

1 Phosphorylation in the *Plasmodium falciparum* proteome: A meta-analysis of publicly available data
2 sets

3

4 Oscar J M Camacho¹, Kerry A Ramsbottom¹, Ananth Prakash², Zhi Sun³, Yasset Perez Riverol², Emily
5 Bowler-Barnett², Maria Martin², Jun Fan², Eric W Deutsch³, Juan Antonio Vizcaíno² and Andrew R Jones^{1*}

6

7 ¹Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE,
8 United Kingdom

9 ²European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton,
10 Cambridge, CB10 1SD, United Kingdom.

11 ³Institute for Systems Biology, Seattle, Washington 98109, United States

12 *Andrew.Jones@liverpool.ac.uk

13

14 **Abstract**

15 Malaria is a deadly disease caused by Apicomplexan parasites of the *Plasmodium* genus. Several
16 species of the *Plasmodium* genus are known to be infectious to human, of which *P. falciparum* is the
17 most virulent. Post-translational modifications (PTMs) of proteins coordinate cell signalling and hence,
18 regulate many biological processes in *P. falciparum* homeostasis and host infection, of which the most
19 highly studied is phosphorylation. Phosphosites on proteins can be identified by tandem mass
20 spectrometry (MS) performed on enriched samples (phosphoproteomics), followed by downstream
21 computational analyses. We have performed a large-scale meta-analysis of 11 publicly available
22 phosphoproteomics datasets, to build a comprehensive atlas of phosphosites in the *P. falciparum*
23 proteome, using robust pipelines aimed at strict control of false identifications. We identified a total
24 of 28,495 phosphorylated sites on *P. falciparum* proteins at 5% false localisation rate (FLR) and, of
25 those, 18,100 at 1% FLR. We identified significant sequence motifs, likely indicative of different groups
26 of kinases, responsible for different groups of phosphosites. Conservation analysis identified clusters
27 of phosphoproteins that are highly conserved, and others that are evolving faster within the
28 *Plasmodium* genus, and implicated in different pathways. We were also able to identify over 180,000
29 phosphosites within *Plasmodium* species beyond *falciparum*, based on orthologue mapping.

30 We also explored the structural context of phosphosites, identifying a strong enrichment for
31 phosphosites on fast evolving (low conservation) intrinsically disordered regions (IDRs) of proteins. In
32 other species, IDRs have been shown to have an important role in modulating protein-protein
33 interactions, particularly in signalling, and thus warranting further study for their roles in host-
34 pathogen interactions. All data has made available via UniProtKB, PRIDE and PeptideAtlas, with
35 visualisation interfaces for exploring phosphosites in the context of other data on *Plasmodium*
36 proteins.

37

38 **Author Summary**

39 *Plasmodium* parasites continue to pose a significant global health threat, with a high proportion of the
40 world at risk of malaria. It is imperative to gain new insights into cell signalling and regulation of
41 biological processes in these parasites to develop effective treatments. This study focused on post-
42 translational modifications (PTMs) of proteins, specifically phosphorylation. We conducted a meta-
43 analysis of 11 publicly available phosphoproteomics datasets, identifying over 28,000 phosphorylated
44 sites on *P. falciparum* proteins, using very rigorous statistics to avoid reporting false positives, and
45 mapping to over 180,000 phosphorylation sites on other species of *Plasmodium*.

46 The analysis revealed distinct sequence motifs associated with different groups of phosphosites (and
47 likely indicative of different upstream kinases), and differences in the downstream pathways
48 regulated. Conservation analysis highlighted clusters of phosphoproteins evolving at different rates
49 within the *Plasmodium* genus. Notably, phosphorylation was enriched in regions of proteins lacking
50 distinct structural elements, known as intrinsically disordered regions (IDRs), which are poorly
51 conserved across the genus – we speculate that they are important for modulating protein
52 interactions. The findings provide valuable insights into the molecular mechanisms of *P. falciparum*,
53 with potential implications for understanding host-pathogen interactions. The comprehensive dataset
54 generated is now publicly accessible, serving as a valuable resource for the scientific community
55 through UniProtKB, PRIDE, and PeptideAtlas.

56

57 **Introduction**

58 Malaria remains a major global health burden with 247 million cases worldwide in 2021. In the same
59 year, the World Health Organisation (WHO) has been estimated that 619,000 people died from the
60 disease. Most malaria cases (95%) and deaths (96%) occurred in Sub-Saharan Africa. Malaria is caused
61 by apicomplexan parasites of the *Plasmodium* genus. Of the approximately 156 named *Plasmodium*
62 species, only five have been found to infect humans: *P. falciparum*, *P. vivax*, *P. ovale*, *P. malariae*, and
63 *P. knowlesi*. *Plasmodium* is transmitted from one human to another by female *Anopheles* mosquitos
64 with the exception of *P. knowlesi*, which is believed to be zoonotic i.e. transmission happens from
65 macaques to humans in southeast Asia, where macaques have been previously infected by *Anopheles*
66 mosquitos [1]. Most severe cases and deaths from malaria are caused by *P. falciparum* infections,
67 endemic to Sub-Saharan Africa.

68 The *P. falciparum* life cycle requires two hosts, an *Anopheles* mosquito (around 40 species of
69 *Anopheles* can transmit *P. falciparum* [2]) and a human host. Extracellular sporozoites are transmitted
70 to the human dermal tissue during a blood meal. Once they reach the liver they replicate and develop
71 into merozoites and get released into the peripheral blood. There, merozoites break into erythrocytes
72 and replicate, causing most malaria symptoms. A small proportion of parasites will develop into
73 gametocytes with sexual attributes, which, closing the cycle, are transmitted back to mosquitoes
74 where sporozoites are formed from gametocytes [3].

75 Post-translational modifications (PTMs) of proteins are critically important as they can act as
76 molecular switches. PTMs and specifically phosphorylation has been shown to dynamically change,
77 for example, between extra and intraerythrocytic life-cycle stages suggesting protein sets and
78 pathways with roles in cell invasion [4]. Across stages in the *Plasmodium* intraerythrocytic asexual
79 cycle, a study has reported changes in abundance, defined as peak changes of at least 1.5 fold between
80 stages, for 34% of identified proteins and 75% of phosphorylation sites [5]. Interruption and

81 obstruction of interactions among these proteins could constitute efficient treatments against
82 malaria.

83 All stages in the *Plasmodium* life cycle have the potential to generate targets for vaccines. For example,
84 transmission-blocking vaccines preventing mosquito infection or interfering in *Plasmodium* sexual
85 stages; pre-erythrocytic stage by disabling the ability of merozoites to reach the human liver or
86 replicate there; or targeting interactions at the blood stage by suppressing their ability to enter
87 erythrocytes or replicate [6]. The most advanced vaccine (RTS,S), targets the *P. falciparum*
88 circumsporozoite surface protein (PfCSP) [7-9]. Artemisinin-based combination treatments (ACTs)
89 have proved effective for treating *P. falciparum* malaria [10, 11] but increasing *Plasmodium* drug
90 resistance has been observed, highlighting the importance of development of new drugs [12].

91 There are several useful online resources to support research in *Plasmodium*. PlasmoDB [13, 14]
92 stands out, it is part of the Eukaryotic Pathogen, Vector and Host Informatics Resources [15]
93 (VEuPathDB), which has been running since 2004, collating genome, functional genomic and
94 phenotypic data sets for multiple *Plasmodium* species. PlasmoDB hosts 20 *Plasmodium falciparum*
95 annotated genomes, including the canonical reference *P. falciparum* clone 3D7 [16]. A search of the
96 *P. falciparum* proteome in the UniProt Knowledgebase (UniProtKB) [17], the world's most popular
97 protein knowledge-base, returns 18 proteomes linked to different isolates of countries of origin, which
98 are mostly well synchronised with PlasmoDB.

99 Tandem mass spectrometry (MS/MS) is most often used in large scale phosphosite identification and
100 localisation studies [18]. Protein samples are purified and enzymatically digested, typically using
101 trypsin. Samples are then enriched for phosphorylated peptides using reagents such as TiO₂, or other
102 metal ions that promote phosphate binding. Then liquid chromatography is used to separate peptides
103 that are subsequently fragmented and analysed by MS/MS. Results from MS analyses can then be
104 compared against protein sequence databases, with and without the mass shift for phosphorylation,
105 via one of the many available search algorithms [19, 20]. Algorithms provide identification of peptides

106 and localisation of PTM sites in those peptides with scores aiming to reflect the level of confidence
107 that those identifications are correct. Score thresholding is used to select a subset of what are
108 expected to be the most confident findings. However, score thresholding does not provide
109 information about the global false discovery rate (FDR) of peptides, or the global false localisation rate
110 (FLR) of the phosphosites within those peptides. Absence of objective calculation of FLR in phosphosite
111 localisation studies hinders comparisons among studies, as it is not possible to establish a common
112 quality threshold among results from different studies. To overcome this problem, we have recently
113 published an approach that allows estimation of global site-level FLR, by including a decoy amino acid,
114 specifically Alanine, for phosphorylation searches (which cannot be modified) as a search parameter
115 to compete against targets sites (S, T or Y), i.e. the pASTY method [21]. An important benefit of pASTY
116 searches is that it allows combination of results from multiple studies as FLR can provide objective
117 comparable thresholds [22].

118 For *P. falciparum*, PlasmoDB provides information on 16,118 phosphorylation sites, although
119 phosphorylation sites have been loaded from multiple publications over the last 10 years. In our
120 previous work examining databases containing human phosphosites, we estimated that there is a high
121 proportion of false positive sites recorded, due to historically inadequate statistics associated with
122 detection of sites by MS [23] and, prior to [22], lack of methods for calculating adequate statistics for
123 controlling the FLR across studies.

124 In this work, we aim to provide a high-quality mapping of *P. falciparum* phosphosites via a large-scale
125 re-analysis of public phospho-enriched studies, underpinned by robust analysis pipelines enabling
126 meta-analyses with FLR control within and across studies' results. This analysis is part of the
127 "PTMeXchange" initiative, which is re-analysing phospho-enriched data sets and depositing results
128 into the proteomics resources PRIDE [24], PeptideAtlas [25] and UniProtKB. Results from downstream
129 analysis in the most confident phosphosites are also reported in this manuscript, including analysis
130 motifs centred on phosphosites and pathway enrichment analysis for these motifs. We examine

131 phosphorylation site conservation between our reference isolate 3D7 (*P. falciparum*) and other
132 species of the *Plasmodium* genus, as well as investigating the structure and disordered regions of
133 phosphoproteins.

134 **Results**

135 **Phosphosite identification**

136 The counts of peptide-spectrum matches (PSMs), and PSM-sites passing the 1% FDR threshold are
137 displayed in Table 1 as well as the number of overall PSM-sites at 1% and 5% FLR. Next, data were
138 collapsed to peptidoform-site level *i.e.* removing redundancy caused by the common occurrence of
139 multiple PSMs identifying the same peptidoform. A peptidoform is defined as a unique sequence of
140 amino acids with specific modifications. For example, two identical peptide sequences but with
141 modifications at different positions in the sequence are different peptidoforms. Table 1 also displays
142 the number of peptidoform-sites and protein-sites (accepting the mapping from a peptide sequence
143 to all proteins it can be found in, assuming tryptic cleavage) at 1% and 5% FLR, with these counts
144 separated for *P. falciparum* and human matches. Note that FLR threshold counts only considered
145 PSMs that passed 1% FDR. The data is unequally distributed between the 11 studies, with four studies
146 (PXD012143, PXD015833, PXD020381, PXD026474) contributing significantly more to the overall
147 number of sites at every stage of the analysis. In fact, nearly 70% of all *P. falciparum* protein-sites at
148 5% FLR come from these four studies.

149 *Table 1. From left to right: PSM count at 1% FDR, PSM-site count at 1% FDR, overall PSM-site count at 1% and 5% FLR, P.*
150 *falciparum peptidoform-site count at 1% and 5% FLR, human peptidoform-site count at 1% and 5% FLR, P. falciparum protein-*
151 *site count at 1% and 5% FLR, human protein-site count at 1% and 5% FLR.*

			Overall		Plasmodium		Human		Plasmodium		Human	
	1% FDR PSM	1% FDR PSM- site	1% FLR PSM- Site	5% FLR PSM- Site	1% FLR Peptidoform- site	5% FLR Peptidoform- site	1% FLR Peptidoform- site	5% FLR Peptidoform- site	1% FLR Protein- site	5% FLR Protein- site	1% FLR Protein- site	5% FLR Protein- site
PXD000070	42054	46064	6206	12375	564	1265	44	103	398	886	27	69
PXD001684	14152	14179	5648	12015	901	1291	48	56	785	1110	45	63
PXD002266	38618	45004	10342	18609	1609	3298	68	150	1147	2421	47	118
PXD005207	21967	24045	4584	8105	2367	3386	188	296	1364	1884	105	174
PXD009157	22449	24653	4134	7049	2179	3353	83	151	1291	2023	31	69

PXD009465	24435	37096	7812	10694	3905	5382	101	159	2513	3534	70	122
PXD012143	270306	340996	93438	144256	26893	39487	633	1139	10597	15797	350	662
PXD015093	28693	30469	5597	12187	1156	2760	123	274	583	1242	64	149
PXD015833	348842	392870	78345	134576	22288	43134	1291	3005	6439	11897	442	1060
PXD020381	228888	278203	67457	105938	17604	31622	361	832	7331	13050	173	483
PXD026474	154644	168133	57786	100714	8772	14611	3334	5640	4657	7426	1549	2657

152

153 Figure 1A shows the Gold-Silver-Bronze (GSB, see Methods) quality categorisation for *P. falciparum*
154 protein-sites matching to *P. falciparum* (left panel) and human (right panel) proteins. If a sequence,
155 and therefore the sites within the sequence, match to more than one protein sequence, these sites
156 were counted for all mapping proteins in the proteome. In total, there were 28,495 protein-sites in *P.*
157 *falciparum* classified as GSB (5% FLR) of which 9,587 were Gold (seen in 2 or more studies at <1% FLR),
158 8,513 Silver (1 study at <1% FLR), and 10,395 Bronze (>=1% FLR and <5% FLR). While for Human (Figure
159 1A right), there were 4,239 protein-sites identified, with 446 Gold, 1,788 Silver and, 2,005 classified as
160 Bronze. 25,758 and 3,529 sites were unique (matching to one protein only), and 351 and 284 non-
161 unique sites for *P. falciparum* and Human respectively, considering only sites at 5% FLR (Figure 1B).
162 The number of GSB unique protein-sites were 26,028 in *P. falciparum* and 3,732 in Human (Figure 1C),
163 with 81 protein-sites matching to both species (this calculation only considers a protein match per
164 sequence and site). Only 1.35% of all protein-sites in our *Plasmodium* analysis mapped to more than
165 1 protein with less than 0.05% mapping to more than two proteins. Interestingly, there was a
166 peptidoform mapping the same site evidence to 36 proteins from the PfEMP1 family, due to very high
167 sequence similarity amongst this gene family (Figure 1D). All Gold, Silver and Bronze phosphosites can
168 be found in Supp File 1.

169

170 Figure 1. A: The count of protein-sites classified as Gold-Silver-Bronze for *P. falciparum* (left) and Human (right), sites
171 coloured by phosphorylated amino acid. This includes all potential locations for the identified sites when peptides match to
172 more than one location or protein and decoy matches to Alanine. B: Number of unique or not unique protein-sites
173 identified within each species among sites at 5% FLR, where not unique are those peptidoforms that map to more than one

174 protein. C: Number of protein-sites, where sites are mapped to a single protein, for each species and common to both. D:
175 Proportion of sites matching to more than one protein.

176 **Motif and pathway enrichment analysis**

177 We investigated if there were overrepresented sequence motifs centred on 5% FLR phosphosites.
178 Motif analysis was performed for *P. falciparum* by comparing 15mer peptides centred on S, T and Y
179 phosphosites against a background of 15mer peptides centred on all STY sites, phosphorylated or not.
180 The analysis returned 107 statistically significant motifs, of which 65, 30 and 12 were centred on S, T
181 and Y, respectively (Supp Figure 1 and Supp File 1).

