

1      **Title:** The potassium channel subunit Kv1.8 (*Kcna10*) is essential for the distinctive outwardly rectifying  
2      conductances of type I and II vestibular hair cells

4      Hannah R. Martin<sup>1</sup>, ORCID 0000-0003-2028-5798

5      Anna Lysakowski<sup>2</sup>, ORCID 0000-0001-6259-0294

6      Ruth Anne Eatock<sup>1</sup>, ORCID 0000-0001-7547-2051

8      <sup>1</sup>University of Chicago, Department of Neurobiology

9      <sup>2</sup>University of Illinois at Chicago, Department of Anatomy and Cell Biology

11     Author for correspondence:

12     Ruth Anne Eatock

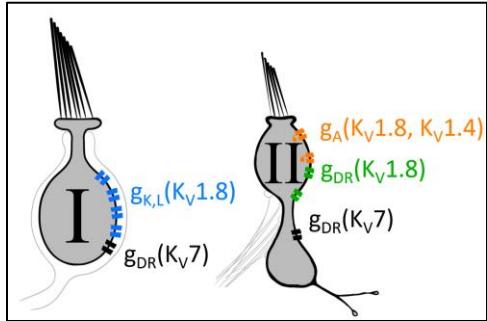
13     Dept of Neurobiology, J251

14     University of Chicago

15     Chicago, IL

16     [eatock@uchicago.edu](mailto:eatock@uchicago.edu)

18     **Keywords:** potassium channels, hair cells, vestibular, inner ear, receptor potential


## 20     **Abstract**

21     In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly  
22     different morphology and physiology. Mature type I HCs express a large and very unusual potassium  
23     conductance,  $g_{K,L}$ , which activates negative to resting potential, confers very negative resting potentials  
24     and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their  
25     calyceal afferent terminals. Following clues pointing to Kv1.8 (KCNA10) in the Shaker K channel family as  
26     a candidate  $g_{K,L}$  subunit, we compared whole-cell voltage-dependent currents from utricular hair cells of  
27     Kv1.8-null mice and littermate controls. We found that Kv1.8 is necessary not just for  $g_{K,L}$  but also for fast-  
28     inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The  
29     distinct properties of the three Kv1.8-dependent conductances may reflect different mixing with other Kv1  
30     subunits, such as Kv1.4 (KCNA4). In Kv1.8-null HCs of both types, residual outwardly rectifying  
31     conductances include Kv7 (KCNQ) channels.

32     Current clamp records show that in both HC types, Kv1.8-dependent conductances increase the speed  
33     and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal  
34     afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

36

## Graphical abstract



37

### Abbreviations:

39  $g_A$ , A-type (inactivating)  $K_v$  conductance in type II HCs  
40  $g_{DR}$ , delayed rectifier  $K^+$  conductance  
41  $g_{K,L}$ , low-voltage-activated  $K^+$  conductance in type I HCs  
42 HC, hair cell  
43  $K_v$ , voltage-gated  $K^+$  conductance

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

## 69 Introduction

70 The receptor potentials of hair cells (HCs) are strongly shaped by large outwardly rectifying  $K^+$   
71 conductances that are differentially expressed according to HC type. Here we report that a specific  
72 voltage-gated  $K^+$  ( $K_v$ ) channel subunit participates in very different  $K_v$  channels dominating the membrane  
73 conductances of type I and type II HCs in amniote vestibular organs.

74 Type I HCs occur only in amniote vestibular organs. Their most distinctive features are that they are  
75 enveloped by a calyceal afferent terminal (Wersäll, 1956; Lysakowski and Goldberg, 2004) and that they  
76 express  $g_{K,L}$  (Correia and Lang, 1990; Rennie and Correia, 1994; Rüscher and Eatock, 1996a): a large non-  
77 inactivating conductance with an activation range from  $-100$  to  $-60$  mV, far more negative than other  
78 “low-voltage-activated”  $K_v$  channels. In addition to selectively attenuating and speeding up the receptor  
79 potentials of type I HCs (Correia et al., 1996; Rüscher and Eatock, 1996b),  $g_{K,L}$  augments non-quantal  
80 transmission from type I hair cell to afferent calyx by providing open channels for  $K^+$  flow into the synaptic  
81 cleft (Contini et al., 2012, 2017, 2020; Govindaraju et al., 2023), increasing the speed and linearity of the  
82 transmitted signal (Songer and Eatock, 2013).

83 Type II HCs have compact afferent synaptic contacts (boutons) where the receptor potential drives  
84 quantal release of glutamate. They have fast-inactivating (A-type,  $g_A$ ) and delayed rectifier ( $g_{DR}$ )  
85 conductances that are opened by depolarization above resting potential ( $V_{rest}$ ).

86 The unusual properties of  $g_{K,L}$  have long attracted curiosity about its molecular nature.  $g_{K,L}$  has been  
87 proposed to include “M-like”  $K_v$  channels in the  $K_v7$  and/or erg channel families (Kharkovets et al., 2000;  
88 Hurley et al., 2006; Holt et al., 2007). The  $K_v7.4$  subunit was of particular interest because it contributes  
89 to the low-voltage-activated conductance,  $g_{K,n}$ , in cochlear outer hair cells, but was eventually eliminated  
90 as a  $g_{K,L}$  subunit by experiments on  $K_v7.4$ -null mice (Spitzmaul et al., 2013).

91 Several observations suggested the  $K_v1.8$  (KCNA10) subunit as an alternative candidate for  $g_{K,L}$ .  $K_v1.8$   
92 is highly expressed in vestibular sensory epithelia (Carlisle et al., 2012), particularly hair cells (Lee et al.,  
93 2013; Scheffer et al., 2015; McInturff et al., 2018), with slight expression elsewhere (skeletal muscle, Lee  
94 et al., 2013; kidney, Yao, 2002).  $K_v1.8^{-/-}$  mice show absent or delayed vestibular-evoked potentials, the  
95 synchronized activity of afferent nerve fibers sensitive to fast linear head motions (Lee et al., 2013).  
96 Unique among  $K_v1$  channels,  $K_v1.8$  has a cyclic nucleotide binding domain (Lang et al., 2000) with the  
97 potential to explain  $g_{K,L}$ ’s known cGMP dependence (Behrend et al., 1997; Chen and Eatock, 2000).

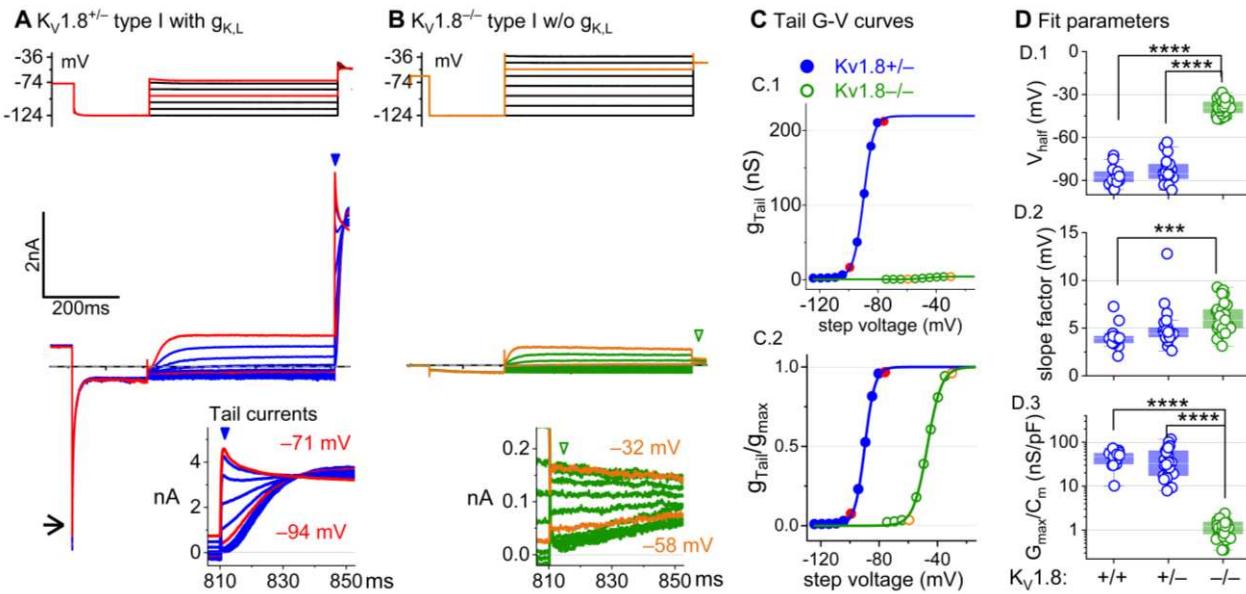
98 Our comparison of whole-cell currents and immunohistochemistry in type I HCs from  $K_v1.8^{-/-}$  and  
99  $K_v1.8^{+/+,-/-}$  mouse utricles confirmed that  $K_v1.8$  expression is necessary for  $g_{K,L}$ . More surprisingly,  $K_v1.8$   
100 expression is also required for A-type and delayed rectifier conductances of type II HCs. In both HC types,  
101 eliminating the  $K_v1.8$ -dependent major conductances revealed a smaller delayed rectifier conductance  
102 involving  $K_v7$  channels. Thus, the distinctive outward rectifiers that produce such different receptor  
103 potentials in type I and II HCs both include  $K_v1.8$  and  $K_v7$  channels.

## 106 Results

107 We compared whole-cell voltage-activated  $K^+$  currents in type I and type II hair cells from homozygous  
108 knockout ( $Kv1.8^{-/-}$ ) animals and their wildtype ( $Kv1.8^{+/+}$ ) or heterozygote ( $Kv1.8^{+/+}$ ) littermates. We  
109 immunolocalized  $Kv1.8$  subunits in the utricular epithelium and pharmacologically characterized the  
110 residual  $K^+$  currents of  $Kv1.8^{-/-}$  animals. Current clamp experiments demonstrated the impact of  $Kv1.8$ -  
111 dependent currents on passive membrane properties.

112 We recorded from three utricular zones: lateral extrastriola (LES), striola, and medial extrastriola (MES)  
113 ([Fig. 3A.1](#)); striolar and extrastriolar zones have many structural and functional differences and give rise  
114 to afferents with different physiology (reviewed in [Goldberg, 2000](#); [Eatoock and Songer, 2011](#)). Recordings  
115 are from 412 type I and II HCs (53% LES, 30% MES, 17% striola) from mice between postnatal day (P) 5  
116 and P370. We recorded from such a wide age range to test for developmental or senescent changes in  
117 the impact of the null mutation. Above P18, we did not see substantial changes in  $Kv$  channel properties,  
118 as reported (González-Garrido et al., 2021).

119 As reported (Lee et al., 2013),  $Kv1.8^{-/-}$  animals appeared to be healthy and to develop and age normally.  
120


## 121 $Kv1.8$ is necessary for $g_{K,L}$ in type I hair cells

122 The large low-voltage activated conductance,  $g_{K,L}$ , in  $Kv1.8^{+/+,-/-}$  type I hair cells produces distinctive  
123 whole-cell current responses to voltage steps, as highlighted by our standard type I voltage protocol ([Fig.](#)  
124 [1A](#)). From a holding potential within the  $g_{K,L}$  activation range (here  $-74$  mV), voltage steps to  $-124$  mV,  
125 which is negative to  $E_K$  and the activation range, producing a large inward current through open  $g_{K,L}$   
126 channels that rapidly decays as the channels deactivate. The large transient inward current is a hallmark  
127 of  $g_{K,L}$ . Steady-state activation was measured from tail currents after iterated 500-ms step voltages ([Fig.](#)  
128 [1A](#)). We detected no difference between the Boltzmann parameters of  $g_{K,L}$  G-V curves from  $Kv1.8^{+/-}$  and  
129  $Kv1.8^{+/+}$  type I HCs.

130 For a similar voltage protocol,  $Kv1.8^{-/-}$  type I HCs ([Fig. 1B](#)) produced no inward transient current at the  
131 step from  $-74$  mV to  $-124$  mV and much smaller depolarization-activated currents during the iterated  
132 steps, even at much more positive potentials. [Figure 1C](#) compares the conductance-voltage (G-V,  
133 activation) curves fit to tail currents ([Eq. 1](#); see insets in [Fig. 1A-B](#)): the maximal conductance ( $g_{max}$ ) of the  
134  $Kv1.8^{-/-}$  HC was over 10-fold smaller ([Fig. 1C.1](#)), and the curve was positively shifted by  $>40$  mV ([Fig. 1C.2](#)).  
135 [Figure 1D](#) shows the G-V Boltzmann fit parameters for type I HCs from mice  $>P12$ , an age at which type I  
136 HCs normally express  $g_{K,L}$  (Rüschen et al., 1998).

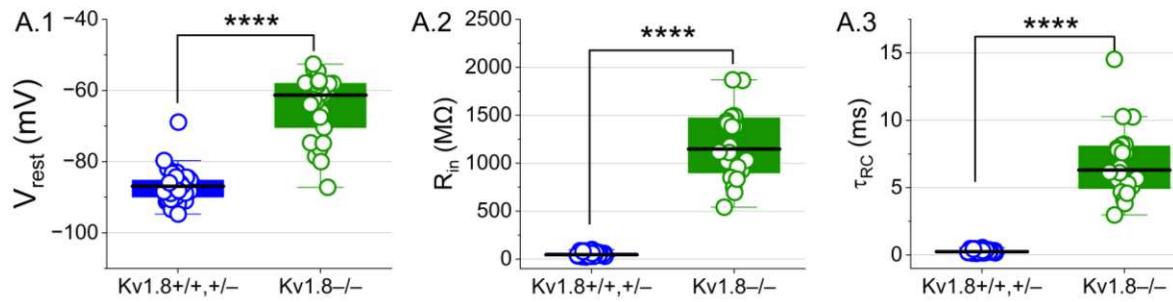
137 [Suppl. Fig. 1](#) shows how G-V parameters of outwardly rectifying currents in type I HCs changed from  
138 P5 to P360. In  $Kv1.8^{+/+,-/-}$  mice, the parameters transitioned over the first 15-20 postnatal days from values  
139 for a conventional delayed rectifier, activating positive to resting potential, to  $g_{K,L}$  values, as previously  
140 described (Rüschen et al., 1998; Géléoc et al., 2004; Hurley et al., 2006). Between P5 and P10, we detected  
141 no evidence of a non- $g_{K,L}$   $Kv1.8$ -dependent conductance in immature type I HCs ([Suppl. Fig. 1B](#)). In  $Kv1.8^{-/-}$   
142 type I HCs,  $g_{K,L}$  was absent and G-V parameters did not change much with age from P5 to P370.

143 The much smaller residual delayed rectifier activated positive to resting potential, with  $V_{half} \sim -40$  mV  
144 and  $g_{max}$  density of 1.3 nS/pF. We characterize this  $Kv1.8$ -independent delayed rectifier later. A much  
145 larger non- $g_{K,L}$  delayed rectifier conductance (“ $g_{DR,I}$ ”) was reported in our earlier publication on mouse  
146 utricular type I HCs (Rüschen et al., 1998). This current was identified as that remaining after “blocking”  $g_{K,L}$

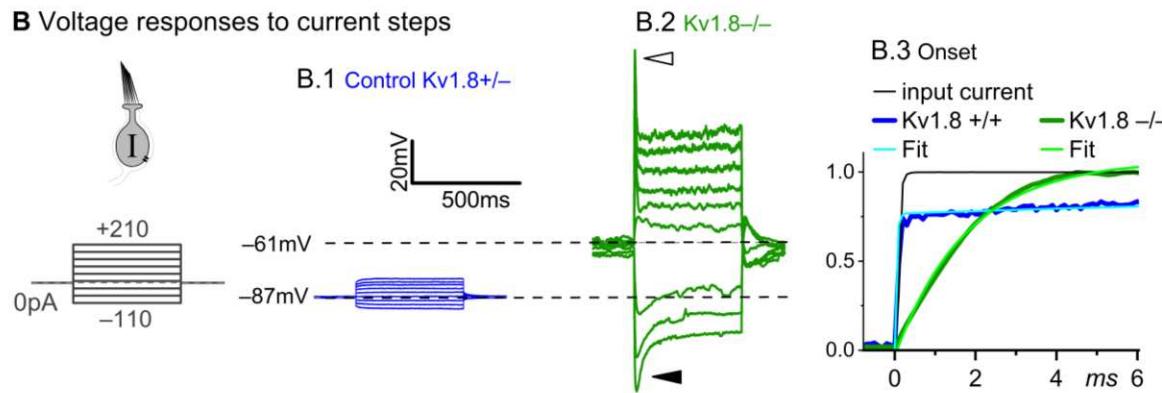


**Figure 1. Kv1.8<sup>-/-</sup> type I hair cells lacked  $g_{K,L}$ , the dominant conductance in mature Kv1.8<sup>+/-, +/-</sup> type I HCs.** Representative voltage-evoked currents in (A) a P22 Kv1.8<sup>+/-</sup> type I HC and (B) a P29 Kv1.8<sup>-/-</sup> type I HC. (A) Arrow, transient inward current that is a hallmark of  $g_{K,L}$ . Note that the voltage protocol (top) in B extends to more positive voltages. Arrowheads, tail currents, magnified in insets. (C) Activation (G-V) curves from tail currents in A and B; symbols, data; curves, Boltzmann fits (Eq. 1). (D) Fit parameters from mice >P12 show big effect of Kv1.8<sup>-/-</sup> and no difference between Kv1.8<sup>-/-</sup> and Kv1.8<sup>+/-</sup>. Asterisks (here and elsewhere): \*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001; and \*\*\*\*, p<0.0001. Line, median; Box, interquartile range; Whiskers, outliers. See Table 1 for statistics.

147 with 20 mM external  $\text{Ba}^{2+}$ . Our new data suggest that there is no large non- $g_{K,L}$  conductance, and that  
 148 instead high  $\text{Ba}^{2+}$  positively shifted the apparent voltage dependence of  $g_{K,L}$ .  
 149


## 150 Kv1.8 strongly affects type I passive properties and responses to current steps.

151 While the cells of Kv1.8<sup>-/-</sup> and Kv1.8<sup>+/-</sup> epithelia appeared healthy, type I hair cells had smaller membrane  
 152 capacitances ( $C_m$ ) and presumably surface areas: 4-5 pF in Kv1.8<sup>-/-</sup> type I HCs, ~20% smaller than Kv1.8<sup>+/-</sup>  
 153 type I HCs (~6 pF) and ~30% smaller than Kv1.8<sup>+/-</sup> type I HCs (6-7 pF; Table 2). The decreased  $C_m$  may reflect  
 154 deletion of a highly expressed trans-membrane protein (see discussion of  $g_{K,L}$  channel density in Chen and  
 155 Eatock, 2000, and for comparison the large decrease in outer hair cell size in the prestin null mutant  
 156 (Liberman et al., 2002; Takahashi et al., 2018)).


