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Abstract

Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may
be hippocampal-dependent and may be attenuated in lithium responders. Induced
pluripotent stem-cell derived CA3 pyramidal cell-like neurons show significant
hyperexcitability in lithium responsive BD patients, while lithium nonresponders show
marked variance in hyperexcitability. We hypothesize that this variable excitability will
impair episodic memory recall, as assessed by cued retrieval (pattern completion) within
a computational model of the hippocampal CA3.

We simulated pattern completion tasks using a computational model of the CA3
with different degrees of pyramidal cell excitability variance. Since pyramidal cell
excitability variance naturally leads to a mix of hyperexcitability and hypoexcitability,
we also examined what fraction (hyper- vs. hypoexcitable) was predominantly
responsible for pattern completion errors in our model.

Pyramidal cell excitability variance impaired pattern completion (linear model
B=-1.94, SE=0.01, p<0.001). The effect was invariant to the number of patterns stored
in the network, as well as general inhibitory tone and pyramidal cell sparsity in the
network. Excitability variance, and more specifically hyperexcitability, increased the
number of spuriously active neurons, increasing false alarm rates and producing pattern
completion deficits. Excessive inhibition also induces pattern completion deficits by
limiting the number of correctly active neurons during pattern retrieval.

Excitability variance in CA3 pyramidal cell-like neurons observed in lithium
nonresponders may predict pattern completion deficits in these patients. These
cognitive deficits may not be fully corrected by medications that minimize excitability.
Future studies should test our predictions by examining behavioural correlates of
pattern completion in lithium responsive and nonresponsive BD patients.
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Author summary

Patients with bipolar disorder experience debilitating cognitive impairments whose
mechanisms are unknown, and these deficits may be greater in patients who do not
respond to the mood stabilizer lithium. Studies using induced pluripotent stem cell
(iPSC) derived neurons have suggested that CA3 pyramidal cells in lithium
nonresponders may have wide diversity of excitability. Our study examines how this
diversity of neuronal excitability would impact the computation of pattern completion
in the CA3. In a computational model of the CA3, we found that variance in pyramidal
cell excitability reliably impaired pattern completion abilities. Furthermore, we found
that both the hyperexcitable and hypoexcitable fractions of cells were each responsible
for distinct pattern completion errors, depending on the overall level of network
inhibition. These results suggest that lithium nonresponsive patients with bipolar
disorder will have worse performance on behavioural tasks that are sensitive to pattern
completion, potentially including cued recall paradigms. Our results also suggest that
mood stabilizers that simply reduce cellular hyperexcitability may not be sufficient to
correct micro-circuit level computations in lithium nonresponsive bipolar disorder.
Rather, these patients may require development of mood stabilizers that normalize the
distribution of neuronal hyperexcitability among CA3 pyramidal cells.

Introduction

Bipolar disorder (BD) is a chronic and debilitating mental illness characterized by
episodes of mania and depression [1], whose neurobiology remains unknown [2]. A key
observation in the clinical management of BD is the variability in response to

lithium [3], which has been the gold-standard prophylactic mood stabilizer for more
than 60 years [4]. While lithium effectively mitigates mood symptoms for a sizable
minority of patients, approximately two-thirds of patients remain nonresponsive [3].
Intriguingly, lithium nonresponders may have particularly poor cognitive functioning
compared to patients who are stable on lithium monotherapy, especially in the domain
of episodic memory [5]. This raises important questions about the underlying neural
mechanisms of episodic memory functioning in BD, and how these mechanisms relate to
treatment responsiveness.

The hippocampal CA3 region is known for its role in memory processing,
particularly in rapid one-shot learning [6] and pattern completion |7]. Pattern
completion is the ability to retrieve a complete memory representation from any of that
memory’s parts [8]. This has been postulated to occur in the hippocampal CA3 by
virtue of the extensive recurrent collateral connections in CA3 [9H14]. The recurrent
collateral synapses in CA3 facilitate pattern completion by allowing pyramidal cells
representing some sub-component of a memory to activate other neurons representing
the same memory, ultimately completing the representation from only partial cues.
These operations suggest that the CA3 may perform pattern completion by functioning
as an autoassociative attractor network [9}/11]. The hypothesis that CA3 performs
pattern completion has empirical support [7,/15}/16], and further modelling studies have
gone on to examine network storage capacity and the influence of inhibitory
interneurons and network sparsity [12,/14,/17], connectivity patterns [18], and symmetry
of plasticity mechanisms [19] on pattern completion, to name a few. Pattern completion
may be probed behaviourally by having participants first encode a set of stimuli, and
subsequently (A) recall old stimuli or (B) discriminate old from lure stimuli based on
partial or degraded/noisy cues [20]. Pattern completion is believed to be disrupted in
psychiatric conditions such as schizophrenia, and may have a role in the formation of
delusions [21-23]. Given the genetic relatedness of BD and schizophrenia [24], and BD’s
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association with both psychosis [25] and declarative memory impairments [5,26({29], it is
plausible that similar hypothesized pattern completion deficits may be found in BD.
Several lines of research suggest that CA3 structure, function, and electrophysiology
may be impaired in BD, which we review below.