182 The most common significant motifs (group 1 on Figure 2) were those with S and T combining with E
183 and D in different positions such: [ST]D, D[ST], [ST].[DE], [ST]...D, and [ST]N[DE], N[ST].[DE] or N.[ST]
184 [DE]. There were also other common motifs to S and T not containing D or E like N[ST], K..[ST], R..[ST].
185 Among other potentially interesting features of these motifs, only K was found in motifs at positions -
186 7, -6, +6 and +7, with significant motifs for K.....DS, K....DS and SD....K, SD.....K, SN.....K. Motifs with K
187 relatively distant to the target site may be due to a preference for particular kinases or an artefact
188 related to tryptic cleavage enriching for lysines to be present somewhere in many detected peptides.
189 There were only six 3-amino acid motifs with a P in the +1 position, which can be very common for
190 other species. Many of these motifs agreed with those found by Peace *et al.* [5], which can be expected
191 as their MS data was included in this analysis. Treeck *et al.* [26] also found many of these motifs in *P.*
192 *falciparum* (S[DE].E,SD.[ED], K..S.D, [KR]..S, S[DE], SN, DS).

193 Motifs were independently analysed to investigate functional enrichment of the proteins in which
194 specific motifs were found. Summing across all motif results, 39 different GO terms were found to be
195 statistically significant. Table 3 contains significant GO terms for motifs at least 4-fold enriched versus
196 the background, and the full analysis for all motifs can be found in Supp File 2. It is worth noting that
197 the RSF.D motif gave highly significant matches to several GO terms. However, this result is an unusual
198 artefact of the protocol. *P. falciparum* has a 65 gene family, in which all members are called “PfEMP1”,
199 with highly related protein sequences. Phosphosites are mapped to all positions where a peptidoform

200 can be found, typically resulting in the vast majority of sites mapping to a single protein (counts for
201 the few exceptions are shown in Figure 1D). Phosphosites identified in PfEMP1 mapped to 36 different
202 proteins, which gives an apparently extremely significant signal under motif-GO analysis, since the
203 PfEMP1 proteins all contain the same motif and are also all mapped to the same GO terms.

204 Table 3. Statistically significant GO terms for the subset of motifs surrounding phosphorylated sites. Analyses were carried
205 out independently for each motif and includes only motifs with at least 4 fold change over background

ID	Description	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	Count	motif
GO:0034399	nuclear periphery	4/52	35/3454	0.0016	0.0374	0.0367	4SD.E..K.
GO:0005515	protein binding	13/52	354/3454	0.0017	0.0374	0.0367	13SD.E..K.
GO:0045178	basal part of cell	4/144	11/3454	0.0007	0.0314	0.0302	4R.NS.....
GO:0048870	cell motility	4/144	12/3454	0.0011	0.0314	0.0302	4R.NS.....
GO:0009410	response to xenobiotic stimulus	14/144	145/3454	0.0024	0.0470	0.0451	14R.NS.....
GO:0000792	heterochromatin	5/233	11/3454	0.0004	0.0209	0.0197	5SD.E....
GO:0005515	protein binding	40/233	354/3454	0.0005	0.0209	0.0197	40SD.E....
GO:0034399	nuclear periphery	8/233	35/3454	0.0018	0.0472	0.0446	8SD.E....
GO:0050839	cell adhesion molecule binding	30/36	54/3454	5.59E-53	6.71E-52	2.35E-52	30RSF.D....
GO:0098609	cell-cell adhesion	30/36	57/3454	5.57E-52	3.34E-51	1.17E-51	30RSF.D....
GO:0020030	infected host cell surface knob	30/36	61/3454	9.17E-51	3.67E-50	1.29E-50	30RSF.D....
GO:0020002	host cell plasma membrane	30/36	214/3454	1.10E-31	3.30E-31	1.16E-31	30RSF.D....
GO:0020013	modulation by symbiont of host erythrocyte aggregation	29/36	191/3454	2.49E-31	5.98E-31	2.10E-31	29RSF.D....
GO:0020035	adhesion of symbiont to microvasculature	28/36	172/3454	7.88E-31	1.58E-30	5.53E-31	28RSF.D....
GO:0020033	antigenic variation	29/36	202/3454	1.40E-30	2.41E-30	8.44E-31	29RSF.D....
GO:0046789	host cell surface receptor binding	7/36	37/3454	5.95E-08	8.93E-08	3.13E-08	7RSF.D....
GO:0043565	sequence-specific DNA binding	4/77	17/3454	0.0004	0.0178	0.0160	4N..SP.....
GO:0009410	response to xenobiotic stimulus	10/75	145/3454	0.0009	0.0484	0.0416	10K..T.D....
GO:1903561	extracellular vesicle	7/57	91/3454	0.0006	0.0221	0.0206	7E..T.E....
GO:0042393	histone binding	2/19	12/3454	0.0018	0.0274	0.0212	2TP...E..
GO:1903561	extracellular vesicle	20/209	91/3454	2.51E-07	1.88E-05	1.72E-05	20R..T.....
GO:0003723	RNA binding	27/209	199/3454	4.23E-05	0.0014	0.0013	27R..T.....
GO:0020020	food vacuole	17/209	98/3454	5.83E-05	0.0014	0.0013	17R..T.....
GO:0045178	basal part of cell	5/209	11/3454	0.0002	0.0049	0.0045	5R..T.....
GO:0048870	cell motility	5/209	12/3454	0.0004	0.0064	0.0059	5R..T.....
GO:0005515	protein binding	35/209	354/3454	0.0018	0.0236	0.0216	35R..T.....
GO:0042393	histone binding	3/30	12/3454	0.0001	0.0033	0.0028	3D.TE.....
GO:0032991	protein-containing complex	2/23	14/3454	0.0036	0.0446	0.0405	2Y.SD....
GO:0006511	ubiquitin-dependent protein catabolic process	2/23	15/3454	0.0042	0.0446	0.0405	2Y.SD....
GO:0003724	RNA helicase activity	2/23	18/3454	0.0061	0.0446	0.0405	2Y.SD....
GO:0003723	RNA binding	6/20	199/3454	0.0006	0.0153	0.0147	6SYE.....

206

207 Under the hypothesis that similar motifs may indicate proteins being involved in similar processes, we
208 identified six groups based on the amino acids forming those motifs (Figure 2). Our analysis showed
209 that besides general agreement on high-level functional terms such as “protein binding”, “cytoplasm”
210 or “RNA binding” there were also group specific GO terms pointing to some functional specificity
211 among motifs’ groups. There was almost complete agreement in significant terms between groups 1
212 to 3 which could suggest there is overlap in the signalling cascades with regards to downstream
213 effects, or the method may not be sensitive enough to draw more specific terms allowing
214 differentiation. Groups 4 to 6 returned more diverse GO terms, with group 6 likely conditioned by the
215 PfEMP1 protein family as previously explained.

216 As an alternative and more objective approach for grouping motifs, we took a subset of motifs with a
217 4-fold change over background, *i.e.* the most strongly over-represented motifs, and performed an
218 enrichment analysis for all *P. falciparum* proteins where those phosphorylation motifs can be found.
219 Figure 3A shows a heatmap of the p-values for the GO terms associated with proteins containing these
220 phosphorylation motifs. These motifs did not seem to form strong clusters according to these terms,
221 although some small groups (similar pairs clustering together) could be observed. In a few cases, there
222 was some overlap in protein sets carrying motifs, for example SD.E and SD.E..K – the latter being
223 matched to a subset of the proteins matched by the former. However, the motifs K..T.E and K..T.D are
224 mutually exclusive, yet proteins carrying these phosphosite motifs can be seen to be acting in many
225 of the same signalling pathways. Other examples of “pairing” on the dendrogram are motifs N.SP and
226 N..SP, and E..T.E and E...TE. It is possible that these pairs of phospho-motifs are recognised by the
227 same kinase, or that there are closely related kinases within the same family that are involved within
228 the same types of downstream pathways. Another “pair” of phospho-motifs is K..TP and TDD – this
229 latter example is surprising, since it would typically be assumed that S/TP and S/TD phosphosites are
230 regulated by different kinase families. It is possible that there is crosstalk between two kinases,
231 although the evidence here is not sufficient to form any strong conclusions.

232 Therefore, in general, the heatmap suggests some differences in functionality between proteins
233 containing different phosphorylation motifs. However, when analysed as a group, 10 GO terms
234 summarised the functional processes for the subset of genes where these phosphorylated motifs were
235 found (Figure 3B).

236

237 Figure 2. Statistically significant GO terms for motifs surrounding phosphorylated sites, grouped by similar motifs, formed by
238 similar groups of amino acids.

239

240

241 Figure 3. A: Heatmap of the adjusted p-values resulting from an enrichment analysis of the proteins where phosphorylation
242 motifs (on the x-axis) were found (only motifs with fold change over background above 4 are considered). B: Significant GO
243 Terms (p-adjusted <=0.05) for the genes in which motifs with fold change over background above 4 could be found.

244 The *P. falciparum* proteome has around 90 protein kinases – 89 are annotated in PlasmoDB with the
245 InterPro protein kinase domain term. An analysis by Adderley *et al.* [27] identified 98 protein kinases
246 in isolate 3D7, by including keyword searching in addition to InterPro domain searching. From their
247 list of kinases, there several sequences annotated as pseudokinases or having kinase-like domains
248 (PF3D7_0424700, PF3D7_0708300, PF3D7_0724000, PF3D7_0823000, PF3D7_1106800,
249 PF3D7_1321100, PF3D7_1428500) and two pseudogenes (PF3D7_0731400 and PF3D7_1476400).
250 Adderley *et al.* [27] classified these kinases into families, using an HMM (Hidden Markov Models)-
251 based technique. Supp Table 2 shows the counts of 3D7 kinases classified into families, with additional
252 notes on potential kinase motifs for these families based upon information on kinase motifs found in
253 humans from [28], with the caveat that we cannot be sure that even if orthologous kinases exist
254 between humans and *P. falciparum* that they recognise the same motifs. Accurate prediction of
255 kinase-substrate relationships is not straightforward without high-quality experimental data, which is
256 lacking in *P. falciparum*. FIKK kinases are unique to Apicomplexa [29], and seem to have an important

257 role in host invasion (such as phosphorylation of erythrocyte proteins), but otherwise little is known
258 about the motifs for their targets. The publication associated with dataset PXD015833 specifically
259 investigated substrate specificity and concluded that some of the FIKK family have a preference for a
260 basic motif near to pS/pT site – with arginine enriched in the minus position (group 6 in our analysis)
261 [30]. We could speculate that the motifs groups identified in Figure 2 are driven by different kinase
262 groups in Supp. Table 2, but without new experimental data, robust conclusions are not possible. This
263 is an area requiring further work.

264

265

266 **Conservation analysis**

267 Based on unique phosphorylated protein-sites at 5% FLR in *P. falciparum* 3D7, we investigated the
268 existence of their orthologs in other species of *Plasmodium*. Conservation for each site, defined as the
269 proportion of species containing the same amino acid at that position in the multiple sequence
270 alignment, can be found as supplementary files (Supp File 3.). We generated a heatmap (Figure 4)
271 representing the average agreement among sites within each protein. If the site was conserved with
272 respect to the reference 3D7 it was labelled as 1 and 0 otherwise. For each species, a non-conserved
273 site could be the result of having a different amino acid with respect to the reference phosphorylation
274 position, there could be gap in the protein or the orthologue was not found for that species. Then,
275 within each protein and species, the average (proportion of sites conserved) was calculated. In this
276 way, proteins without any sites conserved or when the protein is not found in the species have score=0
277 and when all phosphosites are conserved, the score = 1. Changes in a site between Ser, Thr or Tyr was
278 considered not conserved, although scores were also calculated allowing for S <-> T substitutions as
279 “conserved” (not disruptive to S/T phosphorylation), as shown in Supp File 3.

280 Mapping across species returned 26,316 sites belonging to 2,890 proteins, where only 1 mapping
281 occurrence was used per phosphorylated protein-site, i.e. when phosphorylated peptides could match
282 to more than one protein (or very rarely multiple positions within one protein) only one match was
283 used per peptide. Of those 2,890 proteins, only 108 proteins contained all phosphosites that were
284 completely conserved across all species considered. Hence, the heatmap in Figure 4A is formed of the
285 2,782 proteins for which there were differences between two or more orthologous proteins in the
286 conservation of their identified phosphosites.

287 The dendrogram suggests three main groups for the *Plasmodium* species on the x-axis, with PPRFG01
288 (*Plasmodium* sp. gorilla clade 1) closest to the *P. falciparum* reference PF3D7 (Figure 4A). This group
289 (group 1) containing *P. falciparum* has six more species in the cluster, none of which (beyond 3D7) are
290 transmissible to humans. The two other groups are formed of 4 and 12 species. All other species
291 transmissible to humans are included in the largest group (group 3). On the y-axis, five clusters of

292 proteins were formed and subsequently analysed separately with clusterProfiler for enrichment
293 analysis, to determine if there were different biological processes associated with phosphosites of
294 different conservation patterns, which might be indicative of those under different selective
295 pressures. The analysis yielded 16 statistically significant GO terms (Figure 4B).

296 For Cluster 5 (proteins containing phosphosites mostly conserved across the genus), the most
297 significant GO terms per cluster were: “food vacuole” (GO:0020020), “extracellular vesicle”
298 (GO:1903561) and “endoplasmic reticulum” (ER) (GO:0005783) – indicating conserved signalling
299 mechanisms related to the infection of host cells. The ER in Apicomplexa is known to be involved in
300 the processing of effector proteins before translocation to host cells [31]. The “food vacuole” is a GO
301 term mostly used in annotation of Apicomplexa proteins related to digestion of the host cell
302 cytoplasm. Cluster 4 contains sites that are highly conserved in Group 1 species, and around 50%
303 conserved in Group 2 and 3 species. Cluster 4 is annotated to be enriched for GO terms related to RNA
304 binding and splicing. This result is somewhat surprising, since one would assume that mechanisms
305 related to transcription would be very highly conserved. Cluster 3 are highly conserved in Group 1
306 species but have low conservation in groups 2 and 3, with enrichment for GO terms related to
307 symbiont-containing vacuole membrane, rhoptry and extracellular vesicle – we could speculate that
308 this may be indicative of cell signalling related to host-cell invasion, and evolving faster than Cluster 5
309 proteins, to evade host immune responses. Cluster 2 proteins have highly conserved phosphosites in
310 Group 1 proteins but with average conservation between those in Cluster 2 and 4 for other groups.
311 Only one GO term is enriched for “response to xenobiotic stimulus” (GO:0009410) – a term related to
312 *Plasmodium*’s ability to respond to small molecules from the host (and proteins implicated in drug
313 resistance). Cluster 1 contains proteins with least conserved phosphosites, and had the strongest
314 enrichment (by p-value and count of mapped terms) for “infected host cell surface knob”
315 (GO:0020030) and “cell-cell adhesion” (GO:0098609). Term GO:0020030 is a commonly used gene
316 annotation in *Plasmodium*, related to the protrusions in the membrane of an infected erythrocyte.
317 These proteins are potentially under pressure to evade host immune responses, and thus evolving

318 much faster (and changing their cell signalling mechanisms). Data for this analysis including the
319 clusters can be found in Supp. File 4.

320

321 Figure 4. A: Heatmap of the agreement in sequence conservation between 23 species of *Plasmodium*: *P. gorilla* clade
322 G1(PPRFG01), *P. reichenowi* (PRCDC), *P. blacklocki* G01 (PBLACG01), *P. billcollinsi* G01 (PBILCG01), *P. adleri* G01 (PADL01), *P.*
323 *gaboni* (PGSY75), *P. malariae* (PmUG01), *P. brasiliandum* strain Bolivian I (MKS88), *P. ovale* (PocGH01), *P. relictum* (PRELSG),
324 *P. gallinaceum* (PGAL8A), *P. chabaudi* AS (PCHAS), *P. vinckeи vinckeи* CY (PVVCY), *P. yoelii* 17X (PY17X), *P. berghei* ANKA
325 (PBANKA), *P. cynomolgi* (PcyM), *P. vivax* (PVP01), *P. knowlesi* (PKNH), *P. coatneyi* Hacker (PCOAH), *P. fragile* strain nilgiri
326 (AK88), *P. inui* San Antonio 1 (C922), *P. vivax*-like (PVL) and the reference *P. falciparum* (PF3D7). The heatmap displays the
327 mean conservation (agreement) of phosphosites per protein with three clusters for species and five for proteins. B: Pathway
328 enrichment analysis for the genes found in each cluster with significant GO terms in y-axis and clusters in the x-axis; the
329 number of genes where those terms were found are in parenthesis under each cluster label.