157 Basolateral conductances help set the resting potential and passive membrane properties that  
 158 regulate the time course and gain of voltage responses to small currents. To examine the effect of Kv1.8  
 159 on these properties, we switched to current clamp mode and measured resting potential ( $V_{rest}$ ), input  
 160 resistance ( $R_{in}$ , equivalent to voltage gain for small current steps,  $\Delta V/\Delta I$ ), and membrane time constant  
 161 ( $\tau_{RC}$ ). In Kv1.8<sup>-/-</sup> type I HCs,  $V_{rest}$  was much less negative (Fig. 2A.1),  $R_{in}$  was greater by ~20-fold (Fig. 2A.2),  
 162 and membrane charging times were commensurately longer (Fig. 2A.3).

163 The differences between the voltage responses of Kv1.8<sup>+/-, +/-</sup> and Kv1.8<sup>-/-</sup> type I HCs are expected from  
 164 the known impact of  $g_{K,L}$  on  $V_{rest}$  and  $R_{in}$  (Correia and Lang, 1990; Ricci et al., 1996; Rüsch and Eatock,  
 165 1996b; Songer and Eatock, 2013). The large  $\text{K}^+$ -selective conductance at  $V_{rest}$  holds  $V_{rest}$  close to  $E_K$  ( $\text{K}^+$   
 166 equilibrium potential) and minimizes gain ( $\Delta V/\Delta I$ ), such that voltage-gated conductances are negligibly

**A Type I HC passive membrane properties**



**B Voltage responses to current steps**



**Figure 2. Kv1.8<sup>−/−</sup> type I hair cells had much longer membrane charging times and higher input resistances (voltage gains) than Kv1.8<sup>+/+, +/−</sup> type I HCs. (A)**  $g_{K,L}$  strongly affects passive membrane properties: (A.1)  $V_{rest}$ , (A.2)  $R_{in}$ , input resistance, and (A.3) membrane time constant,  $\tau_{RC} = (R_{input} * C_m)$ . See Table 2 for statistics. (B) Current clamp responses to the same scale from (B.1) Kv1.8<sup>+/−</sup> and (B.2) Kv1.8<sup>−/−</sup> type I cells, both P29. Filled arrowhead (B.2), sag indicating  $I_h$  activation. Open arrowhead, Depolarization rapidly decays as  $I_{DR}$  activates. B.3, The 1<sup>st</sup> 6 ms of voltage responses to 170-pA injection is normalized to steady-state value; overlaid curves are double-exponential fits (Kv1.8<sup>+/+</sup>,  $\tau$  40  $\mu$ s and 2.4 ms) and single-exponential fits (Kv1.8<sup>−/−</sup>,  $\tau$  1.1 ms).

167 affected by the input current and the cell produces approximately linear, static responses to iterated  
 168 current steps. For Kv1.8<sup>−/−</sup> type I HCs, with their less negative  $V_{rest}$  and larger  $R_{in}$ , positive current steps  
 169 evoked a fast initial depolarization (Fig. 2B.2), activating residual delayed rectifiers and repolarizing the  
 170 membrane toward  $E_K$ . Negative current steps evoked an initial “sag” (Fig. 2B.2), a hyperpolarization  
 171 followed by slow repolarization as the HCN1 channels open (Rüschen and Eatock, 1996b).

172 Overall, comparison of the Kv1.8<sup>+/+, +/−</sup> and Kv1.8<sup>−/−</sup> responses shows that with Kv1.8 ( $g_{K,L}$ ), the voltage  
 173 response of the type I hair cell is smaller but better reproduces the time course of the input current.

**175 Kv1.8 is necessary for both inactivating and non-inactivating Kv currents in type II  
 176 hair cells**

177 Type II HCs also express Kv1.8 mRNA (McInturff et al., 2018; Orvis et al., 2021). Although their outwardly-  
 178 rectifying conductances ( $g_A$  and  $g_{DR}$ ) differ substantially in voltage dependence and size from  $g_{K,L}$ , both  
 179 conductances were strongly affected by the null mutation:  $g_A$  was eliminated and the delayed rectifier

**Table 1.** Type I hair cell  $K_v$  activation voltage dependence and kinetics. Mean  $\pm$  SEM (number of cells).  $g$  is effect size, Hedge's  $g$ . KWA is Kruskal-Wallis ANOVA.

| Zone         | $K_v1.8$ | Tail $V_{1/2}$ , mV <sup>a</sup> | Tail $S$ , mV <sup>b</sup> | Tail $G_{max}$ , nS <sup>c</sup> | Tail $G_{max}/C_m$ , nS/pF <sup>d</sup> | Age (median, range) |
|--------------|----------|----------------------------------|----------------------------|----------------------------------|-----------------------------------------|---------------------|
| Extrastriola | +/+      | $-85 \pm 2$ (12)                 | $4.3 \pm 0.4$ (12)         | $270 \pm 40$ (11)                | $47 \pm 8$ (11)                         | 22, 14-287          |
|              | +/-      | $-83 \pm 1$ (40)                 | $5.2 \pm 0.3$ (40)         | $210 \pm 20$ (40)                | $37 \pm 4$ (40)                         | 19, 13-259          |
|              | -/-      | $-40.2 \pm 0.9$ (26)             | $5.7 \pm 0.3$ (26)         | $5.4 \pm 0.3$ (26)               | $1.11 \pm 0.08$ (26)                    | 45, 14-277          |
| Striola      | +/+      | $-87 \pm 3$ (6)                  | $4.3 \pm 0.3$ (6)          | $310 \pm 70$ (6)                 | $41 \pm 7$ (6)                          | 40, 15-59           |
|              | +/-      | $-88 \pm 2$ (3)                  | $4.7 \pm 0.9$ (3)          | $270 \pm 60$ (3)                 | $44 \pm 6$ (3)                          | 19, 14-20           |
|              | -/-      | $-38 \pm 1$ (13)                 | $6.2 \pm 0.4$ (13)         | $6.5 \pm 0.6$ (13)               | $1.5 \pm 0.1$ (13)                      | 202, 14-370         |

<sup>a</sup> -/- vs +/+: 2-way ANOVA,  $p < 1E-9$ ,  $g 7.7$ ; -/- vs +/-: 2-way ANOVA,  $p < 1E-9$ ,  $g 6.8$

<sup>b</sup> -/- vs +/+: 2-way ANOVA,  $p = 8.4E-4$ ,  $g 1.2$

<sup>c</sup> -/- vs +/+: 2-way ANOVA,  $p < 1E-9$ ,  $g 3.7$ ; -/- vs +/-: 2-way ANOVA,  $p < 1E-9$ ,  $g 2.1$

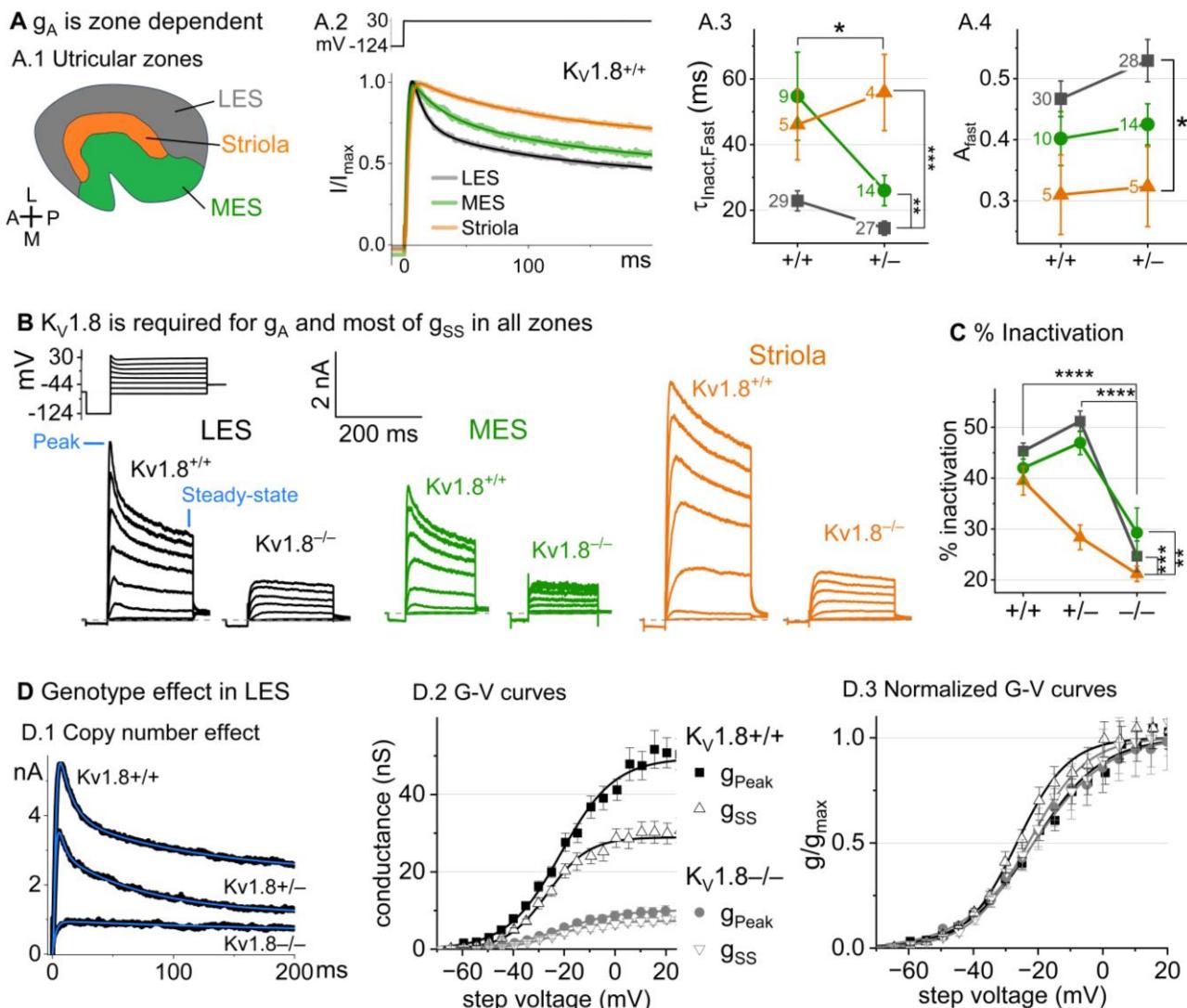
<sup>d</sup> -/- vs +/+: 2-way ANOVA,  $p < 1E-9$ ,  $g 3.6$ ; -/- vs +/-: 2-way ANOVA,  $p < 1E-9$ ,  $g 2.0$

**Table 2.** Type I hair cell passive membrane properties. Mean  $\pm$  SEM (number of cells).  $g$  is effect size, Hedge's  $g$ . KWA is Kruskal-Wallis ANOVA.

| Zone         | $K_v1.8$ | $V_{rest}$ , mV <sup>a, b</sup> | $R_{input}$ , M $\Omega$ <sup>c</sup> | $\tau_{RC}$ , ms <sup>d</sup> | $C_m$ (pF) <sup>e</sup> | Age (median, range) |
|--------------|----------|---------------------------------|---------------------------------------|-------------------------------|-------------------------|---------------------|
| Extrastriola | +/+      | $-84 \pm 3$ (6)                 | $44 \pm 6$ (6)                        | $0.24 \pm 0.03$ (6)           | $6.1 \pm 0.4$ (13)      | 19.5, 14-287        |
|              | +/-      | $-88.0 \pm 0.7$ (28)            | $55 \pm 5$ (24)                       | $0.32 \pm 0.03$ (23)          | $5.8 \pm 0.2$ (44)      | 21, 16-29           |
|              | -/-      | $-63 \pm 2$ (15)                | $1400 \pm 100$ (15)                   | $6.4 \pm 0.6$ (15)            | $5 \pm 0.2$ (27)        | 45, 14-202          |
| Striola      | +/+      | $-87 \pm 2$ (4)                 | $50 \pm 8$ (4)                        | $0.30 \pm 0.04$ (4)           | $7.4 \pm 0.7$ (7)       | 43, 40-59           |
|              | +/-      | $-87 \pm 3$ (3)                 | $38 \pm 8$ (2)                        | $0.21 \pm 0.01$ (2)           | $5.9 \pm 0.6$ (3)       | 19, 19-20           |
|              | -/-      | $-74 \pm 5$ (5)                 | $1000 \pm 300$ (4)                    | $4.2 \pm 1.0$ (4)             | $4.4 \pm 0.2$ (14)      | 202, 24-370         |

<sup>a</sup> striolar -/- vs ES -/-: 2-way ANOVA,  $p = 0.006$ ,  $g 1.2$ ; striolar -/- vs striolar +/+, +/-: 2-way ANOVA,  $p = 0.005$ ,  $g 1.7$

<sup>b</sup> -/- vs +/+: 2-way ANOVA,  $p < 1E-9$ ,  $g 2.3$ ; -/- vs +/-: 2-way ANOVA,  $p < 1E-9$ ,  $g 3.4$


<sup>c</sup> -/- vs +/+: 2-way ANOVA,  $p < 1E-9$ ,  $g 3.1$ ; -/- vs +/-: 2-way ANOVA,  $p < 1E-9$ ,  $g 3.9$

<sup>d</sup> -/- vs +/+: 2-way ANOVA,  $p < 1E-9$ ,  $g 2.7$ ; -/- vs +/-: 2-way ANOVA,  $p < 1E-9$ ,  $g 3.4$

<sup>e</sup> -/- vs +/+: 2-way ANOVA,  $p = 3E-7$ ,  $g 1.5$ ; -/- vs +/-: 2-way ANOVA,  $p = 1.3E-4$ ,  $g 1.0$ ; +/- vs +/+: 2-way ANOVA,  $p = 0.048$ ,  $g 0.6$

180 was substantially smaller. Below we describe  $g_A$  and  $g_{DR}$  in  $K_v1.8^{+/+,+/-}$  type II HCs and the residual outward  
181 rectifying current in  $K_v1.8^{-/-}$  type II HCs.

182  **$K_v1.8^{+/+,+/-}$  type II HCs.** Most (81/84)  $K_v1.8^{+/+,+/-}$  type II HCs expressed a rapidly-activating, rapidly-  
183 inactivating A-type conductance ( $g_A$ ). We define A current as the outwardly rectifying current that



**Figure 3.**  $Kv1.8^{-/-}$  type II HCs in all zones of the sensory epithelium lacked the major rapidly inactivating conductance,  $g_A$ , and had less delayed rectifier conductance. Activation and inactivation varied with epithelial zone and genotype. **(A)**  $g_A$  inactivation time course varied across zones. **(A.1)** Zones of the utricular epithelium. **(A.2)** Normalized currents evoked by steps from  $-124$  mV to  $+30$  mV with overlaid fits of Eq. 3. **(A.3)**  $\tau_{inact, fast}$  was faster in  $Kv1.8^{-/-}$  than  $Kv1.8^{+/+}$  HCs, and faster in LES than other zones. Brackets show post hoc pairwise comparisons between two zones (vertical brackets) and horizontal brackets compare two genotypes; see Table 3 for statistics. **(A.4)** Fast inactivation was a greater fraction of total inactivation in LES than striola. **(B)** Exemplars; ages, left to right, P312, P53, P287, P49, P40, P154. **(C)** % inactivation at  $30$  mV was much lower in  $Kv1.8^{-/-}$  than  $Kv1.8^{+/+}$  and  $Kv1.8^{+/+}$ , and lower in striola than LES and MES. Interaction between zone and genotype was significant (Table 3). **(D)** Exemplar currents and G-V curves from LES type II HCs show a copy number effect. **(D.1)** Currents for examples of the 3 genotypes evoked by steps from  $-124$  mV to  $+30$  mV fit with Eq. 3. **(D.2)** Averaged peak and steady-state conductance-voltage datapoints from LES cells ( $+/+$ ,  $n=37$ ;  $-/-$ ,  $n=20$ ) were fit with Boltzmann equations (Eq. 1) and normalized by  $g_{max}$  in (D.3). See Table 4 for statistics.

184 inactivates by over 30% within 200 ms.  $g_A$  was more prominent in extrastriolar zones, as reported (Holt et  
185 al. 1999, Weng and Correia 1999).

186 We compared the activation and inactivation time course and inactivation prominence for 200-ms  
187 steps from  $-124$  mV to  $\sim 30$  mV. Outward currents fit with Eq. 3 yielded fast inactivation time constants

188 ( $\tau_{\text{Inact, Fast}}$ ) of ~30 ms in LES (Fig. 3A.2).  $\tau_{\text{Inact, Fast}}$  was faster in LES than in MES or striola (Fig. 3A.3) and fast  
189 inactivation was a larger fraction of the total inactivation in LES than striola (~0.5 vs. 0.3, Fig. 3A.4).

190 To show voltage dependence of activation, we generated G-V curves for peak currents (sum of A-  
191 current and delayed rectifier) and steady-state currents measured at 200 ms, after  $g_A$  has mostly  
192 inactivated (Figure 3D.2).  $Kv1.8^{+/+}$  HCs had smaller currents than  $Kv1.8^{+/+}$  HCs, reflecting a smaller  $g_{\text{DR}}$  (Fig.  
193 3D) and faster fast inactivation (Fig. 3A.3). As discussed later, these effects may relate to effects of the  
194  $Kv1.8$  gene dosage on the relative numbers of different  $Kv1.8$  heteromers.

195 For  $Kv1.8^{+/+}$  and  $Kv1.8^{+/-}$  HCs, the voltage dependence as summarized by  $V_{\text{half}}$  and slope factor (S) was  
196 similar. Relative to  $g_{\text{SS}}$ ,  $g_{\text{Peak}}$  had a more positive  $V_{\text{half}}$  (~−21 vs. ~−26) and greater S (~12 vs. ~9, Fig. 3D,  
197 Table 4). Because  $g_{\text{Peak}}$  includes channels with and without fast inactivation, the shallower  $g_{\text{Peak}}$ -V curve  
198 may reflect a more heterogeneous channel population. Only  $g_{\text{Peak}}$  showed zonal variation, with more  
199 positive  $V_{\text{half}}$  in LES than striola (~−20 mV vs. ~−24 mV, Fig. 3D, Table 4). We later suggest that variable  
200 subunit composition may drive zonal variation in  $g_{\text{Peak}}$ .

