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Multiplex staining enables simultaneous detection of multiple : ing and saving associated extra cost and time.

protein markers within a tissue sample. However, the in- 5 Artificial intelligence (AI) has demonstrated remarkable suc-
creased marker count increased the likelihood of staining and ,, cegs across diverse fields, including medical image analysis
imaging failure, leading to higher resource usage in multi- (6-10). The field of multiplex imaging has also harnessed

glex sltainiflg 1nd ilmlf/ﬁi\ni. \fVe a(:dtl:ess thiz ll)yf propoliin;g;(l a1 the power of Al for tasks such as cell segmentation (11, 12),
eep learning-based YArker imputation model for muitlple - .11 jassification (13-15), and spatial analysis (16, 17). The

IMages (MAXIM) that accurately impute protein markers by . . .. . . .. .
4 imputation of missing protein markers is a missing data im-

leveraging latent biological relationships between markers. The . .
model’s imputation ability is extensively evaluated at pixel * putation problem, and a number of Al-based methods, partic-

and cell levels across various cancer types. Additionally, we « ularly deep learning methods, have been developed for miss-
present a comparison between imputed and actual marker im- ¢ ing data imputation in various domains (18-22). However,
ages within the context of a downstream cell classification task. + current literature on image imputation in medical imaging
The MAXIM model’s interpretability is enhanced by gaining in- s primarily focuses on radiology datasets (20-22), with lim-
sights into the contribution of individual markers in the impu- ,; ited research exploring the potential of deep learning models
tation process. In practice, MAXIM can reduce the cost and ., for marker synthesis in multiplex images (23, 24).

Fime o.f multipl.ex staining and image acq.ui'siti(.)n by accurately . e present a deep learning-based MArker imputation model
imputing protein markers affected by staining issues. s for multipleX IMages (MAXIM) that harnesses the capabili-
Multiplexed imaging | Image imputation| Machine learning | Proteomics ss ties of deep learning to accurately impute a protein marker
Correspondence:  abdulsh@ccf.org george.zaki@nih.gov, faisalmah- s+ by leveraging the latent relationships between markers in

mood@bwh.harvard.edu ss multiplex images (Figure 1). We extensively evaluate the
ss MAXIM’s performance at both the pixel and cell levels in
Introduction s7  whole slide multiplex images as well as specific regions of in-

ss  terest, providing a comprehensive understanding of its impu-
Multiplex staining and imaging, a state-of-the-art technology, s tation capabilities across various cancer types. Additionally,
has revolutionized the simultaneous visualization of multiple & we examine the MAXIM’s performance in a downstream task
protein markers within a single tissue sample. Various tech- & of cell classification to demonstrate its practical utility be-
niques have emerged to capture multiplex images with up t0 & yond imputation. Lastly, we enhance the interpretability of
100 markers, enabling a deeper understanding of complex bi- s the MAXIM model by investigating the attribution of input
ological processes (1-5). However, the limited availability of « markers through aggregated gradients (25), unveiling valu-
human tissues and the increased number of markers introduce & able insights into the contribution of each input marker in the
novel challenges, such as a higher likelihood of staining fail- ¢ imputation process.
ure (missing or aberrant stain), leading to increased costs and
time required for multiplex image acquisition. Additionally,
the augmented marker count also amplifies the probability
of encountering markers with latent biological relationships. s MAXIM was trained and evaluated on a whole slide mul-
We hypothesized that these relationships could be leveraged e tiplex immunofluorescence (MxIF) imaging dataset, encom-
to impute protein markers with missing stains in multiplex 7 passing cases from four different cancer types: Urothelial,
images, ultimately reducing the necessity for tissue restain- 7+ Anal, Cervical, Head and Neck Squamous Cell Carcinoma