330

331 We next implemented a “strict” phosphosite matching process, for the purposes of providing highly
332 likely phosphosites for all *Plasmodium* species aligned, requiring that the phosphosite amino acid
333 matched between *Plasmodium falciparum* 3D7 and the target species (allowing for S <-> T
334 substitutions) and requiring the +1 residue was also matched (as the most important position for
335 phosphorylation motifs). This gives an additional candidate set of 183,134 phosphosites, identified
336 across the *Plasmodium* genus, based on orthologue mapping (Supp. File 5). The multiple sequence
337 alignments for all phosphoproteins are provided in compressed folder (Supp. File 6).

338 We also investigated conservation based on SNP analysis within the *Plasmodium falciparum* species,
339 using data sets derived from whole genome sequencing of different isolates downloaded from
340 PlasmoDB (Supp. File 7). Out of 26,006 phosphosites, 25,587 did not have any recorded single amino
341 acid variants (SAAVs recorded in PlasmoDB), indicating very high conservation of phosphosites within
342 the species sampled (98.3%). Analysis of the total serines within the proteome found 4,660 SAAVs
343 with major allele frequency (AF) <1 (from 261,791 total serines), i.e. 98.2% conservation. This indicates

344 that that pS is no more likely or less likely to be mutated than other serines. On average, 97.9%
345 threonines in the proteome are conserved (i.e. have no SAAV in this analysis), compared to 98.7% for
346 pT sites. On average, 99.0% of pY (663/670) and 99.0% of all tyrosines do not have a SAAV in this
347 analysis, again indicating no particular selective pressure signal that could be identified. A histogram
348 of the major allele frequencies for phosphosite SAAVs is presented in Figure 5B, confirming that most
349 phosphosites are highly conserved across different isolates, with only a single site (pSer 33 in
350 PF3D7_1366900, a protein of unknown function) having major AF < 0.5. A table of proteins with
351 phosphosites and AF < 0.9 is provided in Supp. File 7, including several zinc finger proteins and two
352 rhoptry proteins.

353 We performed GO term enrichment analysis for the (419) proteins containing not fully conserved
354 phosphosites (Figure 5A). Besides “protein binding” (GO:0005515) or “mRNA binding” (GO:0003723)
355 which appear to be significant in most analyses, the analysis also returned “translocation of peptides
356 or proteins into host” (GO:0042000), “rhoptry” (GO:0020008) and “endocytosis” (GO:0006897),
357 indicative perhaps of proteins under some positive selective.

358 Other comparative analyses of conservation data have been included as Supp. Figure 2. In Supp Figure
359 2 (A) a pathway analysis was performed comparing three human transmissible species (PmUG01,
360 PocGH01, PVP01) vs. 17 not transmissible. *P. knowlesi* (PKNH) and *P. vivax*-like (PVL) were excluded
361 from this analysis because of their potential for non-vectorial infection to humans. From
362 phosphoproteins, a subset was selected for pathway analysis as: proteins with fully conserved
363 phosphosites for the human transmissible species, i.e. all phosphosites conserved with respect of the
364 reference PF3D7, and not conserved for non-transmissible species, at least one phosphosite within
365 the protein not conserved with respect to the *P. falciparum* reference PF3D7. Some of the significant
366 terms not previously observed in other analyses were “cytosol”, “structural constituent of ribosome”,
367 “cytosolic small ribosomal subunit”. Supp Figure 2 (B) investigates the enriched pathways for sites
368 within phosphoproteins not conserved in *P. gorilla* clade G1 (PPRFG01), compared to PF3D7, as our

369 analysis (Figure 4A) suggested this species to be the closest relative to *P. falciparum*. This additional
370 analysis returned “infected host cell surface knob” (GO:0020030) as the most significant term, which
371 may indicate differences on the cell invasion between the two species of *Plasmodium*.

372

373 Figure 5. A: Pathway analysis results across all *Plasmodium* species for those genes which were not fully conserved compared
374 to PF3D7, based on SNP analysis. B: Histogram of conservation across *Plasmodium* species based on SNP analysis.

375 **Disorder and structural analysis**

376 Next, we explored the structural context of phosphosites in *P. falciparum*, to search for information
377 about the functional importance of the phosphosites. First, we performed an analysis to predict all
378 the structured and disordered regions of *P. falciparum* proteins (using metapredict v2), and mapped
379 phosphosites onto these regions. Metapredict gives a score from 0-1 to indicate the likelihood of each
380 amino acid within a sequence to be in an ordered (score = 0) or within a disordered region (score = 1).
381 It has been reported before that a high proportion of mammalian phosphosites are located on
382 disordered regions, having a role in transition from disorder to order, altering the local or global
383 structure, and potentially changing the interaction potential of the protein [32]. From our mapping of
384 phosphosites to predicted disordered regions, we could observe that phosphosites had a very strong
385 tendency towards disordered regions in *P. falciparum*. This tendency for phosphosites to be found in
386 disordered regions can be observed for all three residues S, T, Y. Figure 6A, displays boxplots with
387 strikingly higher disorder scores for phosphosites (pS, pT, pY) than for other S, T or Y residues in the *P.*
388 *falciparum* proteome – median disorder scores pS=0.982, pT = 0.965, and pY=0.975 compared to S=
389 0.769, T= 0.639 and Y= 0.532 median disorder scores of all residues in the proteome. The trend is
390 particularly striking for pY sites, since tyrosines do not have a strong preference to be in disordered
391 regions of proteins, as shown on Figure 6A. Metapredict documentation suggests that a threshold of
392 0.3 can differentiate ordered from disordered regions. Using such a threshold across the entire
393 proteome of *P. falciparum* would suggest that 66% of all residues fall in disordered regions. Comparing
394 against metapredict disorder scores for the human proteome (Supplementary Figure 3), revealed that

395 only 39% of residues within the human proteome are located in disordered regions. It is possible that
396 *P. falciparum* proteins are generally more disordered than human proteins, or that the tool is less well
397 calibrated for Apicomplexa than for humans. Nevertheless, using the metapredict-recommended
398 threshold of >0.3 for determining disordered regions, in agreement with previous reports [26],
399 revealed that 89% of phosphosites were located within predicted disordered regions (and still 85% if
400 a more conservative score >0.5 was used to determine disorder).

401 If we restrict the analysis to FLR “Gold” category phosphosites (those observed with high confidence
402 in more than one study), remarkably only 5.8% fall in ordered regions (on only 330 proteins), indicating
403 that it is highly unusual for phosphorylation to occur on well-structured regions of *P. falciparum*
404 proteins. For comparison, 12% of “gold standard” human phosphosites [23] are predicted to fall into
405 ordered regions (metapredict score < 0.3). Investigating the biological functions links to these 330
406 *Plasmodium falciparum* proteins with phosphosites in their ordered regions, there several GO terms
407 returned from pathway enrichment analysis with clusterProfiler (Supplementary Figure 4), including
408 proteins localising to the cytosol and cytoplasm, and ribosome-related functions.

409 Next, we wished to explore whether there was any difference in the conservation of phosphosites in
410 disordered vs ordered regions. As shown on Figure 6B, there is a striking difference – phosphosites in
411 ordered regions (2,776), had high conservation overall.

412 Examining the set of ordered sites, since these are relatively unusual in the *P. falciparum*
413 phosphoproteome, these sites are highly conserved (Figure 6B), compared to disordered phosphosites
414 – 48% of all “ordered” sites have conservation >90% across the genus, compared to only 16% of
415 “disordered” sites.

416 Exploring the high-quality (Gold) set of sites mapped to ordered regions (330 proteins), 209/330 (63%)
417 have a human ortholog (OrthoMCL DB [33]), indicative of genes highly conserved across all eukaryotes.
418 For the proteins containing “Gold” quality phosphosites in disordered regions (1,724), 718/1,724

419 (42%) have a human ortholog – indicative of proteins that are less well conserved across eukaryotes.

420 Disorder and site conservation data is available as Supp. File 8.

421 Figure 6. A: Boxplot of the disorder scores (from metapredict) for phosphosites (pS, pT and pY) versus disorder scores for all
422 S, T and Y residues in the *P. falciparum* proteome. B: Density functions for percentage of conservation by residue for ordered
423 and disordered regions (<0.3 metapredict score).

424

425 **Protein structural context**

426 The release of AlphaFold2 (AF2) has had a very significant impact on the ability to understand the
427 three-dimensional (3D) structure of proteins across both model and non-model organisms [34]. 3D
428 structure predictions for *P. falciparum* proteins are available via AlphaFold database, UniProtKB and
429 PlasmoDB (via mapping to UniProt identifiers). We have mapped all the phosphosites onto AF2
430 structures, also incorporating the conservation scores (across the *Plasmodium* genus), enabling visual
431 exploration of the relationship between order/disorder (which can be clearly visualized) on structures,
432 conservation and positions of phosphosites. In Supp. File 9, we have created a static html page with
433 a table of the phosphoproteins identified, with hyperlinks so that every phosphoprotein's structure
434 and phosphosites can be visualized via the online iCn3D viewer [35], and links to their corresponding
435 record in UniProtKB (see section below on data access). A caveat is that AF2 models have no awareness
436 of PTM sites, and generally have been trained on few example proteins with PTMs intact. As such,
437 protein structure models demonstrate the position of PTMs as they would appear on an otherwise
438 unmodified structure. Given that phosphosites often change the structure of proteins by introducing
439 more negative charge, it remains an open research question how to re-model AF2 structures to reflect
440 the presence of phosphosites.

441 An example is presented in Figure 7, for protein phosphatase PPM2 (UniProtKB identifier: Q8IHY0,
442 PlasmoDB identifier: PF3D7_1138500). The image displays all identified phosphosites on the green to
443 red colour scale, indicating fully conserved across the genus = green, to unique to *P. falciparum* = red.
444 In PPM2, it can also be observed that phosphosites that are highly conserved (green) are located in

445 the structured core, and that large, disordered regions are around the outside, containing non-
446 conserved phosphosites in red.

447 When exploring functional relationships across orthologues, it might be typical to conclude that highly
448 conserved regions are most significant for function, and in fact most protein domains are captured
449 from conserved regions in multiple sequence alignments across assumed orthologues. However, the
450 data presented here does not support such a conclusion for phosphosites. The fact that the vast
451 majority of phosphosites are present on disordered regions of proteins, which are evolving fastest,
452 and seem to have a role in host cell invasion and potentially evading host cell responses, point to a
453 specialisation in the functional role of phosphorylation. Further experiments to understand the
454 interplay between phosphorylation, protein disorder and the ability to infect hosts are clearly
455 required.

456

457 Figure 7. Protein PF3D7_1138500 protein phosphatase PPM2, visualised in iCn3D (AlphaFold structure Q8IHY0), with mapped
458 phosphorylation sites – coloured red-black-green conservation scale (0-9). Phosphosites in the structured core are fully
459 conserved across the *Plasmodium* genus, whereas disordered regions have mostly low conservation.

460

461 **Open access data availability**

462 The *Plasmodium falciparum* “phosphosite build” is part of a wider project, called PTMeXchange, aimed
463 at high quality re-analysis of MS/MS data sets enriched for particular PTMs, and providing simple
464 public access to the resulting data sets. The build is provided via PRIDE/ProteomeXchange with
465 identifier PXD046874, where researchers can download the phosphosites identified per study in
466 simple tab-separated text files. The data has also been loaded into UniProtKB (Figure 8A), enabling
467 phosphosite evidence to be explored alongside other protein features and AF2 models, with links to
468 the raw evidence. We have also released the phosphosite build within PeptideAtlas
469 (<https://peptideatlas.org/builds/pfalciparum/phospho/>), enabling more detailed exploration of the
470 evidence within each protein, peptidoform and spectrum for a given site (Figure 8B). Our data are

471 deposited in PRIDE, UniProtKB and PeptideAtlas all provide evidence for each site using Universal
472 Spectrum Identifiers [36], which can be rendered via
473 <https://proteomecentral.proteomexchange.org/usi/> (and shown in right panel on Figure 8B). This
474 allows a user to explore the evidence for a given site on a peptide, and test other possible explanations
475 to see if the spectrum could support alternative explanations (peptides or sites within those peptides).
476 Lastly, the phosphosite build is scheduled to appear in PlasmoDB in 2024, as this is the central
477 database for *Plasmodium* researchers.

478 Figure 8. A. Visualisation of phosphosites in UniProtKB for example protein (Q8IHY0). B. Examples of different visualisations
479 at the protein-, peptidoforms-, and spectral-levels for the same protein, with PeptideAtlas identifier PF3D7_1138500.1-p1.

480

482 **Discussion**

483 We have reported a comprehensive meta-analysis of *P. falciparum* phosphoproteomics data sets. Data
484 sets were re-analysed using a robust pipeline ensuring objective false localisation rate calculation.
485 Additional Gold, Silver, Bronze labelling was also provided as easy way to display confidence of
486 phosphosites being correctly identified.

487 Results from our meta-analysis have been deposited into UniProtKB, enabling sites to be used for
488 further research with other bioinformatics tools. The data has also made available in PeptideAtlas and
489 PRIDE, enabling detailed exploration of scores and visualization of source mass spectra, as a full
490 evidence trail.

491 We have also provided over-represented motifs found in these phosphoproteins as well as
492 conservation data in relation to another 22 species of the genus *Plasmodium*, and from 115 different
493 *Plasmodium falciparum* isolates, with respect to *P. falciparum* strain 3D7. We provided predictive
494 disorder scores for all identified phosphosites and links to protein structures to visualise these
495 proteins. We expect our results to be a useful resource for researchers facilitating identification of
496 areas for future research in developing malaria treatments and vaccines.

497 **Methods**

498 **Data selection**

499 The ProteomeXchange Consortium [37] was used to identify suitable *P. falciparum*
500 phosphoproteomics datasets, via the PRIDE repository [38] and ProteomeXchange. Overall 11 were
501 deemed suitable for phosphosite (localisation) reanalysis, based on inclusion criteria that data sets
502 were generated by data dependent acquisition (DDA) methods, “high-quality” (i.e. likely to deliver
503 >1,000 phosphosites), raw data were available and readable using open source tools: PXD000070 [39],
504 PXD001684 [4], PXD002266 [40], PXD005207 [41], PXD009157 [42], PXD009465 [43], PXD012143 [44],
505 PXD015093 [45], PXD015833 [30], PXD020381 [46], and PXD026474 [47]. These 11 data sets consist
506 of both labelled (TMT or iTRAQ) and unlabelled MS data sets. Most of the studies focus on the blood
507 stage in *P. falciparum* life cycle, with only one study (PXD026474) including gametocytes. There was

508 not data available for the liver stage of the parasite, possibly due to challenges with the development
509 of liver models. A brief description of the studies' objectives extracted from the abstracts of their
510 publications, *P. falciparum* stages included in the analysis, enrichment details and MS methods are
511 shown in Table 2 and more details about the studies' objectives and biological samples in
512 Supplementary Table 1.

