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ABSTRACT 

 

Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines 

produce standardized, minimally pre-processed data to support a range of potential analyses. 

However, post-processing is not similarly standardized. While several options for post-processing 

exist, they tend not to support output from disparate pre-processing pipelines, may have limited 

documentation, and may not follow BIDS best practices. Here we present XCP-D, which presents 

a solution to these issues. XCP-D is a collaborative effort between PennLINC at the University of 

Pennsylvania and the DCAN lab at the University at Minnesota. XCP-D uses an open development 

model on GitHub and incorporates continuous integration testing; it is distributed as a Docker 

container or Singularity image. XCP-D generates denoised BOLD images and functional 

derivatives from resting-state data in either NifTI or CIFTI files, following pre-processing with 

fMRIPrep, HCP, and ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been 

downloaded >3,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and 

reproducible post-processing of fMRI data. 
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INTRODUCTION 

 

Functional neuroimaging using fMRI is an essential tool for human neuroscience research. Widely 

used pre-processing pipelines, such as fMRIPrep (Esteban et al., 2018), Human Connectome 

Project (HCP) pipelines (Glasser et al., 2013), and ABCD-BIDS (Feczko et al., 2021) produce 

standardized, minimally pre-processed data to support a range of potential analyses. Following 

pre-processing, investigators typically perform post-processing, which includes critical steps like 

denoising and generation of derived measures (e.g., functional networks) that are used in 

hypothesis testing. Unlike the highly standardized software available for pre-processing, there is 

far more variability in how researchers approach post-processing, for example censoring data to 

remove high-motion outliers, or despiking data to remove large spikes in images. In general, 

different approaches towards denoising in the post-processing stage can lead to different results 

from the same set of data. Prior work has also established that denoising strategies are quite 

heterogeneous in their effectiveness (Ciric et al., 2017). This may result in findings that cannot be 

replicated, contradictory results, and other such issues that make it harder for the field to progress. 

Here we introduce XCP-D: a scalable, robust, and generalizable software package for post-

processing resting-state fMRI data.  

 

Widely used pre-processing tools such as fMRIPrep build on the Brain Imaging Data Structure 

(BIDS) for organizing and describing neuroimaging data (Gorgolewski et al., 2016). As a BIDS 

App, fMRIPrep builds appropriate pre-processing workflows based on the metadata encoded by 

BIDS. Following pre-processing with fMRIPrep, many labs use custom workflows for post-

processing steps including denoising and generation of derivatives. While such a bespoke approach 

to post-processing may have advantages 3 such as being tightly aligned with the needs of a specific 

study 3 it leads to the duplication of effort across labs, negatively impacts reproducibility, and may 

reduce the generalizability of results. One alternative to custom post-processing has been provided 

by the eXtensible Connectivity Pipelines Engine (XCP; Ciric et al., 2018), a widely used (>6,000 

Docker pulls) post-processing package that consumes fMRIPrep output. However, XCP has 

accumulated substantial technical debt over time, is not compatible with other widely used pre-

processing formats (e.g: HCP pipelines), does not support surface-based analyses, and lacks certain 

advanced denoising features provided by other widely used packages such as ABCD-BIDS.  

 

Here, we introduce XCP-D, a collaborative effort between PennLINC (Pennsylvania Lifespan 

Informatics and Neuroimaging Center) and DCAN (Developmental Cognition and Neuroimaging 

Labs) that includes a new Python codebase and important new features. XCP-D focuses on 

consuming data pre-processed by other widely used tools. Specifically, XCP-D supports post-

processing of multiple pre-processed formats, including fMRIPrep, HCP pipelines, and ABCD-

BIDS; this allows XCP-D users to apply the same top-performing denoising strategies to datasets 

that were pre-processed using different software. XCP-D adheres to BIDS derivatives conventions 

throughout and includes new software engineering features to ensure stability and robustness. 
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These include a refactored and highly modular codebase that is built using NiPype (Gorgolewski 

et al., 2011) and incorporates extensive continuous integration (CI) testing. Additionally, XCP-D 

supports CIFTI workflows for surface-based analysis and processing, provides an expanded suite 

of data quality measures, and includes new visual reports. XCP-D thus allows users to leverage 

minimally processed data from diverse data resources, apply uniform post-processing, and 

generate the same derived measures for hypothesis testing. Prior to publication, XCP-D has already 

been pulled from DockerHub over 3000 times.  

 

 

METHODS 

 

Overview 

XCP-D consumes pre-processed resting-state data generated with any of three commonly used 

pre-processing pipelines: fMRIPrep, HCP, or ABCD-BIDS and implements top-performing 

denoising strategies (Ciric et al., 2018) for NIfTI or CIFTI timeseries. The pipeline generates 

resting-state derivatives, including parcellated timeseries and connectivity matrices, using multiple 

popular atlases. Importantly, XCP-D also calculates additional quality assurance measures. 

Finally, XCP-D constructs interactive reports that describe the post-processing methods used and 

facilitate visualization of each step. XCP-D also uses an open, test-driven development model on 

GitHub, and is distributed as a Docker container or Singularity image.  

 

Installation procedures 

Docker  

Docker is an open-source platform for developers that makes the distribution of applications easier 

via packaging of all supporting dependencies into a lightweight, standard form called a <container= 

(Rad et al., 2017). Docker images create a container that includes the complete operating system 

and all necessary dependencies. For every new version of XCP-D, continuous integration testing 

is performed (see Table 1 for a list of tests implemented in XCP-D). If these tests succeed, a new 

Docker image is automatically generated and deployed to DockerHub. To run XCP-D via Docker 

images, Docker Engine must be installed. To pull XCP-D from DockerHub, users must run:  

 
 docker pull pennlinc/xcp_d:<version> 

 

where <version> should be replaced with the desired version or tag of XCP-D that users want 

to download. The image can also be found here: https://registry.hub.docker.com/r/pennlinc/xcp_d  

 

XCP-D can be run by interacting directly with the Docker Engine via the docker run command.  

 

Singularity 

Singularity is an open-source software package designed to allow portable computational 

environments and containers for scientific research (Kurtzer et al., 2017). Many high performance 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567926doi: bioRxiv preprint 

https://registry.hub.docker.com/r/pennlinc/xcp_d
https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/


computing (HPC) systems restrict use of Docker, but support Singularity instead. Using 

Singularity version 2.5 or higher, users can create a Singularity image from a Docker image on 

DockerHub:  

 
 singularity build xcp_d-<version>.sif docker://pennlinc/xcp_d:<version> 

 

Design and testing 

We used an open-source, test-driven approach in developing XCP-D. To this end, we integrated 

CircleCI 3 a web-based continuous integration testing platform 3 into our development workflow. 

Each new commit to the software is run through a full suite of CI tests (described in Table 1) run 

on pre-selected datasets during each CircleCI instance. Further, we applied branch protection rules 

to the development process: namely, any changes to XCP-D must be approved by a reviewer and 

pass continuous integration testing and full pipeline runs on CircleCI before deployment to the 

main branch that can be accessed by users. Approximately 81% of the code is covered by our tests 

according to CodeCov 3 which determines how much of the codebase is covered by CI testing.  

 

Workflow 

Post-processing in XCP-D involves multiple customizable steps that are widely used: the removal 

of dummy volumes, despiking, temporal censoring, regression, interpolation, filtering, smoothing, 

supplemented by the calculation of quality assurance variables, and generation of reports 

(Satterthwaite et al., 2013; Ciric et al., 2018; see Figure 1). Note that XCP-D supports post-

processing of fMRI data with a T1 image, a T2 image, or both. 
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Figure 1: XCP-D Workflow. The XCP-D workflow begins after the pre-processing of fMRI data. XCP-D 

requires anatomical data, confounds files, and pre-processed BOLD files. It performs functional denoising 

to produce clean fMRI data and functional derivatives. ReHo: Regional Homogeneity; ALFF: Amplitude of 

Low Frequency Fluctuations. 

 

Through these processes, XCP-D produces multiple functional derivatives, including the dense 

volumetric and/or surface-based denoised timeseries, parcellated timeseries, correlation matrices, 

and derived functional metric maps (such as regional homogeneity and fluctuation amplitude). 