« Results
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Fig. 1. The flow diagram of the proposed method, along with quantitative and visual results for KI67 marker imputation. (A) The proposed model (MAXIM)
takes a multiplex image with N markers as input to impute a marker of interest. Scale bar: 20 pm. (B) The quantitative assessment of MAXIM imputation using the
structural similarity index (SSIM) and mean absolute error (MAE) metrics across three test sets. The width of each violin represents the density of data points (images) with
corresponding SSIM/MAE scores, and the solid line within each violin indicates the median SSIM/MAE score. BL-Zero and BL-Mean are pseudo models used to provide
baseline MEA and SSIM scores in multiplex images with high sparsity and structural similarity across markers. BL-Zero generates an imputed image with zero values, while
BL-Mean creates an imputed image using the mean values of the input markers. MAXIM-Adv is a variant of MAXIM trained with adversarial loss. (C) The hexbin plot shows
the relationship between the MAE scores of BL-Mean and MAXIM models on the Test-ROls set. Color intensity reflects the density of data points within each hexagon. (D)
Visual results of KI67 marker imputation using BL-Mean and MAXIM models for an examplar input image from Test-HNSCC set. The input image consists of six markers:
DAPI (red), FOXP3 (green), CD4 (yellow), CD8 (cyan), PDL1 (magenta), and CK (blue). Scale bar: 50 pm.

(HNSCC). A separate MAXIM model was trained for each
marker in MxIF images, using the remaining markers as in-
put. The model’s performance is evaluated on images of
size 1396 x 1860 pixels from three distinct test sets: Test-
WSIs (1920 images from 4 HNSCC whole slide multiplex
images), Test-ROIs (1097 images from 9 cases of different
cancer types), and Test-HNSCC (623 images from 13 cases
of HNSCC).

MAXIM performance is evaluated using structural similarity
index (SSIM) and mean absolute error (MAE) between the
imputed marker images and corresponding real marker im-
ages. MAXIM achieved high median SSIM and low median
MAE scores (Figure 1B and Extended Data Figure 1). The
results of two baseline pseudo models (BL-Zero, and BL-

2 | bioRxiv

86

Mean) were included to contextualize MEA and SSIM scores
in multiplex images with high inherent sparsity and struc-
tural similarity across markers. The BL-Zero model utilized
zero-valued images as imputed images, while the BL-Mean
model employed mean images of the input markers as im-
puted images. MAXIM and its variant MAXIM-Adyv, trained
with an adversarial loss, exhibited higher performance over
baseline results for KI67 marker imputation (Figure 1B),
particularly on Test-WSIs and Test-HNSCC sets. However,
BL-Zeros and BL-Mean also exhibit higher SSIM scores and
lower MAE scores in certain images, particularly those with
limited tissue structure leading to high sparsity. To con-
duct a more detailed performance analysis between BL-Mean
and the MAXIM models in these particular cases, we em-

Shaban etal. | MAXIM
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Fig. 2. Performace and interpretability analysis of MAXIM. (A-B) Evaluation of MAXIM at cell and pixel level on subsets of Test-ROIs and Test-HNSCC sets. The
difference in mean expression of each cell is used for cell level evaluation. The height of the bars indicates the average absolute error, whereas error bars represent the
standard deviation. (C) The precision-recall curve for classifying KI67 cells as positive or negative in MAXIM-based imputed images. The ground truth labels for positive
and negative cells were determined using real KI67 marker images. (D) The boxplots show the distribution of gradient-based attribution/contribution of each marker towards
the K167 marker imputation. The line inside the box represents the median, the edges of the box represent the interquartile range, and the whiskers extend to 1.5 times the
interquartile range to represent the range of the attribution values. (E) Pearson correlation between attribution values of input marker pairs. (F) Comparison of MAXIM model’s
performance using violin plots when trained only using markers with high attribution and low attribution for KI67 marker imputation. The width of each violin represents
the density of data points (images), and the solid line within each violin indicates the median attribution. (G) Evaluation of MAXIM at case level on Test-ROls set. (H)
Two-dimentional projection of all input images for KI67 marker inputation in Test-ROls set. The 2D PCA projections are calculated from the mean intensities of each marker
in the input images. (I) Evaluation of MAXIM models when trained using different subsets of the training set.