First, many genetic variants associated with BD and lithium responsiveness are also
implicated in CA3 structure and function. The GRIN1 gene, which encodes the NR1
subunit of the N-methyl-D-aspartate receptor (NMDAR) is associated with and
downregulated in BD [30,[31] (but see [32]) and schizophrenia [33]. Animal models
demonstrate that GRIN1 mediates the integrity of conjunctive and associative
representations in the CA3 [15}34]. In addition to the BDNF-NTRK2 pathway being
associated with BD [31], completed suicide [35], and response to mood
stabilizers [36-39] at the behavioural level, its involvement extends down to the cellular
and circuit level as well, regulating dendritic spine density in CA3 [40] and the
establishment of functional circuitry between the dentate gyrus and CA3 [41]. While
these genetic abnormalities may also predispose broader neurobiological changes in BD,
their overlap with CA3 structure and functioning collectively suggest that studying this
brain region in BD is an important research direction.

In addition to genetic abnormalities, functional impairment may also be attributable
in part to reduced hippocampal volume in BD. The largest analysis of hippocampal
subfield volumes in BD to date (1472 patients and 3226 controls) has found significantly
smaller CA3 volume in BD patients (Cohen’s d=-0.20) |42]: an abnormality which may
be associated with impaired memory recall |[43]. Interestingly, lithium users showed
greater preservation of CA3 volume compared to lithium nonusers (n=464) [42].
Reductions in hippocampal volume may be explained by reductions in
parvalbumin-positive interneuron number and size [44L[45], which may impact the
regulation of the hyperexcitable fraction of pyramidal cells in the CA3.

Recent advances in stem cell technology have allowed for the precise investigation of
the properties of patient-derived in vitro models of CA3 pyramidal cells, to further
elucidate potential cellular-level abnormalities in BD [46]. Specifically, to study the
electrophysiological properties associated with lithium responsiveness, patient-derived
cells have been reprogrammed into induced pluripotent stem cells (iPSCs), and
subsequently differentiated into CA3 pyramidal cell-like neurons (CA3-PCs) [47].
Notably, CA3-PCs derived from lithium responders are hyperexcitable, which is
normalized upon lithium exposure [47]. This phenomenon is absent in CA3-PCs from
both healthy controls and lithium nonresponders [47]. Yet, CA3-PCs derived from
lithium nonresponders have exhibited high diversity of activity, with a mixed population
of hyperexcitable and hypoexcitable cells [47,/48]. This electrophysiological
heterogeneity is a distinct abnormality between lithium responders and nonresponders
and may be a potential key to understanding the neural underpinnings of cognitive
dysfunction in lithium nonresponsive BD.

Together, there is genetic, structural, and cellular electrophysiological evidence
suggesting that CA3 structure and functioning are likely to be abnormal in BD.
However, to link these abnormalities to observable behaviours, we must understand (A)
the computations carried out by the CA3 circuit, (B) how these computations are
affected by the neurobiological abnormalities observed in BD, and (C) how these
computations connect to observable behaviours. As a first step, we must gain an
understanding of how variability in cellular excitability in the CA3 relates to
circuit-level computations. Therefore, in this study, we leverage computational modeling
to examine how the diversity of excitability in CA3-PCs might affect pattern completion
in the CA3. This work will facilitate our ability to bridge the gap between cellular
properties and network-level function in BD, providing more specific predictions about
the memory dysfunctions seen in lithium nonresponsive BD.
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Results

Our study extends a previously developed model of the hippocampal CA3 suitable for
large-scale simulations [12,|141[18}|19]. We use an implementation that includes n=3,000
integrate-and-fire-type glutamatergic neurons equipped with a symmetric plasticity rule
(Equation [3]) and a pooled inhibitory population modelled as a single unit (Fig . Each
pyramidal cell had a unique inhibitory scaling factor g/, which facilitated the modelling
of variable levels of excitability. We assumed a random (Erdds-Rényi) connectivity
structure with probability c;; = c*, where ¢;; is the probability of an excitatory synaptic
connection from neuron 4 to neuron j. Pattern completion behaviour in this model has
been previously shown to be comparable to that in a larger-scale implementation of
330,000 cells [18}19)].
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Fig 1. Illustration of the computational model. Panel A: Model architecture.
Solid triangles represent the CA3 pyramidal cells. Solid square is the inhibitory
interneuron population. Solid circles are active synapses at which plasticity occurs.
Open circles are inactive synapses, which effectively represent no connection or
plasticity between two neurons. Gray “x” markers are inhibitory synapses. Note that
while there are inhibitory inputs to all pyramidal cells, they will vary in strength
depending on the value of g/. Panel B: Relationship between spike time 7}; and
activation level Z;;. Panel C: Symmetric spike timing-dependent plasticity

function [19,49]. The x-axis plots the difference in spike time between neurons i and j
during pattern k, denoted T; — Ti;, and the y-axis denotes the resulting degree of
synaptic potentiation, exp{— | Tx; — Tk;|/Tpot }, Which applies only at synapses that are
connected (that is, “active synapses”). Panel D: Illustration of Beta distribution with
pg =04, and o, € {0.1,0.2,0.3,0.4}. The X-axis shows the value of gl, and the y-axis
is the probability density.