Furthermore, XCP-D also provides detailed quality assurance information regarding both the fMRI 

data and image registration, as well as interactive graphical reports (see Table 2 for a list and 

description of XCP-D outputs).  

 

Many internal operations of the software use TemplateFlow (Ciric et al. 2022), Nibabel (Brett et 

al. 2023), numpy (Harris et al. 2020), and scipy (Virtanen et al. 2020). Below, we describe each 
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of the post-processing modules with accompanying command syntax, relevant information, as well 

as the CI tests for each module. 

 

Ingression of non-BIDS derivatives 

XCP-D supports both BIDS derivatives-compliant pre-processing pipelines (i.e., fMRIPrep) and 

non-BIDS pipelines (i.e., HCP and ABCD-BIDS). In the latter case, XCP-D indexes the outputs 

from the pre-processing pipeline and maps the relevant files into a BIDS derivatives-compliant 

structure in the working directory if the user specifies --input-type as dcan or hcp. 

 

As part of this ingression procedure, XCP-D also extracts minimal confounds. However, this does 

not fully reproduce the confounds that fMRIPrep creates, which limits the denoising strategies 

available for these data. Additionally, XCP-D9s anatomical workflow requires that CIFTI surfaces 

are in fsLR space at 32k density. 

 

Removal of non-steady state volumes 

Some vendors acquire multiple additional volumes at the beginning of a scan to reduce transient 

T1 signals before a steady state is approached (Jenista et al., 2016). These volumes are often 

referred to as <dummy scans'' or <non-steady state volumes''. Additionally, higher levels of 

movement at the start of a scan (e.g., startle due to onset of scanner noise) may also lead 

investigators to remove initial volumes. This is the first post-processing step in XCP-D and occurs 

optionally. XCP-D allows the first n (as supplied by users) number of volumes to be deleted before 

processing. If set to auto, XCP-D will extract non-steady-state volume indices from the pre-

processing derivatives confounds file (only included in fMRIPrep confounds files). Removal of 

dummy volumes is enabled via the –-dummy-scans flag and feeds the truncated confounds 

and image files into the rest of the workflow. This module is tested by evaluating a BOLD file and 

its corresponding confounds file and specifying a varying number of volumes (1-10) to be 

removed. The CI test confirms that the correct number of volumes is dropped from both the image 

and confound timeseries.  

 

Despiking 

Despiking is a process in which large spikes in the BOLD times series are truncated on an adaptive, 

voxel-specific basis. Despiking limits the amplitude of the large spikes but preserves the data 

points with an imputed reduced amplitude to minimize the effect of outliers. Notably, despiking is 

different from temporal censoring as it modifies rather than deletes data 3 despiking is also 

performed individually for each voxel whereas temporal censoring removes an entire volume. 

XCP-D performs despiking via AFNI9s (Cox et al., 1996) 3dDespike using default settings and the 

–-NEW flag, which uses a new fitting algorithm to despike the data rather than AFNI9s original 

L1 method, due to faster processing speed. For CIFTIs, which are first converted to NIfTIs and 

back during the despiking process via Connectome Workbench (Marcus et al., 2011), the –-

nomask flag is used so that the entire volume is despiked. Despiking is performed when the –-
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despike flag is supplied. Despiking is executed before regression, censoring, and filtering to 

minimize the impact of spikes. Testing for this module involves calculating the maximum and 

minimum intensity values of the data and ensuring that the range between the two has decreased 

after despiking - that is, the minimum value of the data has increased, while the maximum value 

has decreased.  

 

Filtering of realignment parameters 

Recent work has established that respiration can systematically induce fluctuations in the main 

magnetic field (Fair et al., 2020), which can contaminate estimates of head motion. Such artifacts 

can be removed via filtering of the realignment parameters using a low-pass filter for single-band 

images (Gratton et al., 2020) or a notch filter for multiband images (Fair et al., 2020). If users 

specify a low-pass filter, frequencies above band_stop_min (specified in breaths per minute) 

are removed with a Butterworth filter. If users specify a notch filter (as described in Fair et al., 

2020), the frequencies between band_stop_min and band_stop_max are removed. The 

notch filter is applied using scipy9s iirnotch function, and both filters are applied backwards 

and forwards using scipy9s filtfilt function. Motion parameter filtering will only be enabled 

if --motion-filter-type is provided. 

 

Temporal censoring  

Temporal censoring (also known as motion scrubbing) is a process in which data points with 

excessive motion are removed from the fMRI timeseries (Power et al., 2012). To aid the fit of the 

confound regression model, censored data points are removed before regression. The framewise 

displacement (FD) threshold specified by the user (with a default value of 0.3) is used to identify 

volumes to be censored. Temporal censoring can be disabled by setting –-fd-thresh to 0.  

 

FD is calculated from the (optionally filtered) realignment parameters following the procedure 

described in Power et al., 2014. The head radius used to calculate FD may be supplied by the user 

via –-head-radius, set to auto (which estimates the brain radius based on the pre-processed 

brain mask), or by defaulting to 50 mm. The FD timeseries and FD threshold are then used to 

determine the number of high motion outlier volumes. A temporal mask is then generated in .tsv 

format, with 0s corresponding to volumes that were not flagged for censoring, and 1s indicating 

high-motion outlier volumes. 

 

For participants with high motion, it is possible that censoring results in a timeseries with few un-

censored volumes. XCP-D allows the user to specify a minimum run duration (in seconds) of un-

censored data. This minimum time can be specified by the user via –-min-time (with a default 

value of 100, in seconds), which determines the minimum amount of time, in seconds, needed to 

process a given run once high-motion volumes are removed. This feature can be disabled by 

providing a 0 or a negative value.  
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This module is tested by replacing values in the confounds file with values that should be censored 

and ensuring that the image file and the confounds file have had the same number of volumes 

dropped after the censoring module.  

 

Confound selection 

Confound selection occurs when a confounds file is supplied from a pre-processing software. A 

custom confounds file may also accompany or replace this confounds file. The selected nuisance 

regressors could include realignment parameters, mean timeseries from anatomical compartments 

(GM, WM, CSF), the global signal (Fox et al., 2009), CompCor components (Behzadi et al., 2007), 

or independent components from ICA-AROMA (Pruim et al., 2015). Confound configurations can 

be extracted from these parameters and are then used to remove noise from the BOLD image file 

during confound regression. Confound configuration preferences may vary across use cases thus 

XCP-D allows users some flexibility in denoising options (Satterthwaite et al., 2013; Ciric et al., 

2017). Note that at present, users cannot apply aCompCor or AROMA nuisance regressors for 

HCP or ABCD-BIDS inputs; this is a feature that may be added in the future. 

 

The built-in nuisance strategies may be supplemented or replaced with a custom confounds file 

provided by the user. This functionality allows users to perform more advanced regression 

strategies. For example, users may convolve task regressors with a hemodynamic response 

function and provide these regressors in a custom confounds file to regress out task signals and 

treat the denoised data as pseudo-rest (Fair et al., 2007). If users wish to retain specific signals of 

interest in the data, they may include those signals in the custom confounds file, with the associated 

column headers prefixed with <signal__=. This scenario is described in <Confound regression=. 

 

Confound selection is implemented via Nilearn9s (Abraham et al., 2014) load_confound 

functionality. The selected confounds are fed into the beginning of the workflow in .tsv format 

where dummy time is removed - so it is appropriately truncated, and then passed on throughout 

the workflow. Pre-configured confound strategies include those described in a prior benchmarking 

study (Ciric et al., 2018): 

 

ï 24P - six realignment parameters, their squares, derivatives, and squares of the derivatives  

ï 27P - the white matter, CSF and global signal parameters in addition to those included in 

the 24P model 

ï 36P - the squares, derivatives, and squares of the derivatives of white matter, CSF and 

global signal parameters in addition to those included in the 27P model 

ï acompcor - the ACompCor parameters, the six realignment parameters, and their 

derivatives 

ï acompcor_gsr - the ACompCor parameters, the realignment parameters, their 

derivatives, and global signal 
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ï aroma - the AROMA parameters, realignment parameters, their derivatives, white matter, 

and CSF 

ï AROMA_gsr - the AROMA parameters, realignment parameters, their derivatives, white 

matter, CSF, and global signal  

ï Custom confounds - users provide their own confounds 

 

Confound parameters can be selected by the user via the -p flag and corresponding configuration, 

or -c for custom confounds. Nuisance regressors can also be specified as none to skip this 

denoising step. Confound selection is tested by ensuring that the confounds matrix for certain 

confound configurations and BOLD files have the right number of parameters - for example, 36 

parameters if 36P is selected as the confound configuration.  