201  **$Kv1.8^{-/-}$  type II HCs** from all zones were missing  $g_A$  and 30-50% of  $g_{\text{DR}}$  (Fig. 3B-D). The residual delayed  
202 rectifier (1.3 nS/pF) had a more positive  $V_{\text{half}}$  than  $g_{\text{DR}}$  in  $Kv1.8^{+/-,+/-}$  HCs (~−20 mV vs. ~−26 mV, Fig. 3D.2).  
203 We refer to the  $Kv1.8$ -dependent delayed rectifier component as  $g_{\text{DR}}(Kv1.8)$  and to the residual,  $Kv1.8$ -  
204 independent delayed rectifier component as  $g_{\text{DR}}(Kv7)$  because, as we show later, it includes  $Kv7$  channels.

205 [Supplemental Figure 3A](#) shows the development of  $Kv1.8$ -dependent and independent  $K_v$  currents in  
206 type II HCs with age from P5 to over P300. In  $Kv1.8^{+/-,+/-}$  type II HCs,  $g_A$  was present at all ages with a higher  
207 % inactivation after P18 than at P5-P10 (Suppl. Fig. 3A.4).  $g_{\text{Peak}}$  did not change much above P12 except for  
208 a compression of conductance density from P13 to P370 (partial correlation coefficient = −0.4, p = 2E-5,  
209 Suppl. Fig. 3A.3).

210 We saw small rapidly inactivating outward currents in a minority of  $Kv1.8^{-/-}$  type II HCs (23%, 7/30), all  
211 >P12 and extrastriolar (Suppl. Fig. 4). These currents overlapped with  $g_A$  in percent inactivation,  
212 inactivation kinetics, and activation voltage dependence but were very small. As discussed later, we  
213 suspect that these currents flow through homomers of inactivating  $K_v$  subunits that in control hair cells  
214 join with  $Kv1.8$  subunits and confer inactivation on the heteromeric conductance.

## 216 **$Kv1.8$ affects type II passive properties and responses to current steps.**

217 In type II HCs, absence of  $Kv1.8$  did not change  $V_{\text{rest}}$  (Fig. 4A.1) because  $g_A$  and  $g_{\text{DR}}$  both activate positive to  
218 rest, but significantly increased  $R_{\text{in}}$  and  $\tau_{\text{RC}}$  (Fig. 4A.2-A.3).

219 Positive current steps evoked an initial depolarizing transient in both  $Kv1.8^{+/+}$  and  $Kv1.8^{-/-}$  type II HCs,  
220 but the detailed time course differed (Fig. 4B). Both transient and steady-state responses were larger in  
221  $Kv1.8^{-/-}$ , consistent with their larger  $R_{\text{in}}$  values.

**Table 3.** Type II hair cell Kv currents: Activation and inactivation time course at +30 mV. Mean  $\pm$  SEM. g is effect size, Hedge's g. KWA is Kruskal-Wallis ANOVA.

| Zone    | Kv1.8 | $\tau_{\text{Act}}$ at 30 mV, ms<br><sup>a, b</sup> | $\tau_{\text{Inact, Fast}}$ at 30 mV, ms<br><sup>c, d</sup> | Fast inactivation prominence <sup>e</sup> | Inactivation %<br><sup>f, g</sup> | N cells | Age (median, range) |
|---------|-------|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-----------------------------------|---------|---------------------|
| LES     | +/+   | 2.11 $\pm$ 0.09                                     | 23 $\pm$ 3                                                  | 0.46 $\pm$ 0.03                           | 45 $\pm$ 2                        | 30      | 46, 14-312          |
|         | +/-   | 1.64 $\pm$ 0.09                                     | 15 $\pm$ 2                                                  | 0.53 $\pm$ 0.03                           | 51 $\pm$ 2                        | 27      | 29, 13-280          |
|         | -/-   | 4.4 $\pm$ 0.5                                       | NA                                                          | NA                                        | 25 $\pm$ 3                        | 21      | 128, 15-355         |
| MES     | +/+   | 2.8 $\pm$ 0.5                                       | 50 $\pm$ 10                                                 | 0.40 $\pm$ 0.04                           | 42 $\pm$ 3                        | 9       | 94, 22-296          |
|         | +/-   | 2.2 $\pm$ 0.2                                       | 90 $\pm$ 60                                                 | 0.42 $\pm$ 0.03                           | 47 $\pm$ 2                        | 15      | 24, 13-52           |
|         | -/-   | 10 $\pm$ 7                                          | NA                                                          | NA                                        | 29 $\pm$ 5                        | 10      | 84, 28-355          |
| Striola | +/+   | 2.7 $\pm$ 0.3                                       | 50 $\pm$ 10                                                 | 0.31 $\pm$ 0.07                           | 39 $\pm$ 3                        | 5       | 45, 40-287          |
|         | +/-   | 2.9 $\pm$ 0.4                                       | 300 $\pm$ 200                                               | 0.3 $\pm$ 0.06                            | 28 $\pm$ 2                        | 5       | 19, 14-30           |
|         | -/-   | 7 $\pm$ 2                                           | NA                                                          | NA                                        | 22 $\pm$ 2                        | 6       | 202, 29-298         |

<sup>a</sup> -/- vs +/+: KWA, p = 0.0048, g 0.6; -/- vs +/-: KWA, p = 2.3E-7, g 0.6

<sup>b</sup> Striola vs LES: KWA, p = 5.7E-4, g 1.0

<sup>c</sup> +/- vs +/+: KWA, p = 0.027, g 0.2

<sup>d</sup> LES vs MES: KWA, p = 0.0018, g 0.3; LES vs Striola: KWA, p = 1.9E-4, g 0.8

<sup>e</sup> LES vs Striola: 2-way ANOVA, p = 0.0041, g 0.7

<sup>f</sup> -/- vs +/+: 2-way ANOVA, p < 1E-9, g 1.7; -/- vs +/-: 2-way ANOVA, p < 1E-9, g 1.8

<sup>g</sup> Striola vs LES: 2-way ANOVA, p = 3.4E-5, g 0.9; Striola vs MES: 2-way ANOVA, p = 0.0011, g 1.0; Interaction between genotype and Zone: 2-way ANOVA, p = 0.026

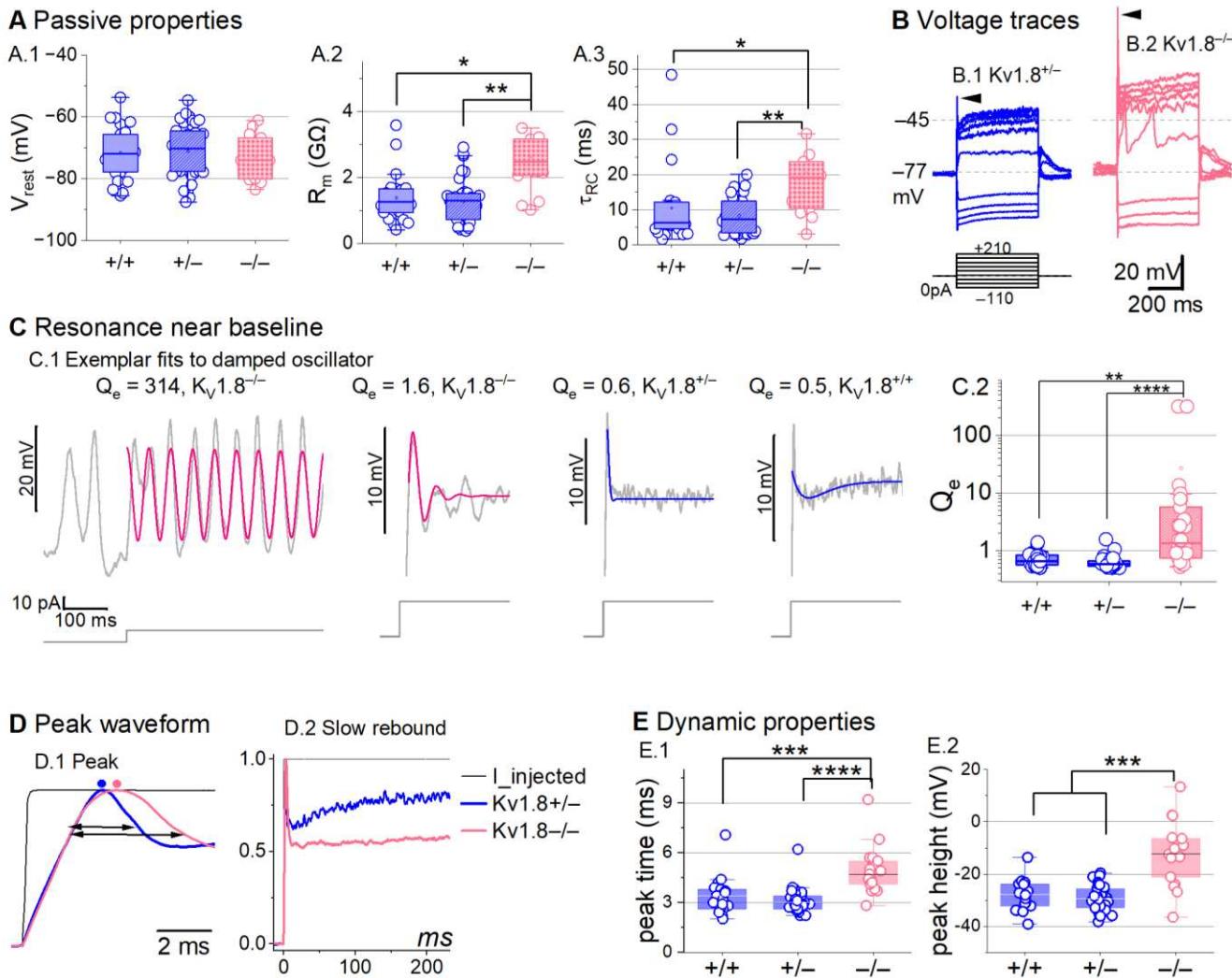
**Table 4.** Type II hair cell Kv currents: Activation voltage dependence. Mean  $\pm$  SEM. g is effect size, Hedge's g. KWA is Kruskal-Wallis ANOVA.

| Zone    | Kv1.8 | Peak $V_{1/2}$ , mV <sup>a</sup> | Peak S, mV<br><sup>b, c</sup> | A-type<br>$g_{\text{max}}/C_m$ ,<br>nS/pF <sup>d</sup> | SS $V_{\text{half}}$ , mV <sup>e</sup> | SS S, mV <sup>f</sup> | SS $g_{\text{max}}/C_m$ ,<br>nS/pF <sup>g, h</sup> | N cells | Age (median, range) |
|---------|-------|----------------------------------|-------------------------------|--------------------------------------------------------|----------------------------------------|-----------------------|----------------------------------------------------|---------|---------------------|
| LES     | +/+   | -19.8 $\pm$ 0.6                  | 11.8 $\pm$ 0.4                | 4.0 $\pm$ 0.3                                          | -25.0 $\pm$ 0.5                        | 8.7 $\pm$ 0.3         | 7.1 $\pm$ 0.8                                      | 37      | 46, 14-312          |
|         | +/-   | -19.8 $\pm$ 0.8                  | 12.8 $\pm$ 0.4                | 3.8 $\pm$ 0.3                                          | -26.8 $\pm$ 0.8                        | 8.7 $\pm$ 0.3         | 4.9 $\pm$ 0.4                                      | 35      | 29, 13-280          |
|         | -/-   | -18 $\pm$ 1                      | 11.7 $\pm$ 0.4                | 0.37 $\pm$ 0.05                                        | -19 $\pm$ 1                            | 12.1 $\pm$ 0.5        | 1.8 $\pm$ 0.2                                      | 20      | 128, 15-355         |
| MES     | +/+   | -22 $\pm$ 1                      | 11 $\pm$ 0.7                  | 4.1 $\pm$ 0.7                                          | -26 $\pm$ 1                            | 8.3 $\pm$ 0.5         | 9 $\pm$ 1                                          | 11      | 94, 22-296          |
|         | +/-   | -21 $\pm$ 1                      | 11.8 $\pm$ 0.4                | 3.6 $\pm$ 0.5                                          | -27 $\pm$ 1                            | 9.0 $\pm$ 0.3         | 5.9 $\pm$ 0.7                                      | 16      | 24, 13-52           |
|         | -/-   | -19 $\pm$ 1                      | 10.8 $\pm$ 0.6                | 0.6 $\pm$ 0.1                                          | -20 $\pm$ 1                            | 10.7 $\pm$ 0.7        | 2.5 $\pm$ 0.3                                      | 15      | 84, 28-355          |
| Striola | +/+   | -24 $\pm$ 1                      | 9.6 $\pm$ 0.5                 | 5 $\pm$ 1                                              | -26.6 $\pm$ 0.9                        | 8.2 $\pm$ 0.4         | 12 $\pm$ 1                                         | 7       | 45, 40-287          |
|         | +/-   | -25 $\pm$ 2                      | 9.4 $\pm$ 0.4                 | 2.6 $\pm$ 0.6                                          | -28 $\pm$ 2                            | 8.2 $\pm$ 0.3         | 10 $\pm$ 2                                         | 6       | 19, 14-30           |
|         | -/-   | -21.3 $\pm$ 0.9                  | 10.3 $\pm$ 0.5                | 0.7 $\pm$ 0.1                                          | -21.7 $\pm$ 0.8                        | 10.5 $\pm$ 0.6        | 3.9 $\pm$ 0.5                                      | 8       | 202, 29-298         |

<sup>a</sup> Striola vs LES: 2-way ANOVA, p = 0.00116, g 0.9

<sup>b</sup> Striola vs MES: 2-way ANOVA, p = 0.016, g 0.8; Striola vs LES: 2-way ANOVA, p = 7.5E-6, g 1.2

<sup>c</sup> -/- vs +/+: 2-way ANOVA, p = 0.036, g 0.5


<sup>d</sup> -/- vs +/+: Welch ANOVA, p < 1E-9, g 2.3; -/- vs +/-: Welch ANOVA, p < 1E-9, g 2.3

<sup>e</sup> -/- vs +/+: 2-way ANOVA, p < 1E-9, g 1.4; -/- vs +/-: 2-way ANOVA, p < 1E-9, g 1.6

<sup>f</sup> -/- vs +/+: 2-way ANOVA, p < 1E-9, g 1.4; -/- vs +/-: 2-way ANOVA, p = 4.5E-7, g 1.1

<sup>g</sup> -/- vs +/+: Welch ANOVA, p < 1E-9, g 1.6; -/- vs +/-: Welch ANOVA, p < 1E-9, g 1.3; +/+ vs +/-: Welch ANOVA, p = 0.007, g 1.6

<sup>h</sup> Striola vs LES: 1-way ANOVA, p = 0.001, g 0.9); Striola vs MES: 1-way ANOVA, p = 0.01, g 0.8



**Figure 4. Kv1.8<sup>−/−</sup> type II hair cells had larger, slower voltage responses and more electrical resonance.** (A) Passive membrane properties near resting membrane potential: A.1) Resting potential, R<sub>in</sub> (A.2) and τ<sub>RC</sub> (A.3) were obtained from single exponential fits to voltage responses < 15 mV. See Table 5 for statistics. (B) Exemplar voltage responses to iterated current steps (bottom) illustrate key changes in gain and resonance with Kv1.8 knockout. (B.1) Kv1.8<sup>+/−</sup> type II HC (P24, LES) and (B.2) Kv1.8<sup>−/−</sup> type II HC (P53, LES). Arrowheads, depolarizing transients. (C) Range of resonance illustrated for Kv1.8<sup>−/−</sup> type II HCs (left, pink curves fit to Eq. 5) and controls (right, blue fits). (C.1) Resonant frequencies, left to right: 19.6, 18.4, 34.4, 0.3 Hz. Leftmost cell resonated spontaneously (before step). (C.2) Tuning quality (Q<sub>e</sub>; Eq. 6) was higher for Kv1.8<sup>−/−</sup> type II HCs (KWA, p = 0.0064 vs. Kv1.8<sup>+/+</sup>; p = 7E-8 vs. Kv1.8<sup>+/−</sup>). (D) Kv1.8<sup>−/−</sup> type II HCs had higher, slower peaks and much slower rebound potentials in response to large (170-pA) current steps. (D.1) Normalized to show initial depolarizing transient (filled circles, times of peaks; horizontal arrows, peak width at half-maximum). (D.2) Longer time scale to highlight how null mutation reduced post-transient rebound. (E) In Kv1.8<sup>−/−</sup> HCs, depolarizing transients evoked by a +90-pA step were slower to peak (E.1) and (E.2) larger.

224

225      Absence of Kv1.8 increased the incidence of sharp electrical resonance in type II HCs. Electrical  
226      resonance, which manifests as ringing responses to current steps, can support receptor potential tuning  
227      (Ashmore, 1983; Fettiplace, 1987; Hudspeth and Lewis, 1988; Ramanathan and Fuchs, 2002). Larger R<sub>in</sub>  
228      values made Kv1.8<sup>−/−</sup> type II HCs more prone to electrical resonance; Figure 4C.1 shows a striking example.  
229      Median resonance quality (Q<sub>e</sub>, sharpness of tuning) was greater in Kv1.8<sup>−/−</sup> (1.33, n=26) than Kv1.8<sup>+/+</sup> (0.66,  
230      n=23) or Kv1.8<sup>+/−</sup> (0.59, n=44) type II HCs.

