

Deep Learning Model Imputes Missing Stains in Multiplex Images

Muhammad Shaban^{1,2,3}, Wiem Lassoued⁴, Kenneth Canubas⁴, Shania Bailey⁵, Yanling Liu⁶, Clint Allen⁷, Julius Strauss⁸, James L Gulley⁴, Sizun Jiang^{3,9,10}, Faisal Mahmood^{1,2,3,11,12,*}, George Zaki^{13,*}, and Houssein A Sater¹⁴*

¹ Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

² Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA

³ Broad Institute of Harvard and MIT, Cambridge, MA

⁴ Center of Immuno-Oncology, National Cancer Institute, Bethesda, MD

⁵ University of Maryland School of Medicine, Baltimore, MD

⁶ Integrated Data Science Section, Research and Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD

⁷ Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD

⁸ Bristol Myers Squibb, Cambridge, MA

⁹ Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

¹⁰ Department of Pathology, Dana Farber Cancer Institute, Boston, MA

¹¹ Harvard Data Science Initiative, Harvard University, Cambridge, MA

¹² Department of Biomedical Informatics, Harvard Medical School, Boston, MA

¹³ Bioinformatics and Computational Science Directorate, Frederick National Lab for Cancer Research, Frederick, MD

¹⁴ Carol and Robert Weissman Cancer Center, Cleveland Clinic, Stuart, FL

*Corresponding authors

1 Multiplex staining enables simultaneous detection of multiple ³⁷ protein markers within a tissue sample. However, the in- ³⁸ increased marker count increased the likelihood of staining and ³⁹ imaging failure, leading to higher resource usage in multi- ⁴⁰plex staining and imaging. We address this by proposing a ⁴¹ deep learning-based MArker imputation model for multipleX ⁴²IMages (MAXIM) that accurately impute protein markers by ⁴³leveraging latent biological relationships between markers. The ⁴⁴model's imputation ability is extensively evaluated at pixel ⁴⁵and cell levels across various cancer types. Additionally, we ⁴⁶present a comparison between imputed and actual marker im- ⁴⁷ages within the context of a downstream cell classification task. ⁴⁸The MAXIM model's interpretability is enhanced by gaining in- ⁴⁹sights into the contribution of individual markers in the imputa- ⁵⁰tion process. In practice, MAXIM can reduce the cost and ⁵¹time of multiplex staining and image acquisition by accurately ⁵²imputing protein markers affected by staining issues.

18 Multiplexed imaging | Image imputation | Machine learning | Proteomics

19 Correspondence: abdulsh@ccf.org george.zaki@nih.gov, faisalmah- ⁵³
mood@bwh.harvard.edu

21 Introduction

22 Multiplex staining and imaging, a state-of-the-art technology, ⁵⁹has revolutionized the simultaneous visualization of multiple ⁶⁰protein markers within a single tissue sample. Various tech- ⁶¹niques have emerged to capture multiplex images with up to ⁶²100 markers, enabling a deeper understanding of complex bi- ⁶³ological processes (1–5). However, the limited availability of ⁶⁴human tissues and the increased number of markers introduce ⁶⁵novel challenges, such as a higher likelihood of staining fail- ⁶⁶ure (missing or aberrant stain), leading to increased costs and ⁶⁷time required for multiplex image acquisition. Additionally, ⁶⁸the augmented marker count also amplifies the probability ⁶⁹of encountering markers with latent biological relationships. ⁷⁰We hypothesized that these relationships could be leveraged ⁷¹to impute protein markers with missing stains in multiplex images, ultimately reducing the necessity for tissue restain-

ing and saving associated extra cost and time.

Artificial intelligence (AI) has demonstrated remarkable success across diverse fields, including medical image analysis (6–10). The field of multiplex imaging has also harnessed the power of AI for tasks such as cell segmentation (11, 12), cell classification (13–15), and spatial analysis (16, 17). The imputation of missing protein markers is a missing data imputation problem, and a number of AI-based methods, particularly deep learning methods, have been developed for missing data imputation in various domains (18–22). However, current literature on image imputation in medical imaging primarily focuses on radiology datasets (20–22), with limited research exploring the potential of deep learning models for marker synthesis in multiplex images (23, 24).

We present a deep learning-based MArker imputation model for multipleX IMages (MAXIM) that harnesses the capabilities of deep learning to accurately impute a protein marker by leveraging the latent relationships between markers in multiplex images (Figure 1). We extensively evaluate the MAXIM's performance at both the pixel and cell levels in whole slide multiplex images as well as specific regions of interest, providing a comprehensive understanding of its imputation capabilities across various cancer types. Additionally, we examine the MAXIM's performance in a downstream task of cell classification to demonstrate its practical utility beyond imputation. Lastly, we enhance the interpretability of the MAXIM model by investigating the attribution of input markers through aggregated gradients (25), unveiling valuable insights into the contribution of each input marker in the imputation process.

67 Results

MAXIM was trained and evaluated on a whole slide multiplex immunofluorescence (MxIF) imaging dataset, encompassing cases from four different cancer types: Urothelial, Anal, Cervical, Head and Neck Squamous Cell Carcinoma

