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Abstract

Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may
be hippocampal-dependent and may be attenuated in lithium responders. Induced
pluripotent stem-cell derived CA3 pyramidal cell-like neurons show significant
hyperexcitability in lithium responsive BD patients, while lithium nonresponders show
marked variance in hyperexcitability. We hypothesize that this variable excitability will
impair episodic memory recall, as assessed by cued retrieval (pattern completion) within
a computational model of the hippocampal CA3.

We simulated pattern completion tasks using a computational model of the CA3
with different degrees of pyramidal cell excitability variance. Since pyramidal cell
excitability variance naturally leads to a mix of hyperexcitability and hypoexcitability,
we also examined what fraction (hyper- vs. hypoexcitable) was predominantly
responsible for pattern completion errors in our model.

Pyramidal cell excitability variance impaired pattern completion (linear model
´=-1.94, SE=0.01, p<0.001). The effect was invariant to the number of patterns stored
in the network, as well as general inhibitory tone and pyramidal cell sparsity in the
network. Excitability variance, and more specifically hyperexcitability, increased the
number of spuriously active neurons, increasing false alarm rates and producing pattern
completion deficits. Excessive inhibition also induces pattern completion deficits by
limiting the number of correctly active neurons during pattern retrieval.

Excitability variance in CA3 pyramidal cell-like neurons observed in lithium
nonresponders may predict pattern completion deficits in these patients. These
cognitive deficits may not be fully corrected by medications that minimize excitability.
Future studies should test our predictions by examining behavioural correlates of
pattern completion in lithium responsive and nonresponsive BD patients.
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Author summary

Patients with bipolar disorder experience debilitating cognitive impairments whose
mechanisms are unknown, and these deficits may be greater in patients who do not
respond to the mood stabilizer lithium. Studies using induced pluripotent stem cell
(iPSC) derived neurons have suggested that CA3 pyramidal cells in lithium
nonresponders may have wide diversity of excitability. Our study examines how this
diversity of neuronal excitability would impact the computation of pattern completion
in the CA3. In a computational model of the CA3, we found that variance in pyramidal
cell excitability reliably impaired pattern completion abilities. Furthermore, we found
that both the hyperexcitable and hypoexcitable fractions of cells were each responsible
for distinct pattern completion errors, depending on the overall level of network
inhibition. These results suggest that lithium nonresponsive patients with bipolar
disorder will have worse performance on behavioural tasks that are sensitive to pattern
completion, potentially including cued recall paradigms. Our results also suggest that
mood stabilizers that simply reduce cellular hyperexcitability may not be sufficient to
correct micro-circuit level computations in lithium nonresponsive bipolar disorder.
Rather, these patients may require development of mood stabilizers that normalize the

distribution of neuronal hyperexcitability among CA3 pyramidal cells.

Introduction 1

Bipolar disorder (BD) is a chronic and debilitating mental illness characterized by 2

episodes of mania and depression [1], whose neurobiology remains unknown [2]. A key 3

observation in the clinical management of BD is the variability in response to 4

lithium [3], which has been the gold-standard prophylactic mood stabilizer for more 5

than 60 years [4]. While lithium effectively mitigates mood symptoms for a sizable 6

minority of patients, approximately two-thirds of patients remain nonresponsive [3]. 7

Intriguingly, lithium nonresponders may have particularly poor cognitive functioning 8

compared to patients who are stable on lithium monotherapy, especially in the domain 9

of episodic memory [5]. This raises important questions about the underlying neural 10

mechanisms of episodic memory functioning in BD, and how these mechanisms relate to 11

treatment responsiveness. 12

The hippocampal CA3 region is known for its role in memory processing, 13

particularly in rapid one-shot learning [6] and pattern completion [7]. Pattern 14

completion is the ability to retrieve a complete memory representation from any of that 15

memory’s parts [8]. This has been postulated to occur in the hippocampal CA3 by 16

virtue of the extensive recurrent collateral connections in CA3 [9–14]. The recurrent 17

collateral synapses in CA3 facilitate pattern completion by allowing pyramidal cells 18

representing some sub-component of a memory to activate other neurons representing 19

the same memory, ultimately completing the representation from only partial cues. 20

