy-446

sis aimed to examine whether certain input markers exhibited447

similar attribution patterns or if there were any interdepen-448

dencies between the attributions of different markers.449

To validate the attribution of individual input markers to the450

imputed marker image, we conducted experiments using two451

sets of new MAXIM models. Each set consisted of a subset452
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of markers with either high or low attribution scores. In one453

set, the input images were modified to exclude the markers454

with high attribution scores. Conversely, the input images455

were modified in the other set to exclude the markers with456

low attribution scores. The intention behind this approach457

is that models trained without markers with low attribution458

scores should ideally perform consistently better compared459

to the other set of models. We calculated the MAE metrics460

for each set and compared them with the results obtained461

from the original marker imputations. This analysis allowed462

us to evaluate the significance of the attributions of input463

markers with high and low scores and determine their464

influence on the model’s performance.465

466

Ablation study467

In order to investigate the influence of training set size468

on the performance of the MAXIM model, we conducted469

an ablation study by training four new MAXIM models470

using varying proportions of the available training images.471

Specifically, we randomly selected 75%, 50%, 25%, and472

10% of the training images for each model. By training473

models with reduced training data, we aimed to understand474

how the availability of labeled data affects the model’s ability475

to accurately impute markers in MxIF images.476

477

Computational hardware and software478

We train all models on a system with Intel Core i9-10920X479

CPU (central processing unit) and an NVIDIA GeForce480

RTX 3090 GPU (graphics processing unit). All models481

were implemented in Python (3.9.13) using PyTorch (1.13.1)482

and TorchVision (0.14.1) as the primary deep-learning483

packages for the development and training of deep learning484

models. Numerical computations and data manipulation485

were carried out using Numpy (1.12.5) and Pandas (1.4.4),486

respectively. The Scipy (1.9.1) was utilized to calculate487

evaluation metrics such as MAE, precision-recall curve,488

and average precision, while Scikit Image (0.19.2) was489

used to calculate the SSIM between two images. Model490

interpretability was achieved through the application of491

Captum (0.6.0). The data visualization aspect of the research492

employed Matplotlib (3.5.2) and Seaborn (0.11.2), enabling493

the creation of informative visual representations. Setuptools494

(63.4.1) assisted in managing library dependencies for pip495

package creation.496

497

Data availability498

Data will be shared upon reasonable request. Any request499

for data by qualified scientific and medical researchers for500

legitimate research purposes will be subject to NCI and the501

NIH Policy for Data Management and Sharing. All requests502

should be submitted in writing to NCI.503
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Code availability505

All code and scripts for reproducing the experiments are506

accessible at https://github.com/mahmoodlab/MAXIM. De-507
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A

B

Extended Data Figure 1. The quantitative assessment of MAXIM’s marker imputation ability for six different markers. (A) & (B) present the results using structural

similarity index (SSIM) and mean absolute error (MAE) metrics across three test sets, respectively. The width of each violin represents the density of data points (images)

with corresponding SSIM/MAE scores, and the solid line within each violin indicates the median SSIM/MAE score. BL-Zero and BL-Mean are pseudo models that provide

baseline MEA and SSIM scores in multiplex images with high sparsity (CD8, CD4, CK, and PDL1) and structural similarity (DAPI and FOXP3) across markers. BL-Zero

generates an imputed image with zero values, while BL-Mean creates an imputed image using the mean values of the input markers.
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Extended Data Figure 2. Visual results of six different marker imputation models. The results are shown for the same multiplex image with seven markers: DAPI (red),

FOXP3 (green), CD4 (yellow), CD8 (cyan), PDL1 (magenta), KI67 (White), and CK (blue). Scale bar: 50 µm. The first row shows the input images consisting of six markers,

excluding the target marker (column name). The second row shows the real images of the target markers. The third and fourth rows show imputed images using MAXIM and

BL-Mean models.

FOXP3 CK

CD8 CD4

Extended Data Figure 3. Evaluation of MAXIM at cell and pixel level on subsets of Test-ROIs and Test-HNSCC sets for six different markers. The difference in the

mean expression of each cell is used for cell level evaluation. The height of the bars indicates the average absolute error, whereas error bars represent the standard deviation.
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Extended Data Figure 4. Model interpretability analysis using aggregated gradient method. The boxplots show the distribution of gradient-based attribution of each

input marker towards output marker imputations. The line inside the box represents the median, the edges of the box represent the interquartile range, and the whiskers

extend to 1.5 times the interquartile range to represent the range of the attribution values.
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Extended Data Figure 5. Evaluation of MAXIM model at case level on Test-ROIs set. The width of each violin represents the density of data points (images) with

corresponding mean absolute error (MAE) scores, and the solid line within each violin indicates the median MAE score.
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Extended Data Figure 6. Two-dimensional projection of input images to visualize the case level differences in data distribution for different MAXIM models. Each

plot showcases the projections achieved using principal component analysis, which are based on the mean intensities of each marker in the input images. Each dot within

the subplots represents an individual image from the Test-ROIs set, and the color of the dots indicates the corresponding case to which the image belongs.
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