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ABSTRACT

Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines
produce standardized, minimally pre-processed data to support a range of potential analyses.
However, post-processing is not similarly standardized. While several options for post-processing
exist, they tend not to support output from disparate pre-processing pipelines, may have limited
documentation, and may not follow BIDS best practices. Here we present XCP-D, which presents
a solution to these issues. XCP-D is a collaborative effort between PennLINC at the University of
Pennsylvania and the DCAN lab at the University at Minnesota. XCP-D uses an open development
model on GitHub and incorporates continuous integration testing; it is distributed as a Docker
container or Singularity image. XCP-D generates denoised BOLD images and functional
derivatives from resting-state data in either NifTI or CIFTI files, following pre-processing with
fMRIPrep, HCP, and ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been
downloaded >3,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and
reproducible post-processing of fMRI data.


https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567926; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Functional neuroimaging using fMRI is an essential tool for human neuroscience research. Widely
used pre-processing pipelines, such as fMRIPrep (Esteban et al., 2018), Human Connectome
Project (HCP) pipelines (Glasser et al., 2013), and ABCD-BIDS (Feczko et al., 2021) produce
standardized, minimally pre-processed data to support a range of potential analyses. Following
pre-processing, investigators typically perform post-processing, which includes critical steps like
denoising and generation of derived measures (e.g., functional networks) that are used in
hypothesis testing. Unlike the highly standardized software available for pre-processing, there is
far more variability in how researchers approach post-processing, for example censoring data to
remove high-motion outliers, or despiking data to remove large spikes in images. In general,
different approaches towards denoising in the post-processing stage can lead to different results
from the same set of data. Prior work has also established that denoising strategies are quite
heterogeneous in their effectiveness (Ciric et al., 2017). This may result in findings that cannot be
replicated, contradictory results, and other such issues that make it harder for the field to progress.
Here we introduce XCP-D: a scalable, robust, and generalizable software package for post-
processing resting-state fMRI data.

Widely used pre-processing tools such as fMRIPrep build on the Brain Imaging Data Structure
(BIDS) for organizing and describing neuroimaging data (Gorgolewski et al., 2016). As a BIDS
App, fMRIPrep builds appropriate pre-processing workflows based on the metadata encoded by
BIDS. Following pre-processing with fMRIPrep, many labs use custom workflows for post-
processing steps including denoising and generation of derivatives. While such a bespoke approach
to post-processing may have advantages — such as being tightly aligned with the needs of a specific
study — it leads to the duplication of effort across labs, negatively impacts reproducibility, and may
reduce the generalizability of results. One alternative to custom post-processing has been provided
by the eXtensible Connectivity Pipelines Engine (XCP; Ciric et al., 2018), a widely used (>6,000
Docker pulls) post-processing package that consumes fMRIPrep output. However, XCP has
accumulated substantial technical debt over time, is not compatible with other widely used pre-
processing formats (e.g: HCP pipelines), does not support surface-based analyses, and lacks certain
advanced denoising features provided by other widely used packages such as ABCD-BIDS.

Here, we introduce XCP-D, a collaborative effort between PennLINC (Pennsylvania Lifespan
Informatics and Neuroimaging Center) and DCAN (Developmental Cognition and Neuroimaging
Labs) that includes a new Python codebase and important new features. XCP-D focuses on
consuming data pre-processed by other widely used tools. Specifically, XCP-D supports post-
processing of multiple pre-processed formats, including fMRIPrep, HCP pipelines, and ABCD-
BIDS; this allows XCP-D users to apply the same top-performing denoising strategies to datasets
that were pre-processed using different software. XCP-D adheres to BIDS derivatives conventions
throughout and includes new software engineering features to ensure stability and robustness.
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These include a refactored and highly modular codebase that is built using NiPype (Gorgolewski
et al., 2011) and incorporates extensive continuous integration (CI) testing. Additionally, XCP-D
supports CIFTI workflows for surface-based analysis and processing, provides an expanded suite
of data quality measures, and includes new visual reports. XCP-D thus allows users to leverage
minimally processed data from diverse data resources, apply uniform post-processing, and
generate the same derived measures for hypothesis testing. Prior to publication, XCP-D has already
been pulled from DockerHub over 3000 times.

METHODS

Overview

XCP-D consumes pre-processed resting-state data generated with any of three commonly used
pre-processing pipelines: fMRIPrep, HCP, or ABCD-BIDS and implements top-performing
denoising strategies (Ciric et al., 2018) for NIfTI or CIFTI timeseries. The pipeline generates
resting-state derivatives, including parcellated timeseries and connectivity matrices, using multiple
popular atlases. Importantly, XCP-D also calculates additional quality assurance measures.
Finally, XCP-D constructs interactive reports that describe the post-processing methods used and
facilitate visualization of each step. XCP-D also uses an open, test-driven development model on
GitHub, and is distributed as a Docker container or Singularity image.

Installation procedures

Docker

Docker is an open-source platform for developers that makes the distribution of applications easier
via packaging of all supporting dependencies into a lightweight, standard form called a “container”
(Rad et al., 2017). Docker images create a container that includes the complete operating system
and all necessary dependencies. For every new version of XCP-D, continuous integration testing
is performed (see Table 1 for a list of tests implemented in XCP-D). If these tests succeed, a new
Docker image is automatically generated and deployed to DockerHub. To run XCP-D via Docker
images, Docker Engine must be installed. To pull XCP-D from DockerHub, users must run:

docker pull pennlinc/xcp d:<version>

where <version> should be replaced with the desired version or tag of XCP-D that users want
to download. The image can also be found here: https://registry.hub.docker.com/r/pennlinc/xcp_d

XCP-D can be run by interacting directly with the Docker Engine via the docker run command.

Singularity
Singularity is an open-source software package designed to allow portable computational
environments and containers for scientific research (Kurtzer et al., 2017). Many high performance
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computing (HPC) systems restrict use of Docker, but support Singularity instead. Using
Singularity version 2.5 or higher, users can create a Singularity image from a Docker image on
DockerHub:

singularity build xcp d-<version>.sif docker://pennlinc/xcp d:<version>

Design and testing

We used an open-source, test-driven approach in developing XCP-D. To this end, we integrated
CircleCI — a web-based continuous integration testing platform — into our development workflow.
Each new commit to the software is run through a full suite of CI tests (described in Table 1) run
on pre-selected datasets during each CircleCl instance. Further, we applied branch protection rules
to the development process: namely, any changes to XCP-D must be approved by a reviewer and
pass continuous integration testing and full pipeline runs on CircleCI before deployment to the
main branch that can be accessed by users. Approximately 81% of the code is covered by our tests
according to CodeCov — which determines how much of the codebase is covered by CI testing.

Workflow

Post-processing in XCP-D involves multiple customizable steps that are widely used: the removal
of dummy volumes, despiking, temporal censoring, regression, interpolation, filtering, smoothing,
supplemented by the calculation of quality assurance variables, and generation of reports
(Satterthwaite et al., 2013; Ciric et al., 2018; see Figure 1). Note that XCP-D supports post-
processing of fMRI data with a T1 image, a T2 image, or both.
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Figure 1: XCP-D Workflow. The XCP-D workflow begins after the pre-processing of fMRI data. XCP-D
requires anatomical data, confounds files, and pre-processed BOLD files. It performs functional denoising
to produce clean fMRI data and functional derivatives. ReHo: Regional Homogeneity;, ALFF: Amplitude of
Low Frequency Fluctuations.

Through these processes, XCP-D produces multiple functional derivatives, including the dense
volumetric and/or surface-based denoised timeseries, parcellated timeseries, correlation matrices,
and derived functional metric maps (such as regional homogeneity and fluctuation amplitude).
Furthermore, XCP-D also provides detailed quality assurance information regarding both the fMRI
data and image registration, as well as interactive graphical reports (see Table 2 for a list and
description of XCP-D outputs).