ployed hexbin plots to compare the paired mean absolute er- 114
ror (MAE) for KI67 marker imputation on the Test-ROI set. 11s
The results show that the MAXIM model’s MAE scores are 11
either lower or comparable to those of the BL-Mean model 11
(Figure 1C). Figure 1D and Extended Data Figure 2 visu- 11
ally exemplify the MAXIM’s ability to accurately impute the 11
markers of interest. These results highlight the effectiveness 120
of MAXIM in leveraging latent correlations and patterns to ses
accurately impute a marker of interest. 122

Next, we proceed to evaluate the performance of MAXIM at *®

the cell level on subsets of the Test-ROIs and Test-HNSCC '
sets (Figure 2A & Extended Data Figure 3). These subsets *°
comprise a substantial number of cells, totaling more than '*°
400,000, extracted from 245 images. To assess MAXIM’s '

Shaban etal. | MAXIM

performance accurately, we compare the mean cell expres-
sion of each cell in real images with corresponding cells in
the imputed images. Again, MAXIM shows lower MAE
compared to the two baseline methods on both Test-ROIs and
Test-HNSCC subsets. Notably, the results obtained at the cell
level align closely with the performance patterns observed
at the pixel level when evaluated on the same set of images
(Figure 2B & Extended Data Figure 3). Furthermore, we
evaluate the utility of imputed images in a downstream task
of cell classification. To establish ground truth cell labels,
we utilized the HALO software to categorize cells as either
positive or negative based on the mean cell expression of the
KI67 marker in real images. Subsequently, we generated a
precision-recall curve and determined the average precision

bioRxiv | 3
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by comparing the mean cell expression of each cell in the im- 1s
puted images with the corresponding cell label in the real im- 1ss
ages (Figure 2C). MAXIM exhibited high average precision 1ss
in both test sets, affirming its capability in precisely imput- 1s7
ing marker values that can be reliably used for downstream 1ss
analysis. 189
To investigate MAXIM’s ability to leverage latent relation- 1s
ships among markers for accurate imputation, we assess the 1e1
attributions of input markers for marker imputation using s
the aggregated gradient (25) method on the Test-WSIs set 10
(Figure 2D & Extended Data Figure 4). The analysis re- 1s
veals that CK, PDL1, and DAPI markers exhibit higher con- 1ss
tributions to KI67 marker imputation than CDS8, CD4, and s
FOXP3 markers. Additionally, the high correlation in attri- 1s7
bution scores between pairs of input markers suggests con- 1ss
sistent attribution patterns across images (Figure 2E). We 1ss
train separate models excluding markers with high attribution 200
scores for KI67 marker imputation to further validate these 2o
attributions. The results in Figure 2F demonstrate a perfor- 22
mance decrease in models trained without markers with high 20
attribution scores, while models without markers exhibiting 2o
low attribution scores consistently perform well. These find- 20
ings indicate that input markers with high attribution scores 20
possess latent relationships effectively exploited by MAXIM 207
for accurate KI67 marker imputation. 208
The investigation of MAXIM’s performance at the case level 209
reveals the potential reason for the relatively high variance in 210
its performance on the Test-ROIs set. MAXIM fails to accu- 21
rately impute markers in two cases, as shown in Figure 2F 2
& Extended Data Figure 5. To further explore the reasons 23
behind these failures, we represent each image by calculat-

ing the mean expression of each input marker. By using the
mean expression of all images for principal component anal-

ysis (PCA) and plotting the top two components, we visualize 2'°
the differences in the distribution of cases (Figure 2G & Ex- #'¢
tended Data Figure 6). Interestingly, the two cases where 27
MAXIM fails to perform well appear as a separate cluster, 2'®
especially for the KI67 marker, indicating that these cases #'°
exhibit distinct distributions compared to the remaining cases 2
in the Test-ROIs set. Finally, we demonstrate that MAXIM 2
can maintain its high performance even when trained using a ??
limited dataset, as illustrated in Figure 2H. This finding high- 2
lights the robustness of MAXIM, indicating that it can still 2
effectively impute marker values even with a smaller training %