Hyperexcitability and Diverse Excitability Impair Pattern
Completion

We are interested in examining pattern completion performance in the CA3 under
conditions of different degrees and variability of pyramidal cell excitability. During the
encoding phase, a set of m € N patterns, each characterized by temporally distributed
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activity in a proportion 0 < a < 1 of neurons, were applied to the network, which
engaged in learning via symmetric spike-timing dependent plasticity (Equation [3} Fig .
During the retrieval phase, a partial “seed” pattern was presented to the CA3 network
as a cue for recall. Each seed pattern corresponded to one of the m patterns but with
only a proportion 0 < b; < 1 of the original activations intact. The network was then
allowed to equilibrate over 10 iterations to recover the input pattern.

We measured pattern completion performance as the Pearson correlation p(X;, Z;)
between the recovered pattern X; = (X;;) ,, and its corresponding ground truth
pattern Z,L' = (ZZJ)
deviation of the cell-specific inhibitory scaling factor g/, denoted o,. A wider
distribution on g/ simulates the heterogeneous excitability observed in lithium
nonresponsive BD [47,/48]. The values gil are sampled from a Beta distribution with
mean /i, and standard deviation o4, where ag < pg(l — pg). We examine the pattern
completion ability of the network while systematically varying o4, conditional upon
m, lg, @, and c* for neurons (¢,j) = {1,2,...,n}. We measured the effect of o4 on
pattern completion performance using linear regression of p against o, with m, iy, a,
and c* as covariates.

Table |1} and Fig [2[ show the effects of hyperexcitability, and diversity thereof, on
pattern completion performance in our CA3 model. Diverse pyramidal cell excitability,
measured by 0,4, reduced pattern completion performance in all cases (top row of plots
in Fig[2} p=-1.94, SE=0.01, p<0.001, Table|l]). The effect was invariant to pattern load
(m), evinced by the relatively parallel decline in correlation across values of m in Fig
Hyperexcitability, captured by higher values of a (the proportion of neurons active in a
given pattern; §=-2.89, SE=0.01, p<0.001), as well as lower values of yu, (8=0.74,
SE=0.01, p<0.001), was associated with worse pattern completion performance. The
impact of variability of excitability o, was independent of overall levels of inhibition t,
or the proportion of neurons active in each pattern (a), suggesting that correction of
overall levels of excitability is insufficient to fully correct pattern completion deficits in
the presence of variable excitability of CA3 pyramidal cells (S1 Fig, S2 Fig, S3 Fig).

As secondary outcomes, we examined the amount of valid and spurious activity
during recall. Valid activity is computed as the hit rate

j=1,2,...,

j=12. . n- Our independent variable of interest is the standard

i L[Xy > 011 [Zy; > 0]
> ohe1 1[Zix > 0]

where 1[z] is an indicator function taking values 1 if = is true, and 0 otherwise.
Spurious activity was computed as the false alarm rate

H; =

i L[X > 011 [Z; = 0]
22:1 L[Zy, = 0]
which is the propensity for a given pyramidal cell neuron in pattern ¢ to be active
during recall, despite not being involved in the encoded pattern Z;.
Hyperexcitability impaired pattern completion performance largely by increasing

false alarm rates (that is, increasing the number of spuriously active neurons), while
variability of excitability (o) impaired pattern completion largely by reducing hit rates

(Fig .

FA; =

(2)

Variable Excitability Induces Pattern Completion Errors
Through the Hyperexcitable Cells

We then probed the degree to which pattern completion errors were attributable to the
hyperexcitable vs. hypoexcitable fraction of pyramidal cells. Across multiple average
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Table 1. Ordinary least squares estimates of effects of diversity of
hyperexcitability (¢,), as well as overall levels of excitability (the proportion
of neurons active for each pattern, a, and the average inhibitory strength
across neurons, (), controlled for the overall pattern load (m) and
connectivity rate (¢*). Abbreviation: regression coefficient (3), standard
error (SE), t-statistic (t), p-value (p), confidence interval (CI).

3 SE t P 95% CI Low | 95% CI High
Intercept | 0.65 0.004 180.09 | < 0.001 | 0.64 0.65
m -0.004 | 4.52¢~° | -90.77 < 0.001 | -0.004 -0.004
a -2.89 0.01 -285.61 | < 0.001 | -2.91 -2.87
c* 0.17 0.003 47.15 < 0.001 | 0.16 0.17
g 0.74 0.01 101.70 < 0.001 | 0.73 0.76
g4 -1.94 0.01 -201.82 | < 0.001 | -1.96 -1.92
m a K, c*
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Fig 2. Effects of excitability variability on pattern completion performance.
Pattern completion performance is measured by the Pearson correlation between the
true and recovered patterns. The top row of plots shows correlation results, while the
second and third rows show the hit rates and false alarm rates with respect to oy.
Columns display results with respect to various moderating factors, including the
number of encoded patterns (m), the proportion of neurons active for each pattern (a),
the mean level of inhibition (x4), and average connectivity (c¢*).

levels of inhibition (p, € {0.1,0.2,0.3,0.4,0.5,0.6}), we examined the pattern
completion error rate in relation to pyramidal cell inhibition variance (o, = 0.01 to
o'®*) in increments of 0.02, with o' =/, (1 — py).