Many internal operations of the software use TemplateFlow (Ciric et al. 2022), Nibabel (Brett et
al. 2023), numpy (Harris et al. 2020), and scipy (Virtanen et al. 2020). Below, we describe each
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of the post-processing modules with accompanying command syntax, relevant information, as well
as the CI tests for each module.

Ingression of non-BIDS derivatives

XCP-D supports both BIDS derivatives-compliant pre-processing pipelines (i.e., fMRIPrep) and
non-BIDS pipelines (i.e., HCP and ABCD-BIDS). In the latter case, XCP-D indexes the outputs
from the pre-processing pipeline and maps the relevant files into a BIDS derivatives-compliant
structure in the working directory if the user specifies ——input-type as dcan or hcp.

As part of this ingression procedure, XCP-D also extracts minimal confounds. However, this does
not fully reproduce the confounds that fMRIPrep creates, which limits the denoising strategies
available for these data. Additionally, XCP-D’s anatomical workflow requires that CIFTI surfaces
are in fsLR space at 32k density.

Removal of non-steady state volumes

Some vendors acquire multiple additional volumes at the beginning of a scan to reduce transient
T1 signals before a steady state is approached (Jenista et al., 2016). These volumes are often
referred to as “dummy scans" or “non-steady state volumes". Additionally, higher levels of
movement at the start of a scan (e.g., startle due to onset of scanner noise) may also lead
investigators to remove initial volumes. This is the first post-processing step in XCP-D and occurs
optionally. XCP-D allows the first # (as supplied by users) number of volumes to be deleted before
processing. If set to auto, XCP-D will extract non-steady-state volume indices from the pre-
processing derivatives confounds file (only included in fMRIPrep confounds files). Removal of
dummy volumes is enabled via the ——dummy-scans flag and feeds the truncated confounds
and image files into the rest of the workflow. This module is tested by evaluating a BOLD file and
its corresponding confounds file and specifying a varying number of volumes (1-10) to be
removed. The CI test confirms that the correct number of volumes is dropped from both the image
and confound timeseries.

Despiking

Despiking is a process in which large spikes in the BOLD times series are truncated on an adaptive,
voxel-specific basis. Despiking limits the amplitude of the large spikes but preserves the data
points with an imputed reduced amplitude to minimize the effect of outliers. Notably, despiking is
different from temporal censoring as it modifies rather than deletes data — despiking is also
performed individually for each voxel whereas temporal censoring removes an entire volume.
XCP-D performs despiking via AFNI’s (Cox et al., 1996) 3dDespike using default settings and the
—--NEW flag, which uses a new fitting algorithm to despike the data rather than AFNI’s original
L1 method, due to faster processing speed. For CIFTIs, which are first converted to NIfTIs and
back during the despiking process via Connectome Workbench (Marcus et al., 2011), the —-
nomask flag is used so that the entire volume is despiked. Despiking is performed when the —-
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despike flag is supplied. Despiking is executed before regression, censoring, and filtering to
minimize the impact of spikes. Testing for this module involves calculating the maximum and
minimum intensity values of the data and ensuring that the range between the two has decreased
after despiking - that is, the minimum value of the data has increased, while the maximum value
has decreased.

Filtering of realignment parameters

Recent work has established that respiration can systematically induce fluctuations in the main
magnetic field (Fair et al., 2020), which can contaminate estimates of head motion. Such artifacts
can be removed via filtering of the realignment parameters using a low-pass filter for single-band
images (Gratton et al., 2020) or a notch filter for multiband images (Fair et al., 2020). If users
specify a low-pass filter, frequencies above band stop min (specified in breaths per minute)
are removed with a Butterworth filter. If users specify a notch filter (as described in Fair et al.,
2020), the frequencies between band stop min and band stop max are removed. The
notch filter is applied using scipy’s 1 irnotch function, and both filters are applied backwards
and forwards using scipy’s £11tfilt function. Motion parameter filtering will only be enabled
if ——motion-filter-type is provided.

Temporal censoring

Temporal censoring (also known as motion scrubbing) is a process in which data points with
excessive motion are removed from the fMRI timeseries (Power et al., 2012). To aid the fit of the
confound regression model, censored data points are removed before regression. The framewise
displacement (FD) threshold specified by the user (with a default value of 0.3) is used to identify
volumes to be censored. Temporal censoring can be disabled by setting ——fd-thresh to 0.

FD is calculated from the (optionally filtered) realignment parameters following the procedure
described in Power et al., 2014. The head radius used to calculate FD may be supplied by the user
via ——head-radius, set to auto (which estimates the brain radius based on the pre-processed
brain mask), or by defaulting to 50 mm. The FD timeseries and FD threshold are then used to
determine the number of high motion outlier volumes. A temporal mask is then generated in .tsv
format, with Os corresponding to volumes that were not flagged for censoring, and 1s indicating
high-motion outlier volumes.

For participants with high motion, it is possible that censoring results in a timeseries with few un-
censored volumes. XCP-D allows the user to specify a minimum run duration (in seconds) of un-
censored data. This minimum time can be specified by the user via ——-min-time (with a default
value of 100, in seconds), which determines the minimum amount of time, in seconds, needed to
process a given run once high-motion volumes are removed. This feature can be disabled by
providing a 0 or a negative value.
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This module is tested by replacing values in the confounds file with values that should be censored
and ensuring that the image file and the confounds file have had the same number of volumes
dropped after the censoring module.

Confound selection

Confound selection occurs when a confounds file is supplied from a pre-processing software. A
custom confounds file may also accompany or replace this confounds file. The selected nuisance
regressors could include realignment parameters, mean timeseries from anatomical compartments
(GM, WM, CSF), the global signal (Fox et al., 2009), CompCor components (Behzadi et al., 2007),
or independent components from I[CA-AROMA (Pruim et al., 2015). Confound configurations can
be extracted from these parameters and are then used to remove noise from the BOLD image file
during confound regression. Confound configuration preferences may vary across use cases thus
XCP-D allows users some flexibility in denoising options (Satterthwaite et al., 2013; Ciric et al.,
2017). Note that at present, users cannot apply aCompCor or AROMA nuisance regressors for
HCP or ABCD-BIDS inputs; this is a feature that may be added in the future.

The built-in nuisance strategies may be supplemented or replaced with a custom confounds file
provided by the user. This functionality allows users to perform more advanced regression
strategies. For example, users may convolve task regressors with a hemodynamic response
function and provide these regressors in a custom confounds file to regress out task signals and
treat the denoised data as pseudo-rest (Fair et al., 2007). If users wish to retain specific signals of
interest in the data, they may include those signals in the custom confounds file, with the associated
column headers prefixed with “signal . This scenario is described in “Confound regression”.

Confound selection is implemented via Nilearn’s (Abraham et al., 2014) 1load confound
functionality. The selected confounds are fed into the beginning of the workflow in .tsv format
where dummy time is removed - so it is appropriately truncated, and then passed on throughout
the workflow. Pre-configured confound strategies include those described in a prior benchmarking
study (Ciric et al., 2018):

24P - six realignment parameters, their squares, derivatives, and squares of the derivatives
27P - the white matter, CSF and global signal parameters in addition to those included in
the 24P model

® 36P - the squares, derivatives, and squares of the derivatives of white matter, CSF and
global signal parameters in addition to those included in the 27P model

e acompcor - the ACompCor parameters, the six realignment parameters, and their
derivatives

e acompcor gsr - the ACompCor parameters, the realignment parameters, their

derivatives, and global signal
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e aroma - the AROMA parameters, realignment parameters, their derivatives, white matter,
and CSF

e AROMA gsr - the AROMA parameters, realignment parameters, their derivatives, white
matter, CSF, and global signal

e Custom confounds - users provide their own confounds

Confound parameters can be selected by the user via the —-p flag and corresponding configuration,
or —c for custom confounds. Nuisance regressors can also be specified as none to skip this
denoising step. Confound selection is tested by ensuring that the confounds matrix for certain
confound configurations and BOLD files have the right number of parameters - for example, 36
parameters if 36P is selected as the confound configuration.