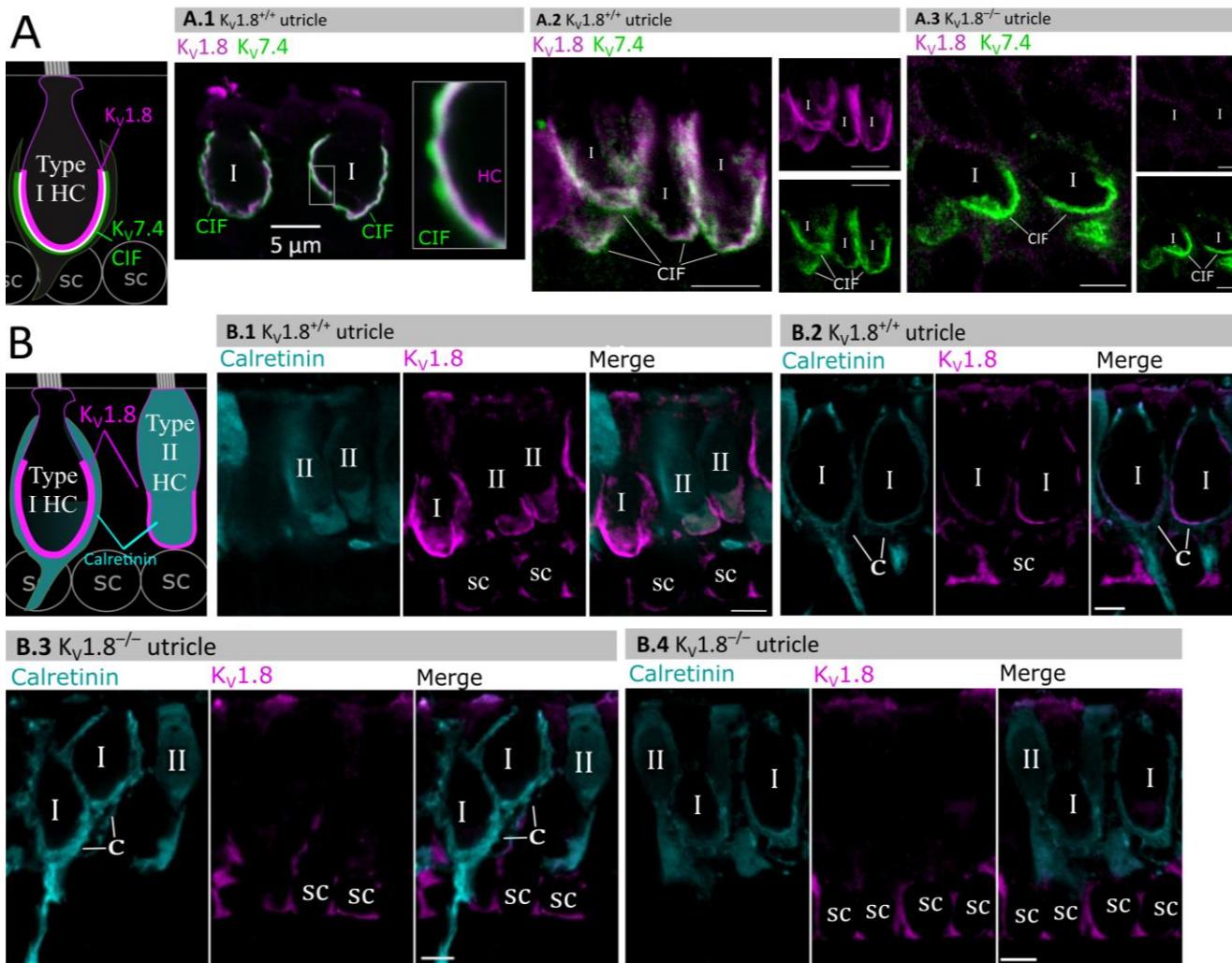
**Table 5. Type II hair cell passive membrane properties. Mean  $\pm$  SEM (number of cells). g is effect size, Hedge's g. KWA is Kruskal-Wallis ANOVA.**

| Zone         | Kv1.8 | V <sub>rest</sub> , mV | R <sub>input</sub> , GΩ <sup>a</sup> | τ <sub>RC</sub> , ms <sup>b</sup> | Peak height, mV, 170 <sup>c</sup> | Peak time, ms <sup>d</sup> | C <sub>m</sub> , pF | Age (median, range) |
|--------------|-------|------------------------|--------------------------------------|-----------------------------------|-----------------------------------|----------------------------|---------------------|---------------------|
| Extrastriola | +/+   | -71 ± 2 (19)           | 1.4 ± 0.2 (16)                       | 11 ± 3 (16)                       | -20 ± 2 (15)                      | 2.5 ± 0.2 (15)             | 4.7 ± 0.2 (50)      | 45, 16-312          |
|              | +/-   | -71 ± 2 (34)           | 1.2 ± 0.1 (27)                       | 9 ± 1 (27)                        | -20 ± 1 (30)                      | 2.44 ± 0.08 (30)           | 4.6 ± 0.1 (52)      | 27, 13-280          |
|              | -/-   | -76 ± 2 (9)            | 2.3 ± 0.3 (7)                        | 16 ± 3 (7)                        | 2 ± 6 (7)                         | 3.6 ± 0.3 (7)              | 4.6 ± 0.2 (35)      | 53, 15-154          |
| Striola      | +/+   | -73.1 ± 1.0 (6)        | 1.4 ± 0.1 (6)                        | 9 ± 1 (6)                         | -20 ± 2 (5)                       | 2.7 ± 0.1 (5)              | 4.6 ± 0.2 (7)       | 45, 40-224          |
|              | +/-   | -71 ± 3 (5)            | 1.4 ± 0.3 (6)                        | 7 ± 2 (6)                         | -20 ± 2 (6)                       | 2.3 ± 0.1 (6)              | 4.8 ± 0.2 (6)       | 19, 19-30           |
|              | -/-   | -68 ± 2 (6)            | 3.0 ± 0.7 (6)                        | 26 ± 10 (6)                       | 2 ± 7 (4)                         | 4 ± 1 (4)                  | 4.4 ± 0.3 (7)       | 178, 29-298         |

<sup>a</sup>-/- vs +/+: KWA, p = 0.015, g 1.2; -/- vs +/-: KWA, p = 0.002, g 1.5

<sup>b</sup>-/- vs +/+: KWA, p = 0.016, g 0.7; -/- vs +/-: KWA, p = 0.008, g 1.2

<sup>c</sup>-/- vs +/+: KWA, p = 0.006, g 2.1; -/- vs +/-: KWA, p = 2E-4, g 2.6


<sup>d</sup>-/- vs +/+: 2-way ANOVA, p < 1E-9, g 1.3; -/- vs +/-: 2-way ANOVA, p < 1E-9, g 1.9

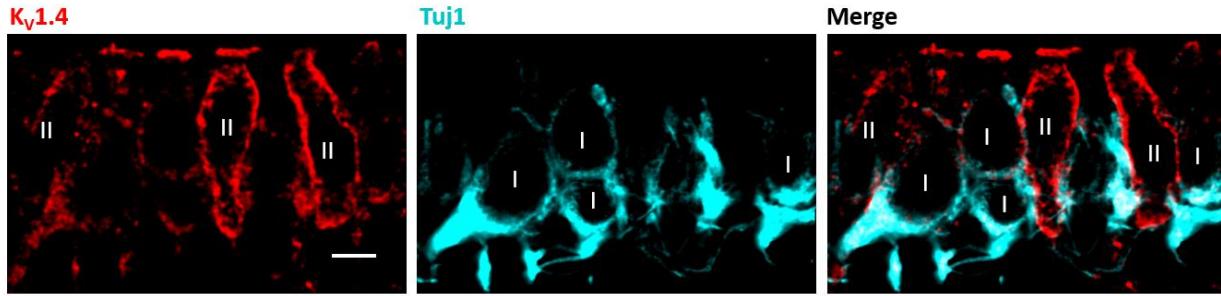
231                   Kv1.8 affected the time course of the initial peak in response to much larger current injections ([Fig. 4D-E](#)). Fast activation of g<sub>A</sub> in control type II HCs rapidly repolarizes the membrane and then inactivates, 232 allowing the constant input current to progressively depolarize the cell, producing a slow rebound ([Fig 4D.2](#)). This behavior has the potential to counter MET adaptation (Vollrath and Eatock, 2003). 233  
234  
235

### 236                   **Kv1.8 immunolocalized to basolateral membranes of both type I and II HCs**

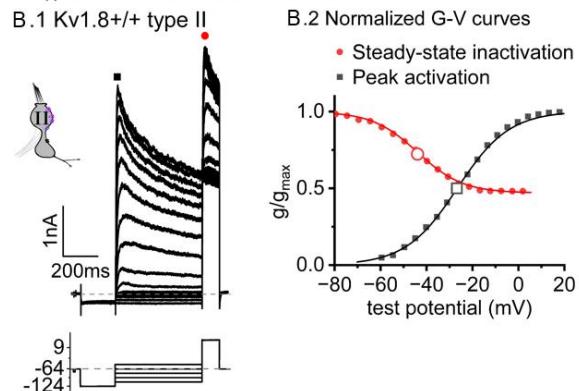
237                   If Kv1.8 is a pore-forming subunit in the Kv1.8-dependent conductances g<sub>K,L</sub>, g<sub>A</sub>, and g<sub>DR</sub>, it should localize 238 to hair cell membranes. [Figure 5](#) compares Kv1.8 immunoreactivity in Kv1.8<sup>+/+</sup> and Kv1.8<sup>-/-</sup> utricles, 239 showing specific immunoreactivity along the basolateral membranes of both hair cell types in Kv1.8<sup>+/+</sup> 240 utricles. To identify hair cell type and localize the hair cell membrane, we used antibodies against Kv7.4 241 (KCNQ4), an ion channel densely expressed in the calyceal “inner-face” membrane next to the synaptic 242 cleft (Hurley et al., 2006; Lysakowski et al., 2011), producing a cup-like stain around type I HCs ([Fig. 5A](#)). 243 Kv1.8 immunoreactivity was present in hair cell membrane apposing Kv7.4-stained calyx inner face in 244 Kv1.8<sup>+/+</sup> utricles ([Fig. 5A.1, A.2](#)) and not in Kv1.8<sup>-/-</sup> utricles ([Fig. 5A.3](#)).  
245

246                   In other experiments, we used antibodies against calretinin (Calb2), a cytosolic calcium binding protein 247 expressed by many type II HCs and also by striolar calyx-only afferents (Desai et al., 2005; Lysakowski et al., 2011) ([Fig. 5B](#)). A hair cell is type II if it is calretinin-positive ([Fig. 5B.1](#)) or if it lacks a Kv7.4-positive or




**Figure 5. Type I and type II HC basolateral membranes show specific immunoreactivity to Kv1.8 antibody (magenta).** Antibodies for Kv7.4 (A, green) and calretinin (B, cyan) were used as counterstains for calyx membrane (Kv7.4), type II HC cytoplasm (calretinin) and cytoplasm of striolar calyx-only afferents (calretinin). (A) *Left*, Cartoon showing Kv7.4 on the calyx inner face membrane (CIF) and Kv1.8 on the type I HC membrane. SC, supporting cell nuclei. A.1-3, Adult mouse utricle sections. Kv7.4 antibody labeled calyces on two Kv1.8-positive type I HCs (A.1), four Kv1.8-positive type I HCs (A.2), and two Kv1.8-negative type I HCs from a Kv1.8<sup>-/-</sup> mouse (A.3). (B) *Left*, Cartoon showing cytoplasmic calretinin stain in calyx-only striolar afferents and most type II HCs, and Kv1.8 on membranes of both HC types. In wildtype utricles, Kv1.8 immunolocalized to basolateral membranes of type I and II HCs (B.1). Kv1.8 immunolocalized to type I HCs in striola (B.2). Staining of supporting cell (SC) membranes by Kv1.8 antibody was non-specific, as it was present in Kv1.8<sup>-/-</sup> tissue (B.3, B.4).

248 calretinin-positive calyceal cup (Fig. 5A.2, 5B.3, rightmost cells). Hair cell identification was confirmed with  
 249 established morphological indicators: for example, type II HCs tend to have basolateral processes (feet)  
 250 (Pujol et al., 2014) and, in the extrastriola, more apical nuclei than type I HC.


251 Previously, Carlisle et al. (2012) reported Kv1.8-like immunoreactivity in many cell types in the inner  
 252 ear. In contrast, Lee et al. (2013) found that gene expression reporters indicated expression only in hair  
 253 cells and some supporting cells. Here, comparison of control and null tissue showed selective expression  
 254 of HC membranes, and that some supporting cell staining is non-selective.

255

**A** Kv1.4 immunolocalizes to type II HCs



**B**  $g_A$  inactivation voltage dependence



**Figure 6. Kv1.4 subunits may contribute to  $g_A$  in extrastriolar type II HCs.**

(A) Immunostaining of adult rat utricular epithelium with Kv1.4 antibody and TUJ-1, which labels afferent terminals, shows strong Kv1.4-like immunoreactivity on the membranes of 2 type II HCs. Scale bar, 5  $\mu$ m.

(B) Voltage dependence of  $g_A$ 's steady-state inactivation ( $h_\infty$  curve) and peak activation are consistent with Kv1.4 heteromers. Kv1.8<sup>+/+,+/-</sup> type II HCs,  $n=11$ , P40-P210, median P94. (B.1) The inactivation voltage protocol, bottom. Tail current is a function of the voltage dependence of accumulated steady-state inactivation. 100  $\mu$ M ZD7288 in bath prevented contamination by HCN current. (B.2) Overlapping normalized activation and inactivation ("h-infinity") G-V curves for data in B.1 at time points shown: peak currents (black squares, activation) and tail currents (red circles, inactivation). Curves, Boltzmann fits (Eq. 1). Average fit parameters for inactivation:  $V_{1/2}$ ,  $-42 \pm 2$  mV ( $n=11$ );  $S$ ,  $11 \pm 1$  mV. Activation:  $V_{1/2}$ ,  $-23 \pm 1$  mV ( $n=11$ );  $S$ ,  $11.2 \pm 0.4$  mV.

**Kv1.4 may also contribute to  $g_A$**

Results with the Kv1.8 knockout suggest that type II hair cells have an inactivating Kv1 conductance that includes Kv1.8 subunits. Kv1.8, like most Kv1 subunits, is not inactivating as a heterologously expressed homomer (Lang et al., 2000; Ranjan et al., 2019; Dierich et al., 2020), nor are the Kv1.8-dependent channels in type I HCs, as we show, and cochlear inner hair cells (Dierich et al., 2020). Kv1 subunits without intrinsic inactivation can produce rapidly inactivating currents by associating with Kv $\beta$ 1 (KCNB1) or Kv $\beta$ 3 subunits. Kv $\beta$ 1 is present in type II HCs alongside Kv $\beta$ 2 (McInturff et al., 2018; Jan et al., 2021; Orvis et al., 2021), which does not confer rapid inactivation (Dwenger et al., 2022).

An alternative possibility is that in type II HCs, Kv1.8 subunits heteromultimerize with Kv1.4 subunits – the only Kv1 subunits which, when expressed as a homomer, have complete N-type (fast) inactivation (Stühmer et al., 1989). Multiple observations support this possibility. Kv1.4 has been linked to  $g_A$  in pigeon type II HCs (Correia et al., 2008) and is the second-most abundant Kv1 transcript in mammalian vestibular HCs, after Kv1.8 (Scheffer et al., 2015). Kv1.4 is expressed in type II HCs but not type I HCs (McInturff et

269 al., 2018; Orvis et al., 2021), and is not found in striolar HCs (Jan et al., 2021; Orvis et al., 2021), where  
270 even in type II HCs, inactivation is slower and less extensive ([Fig. 3A](#)).

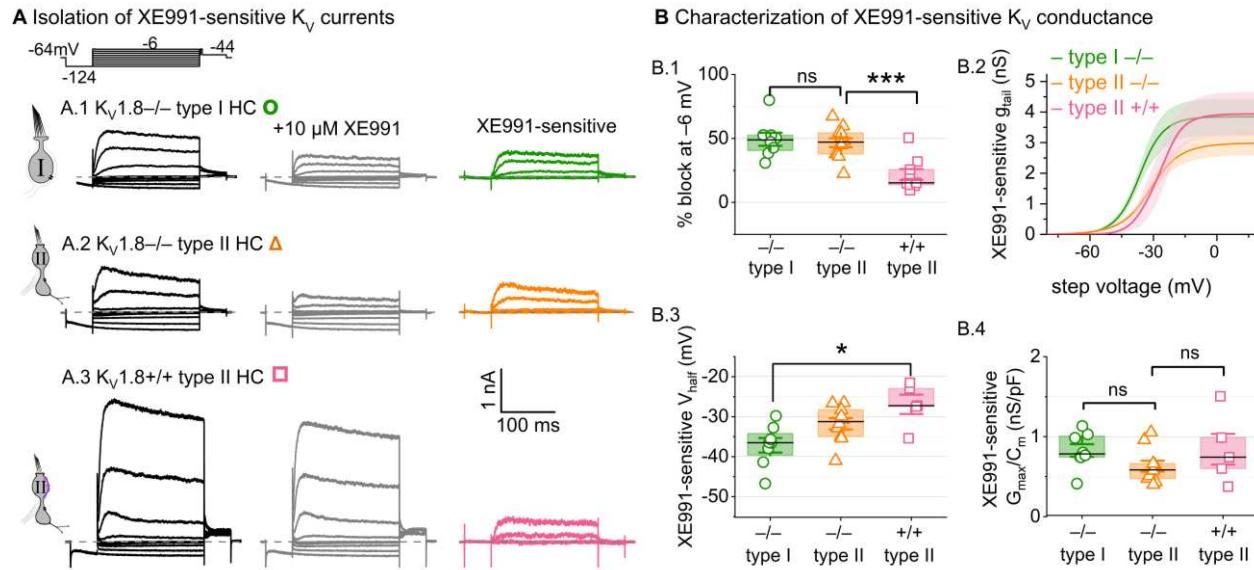
271 In  $Kv1.8^{+/+,-}$  type II HCs, the time course ([Fig. 3A](#),  $\tau_{Fast,Inac}$  of  $\sim 30$  ms +30 mV) and voltage dependence  
272 of inactivation of  $g_A$  ( $V_{half} \sim -41$  mV, [Fig. 6B.2](#)), are consistent with heterologously expressed heteromers of  
273  $Kv1.4$  with  $Kv1.x$  and/or  $Kv\beta 1$  (Imbrici et al., 2006; Al-Sabi et al., 2011). In further support, we observed  
274  $Kv1.4$ -like immunoreactivity along the basolateral membranes of extrastriolar type II HCs in rat utricles  
275 ([Fig. 6A](#)).

276

### 277 **$Kv7$ channels contribute a small delayed rectifier in type I and type II hair cells**

278 In  $Kv1.8^{-/-}$  HCs, absence of  $I_{K,L}$  and  $I_A$  revealed smaller delayed rectifier  $K^+$  currents that, unlike  $I_{K,L}$ , activated  
279 positive to resting potential and, unlike  $I_A$ , lacked fast inactivation. Candidate channels include members  
280 of the  $Kv7$  (KCNQ, M-current) family, which have been identified previously in rodent vestibular HCs  
281 (Kharkovets et al., 2000; Rennie et al., 2001; Hurley et al., 2006; Scheffer et al., 2015).