Fig [3| shows the results of an evaluation of error rates in pattern completion in
relation to the variability of excitability levels (o,) across multiple mean inhibition
levels (pg). Across all mean inhibition levels, increases in variability of excitability
resulted in higher pattern completion error rates primarily attributable to the

hyperexcitable half of the CA3 pyramidal cell population. At low levels of inhibition
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(g=0.1; high global levels of hyperexcitability), the lower bound on error rates is
approximately 0.25, The lower bound on error rate subsequently decreases to almost 0
before increasing to an upper bound of 0.10 for high levels of inhibition (p, above 0.4).
At high levels of inhibition, the pattern completion error rate was constant for the
hypoexcitable fraction of pyramidal cells.
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Fig 3. Relationship of error rates to hyper/hypo-excitable fractions. Pattern
completion error rates (y-axes) in hyperexcitable (red lines; inhibition level less than
mean fg) and hypoexcitable (blue lines; inhibition level less higher than mean pug)
neurons, in relation to the level of variability in pyramidal cell activity (x-axes; o).
Each plot corresponds to a specific mean level of inhibition (u4). Solid lines are mean
error rates, and ribbons are 95% confidence intervals.

Discussion

The present study demonstrates that variability of CA3 pyramidal cell excitability,
which has been observed in iPSC-derived CA3 pyramidal cell-like neurons from lithium
nonresponders, impairs pattern completion in an autoassociative attractor network
model of the CA3. The impairment of pattern completion secondary to variable
excitability was independent of average population-level excitability, and was invariant
to any other manipulation of network architecture or dynamics, suggesting that
variability in iPSC-derived pyramidal cell activity is potentially a candidate independent
marker of episodic memory impairments in lithium nonresponders. Pattern completion
errors arising from variability of neuronal excitability arose mainly because some cells
were more hyperexcitable than others. However, under some circumstances (that is,
when the overall average excitability levels are low), pattern completion errors arise
primarily from neurons that are hypoexcitable relative to the rest of the population.
Our findings predict that mechanisms of cognitive impairment related to pattern
completion and episodic memory in lithium nonresponders may have physiologically
distinct mechanisms compared to impairments arising in lithium responders.
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Furthermore, our results suggest that remedying pattern completion deficits in lithium
responders and nonresponders, should they be identified experimentally, may require
different approaches.

The 50% most excitable neurons (that is, the hyperexcitable fraction) substantially
contributed to pattern completion errors. However, when overall excitability levels were
low (high inhibition, corresponding to high p), we observed an increase in the minimum
error rate driven primarily by the 50% least excitable neurons (that is, the
hypoexcitable fraction). This increase in error rates in response to increasing inhibition
predicts that lithium nonresponsive patients receiving excitability-lowering mood
stabilizers, potentially including anticonvulsants [46L|50], may exhibit a ceiling effect on
their cognitive performance with treatment. In other words, reduction of pyramidal cell
hyperexcitability may improve memory performance to a point, after which it may
worsen again. These results highlight the importance of understanding how mood
stabilizers may normalize the distribution of neuronal excitability, rather than merely
reducing hyperexcitability overall. The complexity of this type of intervention stands in
contrast to the potential effects of treatment on lithium responders, whose CA3
pyramidal cells do not show a wide variation in hyperexcitability levels [47,/48]. For
lithium responders, simply limiting cellular hyperexcitability would be predicted to
improve pattern completion. Future studies should examine behavioural measures of
pattern completion in lithium responders and nonresponders from whom iPSC-derived
CA3 pyramidal cell-like neurons have been cultured, and whose excitability
distributions (mean excitability and variance) are well characterized. Such studies
should then characterize how neuronal excitability distributions are affected when the
neuronal cultures are exposed to mood stabilizers to which patients demonstrably
respond or fail to respond. Our results predict that persistent variance in excitability
despite treatment with excitability-lowering mood stabilizers will be associated with
worse behavioural pattern completion performance in patients with BD.

Our results also emphasize the importance of understanding the mechanisms
underlying the diversity of neuronal excitability in lithium nonresponders. Stern et
al. |47,/48/51] showed that BD nonresponders have reduced sodium currents on average
as compared to the neurons derived from healthy individuals. This reduction in sodium
currents is paired with an increase of several types of potassium currents. Differences in
sodium currents were found to potentially mediate variation between hyperexcitable and
hypoexcitable neurons from lithium nonresponders; the neurons with the average or
high sodium currents were mostly hyperexcitable, while the neurons with sodium
currents below the average (which is already lower in the nonresponders compared to
both controls and the responders) were mostly hypoexcitable and unable to produce
action potentials even in response to current injections. We believe that this reduction
in the sodium currents that is paired with an increase in potassium currents may have a
strong influence on the BD nonresponders’ neuronal electrophysiological diversity.
However, the underlying cause of this diversity in sodium and potassium conductances
within individual patients is unknown. Upon application of chronic lithium treatment,
neurons derived from the BD lithium responders, increased their sodium currents and
decreased their potassium currents, “normalizing” their neurophysiology and making
them more like control neurons [47,[51]. Lithium even had the effect of normalizing
neuronal morphology. In contrast, when treating the neurons with valproic acid [50],
both neurons derived from BD responders and the nonresponders, exhibited a reduction
in their sodium currents. This drives neurons derived from BD nonresponders even
further away from the normal neurophysiology [52], further supporting the notion that
using medication to simply decrease hyperexcitability may not be the optimal treatment
and the overall neurophysiological features of the neurons and the network that they
form should be considered.
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A major strength of our study is the simplified and well-controlled nature of our
computational model of the CA3. This facilitated precise control over the overall and
mean levels of excitability variance in the CA3 pyramidal cell population. The
simplicity of this model facilitated the testing of many potential confounding factors,
ultimately demonstrating that the relationship between variance in CA3 pyramidal cell
excitability and pattern completion deficits were invariant to overall levels of inhibition,
connectivity levels, pattern load, and network sparsity. However, the simplicity of this
model is also a limitation, given that it is (by definition) an abstraction of real-world
neuronal networks. For example, our model does not include the large diversity of
interneuron types in the CA3 that may be considered in more detailed biophysical
models [22]. The leaky integrate and fire point neurons used in our model also do not
capture the nuances of the structural and biophysical properties of the somatodendritic
tree of CA3 pyramidal cells [40,41]. Although we could not identify a specific level of
experimentally-determined variance in CA3 pyramidal cell-like excitability, our results
are robust to this because we examined pattern completion performance across the full
range of excitability variance available under our model. Our model also employs a
relatively simple and dense connectivity pattern between CA3 pyramidal cells. The
connectivity patterns between CA3 pyramidal cells have previously been shown to
incorporate complex motifs [18], although simpler dense and random connectivity
patterns as employed in the present study have been shown to generate similar network
behaviour [19]. To efficiently use computational resources, we employed the simpler
approach, which facilitated our examination of different network conditions in
sensitivity analyses.