Confound regression

Confound regression is used to mitigate motion artifacts in fMRI scans. XCP-D implements
denoising via linear least squares regression. First, linear trend and intercept regressors are
appended to the selected confounds so that the data is linearly detrended. Next, high-motion outlier
volumes are removed from the nuisance regressors and the BOLD data (see section “Temporal
censoring” above) so that the regression is only performed on low-motion data; the inclusion of
very-high motion data that is removed via temporal censoring would reduce the effectiveness of
confound regression. Each of the nuisance regressors, except for the intercept, are additionally
mean-centered prior to the regression.

In some cases, the selected confounds may be correlated with signals of interest, as in AROMA,
where ICA components are labeled as “noise” or “signal.” In these cases, including the “noise”
regressors without modification can result in the removal of variance explained by “signal”
regressors. To address this issue, XCP-D orthogonalizes all nuisance regressors (except for the
linear trend and intercept regressors) with respect to any detected signal regressors. This is done
automatically for nuisance regression strategies that include AROMA regressors. For custom
confounds derived from spatial ICA components, such as multi-echo denoising with tedana
(DuPre, Salo et al., 2021; Kundu et al., 2011; Kundu et al., 2013), users must include “signal”
components in their custom confounds file, prefixed with “signal . When columns with this
prefix are detected in the confounds file, XCP-D will automatically employ this orthogonalization
procedure. Then, when the confound regression step is performed, the modified nuisance
regressors (i.e., without the signal regressors) will be mean-centered, censored to remove high-
motion volumes, and finally regressed out of the fMRI data.

Regression consumes the confounds file and BOLD file to be denoised and produces a residual
timeseries for further analysis. Using the user-selected (see above) confounds, regression occurs
after despiking and censoring. Confound regression is tested by confirming that the correlation
between a random voxel and the confounds timeseries has decreased.
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Interpolation

For accurate bandpass filtering, the original sampling rate of the time series must be retained.
Hence, interpolation restores the length of the original timeseries after temporal censoring. It
occurs after regression, using the temporal mask generated during censoring to determine which
values have been removed during censoring. Then, it uses Nilearn’s interpolation function to
interpolate values from high-motion volumes via cubic spline interpolation. Note that interpolation
for volumes at the beginning and end of the time series is disabled. Instead, XCP-D propagates the
values from the closest low-motion volume. The BOLD timeseries with the interpolated values is
then passed to the filtering workflow. Testing of this module involves confirming that the
difference between the fast Fourier transform (FFT) of an interpolated file and the original file is
less than the difference between the FFT of a file with an artificial spike planted in it and the
original file.

Filtering

Temporal filtering is used in fMRI signal processing to reduce high-frequency and low-frequency
artifacts in the timeseries. XCP-D applies a Butterworth bandpass filter to BOLD signals after
regression and interpolation. Functional connectivity between regions of interest is typically
determined based on synchrony in low-frequency fluctuations (Biswal et al., 1995); therefore,
removing higher frequencies using a low-pass filter may effectively remove noise from the
timeseries while retaining signal of interest. High-pass filters can be used to remove very-low-
frequency drift, which is a form of scanner noise, from an acquisition. Any frequencies below the
low-pass cutoff and above the high-pass cutoff will be counted as pass-band frequencies as in the
case of our Butterworth filter. These will be retained by the filter when it is applied. High-pass or
low-pass only filtering is also supported.

The bandpass filter parameters are set from 0.01 to 0.08 Hz with a filter order of 2 by default, as
used in Power et al., 2014. The filter is calculated using scipy’s but ter functionality to calculate
filtering coefficients, and fi1tfilt to apply the filter to the data. The filter uses constant
padding with maximum allowed pad length as one less than the total number of volumes.
Parameters can be modified in the command line, using the —-lower-bpf, —--upper-bpf
and —--bpf-order flags. This module occurs after regression and before the creation of
functional timeseries. It is applied to the unfiltered BOLD file and outputs the filtered image.

Testing of this module involves comparing the output of XCP-D’s Butterworth filtering code to
the output of scipy’s code.

After bandpass filtering is performed, the denoised, interpolated, and filtered timeseries is re-
censored, so that only low-motion volumes are retained. This occurs as described above in the
“Outlier detection and removal'' section.
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Parcellated timeseries extraction and calculation of connectivity matrices

Functional connectivity matrices are a widely used approach to examine the coherence in activity
between distant brain areas (Hlinka et al., 2011; Biswal et al., 1995). The generation of these
matrices involves parcellating the brain into regions determined by atlases and then calculating
correlations between regions.

XCP-D extracts voxel-wise timeseries from the denoised BOLD timeseries and outputs parcellated
timeseries and correlation matrices for a variety of atlases bundles in the software. The output post-
processed BOLD files, parcellated timeseries, and correlation matrices come from censored data.
If the user adds the ——~dcan-qgc flag, then the interpolated version of the post-processed data will
also be written out, with “desc-interpolated” in the timeseries filename. The local mean timeseries
within each brain atlas’s region of interest (ROI) is extracted via Nilearn’s
NiftiLabelsMasker for NIfTIs, and ConnectomeWorkbench’s wb command --cifti-
parcellate function for CIFTIs. Functional connectivity matrices are estimated using the
Pearson correlation between all parcels for a given atlas. Before functional connectivity is
estimated, a coverage threshold (with a default value of 0.5, or 50% coverage) is applied to parcels
in each atlas. Any parcels with lower coverage than the threshold will be replaced with NaNs. This
may be useful in the case of partial field-of-view acquisition or poor placing of the bounding box
during acquisition. Additionally, if the --exact-time flag is used, this parameter will produce
correlation matrices limited to each requested amount of time (specified in seconds). If there is
more than the required amount of low-motion data, then volumes will be randomly selected to
produce denoised outputs with the exact amounts of time requested. If there is less than the
required amount of ‘good’ data, then the corresponding correlation matrix will not be produced.

The following atlases are implemented in XCP-D: Schaefer 100-1000 (Schaefer et al., 2018),
Glasser 360 (Glasser et al., 2016), Gordon 333 (Gordon et al., 2016), the subcortical HCP Atlas
(Glasser et al., 2013) and Tian Subcortical Atlas (Tian et al., 2020). Notably, our atlases have been
harmonized with QSIPrep (Cieslak et al., 2021) and ASLPrep (Adebimpe et al., 2022) to facilitate
multi-modal network analyses. This module is tested by confirming that the correlation coefficient
of a parcellated timeseries is the same as in the connectivity matrix produced, when calculated
separately in a Python notebook.

ReHo

Regional Homogeneity (ReHo) is a measure of local temporal uniformity in the BOLD signal
computed at each voxel of the processed image. Greater ReHo values correspond to greater
synchrony among BOLD activity patterns measured in a local neighborhood of voxels (Zang et
al., 2004), with neighborhood size determined by a user-specified radius of voxels. ReHo is
calculated as the coefficient of concordance among all voxels in a sphere centered on the target
voxel (Zuo et al., 2013).
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ReHo is performed on the BOLD file after temporal filtering and the output is written out directly
to the XCP-D derivatives folder. For NIfTIs, ReHo is always calculated via AFNI’s 3dReho with
27 voxels in each neighborhood. For CIFTIs, the left and right hemisphere are extracted into GIFTI
format via Connectome Workbench’s CIFTISeparateMetric. Next, the mesh adjacency
matrix is obtained, and Kendall's coefficient of concordance (KCC) is calculated (Zhang et al.,
2023), with each vertex having four neighbors. For subcortical voxels in the CIFTIs, 3dReho is
used with the same parameters that are used for NIfTIs. This module is tested by adding artificial
noise to an image and confirming that the mean ReHo value declines.

ALFF

The amplitude of low-frequency fluctuations (ALFF) — also called “fluctuation amplitude” — is a
measure of regional intensity of BOLD signal fluctuation (Yu-Feng et al., 2006) calculated in each
voxel of the processed image. Low-frequency fluctuations are of particular importance because
functional connectivity is most typically computed based on synchronous, low frequency
fluctuations (Zou et al. 2008).