282 We test for  $Kv7$  contributions in  $Kv1.8^{-/-}$  type I HCs,  $Kv1.8^{-/-}$  type II HCs, and  $Kv1.8^{+/+,-}$  type II HCs of  
283 multiple ages by applying XE991 at 10  $\mu M$  ([Fig. 7A](#)), a dose selective for  $Kv7$  channels (Brown et al., 2002)  
284 and close to the  $IC_{50}$  (Alexander et al., 2019). In  $Kv1.8^{-/-}$  HCs of both types, 10  $\mu M$  XE991 blocked about  
285 half of the residual  $Kv$  conductance ([Fig. 7B.1](#)), consistent with  $Kv7$  channels conducting most or all of the  
286 non- $Kv1.8$  delayed rectifier current. In all tested HCs (P8-355, median P224), the XE991-sensitive  
287 conductance did not inactivate substantially within 200 ms at any voltage, consistent with  $Kv7.2$ , 7.3, 7.4,  
288 and 7.5 currents (Wang, 1998; Kubisch et al., 1999; Schroeder et al., 2000; Jensen et al., 2007; Xu et al.,  
289 2007). We refer to this component as  $g_{DR}(Kv7)$ . The voltage dependence and Gmax density ( $G_{max}/C_m$ ) of  
290  $g_{DR}(Kv7)$  were comparable across HC types and genotypes (Figure 7B.2-4).


291 These results are consistent with similar  $Kv7$  channels contributing a relatively small delayed rectifier  
292 in both HC types. In addition, the similarity of XE991-sensitive currents of  $Kv1.8^{+/+}$  and  $Kv1.8^{-/-}$  type II HCs  
293 indicates that knocking out  $Kv1.8$  did not cause general effects on ion channel expression. We did not test  
294 XE991 on  $Kv1.8^{+/+,-}$  type I HCs because  $g_{K,L}$  runs down in ruptured patch recordings (Rüsch and Eatock,  
295 1996a; Chen and Eatock, 2000; Hurley et al., 2006), which could contaminate the XE991-sensitive  
296 conductance obtained by subtraction.

297 In one striolar  $Kv1.8^{-/-}$  type I HC, XE991 also blocked a small conductance that activated negative to  
298 rest ([Suppl. Fig. 5A-B](#)). This conductance ( $V_{half} \sim -100$  mV, [Suppl. Fig. 5C](#)) was detected only in  $Kv1.8^{-/-}$   
299 type I HCs from the striola (5/23 vs. 0/45 extrastriolar). The  $V_{half}$  and  $\tau_{deactivation}$  at  $-124$  mV were similar to  
300 values reported for  $Kv7.4$  channels in cochlear HCs (Wong et al., 2004; Dierich et al., 2020). This very  
301 negatively activating  $Kv7$  conductance coexisted with the larger less negatively activating  $Kv7$  conductance  
302 ([Suppl. Fig. 5C](#)) and was too small (<0.5 nS/pF) to contribute significantly to  $g_{K,L}$  ( $\sim 10-100$  nS/pF, Fig. 1D).

303

### 304 **Other channels**

305 While our data are consistent with  $Kv1.8$ - and  $Kv7$ - containing channels carrying most of the outward-  
306 rectifying current in mouse utricular hair cells, there is evidence in other preparations for additional  
307 channels, including  $Kv11$  (KCNH, Erg) channels in rat utricular type I hair cells (Hurley et al., 2006) and BK  
308 (KCNMA1) channels in rat utricle and rat and turtle semicircular canal hair cells (Schweizer et al., 2009;  
309 Contini et al., 2020).



**Figure 7. A  $Kv7$ -selective blocker, XE991, reduced residual delayed rectifier currents in  $Kv1.8^{-/-}$  type I and II HCs.**

(A) XE991 (10  $\mu$ M) partly blocked similar delayed rectifier currents in type I and type II  $Kv1.8^{-/-}$  HCs and a type II  $Kv1.8^{+/+}$  HC.

(B) Properties of XE991-sensitive conductance,  $g_{DR}(Kv7)$ . (B.1) % Block of steady-state current. (B.2) tail G-V curves for  $Kv1.8^{-/-}$  type I HCs (n=8),  $Kv1.8^{-/-}$  type II HCs (9), and  $Kv1.8^{+/+}$  type II HCs (5); mean  $\pm$  SEM. (B.3)  $V_{half}$  was less negative in  $Kv1.8^{+/+}$  type II than  $Kv1.8^{-/-}$  type I HC ( $p = 0.01$ , KWA). (B.4) Conductance density was similar in all groups (ANOVA, non-significant at 40% power (*left*), 20% power (*right*)).

310 BK is expressed in mouse utricular hair cells (McInturff et al., 2018; Jan et al., 2021; Orvis et al., 2021).  
 311 However,  $Ca^{2+}$ -dependent currents have not been observed in mouse utricular HCs, and we found little to  
 312 no effect of the BK-channel blocker iberiotoxin at a dose (100 nM) well beyond the  $IC_{50}$ : percent blocked  
 313 at  $-30$  mV was  $2 \pm 6\%$  (3  $Kv1.8^{-/-}$  type I HCs);  $1 \pm 5\%$  (5  $Kv1.8^{+/+,-/-}$  type II HCs); 7% and 14% (2  $Kv1.8^{-/-}$  type  
 314 II HCs). We also did not see N-shaped I-V curves typical of many  $Ca^{2+}$ -dependent  $K^+$  currents. In our  
 315 ruptured-patch recordings,  $Ca^{2+}$ -dependent BK currents and erg channels may have been eliminated by  
 316 wash-out of the hair cells' small  $Ca_V$  currents (Bao et al., 2003) or cytoplasmic second messengers (Hurley  
 317 et al., 2006).

318 To check whether the constitutive  $Kv1.8$  knockout has strong non-specific effects on channel  
 319 trafficking, we examined the summed HCN and inward rectifier currents ( $I_H$  and  $I_{Kir}$ ) at  $-124$  mV, and found  
 320 them similar across genotypes (Suppl. Fig. 6). In the process, we noted zonal differences in  $I_H$  and  $I_{Kir}$  that  
 321 have not been reported in hair cells. In type I HCs from both control and null utricles,  $I_H$  and  $I_{Kir}$  were less  
 322 prevalent in striola than extrastriola, and, when present, the combined inward current was smaller (Suppl.  
 323 Fig. 6B).

324  
 325  
 326  
 327  
 328  
 329

330

## Discussion

331

We have shown that constitutive knockout of Kv1.8 eliminated  $g_{K,L}$  in type I HCs, and  $g_A$  and much of  $g_{DR}$  in type II HCs. Kv1.8 immunolocalized specifically to the basolateral membranes of type I and II HCs. We conclude that Kv1.8 is a pore-forming subunit of  $g_{K,L}$ ,  $g_A$ , and part of  $g_{DR}$  [ $g_{DR}(Kv1.8)$ ]. We provide evidence that fast inactivation of  $g_A$  may arise from heteromultimerization of non-inactivating Kv1.8 subunits and inactivating Kv1.4 subunits. Finally, we showed that a substantial component of the residual delayed rectifier current in both type I and type II HCs comprises Kv7 channels.

337

Kv1.8 is expressed in hair cells from mammalian cochlea (Dierich et al., 2020), avian utricle (Scheibinger et al., 2022), and zebrafish (Erickson and Nicolson, 2015). Our work suggests that in anamniotes, which lack type I cells and  $g_{K,L}$ , Kv1.8 contributes to  $g_A$  and  $g_{DR}$ , which are widespread in vertebrate HCs (reviewed in [Meredith and Rennie, 2016](#)). Kv1.8 expression has not been detected in rodent brain but is reported in the pacemaker nucleus of weakly electric fish (Smith et al., 2018).

342

### Kv1.8 subunits may form homomultimers to produce $g_{K,L}$ in type I hair cells

343

Recent single-cell expression studies on mouse utricles (McInturff et al., 2018; Jan et al., 2021; Orvis et al., 2021) have detected just one Kv1 subunit, Kv1.8, in mouse type I HCs. Given that Kv1.8 can only form multimers with Kv1 family members, and given that  $g_{K,L}$  channels are present at very high density (~150 per  $\mu\text{m}^2$  in rat type I, [Chen and Eatock, 2000](#)), it stands to reason that most or all of the channels are Kv1.8 homomers. Other evidence is consistent with this proposal.  $g_{K,L}$  (Rüscher and Eatock, 1996a) and heterologously expressed Kv1.8 homomers in oocytes (Lang et al., 2000) are non-inactivating and blocked by millimolar  $\text{Ba}^{2+}$  and 4-aminopyridine and >10 mM TEA. Unlike channels with Kv1.1, Kv1.2, and Kv1.6 subunits,  $g_{K,L}$  is not sensitive to 10 nM  $\alpha$ -dendrotoxin (Rüscher and Eatock, 1996a).  $g_{K,L}$  and heterologously expressed Kv1.8 channels have similar single-channel conductances (~20 pS for  $g_{K,L}$  at positive potentials, Chen and Eatock, 2000; 11 pS in oocytes, Lang et al., 2000).  $g_{K,L}$  is inhibited—or positively voltage-shifted—by cGMP (Behrend et al., 1997; Chen and Eatock, 2000), presumably via the C-terminal cyclic nucleotide binding domain of Kv1.8.

356

A major novel property of  $g_{K,L}$  is that it activates 30–60 mV negative to type II Kv1.8 conductances and most other low-voltage-activated Kv channels (Ranjan et al., 2019). The very negative activation range is a striking difference between  $g_{K,L}$  and known homomeric Kv1.8 channels. Heterologously expressed homomeric Kv1.8 channels have an activation  $V_{\text{half}}$  of -10 to 0 mV (*X. laevis* oocytes, [Lang et al., 2000](#); CHO cells, [Dierich et al., 2020](#)). In cochlear inner HCs, currents attributed to Kv1.8 (by subtraction of other candidates) have a near-zero activation  $V_{\text{half}}$  (-4 mV, [Dierich et al., 2020](#)).

362

Possible factors in the unusually negative voltage dependence of  $g_{K,L}$  include:

363

1) *elevation of extracellular  $K^+$*  by the enveloping calyceal terminal, unique to type I HCs (Lim et al., 2011; Contini et al., 2012; Spaiardi et al., 2020; Govindaraju et al., 2023). High  $K^+$  increases conductance through  $g_{K,L}$  channels (Contini et al., 2020), perhaps through  $K^+$ -mediated relief of C-type inactivation (López-Barneo et al., 1993; Baukrowitz and Yellen, 1995). We note, however, that  $g_{K,L}$  is open at rest even in neonatal mouse utricles cultured without innervation (Rüscher et al., 1998) and persists in dissociated type I HCs (Chen and Eatock, 2000; Hurley et al., 2006).

369

2) *The high density of  $g_{K,L}$*  (~50 nS/pF in striolar Kv1.8<sup>+/+</sup> HCs) implies close packing of channels, possibly represented by particles (12–14 nm) seen in freeze-fracture electron microscopy of the type I HC membrane (Gulley and Bagger-Sjöbäck, 1979; Sousa et al., 2009). Such close channel packing might

372 hyperpolarize *in situ* voltage dependence of  $g_{K,L}$  as proposed for Kv7.4 channels in outer hair cells (Perez-  
373 Flores et al., 2020).

374 *3) Modulation by accessory subunits.* Type I HCs express Kv $\beta$ 1 (McInturff et al., 2018; Orvis et al., 2021),  
375 an accessory subunit that can confer fast inactivation and hyperpolarize activation  $V_{half}$  by  $\sim$ 10 mV. Kv $\beta$ 1  
376 might interact with Kv1.8 to shift voltage dependence negatively. Arguments against this possibility  
377 include that  $g_{K,L}$  lacks fast inactivation (Rüscher and Eatock, 1996a; Hurley et al., 2006; Spaiardi et al., 2017)  
378 and that cochlear inner hair cells co-express Kv1.8 and Kv $\beta$ 1 (Liu et al., 2018) but their Kv1.8 conductance  
379 has a near-0  $V_{half}$  (Dierich et al., 2020).

380 **Kv1.8 subunits may heteromerize with variable numbers of inactivating Kv1.4  
381 subunits to produce  $g_A$  and Kv1.8-dependent  $g_{DR}$  in type II HCs**

382 The Kv1.8-dependent conductances of type II HCs vary in their fast and slow inactivation. In not showing  
383 fast inactivation (Lang et al., 2000; Ranjan et al., 2019; Dierich et al., 2020), heterologously expressed  
384 Kv1.8 subunits resemble most other Kv1 family subunits, with the exception of Kv1.4 (for comprehensive  
385 review, see Ranjan et al., 2019). Kv1.4 is a good candidate to provide fast inactivation based on  
386 immunolocalization and voltage dependence (Figs. 4, 6). We suggest that  $g_A$  and  $g_{DR}(Kv1.8)$  are Kv1.8-  
387 containing channels that vary in Kv1.8:Kv1.4 stoichiometry, with possible additional variation in Kv $\beta$ 2 and  
388 Kv $\beta$ 1 accessory subunits.

389 Kv1.4-Kv1.8 heteromeric assembly could account for several related observations. The faster  $\tau_{Inact, Fast}$  in  
390 Kv1.8 $^{+/-}$  relative to Kv1.8 $^{+/+}$  type II HCs (Fig. 3A.3, Suppl. Fig. 2A.1) could reflect an increased ratio of Kv1.4  
391 to Kv1.8 subunits and therefore more N-terminal inactivation domains per heteromeric channel. Zonal  
392 variation in the extent and speed of N-type inactivation (Fig. 3A) might arise from differential expression  
393 of Kv1.4. The small fast-inactivating conductance in  $\sim$ 20% of extrastriolar Kv1.8 $^{-/-}$  type II HCs (Suppl. Fig.  
394 4) might flow through Kv1.4 homomers.

395 In addition or alternatively, Kv $\beta$  subunits are positioned to contribute to fast inactivation. Kv $\beta$ 1 is  
396 expressed in type II HCs (McInturff et al., 2018; Jan et al., 2021; Orvis et al., 2021), and, together with  
397 Kv1.4, has been linked to  $g_A$  in pigeon vestibular HCs (Correia et al., 2008). Kv $\beta$ 2, also expressed in type II  
398 HCs (McInturff et al., 2018; Orvis et al., 2021), does not confer fast inactivation but hyperpolarizes  
399 activation voltage by  $\sim$ 10 mV and accelerates activation and inactivation kinetics (Heinemann et al., 1996).

400  $g_A$  and  $g_{DR}(Kv1.8)$  are not likely to be different kinetic components of current through homogeneous  
401 incompletely inactivating Kv channels. The lack of N-type inactivation of  $g_{DR}(Kv1.8)$  is readily explained by  
402 homomeric Kv1.8 channels. The double-exponential decay of  $g_{Peak}$  (comprising  $g_A$  and  $g_{DR}(Kv1.8)$ ) is  
403 consistent with two channel populations.

404  
405 **Kv1.8 relevance for vestibular function**

406 In both type I and type II utricular HCs, Kv1.8-dependent channels strongly shape receptor potentials in  
407 ways that promote temporal fidelity rather than electrical tuning (Lewis, 1988), consistent with the  
408 utricle's role in driving reflexes that compensate for head motions as they occur. This effect is especially  
409 pronounced for type I HCs, where the current-step evoked voltage response reproduces the input with  
410 great speed and linearity (Fig. 2).

411  $g_{K,L}$  dominates passive membrane properties in mature Kv1.8 $^{+/-,+/-}$  type I HCs such that Kv1.8 $^{-/-}$  type I  
412 HCs are expected to have receptor potentials with higher amplitudes but lower low-pass corner  
413 frequencies, closer to those of type II HCs and immature HCs of all types (Correia et al., 1996; Rüscher and

414 Eatock, 1996a; Songer and Eatock, 2013). In  $Kv1.8^{-/-}$  epithelia, we expect the lack of a large basolateral  
415 conductance open at rest to reduce the speed and gain of non-quantal transmission, which depends on  
416  $K^+$  ion efflux from the type I HC to change electrical and  $K^+$  potentials in the synaptic cleft (Govindaraju et  
417 al., 2023). In hair cells,  $K^+$  enters the mechanosensitive channels of the hair bundle from the  $K^+$ -rich apical  
418 endolymph and exits through basolateral potassium conductances into the more conventional low- $K^+$   
419 perilymph. For the type I-calyx synapse, having in the hair cell a large, non-inactivating  $K^+$  conductance  
420 open across the physiological range of potentials avoids channel gating time and allows for instantaneous  
421 changes in current into the cleft and fast afferent signaling (Pastras et al., 2023).

422 In contrast, mature type II HCs face smaller synaptic contacts and have  $Kv1.8$ -dependent currents that  
423 are not substantially activated at resting potential. They do affect the time course and gain of type II HC  
424 responses to input currents, speeding up depolarizing transients, producing a repolarizing rebound during  
425 the step, and reducing resonance.

426 Type I and II vestibular hair cells are closely related, such that adult type II HCs acquire type I-like  
427 properties upon deletion of the transcription factor Sox2 (Stone et al., 2021). In normal development of  
428 the two cell types, the *Kcna10* gene generates importantly different ion channels, presenting a natural  
429 experiment in functional differentiation of sensory receptor cells.

## 433 Materials and methods

### 434 Preparation

435 All procedures for handling animals followed the NIH Guide for the Care and Use of Laboratory Animals  
436 and were approved by the Institutional Animal Care and Use Committees of the University of Chicago and  
437 the University of Illinois Chicago. Most mice belonged to a transgenic line with a knockout allele of *Kcna10*  
438 (referred to here as  $Kv1.8^{-/-}$ ). Our breeding colony was established with a generous gift of such animals  
439 from Sherry M. Jones and Thomas Friedman. These animals are described in their paper (Lee et al., 2013).  
440 Briefly, the Texas A&M Institute for Genomic Medicine generated the line on a C57BL/6;129SvEv mixed  
441 background by replacing Exon 3 of the *Kcna10* gene with an IRES-bGeo/Puro cassette. Mice in our colony  
442 were raised on a 12:12h light-dark cycle with access to food and water *ad libitum*.

443 Semi-intact utricles were prepared from ~150 male and ~120 female mice, postnatal days (P) 5-375,  
444 for same-day recording. Hair cell  $K_v$  channel data were pooled across sexes as most results did not appear  
445 to differ by sex; an exception was that  $g_{K,L}$  had a more negative  $V_{half}$  in males ([Suppl. Table 1](#)), an effect not  
446 clearly related to age, copy number, or other properties of the activation curve.