 

Confound regression 

Confound regression is used to mitigate motion artifacts in fMRI scans. XCP-D implements 

denoising via linear least squares regression. First, linear trend and intercept regressors are 

appended to the selected confounds so that the data is linearly detrended. Next, high-motion outlier 

volumes are removed from the nuisance regressors and the BOLD data (see section <Temporal 

censoring= above) so that the regression is only performed on low-motion data; the inclusion of 

very-high motion data that is removed via temporal censoring would reduce the effectiveness of 

confound regression. Each of the nuisance regressors, except for the intercept, are additionally 

mean-centered prior to the regression.  

 

In some cases, the selected confounds may be correlated with signals of interest, as in AROMA, 

where ICA components are labeled as <noise= or <signal.= In these cases, including the <noise= 

regressors without modification can result in the removal of variance explained by <signal= 

regressors. To address this issue, XCP-D orthogonalizes all nuisance regressors (except for the 

linear trend and intercept regressors) with respect to any detected signal regressors. This is done 

automatically for nuisance regression strategies that include AROMA regressors. For custom 

confounds derived from spatial ICA components, such as multi-echo denoising with tedana 

(DuPre, Salo et al., 2021; Kundu et al., 2011; Kundu et al., 2013), users must include <signal= 

components in their custom confounds file, prefixed with <signal__=. When columns with this 

prefix are detected in the confounds file, XCP-D will automatically employ this orthogonalization 

procedure. Then, when the confound regression step is performed, the modified nuisance 

regressors (i.e., without the signal regressors) will be mean-centered, censored to remove high-

motion volumes, and finally regressed out of the fMRI data.  

 

Regression consumes the confounds file and BOLD file to be denoised and produces a residual 

timeseries for further analysis. Using the user-selected (see above) confounds, regression occurs 

after despiking and censoring. Confound regression is tested by confirming that the correlation 

between a random voxel and the confounds timeseries has decreased.  
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Interpolation 

For accurate bandpass filtering, the original sampling rate of the time series must be retained. 

Hence, interpolation restores the length of the original timeseries after temporal censoring. It 

occurs after regression, using the temporal mask generated during censoring to determine which 

values have been removed during censoring. Then, it uses Nilearn9s interpolation function to 

interpolate values from high-motion volumes via cubic spline interpolation. Note that interpolation 

for volumes at the beginning and end of the time series is disabled. Instead, XCP-D propagates the 

values from the closest low-motion volume. The BOLD timeseries with the interpolated values is 

then passed to the filtering workflow. Testing of this module involves confirming that the 

difference between the fast Fourier transform (FFT) of an interpolated file and the original file is 

less than the difference between the FFT of a file with an artificial spike planted in it and the 

original file.  

 

Filtering 

Temporal filtering is used in fMRI signal processing to reduce high-frequency and low-frequency 

artifacts in the timeseries. XCP-D applies a Butterworth bandpass filter to BOLD signals after 

regression and interpolation. Functional connectivity between regions of interest is typically 

determined based on synchrony in low-frequency fluctuations (Biswal et al., 1995); therefore, 

removing higher frequencies using a low-pass filter may effectively remove noise from the 

timeseries while retaining signal of interest. High-pass filters can be used to remove very-low-

frequency drift, which is a form of scanner noise, from an acquisition. Any frequencies below the 

low-pass cutoff and above the high-pass cutoff will be counted as pass-band frequencies as in the 

case of our Butterworth filter. These will be retained by the filter when it is applied. High-pass or 

low-pass only filtering is also supported.  

 

The bandpass filter parameters are set from 0.01 to 0.08 Hz with a filter order of 2 by default, as 

used in Power et al., 2014. The filter is calculated using scipy9s butter functionality to calculate 

filtering coefficients, and filtfilt to apply the filter to the data. The filter uses constant 

padding with maximum allowed pad length as one less than the total number of volumes. 

Parameters can be modified in the command line, using the –-lower-bpf, –-upper-bpf 

and –-bpf-order flags. This module occurs after regression and before the creation of 

functional timeseries. It is applied to the unfiltered BOLD file and outputs the filtered image.  

 

Testing of this module involves comparing the output of XCP-D9s Butterworth filtering code to 

the output of scipy9s code. 

After bandpass filtering is performed, the denoised, interpolated, and filtered timeseries is re-

censored, so that only low-motion volumes are retained. This occurs as described above in the 

<Outlier detection and removal'' section.  
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Parcellated timeseries extraction and calculation of connectivity matrices  

Functional connectivity matrices are a widely used approach to examine the coherence in activity 

between distant brain areas (Hlinka et al., 2011; Biswal et al., 1995). The generation of these 

matrices involves parcellating the brain into regions determined by atlases and then calculating 

correlations between regions. 

 

XCP-D extracts voxel-wise timeseries from the denoised BOLD timeseries and outputs parcellated 

timeseries and correlation matrices for a variety of atlases bundles in the software. The output post-

processed BOLD files, parcellated timeseries, and correlation matrices come from censored data. 

If the user adds the –-dcan-qc flag, then the interpolated version of the post-processed data will 

also be written out, with <desc-interpolated= in the timeseries filename. The local mean timeseries 

within each brain atlas9s region of interest (ROI) is extracted via Nilearn9s 

NiftiLabelsMasker for NIfTIs, and ConnectomeWorkbench9s wb_command --cifti-

parcellate function for CIFTIs. Functional connectivity matrices are estimated using the 

Pearson correlation between all parcels for a given atlas. Before functional connectivity is 

estimated, a coverage threshold (with a default value of 0.5, or 50% coverage) is applied to parcels 

in each atlas. Any parcels with lower coverage than the threshold will be replaced with NaNs. This 

may be useful in the case of partial field-of-view acquisition or poor placing of the bounding box 

during acquisition. Additionally, if the --exact-time flag is used, this parameter will produce 

correlation matrices limited to each requested amount of time (specified in seconds). If there is 

more than the required amount of low-motion data, then volumes will be randomly selected to 

produce denoised outputs with the exact amounts of time requested. If there is less than the 

required amount of 8good9 data, then the corresponding correlation matrix will not be produced. 

 

The following atlases are implemented in XCP-D: Schaefer 100-1000 (Schaefer et al., 2018), 

Glasser 360 (Glasser et al., 2016), Gordon 333 (Gordon et al., 2016), the subcortical HCP Atlas 

(Glasser et al., 2013) and Tian Subcortical Atlas (Tian et al., 2020). Notably, our atlases have been 

harmonized with QSIPrep (Cieslak et al., 2021) and ASLPrep (Adebimpe et al., 2022) to facilitate 

multi-modal network analyses. This module is tested by confirming that the correlation coefficient 

of a parcellated timeseries is the same as in the connectivity matrix produced, when calculated 

separately in a Python notebook.  

 

ReHo 

Regional Homogeneity (ReHo) is a measure of local temporal uniformity in the BOLD signal 

computed at each voxel of the processed image. Greater ReHo values correspond to greater 

synchrony among BOLD activity patterns measured in a local neighborhood of voxels (Zang et 

al., 2004), with neighborhood size determined by a user-specified radius of voxels. ReHo is 

calculated as the coefficient of concordance among all voxels in a sphere centered on the target 

voxel (Zuo et al., 2013).  
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ReHo is performed on the BOLD file after temporal filtering and the output is written out directly 

to the XCP-D derivatives folder. For NIfTIs, ReHo is always calculated via AFNI9s 3dReho with 

27 voxels in each neighborhood. For CIFTIs, the left and right hemisphere are extracted into GIFTI 

format via Connectome Workbench9s CIFTISeparateMetric. Next, the mesh adjacency 

matrix is obtained, and Kendall's coefficient of concordance (KCC) is calculated (Zhang et al., 

2023), with each vertex having four neighbors. For subcortical voxels in the CIFTIs, 3dReho is 

used with the same parameters that are used for NIfTIs. This module is tested by adding artificial 

noise to an image and confirming that the mean ReHo value declines. 