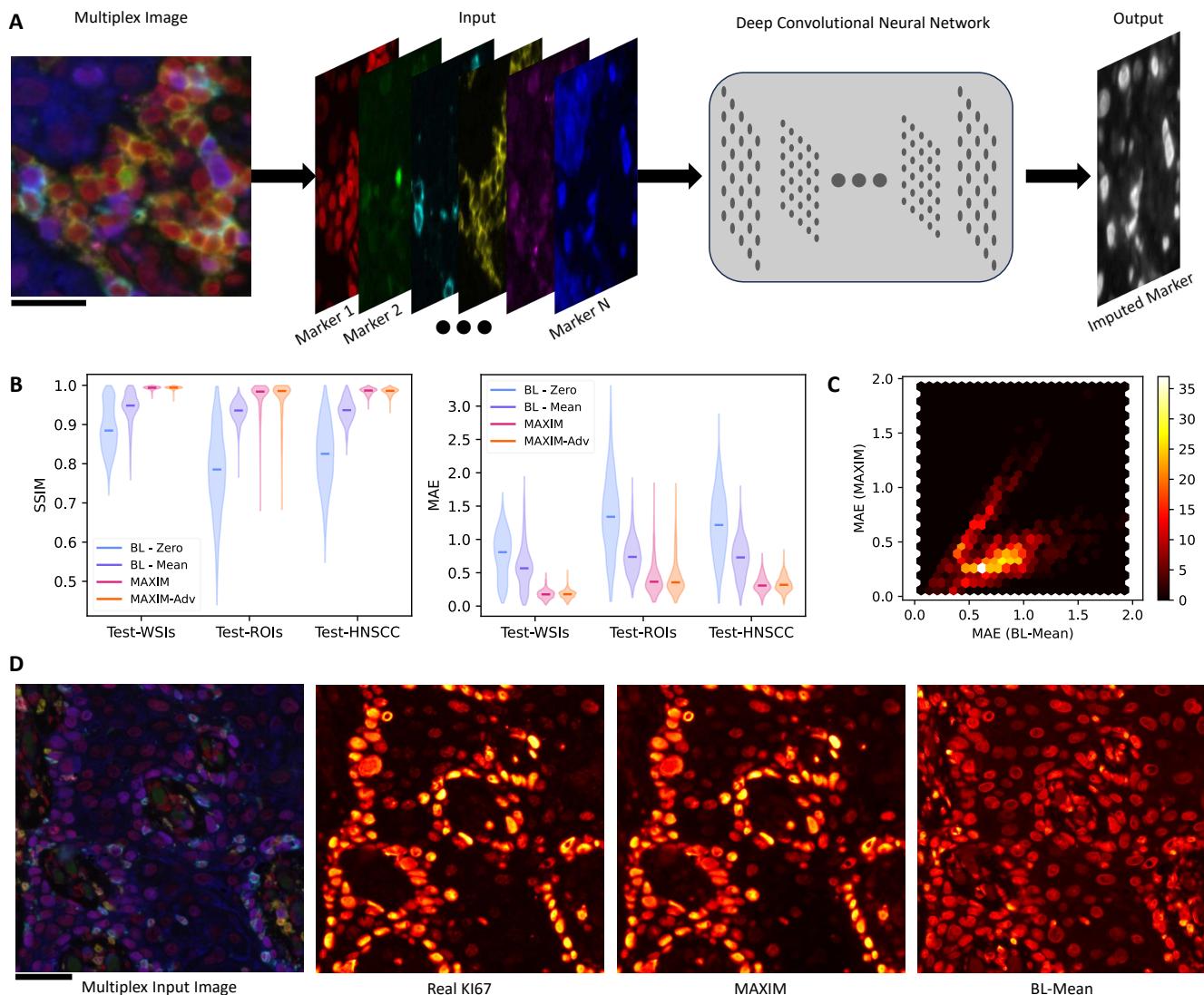


Fig. 1. The flow diagram of the proposed method, along with quantitative and visual results for KI67 marker imputation. (A) The proposed model (MAXIM) takes a multiplex image with N markers as input to impute a marker of interest. Scale bar: 20 μm . (B) The quantitative assessment of MAXIM imputation using the structural similarity index (SSIM) and mean absolute error (MAE) metrics across three test sets. The width of each violin represents the density of data points (images) with corresponding SSIM/MAE scores, and the solid line within each violin indicates the median SSIM/MAE score. BL-Zero and BL-Mean are pseudo models used to provide baseline MEA and SSIM scores in multiplex images with high sparsity and structural similarity across markers. BL-Zero generates an imputed image with zero values, while BL-Mean creates an imputed image using the mean values of the input markers. MAXIM and its variant MAXIM-Adv, trained with an adversarial loss, exhibited higher performance over baseline results for KI67 marker imputation (Figure 1B), particularly on Test-WSIs and Test-HNSCC sets. However, BL-Zeros and BL-Mean also exhibit higher SSIM scores and lower MAE scores in certain images, particularly those with limited tissue structure leading to high sparsity. To conduct a more detailed performance analysis between BL-Mean and the MAXIM models in these particular cases, we em-

(HNSCC). A separate MAXIM model was trained for each marker in MxIF images, using the remaining markers as input. The model's performance is evaluated on images of size 1396×1860 pixels from three distinct test sets: Test-WSIs (1920 images from 4 HNSCC whole slide multiplex images), Test-ROIs (1097 images from 9 cases of different cancer types), and Test-HNSCC (623 images from 13 cases of HNSCC).

MAXIM performance is evaluated using structural similarity index (SSIM) and mean absolute error (MAE) between the imputed marker images and corresponding real marker images. MAXIM achieved high median SSIM and low median MAE scores (Figure 1B and Extended Data Figure 1). The results of two baseline pseudo models (BL-Zero, and BL-

Mean) were included to contextualize MEA and SSIM scores in multiplex images with high inherent sparsity and structural similarity across markers. The BL-Zero model utilized zero-valued images as imputed images, while the BL-Mean model employed mean images of the input markers as imputed images. MAXIM and its variant MAXIM-Adv, trained with an adversarial loss, exhibited higher performance over baseline results for KI67 marker imputation (Figure 1B), particularly on Test-WSIs and Test-HNSCC sets. However, BL-Zeros and BL-Mean also exhibit higher SSIM scores and lower MAE scores in certain images, particularly those with limited tissue structure leading to high sparsity. To conduct a more detailed performance analysis between BL-Mean and the MAXIM models in these particular cases, we em-

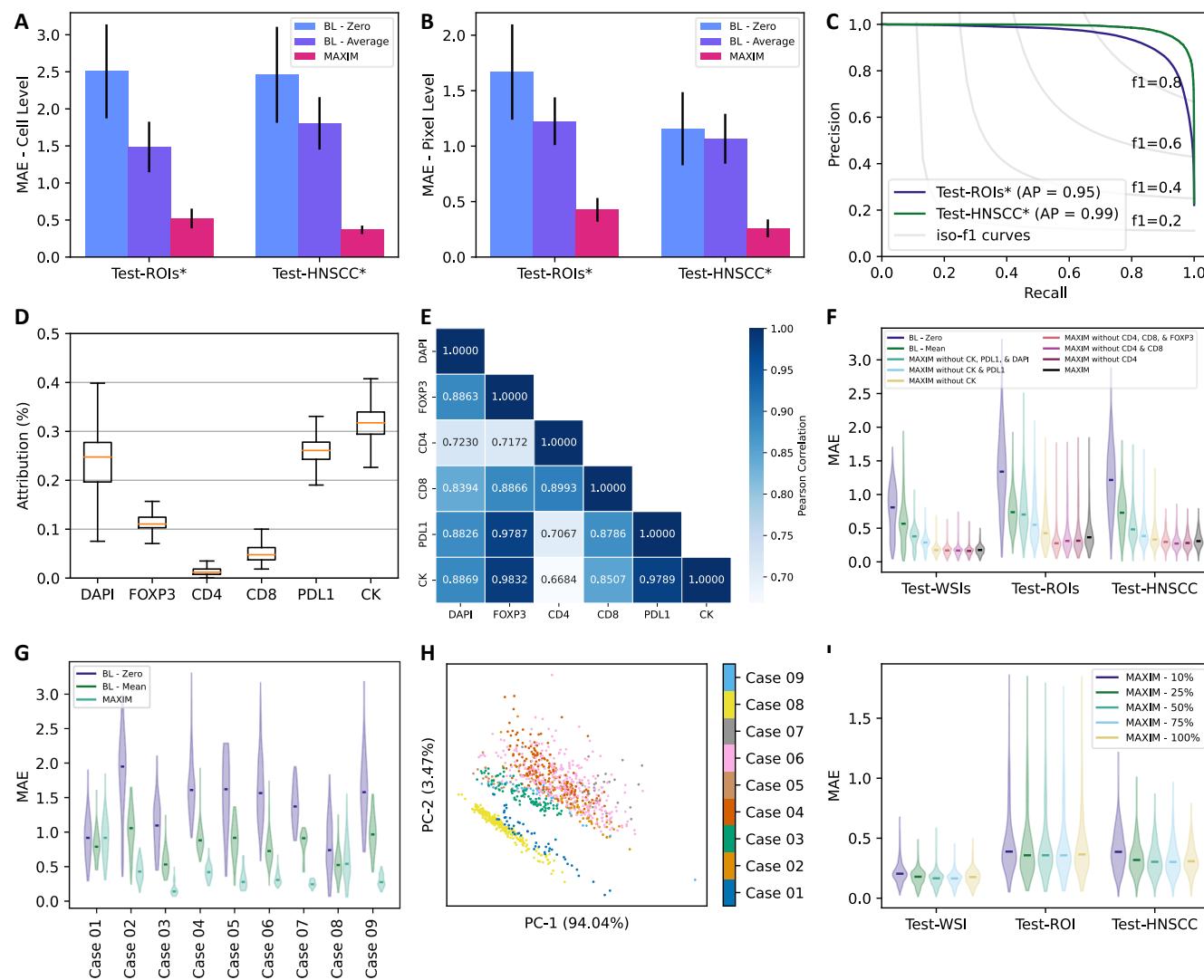


Fig. 2. Performance and interpretability analysis of MAXIM. (A-B) Evaluation of MAXIM at cell and pixel level on subsets of Test-ROIs and Test-HNSCC sets. The difference in mean expression of each cell is used for cell level evaluation. The height of the bars indicates the average absolute error, whereas error bars represent the standard deviation. (C) The precision-recall curve for classifying Ki67 cells as positive or negative in MAXIM-based imputed images. The ground truth labels for positive and negative cells were determined using real Ki67 marker images. (D) The boxplots show the distribution of gradient-based attribution/contribution of each marker towards the Ki67 marker imputation. The line inside the box represents the median, the edges of the box represent the interquartile range, and the whiskers extend to 1.5 times the interquartile range to represent the range of the attribution values. (E) Pearson correlation between attribution values of input marker pairs. (F) Comparison of MAXIM model's performance using violin plots when trained only using markers with high attribution and low attribution for Ki67 marker imputation. The width of each violin represents the density of data points (images), and the solid line within each violin indicates the median attribution. (G) Evaluation of MAXIM at case level on Test-ROIs set. (H) Two-dimensional projection of all input images for Ki67 marker imputation in Test-ROIs set. The 2D PCA projections are calculated from the mean intensities of each marker in the input images. (I) Evaluation of MAXIM models when trained using different subsets of the training set.

ployed hexbin plots to compare the paired mean absolute error (MAE) for Ki67 marker imputation on the Test-ROI set. The results show that the MAXIM model's MAE scores are either lower or comparable to those of the BL-Mean model (Figure 1C). Figure 1D and Extended Data Figure 2 visually exemplify the MAXIM's ability to accurately impute the markers of interest. These results highlight the effectiveness of MAXIM in leveraging latent correlations and patterns to accurately impute a marker of interest.