447 Preparation, stimulation, and recording methods followed our previously described methods for the  
448 mouse utricle (Vollrath and Eatock, 2003). Mice were anesthetized through isoflurane inhalation. After  
449 decapitation, each hemisphere was bathed in ice-cold, oxygenated Liebowitz-15 (L15) media. The  
450 temporal bone was removed, the labyrinth was cut to isolate the utricle, and the nerve was cut close to  
451 the utricle. The utricle was treated with proteinase XXIV (100  $\mu$ g/mL, ~10 mins, 22°C) to facilitate removal  
452 of the otoconia and attached gel layer and mounted beneath two glass rods affixed at one end to a  
453 coverslip.

## 455 Electrophysiology

456 For most recordings, we used the HEKA Multiclamp EPC10 with Patchmaster acquisition software, filtered  
457 by the integrated HEKA filters: a 6-pole Bessel filter at 10 kHz and a second 4-pole Bessel filter at 5 kHz,  
458 and sampled at 10-100 kHz. Recording electrodes were pulled (PC-100, Narishige) from soda lime glass  
459 (King's Precision Glass R-6) wrapped in paraffin to reduce pipette capacitance. Internal solution contained  
460 (in mM) 135 KCl, 0.5 MgCl<sub>2</sub>, 3 MgATP, 5 HEPES, 5 EGTA, 0.1 CaCl<sub>2</sub>, 0.1 Na-cAMP, 0.1 LiGTP, 5  
461 Na<sub>2</sub>CreatinePO<sub>4</sub> adjusted to pH 7.25 and ~280 mmol/kg by adding ~30 mM KOH. External solution was  
462 Liebowitz-15 media supplemented with 10 mM HEPES (pH 7.40, 310 ± 10 mmol/kg). Recording  
463 temperature was 22-25°C. Pipette capacitance and membrane capacitance transients were subtracted  
464 during recordings with Patchmaster software. Series resistance (8-12 MΩ) was measured after rupture  
465 and compensated 60-80% with the amplifier, to final values of ~2 MΩ. Potentials are corrected for  
466 remaining (uncompensated) series resistance and liquid junction potential of ~4 mV, calculated with  
467 LJPCalc software (Marino et al., 2014).

468 Type I HCs with g<sub>K,L</sub> were transiently hyperpolarized to -90 mV to close g<sub>K,L</sub> enough to increase R<sub>input</sub>  
469 above 100 MΩ, as needed to estimate series resistance and cell capacitance. The average resting  
470 potential, V<sub>rest</sub>, was -87 mV ± 1 (41), similar to the calculated E<sub>K</sub> of -86.1 mV, which is not surprising given  
471 the large K<sup>+</sup> conductance of these cells (Fig. 1). V<sub>rest</sub> is likely more positive *in vivo*, where lower  
472 endolymphatic Ca<sup>2+</sup> increases standing inward current through MET channels.

473 Voltage protocols to characterize K<sub>V</sub> currents differed slightly for type I and II HCs. In standard  
474 protocols, the cell is held at a voltage near resting potential (-74 mV in type I and -64 mV in type II), then  
475 jumped to -124 mV for 200 ms in type I HCs in order to fully deactivate g<sub>K,L</sub> and 50 ms in type II HCs in  
476 order to remove baseline inactivation of g<sub>A</sub>. The subsequent iterated step depolarizations lasted 500 ms  
477 in type I HCs because g<sub>K,L</sub> activates slowly (Wong et al., 2004) and 200 ms in type II HCs, where K<sub>V</sub>  
478 conductances activate faster. The 50-ms tail voltage was near the reversal potential of HCN channels (-44  
479 mV in mouse utricular hair cells, Rüscher et al., 1998) to avoid HCN current contamination.

480 G-V (activation) parameters for control type I cells may be expected to vary across experiments on  
481 semi-intact (as here), organotypically cultured and denervated (Rüscher et al., 1998), or dissociated-cell  
482 preparations, reflecting variation in retention of the calyx (Discussion) and voltage step durations (Wong  
483 et al., 2004) which elevate K<sup>+</sup> concentration around the hair cell. Nevertheless, the values we obtained for  
484 type I and type II HCs resemble values recorded elsewhere, including experiments in which extra care was  
485 taken to avoid extracellular K<sup>+</sup> accumulation (Spaiardi et al., 2017, 2020). The effects of K<sup>+</sup> accumulation  
486 on g<sub>K,L</sub>'s steady-state activation curves are small because the operating range is centered on E<sub>K</sub> and can be  
487 characterized with relatively small currents (Fig. 1A).

## 488 Pharmacology

490 For most experiments, we locally perfused drug-containing solutions with BASI Bee Hive syringes at a final  
491 flow rate of 20 µL/min and a dead time of ~30 s. Global bath perfusion was paused during drug perfusion  
492 and recording, and only one cell was used per utricle. Aliquots of test agents in solution were prepared,  
493 stored at -20°C, and thawed and added to external solution on the recording day (see [Key Resources](#)  
494 [Table](#)).

## 496 Analysis

497 Data analysis was performed with software from OriginLab (Northampton, MA) and custom MATLAB  
498 scripts using MATLAB fitting algorithms.

### 500 *Fitting voltage dependence and time course of conductances*

501 *G-V curves.* Current was converted to conductance (G) by dividing by driving force (V – E<sub>K</sub>; E<sub>K</sub> calculated  
502 from solutions). For type I HCs, tail G-V curves were generated from current 1 ms after the end of the  
503 iterated voltage test step. For type II HCs, peak G-V curves were generated from peak current during the  
504 step and steady-state G-V curves were generated from current 1 ms before the end of a 200 ms step.  
505 Sigmoidal voltage dependence of G-V curves was fit with the first-order Boltzmann equation (Eq. 1).

$$506 G(V) = G_{min} + \frac{G_{max}}{1 + e^{\frac{V_{half} - V}{S}}} \quad (1)$$

507 V<sub>half</sub> is the midpoint and S is the slope factor, inversely related to curve steepness near activation  
508 threshold.

509 *Activation time course of type II HCs.* For type II HCs lacking fast inactivation, outward current activation  
510 was fit with Eq. 2.

$$511 I(t) = I_{ss} * \left(1 - e^{-\frac{t}{\tau_w}}\right)^n + I_0 \quad (2)$$

512 I<sub>ss</sub> is steady-state current, τ<sub>w</sub> is activation time constant, n is the state factor related to the number of  
513 closed states (typically constrained to 3), and I<sub>0</sub> is baseline current.

514 To measure activation and inactivation time course of g<sub>A</sub>, we used Eq. 3 to fit outward K<sup>+</sup> currents  
515 evoked by steps from -125 mV to above -50 mV (Rothman and Manis, 2003b).

$$516 I(t) = I_{max} * \left(1 - e^{-\frac{t}{\tau_w}}\right)^n * (1 - Z * (f * \left(1 - e^{-\frac{t}{\tau_{zf}}}\right) + (1 - f) * \left(1 - e^{-\frac{t}{\tau_{zs}}}\right))) + I_0 \quad (3)$$

517 Z is total steady-state inactivation (0 ≤ Z < 1 means incomplete inactivation, which allows the equation to  
518 fit non-inactivating delayed rectifier currents), f is the fraction of fast inactivation relative to total  
519 inactivation, I<sub>max</sub> is maximal current, τ<sub>zf</sub> and τ<sub>zs</sub> are the fast and slow inactivation time constants. We chose  
520 to compare fit parameters at 30 ± 2 mV (91), where fast and slow inactivation were consistently separable  
521 and g<sub>A</sub> was maximized. In most Kv1.8<sup>+/+</sup> and some striolar Kv1.8<sup>+/+,+/-</sup> cells, where fast inactivation was  
522 absent and adjusted R<sup>2</sup> did not improve on a single-exponential fit by >0.01, we constrained f in Eq. 3 to  
523 0 to avoid overfitting.

524 For *Peak* G-V relations, peak conductance was taken from fitted curves (Eqs. 2 and 3). To construct  
525 '*Steady-state*' G-V relations, we used current at 200 ms (6 ± 1 % (94) greater than steady-state estimated  
526 from fits to Eq. 3 ([Fig. 3C-D](#))).

527 Percent inactivation was calculated at 30 mV with Eq. 4 :

$$528 \% \text{ Inactivation} = (I_{peak} - I_{ss})/I_{peak} \quad (4)$$

529 I<sub>peak</sub> is maximal current, and I<sub>ss</sub> is current at the end of a 200 ms voltage step.

530 The electrical resonance of type II HCs was quantified by fitting voltage responses to current injection  
531 steps (Songer and Eatock, 2013). We fit Eq. 5, a damped sinusoid, to the voltage trace from half-maximum  
532 of the initial depolarizing peak until the end of the current step.

533 
$$V(t) = V_{ss} + V_p * e^{-\frac{t}{\tau_e}} * \sin(2\pi f_e t - \theta) \quad (5)$$

534  $V_{ss}$  is steady-state voltage,  $V_p$  is the voltage of the peak response,  $\tau_e$  is the decay time constant,  $f_e$  is the  
535 fundamental frequency, and  $\theta$  is the phase angle shift.

536 Quality factor,  $Q_e$ , was calculated with Eq. 6 (Crawford and Fettiplace, 1981).

537 
$$Q_e = [(\pi f_e \tau_e)^2 + 0.25]^{1/2} \quad (6)$$

538

## 539 Statistics

540 We give means  $\pm$  SEM for normally-distributed data, and otherwise, median and range. Data normality  
541 was assessed with the Shapiro-Wilk test for  $n < 50$  and the Kolmogorov-Smirnov test for  $n > 50$ . To assess  
542 homogeneity of variance we used Levene's test. With homogeneous variance, we used two-way ANOVA  
543 for genotype and zone with the posthoc Tukey's test. When variance was non-homogeneous, we used  
544 one-way Welch ANOVA with the posthoc Games-Howell test. For data that were not normally distributed,  
545 we used the non-parametric one-way Kruskal-Wallis ANOVA (KWA) with posthoc Dunn's test. Effect size  
546 is Hedge's  $g$  ( $g$ ). For age dependence, we used partial correlation coefficients controlling for genotype and  
547 zone. Statistical groups may have different median ages, but all have overlapping age ranges. In figures,  
548 asterisks represent p-value ranges as follows: \*,  $p < 0.05$ ; \*\*,  $p < 0.01$ ; \*\*\*,  $p < 0.001$ ; \*\*\*\*,  $p < 0.0001$ .

550

## 551 Immunohistochemistry

552 Mice were anesthetized with Nembutal (80 mg/kg), then perfused transcardially with 40mL of  
553 physiological saline containing heparin (400 IU), followed by 2 mL/g body weight fixative (4%  
554 paraformaldehyde, 1% picric acid, and 5% sucrose in 0.1 M phosphate buffer at pH 7.4, sometimes with  
555 1% acrolein). Vestibular epithelia were dissected in phosphate buffer, and tissues were cryoprotected in  
556 30% sucrose-phosphate buffer overnight at 4°C. Otoconia were dissolved with Cal-Ex (Fisher Scientific) for  
557 10 min. Frozen sections (35  $\mu$ m) were cut with a sliding microtome. Immunohistochemistry was  
558 performed on free-floating sections. Tissues were first permeabilized with 4% Triton X-100 in PBS for 1 h  
559 at room temperature, then incubated with 0.5% Triton X-100 in a blocking solution of 0.5% fish gelatin  
560 and 1% BSA for 1 h at room temperature. Sections were incubated with 2-3 primary antibodies for 72 h  
561 at 4°C and with 2-3 secondary antibodies. Sections were rinsed with PBS between and after incubations  
562 and mounted on slides in Mowiol (Calbiochem).

563

**Table 6.** Key Resources Table

| Antibody          | Source   | Catalog Number | Lot Number | Dilution       |
|-------------------|----------|----------------|------------|----------------|
| Rabbit anti-Kv1.8 | Alomone  | APC-157        | 0102       | 1:200 or 1:400 |
| Mouse anti-Kv1.4  | NeuroMab | P15385         | 5HK-05     | 1:400          |

|                                                        |            |                |         |       |
|--------------------------------------------------------|------------|----------------|---------|-------|
| Mouse IgG2a-conjugated anti-Tuj1                       | Covance    | MMS-435P       | B205808 | 1:300 |
| Goat anti-calretinin                                   | Millipore  | AB1550         | 9669    | 1:600 |
| Mouse IgG1-conjugated anti-Kv7.4                       | NeuroMab   | 2HK-65         |         | 1:200 |
| Donkey anti-Rabbit Secondary Antibody, Alexa Fluor 594 | Invitrogen | A21207         | 8652    | 1:200 |
| Donkey anti-Goat 488 nm                                | Invitrogen | A21125         | 1920483 | 1:200 |
| Goat anti-Mouse IgG1 594                               | Invitrogen | A11055         | 1869589 | 1:200 |
| Chemicals and Peptides                                 | Source     | Catalog Number | Diluent |       |
| Iberiotoxin                                            | Alomone    | STI-400        | Water   |       |
| XE991 dihydrochloride                                  | Sigma      | X2254          | Water   |       |
| ZD7288                                                 | Tocris     | APN18035-2     | Water   |       |
| Bovine serum albumin                                   | Fisher     | BP671          | water   |       |

564

565

566

567

## 568 Data Availability

569 Data used in this study are available on Dryad (<https://doi.org/10.5061/dryad.37pvmcvrw>).

570

## 571 Acknowledgements

572 This study was supported by NIH grant R01 DC012347 to RAE and AL and an NSF Graduate Research  
573 Fellowship to HRM. We thank Drs. Thomas Friedman and Sherri Jones for the generous gift of the Kv1.8<sup>-/-</sup>  
574 mouse line, and Drs. Zheng-Yi Chen and Deborah I. Scheffer for bringing the expression of this subunit  
575 in mouse vestibular hair cells to our attention.

576 We acknowledge Dr. Vicente Lumbrales for insights from his prior experiments on g<sub>A</sub> in mouse utricular  
577 hair cells, and thank him for helpful further discussions.

578 We thank Drs. Rebecca Lim and Ebenezer Yamoah for their critical feedback on the manuscript, and  
579 Drs. Rob Raphael and Aravind Chenrayan Govindaraju for feedback and many helpful discussions. We  
580 thank Drs. Joe Burns, Gabi Preger, and Lars Becker (Decibel Therapeutics, Inc.) for helpful discussions.

581

## 582 Author Contributions

583 HRM designed and performed experiments, analyzed data, and wrote the paper; RAE helped design  
584 experiments, analyze data, and write the paper; AL performed immunohistochemistry experiments.

585

## 586 References

587 Alexander SPH et al. (2019) The Concise Guide to Pharmacology 2019/20: Ion channels. Br J Pharmacol  
588 176 Available at: <https://onlinelibrary.wiley.com/doi/10.1111/bph.14749> [Accessed April 12,  
589 2022].

590 Al-Sabi A, Kaza S, Le Berre M, O'Hara L, Bodeker M, Wang J, Dolly JO (2011) Position-dependent  
591 attenuation by Kv1.6 of N-type inactivation of Kv1.4-containing channels. *Biochem J* 438:389–  
592 396.

593 Ashmore JF (1983) Frequency tuning in a frog vestibular organ. *Nature* 304:536–538.

594 Bao H, Wong WH, Goldberg JM, Eatock RA (2003) Voltage-Gated Calcium Channel Currents in Type I and  
595 Type II Hair Cells Isolated From the Rat Crista. *J Neurophysiol* 90:155–164.

596 Baukrowitz T, Yellen G (1995) Modulation of K<sup>+</sup> current by frequency and external [K<sup>+</sup>]: A tale of two  
597 inactivation mechanisms. *Neuron* 15:951–960.

598 Behrend O, Schwark C, Kunihiro T, Strupp M (1997) Cyclic GMP inhibits and shifts the activation curve of  
599 the delayed rectifier (I(K1)) of type I mammalian vestibular hair cells. *NeuroReport* 8:2687–2690.

600 Brown DA, Selyanko AA, Hadley JK, Tatulian L (2002) Some Pharmacological Properties Of Neural KCNQ  
601 Channels. *Neurophysiology* 34:91–94.

602 Carlisle FA, Steel KP, Lewis MA (2012) Specific expression of Kcna10, Pxn and Odf2 in the organ of Corti.  
603 Gene Expression Patterns 12:172–179.

604 Chen JWY, Eatock RA (2000) Major Potassium Conductance in Type I Hair Cells from Rat Semicircular  
605 Canals: Characterization and Modulation by Nitric Oxide. *J Neurophysiol* 84:139–151.

606 Contini D, Holstein GR, Art JJ (2020) Synaptic cleft microenvironment influences potassium permeation  
607 and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. *J Physiol*  
608 598:853–889.

609 Contini D, Price SD, Art JJ (2017) Accumulation of K<sup>+</sup> in the synaptic cleft modulates activity by  
610 influencing both vestibular hair cell and calyx afferent in the turtle: K<sup>+</sup> modulation of synaptic  
611 transmission between hair cell and afferent. *J Physiol* 595:777–803.

612 Contini D, Zampini V, Tavazzani E, Magistretti J, Russo G, Prigioni I, Masetto S (2012) Intercellular K<sup>+</sup>  
613 accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.  
614 *Neuroscience* 227:232–246.

615 Correia MJ, Lang DG (1990) An electrophysiological comparison of solitary type I and type II vestibular  
616 hair cells. *Neuroscience Letters* 116:106–111.

617 Correia MJ, Ricci AJ, Rennie KJ (1996) Filtering Properties of Vestibular Hair Cells: An Update. *Ann NY  
618 Acad Sci* 781:138–149.

619 Correia MJ, Weng T, Prusak D, Wood TG (2008) Kv $\beta$ 1.1 Associates with Kv1.4 in Chinese Hamster Ovary  
620 Cells and Pigeon Type II Vestibular Hair Cells and Enhances the Amplitude, Inactivation and  
621 Negatively Shifts the Steady-State Inactivation Range. *Neuroscience* 152:809–820.

622 Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. *J Physiol  
623* 312:377–412.

624 Desai SS, Zeh C, Lysakowski A (2005) Comparative Morphology of Rodent Vestibular Periphery. I.  
625 Saccular and Utricular Maculae. *J Neurophysiol* 93:251–266.