Conclusion

In conclusion, our study suggests that the diverse excitability of CA3 pyramidal cell-like
neurons observed in lithium nonresponders may predict pattern completion deficits in
these patients. These pattern completion deficits are invariant to overall excitability
levels, suggesting that even if overall CA3 pyramidal cell excitability is controlled in
lithium nonresponsive BD patients, these patients may continue to exhibit cognitive
deficits that depend on pattern completion. These predictions should be validated
experimentally using behavioural paradigms that require patients to first encode a set of
stimuli, after which they must either (A) recall those stimuli or (B) discriminate the
studied stimuli from novel/lure stimuli, given partial or noisy/corrupted cues. Such
paradigms exist [20], and should be used to study behavioural pattern completion in
lithium responsive and nonresponsive patients, in parallel with excitability variance
investigations using iPSC-derived CA3 pyramidal cell-like neurons derived from the
same patients. Furthermore, it would be useful to examine these behavioural pattern
completion deficits and how they correlate to both clinical and cellular responses to
lithium or anticonvulsant mood stabilizers. Our results suggest that without
normalizing the complete distribution of cellular excitability in the CA3, pattern
completion deficits may persist in patients with BD.

Materials and Methods

Computational Model
Encoding Phase and Learning in the Model

For a given storage cycle, a pattern i € {1,2,...,m} is presented to the CA3. Each
pattern is characterized by activity in n, = [n X a] neurons, where a € [0, 1] is the
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proportion of neurons active in a given pattern, and |z] is the floor function.

For each pattern i € {1,2,...,m} presented to the CA3 in a given storage cycle, let
T;; ~ Normal(0, s7) be the spiking time of neuron j € {1,2,...,n}, with mean 0, and
standard deviation sy > 0. Following Mishra et al. [19] we set sp = 0.2, corresponding
to 20% of a storage cycle. The activation level of neuron j in pattern i is
Zij = exp {—Tfj} (Fig . For the excitatory synapse from neuron j to ¢, plasticity
during the encoding phase was implemented using the following symmetric spike
timing-dependent plasticity rule [19]:

Jij = €ij ¥ (JO - i@-jk {exp {M}] 1) (3)

k=1 Tpot 0

where €;; ~ Bernoulli(c;;) is a binary random variable with probability ¢;; indicating
whether there is an excitatory connection from neuron j to 4, d;;; is an indicator
variable denoting whether both neurons ¢ and j are active during pattern k, and

[#]§ = max {min {z,1},0}. The value J° = 0 indicates that the base synaptic strength
is 0. The synaptic plasticity time constant 7, was set to 1, corresponding to a single
storage cycle [19].

Pattern Completion Task and Recall Dynamics in the Model

After a CA3 network learns patterns Z = (ZZJ)Z;l:er we evaluated pattern
completion by presenting the network with an incomplete/corrupted version of each
pattern in Z, and evaluating the accuracy with which the CA3 network could recover
the original pattern.

Dynamics of pattern completion during recall were simulated by feeding a partial or
noisy “seed” input pattern to the CA3 network, and allowing network dynamics to
equilibrate over 10 recall cycles. The seed pattern corresponding to pattern
k=1{1,2,...,m} is controlled by parameters, b; € [0,1] (the proportion of neurons in
the seed pattern that correspond to valid activations in pattern k) and be € [0, 1] (the
proportion of spurious additional activations that were not present in the true pattern
k). Increasing by corresponds to providing the network with a seed pattern that is more
accurately reflective of a true pattern upon which the synapses were trained during
encoding. Increasing by corresponds to adding more “noise” in the form of spuriously

active neurons. In the present study, as in Mishra et al., [19] we set b; = 0.5, and by = 0.