Next, we proceed to evaluate the performance of MAXIM at the cell level on subsets of the Test-ROIs and Test-HNSCC sets (Figure 2A & Extended Data Figure 3). These subsets comprise a substantial number of cells, totaling more than 400,000, extracted from 245 images. To assess MAXIM's

performance accurately, we compare the mean cell expression of each cell in real images with corresponding cells in the imputed images. Again, MAXIM shows lower MAE compared to the two baseline methods on both Test-ROIs and Test-HNSCC subsets. Notably, the results obtained at the cell level align closely with the performance patterns observed at the pixel level when evaluated on the same set of images (Figure 2B & Extended Data Figure 3). Furthermore, we evaluate the utility of imputed images in a downstream task of cell classification. To establish ground truth cell labels, we utilized the HALO software to categorize cells as either positive or negative based on the mean cell expression of the Ki67 marker in real images. Subsequently, we generated a precision-recall curve and determined the average precision

128 by comparing the mean cell expression of each cell in the im- 184
129 puted images with the corresponding cell label in the real im- 185
130 ages (Figure 2C). MAXIM exhibited high average precision 186
131 in both test sets, affirming its capability in precisely imput- 187
132 ing marker values that can be reliably used for downstream 188
133 analysis. 189

134 To investigate MAXIM's ability to leverage latent relation- 190
135 ships among markers for accurate imputation, we assess the 191
136 attributions of input markers for marker imputation using 192
137 the aggregated gradient (25) method on the Test-WSIs set 193
138 (Figure 2D & Extended Data Figure 4). The analysis re- 194
139 veals that CK, PDL1, and DAPI markers exhibit higher con- 195
140 tributions to KI67 marker imputation than CD8, CD4, and 196
141 FOXP3 markers. Additionally, the high correlation in attri- 197
142 bution scores between pairs of input markers suggests con- 198
143 sistent attribution patterns across images (Figure 2E). We 199
144 train separate models excluding markers with high attribution 200
145 scores for KI67 marker imputation to further validate these 201
146 attributions. The results in Figure 2F demonstrate a perfor- 202
147 mance decrease in models trained without markers with high 203
148 attribution scores, while models without markers exhibiting 204
149 low attribution scores consistently perform well. These find- 205
150 ings indicate that input markers with high attribution scores 206
151 possess latent relationships effectively exploited by MAXIM 207
152 for accurate KI67 marker imputation. 208

153 The investigation of MAXIM's performance at the case level 209
154 reveals the potential reason for the relatively high variance in 210
155 its performance on the Test-ROIs set. MAXIM fails to accu- 211
156 rately impute markers in two cases, as shown in Figure 2F 212
157 & Extended Data Figure 5. To further explore the reasons 213
158 behind these failures, we represent each image by calculat- 214
159 ing the mean expression of each input marker. By using the 215
160 mean expression of all images for principal component anal- 216
161 ysis (PCA) and plotting the top two components, we visualize 217
162 the differences in the distribution of cases (Figure 2G & Ex- 218
163 tended Data Figure 6). Interestingly, the two cases where 219
164 MAXIM fails to perform well appear as a separate cluster, 220
165 especially for the KI67 marker, indicating that these cases 221
166 exhibit distinct distributions compared to the remaining cases 222
167 in the Test-ROIs set. Finally, we demonstrate that MAXIM 223
168 can maintain its high performance even when trained using a 224
169 limited dataset, as illustrated in Figure 2H. This finding high- 225
170 lights the robustness of MAXIM, indicating that it can still 226
171 effectively impute marker values even with a smaller training 227
172 dataset. 228

173 Discussion

174 We demonstrate the effectiveness of MAXIM, a deep gen- 230
175 erative model, in marker imputation for multiplex images. 231
176 Specifically, we show that MAXIM can accurately impute the 232
177 values of a protein marker with pixel-level precision by lever- 233
178 aging the latent relationships between available markers. Ad- 234
179 ditionally, we showcase the utility of imputed marker images 235
180 for cell classification, a common downstream task in multi- 236
181 plex image analysis. Furthermore, we present the analysis of 237
182 individual marker importance in MAXIM marker imputation 238
183 process. 239

The effectiveness of the MAXIM method in accurately imputing a marker hinges on both input and output markers. When a latent biological relationship exists between the set of input markers and the output marker, our model excels in generating highly reliable imputed images for the output marker. It is worth noting that assessing imputed images on a pixel-by-pixel basis poses a challenge for markers exhibiting notably sparse responses, such as CD4, CD8, and PDL1. In such cases, both SSIM and MAE scores converge across MAXIM, BL-Zero, and BL-Mean methods. We applied MAXIM to multiplex immunofluorescence images featuring seven markers. Nevertheless, the versatility of our proposed method allows for seamless retraining and testing on images with varying marker counts. Likewise, it can be readily adapted for use with multiplex images obtained through diverse multiplex imaging technologies, including CODEX (2), MIBI (4), and others.

The MAXIM's practical utility is threefold. First, the laboratories utilizing multiplexed images can seamlessly train an in-house MAXIM model using images devoid of staining issues. The trained model can then be employed to accurately impute markers in multiplexed images that are marred by staining problems. Second, MAXIM can serve as a valuable tool for quality control in newly generated multiplex images, aiding in the detection of staining failures. The strong correlation between imputed and real markers in new images will be an indicator of staining integrity. Finally, the interpretability of MAXIM provides the opportunity to uncover previously unknown latent biological relationships between different protein markers, leading to new insights in the field.

Material and Methods

Dataset

This study utilized a diverse dataset comprising tissue samples from four cancer types: Urothelial, Anal, Cervical, and Head and Neck. The dataset comprised 83 tissue samples from 27 cases derived from three separate studies, one specifically focused on Head and Neck cases (Supplementary Table 1). To acquire multiplex immunofluorescence (MxIF) image, formalin-fixed paraffin-embedded 5 μm sections from tissue samples were immune-stained using Opal 6-plex kits, according to the manufacturer's protocol (Akoya Biosciences), for a panel of DAPI, CD4, CD8, FOXP3, PDL1, KI67, and CK. Deparaffinizing, rehydration, epitope retrieval, and staining of slides were performed using Leica BOND RX Autostainer (Leica). The optimum staining condition for each antibody was determined using immunohistochemistry and single-immunofluorescence before combination. Details on antibodies, protocol, and opals used in this panel are described in Supplementary Table 2. The MxIF images were scanned at a high resolution of 40 \times , with a microns-per-pixel (mpp) value of 0.25. Among the 83 tissue samples, 29 samples from 5 cases were scanned entirely to produce whole slide MxIF images, while the remaining samples underwent separate scanning as regions of interest (ROI), resulting in ROI MxIF images of size 1396 \times 1860 pixels. The images were unmixed using InForm version

2.5 software (Akoya Biosciences), enabling the identification
293 and separation of weakly expressing and overlapping signals
294 from the background autofluorescence.
295

The MxIF imaging dataset was divided into four sets for
296 model training and evaluation: Train/Valid, Test-WSIs,
297 Test-ROIs, and Test-HNSCC. The Train/Valid set consisted
298 of 25 whole slide MxIF images selected from four cases (1
299 Urothelial, 1 Anal, and 2 Cervical), encompassing 14,476
299 images with dimensions of 1396×1860 pixels. To evaluate
299 the model's performance on unseen data, the Test-WSIs set
299 comprised 1,920 images extracted from four whole slide
299 MxIF images of a Head and Neck case. The Test-ROIs set
299 was also created to assess the model's robustness across
299 diverse cases and tissue samples, including 1,097 images
299 extracted from 9 cases and 28 tissue samples. Finally, a
299 separate Test-HNSCC set was specifically prepared for
301 evaluating the model's performance on Head and Neck
302 Squamous Cell Carcinoma (HNSCC) cases, consisting of 13
303 cases, 26 tissue samples, and a total of 623 images extracted
304 solely from the HNSCC-focused study. These distinct data
305 splits allowed for a comprehensive evaluation of the model's
306 generalizability and performance across different cancer
307 types, tissue samples, and specific case studies.
308
309

310 MAXIM model architecture

The MAXIM model is based on the U-Net architecture (26),
311 which is an encoder-decoder network with skip connections.
312 Let's denote the input MxIF image as $X \in \mathbb{R}^{H \times W \times N}$, where
313 H and W represent the height and width of the image, re-
314 spectively, and N represents the number of markers. Each el-
315 ement $X(i, j, n)$ corresponds to the intensity value of marker
316 n at the pixel location (i, j) . The MAXIM model aims
317 to generate an imputed image $Y \in \mathbb{R}^{H \times W}$ for the output
318 marker. The model consists of an encoder path and a decoder
319 path connected by skip connections. The encoder path can
320 be denoted as a function $F_{enc} : \mathbb{R}^{H \times W \times N} \rightarrow \mathbb{R}^{\frac{H}{2^d} \times \frac{W}{2^d} \times C}$,
321 where d represents the depth of the encoder, and C repre-
322 sents the number of channels in the encoded feature map.
323 Similarly, the decoder path can be represented as a func-
324 tion $F_{dec} : \mathbb{R}^{\frac{H}{2^d} \times \frac{W}{2^d} \times C} \rightarrow \mathbb{R}^{H \times W}$, which impute the output
325 marker image. Hence, the overall MAXIM model can be rep-
326 resented as a composite function $F : \mathbb{R}^{H \times W \times N} \rightarrow \mathbb{R}^{H \times W}$,
327 where $F(X) = F_{dec}(F_{enc}(X))$.
328