ALFF is calculated on the BOLD file after filtering and its output can optionally be smoothed (see
Smoothing). Notably, ALFF is only calculated if bandpass filtering is applied, and motion
censoring is disabled. ALFF is computed by transforming the processed BOLD timeseries to the
frequency domain using scipy’s periodogram function. The power spectrum is computed
within the default 0.01-0.08 Hz frequency band (or the band-pass values optionally supplied by
the user during filtering), and the mean square root of the power spectrum is calculated at each
voxel to yield voxel-wise ALFF measures.

This module is tested by first calculating the ALFF of a BOLD file. Then, the FFT of the BOLD
file is calculated. After adding values to the amplitude of its lower frequencies, it is confirmed that
the ALFF increases upon being re-computed.

Spatial smoothing

Noise in the BOLD signal — due to physiological signals or scanner noise — can introduce spurious
artifacts in individual voxels (Mikl et al., 2008). The effects of noise-related artifacts can be
mitigated by spatial smoothing of the data, which can dramatically increase the signal-to-noise
ratio (Mikl et al., 2008). However, spatial smoothing is not without its costs: it effectively reduces
volumetric resolution by blurring signals from adjacent voxels (Mikl et al., 2008).

Smoothing optionally occurs after temporal filtering. FWHM smoothing is implemented in XCP-
D with a default value of 6.0 mm in volumes and surfaces. Additionally, ALFF maps are also
smoothed if the --smoothing flag is specified by the user. First, the specified FWHM kernel
(specified in mm) is converted to sigma (standard deviation). Smoothing for NIfTIs is performed
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via Nilearn’s smooth img using a Gaussian filter. For CIFTIs, Connectome Workbench’s
wb command --cifti-smoothing isused to smooth each hemisphere and the subcortical
volumetric data. This module is tested by confirming smoothness has increased after data has
passed through the smoothing workflow, via AFNI for NIfTIs and via Connectome Workbench
for CIFTIs.

Quality control

XCP-D calculates multiple quality control measures. These include estimates of fMRI data quality
before and after regression, as well as indices of co-registration and normalization quality. Selected
metrics include the following:

e Summary measures of realignment parameters: mean FD, mean and maximum root-
mean-square displacement (RMS). FD and RMS measure relative contributions of
angular rotation and uniformity of motion effects across the brain (Yan et al., 2013).

e DVARS: DVARS is a whole brain measure of the temporal derivative (D) of image
intensity computed by obtaining the root mean square variance across voxels (VARS;
Goto et al., 2016.) As such it reflects time-varying signals and large values are often
attributable to artifacts such as in-scanner motion.

o fMRI-T1/T2 co-registration quality: Because of the limited spatial resolution and reduced
anatomic contrast of fMRI images compared to structural images, fMRI images are co-
registered to the structural image prior to normalization to template space. Poor co-
registration can thus impact normalization. XCP-D calculates the Dice similarity index
(Dice, 1945), overlap coefficient, and Pearson correlation between the fMRI image and
the T1 image (or T2 image) to determine the quality of the registration. The Dice index
equals twice the number of voxels common to both images divided by the sum of the
number of voxels in each image. The overlap coefficient (Vijaymeena & Kavitha, 2016)
calculates the relative number of non-zero voxels in both images. The Pearson’s
correlation measures the correlations between the voxels in both images.

o fMRI-Template normalization quality: Following co-registration, the fMRI image is
normalized to template space by applying the warp calculated in registration of the
structural image to the template (Jahn, 2022). XCP-D calculates the dice similarity index
(Dice, 1945), overlap coefficient, and Pearson correlation coefficient to quantify the
alignment of the fMRI image to the template.

Visual reports

XCP-D produces two different user-friendly, interactive .html reports. The first (DCAN-style)
output is called the “Executive Summary.” The Executive Summary is an interactive web page for
quick visual inspection of structural and functional registration, surface quality, physiological and
non-physiological artifacts, and post-processing success (see select elements in Figure 2; a full
example is provided in Supplemental Figure 1). It is particularly useful for assessing co-
registration, normalization, and surface alignment. For example, it includes an interactive
BrainSprite (https://github.com/brainsprite/brainsprite) viewer that overlays pial and white matter
surfaces on the template image. This allows users to quickly assess the quality of the surface
registration. Further information regarding co-registration and normalization quality is depicted in
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contour plots. The Executive Summary also includes a carpet plot for all runs, which depicts the
fMRI timeseries before and after confound regression. These carpet plots are displayed alongside
the FD plots and DVARS timeseries to allow users to rapidly assess denoising success.
Additionally, XCP-D also provides a NiPreps style report that depicts similar information in a
different layout (see Supplemental Figure 2). In both reports, XCP-D also produces a “methods
boilerplate” that details the methods applied along with citations as relevant for users. This
automatically generated description of the methods ensures fidelity of reporting and can be directly
copied into publications’ methods sections.

A. BrainSprite

u 8
£ 6 — Pre regression
B 4w Post regression

Subcortical Gl

Time (s)

Figure 2: Selected elements of the XCP-D Executive Summary. Panel A depicts the BrainSprite viewer
that overlays white and pial matter on the template, followed by (Panel B) a carpet plot and graphs depicting
FD and DVARS. FD: Framewise displacement;, DVARS.: temporal derivative (D) of image intensity
computed by obtaining the root mean square variance across voxels (VARS).

Anatomical Workflow

The optional anatomical workflow in XCP-D serves two main purposes. First, it is used to warp
several surfaces derived from the structural images from fsnative to fsSLR space, which is useful as
part of the visual reports for assessing normalization to the fSLR template. To this end, the
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workflow generates surf.gii files in fSLR space for the gray matter / pial matter border and the
white matter/gray matter border. It also generates HCP-style inflated surfaces for visualization
purposes. The workflow can be enabled via the ——warp-surfaces-native2std flag.

Second, XCP-D will parcellate morphometric surface files — including cortical thickness, depth,
and curvature — generated in pre-processing by sMRIPrep (Esteban et al., 2020) or HCP pipelines.
XCP-D parcellates these morphometric files using the same atlases that are used for creating
functional connectivity matrices as well as other surface features like ALFF and ReHo. This
functionality facilitates analyses of both fMRI and structural imaging features when data is
processed using XCP-D.

Concatenation

XCP-D also offers users the option of concatenating fully denoised timeseries across fMRI runs
based on the run entity specified (notably, different tasks are not concatenated); this also yields
QC metrics that are concatenated. Notably, this option should be used with some caution as it will
double the size of output data in the derivatives folder. Users can concatenate runs by specifying
the ——combineruns flag.

RESULTS

Below, we demonstrate the utility of XCP-D in two ways. First, we provide a detailed walkthrough
with bundled example data. Second, we apply it to data from three large-scale datasets.

WALKTHROUGH

The XCP-D workflow for processing an fMRIPrep dataset (example subjects)

The following walkthrough details the workflow for post-processing a dataset using XCP-D on a
HPC - specifically, a RedHat Enterprise Linux-based system, using Singularity. To do so, we use
an example dataset that is bundled with the software within the container. This container contains
three example subjects from a study on executive function, which is available on OpenNeuro at
https://openneuro.org/datasets/ds004450. These subjects are organized in a BIDS-compatible
manner with T1s, two resting-state runs, and corresponding field maps for the three subjects. Both

.nii.gz and .json files are available for each of these scans, along with a dataset description.json,
and fMRIPrep derivatives. For the purposes of this walkthrough, commands for a minimal XCP-
D run will be demonstrated.