dataset. 226
227

Discussion -
We demonstrate the effectiveness of MAXIM, a deep gen- 2s
erative model, in marker imputation for multiplex images. s
Specifically, we show that MAXIM can accurately impute the 2z
values of a protein marker with pixel-level precision by lever- 23
aging the latent relationships between available markers. Ad- 2s
ditionally, we showcase the utility of imputed marker images 23
for cell classification, a common downstream task in multi- zss
plex image analysis. Furthermore, we present the analysis of 2
individual marker importance in MAXIM marker imputation 23
process. 239

4 | bioRxiv

The effectiveness of the MAXIM method in accurately im-
puting a marker hinges on both input and output markers.
When a latent biological relationship exists between the set
of input markers and the output marker, our model excels
in generating highly reliable imputed images for the output
marker. It is worth noting that assessing imputed images
on a pixel-by-pixel basis poses a challenge for markers ex-
hibiting notably sparse responses, such as CD4, CDS, and
PDLI. In such cases, both SSIM and MAE scores converge
across MAXIM, BL-Zero, and BL-Mean methods. We ap-
plied MAXIM to multiplex immunofluorescence images fea-
turing seven markers. Nevertheless, the versatility of our pro-
posed method allows for seamless retraining and testing on
images with varying marker counts. Likewise, it can be read-
ily adapted for use with multiplex images obtained through
diverse multiplex imaging technologies, including CODEX
(2), MIBI (4), and others.

The MAXIM’s practical utility is threefold. First, the lab-
oratories utilizing multiplexed images can seamlessly train
an in-house MAXIM model using images devoid of staining
issues. The trained model can then be employed to accu-
rately impute markers in multiplexed images that are marred
by staining problems. Second, MAXIM can serve as a valu-
able tool for quality control in newly generated multiplex im-
ages, aiding in the detection of staining failures. The strong
correlation between imputed and real markers in new images
will be an indicator of staining integrity. Finally, the inter-
pretability of MAXIM provides the opportunity to uncover
previously unknown latent biological relationships between
different protein markers, leading to new insights in the field.

Material and Methods

Dataset

This study utilized a diverse dataset comprising tissue sam-
ples from four cancer types: Urothelial, Anal, Cervical, and
Head and Neck. The dataset comprised 83 tissue samples
from 27 cases derived from three separate studies, one specif-
ically focused on Head and Neck cases (Supplementary Ta-
ble 1). To acquire multiplex immunofluorescence (MxIF)
image, formalin-fixed paraffin-embedded 5 pum sections
from tissue samples were immune-stained using Opal 6-
plex kits, according to the manufacturer’s protocol (Akoya
Biosciences), for a panel of DAPI, CD4, CD8, FOXP3,
PDL1, KI67, and CK. Deparaffinizing, rehydration, epitope
retrieval, and staining of slides were performed using Leica
BOND RX Autostainer (Leica). The optimum staining con-
dition for each antibody was determined using immunohisto-
chemistry and single-immunofluorescence before combina-
tion. Details on antibodies, protocol, and opals used in this
panel are described in Supplementary Table 2. The MxIF
images were scanned at a high resolution of 40x, with a
microns-per-pixel (mpp) value of 0.25. Among the 83 tis-
sue samples, 29 samples from 5 cases were scanned entirely
to produce whole slide MxIF images, while the remaining
samples underwent separate scanning as regions of interest
(ROI), resulting in ROI MxIF images of size 1396x 1860
pixels. The images were unmixed using InForm version

Shaban etal. | MAXIM
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2.5 software (Akoya Biosciences), enabling the identification s
and separation of weakly expressing and overlapping signals 2e4
from the background autofluorescence.