The MAXIM model was optimized using reconstruction loss,
329 which involves minimizing the discrepancy between the im-
330 puted image and the ground truth image. In this case, $L1$ loss
331 (mean absolute error) and $L2$ loss (mean squared error) were
332 used as the reconstruction loss functions. Let's denote the
333 predicted imputed and the ground truth image as $Y \in \mathbb{R}^{H \times W}$
334 and $Y_{gt} \in \mathbb{R}^{H \times W}$, respectively. The $L1$ loss is calculated
335 as the mean absolute difference between the predicted and
336 ground truth images:
337
338

$$L_1 = \frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W |Y_{i,j} - Y_{gt_{i,j}}|,$$

339 where $H \times W$ represents the total number of pixels in the im-
340 age. Similarly, the $L2$ loss is computed as the mean squared
341 difference between the predicted and ground truth images:
342

$$L_2 = \frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W (Y_{i,j} - Y_{gt_{i,j}})^2,$$

343 The optimization process of the marker imputation model in-
344 volves minimizing the combined loss \mathcal{L}_C , which is a linear
345 combination of the $L1$ and $L2$ losses:
346

$$\mathcal{L}_C = \alpha \cdot L_1 + (1 - \alpha) \cdot L_2,$$

347 where α is weight parameter that control the relative impor-
348 tance of the $L1$ and $L2$ losses.
349

MAXIM model with adversarial loss

The MAXIM model is also trained using an adversarial loss,
350 following the training approach commonly used in condi-
351 tional generative adversarial networks (27). The genera-
352 tor network, G , responsible for imputing the output marker
353 image, adopts the same network architecture as described
354 above, whereas the discriminator network D employed in the
355 model is the same as the discriminator network utilized in
356 the Pix2Pix network (28). The discriminator network input
357 is a concatenated image of the multiplex input image with N
358 markers $X \in \mathbb{R}^{H \times W \times N}$, along with either the ground truth
359 output marker Y_{gt} or the generated output marker $G(X)$. The
360 discriminator network produces a 32 times smaller binary im-
361 age as output. The discriminator network consists of six con-
362 volutional layers with a kernel size of 4 and a stride size of 2.
363 Each convolutional layer is followed by a batch normaliza-
364 tion operation and a leaky ReLU activation function, except
365 for the first and last layers. The first layer does not include a
366 batch normalization operation, and the last layer neither has
367 a batch normalization operation nor a leaky ReLU activation.
368 The discriminator's objective is to discriminate and classify
369 the input images into two categories: the first represents the
370 multiplex input image with the ground truth marker, and the
371 second represents the multiplex input image with the imputed
372 marker. To achieve this, the discriminator predicts an output
373 of all ones (close to one) for the first type of input image, indi-
374 cating its high confidence that the image contains real values.
375 Conversely, it predicts an output of zeros (close to zero) for
376 the second type of input image, expressing its certainty that
377 it contains imputed values. The discriminator model was op-
378 timized using the average cross-entropy loss (\mathcal{L}_D) of images
379 from both categories:
380

$$\mathcal{L}_D = \frac{1}{2} (\mathcal{L}_{CE}(I_1, D(X, Y_{gt})) + \mathcal{L}_{CE}(I_0, D(X, G(X))))$$

381 Here, I_1 and I_0 represent the images with pixel values as ones
382 and zeros, respectively. The term $\mathcal{L}_{CE}(I_1, D(X, Y_{gt}))$ com-
383 putes the cross-entropy loss between the discriminator's out-
384 put when provided with the input image X and ground truth
385 marker Y_{gt} , aiming to maximize the probability of the dis-
386 criminator correctly classifying them as real. Similarly, the
387 term $\mathcal{L}_{CE}(I_0, D(X, G(X)))$ calculates the cross-entropy loss
388 between the discriminator's output when provided with the
389

341 input image X and the imputed marker image $G(X)$, aim- 396
342 ing to maximize the probability of the discriminator correctly 397
343 classifying them as imputed. 398

344 The generator network, G , is trained to impute marker values 399
345 that closely resemble the ground truth markers and are chal- 400
346 lenging for the discriminator to differentiate. The generator 401
347 network is optimized using the sum of weighted $L1$ loss (L_1) 402
348 and a cross-entropy loss. The generator loss is defined as: 403

$$\mathcal{L}_G = \beta \cdot L_1 + \mathcal{L}_{CE}(I_1, D(X, G(X))),$$

349 where β is the weight factor. The cross-entropy loss (\mathcal{L}_{CE}) 406
350 encourages the generator to generate marker predictions that 407
351 the discriminator classifies as real. The overall loss ensures 408
352 that the generator network is trained to produce accurate 409
353 imputed marker values while also satisfying the adversarial 410
354 objective. 411

356 Training details

357 A separate model was trained for each marker using the re- 414
358 maining six as input. The images in the Train/Valid set were 415
359 too large to be directly used for model training. Therefore, 416
360 all images were divided into 24 equally sized patches of size 417
361 349×310 . Then each model was trained using randomly 418
362 cropped, flipped, and rotated regions of size 256×256 419
363 extracted from image patches. All models are optimized 420
364 using Adam optimizer with a learning rate of 0.002. The 421
365 values of α and β hyperparameters are empirically set to 422
366 0.5 and 100, respectively. The batch size was set to 64 for 423
367 each training iteration. The maximum number of epochs 424
368 was set to 200, while the minimum number of epochs was 425
369 set to 50. A stopping criterion was implemented to prevent 426
370 overfitting and ensure a stable training process. Training 427
371 for each marker was stopped if the validation loss did not 428
372 decrease for 25 consecutive epochs, indicating a potential 429
373 plateau in model performance. 430

375 Evaluation

376 The marker imputation models were evaluated using vari- 433
377 ous evaluation metrics at the image level, considering the 434
378 1396×1860 pixel images. To assess the similarity between 435
379 real and imputed marker images, the Structural Similarity In- 436
380 dex (SSIM) was employed as a measure of structural resem- 437
381 blance. Additionally, the Mean Absolute Error (MAE) was 438
382 calculated to quantify the pixel-level intensity differences be- 439
383 tween the real and imputed images. The evaluation of the 440
384 marker imputation model considered the sparsity of marker 441
385 images, which can vary depending on the marker type (nu- 442
386 clear, cytoplasmic, or membrane). Sparse images tend to 443
387 yield higher SSIM scores and lower MAE values. The worst 444
388 achievable SSIM score is 0, indicating no structural resem- 445
389 blance, while the worst MAE score is 255, denoting maxi- 446
390 mum average pixel-level intensity differences. To establish 447
391 baselines for comparison, two sets of results were presented: 448
392 one using images with all zeros and the other using images 449
393 representing mean images of the input markers. These base- 450
394 lines provided the lowest achievable SSIM and highest MAE 451
395 scores in the test sets. The MAXIM's performance is ex- 452

396 pected to surpass these baseline results, demonstrating its 397 ability to impute more accurate and realistic marker images. 398 In addition to evaluating the MAXIM's performance based 399 on pixels, we also conducted a cell-level assessment to miti- 400 gate potential biases arising from numerous zero or near- 401 zero pixel values in both real and imputed marker images. 402 HALO image analysis software (Indica Lab), specifically the 403 automated Highplex FL module, was utilized to calculate the 404 mean expression of each cell in the real and imputed markers. 405 Initially, the software identified and segmented the cell 406 nucleus using the real DAPI channel and then expanded the 407 segmented region using a heuristic approach to encompass 408 the entire cell, including the cell membrane. Subsequently, 409 it determined the average intensity or expression within each 410 cell for both the real and imputed marker images. 411

412 To quantify the intensity differences between the real and 413 imputed marker cells, we computed the MAE at the cell level 414 by comparing the mean cell expression values. Additionally, 415 we assessed the model's performance in cell classification 416 by utilizing the mean cell expression of the real marker. The 417 HALO software facilitated this classification task, wherein 418 an expert-defined threshold was set. If the mean expression 419 of the pixels belonging to a cell exceeded the threshold, the 420 cell was classified as positive for that marker. Using the 421 resulting cell labels and the mean cell expression of the im- 422 puted marker images, we generated precision-recall curves 423 to illustrate the trade-off between precision and recall. The 424 average precision (AP) score served as a summary measure 425 of the model's ability to distinguish between positive and 426 negative cells based on the imputed marker values. 427