All commands are run in a directory named XCPD_test. The XCP-D walkthrough container with
the bundled subjects can be downloaded via Singularity, by running the following bash script:

singularity build xcp walkthrough.sif docker://pennlinc/xcp walkthrough:latest
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XCP-D can then be run on example subjects via Singularity, by running the following bash script:

singularity run --cleanenv -B ~/XCPD test ~/XCPD_ test/xcp walkthrough.sif
/data/EF/derivatives/fmriprep ~/XCPD test/output participant -vv

This script runs XCP-D using all the default options. The —-cleanenv flags ensures that
environment variables from local machines are ignored so that appropriate packages from within
the container are used, and -B mounts the input files on local devices to the image. The three
arguments here correspond to the mandatory arguments of: fmriprep directory
(/data/EF/derivatives/fmriprep), output directory (~/XCPD test/output), and
analysis level (participant).

This will produce XCP-D derivatives under the folder XCPD test/output. The outputs will
include a dataset description, logs, citation information, processed anatomical and functional
derivatives, as well as .svg figures. See Supplemental Figure 3 for the expected directory
structure of output from one example subject.

Application of XCP-D to three example datasets

To illustrate the utility of XCP-D to diverse data, we processed a total of 600 subjects from three
datasets. Specifically, we processed n=200 participants each from the Philadelphia
Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014; Satterthwaite et al., 2016), the
Healthy Connectome Project - Young Adults (HCP-YA; Glasser et al., 2013) sample, and the
Adolescent Brain Cognitive Development (ABCD; Volkow et al., 2017) study®. Note that the
ABCD data repository grows and changes over time. The ABCD data used in this report came
from https://doi.org/10.17605/OSF.IO/PSV5M.

Notably, prior to post-processing with XCP-D, each of these datasets were pre-processed using
different tools. The PNC was processed using fMRIPrep (Esteban et al., 2018), ABCD was
processed using ABCD-BIDS (Feczko et al., 2021), and the HCP-Y A sample was processed via
the HCP minimal processing pipelines (Glasser et al., 2013). All testing data had high quality
structural images and greater than 5 minutes of high-quality resting-state fMRI data.

The following command was used to process the data (via the CIFTI surface-based workflow, with
the anatomical workflow enabled):

PNC:

singularity run -cleanenv -B ${PWD} -env FS LICENSE=${PWD}/code/license.txt pennlinc-
containers/.datalad/environments/xcp/image ${PWD}/inputs/data/fmriprep xcp participant
—-combineruns —-nthreads 1 -omp-nthreads 1 -mem gb 10 —-smoothing 2 -min coverage 0.5 -
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min time 100 —-dummy-scans auto —-random-seed 0 -bpf-order 2 -lower-bpf 0.01 -upper-bpf
0.08 —-motion-filter-type lp -band-stop-min 6 -motion-filter-order 4 -head-radius auto
—exact-time 300 480 600 -despike -participant label $subid -p 36P -f 0.3 —cifti -warp-
surfaces-native2std —-dcan-gqc -w ${PWD}/.git/tmp/wkdir -vvv —-input-type fmriprep

ABCD:

singularity run -cleanenv -B ${PWD} pennlinc-
containers/.datalad/environments/xcp/image inputs/data xcp participant -
combineruns —nthreads 1 -omp-nthreads 1 -mem gb 10 -smoothing 2 -min coverage
0.5 —min time 100 —-dummy-scans 6 —-random-seed O -bpf-order 2 -lower-bpf 0.01
—upper-bpf 0.08 -motion-filter-type notch -band-stop-min 15 -band-stop-max 25
-motion-filter-order 4 -head-radius auto -exact-time 300 480 600 —-despike -
participant label S$subid -p 36P -f 0.3 -cifti -warp-surfaces-native2std -
dcan-gc -w ${PWD}/.git/tmp/wkdir -v —-input-type dcan

HCP-YA:

singularity run -cleanenv -B ${PWD} pennlinc-
containers/.datalad/environments/xcp/image inputs/data xcp participant -
combineruns —nthreads 1 -omp-nthreads 1 -mem gb 10 -smoothing 2 -min coverage
0.5 —min time 100 —dummy-scans 7 -random-seed 0 -bpf-order 2 -lower-bpf 0.01
—upper-bpf 0.08 -motion-filter-type notch -band-stop-min 12 -band-stop-max 18
-motion-filter-order 4 -head-radius auto -exact-time 300 480 600 —-despike -
participant label Ssubid -p 36P -f 0.3 -cifti -warp-surfaces-native2std -
dcan-gc -w ${PWD}/.git/tmp/wkdir -v —-input-type hcp

XCP-D completed successfully for all participants in all datasets. Among other outputs, XCP-D
generated functional connectivity matrices (Figure 3) and parcellated cortical thickness
information for each participant (Figure 4). Two small parcels in the medial temporal lobe cortex
lacked coverage in the PNC. Notably, the correlation between the mean connectivity matrices is
0.93 for ABCD and PNC, 0.90 for ABCD and HCP, and 0.92 for PNC. The correlation between
cortical thickness measures is 0.90 for ABCD and PNC, 0.95 for ABCD and HCP, and 0.85 for
PNC and HCP.
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Figure 3: Mean (Panel A) and standard deviation (Panel B) functional connectivity generated by XCP-D
for each dataset in our large-scale application, displayed after Fisher’s Z transformation. Data are
displayed using the Gordon atlas (Gordon et al., 2016). Def: default mode network, SmH: somatomotor
hands network; SmM: somatomotor mouth network, Vis: visual network,; FrP: Frontoparietal network;
Aud: auditory network; CiP: cinguloparietal network; CiO: cingulo-opercular network; VenA: ventral
attention network; Sal: salience network; DorA: dorsal attention network
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Figure 4: The mean (Panel A) and standard deviation (Panel B) of cortical thickness calculated by XCP-
D of each dataset in our large-scale application. Data are displayed using the Gordon atlas (Gordon et al.,
2016).

DISCUSSION

Functional imaging is an essential tool for human neuroscience research. In contrast to pre-
processing, where the field has gravitated towards use of standardized pipelines such as fMRIPrep,
there has been a relative lack of standardization in fMRI post-processing. While several options
for post-processing exist, they are often incompatible with common pre-processing methods, lack
standardized output, and may not include software engineering best practices such as CI testing.
While the steps used to generate the minimally pre-processed data are often quite similar, post-
processing strategies used and derived measures often diverge substantially across data resources.
XCP-D seeks to fill this gap and provide a post-processing workflow that is compatible with data
pre-processed with several widely used strategies. XCP-D’s open and modular codebase in Nipype
includes extensive CI testing, produces many measures of quality control, and yields analysis-
ready derived measures that are named according to the BIDS standard. Together, XCP-D provides
rigorous, accessible, and generalizable fMRI post-processing.

The derived measures generated by XCP-D include many of the most broadly used features of
brain function and structure. Functional measures include connectivity matrices from multiple
atlases as well as voxel- and vertex-wise maps of fluctuation amplitude and (ALFF) and regional
homogeneity (ReHo). While XCP-D does not include extensive structural image processing or
image registration, it does consume the structural features generated by pre-processing pipelines,
rename them according to current BIDS standards, and apply the same parcellations used for the
functional images. Summarizing functional and structural features in the many contemporary


https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567926; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

atlases included in XCP — including multi-scale atlases like the Schaefer parcellation (Schaefer et
al., 2018) — facilitates multi-modal data integration and analysis. Multi-modal analyses are further
accelerated by the recent integration of this same atlas bundle into our existing pipelines for
diffusion MRI processing (QSIPrep; Cieslak et al., 2021) and processing arterial spin-labeled MRI
(ASLPrep; Adebimpe et al., 2022) for calculation of cerebral blood flow.

Beyond such analysis-ready derived features, XCP-D produces an extensive set of quality control
measures. These measures include indices of both image registration (e.g., Dice coefficient,
overlap index) and denoising performance (e.g., the correlation of DVARS and motion before and
after denoising). Together, such measures facilitate scalable quality assurance for large datasets
and allow users to identify problematic datasets that can be further evaluated using the detailed
reports generated for each participant. As part of our “glass-box” design philosophy, these single-
participant reports allow users to examine key intermediate steps in the processing workflow. One
particularly useful feature is the interactive BrainSprite that depicts the fully processed structural
images along with overlays of the functional images. This visualization allows users to rapidly
assess the success of image co-registration and atlas normalization. Additionally, the report
includes tailored carpet plots that display the functional timeseries before and after post-
processing, facilitating rapid visualization of artifacts related to in-scanner motion. Each
participant’s report closes with an automatically generated boilerplate summary of the methods
used by XCP-D for the configuration specified, along with relevant citations and references. This
text enables users to determine if the desired processing occurred as expected and ensures accurate
methods reporting.