 

ALFF 

The amplitude of low-frequency fluctuations (ALFF) 3 also called <fluctuation amplitude= 3 is a 

measure of regional intensity of BOLD signal fluctuation (Yu-Feng et al., 2006) calculated in each 

voxel of the processed image. Low-frequency fluctuations are of particular importance because 

functional connectivity is most typically computed based on synchronous, low frequency 

fluctuations (Zou et al. 2008).  

 

ALFF is calculated on the BOLD file after filtering and its output can optionally be smoothed (see 

Smoothing). Notably, ALFF is only calculated if bandpass filtering is applied, and motion 

censoring is disabled. ALFF is computed by transforming the processed BOLD timeseries to the 

frequency domain using scipy9s periodogram function. The power spectrum is computed 

within the default 0.01-0.08 Hz frequency band (or the band-pass values optionally supplied by 

the user during filtering), and the mean square root of the power spectrum is calculated at each 

voxel to yield voxel-wise ALFF measures.  

 

This module is tested by first calculating the ALFF of a BOLD file. Then, the FFT of the BOLD 

file is calculated. After adding values to the amplitude of its lower frequencies, it is confirmed that 

the ALFF increases upon being re-computed. 

 

 

Spatial smoothing 

Noise in the BOLD signal 3 due to physiological signals or scanner noise 3 can introduce spurious 

artifacts in individual voxels (Mikl et al., 2008). The effects of noise-related artifacts can be 

mitigated by spatial smoothing of the data, which can dramatically increase the signal-to-noise 

ratio (Mikl et al., 2008). However, spatial smoothing is not without its costs: it effectively reduces 

volumetric resolution by blurring signals from adjacent voxels (Mikl et al., 2008).  

 

Smoothing optionally occurs after temporal filtering. FWHM smoothing is implemented in XCP-

D with a default value of 6.0 mm in volumes and surfaces. Additionally, ALFF maps are also 

smoothed if the --smoothing flag is specified by the user. First, the specified FWHM kernel 

(specified in mm) is converted to sigma (standard deviation). Smoothing for NIfTIs is performed 
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via Nilearn9s smooth_img using a Gaussian filter. For CIFTIs, Connectome Workbench9s 

wb_command --cifti-smoothing is used to smooth each hemisphere and the subcortical 

volumetric data. This module is tested by confirming smoothness has increased after data has 

passed through the smoothing workflow, via AFNI for NIfTIs and via Connectome Workbench 

for CIFTIs. 

 

Quality control 

XCP-D calculates multiple quality control measures. These include estimates of fMRI data quality 

before and after regression, as well as indices of co-registration and normalization quality. Selected 

metrics include the following: 

ï Summary measures of realignment parameters: mean FD, mean and maximum root-

mean-square displacement (RMS). FD and RMS measure relative contributions of 

angular rotation and uniformity of motion effects across the brain (Yan et al., 2013).  

ï DVARS: DVARS is a whole brain measure of the temporal derivative (D) of image 

intensity computed by obtaining the root mean square variance across voxels (VARS; 

Goto et al., 2016.) As such it reflects time-varying signals and large values are often 

attributable to artifacts such as in-scanner motion.  

ï fMRI-T1/T2 co-registration quality: Because of the limited spatial resolution and reduced 

anatomic contrast of fMRI images compared to structural images, fMRI images are co-

registered to the structural image prior to normalization to template space. Poor co-

registration can thus impact normalization. XCP-D calculates the Dice similarity index 

(Dice, 1945), overlap coefficient, and Pearson correlation between the fMRI image and 

the T1 image (or T2 image) to determine the quality of the registration. The Dice index 

equals twice the number of voxels common to both images divided by the sum of the 

number of voxels in each image. The overlap coefficient (Vijaymeena & Kavitha, 2016) 

calculates the relative number of non-zero voxels in both images. The Pearson9s 

correlation measures the correlations between the voxels in both images.  

ï fMRI-Template normalization quality: Following co-registration, the fMRI image is 

normalized to template space by applying the warp calculated in registration of the 

structural image to the template (Jahn, 2022). XCP-D calculates the dice similarity index 

(Dice, 1945), overlap coefficient, and Pearson correlation coefficient to quantify the 

alignment of the fMRI image to the template.  

 

Visual reports 

XCP-D produces two different user-friendly, interactive .html reports. The first (DCAN-style) 

output is called the <Executive Summary.= The Executive Summary is an interactive web page for 

quick visual inspection of structural and functional registration, surface quality, physiological and 

non-physiological artifacts, and post-processing success (see select elements in Figure 2; a full 

example is provided in Supplemental Figure 1). It is particularly useful for assessing co-

registration, normalization, and surface alignment. For example, it includes an interactive 

BrainSprite (https://github.com/brainsprite/brainsprite) viewer that overlays pial and white matter 

surfaces on the template image. This allows users to quickly assess the quality of the surface 

registration. Further information regarding co-registration and normalization quality is depicted in 
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contour plots. The Executive Summary also includes a carpet plot for all runs, which depicts the 

fMRI timeseries before and after confound regression. These carpet plots are displayed alongside 

the FD plots and DVARS timeseries to allow users to rapidly assess denoising success. 

Additionally, XCP-D also provides a NiPreps style report that depicts similar information in a 

different layout (see Supplemental Figure 2). In both reports, XCP-D also produces a <methods 

boilerplate= that details the methods applied along with citations as relevant for users. This 

automatically generated description of the methods ensures fidelity of reporting and can be directly 

copied into publications9 methods sections. 

 

 
 

Figure 2: Selected elements of the XCP-D Executive Summary. Panel A depicts the BrainSprite viewer 

that overlays white and pial matter on the template, followed by (Panel B) a carpet plot and graphs depicting 

FD and DVARS. FD: Framewise displacement; DVARS: temporal derivative (D) of image intensity 

computed by obtaining the root mean square variance across voxels (VARS).  

 

Anatomical Workflow 

The optional anatomical workflow in XCP-D serves two main purposes. First, it is used to warp 

several surfaces derived from the structural images from fsnative to fsLR space, which is useful as 

part of the visual reports for assessing normalization to the fsLR template. To this end, the 
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workflow generates surf.gii files in fsLR space for the gray matter / pial matter border and the 

white matter/gray matter border. It also generates HCP-style inflated surfaces for visualization 

purposes. The workflow can be enabled via the –-warp-surfaces-native2std flag.  

 

Second, XCP-D will parcellate morphometric surface files 3 including cortical thickness, depth, 

and curvature 3 generated in pre-processing by sMRIPrep (Esteban et al., 2020) or HCP pipelines. 

XCP-D parcellates these morphometric files using the same atlases that are used for creating 

functional connectivity matrices as well as other surface features like ALFF and ReHo. This 

functionality facilitates analyses of both fMRI and structural imaging features when data is 

processed using XCP-D.  

 

Concatenation 

XCP-D also offers users the option of concatenating fully denoised timeseries across fMRI runs 

based on the run entity specified (notably, different tasks are not concatenated); this also yields 

QC metrics that are concatenated. Notably, this option should be used with some caution as it will 

double the size of output data in the derivatives folder. Users can concatenate runs by specifying 

the –-combineruns flag.  

 

 

RESULTS 

 

Below, we demonstrate the utility of XCP-D in two ways. First, we provide a detailed walkthrough 

with bundled example data. Second, we apply it to data from three large-scale datasets. 

 

WALKTHROUGH 

 

The XCP-D workflow for processing an fMRIPrep dataset (example subjects) 

The following walkthrough details the workflow for post-processing a dataset using XCP-D on a 

HPC 3 specifically, a RedHat Enterprise Linux-based system, using Singularity. To do so, we use 

an example dataset that is bundled with the software within the container. This container contains 

three example subjects from a study on executive function, which is available on OpenNeuro at 

https://openneuro.org/datasets/ds004450. These subjects are organized in a BIDS-compatible 

manner with T1s, two resting-state runs, and corresponding field maps for the three subjects. Both 

.nii.gz and .json files are available for each of these scans, along with a dataset_description.json, 

and fMRIPrep derivatives. For the purposes of this walkthrough, commands for a minimal XCP-

D run will be demonstrated.  