The MxIF imaging dataset was divided into four sets for
model training and evaluation: Train/Valid, Test-WSIs,
Test-ROIs, and Test-HNSCC. The Train/Valid set consisted
of 25 whole slide MxIF images selected from four cases (1
Urothelial, 1 Anal, and 2 Cervical), encompassing 14,476 4
images with dimensions of 1396 x 1860 pixels. To evaluate ,,,
the model’s performance on unseen data, the Test-WSIs set
comprised 1,920 images extracted from four whole slide
MxIF images of a Head and Neck case. The Test-ROIs set
was also created to assess the model’s robustness across
diverse cases and tissue samples, including 1,097 images
extracted from 9 cases and 28 tissue samples. Finally, a
separate Test-HNSCC set was specifically prepared for
evaluating the model’s performance on Head and Neck **
Squamous Cell Carcinoma (HNSCC) cases, consisting of 13 **
cases, 26 tissue samples, and a total of 623 images extracted **
solely from the HNSCC-focused study. These distinct data **®
splits allowed for a comprehensive evaluation of the model’s **
generalizability and performance across different cancer ®”’
types, tissue samples, and specific case studies.

298
299
300

301

308

309

MAXIM model architecture 810
The MAXIM model is based on the U-Net architecture (26), 3"
which is an encoder-decoder network with skip connections. *?
Let’s denote the input MxIF image as X € RE XWXV yhere 312
H and W represent the height and width of the image, re-*"
spectively, and N represents the number of markers. Each el- *'®
ement X (4,7,n) corresponds to the intensity value of marker **°
n at the pixel location (¢,7). The MAXIM model aims *’
to generate an imputed image Y € R *W for the output®
marker. The model consists of an encoder path and a decoder *'°
path connected by skip connections. The encoder path can
be denoted as a function Fl,,. : REXWxN _ R2d %5 xC Z:
where d represents the depth of the encoder, and C' repre- .
sents the number of channels in the encoded feature map. w24
Similarly, the decoder path can be represented as a func- w5

320

tion Fje. : R34 30 X0 _, RHx W which impute the output s
marker image. Hence, the overall MAXIM model can be rep- a2
resented as a composite function F : RIXWXN _, REXW
where F/(X) = Fyec(Fene(X)). 320
The MAXIM model was optimized using reconstruction 10ss, sz
which involves minimizing the discrepancy between the im- ;
puted image and the ground truth image. In this case, L1 10ss ss
(mean absolute error) and L2 loss (mean squared error) were

used as the reconstruction loss functions. Let’s denote the

predicted imputed and the ground truth image as Y € R *W

and Yy, € RTXW respectively. The L1 loss is calculated 4,
as the mean absolute difference between the predicted and ,,,
ground truth images: 335

336

1 H W
_ A 337
Ll*HxWZZWw Yot, 515

i=1j=1 338
339

where H x W represents the total number of pixels in the im- a0

Shaban etal. | MAXIM

age. Similarly, the L2 loss is computed as the mean squared
difference between the predicted and ground truth images:

1 H W
— A 2
i=1j=

The optimization process of the marker imputation model in-
volves minimizing the combined loss L, which is a linear
combination of the L1 and L2 losses:

L:C:Oz~L1+(1—Oz)~L2,

where « is weight parameter that control the relative impor-
tance of the L1 and L2 losses.