In the design of XCP-D, we integrated multiple software engineering features to ensure stability
and rigor. First, all XCP-D development is open, version-controlled, and clearly documented via
detailed pull requests on GitHub. XCP-D implements branch protection rules that require reviews
from at least one XCP-D developer before pull requests can be merged or changes can be released.
We have benefitted from substantial community input and strive to quickly respond to bug reports
from users. Second, XCP-D has a highly modular design in Nipype to reduce code duplication,
enforce standardized workflows, facilitate integration testing, and allow for extensibility over time.
Third, XCP-D is a BIDS-App, and we have made every effort to adhere to the standards described
by BIDS, including the BIDS extension proposals (BEPs) related to derived data and functional
networks. Fourth, XCP-D modules are subjected to extensive CI testing using CircleCI. These
tests do not simply check that a file was produced but draw upon diverse example data and
knowledge of each module’s operation to ensure that processing was executed correctly (for
example, checking that a spike in the data is no longer present after despiking). These tests make
the software more sustainable over time and mitigate risk of updates introducing occult errors. We
track CI coverage using CodeCov; at present, 81% of the XCP-D codebase is covered by CI tests.
Fifth and finally, XCP-D is containerized and distributed via Docker and Singularity, which wraps
all dependencies to allow the software to be easily deployed in most computing environments.
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There are many tools that denoise fMRI data, produce resting-state derivatives, and/or produce
structural derivatives, including C-PAC (Configurable Pipeline for the Analysis of Connectomes;
Craddock et al., 2013), CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012), connectomemapper3
(Tourbier et al., 2022), CCS (Connectome Computation System, Xu et al., 2015), and DPARSF
(Data Processing Assistant for Resting-State fMRI; Gan & Feng et al, 2010). One major difference
between these tools and XCP-D is our dedicated focus on consuming data pre-processed by other
widely used tools such as fMRIPrep. As such, XCP-D fills an important niche in the neuroimaging
software ecosystem. Much of the post-processing that XCP-D provides can be performed using
tools included in Nilearn, FSL, AFNI, and other software libraries. However, this would require
users to assemble a pipeline themselves from component tools, and as such necessitate a higher
degree of methodological proficiency. Furthermore, such user-assembled custom pipelines
inevitably result in greater heterogeneity of methods used and usually reduce generalizability
across efforts.

XCP-D has several limitations. Although XCP-D currently offers multiple denoising options, the
range of denoising options described in the literature is vast and many are not currently supported.
For example, XCP-D does not provide dedicated support for physiological confounds such as
respiration or heart rate measures (Frederick et al., 2012), although these signals can be modeled
as a “custom confound” supplied by the user. Similarly, we do not currently support denoising
methods such as phase regression, which suppresses signal from large veins by removing the linear
fit between magnitude and phase timeseries from the magnitude timeseries (Knudsen et al., 2023).
Also, XCP-D cannot be used to analyze task data. Such functionality is provided by FitLins
(Markiewicz, 2022), NiBetaSeries (Kent et al., 2020), and other packages. XCP-D also does not
support group-level analyses.

These limitations notwithstanding, XCP-D provides generalizable, accessible, and robust post-
processing for fMRI data. XCP-D’s ability to post-process data from ABCD-BIDS, HCP-YA and
fMRIPrep allows the same denoising, confound regression, and generation of derivates for large-
scale data resources that provide minimally pre-processed data; this could be invaluable for
combining data across lifespan data resources. Moving forward, we plan to integrate additional
advanced denoising methods, provide dedicated methods for handling physiological data, and
extend the pre-processing data types supported to include infant data pre-processed using
NiBabies. As an open-source, collaborative software package, we welcome bug reports, feature
suggestions, pull requests, and contributions from the community.
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XCP-D STEP

TESTING

Confound selection

Confirming that a loaded confound matrix has
the right shape.

Removing dummy time

Looping through N=1-10 volumes to be
dropped and confirming that the correct
number of volumes have been dropped from a
BOLD file and the corresponding confounds
file.

Censoring Replacing values in the confounds file with
values that should be omitted and confirming
that the image file and the confounds file have
had the same number of volumes dropped.

Despiking Confirming that the maximum value of the

data has decreased, and the minimum value of
the data has increased after despiking.

Confound regression

Confirming that the correlation between a
random voxel and the confounds timeseries has
decreased after regression.

Interpolation

Confirming that the difference between the fast
Fourier transform (FFT) of an interpolated file
and the original file is less than the difference
between the FFT of a file with a spike planted
in it and the original file.

Filtering

Comparing output of the XCP-D code after
filtering to the output of SciPy’s code directly
in a separate Python notebook.

Functional timeseries and connectivity
matrices

Confirming that the correlation coefficient of a
parcellated timeseries is the same as the
connectivity matrix produced. (Parcellations
were also performed manually in a separate
Python notebook and compared to results from
XCP-D.)

ReHo Adding artificial noise to an image and
confirming that the mean ReHo value
decreases.

ALFF Computing the FFT of a BOLD file, adding to
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the amplitude of its lower frequencies and
confirming the ALFF increases.

Residual BOLD and resting-state derivatives Confirming that smoothness has increased
smoothing after the module - via AFNI for NIfTIs and via
Connectome Workbench for CIFTIs.

Quality control Visually inspecting the quality check reports.

Table 1: Continuous integration tests for different XCP-D stages.

FILENAME FILE TYPE DESCRIPTION
xcp d/sub- Report Executive summary per
<label>[ ses- session

<label>] executive_ s

ummary.html

xcp_d/sub- Report NiPreps summary per
<label>.html participant

xcp_d/sub- Anatomical Pre-processed T1w in MNI
<label>/[ses- space

<label>/]anat/<sourc
e entities> space-
<label> desc-

preproc Tlw.nii.gz

xcp d/sub- Anatomical Pre-processed T2w in MNI
<label>/[ses- Space
<label>/lanat/<sourc
e entities> space-
<label> desc-

preproc T2w.nii.gz
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xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e _entities> space-
<label> dseg.nii.gz

Anatomical

Pre-processed dseg in MNI
space

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR den-32k hemi-
<L|R> desc-

hcp midthickness.sur
f.gii

Anatomical

Reconstructed surfaces warped
to fSLR space at 32k density

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR den-32k hemi-
<L|R> desc-

hcp inflated.surf.gi
1

Anatomical

Reconstructed surfaces warped
to fSLR space at 32k density

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR den-32k hemi-
<L|R> desc-

hcp vinflated.surf.g
11

Anatomical

Reconstructed surfaces warped
to fSLR space at 32k density

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR den-32k hemi-
<L|R> desc-
pial.surf.gii

Anatomical

Reconstructed surfaces warped
to fSLR space at 32k density

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e _entities> space-
fsLR den-32k hemi-

Anatomical

Reconstructed surfaces warped
to fSLR space at 32k density
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<L|R> desc-
smoothwm.surf.gii

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR den-32k hemi-
<L|R> sulc.shape.gii

Anatomical

Sulcal depth in fsLR space at
32k density

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e _entities> space-
fsLR den-32k hemi-
<L|R> curv.shape.gii

Anatomical

Sulcal curvature in fsLR space
at 32k density

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR den-32k hemi-
<L|R> thickness.shap
e.gii

Anatomical

Cortical thickness in fsSLR
space at 32k density

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR atlas-

<label> den-

32k _desc-

sulc _morph.tsv

Anatomical

Parcellated sulcal depth
estimates

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e entities> space-
fsLR atlas-