These operations suggest that the CA3 may perform pattern completion by functioning 21

as an autoassociative attractor network [9,11]. The hypothesis that CA3 performs 22

pattern completion has empirical support [7, 15, 16], and further modelling studies have 23

gone on to examine network storage capacity and the influence of inhibitory 24

interneurons and network sparsity [12, 14, 17], connectivity patterns [18], and symmetry 25

of plasticity mechanisms [19] on pattern completion, to name a few. Pattern completion 26

may be probed behaviourally by having participants first encode a set of stimuli, and 27

subsequently (A) recall old stimuli or (B) discriminate old from lure stimuli based on 28

partial or degraded/noisy cues [20]. Pattern completion is believed to be disrupted in 29

psychiatric conditions such as schizophrenia, and may have a role in the formation of 30

delusions [21–23]. Given the genetic relatedness of BD and schizophrenia [24], and BD’s 31
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association with both psychosis [25] and declarative memory impairments [5,26–29], it is 32

plausible that similar hypothesized pattern completion deficits may be found in BD. 33

Several lines of research suggest that CA3 structure, function, and electrophysiology 34

may be impaired in BD, which we review below. 35

First, many genetic variants associated with BD and lithium responsiveness are also 36

implicated in CA3 structure and function. The GRIN1 gene, which encodes the NR1 37

subunit of the N-methyl-D-aspartate receptor (NMDAR) is associated with and 38

downregulated in BD [30,31] (but see [32]) and schizophrenia [33]. Animal models 39

demonstrate that GRIN1 mediates the integrity of conjunctive and associative 40

representations in the CA3 [15,34]. In addition to the BDNF-NTRK2 pathway being 41

associated with BD [31], completed suicide [35], and response to mood 42

stabilizers [36–39] at the behavioural level, its involvement extends down to the cellular 43

and circuit level as well, regulating dendritic spine density in CA3 [40] and the 44

establishment of functional circuitry between the dentate gyrus and CA3 [41]. While 45

these genetic abnormalities may also predispose broader neurobiological changes in BD, 46

their overlap with CA3 structure and functioning collectively suggest that studying this 47

brain region in BD is an important research direction. 48

In addition to genetic abnormalities, functional impairment may also be attributable 49

in part to reduced hippocampal volume in BD. The largest analysis of hippocampal 50

subfield volumes in BD to date (1472 patients and 3226 controls) has found significantly 51

smaller CA3 volume in BD patients (Cohen’s d=-0.20) [42]: an abnormality which may 52

be associated with impaired memory recall [43]. Interestingly, lithium users showed 53

greater preservation of CA3 volume compared to lithium nonusers (n=464) [42]. 54

Reductions in hippocampal volume may be explained by reductions in 55

parvalbumin-positive interneuron number and size [44,45], which may impact the 56

regulation of the hyperexcitable fraction of pyramidal cells in the CA3. 57

Recent advances in stem cell technology have allowed for the precise investigation of 58

the properties of patient-derived in vitro models of CA3 pyramidal cells, to further 59

elucidate potential cellular-level abnormalities in BD [46]. Specifically, to study the 60

electrophysiological properties associated with lithium responsiveness, patient-derived 61

cells have been reprogrammed into induced pluripotent stem cells (iPSCs), and 62

subsequently differentiated into CA3 pyramidal cell-like neurons (CA3-PCs) [47]. 63

Notably, CA3-PCs derived from lithium responders are hyperexcitable, which is 64

normalized upon lithium exposure [47]. This phenomenon is absent in CA3-PCs from 65

both healthy controls and lithium nonresponders [47]. Yet, CA3-PCs derived from 66

lithium nonresponders have exhibited high diversity of activity, with a mixed population 67

of hyperexcitable and hypoexcitable cells [47, 48]. This electrophysiological 68

heterogeneity is a distinct abnormality between lithium responders and nonresponders 69

and may be a potential key to understanding the neural underpinnings of cognitive 70

dysfunction in lithium nonresponsive BD. 71

Together, there is genetic, structural, and cellular electrophysiological evidence 72

suggesting that CA3 structure and functioning are likely to be abnormal in BD. 73

However, to link these abnormalities to observable behaviours, we must understand (A) 74

the computations carried out by the CA3 circuit, (B) how these computations are 75

affected by the neurobiological abnormalities observed in BD, and (C) how these 76

computations connect to observable behaviours. As a first step, we must gain an 77

understanding of how variability in cellular excitability in the CA3 relates to 78

circuit-level computations. Therefore, in this study, we leverage computational modeling 79

to examine how the diversity of excitability in CA3-PCs might affect pattern completion 80

in the CA3. This work will facilitate our ability to bridge the gap between cellular 81

properties and network-level function in BD, providing more specific predictions about 82

the memory dysfunctions seen in lithium nonresponsive BD. 83
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Results 84

Our study extends a previously developed model of the hippocampal CA3 suitable for 85

large-scale simulations [12, 14, 18, 19]. We use an implementation that includes n=3,000 86

integrate-and-fire-type glutamatergic neurons equipped with a symmetric plasticity rule 87