MAXIM model with adversarial loss

The MAXIM model is also trained using an adversarial loss,
following the training approach commonly used in condi-
tional generative adversarial networks (27). The genera-
tor network, GG, responsible for imputing the output marker
image, adopts the same network architecture as described
above, whereas the discriminator network D employed in the
model is the same as the discriminator network utilized in
the Pix2Pix network (28). The discriminator network input
is a concatenated image of the multiplex input image with NV
markers X € RTXWXN "along with either the ground truth
output marker Y or the generated output marker G/(X'). The
discriminator network produces a 32 times smaller binary im-
age as output. The discriminator network consists of six con-
volutional layers with a kernel size of 4 and a stride size of 2.
Each convolutional layer is followed by a batch normaliza-
tion operation and a leaky ReLU activation function, except
for the first and last layers. The first layer does not include a
batch normalization operation, and the last layer neither has
a batch normalization operation nor a leaky ReL U activation.
The discriminator’s objective is to discriminate and classify
the input images into two categories: the first represents the
multiplex input image with the ground truth marker, and the
second represents the multiplex input image with the imputed
marker. To achieve this, the discriminator predicts an output
of all ones (close to one) for the first type of input image, indi-
cating its high confidence that the image contains real values.
Conversely, it predicts an output of zeros (close to zero) for
the second type of input image, expressing its certainty that
it contains imputed values. The discriminator model was op-
timized using the average cross-entropy loss (Lp) of images
from both categories:

£ = 5(£er(T1, DX, Ya)) + Lax(lo, DIX, G(X)

Here, I and Ij represent the images with pixel values as ones
and zeros, respectively. The term Lcg(/1,D(X,Yy)) com-
putes the cross-entropy loss between the discriminator’s out-
put when provided with the input image X and ground truth
marker Yy, aiming to maximize the probability of the dis-
criminator correctly classifying them as real. Similarly, the
term Lcg (Lo, D(X,G(X))) calculates the cross-entropy loss
between the discriminator’s output when provided with the
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input image X and the imputed marker image G(X), aim- ss
ing to maximize the probability of the discriminator correctly asr
classifying them as imputed. a98
The generator network, G, is trained to impute marker values
that closely resemble the ground truth markers and are chal-
lenging for the discriminator to differentiate. The generator ,,
network is optimized using the sum of weighted L1 loss (L1) 4,
and a cross-entropy loss. The generator loss is defined as:

Lo =B-Ly+ Lee(I1, D(X,G(X))),

405

where [ is the weight factor. The cross-entropy loss (Lcg) e

encourages the generator to generate marker predictions that s
the discriminator classifies as real. The overall loss ensures
that the generator network is trained to produce accurate :J:
imputed marker values while also satisfying the adversarial

objective. “
412

Training details 413

A separate model was trained for each marker using the re- "
maining six as input. The images in the Train/Valid set were *°
too large to be directly used for model training. Therefore, *'°
all images were divided into 24 equally sized patches of size *’
349 x 310. Then each model was trained using randomly “*®
cropped, flipped, and rotated regions of size 256 x 256 “*°
extracted from image patches. All models are optimized
using Adam optimizer with a learning rate of 0.002. The *'
values of o and 3 hyperparameters are empirically set to
0.5 and 100, respectively. The batch size was set to 64 for “*
each training iteration. The maximum number of epochs
was set to 200, while the minimum number of epochs was “*
set to 50. A stopping criterion was implemented to prevent
overfitting and ensure a stable training process. Training ¢
for each marker was stopped if the validation loss did not
decrease for 25 consecutive epochs, indicating a potential ¢

plateau in model performance. 430
431

422

Evaluation 432
The marker imputation models were evaluated using vari- 43
ous evaluation metrics at the image level, considering the 4
1396 x 1860 pixel images. To assess the similarity between 4
real and imputed marker images, the Structural Similarity In- 43
dex (SSIM) was employed as a measure of structural resem- 4
blance. Additionally, the Mean Absolute Error (MAE) was 43
calculated to quantify the pixel-level intensity differences be- 4
tween the real and imputed images. The evaluation of the *°
marker imputation model considered the sparsity of marker
images, which can vary depending on the marker type (nu-
clear, cytoplasmic, or membrane). Sparse images tend to 2
yield higher SSIM scores and lower MAE values. The worst 4
achievable SSIM score is 0, indicating no structural resem- 5
blance, while the worst MAE score is 255, denoting maxi- +¢
mum average pixel-level intensity differences. To establish 7
baselines for comparison, two sets of results were presented: +¢
one using images with all zeros and the other using images 4
representing mean images of the input markers. These base- «so
lines provided the lowest achievable SSIM and highest MAE s
scores in the test sets. The MAXIM’s performance is ex- sz

6 | bioRxiv

pected to surpass these baseline results, demonstrating its
ability to impute more accurate and realistic marker images.