<label> den-

32k _desc-
curv_morph.tsv

Anatomical

Parcellated sulcal curvature
estimates

xcp_d/sub-
<label>/[ses-
<label>/lanat/<sourc
e _entities> space-

Anatomical

Parcellated cortical thickness
estimates
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fsLR atlas-

<label> den-

32k _desc-

thickness morph.tsv

xcp d/sub- Functional Denoised BOLD file
<label>/[ses-
<label>/]func/<sourc
e _entities> space-
<label> desc-
denoised bold.nii.gz
or

<source entities> sp
ace-fsLR den-

91k desc-

denoised bold.dtseri

es.nii
xcp_d/sub- Functional Smoothed, denoised BOLD
<label>/[ses- file

<label>/]func/<sourc
e entities> space-
<label> desc-
denoisedSmoothed bol
d.nii.gz

or

<source_ entities> sp
ace-fsLR den-

91k desc-
denoisedSmoothed bol

d.dtseries.nii

xcp_d/sub- Functional Interpolated BOLD file;
<label>/[ses- generated only with the —-
<label>/]func/<sourc dcan-qgc flag

e _entities> space-
<label> desc-
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interpolated bold.ni
i.gz

or

<source_ entities> sp
ace-fsLR den-

91k desc-
interpolated bold.dt
series.nii

xcp d/ space-
<label> atlas-
<label> dseg.nii.gz
or space-

<label> atlas-
<label> dseg.dlabel.

nii

Functional

Atlases used for data
parcellation

xcp_d/sub-
<label>/[ses-
<label>/] func/<sourc
e _entities> space-
<label> atlas-
<label> coverage.tsv
or

<source entities> sp
ace-fsLR atlas-
<label> den-

91k coverage.tsv and
<source entities> sp
ace-fsLR atlas-
<label> den-

91k coverage.pscalar

.nii

Functional

Coverage information.
Produced in .tsv and .pscalar
format for CIFTIs

xcp_d/sub-

<label>/[ses-

Functional

Timeseries for functional data,
after atlas parcellation.
Produced in .tsv and .ptseries
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<label>/]func/<sourc format for CIFTIs
e entities> space-
<label> atlas-
<label> timeseries.t
sv

or

<source entities> sp
ace-fsLR atlas-
<label> den-

91k timeseries.tsv
and

<source_ entities> sp
ace-fsLR atlas-
<label> den-

91k timeseries.ptser

ies.nii
xcp_d/sub- Functional Connectivity matrix for
<label>/[ses- functional data, after atlas

parcellation. Produced in .tsv

<label>/]func/<sourc and .pconn format for CIFTIs

e entities> space-
<label> atlas-
<label> measure-
pearsoncorrelation c
onmat.tsv or

<source entities> sp
ace-fsLR atlas-
<label> den-

91k measure-
pearsoncorrelation c
onmat.tsv and
<source entities> sp

ace-fsLR atlas-
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<label> den-
91k measure-
pearsoncorrelation c

onmat.pconn.nii

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e entities> space-
<label> atlas-
<label> measure-
pearsoncorrelation d
esc-

<INT>volumes conmat.
tsv

or

<source entities> sp
ace-fsLR atlas-
<label> den-

91k measure-
pearsoncorrelation d
esc-

<INT>volumes conmat.

tsv

Functional

Connectivity matrix for
functional data, after atlas
parcellation. Correlation
matrices with the desc—
<INT>volumes entity are
produced if the ——exact-
time parameter is used.

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e entities> space-
<label> reho.nii.gz
or

<source entities> sp
ace-fsLR den-

91k reho.dscalar.nii

Functional

ReHo image for BOLD data



https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567926; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

xcp d/sub- Functional Parcellated ReHo image
<label>/[ses-
<label>/]func/<sourc
e entities> space-
<label> atlas-
<label> reho.tsv

or

<source_ entities> sp
ace-fsLR atlas-

<label> reho.tsv

xcp d/sub- Functional ALFF image for BOLD data
<label>/[ses-
<label>/]func/<sourc
e entities> space-
<label> alff.nii.gz
or

<source entities> sp
ace-fsLR den-

91k alff.dscalar.nii

xcp d/sub- Functional Smoothed ALFF image
<label>/[ses-
<label>/]func/<sourc
e entities> space-
<label> smooth alff.
nii.gz

or

<source_ entities> sp
ace-fsLR den-

91k desc-

smooth alff.dscalar.

nii
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xcp_d/sub- Functional Parcellated ALFF image

<label>/[ses-

<label>/]func/<sourc

e entities> space-

<source_ entities> sp

ace-<label> atlas-

<label> alff.tsv

or

<source_ entities> sp

ace-fsLR atlas-

<label> alff.tsv

xcp_d/sub- Quality check Quality control metrics,

<label>/[ses- in@u&ngnpﬁonanq
registration information

<label>/]func/<sourc

e entities> space-

<label> desc-

linc _gc.csv

or

<source entities> sp

ace-fsLR desc-

linc _gc.csv

xcp_d/sub- Quality check A tab-delimited file with seven

<label>/[ses- columns: one for each of the

<label>/]func/<sourc six filtered motion parameters,

e entities>[ desc- as well as

filtered] _motion.tsv “framewise_displacement”. If
no motion filtering was
applied, this file will not have
the desc entity. This file
includes the high-motion
volumes that are removed in
most other derivatives.

xcp_d/sub- Quality check A tab-delimited file with one

column:
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<label>/[ses-
<label>/]func/<sourc
e entities> outliers

.tsv

“framewise_displacement”.
The
“framewise_displacement”
column contains zeros for low-
motion volumes, and ones for
high-motion outliers. This file
includes the high-motion
volumes that are removed in
most other derivatives.

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e entities> design.t

SV

Quality check

A tab-delimited file with one
column for each nuisance
regressor, including an
intercept column, a linear
trend column, and one-hot
encoded regressors indicating
each of the high-motion outlier
volumes. This file includes the
high-motion volumes that are
removed in most other
derivatives.

xcp_d/sub-
<label>/[ses-
<label>/] func/<sourc
e entities> desc-
dcan_gc.hdf5

DCAN-style quality check

This file is in .hdf5 format
(readable by h5py), and
contains binary censoring
masks from 0.0 to I mm FD in
0.01 steps. This file contains:

FD_threshold: a number >= 0
that represents the FD
threshold used to calculate the
metrics in this list

frame_removal: a binary
vector/array the same length as
the number of frames in the
concatenated time series,
indicates whether a frame is
removed (1) or not (0).

format_string (legacy): a
string that denotes how the
frames were excluded
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total_frame_count: a whole
number that represents the
total number of frames in the
concatenated series

remaining_frame_count: a
whole number that represents
the number of remaining
frames in the concatenated
series

remaining_seconds: a whole
number that represents the
amount of time remaining after
thresholding

remaining_frame_mean_FD:
a number >= 0 that represents
the mean FD of the remaining
frames

Table 2: This table describes outputs from a run of XCP-D.

OPTION TYPE DESCRIPTION DEFAULT | OPTIONAL
fmri dir Positional argument | The root folder of a | None No
pre-processed fMRI
output
output dir Positional argument | The output path for | None No
XCP-D
analysis_leve | Positional argument | The analysislevel | None No
1 for XCP-D, must be
specified as
participant
--version Named argument Show program’s None Yes
version number and
exit
—-= Options for filtering | A space delimited | None Yes
participant_1 | BIDS queries list of participant
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abel, -- 1dentifiers or a
participant- single identifier (the
label sub- prefix can be
removed)
-t, --task- Options for filtering | Select a specific None Yes
id, BIDS queries task to be selected
--task id for the post-

processing (users
can only specify one

at a time)
--bids- Options for filtering | A .JSON file None Yes
filter-file BIDS queries defining BIDS input

filters. XCP-D
allows users to
choose which pre-
processed files will
be post-processed
with the --bids-
filter-file
parameter. This
argument must
point to a .JSON
file, containing
filters that will be
fed into PyBIDS.