513

514 Table 2. Summary results and sample used for each study included in this analysis.

Study ID	Summary	Sample	Ref
PXD000070	"We analysed the <i>Plasmodium falciparum</i> schizont phosphoproteome using for the first time, a data-dependent neutral loss-triggered-ETD (DDNL) strategy and a conventional decision-tree method. ... combination of Mascot Percolator and turbo-SLoMo represents a robust workflow for data analysis using CID and ETD fragmentation."	<i>P. falciparum</i> 3D7 was cultured in 2.5–5% O+ human erythrocytes. Infected erythrocytes were processed for analysis.	[39]
PXD001684	"phosphoproteome analysis of extracellular merozoites revealing 1765 unique phosphorylation sites including 785 sites not previously detected in schizonts."	<i>P. falciparum</i> 3D7 merozoites cultured <i>in vitro</i>	[4]
PXD002266	"employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes."	<i>P. falciparum</i> blood stage 3D7 (wild type)-, PKGT618Q- and CDPK1-HA-parasites were cultured <i>in vitro</i> , developing trophozoite and schizont stage parasites. For the time-course experiments, parasites were synchronized by two rounds of sorbitol treatment—first treatment when the parasites culture was at late ring/trophozoite stage and second when the parasite culture contained schizonts and ring stage parasites.	[40]
PXD005207	"PfCDPK1 is critical for asexual development of <i>Plasmodium falciparum</i> , ... this kinase is critical for the invasion of host erythrocytes. Furthermore, using a multidisciplinary approach involving comparative phosphoproteomics we gain insights into the underlying molecular mechanisms."	<i>P. falciparum</i> 3D7 asexual blood stages were cultured in O+ erythrocytes. <i>P. falciparum</i> CDPK1- 3HA-DD parasites were cultured in the presence of 2.5 nM WR99210 and 0.25 μM Shld-1.	[41]
PXD009157	" <i>Plasmodium falciparum</i> phosphodiesterase β (PDEβ) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade."	<i>P. falciparum</i> erythrocytic stages were cultured in human A+ erythrocytes	[42]
PXD009465	"To better understand PfPK7-regulated phosphorylation events, we performed isobaric tag-based quantitative comparative phosphoproteomics of the schizont and segmenter stages from wild-type and pfpk7- parasite lines."	Both the <i>P. falciparum</i> parasite pfpk7- line and its parental 3D7 clone were grown in RPMI 1640 culture medium supplemented with A+ erythrocytes and 0.5% Albumax	[43]
PXD012143	"investigated the role of cAMP in asexual blood stage development of <i>Plasmodium falciparum</i> through conditional disruption of adenylyl cyclase beta (ACβ) and its downstream effector, cAMP-dependent protein kinase (PKA)."	Both the <i>P. falciparum</i> parasite pfpk7- line and its parental 3D7 clone were grown in RPMI 1640 culture medium supplemented with A+ erythrocytes and 0.5% Albumax	[44]
PXD015093	"global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion."	<i>P. falciparum</i> 3D7 blood stages were cultured <i>in vitro</i> to generate merozoites	[45]
PXD015833	Reports "species-specific phosphorylation of erythrocyte proteins by <i>P. falciparum</i> , but not by <i>Plasmodium knowlesi</i> , which does not export FIKK kinases."	<i>P. falciparum</i> parasites were cultured in complete media and <i>P. knowlesi</i> parasites were cultured in CM supplemented with 10% human serum	[30]
PXD020381	"identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages. Phosphoproteomic analyses reveal multiple ICM1 phosphorylation events dependent on PKG activity."	<i>P. falciparum</i> lines were maintained in human RBCs in RPMI 1640 containing AlbuMAX II	[46]
PXD026474	"understand - CDPKs - role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite <i>Plasmodium falciparum</i> CDPK4 in the parasite life cycle. <i>P. falciparum</i> cdpk42 parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk42 parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes."	<i>P. falciparum</i> NF54 and Pfcdpk42 parasites were cultured as asexual blood stages according to standard procedures and received complete RPMI medium. Gametocytes were also cultured	[47]

515

516 Phosphosite localisation

517 The search database was created from sequences derived from PlasmoDB 51 release of *Plasmodium*

518 *falciparum* 3D7 and human. The human sequences were obtained from the Level 1 PeptideAtlas Tiered

519 Human Integrated Search Proteome [48], containing core isoforms from neXtProt [49] (2020 build). A
520 fasta file was created combining these sequences with cRAP contaminant sequences
521 (<https://www.thegpm.org/crap/>) plus decoy sequences. One decoy sequence was generated each
522 protein and contaminant sequence using the de Bruijn method (with k=2) [50].

523 Data analysis was performed using the Trans-Proteomic Pipeline (TPP) [19], including Comet [51]
524 search engine for individual datasets, followed by PeptideProphet [52], iProphet [53], and
525 PTMProphet [54]; these were grouped within each study according to the labelling and MS
526 characteristics, as they determine search parameters. The files were searched with several variable
527 modifications depending on the study design, and phosphorylation of ASTY. Alanine was included in
528 searches as a decoy amino acid to enable the estimation of the FLR as explained by Ramsbottom *et al.*
529 [21]. Other variable modifications included in the analyses were: Oxidation in MWH (HYDR), protein
530 N-terminal acetylation or at K (ACET), ammonia loss at peptide n-terminal QC (PYRO), pyro-glu at
531 peptide n-terminal E (DHB), deamidation at NQ (DEAM), formylation of the N-terminus (FORM) and
532 fixed modification Carbamidomethylation (C), as noted in Supplementary Table 1. iTRAQ4plex, TMT6
533 or TMT10 labelling were included in searches as appropriate. As search parameters, a maximum of 2
534 missed cleavages specified and maximum number of 5 different modifications per peptide were
535 allowed.

536 **Post-processing search results**

537 The data files obtained from searching with TPP were processed by custom Python scripts
538 (<https://github.com/PGB-LIV/mzidFLR>) and analysed following a previously published pipeline [22].
539 First, at the peptide-spectrum match (PSM) level, the FDR was calculated based on decoy sequences
540 and the PSMs were filtered to 1% FDR. Data from most confident PSMs (1% FDR) were transformed
541 to give a site localisation score for each phosphosite found on each PSM, removing matches to decoy
542 PSMs and contaminant entries. A final site-based PSM score was obtained by multiplying the peptide
543 identification probability by the site localisation probability and adjusted considering the number of
544 occasions each site was observed, phosphorylated and not phosphorylated, in the dataset [22].

545 Once the final probability at PSM-level was calculated, the data was collapsed to “peptidoform-site”
546 level by taking the maximum score among all matches for each phosphosite on a given peptidoform
547 within each analysis and study. FLR was calculated by ordering all peptidoform-sites by their final
548 score. At this stage, matches to *P. falciparum* and human matches were separated according to their
549 respective protein matches.

550 A further categorisation at the protein-site level was achieved by using FLR calculations for each study.
551 This Gold-Silver-Bronze (GSB) categorisation allows additional grading for our confidence in the
552 findings among the most confident sites. A simple exclusive criterion was applied: Gold - sites
553 observed at 2 or more independent studies at 1% FLR; Silver - sites observed in only 1 dataset at <1%
554 FLR; Bronze: all other sites at 5% FLR.

555 Note that within each study, if there was more than 1 peptidoform-site as evidence for a protein site,
556 the one with lowest FLR was used for GSB categorisation.

557 **Downstream analysis**

558 **Summarising outcomes**

559 A frequency table was produced for PSMs at 1% FDR level, PSM-sites at 1% FDR level, overall number
560 of phosphosites at PSM-level at 1% and 5% FLR. Human and *P. falciparum* number of sites were
561 separated at peptidoform-site level and protein-site level at 1% and 5% FLR.

562 GSB phosphosites counts were generated considering that some of the sequences, and therefore sites,
563 could map to different proteins or sites within their respective proteome. The number of phosphosites
564 in sequences mapping to a single site (unique) and to more than one site were also calculated, as well
565 as the number of phosphosites mapping to only either the *P. falciparum* or Human proteome, or
566 belonging to sequences that map to both proteomes.

567 All analyses and graphical output were obtained using the R programming language (version 4.2.1) or
568 above, via RStudio (2022.02.3 Build 492).

569 **Motif and pathway enrichment analysis**

570 All *P. falciparum* datasets were investigated using motif and pathway enrichment analysis. For this,
571 we used all STY phosphosites at 5% FLR, combining all 11 studies and removing matches to the decoy
572 amino acid Alanine. 15mer peptides centred on each phosphosite were generated to investigate
573 motifs around these sites. They were compared against 15mer “background” sequences generated
574 using any STY in these datasets, whether they were phosphorylated or not, at its centre (position 0).
575 Statistically significant enriched motifs surrounding phosphosites were identified using the R package
576 *rmotifx* [55]. Results were thresholded via p-value < 1e-9 for pS and p< 1e-6 for pT and pY respectively;
577 and a minimum of 20 sequences per motif.

578 The R package *clusterProfiler* [56] was used to carry out a pathway enrichment analysis considering
579 those phosphoproteins containing specific enriched motifs. All other proteins in the search database
580 were used as background for this analysis. A heatmap on the adjusted p-values of a subset of motifs
581 with fold-change enrichment (versus the background) > 4 was produced representing motifs against
582 GO (Gene Ontology) terms.

583 **Conservation analysis**

584 *P. falciparum* isolate 3D7 identified phosphosites were investigated regarding 22 species of the
585 *Plasmodium* genus. The 22 species of *Plasmodium* were: *P. gorilla clade G1*(PPRFG01), *P. reichenowi*
586 (PRCDC), *P. blacklocki* G01 (PBLACG01), *P. billcollinsi* G01 (PBILCG01), *P. adleri* G01 (PADL01), *P. gaboni*
587 (PGSY75), *P. malariae* (PmUG01), *P. brasiliianum* strain *Bolivian 1* (MKS88), *P. ovale* (PocGH01), *P.*
588 *relictum* (PRELSG), *P. gallinaceum* (PGAL8A), *P. chabaudi* AS (PCHAS), *P. vinckeи* *vinckeи* CY (PVVCY), *P.*
589 *yoelii* 17X (PY17X), *P. berghei* ANKA (PBANKA), *P. cynomolgi* (PcyM), *P. vivax* (PVP01), *P. knowlesi*
590 (PKNH), *P. coatneyi* Hacker (PCOAH), *P. fragile* strain *nilgiri* (AK88), *P. inui* *San Antonio 1* (C922), *P.*
591 *vivax-like* (PVL). They were compared against *P. falciparum* 3D7 in terms of sequence conservation.
592 Protein sequences were downloaded from PlasmoDB and mapped to the identified phosphosites
593 using the “syntenic ortholog” mappings stored in PlasmoDB, generated by OrthoMCL [33], followed
594 by protein-level multiple sequence alignment with muscle 5.1 running on Linux [57].

595 Matched residues in orthologs were labelled as 1 while not matching sites, due to having a different
596 amino acid in that position in the ortholog, a gap in the sequence, or simply not having an ortholog
597 for a protein were labelled as 0. For each species and phosphoprotein considered, a mean
598 conservation score was calculated for the proportion of phosphosites within each protein, which were
599 conserved within the orthologue from that particular species. Heatmaps were created based on the
600 mean conservation score. Protein clusters were identified and investigated for enrichment analysis
601 using clusterProfiler.

602 Further functional enrichment analyses were performed comparing conservation results from human
603 transmissible species *P. malariae*, *P. ovale* and *P. vivax* to the other 17 animal species (excluding *P.*
604 *knowlesi* and *P. vivax-like* due to their zoonotic character). The subset of proteins included in the
605 enrichment analysis were those proteins fully conserved for the three human transmissible species
606 and those not fully conserved across all the animal species.

607 Conservation of phosphosites within *Plasmodium falciparum* was calculated using single nucleotide
608 polymorphism (SNP) data stored in PlasmoDB (public search strategy:
609 <https://plasmodb.org/plasmo/app/workspace/strategies/import/b4d2489952494797>), using
610 variants from 115 aligned genomes from two unbiased SNP data set
611 https://plasmodb.org/plasmo/app/record/dataset/DS_9a7f849906, and
612 https://plasmodb.org/plasmo/app/record/dataset/DS_d1c8287de9 [58]. SNP sites were
613 downloaded and non-synonymous variants, altering the amino acid sequence, were matched to the
614 phosphosite positions in proteins (using Python 3.9 code). Site conservation was estimated using the
615 major allele frequency, calculated by PlasmoDB.

616 We next explored the average disorder of amino acid positions within proteins using metapredict v2
617 [59] running on Linux, comparing and correlating disorder scores with site classifications. To visualise
618 examples of phosphosites with different conservation values, we used iCn3D [35]. The list of *P.*
619 *falciparum* 3D7 kinases was generated by searching for proteins annotated with Interpro or Pfam

620 “protein kinase” domains in PlasmoDB:

621 <https://plasmodb.org/plasmo/app/workspace/strategies/import/6a11331d6eea4d20>).

622 Phosphosite data for *Plasmodium falciparum* 3D7 was loaded into UniProtKB, by taking all mapping

623 all peptides carrying GSB sites to proteins in UniProtKB *P. falciparum* 3D7 proteome

624 (<https://www.UniProt.org/proteomes/UP000001450>), assuming tryptic cleavage.

625

626 **Acknowledgements**

627 We are grateful to all the researchers that generated MS data and generously shared via

628 PRIDE/ProteomeXchange allowing this analysis.

629 **Funding**

630 We would like to acknowledge funding from BBSRC [BB/S017054/1, BB/S01781X/1, BB/T019670/1].

631 J.A.V., D.J.K. and Y.P.R. would like to acknowledge funding from Wellcome [223745/Z/21/Z] and EMBL

632 core funding. E.W.D and Z.S. acknowledge funding from National Institutes of Health grants R01

633 GM087221 and R24 GM148372, and by the National Science Foundation grant DBI-1933311.

634 **Author Contributions**

635 O.M.C. performed database searching, data analysis and manuscript writing. K.A.R. performed search

636 database generation, assisted with data processing. A.P. supported MS data curation. Y.P.R. supported

637 PRIDE data upload and curation. J.F., and M.M. assisted with data loading into UniProtKB and E.B-B

638 visualisation in UniProtKB. E.W.D and Z.S. assisted with MS data searching and creation of the

639 PeptideAtlas build. J.A.V. assisted with PRIDE data loading and project supervision. A.R.J. coordinated

640 the research, assisted with data analysis and writing the manuscript.

641

642 **References**

643 1. Singh, B. and C. Daneshvar, *Human infections and detection of Plasmodium knowlesi*. Clin

644 *Microbiol Rev*, 2013. **26**(2): p. 165-84.

645 2. Sinka, M.E., et al., *A global map of dominant malaria vectors*. Parasit Vectors, 2012. **5**: p. 69.

646 3. Phillips, M.A., et al., *Malaria*. Nat Rev Dis Primers, 2017. **3**: p. 17050.

647 4. Lasonder, E., et al., *Extensive differential protein phosphorylation as intraerythrocytic*
648 *Plasmodium falciparum schizonts develop into extracellular invasive merozoites*. Proteomics,
649 2015. **15**(15): p. 2716-2729.

650 5. Pease, B.N., et al., *Global Analysis of Protein Expression and Phosphorylation of Three Stages*
651 *of Plasmodium falciparum Intraerythrocytic Development*. Journal of Proteome Research,
652 2013. **12**(9): p. 4028-4045.

653 6. mal, E.R.A.C.G.o.V., *A research agenda for malaria eradication: vaccines*. PLoS Med, 2011.
654 **8**(1): p. e1000398.

655 7. Arun Kumar, K., et al., *The circumsporozoite protein is an immunodominant protective antigen*
656 *in irradiated sporozoites*. Nature, 2006. **444**(7121): p. 937-940.

657 8. Bonam, S.R., et al., *Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants*. Vaccines,
658 2021. **9**(10): p. 1072.

659 9. Laurens, M.B., *RTS,S/AS01 vaccine (Mosquirix): an overview*. Hum Vaccin Immunother, 2020.
660 **16**(3): p. 480-489.

661 10. Meshnick, S.R., T.E. Taylor, and S. Kamchonwongpaisan, *Artemisinin and the antimalarial*
662 *endoperoxides: from herbal remedy to targeted chemotherapy*. Microbiol Rev, 1996. **60**(2): p.
663 301-15.

664 11. Nosten, F. and N.J. White, *Artemisinin-based combination treatment of falciparum malaria*.
665 Am J Trop Med Hyg, 2007. **77**(6 Suppl): p. 181-92.

666 12. Wicht, K.J., S. Mok, and D.A. Fidock, *Molecular Mechanisms of Drug Resistance in Plasmodium*
667 *falciparum Malaria*. Annu Rev Microbiol, 2020. **74**: p. 431-454.

668 13. Aurrecoechea, C., et al., *PlasmoDB: a functional genomic database for malaria parasites*.
669 Nucleic Acids Res, 2009. **37**(Database issue): p. D539-43.

670 14. The Plasmodium Genome Database, C., *PlasmoDB: An integrative database of the*
671 *Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished*
672 *sequence data. The Plasmodium Genome Database Collaborative.* Nucleic Acids Res, 2001.
673 **29**(1): p. 66-9.

674 15. Amos, B., et al., *VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource*
675 *center.* Nucleic Acids Res, 2022. **50**(D1): p. D898-D911.

676 16. Gardner, M.J., et al., *Genome sequence of the human malaria parasite Plasmodium*
677 *falciparum.* Nature, 2002. **419**(6906): p. 498-511.