In addition to evaluating the MAXIM’s performance based
on pixels, we also conducted a cell-level assessment to mit-
igate potential biases arising from numerous zero or near-
zero pixel values in both real and imputed marker images.
HALO image analysis software (Indica Lab), specifically the
automated Highplex FL module, was utilized to calculate the
mean expression of each cell in the real and imputed mark-
ers. Initially, the software identified and segmented the cell
nucleus using the real DAPI channel and then expanded the
segmented region using a heuristic approach to encompass
the entire cell, including the cell membrane. Subsequently,
it determined the average intensity or expression within each
cell for both the real and imputed marker images.

To quantify the intensity differences between the real and
imputed marker cells, we computed the MAE at the cell level
by comparing the mean cell expression values. Additionally,
we assessed the model’s performance in cell classification
by utilizing the mean cell expression of the real marker. The
HALO software facilitated this classification task, wherein
an expert-defined threshold was set. If the mean expression
of the pixels belonging to a cell exceeded the threshold, the
cell was classified as positive for that marker. Using the
resulting cell labels and the mean cell expression of the im-
puted marker images, we generated precision-recall curves
to illustrate the trade-off between precision and recall. The
average precision (AP) score served as a summary measure
of the model’s ability to distinguish between positive and
negative cells based on the imputed marker values.

Model Interpretability

Model interpretability was explored by calculating aggre-
gated gradient-based image attributions (25) of each marker
in the input images to the imputed marker image. These at-
tributions, derived from the model’s internal computations,
could take both positive and negative values, indicating the
contribution of each pixel to the imputed marker image. The
absolute sum of attributions was computed for each marker
to assess the overall attribution of each input marker for a
given output marker. This yielded a measure of the impor-
tance or influence of each marker in the model’s decision-
making process. Furthermore, the aggregated attributions of
each marker were converted into percentage values by divid-
ing the total absolute attribution of the input image. This
conversion provided a more interpretable representation of
the relative significance of each marker in the context of the
entire image. In addition to calculating aggregated gradient-
based pixel attributions, the correlation between pairs of in-
put markers’ attributions was also computed to identify any
patterns of co-occurrence in marker imputation. This analy-
sis aimed to examine whether certain input markers exhibited
similar attribution patterns or if there were any interdepen-
dencies between the attributions of different markers.

To validate the attribution of individual input markers to the

imputed marker image, we conducted experiments using two
sets of new MAXIM models. Each set consisted of a subset
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of markers with either high or low attribution scores. In one s
set, the input images were modified to exclude the markers ;‘2
with high attribution scores. Conversely, the input images s
were modified in the other set to exclude the markers with ::
low attribution scores. The intention behind this approach s
is that models trained without markers with low attribution 7
scores should ideally perform consistently better compared s1s
to the other set of models. We calculated the MAE metrics 7°
for each set and compared them with the results obtained se
from the original marker imputations. This analysis allowed 2
us to evaluate the significance of the attributions of input
markers with high and low scores and determine their zz
influence on the model’s performance.