The keys in this
JSON file are
unique to XCP-D.
They are our
internal terms for
different inputs that
will be selected
from the pre-
processed dataset.

"bold" determines
which pre-processed
BOLD files will be
chosen. You can set
a number of entities
here, including
session, task,
space,
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resolution, and
density.

-m, --
combineruns

Options for filtering
BIDS queries

This option
concatenates
derivatives across
runs, for each task
separately

False

Yes

-3, --cifti

Options for CIFTI
processing

Post-process CIFTI
instead of NIfTT -
this is set to true
automatically for
HCP and DCAN
input types

False

Yes

--nthreads

Options for resource
management

Maximum number
of threads across all
processes

Yes

——omp-
nthreads, --
omp nthreads

Options for resource
management

Maximum number
of threads per
process

Yes

--mem-gb, --
mem_gb

Options for resource
management

Upper bound
memory limit for
XCP-D processes

None

Yes

--use-plugin,
--use_plugin

Options for resource
management

Nipype plugin
configuration file.
For more
information, see
https://nipype.readth
edocs.io/en/0.11.0/u
sers/plugins.html.

None

Yes

-v, —-verbose

Options for resource
management

Increases log
verbosity for each
occurrence; debug
level is -vvv

Yes

-—input-type,
—--input type

Input flag

The pipeline used to
generate the pre-
processed
derivatives. The

fmriprep

Yes
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default option is
fmriprep. The
hcp and dcan
options are also
supported.

-—-smoothing

Parameters for post-
processing

FWHM, in
millimeters, of the
Gaussian smoothing
kernel to apply to
the denoised BOLD
data. This may be
set to 0.

Yes

-—-despike

Parameters for post-
processing

Despike the
NITI/CIFTI before
processing

False

Yes

-p, --
nuisance-
regressors, -
nuisance_ regr
essors

Parameters for post-
processing

Nuisance
parameters to be
selected. See Ciric
et. al (2017).

Possible choices:
27p, 36P,
24p,
acompcor,
aroma,
acompcor gsr,
aroma gsr,
custom, none

36P

Yes

—c, --
custom_confou
nds, --
custom-
confounds

Parameters for post-
processing

Custom confounds
to be added to
nuisance regressors.
Must be a folder
containing
confounds files, in
which case the file
with the name
matching the pre-
processing
confounds file will
be selected.

None

Yes

Parameters for post-

Coverage threshold

0.5

Yes
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min coverage, |processing to apply to parcels

--min- in each atlas. Any

coverage parcels with lower
coverage than the
threshold will be
replaced with NaNs.

Must be a value
between 0 and 1,

indicating

proportion of the

parcel.
--min_time, - |Parameters for post- | Post-censoring 100 Yes
-min-time processing threshold to apply to

individual runs in
the dataset. This
threshold
determines the
minimum amount of
time, in seconds,
needed to post-
process a given run,
once high-motion
outlier volumes are
removed. This will
have no impact if
censoring is
disabled (i.e., if the
FD threshold is 0 or
negative). This
parameter can be
disabled by
providing a 0 or a
negative value.

——dummy— Parameters for post- | Number of volumes | 0 Yes
scans, -- processing to remove from the
dummy scans beginning of each

run. If set to auto,
XCP_D will extract
non-steady-state
volume indices
from the pre-
processing
derivatives
confounds file.
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—-—-random-
seed, --
random_ seed

Parameters for post-
processing

Initialize the
random seed for the
workflow

None

Yes

-—-disable-
bandpass-
filter, --
disable bandp
ass_filter

Filtering parameters

Disable bandpass
filtering. If
bandpass filtering is
disabled, then ALFF
derivatives will not
be calculated.

True

Yes

--lower-bpf,
—-—lower bpf

Filtering parameters

Lower cut-off
frequency (Hz) for
the Butterworth
bandpass filter to be
applied to the
denoised BOLD
data. Set to 0.0 or
negative to disable
high-pass filtering.
See Satterthwaite et
al., 2013.

0.01

Yes

-—-upper-bpf,
—-—upper bpf

Filtering parameters

Upper cut-off
frequency (Hz) for
the Butterworth
bandpass filter to be
applied to the
denoised BOLD
data. Set to 0.0 or
negative to disable
low-pass filtering.
See Satterthwaite et
al. (2013).

0.08

Yes

--bpf-order,
—-—bpf order

Filtering parameters

Number of filter
coefficients for the
Butterworth
bandpass filter

Yes

--motion-
filter-type,

motion filter
_type

Filtering parameters

Type of band-stop
filter to use for
removing
respiratory artifact
from motion

None

Yes
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regressors. If not
set, no filter will be
applied.

Possible choices:
lp, notch.

If the filter type is
set to notch, then
both band-stop-
min and band-
stop-max must
be defined. If the
filter type is set to
1p, then only
band-stop-min
must be defined.

--band-stop-
min, --
band stop min

Filtering parameters

Lower frequency
for the band-stop
motion filter, in
breaths-per-minute
(bpm). Motion
filtering is only
performed if
motion-
filter-typeis
defined by the user.
If used with the 1p
motion-filter-type,
this parameter
essentially
corresponds to a
low-pass filter (the
maximum allowed
frequency in the
filtered data). This
parameter is used in
conjunction with
motion-
filter-order
and band-stop-
max.

None

Yes

--band-stop-

Filtering parameters

Upper frequency for

None

Yes
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max, -—-
band stop max

the band-stop
motion filter, in
breaths-per-minute
(bpm). Motion
filtering is only
performed if
motion-
filter-typeis
defined by the user.
This parameter is
only used if
motion-
filter-type is
set to notch. This
parameter is used in
conjunction with
motion-
filter-order
and band-stop-
min.

--motion- Filtering parameters | Number of filter 4 Yes
filter-order, coefficients for the
-- band-stop filter
motion filter
_order
-r, -- Censoring options Head radius for 50 Yes
head radius, for regression computing FD. The
--head-radius default is 50mm,
but 35mm is
recommended for
infants. A value of
auto is also
supported, in which
case the brain radius
is estimated from
the pre-processed
brain mask by
treating the mask as
a sphere
-f, --fd- Censoring options Framewise 0.3 Yes
thresh, -- displacement
fd thresh threshold for

censoring
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-—-exact-time,
--exact time

Censoring options

If used, this
parameter will
produce correlation
matrices limited to
each requested
amount of time. If
there is more than
the required amount
of low-motion data,
then volumes will
be randomly
selected to produce
denoised outputs
with the exact
amounts of time
requested. If there is
less than the
required amount of
‘good’ data, then
the corresponding
correlation matrix
will not be
produced.

None

Yes

—w, --
work dir, --
work-dir

Other options

Path where
intermediate results
should be stored

working
dir

Yes

-—-clean-
workdir, --
clean workdir

Other options

Clears working
directory of
contents. Use of this
flag is not
recommended when
running concurrent
processes of XCP-
D.

False

Yes

-—-resource-
monitor, --
resource moni
tor

Other options

Enable Nipype’s
resource monitoring
to keep track of
memory and CPU
usage

False

Yes

--notrack

Other options

Opt out of sending
tracking information

False

Yes

—-—fs-license-

Other options

Path to FreeSurfer

None

Yes.
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file license key file. Get Users can
it (for free) by alternatively
registering at mount the
https://surfer.nmr.m license and
gh.harvard.edu/regis set an
tration.html environment
variable.
--warp- Experimental If used, a workflow [ False Yes
surfaces- options will be run to warp
native2std, - native-space
- (fsnative)
warp surfaces reconstructed
_nativeZstd cortical surfaces
(surf.gii files)
produced by
Freesurfer into
standard (fsLR)

space. These surface
files are primarily
used for visual
quality assessment.
By default, this
workflow is
disabled.

IMPORTANT: This
parameter can only
be run if the --
cifti flagis also
enabled.

—--dcan-gc, -- | Experimental Generate files with | False Yes
dcan_gc options interpolated data
and generate .hdf5
format QC files,
along with the
BrainSprite figure

Table 3: XCP-D command-line options.
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