678 17. UniProt, C., *UniProt: the universal protein knowledgebase in 2021.* Nucleic Acids Res, 2021.
679 **49**(D1): p. D480-D489.

680 18. Urban, J., *A review on recent trends in the phosphoproteomics workflow. From sample*
681 *preparation to data analysis.* Anal Chim Acta, 2022. **1199**: p. 338857.

682 19. Deutsch, E.W., et al., *Trans-Proteomic Pipeline, a standardized data processing pipeline for*
683 *large-scale reproducible proteomics informatics.* Proteomics Clin Appl, 2015. **9**(7-8): p. 745-
684 54.

685 20. Keller, A., et al., *Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications*
686 *Made by MS/MS and Database Search.* Analytical Chemistry, 2002. **74**(20): p. 5383-5392.

687 21. Ramsbottom, K.A., et al., *Method for Independent Estimation of the False Localization Rate for*
688 *Phosphoproteomics.* J Proteome Res, 2022. **21**(7): p. 1603-1615.

689 22. Camacho, O.M., et al., *Assessing multiple evidence streams to decide on confidence for*
690 *identification of post-translational modifications, within and across data sets.* bioRxiv, 2022:
691 p. 2022.12.15.520504.

692 23. Kalyuzhnyy, A., et al., *Profiling the Human Phosphoproteome to Estimate the True Extent of*
693 *Protein Phosphorylation.* Journal of Proteome Research, 2022. **21**(6): p. 1510-1524.

694 24. Perez-Riverol, Y., et al., *The PRIDE database resources in 2022: a hub for mass spectrometry-*
695 *based proteomics evidences.* Nucleic Acids Research, 2021. **50**(D1): p. D543-D552.

696 25. Desiere, F., et al., *The PeptideAtlas project*. Nucleic Acids Res, 2006. **34**(Database issue): p. p.
697 D655-8.

698 26. Treeck, M., et al., *The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii*
699 *reveal unusual adaptations within and beyond the parasites' boundaries*. Cell Host Microbe,
700 2011. **10**(4): p. 410-9.

701 27. Adderley, J. and C. Doerig, *Comparative analysis of the kinomes of Plasmodium falciparum,*
702 *Plasmodium vivax and their host Homo sapiens*. BMC Genomics, 2022. **23**(1): p. 237.

703 28. Johnson, J.L., et al., *An atlas of substrate specificities for the human serine/threonine kinase*.
704 Nature, 2023. **613**(7945): p. 759-766.

705 29. Ward, P., et al., *Protein kinases of the human malaria parasite Plasmodium falciparum: the*
706 *kinome of a divergent eukaryote*. BMC Genomics, 2004. **5**: p. 79.

707 30. Davies, H., et al., *An exported kinase family mediates species-specific erythrocyte remodelling*
708 *and virulence in human malaria*. Nat Microbiol, 2020. **5**(6): p. 848-863.

709 31. Coffey, M.J., et al., *Role of the ER and Golgi in protein export by Apicomplexa*. Curr Opin Cell
710 Biol, 2016. **41**: p. 18-24.

711 32. Newcombe, E.A., et al., *How phosphorylation impacts intrinsically disordered proteins and*
712 *their function*. Essays Biochem, 2022. **66**(7): p. 901-913.

713 33. Chen, F., et al., *OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog*
714 *groups*. Nucleic acids research, 2006. **34**(Database issue): p. D363-8.

715 34. Jumper, J., et al., *Highly accurate protein structure prediction with AlphaFold*. Nature, 2021.
716 **596**(7873): p. 583-589.

717 35. Wang, J., et al., *iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of*
718 *biomolecular structures*. Bioinformatics, 2019. **36**(1): p. 131-135.

719 36. Deutsch, E.W., et al., *Universal Spectrum Identifier for mass spectra*. Nature Methods, 2021.
720 **18**(7): p. 768-770.

721 37. Vizcaino, J.A., et al., *ProteomeXchange provides globally coordinated proteomics data*
722 *submission and dissemination*. Nat Biotechnol, 2014. **32**(3): p. 223-6.

723 38. Martens, L., et al., *PRIDE: the proteomics identifications database*. Proteomics, 2005. **5**(13): p.
724 3537-45.

725 39. Collins, M.O., et al., *Confident and sensitive phosphoproteomics using combinations of*
726 *collision induced dissociation and electron transfer dissociation*. J Proteomics, 2014. **103**(100):
727 p. 1-14.

728 40. Alam, M.M., et al., *Phosphoproteomics reveals malaria parasite Protein Kinase G as a*
729 *signalling hub regulating egress and invasion*. Nature Communications, 2015. **6**(1): p. 7285.

730 41. Kumar, S., et al., *PfCDPK1 mediated signaling in erythrocytic stages of Plasmodium falciparum*.
731 Nat Commun, 2017. **8**(1): p. 63.

732 42. Flueck, C., et al., *Phosphodiesterase beta is the master regulator of cAMP signalling during*
733 *malaria parasite invasion*. PLoS Biol, 2019. **17**(2): p. e3000154.

734 43. Pease, B.N., et al., *Characterization of Plasmodium falciparum Atypical Kinase PfPK7(-)*
735 *Dependent Phosphoproteome*. J Proteome Res, 2018. **17**(6): p. 2112-2123.

736 44. Patel, A., et al., *Cyclic AMP signalling controls key components of malaria parasite host cell*
737 *invasion machinery*. PLoS Biol, 2019. **17**(5): p. e3000264.

738 45. More, K.R., et al., *Phosphorylation-Dependent Assembly of a 14-3-3 Mediated Signaling*
739 *Complex during Red Blood Cell Invasion by Plasmodium falciparum Merozoites*. mBio, 2020.
740 **11**(4).

741 46. Balestra, A.C., et al., *Ca2+ signals critical for egress and gametogenesis in malaria parasites*
742 *depend on a multipass membrane protein that interacts with PKG*. Science Advances, 2021.
743 **7**(13): p. eabe5396.

744 47. Kumar, S., et al., *Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for*
745 *Male Gametogenesis and Transmission to the Mosquito Vector*. mBio, 2021. **12**(6): p.
746 e0257521.

747 48. Deutsch, E.W., et al., *Tiered Human Integrated Sequence Search Databases for Shotgun*
748 *Proteomics. J Proteome Res*, 2016. **15**(11): p. 4091-4100.

749 49. Lane, L., et al., *neXtProt: a knowledge platform for human proteins. Nucleic Acids Res*, 2012.
750 **40**(Database issue): p. D76-83.

751 50. Moosa, J.M., et al., *Repeat-Preserving Decoy Database for False Discovery Rate Estimation in*
752 *Peptide Identification. J Proteome Res*, 2020. **19**(3): p. 1029-1036.

753 51. Eng, J.K., T.A. Jahan, and M.R. Hoopmann, *Comet: an open-source MS/MS sequence database*
754 *search tool. Proteomics*, 2013. **13**(1): p. 22-4.

755 52. Ma, K., O. Vitek, and A.I. Nesvizhskii, *A statistical model-building perspective to identification*
756 *of MS/MS spectra with PeptideProphet. BMC Bioinformatics*, 2012. **13**(16): p. S1.

757 53. Shteynberg, D., et al., *iProphet: multi-level integrative analysis of shotgun proteomic data*
758 *improves peptide and protein identification rates and error estimates. Mol Cell Proteomics*,
759 **2011. 10**(12): p. M111 007690.

760 54. Shteynberg, D.D., et al., *PTMProphet: Fast and Accurate Mass Modification Localization for*
761 *the Trans-Proteomic Pipeline. J Proteome Res*, 2019. **18**(12): p. 4262-4272.

762 55. Wagih, O., et al., *Uncovering Phosphorylation-Based Specificities through Functional*
763 *Interaction Networks*. Molecular & Cellular Proteomics*, 2016. **15**(1): p. 236-245.

764 56. Yu, G., et al., *clusterProfiler: an R package for comparing biological themes among gene*
765 *clusters. Omics*, 2012. **16**(5): p. 284-7.

766 57. Edgar, R.C., *MUSCLE: a multiple sequence alignment method with reduced time and space*
767 *complexity. BMC Bioinformatics*, 2004. **5**(1): p. 113.

768 58. Chang, H.H., et al., *Malaria life cycle intensifies both natural selection and random genetic*
769 *drift. Proc Natl Acad Sci U S A*, 2013. **110**(50): p. 20129-34.

770 59. Emenecker, R.J., D. Griffith, and A.S. Holehouse, *Metapredict: a fast, accurate, and easy-to-*
771 *use predictor of consensus disorder and structure. Biophysical Journal*, 2021. **120**(20): p. 4312-
772 4319.

773 **Supplemental Information**

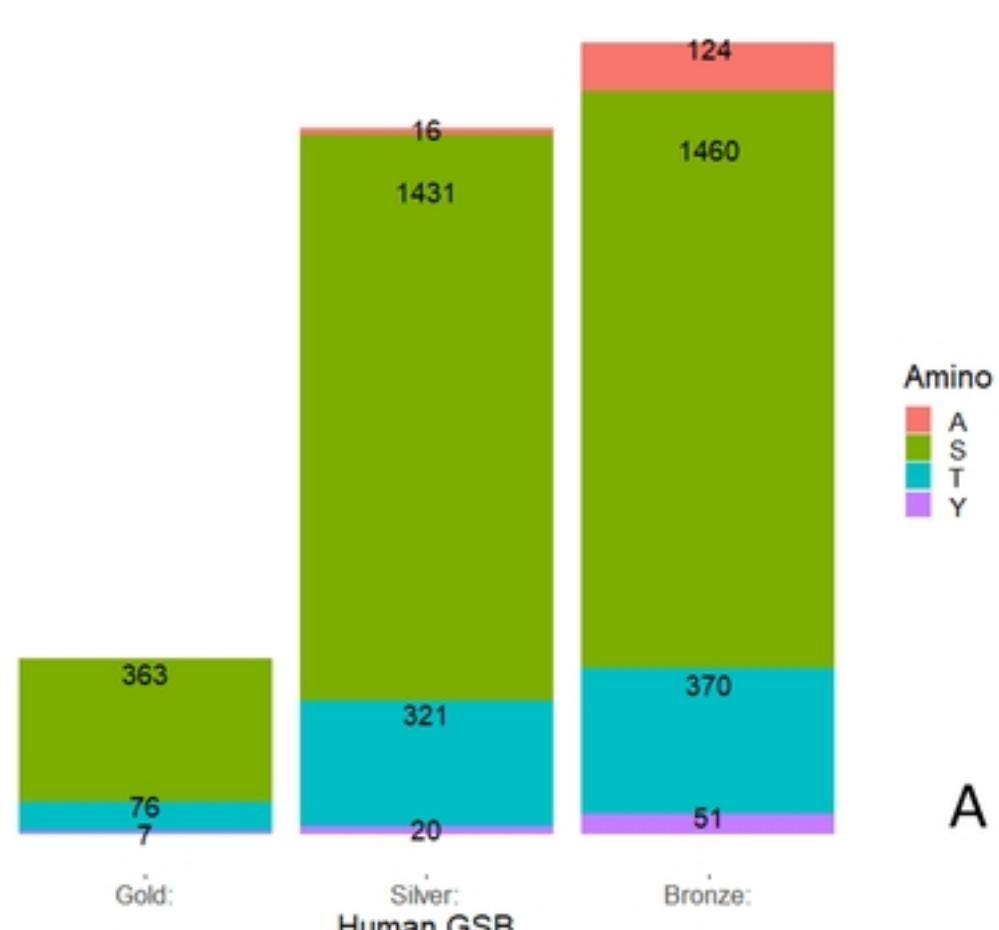
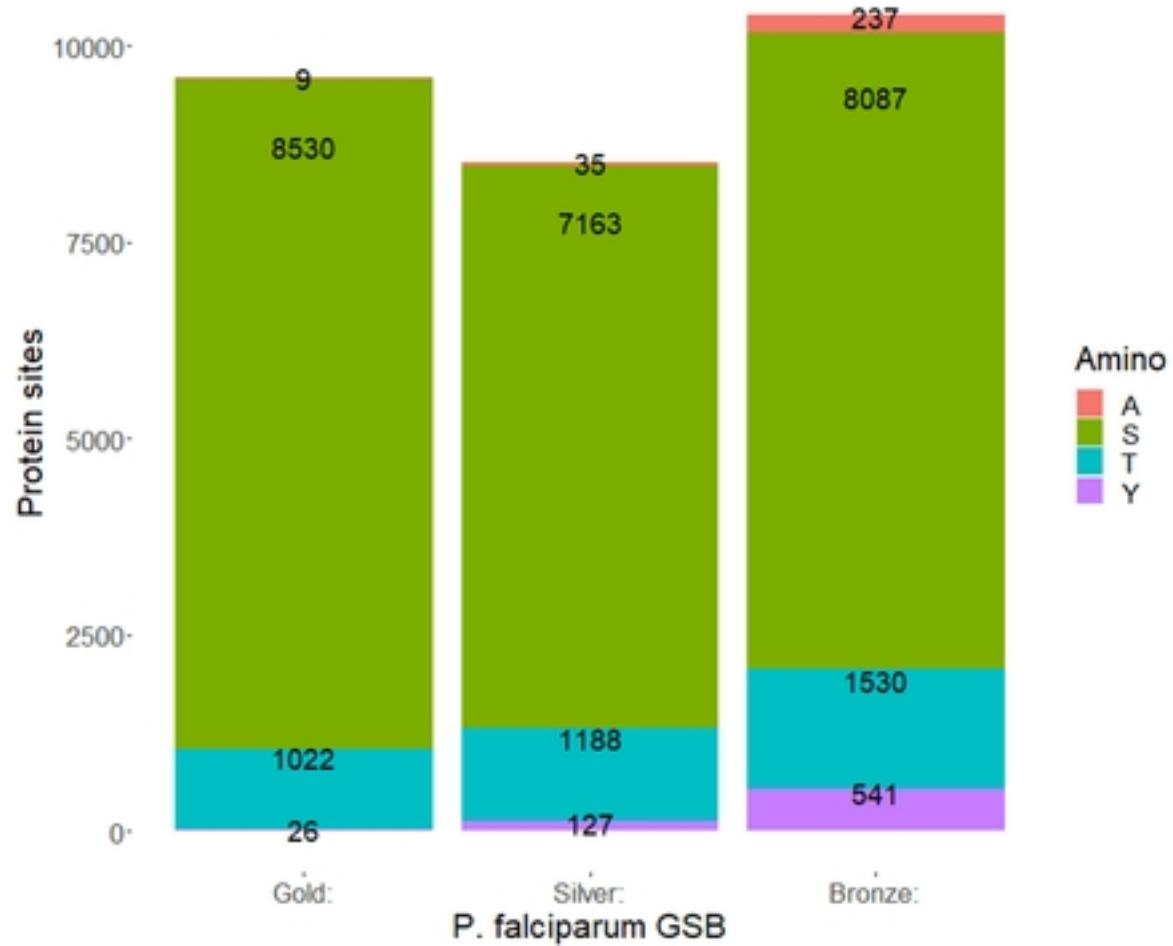
774 Supp File 1. GSB_withMotifs.csv : Phosphosites at 5% FLR classified as Gold, Silver and Bronze and
775 statistically significant motifs for those sites.

776 Supp File 2. EnrichmentResult_Allmotifs_05.xlsx : Enrichment analysis results for all statistically
777 significant motifs.

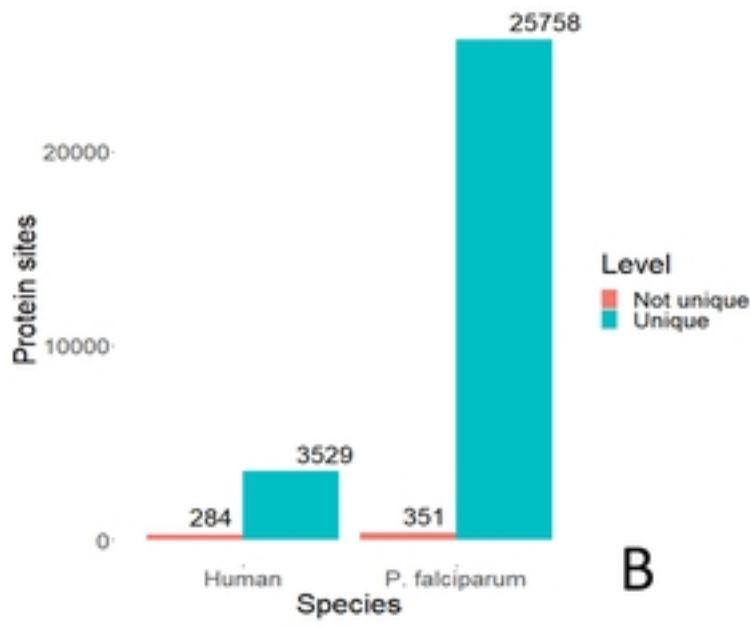
778 Supp File 3. Conservation.csv : Conservation scores across species with respect to the reference 3D7.