Ablation study 526
In order to investigate the influence of training set size
on the performance of the MAXIM model, we conducted sz
an ablation study by training four new MAXIM models
using varying proportions of the available training images. s
Specifically, we randomly selected 75%, 50%, 25%, and a2
10% of the training images for each model. By tralnlng 534
models with reduced training data, we aimed to understand _.,
how the availability of labeled data affects the model’s ability s
to accurately impute markers in MxIF images. o
540

541
Computational hardware and software 542

We train all models on a system with Intel Core i9- 10920X S48
CPU (central processing unit) and an NVIDIA GeForce o 545
RTX 3090 GPU (graphics processing unit). All models 546
were implemented in Python (3.9.13) using PyTorch (1.13. 1) 548
and TorchVision (0.14.1) as the primary deep-learning ::Z
packages for the development and training of deep learning ss;
models. Numerical computations and data mampulatlon 552
were carried out using Numpy (1.12.5) and Pandas (1.4.4), s
respectively. The Scipy (1.9.1) was utilized to calculate ZZZ
evaluation metrics such as MAE, precision-recall curve, ss;
and average precision, while Scikit Image (0.19.2) was :Z
used to calculate the SSIM between two images. Model ss
interpretability was achieved through the application of 2?;
Captum (0.6.0). The data visualization aspect of the research se;
employed Matplotlib (3.5.2) and Seaborn (0.11.2), enabling Z:;
the creation of informative visual representations. Setuptools s
(63.4.1) assisted in managing library dependencies for pip o

package creation. s6
570
571
Data availability 572

Data will be shared upon reasonable request. Any request ;i
for data by qualified scientific and medical researchers for 57
legitimate research purposes will be subject to NCI and the ...
NIH Policy for Data Management and Sharing. All requests 578

should be submitted in writing to NCI. 580

581
582

Code availability 583
All code and scripts for reproducing the experiments are >
accessible at https://github.com/mahmoodlab/MAXIM. De- sss
tailed instructions are provided in the README for easy 2’
setup and replication of results. 589
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Extended Data Figure 1. The quantitative assessment of MAXIM’s marker imputation ability for six different markers. (A) & (B) present the results using structural
similarity index (SSIM) and mean absolute error (MAE) metrics across three test sets, respectively. The width of each violin represents the density of data points (images)
with corresponding SSIM/MAE scores, and the solid line within each violin indicates the median SSIM/MAE score. BL-Zero and BL-Mean are pseudo models that provide
baseline MEA and SSIM scores in multiplex images with high sparsity (CD8, CD4, CK, and PDL1) and structural similarity (DAPI and FOXP3) across markers. BL-Zero
generates an imputed image with zero values, while BL-Mean creates an imputed image using the mean values of the input markers.
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MAXIM Real Image Multiplex Input Image
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Extended Data Figure 2. Visual results of six different marker imputation models. The results are shown for the same multiplex image with seven markers: DAPI (red),
FOXP3 (green), CD4 (yellow), CD8 (cyan), PDL1 (magenta), KI67 (White), and CK (blue). Scale bar: 50 pum. The first row shows the input images consisting of six markers,
excluding the target marker (column name). The second row shows the real images of the target markers. The third and fourth rows show imputed images using MAXIM and

BL-Mean models.
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Extended Data Figure 3. Evaluation of MAXIM at cell and pixel level on subsets of Test-ROls and Test-HNSCC sets for six different markers. The difference in the
mean expression of each cell is used for cell level evaluation. The height of the bars indicates the average absolute error, whereas error bars represent the standard deviation.
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Extended Data Figure 4. Model interpretability analysis using aggregated gradient method. The boxplots show the distribution of gradient-based attribution of each
input marker towards output marker imputations. The line inside the box represents the median, the edges of the box represent the interquartile range, and the whiskers
extend to 1.5 times the interquartile range to represent the range of the attribution values.
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Extended Data Figure 5. Evaluation of MAXIM model at case level on Test-ROls set.
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corresponding mean absolute error (MAE) scores, and the solid line within each violin indicates the median MAE score.
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Extended Data Figure 6. Two-dimensional projection of input images to visualize the case level differences in data distribution for different MAXIM models. Each
plot showcases the projections achieved using principal component analysis, which are based on the mean intensities of each marker in the input images. Each dot within

the subplots represents an individual image from the Test-ROls set, and the color of the dots indicates the corresponding case to which the image belongs.
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