 

All commands are run in a directory named XCPD_test. The XCP-D walkthrough container with 

the bundled subjects can be downloaded via Singularity, by running the following bash script:  

 
singularity build xcp_walkthrough.sif docker://pennlinc/xcp_walkthrough:latest 
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XCP-D can then be run on example subjects via Singularity, by running the following bash script:  
 

singularity run --cleanenv -B ~/XCPD_test ~/XCPD_test/xcp_walkthrough.sif 

/data/EF/derivatives/fmriprep ~/XCPD_test/output participant -vv 

 

This script runs XCP-D using all the default options. The --cleanenv flags ensures that 

environment variables from local machines are ignored so that appropriate packages from within 

the container are used, and -B mounts the input files on local devices to the image. The three 

arguments here correspond to the mandatory arguments of: fmriprep directory 

(/data/EF/derivatives/fmriprep), output directory (~/XCPD_test/output), and 

analysis level (participant).  

 

This will produce XCP-D derivatives under the folder XCPD_test/output. The outputs will 

include a dataset description, logs, citation information, processed anatomical and functional 

derivatives, as well as .svg figures. See Supplemental Figure 3 for the expected directory 

structure of output from one example subject. 

 

 

Application of XCP-D to three example datasets 

 

To illustrate the utility of XCP-D to diverse data, we processed a total of 600 subjects from three 

datasets. Specifically, we processed n=200 participants each from the Philadelphia 

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014; Satterthwaite et al., 2016), the 

Healthy Connectome Project - Young Adults (HCP-YA; Glasser et al., 2013) sample, and the 

Adolescent Brain Cognitive Development (ABCD; Volkow et al., 2017) study®. Note that the 

ABCD data repository grows and changes over time. The ABCD data used in this report came 

from https://doi.org/10.17605/OSF.IO/PSV5M.   

 

Notably, prior to post-processing with XCP-D, each of these datasets were pre-processed using 

different tools. The PNC was processed using fMRIPrep (Esteban et al., 2018), ABCD was 

processed using ABCD-BIDS (Feczko et al., 2021), and the HCP-YA sample was processed via 

the HCP minimal processing pipelines (Glasser et al., 2013). All testing data had high quality 

structural images and greater than 5 minutes of high-quality resting-state fMRI data. 

 

The following command was used to process the data (via the CIFTI surface-based workflow, with 

the anatomical workflow enabled):  
 

PNC: 
singularity run –cleanenv -B ${PWD} –env FS_LICENSE=${PWD}/code/license.txt pennlinc-

containers/.datalad/environments/xcp/image ${PWD}/inputs/data/fmriprep xcp participant 

–combineruns –nthreads 1 –omp-nthreads 1 –mem_gb 10 –smoothing 2 –min_coverage 0.5 –
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min_time 100 –dummy-scans auto –random-seed 0 –bpf-order 2 –lower-bpf 0.01 –upper-bpf 

0.08 –motion-filter-type lp –band-stop-min 6 –motion-filter-order 4 –head-radius auto 

–exact-time 300 480 600 –despike –participant_label $subid -p 36P -f 0.3 –cifti –warp-

surfaces-native2std –dcan-qc -w ${PWD}/.git/tmp/wkdir -vvv –input-type fmriprep 

 

ABCD: 
singularity run –cleanenv -B ${PWD} pennlinc-

containers/.datalad/environments/xcp/image inputs/data xcp participant –

combineruns –nthreads 1 –omp-nthreads 1 –mem_gb 10 –smoothing 2 –min_coverage 

0.5 –min_time 100 –dummy-scans 6 –random-seed 0 –bpf-order 2 -lower-bpf 0.01 

–upper-bpf 0.08 –motion-filter-type notch –band-stop-min 15 –band-stop-max 25 

–motion-filter-order 4 –head-radius auto –exact-time 300 480 600 –despike –

participant_label $subid -p 36P -f 0.3 –cifti –warp-surfaces-native2std –

dcan-qc -w ${PWD}/.git/tmp/wkdir -v –input-type dcan 

 

HCP-YA: 
singularity run –cleanenv -B ${PWD} pennlinc-

containers/.datalad/environments/xcp/image inputs/data xcp participant –

combineruns –nthreads 1 –omp-nthreads 1 –mem_gb 10 –smoothing 2 –min_coverage 

0.5 –min_time 100 –dummy-scans 7 –random-seed 0 –bpf-order 2 –lower-bpf 0.01 

–upper-bpf 0.08 –motion-filter-type notch –band-stop-min 12 –band-stop-max 18 

–motion-filter-order 4 –head-radius auto –exact-time 300 480 600 –despike –

participant_label $subid -p 36P -f 0.3 –cifti –warp-surfaces-native2std –

dcan-qc -w ${PWD}/.git/tmp/wkdir -v –input-type hcp 

 

XCP-D completed successfully for all participants in all datasets. Among other outputs, XCP-D 

generated functional connectivity matrices (Figure 3) and parcellated cortical thickness 

information for each participant (Figure 4). Two small parcels in the medial temporal lobe cortex 

lacked coverage in the PNC.  Notably, the correlation between the mean connectivity matrices is 

0.93 for ABCD and PNC, 0.90 for ABCD and HCP, and 0.92 for PNC. The correlation between 

cortical thickness measures is 0.90 for ABCD and PNC, 0.95 for ABCD and HCP, and 0.85 for 

PNC and HCP.  
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Figure 3: Mean (Panel A) and standard deviation (Panel B) functional connectivity generated by XCP-D 

for each dataset in our large-scale application, displayed after Fisher9s Z transformation. Data are 

displayed using the Gordon atlas (Gordon et al., 2016). Def: default mode network; SmH: somatomotor 

hands network; SmM: somatomotor mouth network; Vis: visual network; FrP: Frontoparietal network; 

Aud: auditory network; CiP: cinguloparietal network; CiO: cingulo-opercular network; VenA: ventral 

attention network; Sal: salience network; DorA: dorsal attention network 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567926doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Figure 4: The mean (Panel A) and standard deviation (Panel B) of cortical thickness calculated by XCP-

D of each dataset in our large-scale application. Data are displayed using the Gordon atlas (Gordon et al., 

2016).  

 

 

DISCUSSION  

 

Functional imaging is an essential tool for human neuroscience research. In contrast to pre-

processing, where the field has gravitated towards use of standardized pipelines such as fMRIPrep, 

there has been a relative lack of standardization in fMRI post-processing. While several options 

for post-processing exist, they are often incompatible with common pre-processing methods, lack 

standardized output, and may not include software engineering best practices such as CI testing. 

While the steps used to generate the minimally pre-processed data are often quite similar, post-

processing strategies used and derived measures often diverge substantially across data resources. 

XCP-D seeks to fill this gap and provide a post-processing workflow that is compatible with data 

pre-processed with several widely used strategies. XCP-D9s open and modular codebase in Nipype 

includes extensive CI testing, produces many measures of quality control, and yields analysis-

ready derived measures that are named according to the BIDS standard. Together, XCP-D provides 

rigorous, accessible, and generalizable fMRI post-processing. 

  

The derived measures generated by XCP-D include many of the most broadly used features of 

brain function and structure. Functional measures include connectivity matrices from multiple 

atlases as well as voxel- and vertex-wise maps of fluctuation amplitude and (ALFF) and regional 

homogeneity (ReHo). While XCP-D does not include extensive structural image processing or 

image registration, it does consume the structural features generated by pre-processing pipelines, 

rename them according to current BIDS standards, and apply the same parcellations used for the 

functional images. Summarizing functional and structural features in the many contemporary 
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atlases included in XCP 3 including multi-scale atlases like the Schaefer parcellation (Schaefer et 

al., 2018) 3 facilitates multi-modal data integration and analysis. Multi-modal analyses are further 

accelerated by the recent integration of this same atlas bundle into our existing pipelines for 

diffusion MRI processing (QSIPrep; Cieslak et al., 2021) and processing arterial spin-labeled MRI 

(ASLPrep; Adebimpe et al., 2022) for calculation of cerebral blood flow.  