779 Supp File 4. ConservationSpeciesWithClusters.csv : Proportion of sites conserved within each protein
780 and species with respect to 3D7 and its clusters.

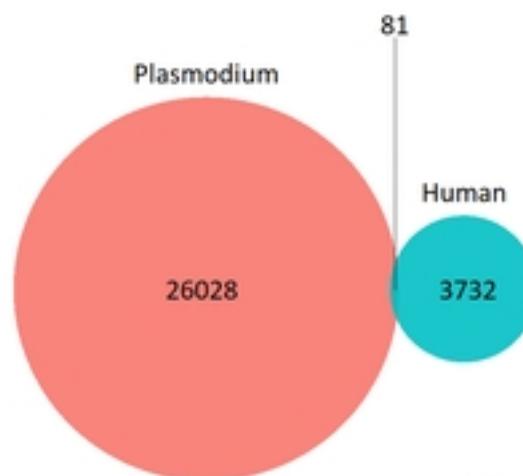
781 Supp File 5. mapped_plasmodium_sites.tsv : Phosphosites putatively identified in other *Plasmodium*
782 species based on orthologue mapping.

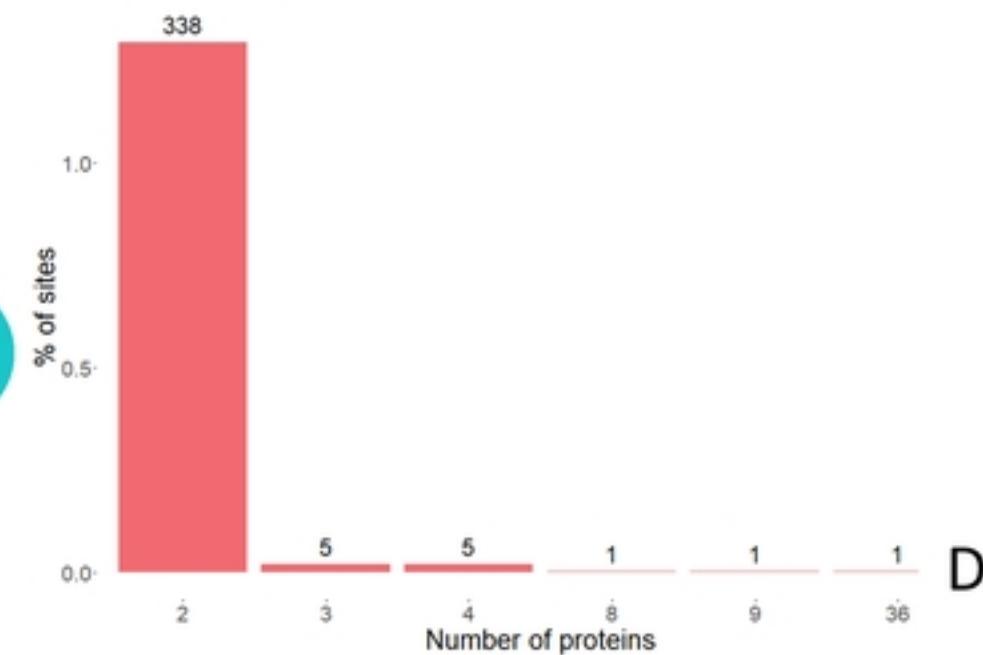


783 Supp File 6. plasmodium_alignments.zip : Multiple sequence alignments of orthologous
784 phosphoproteins within the *Plasmodium* genus.

785 Supp File 7. SNP_data.xlsx : Conservation analysis based on single amino acid variants.


786 Supp File 8. Disorder.csv : Disorder scores from metapredict for Gold, Silver and Bronze phosphosites.

787 Supp File 9. Proteins_3D : Hyperlinks for visualising identified phosphoproteins in iCn3D viewer.


788 Supplementary Information.docx : Supplementary tables and figures.


A

B

C

D

Group1: 57 Motifs

.....[ST]D.....
.....D[ST].....
.....SE.....
.....ES.....
.....[ST].[DE].....
.....S ..[DE]....

.....T ..E....
.....[DE].S
.....[ST]..D...
.....S ..[DE]...
.....D.TE.....
.....E..TE.....

Group2: 23 Motifs

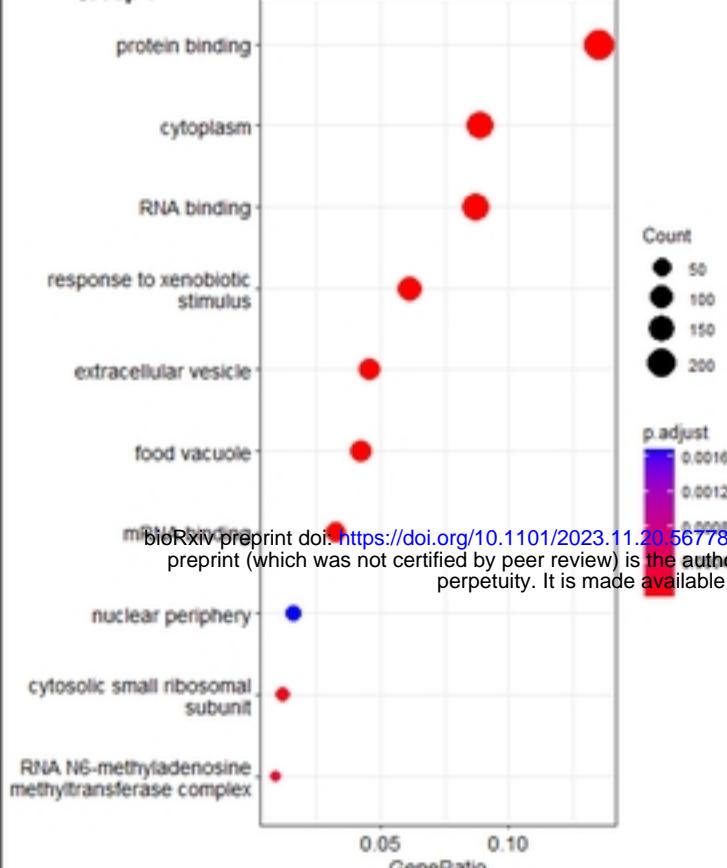
.....SN.....
.....N[ST].....
.....K.S.N.....
.....N.S..[DE]....
.....R..S..N....
.....N.SD.....
.....N.SP.....

Group3: 15 Motifs

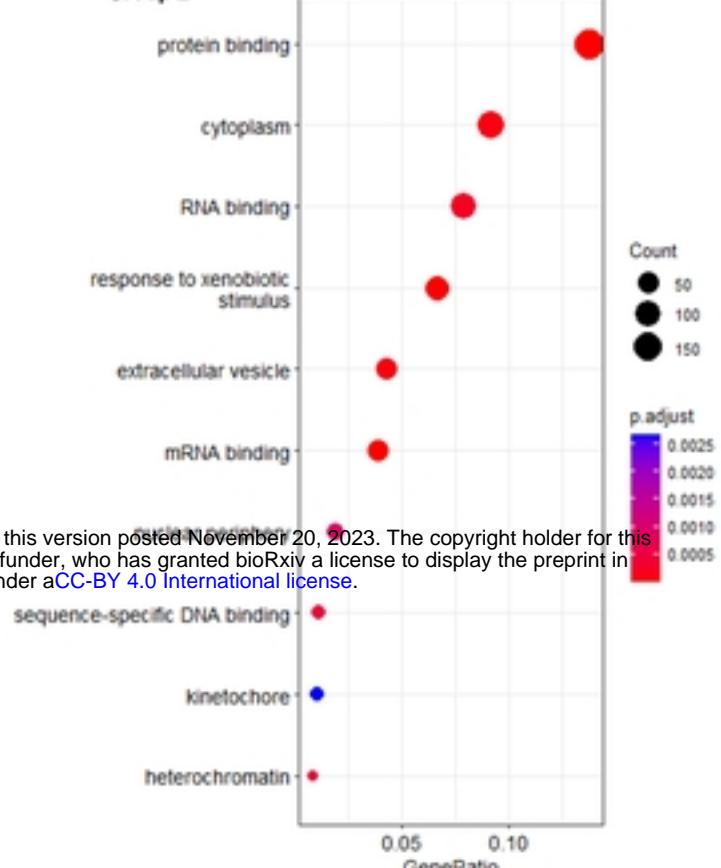
....K..[ST].....
.....[ST].S.....
.....GS.....
.....S.S.....

Group4: 12 Motifs

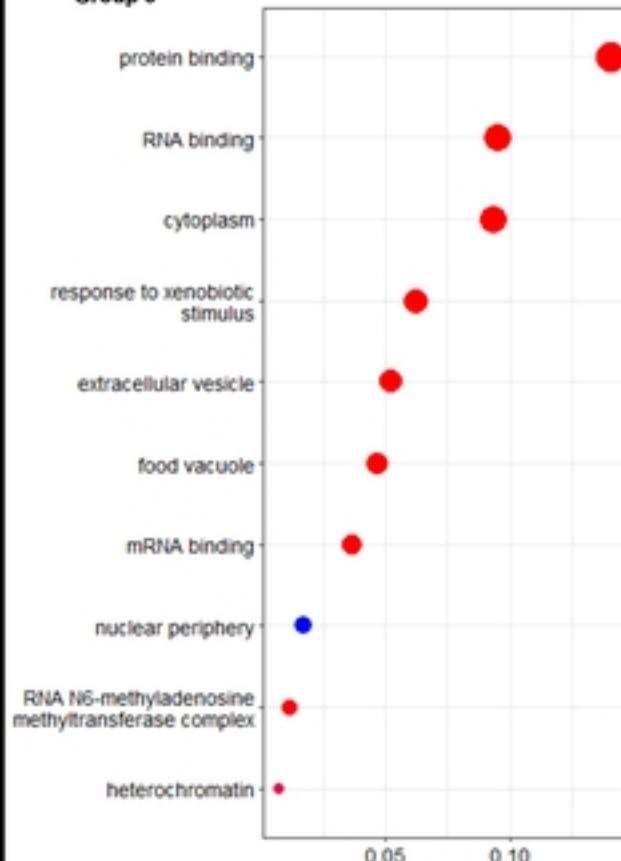
.....Y.....

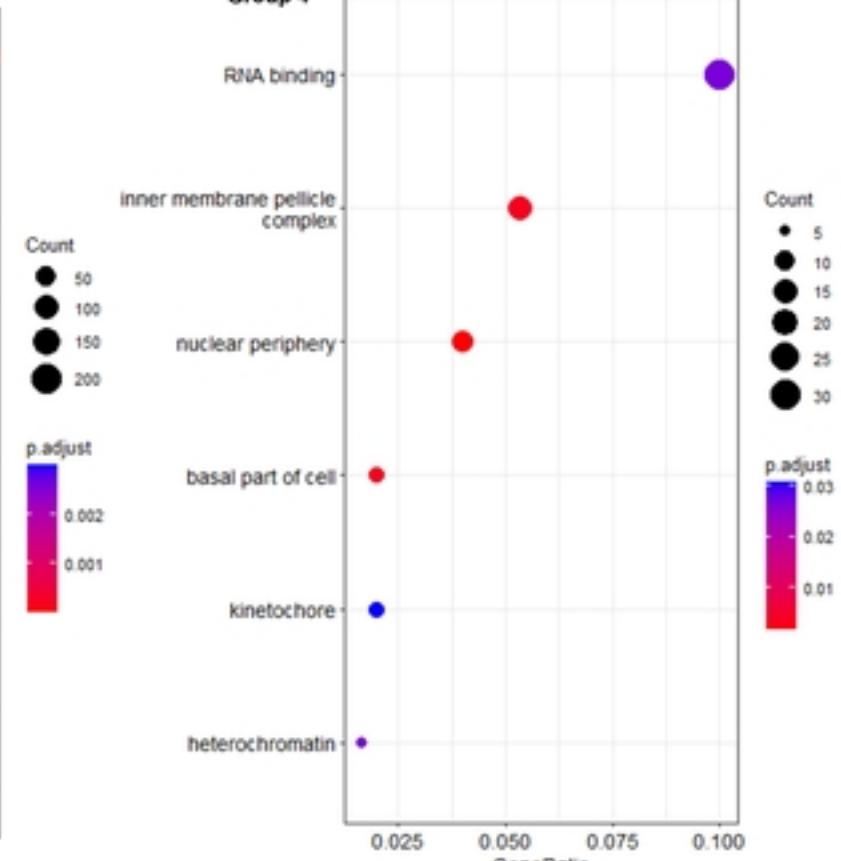

Group5: 8 Motifs

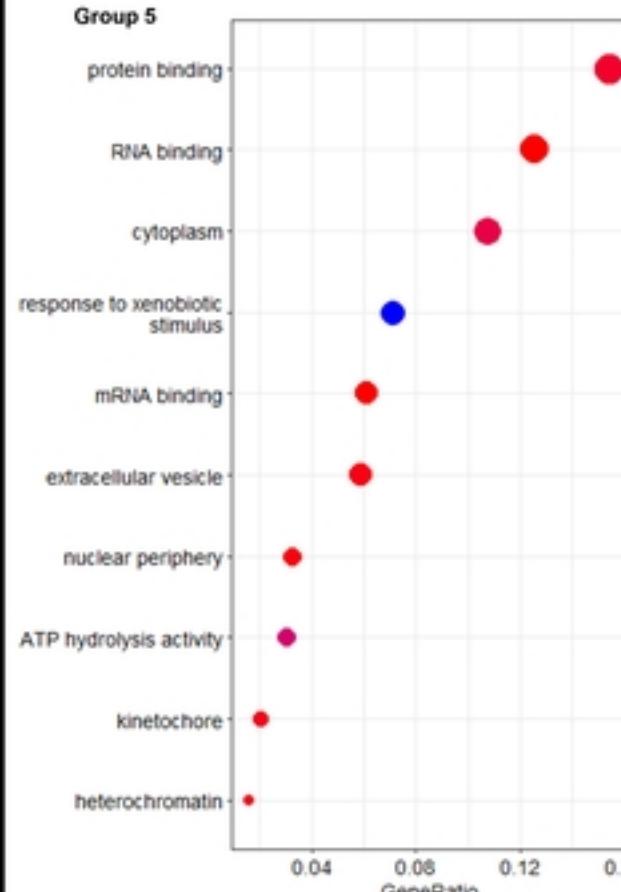
.....[ST]P.....
.....R..[ST].....
.....R.S.....