Model Interpretability

428 Model interpretability was explored by calculating aggregated 429 gradient-based image attributions (25) of each marker 430 in the input images to the imputed marker image. These 431 attributions, derived from the model's internal computations, 432 could take both positive and negative values, indicating the 433 contribution of each pixel to the imputed marker image. The 434 absolute sum of attributions was computed for each marker 435 to assess the overall attribution of each input marker for a 436 given output marker. This yielded a measure of the impor- 437 tance or influence of each marker in the model's decision- 438 making process. Furthermore, the aggregated attributions of 439 each marker were converted into percentage values by divid- 440 ing the total absolute attribution of the input image. This 441 conversion provided a more interpretable representation of 442 the relative significance of each marker in the context of the 443 entire image. In addition to calculating aggregated gradient- 444 based pixel attributions, the correlation between pairs of in- 445 put markers' attributions was also computed to identify any 446 patterns of co-occurrence in marker imputation. This analy- 447 sis aimed to examine whether certain input markers exhibited 448 similar attribution patterns or if there were any interdepen- 449 dencies between the attributions of different markers. 450

451 To validate the attribution of individual input markers to the 452 imputed marker image, we conducted experiments using two 453 sets of new MAXIM models. Each set consisted of a subset 454

503 of markers with either high or low attribution scores. In one 510
504 set, the input images were modified to exclude the markers 511
505 with high attribution scores. Conversely, the input images 513
506 were modified in the other set to exclude the markers with 514
507 low attribution scores. The intention behind this approach 516
508 is that models trained without markers with low attribution 517
509 scores should ideally perform consistently better compared 518
510 to the other set of models. We calculated the MAE metrics 519
511 for each set and compared them with the results obtained 521
512 from the original marker imputations. This analysis allowed 523
513 us to evaluate the significance of the attributions of input 524
514 markers with high and low scores and determine their 525
515 influence on the model's performance.

516

517 **Ablation study**

518 In order to investigate the influence of training set size 526
519 on the performance of the MAXIM model, we conducted 528
520 an ablation study by training four new MAXIM models 529
521 using varying proportions of the available training images. 531
522 Specifically, we randomly selected 75%, 50%, 25%, and 532
523 10% of the training images for each model. By training 534
524 models with reduced training data, we aimed to understand 535
525 how the availability of labeled data affects the model's ability 537
526 to accurately impute markers in MxIF images.

527

528 **Computational hardware and software**

529 We train all models on a system with Intel Core i9-10920X 536
530 CPU (central processing unit) and an NVIDIA GeForce 544
531 RTX 3090 GPU (graphics processing unit). All models 545
532 were implemented in Python (3.9.13) using PyTorch (1.13.1) 546
533 and TorchVision (0.14.1) as the primary deep-learning 547
534 packages for the development and training of deep learning 548
535 models. Numerical computations and data manipulation 549
536 were carried out using Numpy (1.12.5) and Pandas (1.4.4), 554
537 respectively. The Scipy (1.9.1) was utilized to calculate 555
538 evaluation metrics such as MAE, precision-recall curve, 556
539 and average precision, while Scikit Image (0.19.2) was 557
540 used to calculate the SSIM between two images. Model 558
541 interpretability was achieved through the application of 561
542 Captum (0.6.0). The data visualization aspect of the research 562
543 employed Matplotlib (3.5.2) and Seaborn (0.11.2), enabling 564
544 the creation of informative visual representations. Setuptools 566
545 (63.4.1) assisted in managing library dependencies for pip 567
546 package creation.

568

569 **Data availability**

570 Data will be shared upon reasonable request. Any request 573
571 for data by qualified scientific and medical researchers for 574
572 legitimate research purposes will be subject to NCI and the 575
573 NIH Policy for Data Management and Sharing. All requests 576
574 should be submitted in writing to NCI.

575

576 **Code availability**

577 All code and scripts for reproducing the experiments are 584
578 accessible at <https://github.com/mahmoodlab/MAXIM>. De- 585
579 tailed instructions are provided in the README for easy 586
580 setup and replication of results.

581

582

583

584

585

586

587

588

589

507 **ACKNOWLEDGEMENTS**

508 This project has been funded in whole or in part with Federal funds from 510
509 the National Cancer Institute, National Institutes of Health, under Contract No. 511
510 75N91019D00024. The content of this publication does not necessarily reflect the 512
511 views or policies of the Department of Health and Human Services, nor does mention 513
512 of trade names, commercial products, or organizations imply endorsement by 514
513 the U.S. Government. Support was part of the Frederick National Laboratory's 515
514 Laboratory Directed Exploratory Research (LDER) Program.

516 **AUTHOR CONTRIBUTIONS**

517 F.M., G.Z., Y.L., and M.S. conceived the study and designed the experiments. M.S. 518
519 performed the experimental analysis. W.L., S.B., C.A., J.S., and G.Z. curated the 520
521 dataset. K.C. and W.L. process the data in HALO. M.S., W.L., G.Z., H.A.S., J.L.G., 522
523 and F.M. analyzed the results. M.S., S.R., and F.M. prepared the manuscript with 524
525 input from all co-authors. G.Z., F.M., and H.A.S. supervised the research.

526 **CONFLICT OF INTERESTS**

527 The authors declare no competing interests.

528 **References**

1. Michael J Gerdes, Christopher J Sevinsky, Anup Sood, Sudeshna Adak, Musodiq O Bello, Alexander Bordwell, Ali Can, Alex Corwin, Sean Dinn, Robert J Filkins, et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. *Proceedings of the National Academy of Sciences*, 110(29):11982–11987, 2013.
2. Yury Goltsev, Nikolay Samusik, Julia Kennedy-Darling, Salil Bhave, Matthew Hale, Gustavo Vazquez, Sarah Black, and Garry P Nolan. Deep profiling of mouse splenic architecture with codex multiplexed imaging. *Cell*, 174(4):968–981, 2018.
3. Jia-Ren Lin, Benjamin Izar, Shu Wang, Clarence Yapp, Shaolin Mei, Parin M Shah, Sandro Santagata, and Peter K Sorger. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-cycif and conventional optical microscopes. *Elife*, 7, 2018.
4. Michael Angelo, Sean C Bendall, Rachel Finck, Matthew B Hale, Chuck Hitzman, Alexander D Borowsky, Richard M Levenson, John B Lowe, Scot D Liu, Shuchun Zhao, et al. Multiplexed ion beam imaging of human breast tumors. *Nature medicine*, 20(4):436–442, 2014.
5. Charlotte Giesen, Hao AO Wang, Denis Schapiro, Nevena Zivanovic, Andrea Jacobs, Bodo Hattendorf, Peter J Schüffler, Daniel Grolimund, Joachim M Buhmann, Simone Brandt, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. *Nature methods*, 11(4):417–422, 2014.
6. Andrew H Song, Guillaume Jaume, Drew FK Williamson, Ming Y Lu, Anurag Vaidya, Tiffany R Miller, and Faisal Mahmood. Artificial intelligence for digital and computational pathology. *Nature Reviews Bioengineering*, pages 1–20, 2023.
7. Babak Ehteshami Bejnordi, Mitka Veta, Paul Johannes Van Diest, Bram Van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F Manson, Maschenka Balkenhof, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. *Jama*, 318(22):2199–2210, 2017.
8. Ming Y Lu, Tiffany Y Chen, Drew FK Williamson, Melissa Zhao, Maha Shady, Jana Lipkova, and Faisal Mahmood. Ai-based pathology predicts origins for cancers of unknown primary. *Nature*, 594(7861):106–110, 2021.
9. Jakob Nikolas Kather, Alexander T Pearson, Niels Halama, Dirk Jäger, Jeremias Krause, Sven H Loosen, Alexander Marx, Peter Boor, Frank Tacke, Ulf Peter Neumann, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. *Nature medicine*, 25(7):1054–1056, 2019.
10. Gabriele Campanella, Matthew G Hanna, Luke Geneslaw, Allen Mirafiori, Vitor Werneck Krauss Silva, Klaus J Busam, Edi Brogi, Victor E Reuter, David S Klimstra, and Thomas J Fuchs. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. *Nature medicine*, 25(8):1301–1309, 2019.
11. Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Celpose: a generalist algorithm for cellular segmentation. *Nature methods*, 18(1):100–106, 2021.
12. Noah F Greenwald, Geneva Miller, Erick Moen, Alex Kong, Adam Kagel, Thomas Dougherty, Christine Camacho Fullaway, Brianna J McIntosh, Ke Xuan Leow, Morgan Sarah Schwartz, et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. *Nature biotechnology*, 40(4):555–565, 2022.
13. Maria Brbić, Kaidi Cao, John W Hickey, Yuqi Tan, Michael P Snyder, Garry P Nolan, and Jure Leskovec. Annotation of spatially resolved single-cell data with stellar. *Nature Methods*, 19(11):1411–1418, 2022.
14. Yael Amitay, Yuval Bussi, Ben Feinstein, Shai Bagon, Idan Milo, and Leeat Keren. Cellsighter: a neural network to classify cells in highly multiplexed images. *Nature communications*, 14(1):4302, 2023.
15. Muhammad Shaban, Yunhao Bai, Huaying Qiu, Shulin Mao, Jason Yeung, Yao Yu Yeo, Vignesh Shanmugam, Vignesh Shanmugam, Han Chen, Bokai Zhu, et al. Maps: Pathologist-level cell type annotation from tissue images through machine learning. *bioRxiv*, pages 2023–06, 2023.
16. Zhenqin Wu, Alexandre E Trevino, Eric Wu, Kyle Swanson, Honesty J Kim, H Blaize D'Angio, Ryan Preska, Gregory W Charville, Piero D Dalerba, Ann Marie Egloff, et al. Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens. *Nature Biomedical Engineering*, 6(12):1435–1448, 2022.
17. Denis Schapiro, Artem Sokolov, Clarence Yapp, Yu-An Chen, Jeremy L Muhlich, Joshua Hess, Allison L Creason, Ajit J Nirmal, Gregory J Baker, Maulik K Nariya, et al. Mcmicro: a scalable, modular image-processing pipeline for multiplexed tissue imaging. *Nature methods*, 19(3):311–315, 2022.
18. Dongwook Lee, Junyoung Kim, Won-Jin Moon, and Jong Chul Ye. Collagen: Collaborative