The total synaptic input into neuron ¢ at recall cycle ¢ is:

=

hit) =n §:j Jy0 (1= 1) exp { —— (4)
where O(z) is the Heaviside step function, which takes a value of 1 for > 0, and 0
otherwise, 7y, is the time constant for neuron #’s membrane potential (7, is assumed to
be the same for all pyramidal cells in the model), and 7} is the spike time of neuron j at
the previous recall cycle. Neuron ¢ spikes as part of pattern k € {1,2,... m} if
hi(t) > g? + gl S, where S is the sum of all neural activity at the previous recall cycle,
g¢ = 0 is the basal action potential threshold for neuron i, and g/ is a factor scaling the
degree of inhibition received by neuron i. S models a general inhibitory population

whose activity is proportional to the total network activity at the previous recall cycle.

All simulations were conducted using custom scripts in the Julia programming language
(v. 1.9.0), which are available as supplementary material (S1 File).
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Supporting information

S1 Fig. Interactions between model parameters and pattern correlation.
Activity correlation (y-axis) and interactions between the diversity of hyperexcitability
(04; x-axis), activation level (a), and mean level of inhibition (u4). Coloured lines
represent the pattern load, ranging from m=5 (red) to m=65 (indigo), in steps of 5,
according to a rainbow palette.

S2 Fig. Interactions between model parameters and hit rates. Hit rates
(y-axis) and interactions between the diversity of hyperexcitability (o4; x-axis),
activation level (a), and mean level of inhibition (u4). Coloured lines represent the
pattern load, ranging from m=>5 (red) to m=65 (indigo), in steps of 5, according to a
rainbow palette.

S3 Fig. Interactions between model parameters and false alarm rates. False
alarm rates (y-axis) and interactions between the diversity of hyperexcitability (o;
x-axis), activation level (a), and mean level of inhibition (u4). Coloured lines represent
the pattern load, ranging from m=>5 (red) to m=65 (indigo), in steps of 5, according to
a rainbow palette.

S1 File. Code repository to reproduce experiments and analyses.

References

1. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. The Lancet.
2015;6736(15):1-12. doi:10.1016/S0140-6736(15)00241-X.

2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental
Disorders, 5th Edition (DSM-5). American Psychiatric Publishing; 2013.

3. Garnham J, Munro A, Slaney C, MacDougall M, Passmore M, Duffy A, et al.
Prophylactic treatment response in bipolar disorder: Results of a naturalistic
observation study. Journal of Affective Disorders. 2007;104(1):185-190.
doi:10.1016/j.jad.2007.03.003.

4. Grof P. Sixty years of lithium responders. Neuropsychobiology. 2010;62(1):8-16.

5. Burdick KE, Millett CE, Russo M, Alda M, Alliey-Rodriguez N, Anand A, et al.

The association between lithium use and neurocognitive performance in patients
with bipolar disorder. Neuropsychopharmacology. 2020;45(10):1743-1749.
d0i:10.1038/s41386-020-0683-2.

6. Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S. Transgenic
Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal
Learning. Science. 2008;319(5867):1260-1264. doi:10.1126/science.1151120.

7. Neunuebel JP, Knierim JJ. CA3 Retrieves Coherent Representations from
Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate
Gyrus Pattern Separation. Neuron. 2014;81(2):416-427.
d0i:10.1016 /j.neuron.2013.11.017.

8. Rolls ET. The mechanisms for pattern completion and pattern separation in the
hippocampus. Frontiers in Systems Neuroscience. 2013;7:74.
doi:10.3389/fnsys.2013.00074.

November 19, 2023

1115

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326


https://doi.org/10.1101/2023.11.20.567781
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567781; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Marr D. Simple memory: a theory for archicortex. Philosophical Transactions of
the Royal Society of London B, Biological Sciences. 1971;262(841):23-81.
d0i:10.1098 /rstb.1971.0078.

Rolls ET. Information representation, processing and storage in the brain:
Analysis at the single neuron level. In: Changeux JP, Konishi M, editors. The
neural and molecular bases of learning. Chichester: Wiley; 1987. p. 503-540.
Available from: https://scholar.google.com/scholar_lookup?title=
Informationy20representationy,2C)20processing}20and%20storage’,20in
20the’20brain}3A%20Analysis’20at’%20the’20single20neuron,20level&
publication_year=1987&author=E.T.%20Rolls!|

McNaughton BL, Morris RGM. Hippocampal synaptic enhancement and
information storage within a distributed memory system. Trends in
Neurosciences. 1987;10(10):408-415. doi:10.1016/0166-2236(87)90011-7.

Gibson WG, Robinson J. Statistical analysis of the dynamics of a sparse
associative memory. Neural Networks. 1992;5(4):645-661.
d0i:10.1016/S0893-6080(05)80042-5.

Rolls ET. Pattern separation, completion, and categorisation in the hippocampus
and neocortex. Neurobiology of Learning and Memory. 2016;129:4-28.
doi:10.1016/j.nlm.2015.07.008.

Bennett MR, Gibson WG, Robinson J. Dynamics of the CA3 Pyramidal Neuron
Autoassociative Memory Network in the Hippocampus. 2021; p. 22.

Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, et al.
Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory
Recall. Science. 2002;297(5579):211-218. doi:10.1126/science.1071795.

Gold AE, Kesner RP. The role of the CA3 subregion of the dorsal hippocampus
in spatial pattern completion in the rat. Hippocampus. 2005;15(6):808-814.
doi:10.1002 /hipo.20103.

Treves A, Rolls ET. What determines the capacity of autoassociative memories
in the brain? Network: Computation in Neural Systems. 1991;2(4):371-397.
doi:10.1088,/0954-898X 547 04.