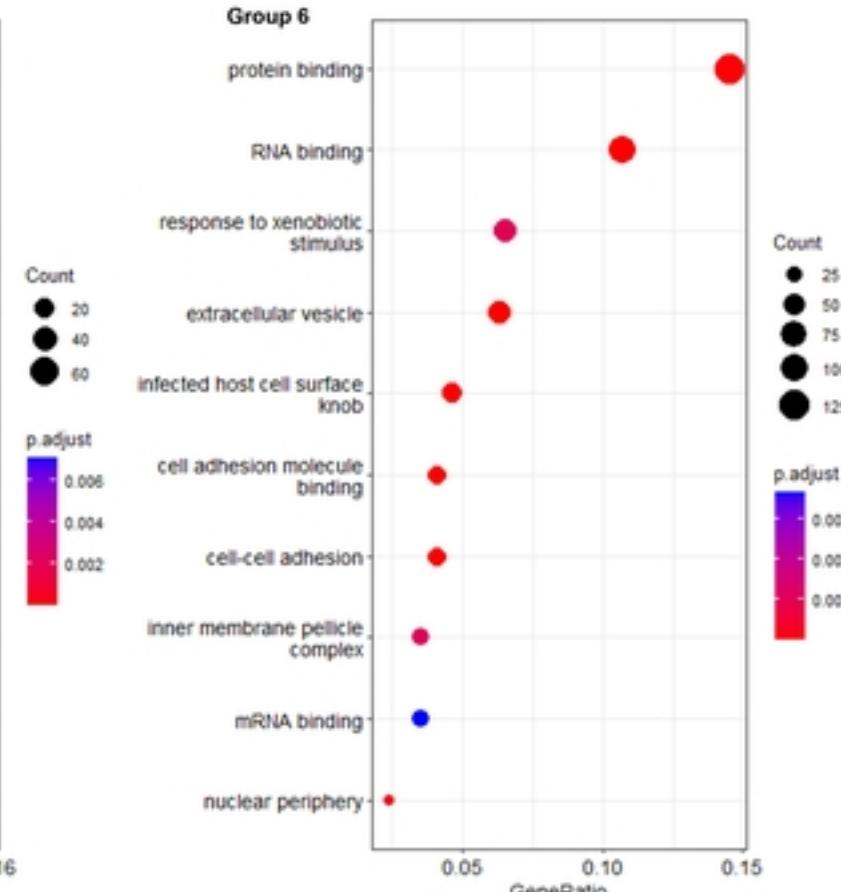

Group6: 11 Motifs

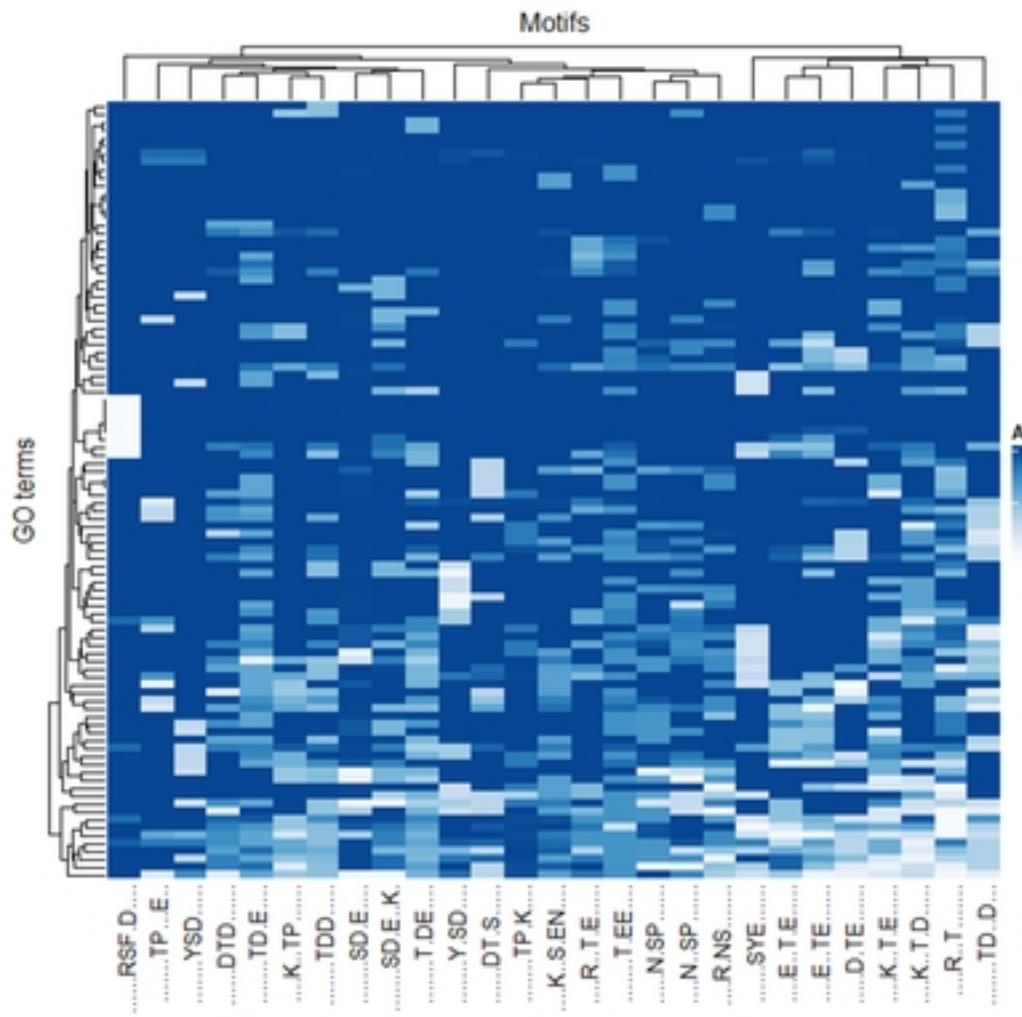
.....R..[ST].....
.....R.S.....