590 gan for missing image data imputation. In *Proceedings of the IEEE/CVF conference on*
591 *computer vision and pattern recognition*, pages 2487–2496, 2019.

592 19. Zimo Huang, Jun Wang, Xudong Lu, Azlan Mohd Zain, and Guoxian Yu. scggan: single-cell
593 rna-seq imputation by graph-based generative adversarial network. *Briefings in bioinfor-*
594 *matics*, 24(2):bbad040, 2023.

595 20. Bing Cao, Zhiwei Bi, Qinghua Hu, Han Zhang, Nannan Wang, Xinbo Gao, and Dinggang
596 Shen. Autoencoder-driven multimodal collaborative learning for medical image synthesis.
597 *International Journal of Computer Vision*, pages 1–20, 2023.

598 21. Onat Dalmaz, Mahmut Yurt, and Tolga Çukur. Resvit: residual vision transformers for multi-
599 modal medical image synthesis. *IEEE Transactions on Medical Imaging*, 41(10):2598–2614,
600 2022.

601 22. Jiang Liu, Srivaths Pasumarthi, Ben Duffy, Enhao Gong, Keshav Datta, and Greg Za-
602 harchuk. One model to synthesize them all: Multi-contrast multi-scale transformer for miss-
603 ing data imputation. *IEEE Transactions on Medical Imaging*, 2023.

604 23. Eric Wu, Alexandro E Trevino, Zhenqin Wu, Kyle Swanson, Honesty J Kim, H Blaize D'Angio,
605 Ryan Preska, Aaron E Chiou, Gregory W Charville, Piero Dalerba, et al. 7-up: generating in
606 silico codex from a small set of immunofluorescence markers. *PNAS nexus*, 2(6):pgad171,
607 2023.

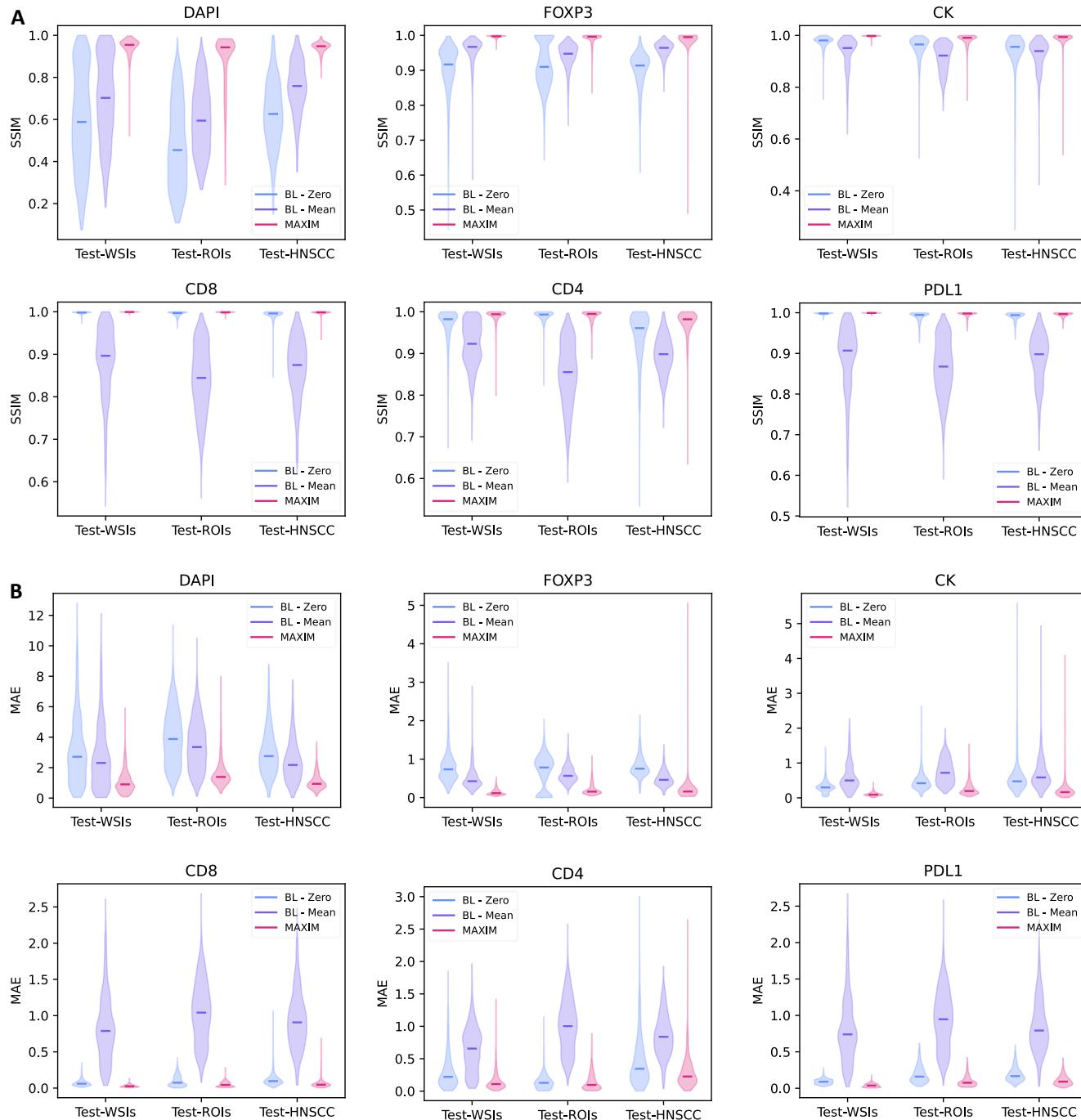
608 24. Luke Ternes, Jia-Ren Lin, Yu-An Chen, Joe W Gray, and Young Hwan Chang. Computational
609 multiplex panel reduction to maximize information retention in breast cancer tissue
610 microarrays. *PLoS computational biology*, 18(9):e1010505, 2022.

611 25. Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
612 In *International conference on machine learning*, pages 3319–3328. PMLR, 2017.