  

Beyond such analysis-ready derived features, XCP-D produces an extensive set of quality control 

measures. These measures include indices of both image registration (e.g., Dice coefficient, 

overlap index) and denoising performance (e.g., the correlation of DVARS and motion before and 

after denoising). Together, such measures facilitate scalable quality assurance for large datasets 

and allow users to identify problematic datasets that can be further evaluated using the detailed 

reports generated for each participant. As part of our <glass-box= design philosophy, these single-

participant reports allow users to examine key intermediate steps in the processing workflow. One 

particularly useful feature is the interactive BrainSprite that depicts the fully processed structural 

images along with overlays of the functional images. This visualization allows users to rapidly 

assess the success of image co-registration and atlas normalization. Additionally, the report 

includes tailored carpet plots that display the functional timeseries before and after post-

processing, facilitating rapid visualization of artifacts related to in-scanner motion. Each 

participant9s report closes with an automatically generated boilerplate summary of the methods 

used by XCP-D for the configuration specified, along with relevant citations and references. This 

text enables users to determine if the desired processing occurred as expected and ensures accurate 

methods reporting.  

  

In the design of XCP-D, we integrated multiple software engineering features to ensure stability 

and rigor. First, all XCP-D development is open, version-controlled, and clearly documented via 

detailed pull requests on GitHub. XCP-D implements branch protection rules that require reviews 

from at least one XCP-D developer before pull requests can be merged or changes can be released. 

We have benefitted from substantial community input and strive to quickly respond to bug reports 

from users. Second, XCP-D has a highly modular design in Nipype to reduce code duplication, 

enforce standardized workflows, facilitate integration testing, and allow for extensibility over time. 

Third, XCP-D is a BIDS-App, and we have made every effort to adhere to the standards described 

by BIDS, including the BIDS extension proposals (BEPs) related to derived data and functional 

networks. Fourth, XCP-D modules are subjected to extensive CI testing using CircleCI. These 

tests do not simply check that a file was produced but draw upon diverse example data and 

knowledge of each module9s operation to ensure that processing was executed correctly (for 

example, checking that a spike in the data is no longer present after despiking). These tests make 

the software more sustainable over time and mitigate risk of updates introducing occult errors. We 

track CI coverage using CodeCov; at present, 81% of the XCP-D codebase is covered by CI tests. 

Fifth and finally, XCP-D is containerized and distributed via Docker and Singularity, which wraps 

all dependencies to allow the software to be easily deployed in most computing environments. 
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There are many tools that denoise fMRI data, produce resting-state derivatives, and/or produce 

structural derivatives, including C-PAC (Configurable Pipeline for the Analysis of Connectomes; 

Craddock et al., 2013), CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012), connectomemapper3 

(Tourbier et al., 2022), CCS (Connectome Computation System, Xu et al., 2015), and DPARSF 

(Data Processing Assistant for Resting-State fMRI; Gan & Feng et al, 2010). One major difference 

between these tools and XCP-D is our dedicated focus on consuming data pre-processed by other 

widely used tools such as fMRIPrep. As such, XCP-D fills an important niche in the neuroimaging 

software ecosystem. Much of the post-processing that XCP-D provides can be performed using 

tools included in Nilearn, FSL, AFNI, and other software libraries. However, this would require 

users to assemble a pipeline themselves from component tools, and as such necessitate a higher 

degree of methodological proficiency. Furthermore, such user-assembled custom pipelines 

inevitably result in greater heterogeneity of methods used and usually reduce generalizability 

across efforts. 

 

XCP-D has several limitations. Although XCP-D currently offers multiple denoising options, the 

range of denoising options described in the literature is vast and many are not currently supported. 

For example, XCP-D does not provide dedicated support for physiological confounds such as 

respiration or heart rate measures (Frederick et al., 2012), although these signals can be modeled 

as a <custom confound= supplied by the user. Similarly, we do not currently support denoising 

methods such as phase regression, which suppresses signal from large veins by removing the linear 

fit between magnitude and phase timeseries from the magnitude timeseries (Knudsen et al., 2023). 

Also, XCP-D cannot be used to analyze task data. Such functionality is provided by FitLins 

(Markiewicz, 2022), NiBetaSeries (Kent et al., 2020), and other packages. XCP-D also does not 

support group-level analyses.  

  

These limitations notwithstanding, XCP-D provides generalizable, accessible, and robust post-

processing for fMRI data. XCP-D9s ability to post-process data from ABCD-BIDS, HCP-YA and 

fMRIPrep allows the same denoising, confound regression, and generation of derivates for large-

scale data resources that provide minimally pre-processed data; this could be invaluable for 

combining data across lifespan data resources.  Moving forward, we plan to integrate additional 

advanced denoising methods, provide dedicated methods for handling physiological data, and 

extend the pre-processing data types supported to include infant data pre-processed using 

NiBabies. As an open-source, collaborative software package, we welcome bug reports, feature 

suggestions, pull requests, and contributions from the community. 
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XCP-D STEP TESTING 

Confound selection Confirming that a loaded confound matrix has 

the right shape.  

Removing dummy time Looping through N=1-10 volumes to be 

dropped and confirming that the correct 

number of volumes have been dropped from a 

BOLD file and the corresponding confounds 

file.  

Censoring Replacing values in the confounds file with 

values that should be omitted and confirming 

that the image file and the confounds file have 

had the same number of volumes dropped.  

Despiking Confirming that the maximum value of the 

data has decreased, and the minimum value of 

the data has increased after despiking. 

Confound regression Confirming that the correlation between a 

random voxel and the confounds timeseries has 

decreased after regression. 

Interpolation Confirming that the difference between the fast 

Fourier transform (FFT) of an interpolated file 

and the original file is less than the difference 

between the FFT of a file with a spike planted 

in it and the original file. 

Filtering Comparing output of the XCP-D code after 

filtering to the output of SciPy9s code directly 

in a separate Python notebook.  

 

Functional timeseries and connectivity 

matrices 

Confirming that the correlation coefficient of a 

parcellated timeseries is the same as the 

connectivity matrix produced. (Parcellations 

were also performed manually in a separate 

Python notebook and compared to results from 

XCP-D.) 

ReHo Adding artificial noise to an image and 

confirming that the mean ReHo value 

decreases.  

ALFF Computing the FFT of a BOLD file, adding to 
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the amplitude of its lower frequencies and 

confirming the ALFF increases. 

Residual BOLD and resting-state derivatives 

smoothing 

Confirming that smoothness has increased 

after the module - via AFNI for NIfTIs and via 

Connectome Workbench for CIFTIs.  

Quality control Visually inspecting the quality check reports. 

 

Table 1: Continuous integration tests for different XCP-D stages.  

 

 

 

FILENAME FILE TYPE DESCRIPTION 

xcp_d/sub-

<label>[_ses-

<label>]_executive_s

ummary.html 

 

Report Executive summary per 

session 

xcp_d/sub-

<label>.html 

 

Report NiPreps summary per 

participant 

xcp_d/sub-

<label>/[ses-

<label>/]anat/<sourc

e_entities>_space-

<label>_desc-

preproc_T1w.nii.gz 

Anatomical Pre-processed T1w in MNI 

space 

xcp_d/sub-

<label>/[ses-

<label>/]anat/<sourc

e_entities>_space-

<label>_desc-

preproc_T2w.nii.gz 

Anatomical Pre-processed T2w in MNI 

space 
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xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
<label>_dseg.nii.gz 

 

Anatomical Pre-processed dseg in MNI 

space 

 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
hcp_midthickness.sur
f.gii 

Anatomical Reconstructed surfaces warped 

to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
hcp_inflated.surf.gi
i 

Anatomical Reconstructed surfaces warped 

to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
hcp_vinflated.surf.g
ii 

Anatomical Reconstructed surfaces warped 

to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
pial.surf.gii 

Anatomical Reconstructed surfaces warped 

to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-

Anatomical Reconstructed surfaces warped 

to fsLR space at 32k density 
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<L|R>_desc-
smoothwm.surf.gii 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_sulc.shape.gii 

Anatomical Sulcal depth in fsLR space at 

32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_curv.shape.gii 

Anatomical Sulcal curvature in fsLR space 

at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_thickness.shap
e.gii 

Anatomical Cortical thickness in fsLR 

space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_atlas-
<label>_den-
32k_desc-
sulc_morph.tsv 