(Equation 3) and a pooled inhibitory population modelled as a single unit (Fig 1). Each 88

pyramidal cell had a unique inhibitory scaling factor gI
i , which facilitated the modelling 89

of variable levels of excitability. We assumed a random (Erdős–Rényi) connectivity 90

structure with probability cij = c∗, where cij is the probability of an excitatory synaptic 91

connection from neuron i to neuron j. Pattern completion behaviour in this model has 92

been previously shown to be comparable to that in a larger-scale implementation of 93

330,000 cells [18, 19]. 94

…

Inactive synapse

Active synapse

Inhibitory synapse

Pyramidal cell

Inhibitory interneuron population

InputsA B C

D

Fig 1. Illustration of the computational model. Panel A: Model architecture.
Solid triangles represent the CA3 pyramidal cells. Solid square is the inhibitory
interneuron population. Solid circles are active synapses at which plasticity occurs.
Open circles are inactive synapses, which effectively represent no connection or
plasticity between two neurons. Gray “x” markers are inhibitory synapses. Note that
while there are inhibitory inputs to all pyramidal cells, they will vary in strength
depending on the value of gI

i . Panel B: Relationship between spike time Tij and
activation level Zij . Panel C: Symmetric spike timing-dependent plasticity
function [19,49]. The x-axis plots the difference in spike time between neurons i and j
during pattern k, denoted Tki − Tkj , and the y-axis denotes the resulting degree of
synaptic potentiation, exp{− | Tki − Tkj |/Äpot}, which applies only at synapses that are
connected (that is, “active synapses”). Panel D: Illustration of Beta distribution with
µg = 0.4, and Ãg ∈ {0.1, 0.2, 0.3, 0.4}. The X-axis shows the value of gI

i , and the y-axis
is the probability density.

Hyperexcitability and Diverse Excitability Impair Pattern 95

Completion 96

We are interested in examining pattern completion performance in the CA3 under 97

conditions of different degrees and variability of pyramidal cell excitability. During the 98

encoding phase, a set of m ∈ N+ patterns, each characterized by temporally distributed 99
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activity in a proportion 0 < a < 1 of neurons, were applied to the network, which 100

engaged in learning via symmetric spike-timing dependent plasticity (Equation 3; Fig 1). 101

During the retrieval phase, a partial “seed” pattern was presented to the CA3 network 102

as a cue for recall. Each seed pattern corresponded to one of the m patterns but with 103

only a proportion 0 < b1 < 1 of the original activations intact. The network was then 104

allowed to equilibrate over 10 iterations to recover the input pattern. 105

We measured pattern completion performance as the Pearson correlation Ä(Xi, Zi) 106

between the recovered pattern Xi = (Xij)
j=1,2,...,n

and its corresponding ground truth 107

pattern Zi = (Zij)
j=1,2,...,n

. Our independent variable of interest is the standard 108

deviation of the cell-specific inhibitory scaling factor gI
i , denoted Ãg. A wider 109

distribution on gI
i simulates the heterogeneous excitability observed in lithium 110

nonresponsive BD [47,48]. The values gI
i are sampled from a Beta distribution with 111

mean µg and standard deviation Ãg, where Ã2
g < µg(1 − µg). We examine the pattern 112

completion ability of the network while systematically varying Ãg, conditional upon 113

m, µg, a, and c∗ for neurons (i, j) = {1, 2, . . . , n}. We measured the effect of Ãg on 114

pattern completion performance using linear regression of Ä against Ãg, with m, µg, a, 115

and c∗ as covariates. 116

Table 1 and Fig 2 show the effects of hyperexcitability, and diversity thereof, on 117

pattern completion performance in our CA3 model. Diverse pyramidal cell excitability, 118

measured by Ãg, reduced pattern completion performance in all cases (top row of plots 119

in Fig 2; ´=-1.94, SE=0.01, p<0.001, Table 1). The effect was invariant to pattern load 120

(m), evinced by the relatively parallel decline in correlation across values of m in Fig 2. 121

Hyperexcitability, captured by higher values of a (the proportion of neurons active in a 122

given pattern; ´=-2.89, SE=0.01, p<0.001), as well as lower values of µg (´=0.74, 123

SE=0.01, p<0.001), was associated with worse pattern completion performance. The 124

impact of variability of excitability Ãg was independent of overall levels of inhibition µg 125

or the proportion of neurons active in each pattern (a), suggesting that correction of 126

overall levels of excitability is insufficient to fully correct pattern completion deficits in 127

the presence of variable excitability of CA3 pyramidal cells (S1 Fig, S2 Fig, S3 Fig). 128