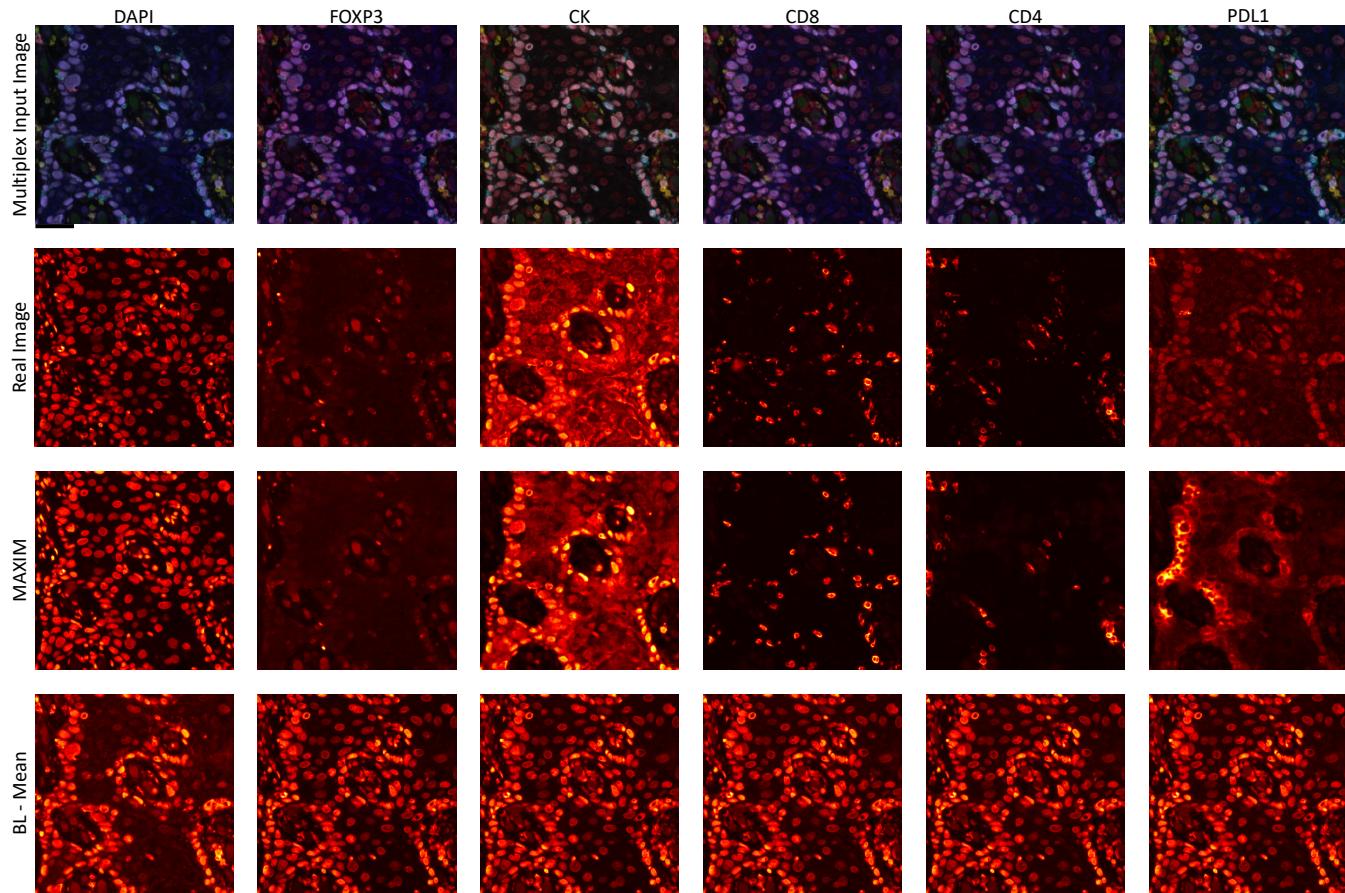
613 26. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
614 biomedical image segmentation. In *Medical Image Computing and Computer-Assisted
615 Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–
616 9, 2015. Proceedings, Part III 18*, pages 234–241. Springer, 2015.

617 27. Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. *arXiv preprint
618 arXiv:1411.1784*, 2014.

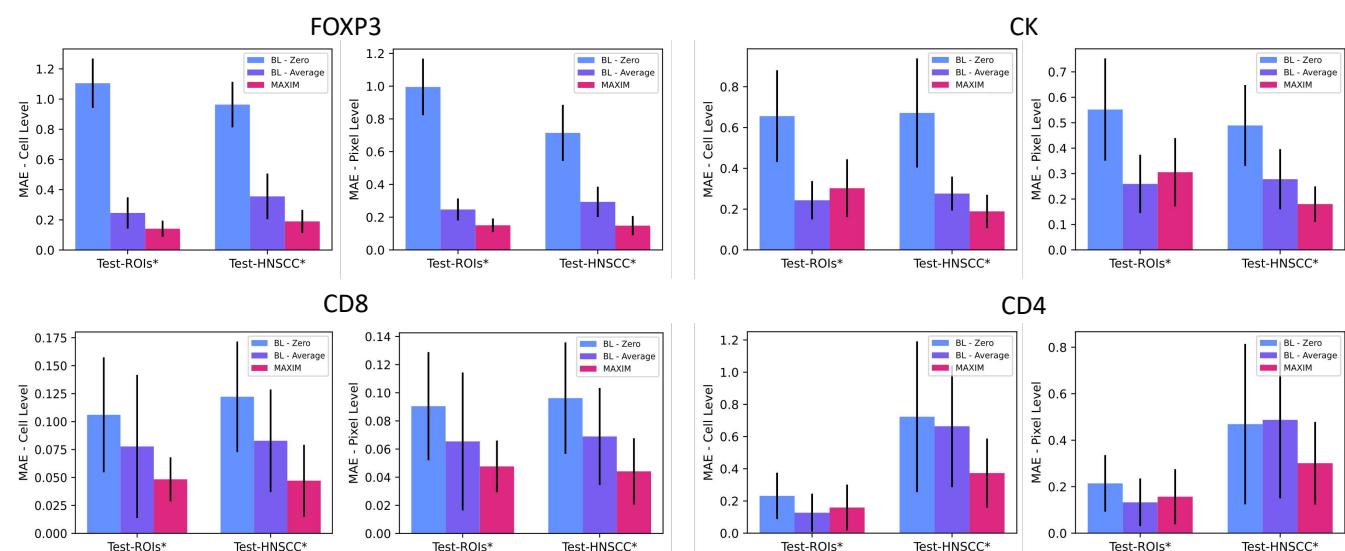
619 28. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
620 with conditional adversarial networks. In *Proceedings of the IEEE conference on computer
621 vision and pattern recognition*, pages 1125–1134, 2017.



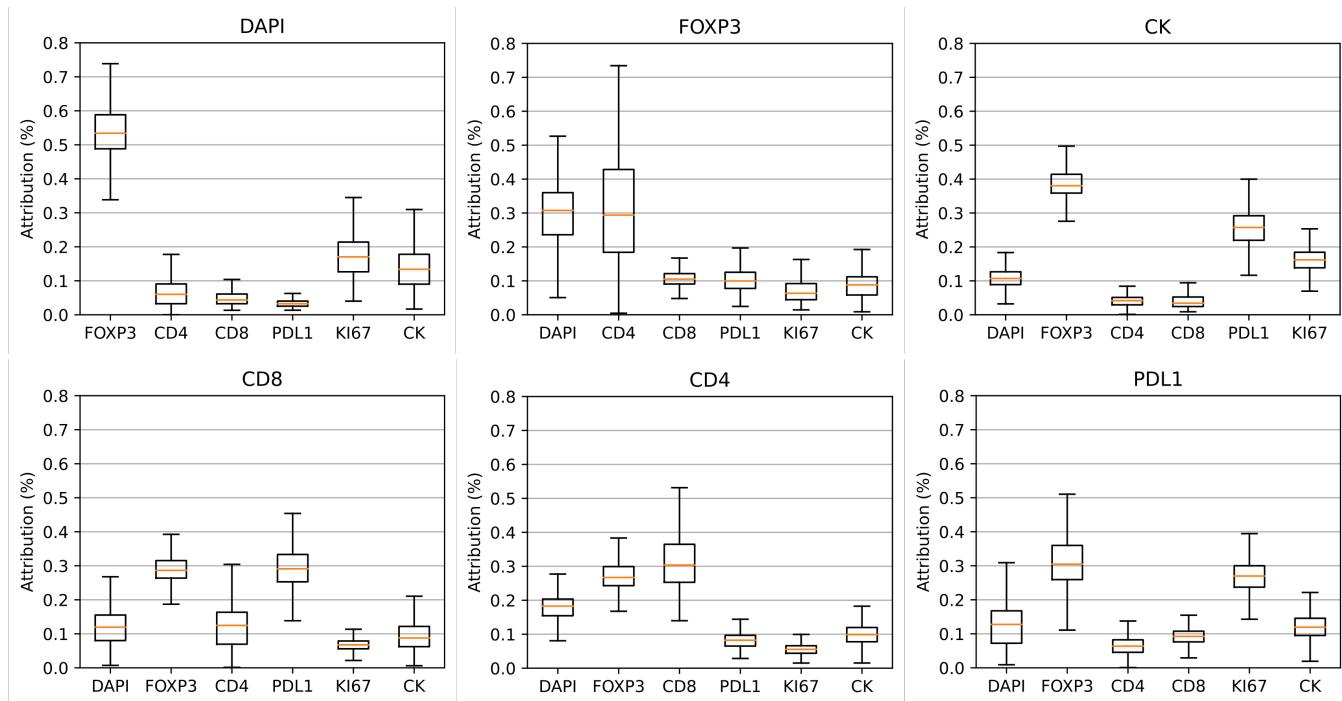
Extended Data Figure 1. The quantitative assessment of MAXIM's marker imputation ability for six different markers. (A) & (B) present the results using structural similarity index (SSIM) and mean absolute error (MAE) metrics across three test sets, respectively. The width of each violin represents the density of data points (images) with corresponding SSIM/MAE scores, and the solid line within each violin indicates the median SSIM/MAE score. BL-Zero and BL-Mean are pseudo models that provide baseline MEA and SSIM scores in multiplex images with high sparsity (CD8, CD4, CK, and PDL1) and structural similarity (DAPI and FOXP3) across markers. BL-Zero generates an imputed image with zero values, while BL-Mean creates an imputed image using the mean values of the input markers.