626 Dierich M, Altoè A, Koppelman J, Evers S, Renigunta V, Schäfer MK, Naumann R, Verhulst S, Oliver D,  
627 Leitner MG (2020) Optimized Tuning of Auditory Inner Hair Cells to Encode Complex Sound  
628 through Synergistic Activity of Six Independent K<sup>+</sup> Current Entities. *Cell Reports* 32:107869.

629 Dwenger MM, Raph SM, Baba SP, Moore JB, Nystoriak MA (2022) Diversification of Potassium Currents  
630 in Excitable Cells via Kv $\beta$  Proteins. *Cells* 11:2230.

631 Eatock RA, Songer JE (2011) Vestibular Hair Cells and Afferents: Two Channels for Head Motion Signals.  
632 *Annu Rev Neurosci* 34:501–534.

633 Erickson T, Nicolson T (2015) Identification of sensory hair-cell transcripts by thiouracil-tagging in  
634 zebrafish. *BMC Genomics* 16:842.

635 Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. *TINS* 10:5.

636 Gélécoc GS, Risner J, Holt JR (2004) Developmental Acquisition of Voltage-Dependent Conductances and  
637 Sensory Signaling in Hair Cells of the Embryonic Mouse Inner Ear. *J Neurosci* 24:11148–11159.

638 Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. *Exp Brain Res*  
639 130:277–297.

640 González-Garrido A, Pujol R, López-Ramírez O, Finkbeiner C, Eatock RA, Stone JS (2021) The  
641 Differentiation Status of Hair Cells That Regenerate Naturally in the Vestibular Inner Ear of the  
642 Adult Mouse. *J Neurosci* 41:7779–7796.

643 Govindaraju AC, Quraishi IH, Lysakowski A, Eatock RA, Raphael RM (2023) Nonquantal transmission at  
644 the vestibular hair cell–calyx synapse: K<sub>LV</sub> currents modulate fast electrical and slow K<sup>+</sup>  
645 potentials. *Proc Natl Acad Sci USA* 120:e2207466120.

646 Gulley A, Bagger-Sjöbäck D (1979) Freeze-fracture studies on the synapse between the type I hair cells  
647 and the calyceal terminal in the guinea-pig vestibular system. *J Neurocytol* 8:591–603.

648 Heinemann SH, Rettig J, Graack HR, Pongs O (1996) Functional characterization of Kv channel beta-  
649 subunits from rat brain. *J Physiol* 493:625–633.

650 Holt JR, Stauffer EA, Abraham D, Geleoc GSG (2007) Dominant-Negative Inhibition of M-Like Potassium  
651 Conductances in Hair Cells of the Mouse Inner Ear. *J Neurosci* 27:8940–8951.

652 Hudspeth AJ, Lewis RS (1988) A model for electrical resonance and frequency tuning in saccular hair cells  
653 of the bull-frog, *Rana catesbeiana*. *J Physiol* 400:275–297.

654 Hurley KM, Gaboyard S, Zhong M, Price SD, Wooltorton JRA, Lysakowski A, Eatock RA (2006) M-Like K<sup>+</sup>  
655 Currents in Type I Hair Cells and Calyx Afferent Endings of the Developing Rat Utricle. *Journal of*  
656 *Neuroscience* 26:10253–10269.

657 Imbrici P, D'Adamo MC, Kullmann DM, Pessia M (2006) Episodic ataxia type 1 mutations in the *KCNA1*  
658 gene impair the fast inactivation properties of the human potassium channels Kv1.4-1.1/Kv $\beta$ 1.1  
659 and Kv1.4-1.1/Kv $\beta$ 1.2. *Eur J Neurosci* 24:3073–3083.

660 Jan TA, Eltawil Y, Ling AH, Chen L, Ellwanger DC, Heller S, Cheng AG (2021) Spatiotemporal dynamics of  
661 inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. *Cell Reports*  
662 36:109358.

663 Jensen HS, Grunnet M, Olesen S-P (2007) Inactivation as a New Regulatory Mechanism for Neuronal Kv7  
664 Channels. *Biophys J* 92:2747–2756.

665 Kharkovets T, Hardelin J-P, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a  
666 K<sup>+</sup> channel mutated in a form of dominant deafness, is expressed in the inner ear and the central  
667 auditory pathway. *Proc Natl Acad Sci USA* 97:4333–4338.

668 Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999)  
669 KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in  
670 Dominant Deafness. *Cell* 96:437–446.

671 Lang R, Lee G, Liu W, Tian S, Rafi H, Orias M, Segal AS, Desir GV (2000) KCNA10: A novel ion channel  
672 functionally related to both voltage-gated potassium and CNG cation channels. *American*  
673 *Journal of Physiology - Renal Physiology* 278.

674 Lee SI, Conrad T, Jones SM, Lagziel A, Starost MF, Belyantseva IA, Friedman TB, Morell RJ (2013) A null  
675 mutation of mouse *Kcna10* causes significant vestibular and mild hearing dysfunction. *Hear Res*  
676 300:1–9.

677 Lewis ER (1988) Tuning in the bullfrog ear. *Biophysical Journal* 53:441–447.

678 Liberman MC, Gao J, He DZZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer  
679 hair cell and for the cochlear amplifier. *Nature* 419:300–304.

680 Lim R, Kindig AE, Donne SW, Callister RJ, Brichta AM (2011) Potassium accumulation between type I hair  
681 cells and calyx terminals in mouse crista. *Exp Brain Res* 210:607–621.

682 Liu H, Chen L, Giffen KP, Stringham ST, Li Y, Judge PD, Beisel KW, He DZZ (2018) Cell-Specific  
683 Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding  
684 Machinery for Specializations of Cochlear Hair Cells. *Front Mol Neurosci* 11:356.

685 López-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1993) Effects of external cations and mutations in  
686 the pore region on C-type inactivation of Shaker potassium channels. *Recept Channels* 1:61–71.

687 Lysakowski A, Gaboyard-Niay S, Calin-Jageman I, Chatlani S, Price SD, Eatock RA (2011) Molecular  
688 Microdomains in a Sensory Terminal, the Vestibular Calyx Ending. *J Neurosci* 31:10101–10114.

689 Lysakowski A, Goldberg JM (2004) Morphophysiology of the vestibular periphery. In: *The Vestibular*  
690 *System*, pp 57–152 Springer Hearing and Auditory Research. Springer New York. Available at:  
691 [https://doi.org/10.1007/0-387-21567-0\\_3](https://doi.org/10.1007/0-387-21567-0_3).

692 Marino M, Misuri L, Brogioli D (2014) A new open source software for the calculation of the liquid  
693 junction potential between two solutions according to the stationary Nernst-Planck equation.  
694 Available at: <http://arxiv.org/abs/1403.3640> [Accessed October 23, 2023].

695 McInturff S, Burns JC, Kelley MW (2018) Characterization of spatial and temporal development of Type I  
696 and Type II hair cells in the mouse utricle using new cell-type-specific markers. *Biol Open*  
697 7:bio038083.

698 Meredith FL, Rennie KJ (2016) Channeling your inner ear potassium: K<sup>+</sup> channels in vestibular hair cells.  
699 *Hear Res* 338:40–51.

700 Orvis J et al. (2021) gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic  
701 data exploration. *Nat Methods* 18:843–844.

702 Pastras CJ, Curthoys IS, Asadnia M, McAlpine D, Rabbitt RD, Brown DJ (2023) Evidence that ultrafast non-  
703 quantal transmission underlies synchronized vestibular action potential generation. *J*  
704 *Neurosci:JN-RM-1417-23*.

705 Perez-Flores MC, Lee JH, Park S, Zhang X-D, Sihn C-R, Ledford HA, Wang W, Kim HJ, Timofeyev V, Yarov-  
706 Yarovoy V, Chiamvimonvat N, Rabbitt RD, Yamoah EN (2020) Cooperativity of K<sub>v</sub> 7.4 channels  
707 confers ultrafast electromechanical sensitivity and emergent properties in cochlear outer hair  
708 cells. *Sci Adv* 6:eaba1104.

709 Pujol R, Pickett SB, Nguyen TB, Stone JS (2014) Large basolateral processes on type II hair cells are novel  
710 processing units in mammalian vestibular organs: Basolateral Processes of Type II Hair Cells. *J*  
711 *Comp Neurol* 522:3141–3159.

712 Ramanathan K, Fuchs PA (2002) Modeling Hair Cell Tuning by Expression Gradients of Potassium  
713 Channel. *Biophys J* 82:64–72.

714 Ranjan R, Logette E, Marani M, Herzog M, Tache V, Scantamburlo E, Buchilier V, Markram H (2019) A  
715 Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (K<sub>v</sub>) Family. *Front Cell*  
716 *Neurosci* 13:358.

717 Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular  
718 canal hair cells. *J Neurophysiol* 71:317–329.

719 Rennie KJ, Weng T, Correia MJ (2001) Effects of KCNQ channel blockers on K<sup>+</sup> currents in vestibular hair  
720 cells. *Am J Physiol Cell Physiol* 280:C473–C480.

721 Ricci AJ, Rennie KJ, Correia MJ (1996) The delayed rectifier, IK<sub>I</sub>, is the major conductance in type I  
722 vestibular hair cells across vestibular end organs. *Pflüg Arch Eur J Physiol* 432:34–42.

723 Rothman JS, Manis PB (2003) Kinetic Analyses of Three Distinct Potassium Conductances in Ventral  
724 Cochlear Nucleus Neurons. *J Neurophysiol* 89:3083–3096.

725 Rüschen A, Eatock RA (1996a) A delayed rectifier conductance in type I hair cells of the mouse utricle. *J*  
726 *Neurophysiol* 76:995–1004.

727 Rüschen A, Eatock RA (1996b) Voltage Responses of Mouse Utricular Hair Cells to Injected Currents. *Ann*  
728 *NY Acad Sci* 781:71–84.

729 Rüschen A, Lysakowski A, Eatock RA (1998) Postnatal development of type I and type II hair cells in the  
730 mouse utricle: Acquisition of voltage-gated conductances and differentiated morphology.  
731 *Journal of Neuroscience* 18:7487–7501.

732 Scheffer DI, Shen J, Corey DP, Chen Z-Y (2015) Gene Expression by Mouse Inner Ear Hair Cells during  
733 Development. *J Neurosci* 35:6366–6380.

734 Scheibinger M, Janesick A, Benkafadar N, Ellwanger DC, Jan TA, Heller S (2022) Cell-type identity of the  
735 avian utricle. *Cell Reports* 40:111432.

736 Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ (2000) KCNQ5, a Novel Potassium  
737 Channel Broadly Expressed in Brain, Mediates M-type Currents. *Journal of Biological Chemistry*  
738 275:24089–24095.

739 Schweizer FE, Savin D, Luu C, Sultemeier DR, Hoffman LF (2009) Distribution of high-conductance  
740 calcium-activated potassium channels in rat vestibular epithelia. *J Comp Neurol* 517:134–145.

741 Smith GT, Proffitt MR, Smith AR, Rusch DB (2018) Genes linked to species diversity in a sexually  
742 dimorphic communication signal in electric fish. *J Comp Physiol A* 204:93–112.

743 Songer JE, Eatock RA (2013) Tuning and Timing in Mammalian Type I Hair Cells and Calyceal Synapses. *J*  
744 *Neurosci* 33:3706–3724.

745 Sousa AD, Andrade LR, Salles FT, Pillai AM, Buttermore ED, Bhat MA, Kachar B (2009) The Septate  
746 Junction Protein Caspr Is Required for Structural Support and Retention of KCNQ4 at Calyceal  
747 Synapses of Vestibular Hair Cells. *J Neurosci* 29:3103–3108.

748 Spaiardi P, Tavazzani E, Manca M, Milesi V, Russo G, Prigioni I, Marcotti W, Magistretti J, Masetto S  
749 (2017) An allosteric gating model recapitulates the biophysical properties of  $I_{K,L}$  expressed in  
750 mouse vestibular type I hair cells: Allosteric gating of  $I_{K,L}$ . *J Physiol* 595:6735–6750.

751 Spaiardi P, Tavazzani E, Manca M, Russo G, Prigioni I, Biella G, Giunta R, Johnson SL, Marcotti W,  
752 Masetto S (2020) K<sup>+</sup> Accumulation and Clearance in the Calyx Synaptic Cleft of Type I Mouse  
753 Vestibular Hair Cells. *Neuroscience* 426:69–86.

754 Spitzmaul G, Tolosa L, Winkelman BHJ, Heidenreich M, Frens MA, Chabbert C, de Zeeuw Cl, Jentsch TJ  
755 (2013) Vestibular Role of KCNQ4 and KCNQ5 K<sup>+</sup> Channels Revealed by Mouse Models\*. *Journal*  
756 *of Biological Chemistry* 288:9334–9344.

757 Stone JS, Pujol R, Nguyen TB, Cox BC (2021) The Transcription Factor Sox2 Is Required to Maintain the  
758 Cell Type-Specific Properties and Innervation of Type II Vestibular Hair Cells in Adult Mice. *J*  
759 *Neurosci* 41:6217–6233.

760 Stühmer W, Ruppertsberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A,  
761 Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in  
762 mammalian brain. *EMBO J* 8:3235–3244.

763       Takahashi S, Sun W, Zhou Y, Homma K, Kachar B, Cheatham MA, Zheng J (2018) Prestin Contributes to  
764       Membrane Compartmentalization and Is Required for Normal Innervation of Outer Hair Cells.  
765       Front Cell Neurosci 12:211.

766       Vollrath MA, Eatock RA (2003) Time course and extent of mechanotransducer adaptation in mouse  
767       utricle hair cells: Comparison with frog saccular hair cells. Journal of Neurophysiology  
768       90:2676–2689.

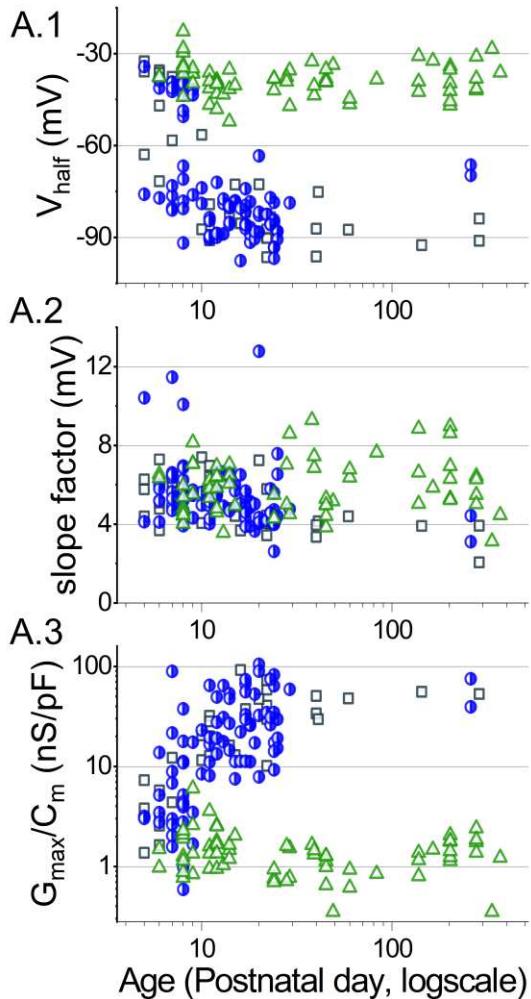
769       Wang H (1998) KCNQ2 and KCNQ3 Potassium Channel Subunits: Molecular Correlates of the M-Channel.  
770       Science 282:1890–1893.

771       Wersäll J (1956) Studies on the structure and innervation of the sensory epithelium of the cristae  
772       ampulares in the guinea pig; a light and electron microscopic investigation. Acta Otolaryngol  
773       Suppl 126:1–85.

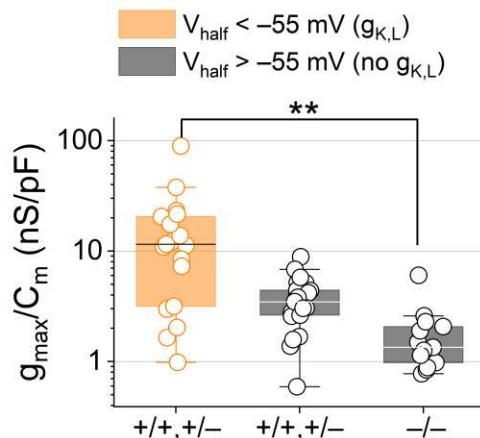
774       Wong WH, Hurley KM, Eatock RA (2004) Differences Between the Negatively Activating Potassium  
775       Conductances of Mammalian Cochlear and Vestibular Hair Cells. J Assoc Res Otolaryngol 5:270–  
776       284.

777       Xu T, Nie L, Zhang Y, Mo J, Feng W, Wei D, Petrov E, Calisto LE, Kachar B, Beisel KW, Vazquez AE, Yamoah  
778       EN (2007) Roles of Alternative Splicing in the Functional Properties of Inner Ear-specific KCNQ4  
779       Channels. J Biol Chem 282:23899–23909.

780       Yao X (2002) Expression of KCNA10, a Voltage-Gated K Channel, in Glomerular Endothelium and at the  
781       Apical Membrane of the Renal Proximal Tubule. Journal of the American Society of Nephrology  
782       13:2831–2839.