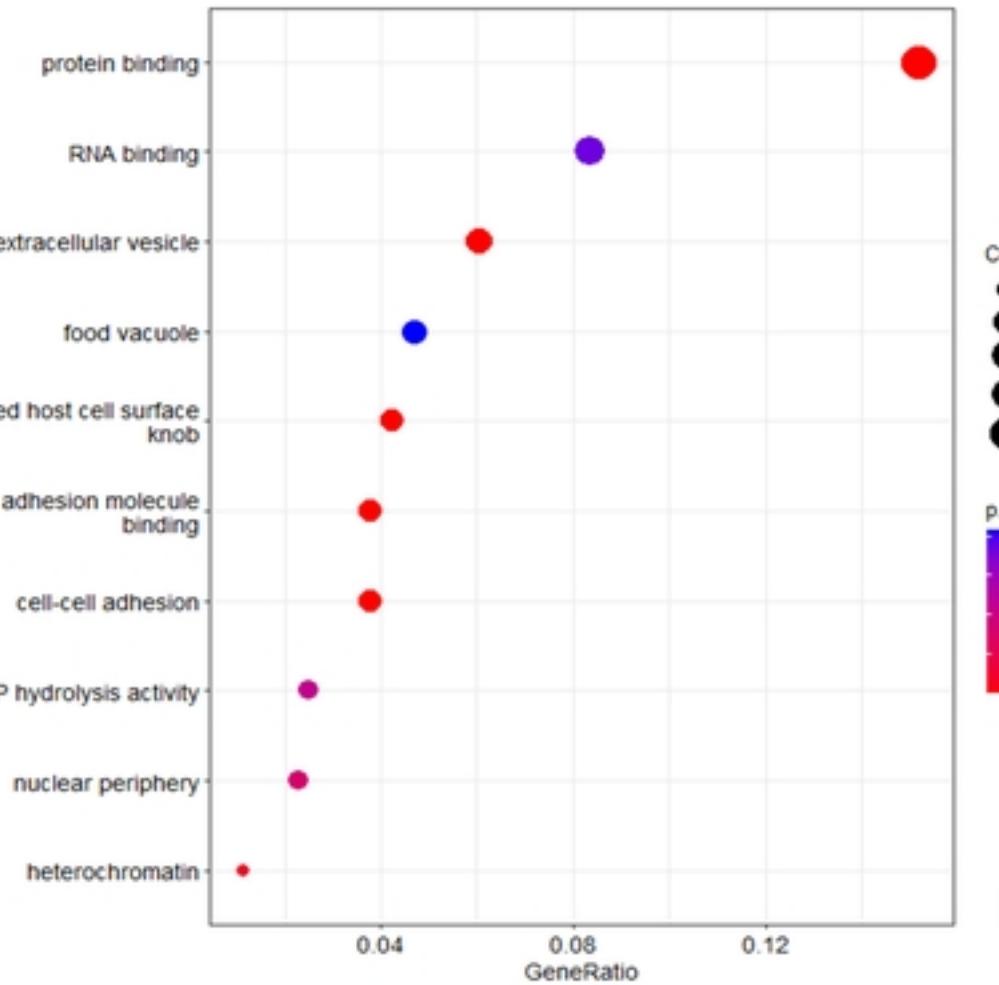

Group 1

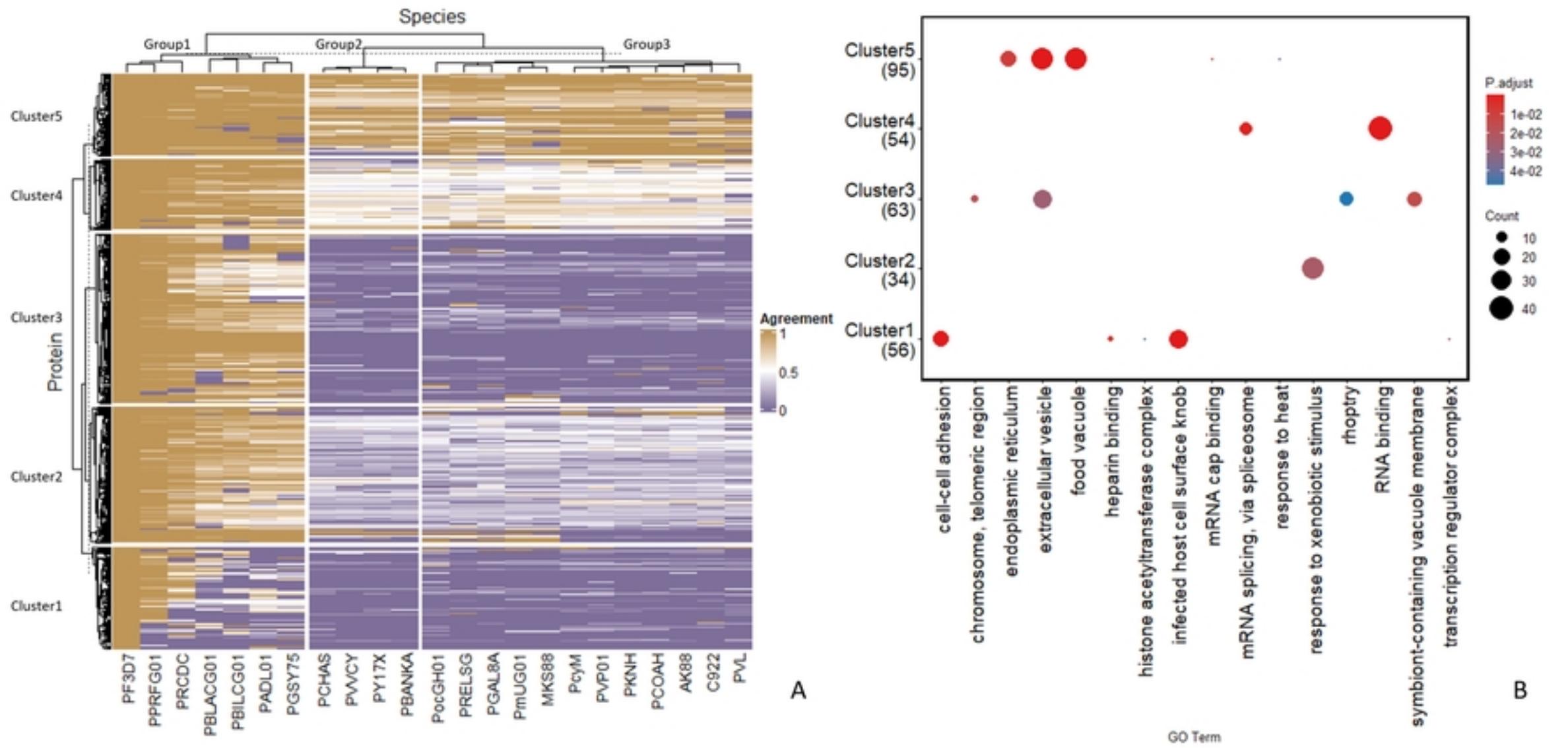

Group 2

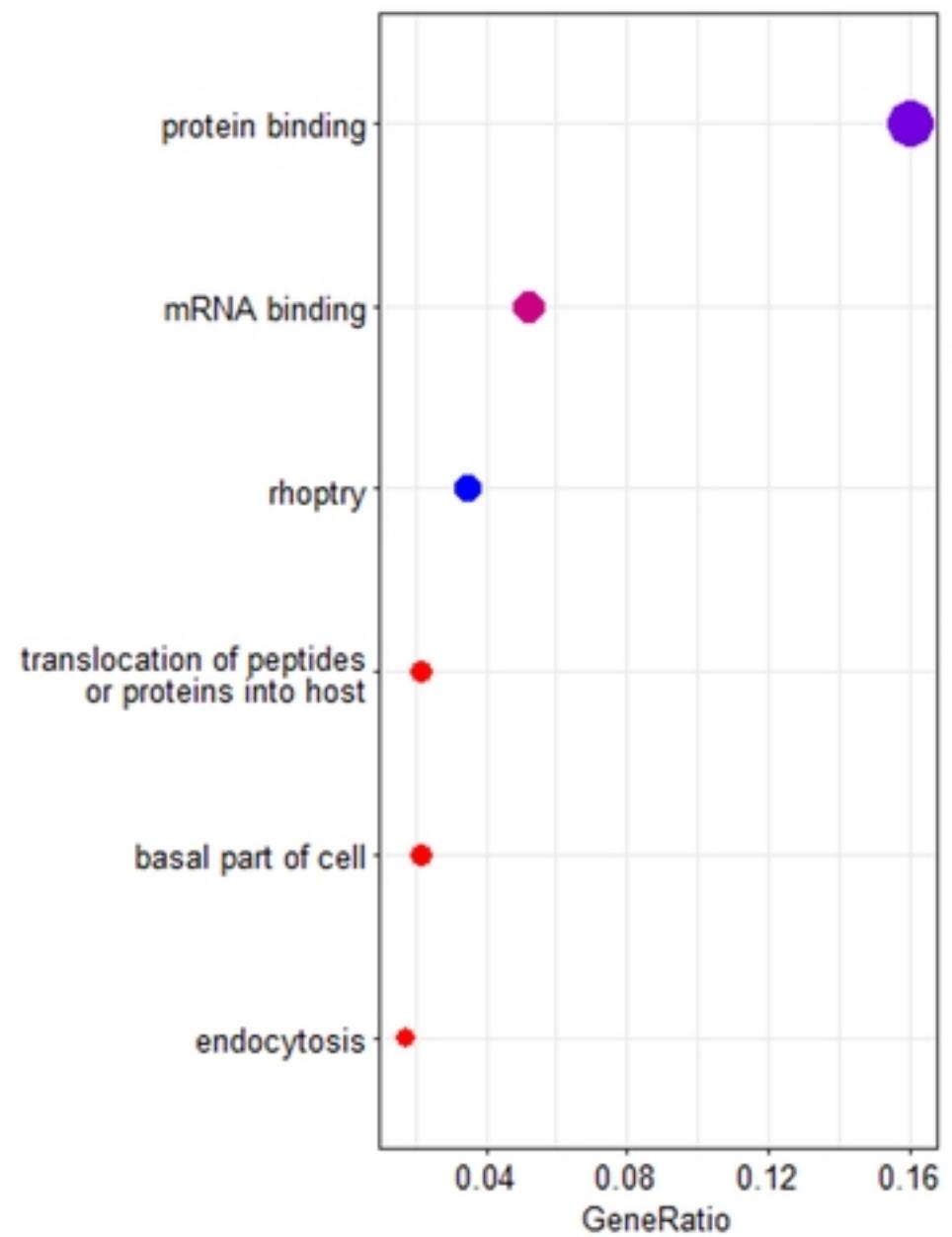

Group 3


Group 4

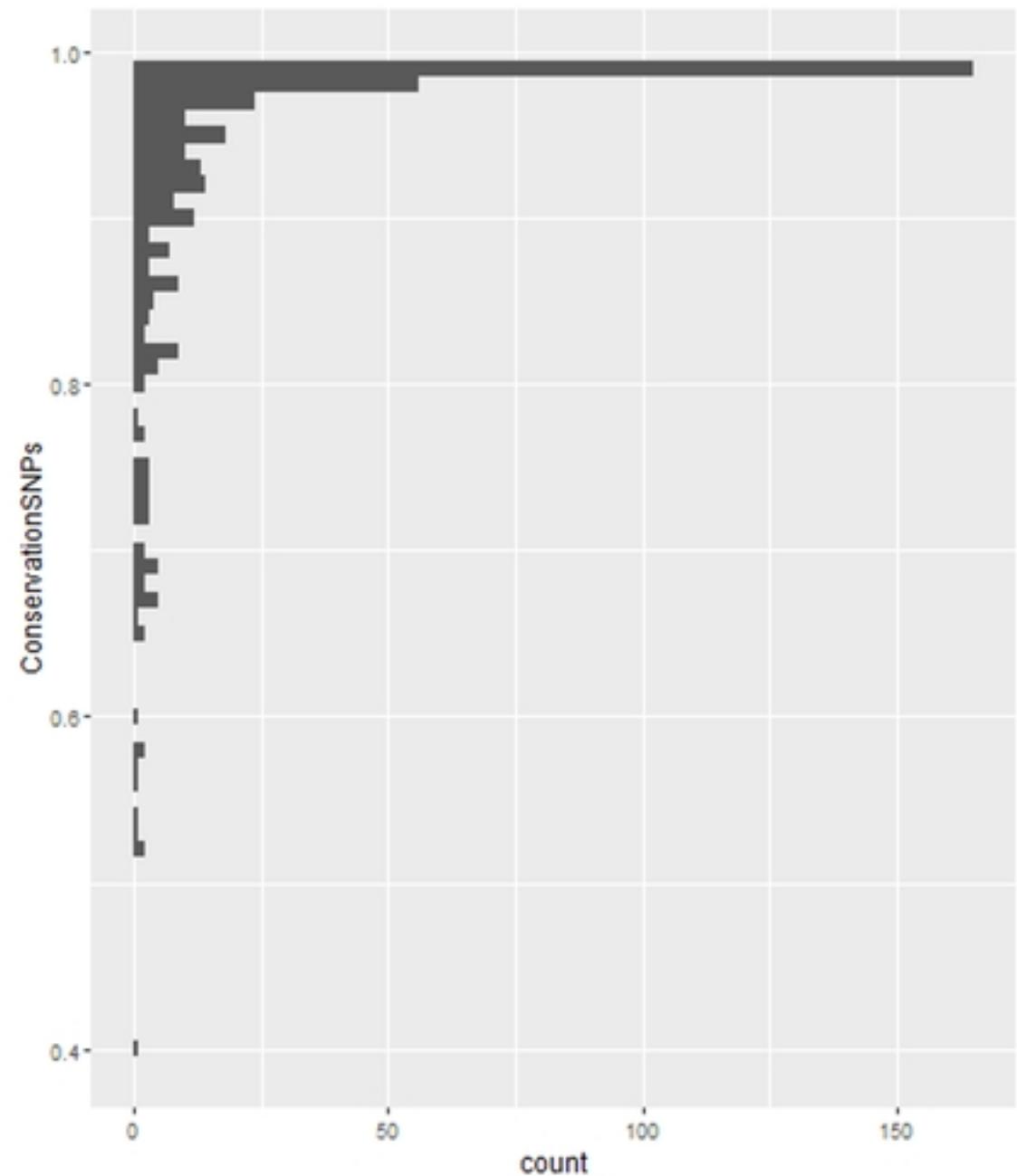

Group 5


Group 6

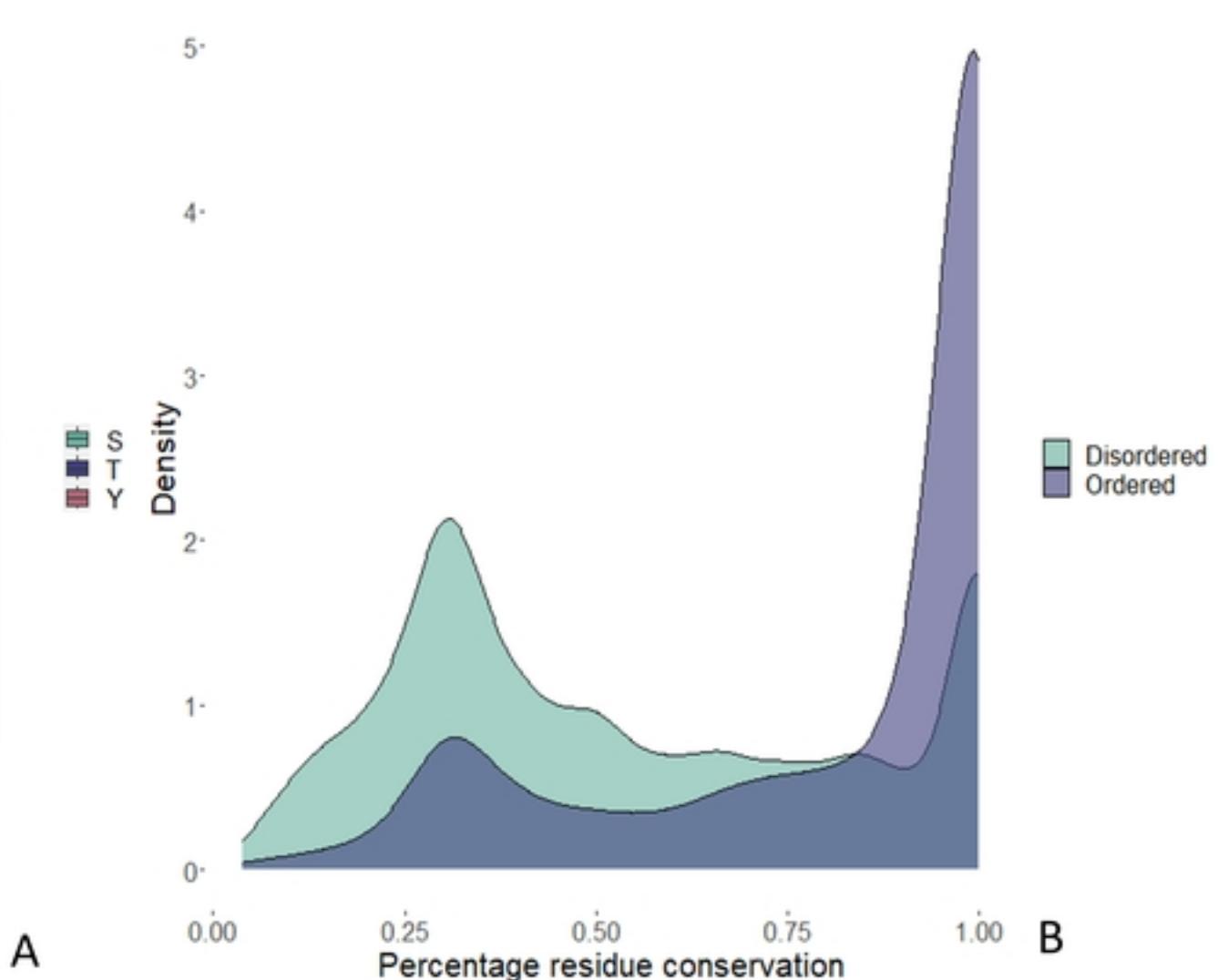
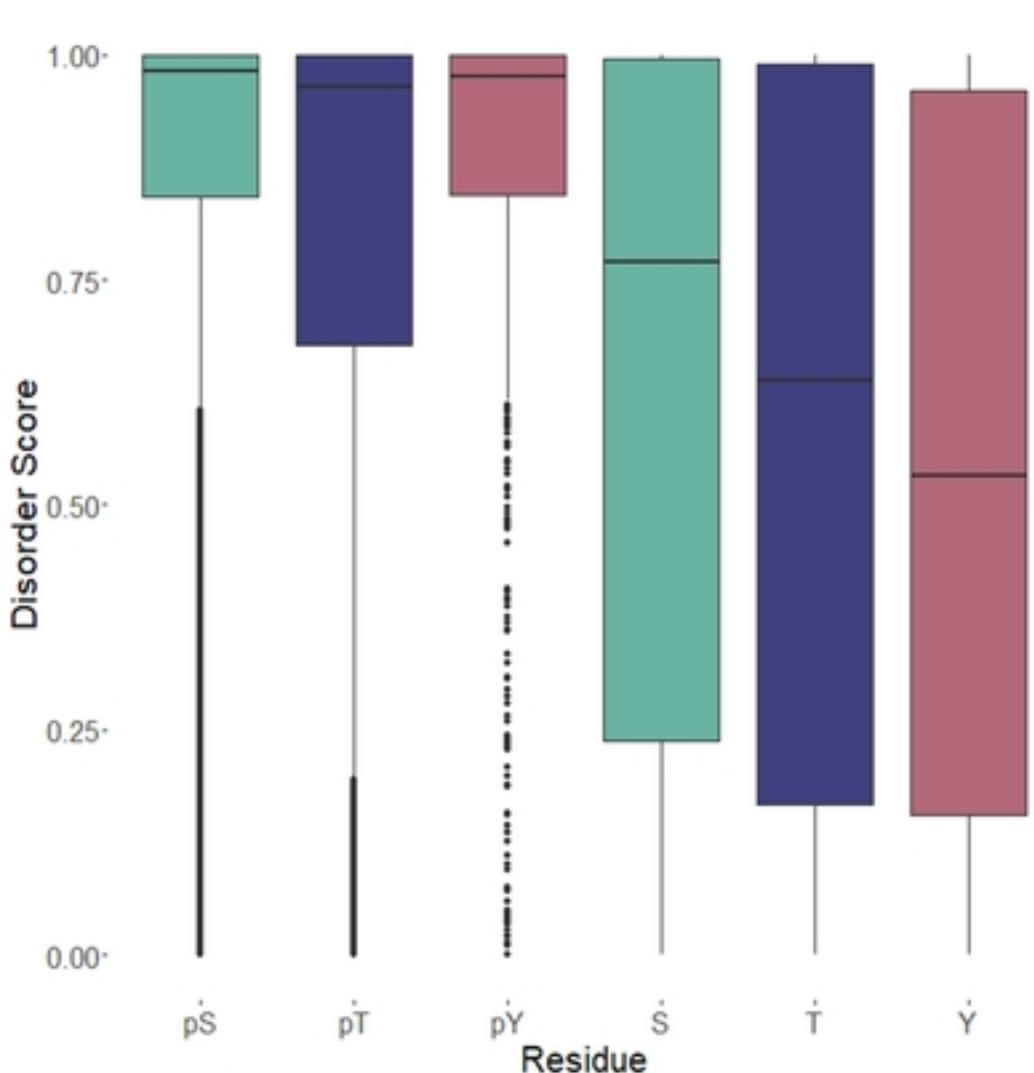

bioRxiv preprint doi: <https://doi.org/10.1101/2023.11.20.567785>; this version posted November 20, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

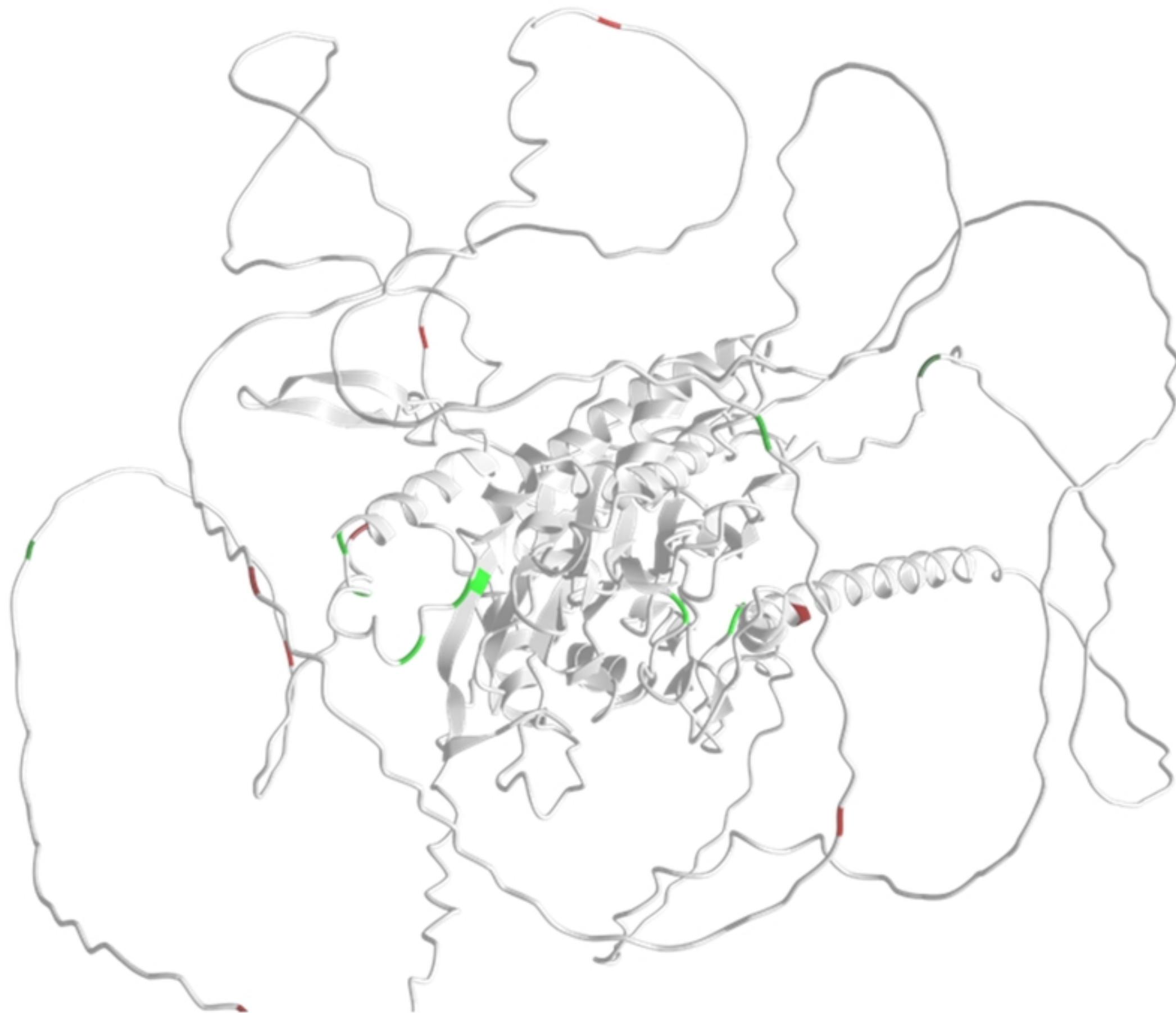


A



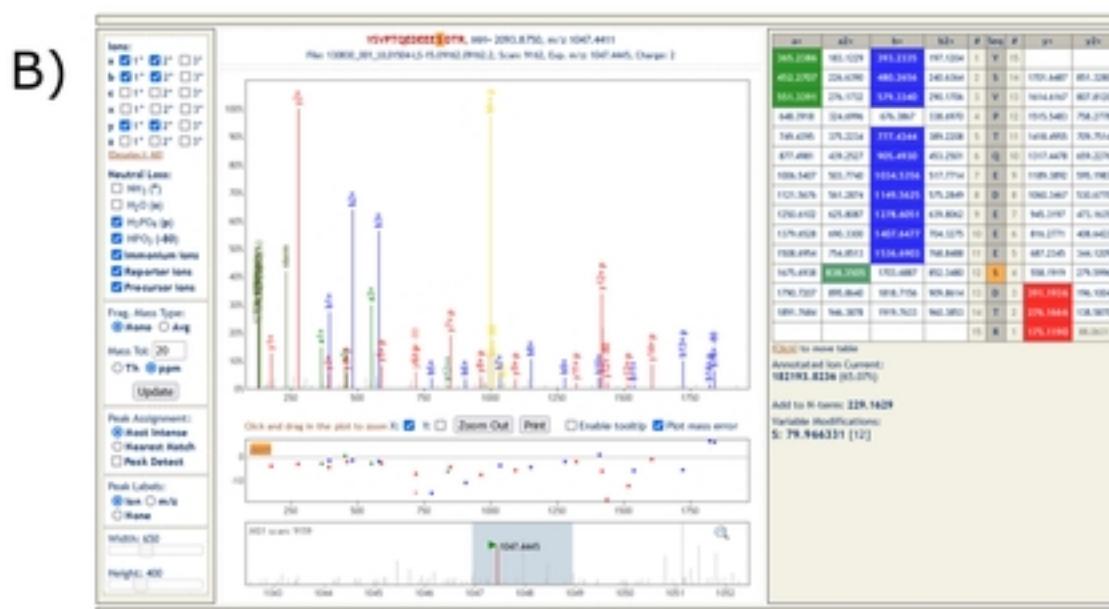
B



A

B



PTM/Processing

Features

Showing features for modified residue (large-scale data).