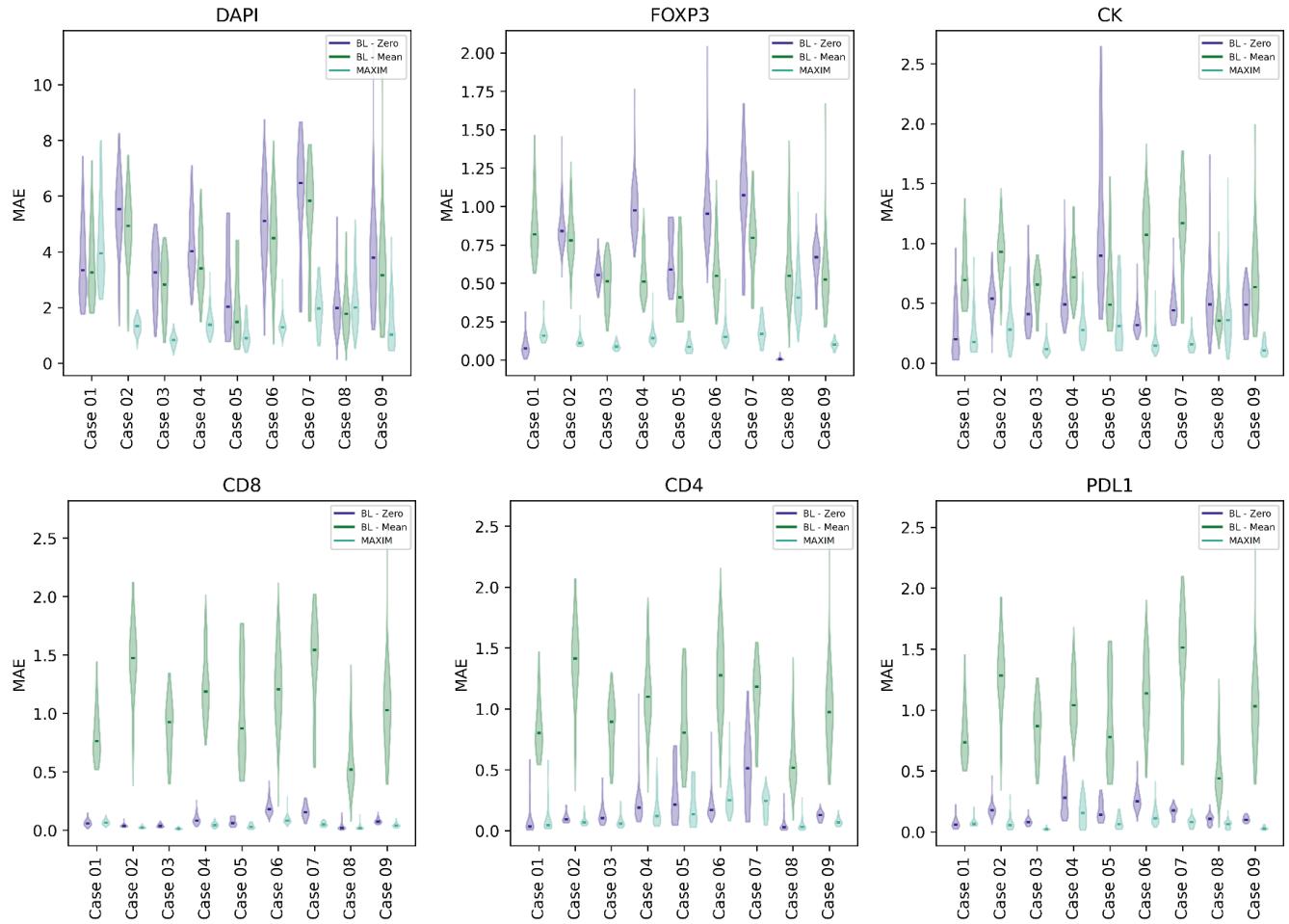
Extended Data Figure 2. Visual results of six different marker imputation models. The results are shown for the same multiplex image with seven markers: DAPI (red), FOXP3 (green), CD4 (yellow), CD8 (cyan), PDL1 (magenta), KI67 (White), and CK (blue). Scale bar: 50 μ m. The first row shows the input images consisting of six markers, excluding the target marker (column name). The second row shows the real images of the target markers. The third and fourth rows show imputed images using MAXIM and BL-Mean models.



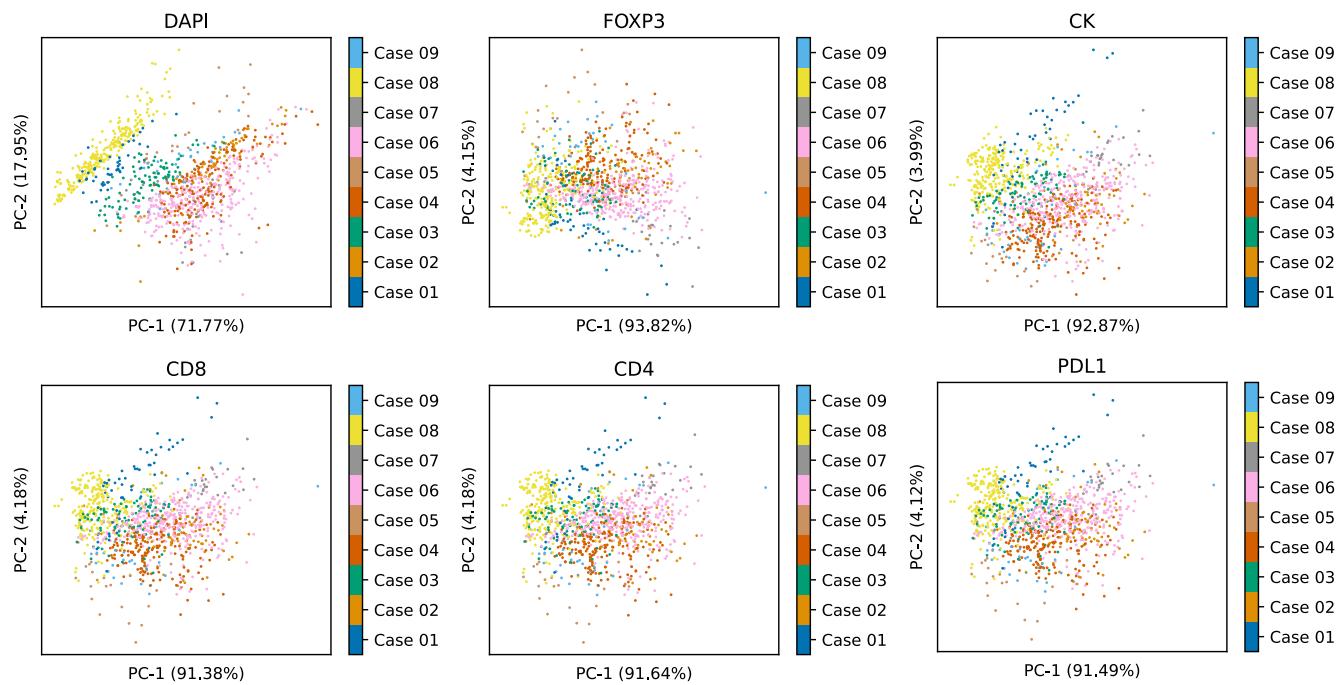
Extended Data Figure 3. Evaluation of MAXIM at cell and pixel level on subsets of Test-ROIs and Test-HNSCC sets for six different markers. The difference in the mean expression of each cell is used for cell level evaluation. The height of the bars indicates the average absolute error, whereas error bars represent the standard deviation.



Extended Data Figure 4. Model interpretability analysis using aggregated gradient method. The boxplots show the distribution of gradient-based attribution of each input marker towards output marker imputations. The line inside the box represents the median, the edges of the box represent the interquartile range, and the whiskers extend to 1.5 times the interquartile range to represent the range of the attribution values.



Extended Data Figure 5. Evaluation of MAXIM model at case level on Test-ROIs set. The width of each violin represents the density of data points (images) with corresponding mean absolute error (MAE) scores, and the solid line within each violin indicates the median MAE score.



Extended Data Figure 6. Two-dimensional projection of input images to visualize the case level differences in data distribution for different MAXIM models. Each plot showcases the projections achieved using principal component analysis, which are based on the mean intensities of each marker in the input images. Each dot within the subplots represents an individual image from the Test-ROIs set, and the color of the dots indicates the corresponding case to which the image belongs.