Anatomical Parcellated sulcal depth 

estimates 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_atlas-
<label>_den-
32k_desc-
curv_morph.tsv 

Anatomical Parcellated sulcal curvature 

estimates 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-

Anatomical Parcellated cortical thickness 

estimates 
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fsLR_atlas-
<label>_den-
32k_desc-
thickness_morph.tsv 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_desc-

denoised_bold.nii.gz 

or 

<source_entities>_sp

ace-fsLR_den-

91k_desc-

denoised_bold.dtseri

es.nii 

Functional Denoised BOLD file 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_desc-

denoisedSmoothed_bol

d.nii.gz  

or 

<source_entities>_sp

ace-fsLR_den-

91k_desc-

denoisedSmoothed_bol

d.dtseries.nii 

Functional Smoothed, denoised BOLD 

file 

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e_entities>_space-
<label>_desc-

Functional Interpolated BOLD file; 

generated only with the --

dcan-qc flag 
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interpolated_bold.ni
i.gz  

or  
<source_entities>_sp
ace-fsLR_den-
91k_desc-
interpolated_bold.dt
series.nii 

xcp_d/ space-

<label>_atlas-

<label>_dseg.nii.gz  

or space-

<label>_atlas-

<label>_dseg.dlabel.

nii 

Functional  Atlases used for data 

parcellation 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_coverage.tsv 

or 

<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_coverage.tsv and 

<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_coverage.pscalar

.nii 

Functional Coverage information. 

Produced in .tsv and .pscalar 

format for CIFTIs 

xcp_d/sub-

<label>/[ses-

Functional Timeseries for functional data, 

after atlas parcellation. 

Produced in .tsv and .ptseries 
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<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_timeseries.t

sv  

or 

<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_timeseries.tsv 

and 

<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_timeseries.ptser

ies.nii 

format for CIFTIs 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_measure-

pearsoncorrelation_c

onmat.tsv or 

<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_measure-

pearsoncorrelation_c

onmat.tsv and 

<source_entities>_sp

ace-fsLR_atlas-

Functional Connectivity matrix for 

functional data, after atlas 

parcellation. Produced in .tsv 

and .pconn format for CIFTIs 
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<label>_den-

91k_measure-

pearsoncorrelation_c

onmat.pconn.nii 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_measure-

pearsoncorrelation_d

esc-

<INT>volumes_conmat.

tsv  

or 

<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_measure-

pearsoncorrelation_d

esc-

<INT>volumes_conmat.

tsv 

Functional Connectivity matrix for 

functional data, after atlas 

parcellation. Correlation 

matrices with the desc-

<INT>volumes entity are 

produced if the --exact-

time parameter is used. 

 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_reho.nii.gz  

or 

<source_entities>_sp

ace-fsLR_den-

91k_reho.dscalar.nii 

Functional ReHo image for BOLD data 
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xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_reho.tsv  

or 

<source_entities>_sp

ace-fsLR_atlas-

<label>_reho.tsv 

Functional Parcellated ReHo image 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_alff.nii.gz  

or 

<source_entities>_sp

ace-fsLR_den-

91k_alff.dscalar.nii 

Functional ALFF image for BOLD data 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_smooth_alff.

nii.gz  

or 

<source_entities>_sp

ace-fsLR_den-

91k_desc-

smooth_alff.dscalar.

nii 

Functional Smoothed ALFF image 
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xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<source_entities>_sp

ace-<label>_atlas-

<label>_alff.tsv  

or 

<source_entities>_sp

ace-fsLR_atlas-

<label>_alff.tsv 

Functional Parcellated ALFF image 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_desc-

linc_qc.csv  

or 

<source_entities>_sp

ace-fsLR_desc-

linc_qc.csv 

 

Quality check Quality control metrics, 

including motion and 

registration information  

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e_entities>[_desc-
filtered]_motion.tsv 

 

Quality check A tab-delimited file with seven 

columns: one for each of the 

six filtered motion parameters, 

as well as 

<framewise_displacement=. If 

no motion filtering was 

applied, this file will not have 

the desc entity. This file 

includes the high-motion 

volumes that are removed in 

most other derivatives. 

xcp_d/sub- Quality check A tab-delimited file with one 

column: 
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<label>/[ses-

<label>/]func/<sourc

e_entities>_outliers

.tsv 

 

<framewise_displacement=. 

The 

<framewise_displacement= 

column contains zeros for low-

motion volumes, and ones for 

high-motion outliers. This file 

includes the high-motion 

volumes that are removed in 

most other derivatives. 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_design.t

sv 

Quality check A tab-delimited file with one 

column for each nuisance 

regressor, including an 

intercept column, a linear 

trend column, and one-hot 

encoded regressors indicating 

each of the high-motion outlier 

volumes. This file includes the 

high-motion volumes that are 

removed in most other 

derivatives. 

 

 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_desc-

dcan_qc.hdf5 

 

DCAN-style quality check This file is in .hdf5 format 

(readable by h5py), and 

contains binary censoring 

masks from 0.0 to 1 mm FD in 

0.01 steps. This file contains: 

 

FD_threshold: a number >= 0 

that represents the FD 

threshold used to calculate the 

metrics in this list 

 

frame_removal: a binary 

vector/array the same length as 

the number of frames in the 

concatenated time series, 

indicates whether a frame is 

removed (1) or not (0). 

 

format_string (legacy): a 

string that denotes how the 

frames were excluded 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567926doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/


total_frame_count: a whole 

number that represents the 

total number of frames in the 

concatenated series 

 

remaining_frame_count: a 

whole number that represents 

the number of remaining 

frames in the concatenated 

series 

 

remaining_seconds: a whole 

number that represents the 

amount of time remaining after 

thresholding 

 

remaining_frame_mean_FD: 

a number >= 0 that represents 

the mean FD of the remaining 

frames 

 

Table 2: This table describes outputs from a run of XCP-D.  

 

 

 

OPTION TYPE DESCRIPTION DEFAULT OPTIONAL 

fmri_dir Positional argument The root folder of a 

pre-processed fMRI 

output 

None No 

output_dir Positional argument The output path for 

XCP-D 

None No 

analysis_leve
l 

Positional argument The analysis level 

for XCP-D, must be 

specified as 
participant 

None No 

--version Named argument Show program9s 

version number and 

exit 

None Yes 

--
participant_l

Options for filtering 

BIDS queries 

A space delimited 

list of participant 

None Yes 
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abel, --
participant-
label 

identifiers or a 

single identifier (the 

sub- prefix can be 

removed) 

-t, --task-
id, 
--task_id  

Options for filtering 

BIDS queries 

Select a specific 

task to be selected 

for the post-

processing (users 

can only specify one 

at a time) 

None Yes 

--bids-
filter-file 

Options for filtering 

BIDS queries 

A .JSON file 

defining BIDS input 

filters. XCP-D 

allows users to 

choose which pre-

processed files will 

be post-processed 

with the --bids-
filter-file 

parameter. This 

argument must 

point to a .JSON 

file, containing 

filters that will be 

fed into PyBIDS. 

 

The keys in this 

.JSON file are 

unique to XCP-D. 

They are our 

internal terms for 

different inputs that 

will be selected 

from the pre-

processed dataset. 

 

"bold" determines 

which pre-processed 

BOLD files will be 

chosen. You can set 

a number of entities 

here, including 

session, task, 

space, 

None Yes 
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resolution, and 

density.  

-m, --
combineruns 

Options for filtering 

BIDS queries 

This option 

concatenates 

derivatives across 

runs, for each task 

separately 

False Yes 

-s, --cifti Options for CIFTI 

processing 

Post-process CIFTI 

instead of NIfTI - 

this is set to true 

automatically for 

HCP and DCAN 

input types 

 

 

False Yes 

--nthreads Options for resource 

management 

Maximum number 

of threads across all 

processes 

2 Yes 

--omp-
nthreads, --
omp_nthreads 

Options for resource 

management 

Maximum number 

of threads per 

process 

1 Yes 

--mem-gb, --
mem_gb 

Options for resource 

management 

Upper bound 

memory limit for 

XCP-D processes 

None Yes 

--use-plugin, 
--use_plugin 

Options for resource 

management 

Nipype plugin 

configuration file. 