783

784


785

## Supplemental Figures

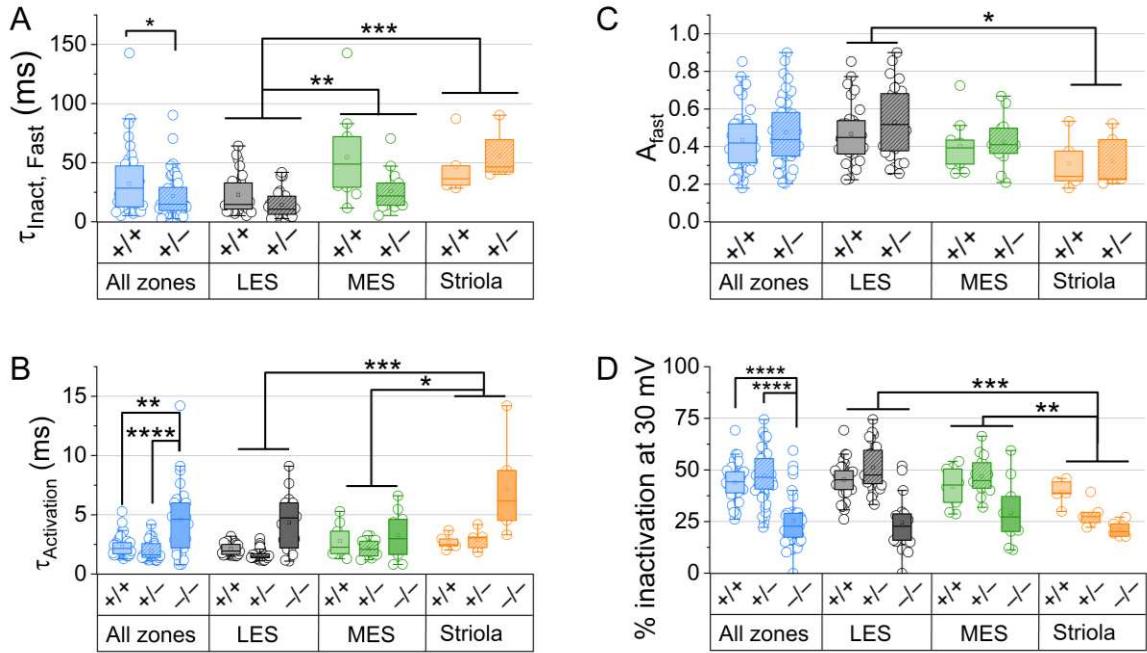
### A $K_V$ Age Dependence



### B Immature conductances



**Supplemental Figure 1. Developmental changes in type I HC  $K_V$  conductances.**


(A) Parameters from Boltzmann fits of tail G-V relations for type I HCs plotted against age.

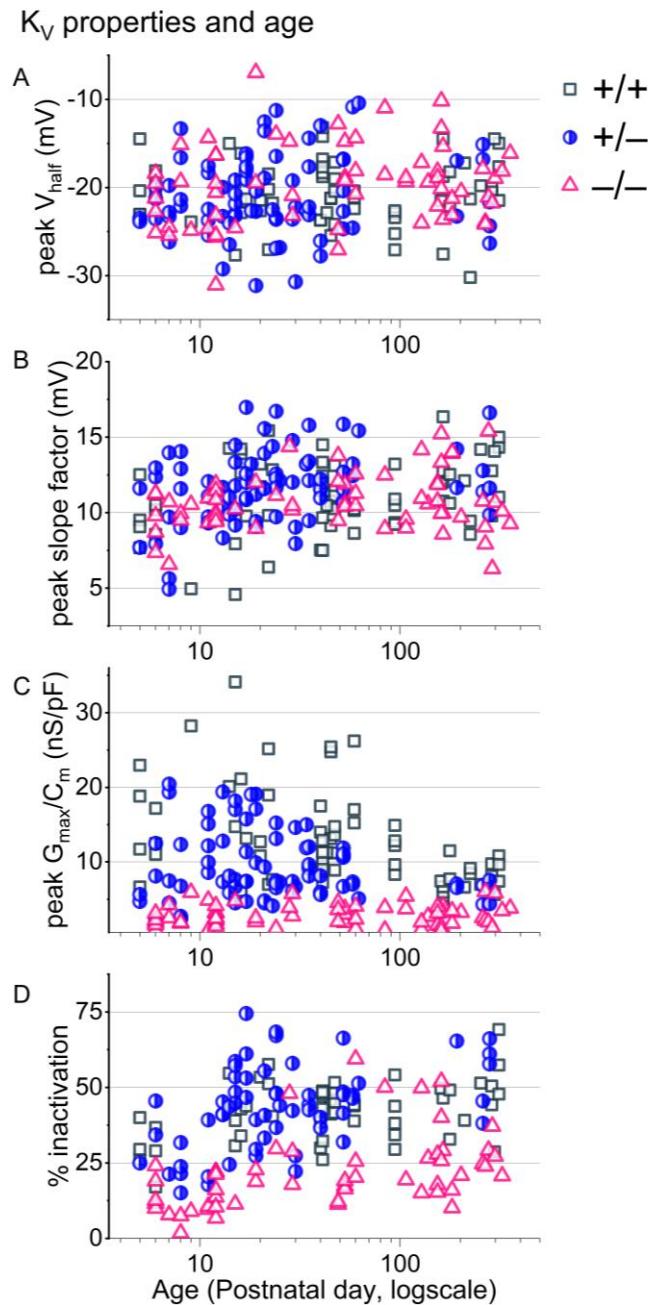
(B) Conductance density is similar in young (P5-P10) type I HCs that lack  $g_{K,L}$ .  $g_{K,L}$  is defined here as having a  $V_{half}$  negative to  $-55$  mV.  $K_V1.8^{+/+,+/-}$  with  $g_{K,L}$ ,  $17 \pm 5$  nS/pF (19);  $K_V1.8^{+/+,+/-}$  without  $g_{K,L}$ ,  $3.7 \pm 0.4$  nS/pF (22);  $K_V1.8^{-/-}$ ,  $1.8 \pm 0.4$  nS/pF (13).  $K_V1.8^{+/+,+/-}$  with  $g_{K,L}$  vs.  $K_V1.8^{-/-}$ :  $p = 0.007$ , KWA,  $g = 1.0$ .

786

787

788

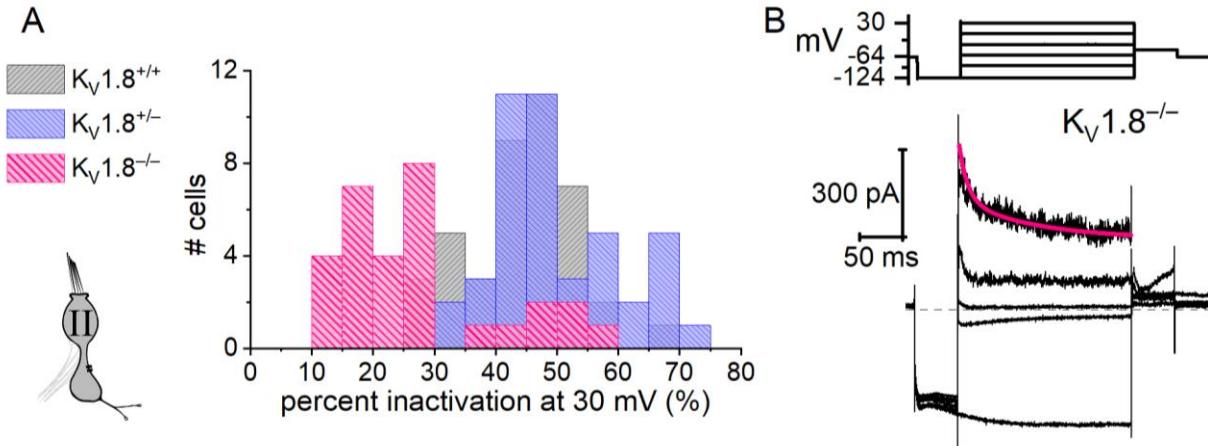



**Supplemental Figure 2. For type II HCs older than P12, Kv conductance activation and inactivation differed across zones and genotypes.**

(A)  $\tau_{\text{inact, Fast}}$  at 30 mV was fastest in LES in  $\text{Kv1.8}^{+/+}$  and  $\text{Kv1.8}^{+/-}$  HCs, and faster in  $\text{Kv1.8}^{+/-}$  than  $\text{Kv1.8}^{+/+}$  HCs (see [Table 3](#) for p-values).

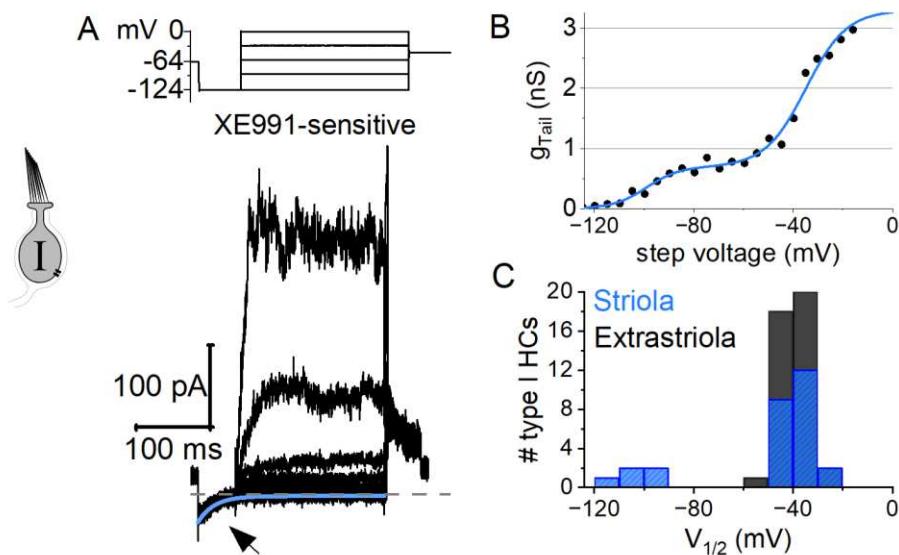
(B) Fast inactivation was a larger fraction of the total in LES than striola.

(C)  $\tau_{\text{Act}}$  at 30 mV was slower in  $\text{Kv1.8}^{-/-}$  than  $\text{Kv1.8}^{+/+}$  and  $\text{Kv1.8}^{+/-}$ , and slower in striola than LES and MES.


(D) Percent inactivation at 30 mV was lowest in striola (zone effect), and lowest in  $\text{Kv1.8}^{-/-}$  HCs (genotype effect).



**Supplemental Figure 3. For type II HCs older than P12,  $K_V$  conductances were stable.**


(A-C) Parameters from Boltzmann fits of peak G-V relations and (D) % inactivation at +30 mV plotted against age from all zones. Overlaid curves are smoothing cubic  $\beta$ -splines. Note the seven extrastriolar  $K_V1.8^{-/-}$  type II HCs with % inactivation >30%.

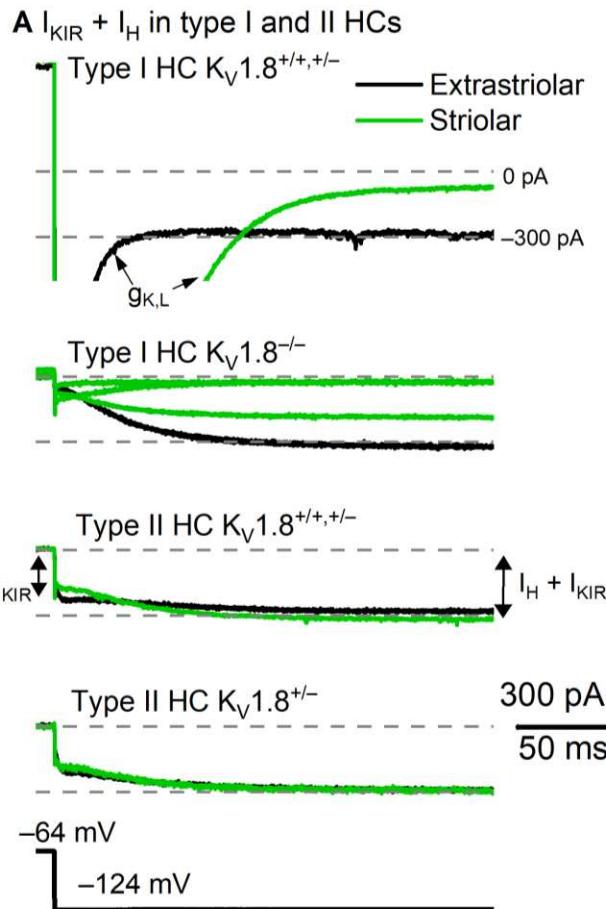
790  
791  
792  
793



**Supplemental Figure 4. A minority of extrastriolar  $K_v1.8^{-/-}$  type II HCs had a very small fast-inactivating outward rectifier current.**

(A) All extrastriolar  $K_v1.8^{+/+}, +/-$  type II HCs inactivated by  $>30\%$ . Most mature ( $>P12$ ) extrastriolar  $K_v1.8^{-/-}$  type II HCs inactivated by  $<30\%$  but some inactivated by  $>30\%$  ( $7/30$ , 23%) because they had fast inactivation (B). (B) Exemplar residual fast inactivation ( $\tau_{FastInact} = 10$  ms at  $+30$  mV). For the 7 cells in this group,  $\tau_{FastInact} = 30 \pm 6$  ms, amplitude of fast inactivation =  $310 \pm 70$  pA; activation peak  $V_{half} = -15 \pm 2$  mV and slope factor =  $12.4 \pm 0.9$  mV. These parameters are similar to  $g_A$  but for the much smaller conductance (one-way ANOVAs).



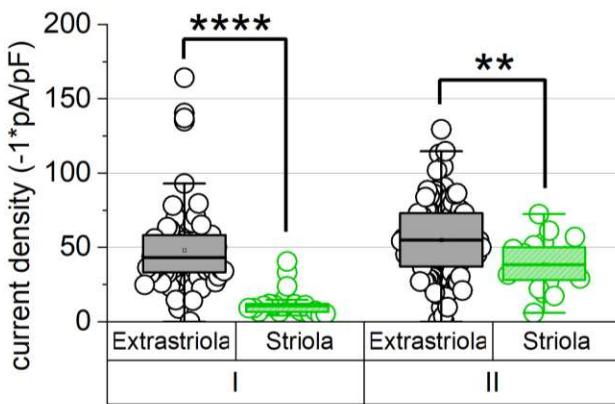

**Supplemental Figure 5. A minority of striolar  $K_v1.8^{-/-}$  type I HCs had a small low-voltage-activated outward rectifier current.**

(A) Low-voltage-activated current from one cell was isolated by  $10 \mu\text{M}$  XE991 (P39), suggesting it was a  $K_v7$  current. Deactivation of XE991-sensitive current after step from  $-64$  mV to  $-124$  mV (arrow) was fit with exponential decay ( $\tau = 21$  ms).

(B) Tail G-V curve fit with a sum of two Boltzmann equations:  $V_{half,1} = -102 \pm 4$  mV ( $n=5$ ) and  $V_{half,2} = -41 \pm 1$  mV. Ages: P11, 39, 202, 202, 202.

(C) Bimodal  $V_{half}$  distribution was specific to striolar type I HCs. 5/23 (22%; P6-P370) of striolar type I HCs had this low-voltage-activated component, but no extrastriolar type I HCs (0/45; P6-277).

795




**Supplemental Figure 6. No difference was detected in H (HCN) and KIR (fast inward rectifier) currents between  $Kv1.8^{+/+}$  and  $Kv1.8^{-/-}$  hair cells, consistent with a specific involvement of  $Kv1.8$  in *Kcna10* expression.**

**(A)** Hyperpolarizing voltage steps evoked  $I_{KIR}$  and  $I_{HCN}$  in  $Kv1.8^{+/+,+/-,-/-}$  type I and II HCs. Note the prominent fast activation of  $I_{KIR}$  in type II but not type I HCs. Arrows in top panel show deactivation of  $g_{K,L}$ .  $I_H$  and  $I_{KIR}$  were measured as inward current after 250 ms at  $-124$  mV.

**(B)** Summed  $I_{KIR}$  and  $I_H$  density was the same across genotypes but smaller in striola than extrastriola (see [Supplemental Table 2](#) for statistics).

**B  $I_{KIR} + I_H$  are smaller in striola**



796

797

798

799

800

**Supplemental Table 1.** Test of sex differences in hair cell  $K_v$  channel data.

| Cell Type  | Parameter               | Subgroup | Male vs Female posthoc p-value | Test                                                                                                    |
|------------|-------------------------|----------|--------------------------------|---------------------------------------------------------------------------------------------------------|
| Type I HC  | Tail $V_{half}$         | +/-,+/-  | 0.0023 ** a                    | Normal, homogeneous variance                                                                            |
|            |                         | -/-      | 0.57                           | ANOVA: Genotype (2 levels), Sex (2 levels), Zone (2 levels), Genotype*Sex.                              |
|            | Tail S                  | +/-,+/-  | 0.98                           | ANOVA: Genotype (2 levels), Sex (2 levels), Zone (2 levels), Genotype*Sex. Normal, homogeneous variance |
| Type II HC | Tail $g_{Density}$      | +/-,+/-  | 0.999                          | Normal, nonhomogeneous variance                                                                         |
|            |                         | -/-      | 0.936                          | Welch ANOVA: Genotype*Sex                                                                               |
|            | Peak $V_{half}$         | +/-,+/-  | 0.95                           | Normal, homogeneous variance                                                                            |
|            |                         | -/-      | 0.28                           | ANOVA: Genotype (2 levels), Sex (2 levels), Zone (2 levels), Genotype*Sex.                              |
|            | Peak S                  | +/-,+/-  | 0.999                          | Normal, homogeneous variance                                                                            |
|            |                         | -/-      | 0.97                           | ANOVA: Genotype (2 levels), Sex (2 levels), Zone (2 levels), Genotype*Sex.                              |
|            | Peak $g_{Density}$      | +/-,+/-  | 0.64                           | Normal, nonhomogeneous variance                                                                         |
|            |                         | -/-      | 0.43                           | Welch ANOVA: Genotype*Sex                                                                               |
|            | % inactivation at 30 mV | +/-,+/-  | 0.98                           | Normal, homogeneous variance                                                                            |
|            |                         | -/-      | 0.82                           | ANOVA: Genotype (2 levels), Sex (2 levels), Zone (2 levels), Genotype*Sex.                              |

<sup>a</sup> g, 0.9. Male  $K_v 1.8^{+/-,+/-}$ ,  $-85 \pm 1$  mV (40) vs. Female  $K_v 1.8^{+/-,+/-}$ ,  $-79 \pm 2$  mV (12)

801

802

**Supplemental Table 2.** Detected zonal but not genotype differences in hair cell  $I_{KIR}$  and  $I_H$ .

| Cell Type  | Zone       | $I_H + I_{KIR}$ current density (-1*pA/pF) | $K_v 1.8^{+/-,+/-}$ vs $K_v 1.8^{-/-}$ p-value | ES vs Striola p-value | Test                                                                               |
|------------|------------|--------------------------------------------|------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|
| Type I HC  | ES Striola | 48 $\pm$ 3 (78)<br>13.0 $\pm$ 2 (19)       | 0.3                                            | 4E-9 **** a           | Non-normal, KWA                                                                    |
| Type II HC | ES Striola | 55 $\pm$ 2 (116)<br>39 $\pm$ 4 (20)        | 0.19 (0.25 power)                              | 0.0058 ** b           | Normal, homogeneous variance.<br>2-way ANOVA: Genotype (2 levels), Zone (2 levels) |

<sup>a</sup> g 1.4

<sup>b</sup> g 0.6

803