Guzman SJ, Schlogl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern
completion in the hippocampal CA3 network. Science. 2016;353(6304):1117-1123.
doi:10.1126 /science.aafl1836.

Mishra RK, Kim S, Guzman SJ, Jonas P. Symmetric spike timing-dependent
plasticity at CA3—-CA3 synapses optimizes storage and recall in autoassociative
networks. Nature Communications. 2016;7(1):11552. doi:10.1038 /ncomms11552.

Liu KY, Gould RL, Coulson MC, Ward EV, Howard RJ. Tests of pattern
separation and pattern completion in humans—A systematic review.

Hippocampus. 2016;26(6):705-717. doi:10.1002/hipo.22561.

Tamminga CA, Stan AD, Wagner AD. The Hippocampal Formation in
Schizophrenia. American Journal of Psychiatry. 2010;167(10):1178-1193.
doi:10.1176 /appi.ajp.2010.09081187.

November 19, 2023

12/[15


https://scholar.google.com/scholar_lookup?title=Information%20representation%2C%20processing%20and%20storage%20in%20the%20brain%3A%20Analysis%20at%20the%20single%20neuron%20level&publication_year=1987&author=E.T.%20Rolls
https://scholar.google.com/scholar_lookup?title=Information%20representation%2C%20processing%20and%20storage%20in%20the%20brain%3A%20Analysis%20at%20the%20single%20neuron%20level&publication_year=1987&author=E.T.%20Rolls
https://scholar.google.com/scholar_lookup?title=Information%20representation%2C%20processing%20and%20storage%20in%20the%20brain%3A%20Analysis%20at%20the%20single%20neuron%20level&publication_year=1987&author=E.T.%20Rolls
https://scholar.google.com/scholar_lookup?title=Information%20representation%2C%20processing%20and%20storage%20in%20the%20brain%3A%20Analysis%20at%20the%20single%20neuron%20level&publication_year=1987&author=E.T.%20Rolls
https://doi.org/10.1101/2023.11.20.567781
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567781; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW.
Ketamine Disrupts Theta Modulation of Gamma in a Computer Model of
Hippocampus. Journal of Neuroscience. 2011;31(32):11733-11743.
doi:10.1523/JNEUROSCI.0501-11.2011.

Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S. Glutamate
Dysfunction in Hippocampus: Relevance of Dentate Gyrus and CA3 Signaling.
Schizophrenia Bulletin. 2012;38(5):927-935. doi:10.1093/schbul/sbs062.

Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al.
Analysis of shared heritability in common disorders of the brain. Science.
2018;360(6395):eaap8757. doi:10.1126/science.aap8757.

Goes FS, Sadler B, Toolan J, Zamoiski RD, Mondimore FM, MacKinnon DF,
et al. Psychotic features in bipolar and unipolar depression. Bipolar Disorders.
2007;9(8):901-906. doi:10.1111/j.1399-5618.2007.00460.x.

Cardenas SA, Kassem L, Brotman MA, Leibenluft E, McMahon FJ.
Neurocognitive functioning in euthymic patients with bipolar disorder and
unaffected relatives: A review of the literature. Neuroscience & Biobehavioral
Reviews. 2016;69:193-215. doi:10.1016/j.neubiorev.2016.08.002.

Bora E. Neurocognitive features in clinical subgroups of bipolar disorder: A
meta-analysis. Journal of Affective Disorders. 2018;229:125-134.
doi:10.1016/j.jad.2017.12.057.

Keramatian K, Torres IJ, Yatham LN. Neurocognitive functioning in bipolar
disorder: What we know and what we don’t. Dialogues in Clinical Neuroscience.
2021;23(1):29-38. doi:10.1080,/19585969.2022.2042164.

Nitzburg GC, Cuesta-Diaz A, Ospina LH, Russo M, Shanahan M,
Perez-Rodriguez M, et al. Organizational Learning Strategies and Verbal Memory
Deficits in Bipolar Disorder. Journal of the International Neuropsychological
Society : JINS. 2017;23(4):358-366. do0i:10.1017/S1355617717000133.

Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh
SV, et al. Evidence that the N-methyl-D-aspartate subunit 1 receptor gene
(GRIN1) confers susceptibility to bipolar disorder. Molecular Psychiatry.
2003;8(2):241-245. doi:10.1038/sj.mp.4001218.

Bundo M, Ueda J, Nakachi Y, Kasai K, Kato T, Iwamoto K. Decreased DNA
methylation at promoters and gene-specific neuronal hypermethylation in the
prefrontal cortex of patients with bipolar disorder. Molecular Psychiatry.
2021;26(7):3407-3418. doi:10.1038/s41380-021-01079-0.

Georgi A, Jamra RA, Schumacher J, Becker T, Schmael C, Deschner M, et al. No
association between genetic variants at the GRIN1 gene and bipolar disorder in a
German sample. Psychiatric Genetics. 2006;16(5):183.
d0i:10.1097/01.ypg.0000242194.36150.2b.

Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review
of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor
expression levels in schizophrenia: How can we link molecular abnormalities to
mismatch negativity deficits? Biological Psychology. 2016;116:57-67.
doi:10.1016/j.biopsycho.2015.10.013.