For more 

information, see 

https://nipype.readth

edocs.io/en/0.11.0/u

sers/plugins.html.  

None Yes 

-v, --verbose Options for resource 

management 

Increases log 

verbosity for each 

occurrence; debug 

level is -vvv 

0 Yes 

--input-type, 
--input_type 

Input flag The pipeline used to 

generate the pre-

processed 

derivatives. The 

fmriprep Yes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567926doi: bioRxiv preprint 

https://nipype.readthedocs.io/en/0.11.0/users/plugins.html
https://nipype.readthedocs.io/en/0.11.0/users/plugins.html
https://nipype.readthedocs.io/en/0.11.0/users/plugins.html
https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/


default option is 

fmriprep. The 

hcp and dcan 

options are also 

supported.  

 

--smoothing Parameters for post-

processing 

FWHM, in 

millimeters, of the 

Gaussian smoothing 

kernel to apply to 

the denoised BOLD 

data. This may be 

set to 0. 

6 Yes 

--despike Parameters for post-

processing 

Despike the 

NIfTI/CIFTI before 

processing 

False Yes 

-p, --
nuisance-
regressors, -
-
nuisance_regr
essors 

Parameters for post-

processing 

Nuisance 

parameters to be 

selected. See Ciric 

et. al (2017). 

 

Possible choices: 
27P, 36P, 
24P, 
acompcor, 
aroma, 
acompcor_gsr, 
aroma_gsr, 
custom, none 

36P 

 
Yes 

-c, --
custom_confou
nds, --
custom-
confounds 

Parameters for post-

processing 

Custom confounds 

to be added to 

nuisance regressors. 

Must be a folder 

containing 

confounds files, in 

which case the file 

with the name 

matching the pre-

processing 

confounds file will 

be selected. 

None Yes 

-- Parameters for post- Coverage threshold 0.5 Yes 
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min_coverage, 
--min-
coverage 

processing to apply to parcels 

in each atlas. Any 

parcels with lower 

coverage than the 

threshold will be 

replaced with NaNs. 

Must be a value 

between 0 and 1, 

indicating 

proportion of the 

parcel. 

--min_time, -
-min-time 

Parameters for post-

processing 

Post-censoring 

threshold to apply to 

individual runs in 

the dataset. This 

threshold 

determines the 

minimum amount of 

time, in seconds, 

needed to post-

process a given run, 

once high-motion 

outlier volumes are 

removed. This will 

have no impact if 

censoring is 

disabled (i.e., if the 

FD threshold is 0 or 

negative). This 

parameter can be 

disabled by 

providing a 0 or a 

negative value. 

100 Yes 

--dummy-
scans, --
dummy_scans 

Parameters for post-

processing 

Number of volumes 

to remove from the 

beginning of each 

run. If set to auto, 

XCP_D will extract 

non-steady-state 

volume indices 

from the pre-

processing 

derivatives 

confounds file. 

0 Yes 
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--random-
seed, --
random_seed 
 
 

Parameters for post-

processing 

Initialize the 

random seed for the 

workflow 

None Yes 

--disable-
bandpass-
filter, --
disable_bandp
ass_filter 

Filtering parameters  Disable bandpass 

filtering. If 

bandpass filtering is 

disabled, then ALFF 

derivatives will not 

be calculated. 

True Yes 

--lower-bpf, 
--lower_bpf 

Filtering parameters  Lower cut-off 

frequency (Hz) for 

the Butterworth 

bandpass filter to be 

applied to the 

denoised BOLD 

data. Set to 0.0 or 

negative to disable 

high-pass filtering. 

See Satterthwaite et 

al., 2013. 

0.01 Yes 

--upper-bpf, 
--upper_bpf 

Filtering parameters  Upper cut-off 

frequency (Hz) for 

the Butterworth 

bandpass filter to be 

applied to the 

denoised BOLD 

data. Set to 0.0 or 

negative to disable 

low-pass filtering. 

See Satterthwaite et 

al. (2013). 

0.08 Yes 

--bpf-order, 
--bpf_order 

Filtering parameters  Number of filter 

coefficients for the 

Butterworth 

bandpass filter 

2 Yes 

--motion-
filter-type, 
--
motion_filter
_type 

Filtering parameters  Type of band-stop 

filter to use for 

removing 

respiratory artifact 

from motion 

None Yes 
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regressors. If not 

set, no filter will be 

applied. 

 

Possible choices: 

lp, notch. 

 

If the filter type is 

set to notch, then 

both band-stop-

min and band-

stop-max must 

be defined. If the 

filter type is set to 

lp, then only 
band-stop-min 

must be defined. 

--band-stop-
min, --
band_stop_min 

Filtering parameters  Lower frequency 

for the band-stop 

motion filter, in 

breaths-per-minute 

(bpm). Motion 

filtering is only 

performed if 
motion-

filter-type is 

defined by the user. 

If used with the lp 

motion-filter-type, 

this parameter 

essentially 

corresponds to a 

low-pass filter (the 

maximum allowed 

frequency in the 

filtered data). This 

parameter is used in 

conjunction with 
motion-
filter-order 

and band-stop-

max. 

None Yes 

--band-stop- Filtering parameters Upper frequency for None Yes 
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max, --
band_stop_max 

the band-stop 

motion filter, in 

breaths-per-minute 

(bpm). Motion 

filtering is only 

performed if 
motion-

filter-type is 

defined by the user. 

This parameter is 

only used if 
motion-

filter-type is 

set to notch. This 

parameter is used in 

conjunction with 
motion-
filter-order 

and band-stop-

min. 

--motion-
filter-order, 
--
motion_filter
_order 

Filtering parameters Number of filter 

coefficients for the 

band-stop filter 

4 Yes 

-r, --
head_radius, 
--head-radius 

Censoring options 

for regression 

Head radius for 

computing FD. The 

default is 50mm, 

but 35mm is 

recommended for 

infants. A value of 

auto is also 

supported, in which 

case the brain radius 

is estimated from 

the pre-processed 

brain mask by 

treating the mask as 

a sphere 

50 Yes 

-f, --fd-
thresh, --
fd_thresh 

Censoring options Framewise 

displacement 

threshold for 

censoring 

0.3 Yes 
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--exact-time, 
--exact_time 

Censoring options If used, this 

parameter will 

produce correlation 

matrices limited to 

each requested 

amount of time. If 

there is more than 

the required amount 

of low-motion data, 

then volumes will 

be randomly 

selected to produce 

denoised outputs 

with the exact 

amounts of time 

requested. If there is 

less than the 

required amount of 

8good9 data, then 

the corresponding 

correlation matrix 

will not be 

produced. 

None Yes 

-w, --
work_dir, --
work-dir 

Other options Path where 

intermediate results 

should be stored 

working_
dir 

Yes 

--clean-
workdir, --
clean_workdir 

Other options Clears working 

directory of 

contents. Use of this 

flag is not 

recommended when 

running concurrent 

processes of XCP-

D. 

False Yes 

--resource-
monitor, --
resource_moni
tor 

Other options Enable Nipype9s 

resource monitoring 

to keep track of 

memory and CPU 

usage 

False Yes 

--notrack 
 

Other options Opt out of sending 

tracking information 

False Yes 

--fs-license- Other options Path to FreeSurfer None Yes.  
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file license key file. Get 

it (for free) by 

registering at 

https://surfer.nmr.m

gh.harvard.edu/regis

tration.html  

Users can 

alternatively 

mount the 

license and 

set an 

environment 

variable. 

--warp-
surfaces-
native2std, -
-
warp_surfaces
_native2std 

Experimental 

options 

If used, a workflow 

will be run to warp 

native-space 

(fsnative) 

reconstructed 

cortical surfaces 

(surf.gii files) 

produced by 

Freesurfer into 

standard (fsLR) 

space. These surface 

files are primarily 

used for visual 

quality assessment. 

By default, this 

workflow is 

disabled. 

 

IMPORTANT: This 

parameter can only 

be run if the --

cifti flag is also 

enabled. 

 

False Yes 

--dcan-qc, --
dcan_qc 

Experimental 

options 

Generate files with 

interpolated data 

and generate .hdf5 

format QC files, 

along with the 

BrainSprite figure 

False Yes 

 

Table 3: XCP-D command-line options. 
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