November 19, 2023

13/]15


https://doi.org/10.1101/2023.11.20.567781
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567781; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

McHugh TJ, Tonegawa S. CA3 NMDA receptors are required for the rapid
formation of a salient contextual representation. Hippocampus.
2009;19(12):1153-1158. doi:10.1002/hipo.20684.

Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, Klempan T, et al.
Alternative Splicing, Methylation State, and Expression Profile of
Tropomyosin-Related Kinase B in the Frontal Cortex of Suicide Completers.
Archives of General Psychiatry. 2009;66(1):22-32. doi:10.1001/archpsyc.66.1.22.

Li N, He X, Zhang Y, Qi X, Li H, Zhu X, et al. Brain-derived neurotrophic factor
signalling mediates antidepressant effects of lamotrigine. International Journal of
Neuropsychopharmacology. 2011;14(8):1091-1098.
doi:10.1017/S1461145710001082.

Hashimoto K. Brain-derived neurotrophic factor-TrkB signaling and the
mechanism of antidepressant activity by ketamine in mood disorders. European
Archives of Psychiatry and Clinical Neuroscience. 2020;270(2):137-138.
doi:10.1007/s00406-020-01095-1.

Gideons ES, Lin PY, Mahgoub M, Kavalali ET, Monteggia LM. Chronic lithium
treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic
downscaling. eLife. 2017;6:€25480. doi:10.7554/eLife.25480.

Wang Z, Fan J, Gao K, Li Z, Yi Z, Wang L, et al. Neurotrophic Tyrosine Kinase
Receptor Type 2 (NTRK2) Gene Associated with Treatment Response to Mood
Stabilizers in Patients with Bipolar I Disorder. Journal of Molecular
Neuroscience. 2013;50(2):305-310. doi:10.1007/s12031-013-9956-0.

Bennett MR, Lagopoulos J. Stress and trauma: BDNF control of dendritic-spine
formation and regression. Progress in Neurobiology. 2014;112:80-99.
doi:10.1016/j.pneurobio.2013.10.005.

Szymanski J, Minichiello L. NKCC1 Deficiency in Forming Hippocampal Circuits
Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling. Brain
Sciences. 2022;12(4):502. do0i:10.3390/brainscil2040502.

Haukvik UK, Gurholt TP, Nerland S, Elvsashagen T, Akudjedu TN, Alda M,
et al. In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis
from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar
Disorder Working Group. Human Brain Mapping. 2022;43(1):385-398.
doi:10.1002/hbm.25249.

Chadwick MJ, Bonnici HM, Maguire EA. CA3 size predicts the precision of
memory recall. Proceedings of the National Academy of Sciences.
2014;111(29):10720-10725. doi:10.1073/pnas.1319641111.

Zhang ZJ, Reynolds GP. A selective decrease in the relative density of
parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia.
Schizophrenia Research. 2002;55(1):1-10. doi:10.1016/S0920-9964(01)00188-8.

Konradi C, Zimmerman EI, Yang CK, Lohmann KM, Gresch P, Pantazopoulos H,
et al. Hippocampal Interneurons in Bipolar Disorder. Archives of General
Psychiatry. 2010;68(4):340. doi:10.1001/archgenpsychiatry.2010.175.

Mertens J, Wang Q, Kim Y, Yu D, Pham S, Yang B, et al. Differential responses
to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature.
2015;527(7576):95-99. doi:10.1038/naturel5526.

November 19, 2023

14/[15)


https://doi.org/10.1101/2023.11.20.567781
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567781; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

47. Stern S, Sarkar A, Stern T, Mei A, Mendes APD, Stern Y, et al. Mechanisms
Underlying the Hyperexcitability of CA3 and Dentate Gyrus Hippocampal
Neurons Derived From Patients With Bipolar Disorder. Biological Psychiatry.
2020;88(2):139-149. doi:10.1016/j.biopsych.2019.09.018.

48. Stern S, Sarkar A, Galor D, Stern T, Mei A, Stern Y, et al. A Physiological
Instability Displayed in Hippocampal Neurons Derived From
Lithium-Nonresponsive Bipolar Disorder Patients. Biological Psychiatry.
2020;88(2):150-158. doi:10.1016/j.biopsych.2020.01.020.

49. Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3
circuits: implications for memory encoding. Nature Reviews Neuroscience.
2017;18(4):208-220. doi:10.1038/nrn.2017.10.

50. Santos R, Linker SB, Stern S, Mendes APD, Shokhirev MN, Erikson G, et al.
Deficient LEF1 expression is associated with lithium resistance and
hyperexcitability in neurons derived from bipolar disorder patients. Molecular
Psychiatry. 2021;d0i:10.1038/s41380-020-00981-3.

51. Stern S, Santos R, Marchetto M, Mendes A, Rouleau G, Biesmans S, et al.
Neurons derived from patients with bipolar disorder divide into intrinsically
different sub-populations of neurons, predicting the patients’ responsiveness to
lithium. Molecular Psychiatry. 2018;23(6):1453-1465. doi:10.1038/mp.2016.260.

52. Tripathi U, Mizrahi L, Alda M, Falkovich G, Stern S. Information theory
characteristics improve the prediction of lithium response in bipolar disorder
patients using a support vector machine classifier. Bipolar Disorders.
2023;25(2):110-127. doi:10.1111/bdi.13282.

November 19, 2023 15


https://doi.org/10.1101/2023.11.20.567781
http://creativecommons.org/licenses/by/4.0/