As secondary outcomes, we examined the amount of valid and spurious activity 129

during recall. Valid activity is computed as the hit rate 130

Hi =

∑n

j=1 1 [Xij > 0]1 [Zij > 0]
∑n

k=1 1 [Zik > 0]
(1)

where 1[x] is an indicator function taking values 1 if x is true, and 0 otherwise. 131

Spurious activity was computed as the false alarm rate 132

FAi =

∑n

j=1 1 [Xij > 0]1 [Zij = 0]
∑n

k=1 1 [Zik = 0]
(2)

which is the propensity for a given pyramidal cell neuron in pattern i to be active 133

during recall, despite not being involved in the encoded pattern Zi. 134

Hyperexcitability impaired pattern completion performance largely by increasing 135

false alarm rates (that is, increasing the number of spuriously active neurons), while 136

variability of excitability (Ãg) impaired pattern completion largely by reducing hit rates 137

(Fig 2). 138

Variable Excitability Induces Pattern Completion Errors 139

Through the Hyperexcitable Cells 140

We then probed the degree to which pattern completion errors were attributable to the 141

hyperexcitable vs. hypoexcitable fraction of pyramidal cells. Across multiple average 142

November 19, 2023 5/15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.20.567781doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567781
http://creativecommons.org/licenses/by/4.0/


Table 1. Ordinary least squares estimates of effects of diversity of
hyperexcitability (Ãg), as well as overall levels of excitability (the proportion
of neurons active for each pattern, a, and the average inhibitory strength
across neurons, µg), controlled for the overall pattern load (m) and
connectivity rate (c∗). Abbreviation: regression coefficient (´), standard
error (SE), t-statistic (t), p-value (p), confidence interval (CI).

´ SE t p 95% CI Low 95% CI High

Intercept 0.65 0.004 180.09 < 0.001 0.64 0.65
m -0.004 4.52e−5 -90.77 < 0.001 -0.004 -0.004
a -2.89 0.01 -285.61 < 0.001 -2.91 -2.87
c∗ 0.17 0.003 47.15 < 0.001 0.16 0.17
µg 0.74 0.01 101.70 < 0.001 0.73 0.76
Ãg -1.94 0.01 -201.82 < 0.001 -1.96 -1.92

Fig 2. Effects of excitability variability on pattern completion performance.
Pattern completion performance is measured by the Pearson correlation between the
true and recovered patterns. The top row of plots shows correlation results, while the
second and third rows show the hit rates and false alarm rates with respect to Ãg.
Columns display results with respect to various moderating factors, including the
number of encoded patterns (m), the proportion of neurons active for each pattern (a),
the mean level of inhibition (µg), and average connectivity (c∗).

levels of inhibition (µg ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}), we examined the pattern 143

completion error rate in relation to pyramidal cell inhibition variance (Ãg = 0.01 to 144

Ãmax
g ) in increments of 0.02, with Ãmax

g =
√

µg (1 − µg). 145

Fig 3 shows the results of an evaluation of error rates in pattern completion in 146

relation to the variability of excitability levels (Ãg) across multiple mean inhibition 147

levels (µg). Across all mean inhibition levels, increases in variability of excitability 148

resulted in higher pattern completion error rates primarily attributable to the 149

hyperexcitable half of the CA3 pyramidal cell population. At low levels of inhibition 150
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(µg=0.1; high global levels of hyperexcitability), the lower bound on error rates is 151

approximately 0.25, The lower bound on error rate subsequently decreases to almost 0 152

before increasing to an upper bound of 0.10 for high levels of inhibition (µg above 0.4). 153

At high levels of inhibition, the pattern completion error rate was constant for the 154

hypoexcitable fraction of pyramidal cells. 155

Fig 3. Relationship of error rates to hyper/hypo-excitable fractions. Pattern
completion error rates (y-axes) in hyperexcitable (red lines; inhibition level less than
mean µg) and hypoexcitable (blue lines; inhibition level less higher than mean µg)
neurons, in relation to the level of variability in pyramidal cell activity (x-axes; Ãg).
Each plot corresponds to a specific mean level of inhibition (µg). Solid lines are mean
error rates, and ribbons are 95% confidence intervals.

Discussion 156

The present study demonstrates that variability of CA3 pyramidal cell excitability, 157

which has been observed in iPSC-derived CA3 pyramidal cell-like neurons from lithium 158

nonresponders, impairs pattern completion in an autoassociative attractor network 159

model of the CA3. The impairment of pattern completion secondary to variable 160

excitability was independent of average population-level excitability, and was invariant 161

to any other manipulation of network architecture or dynamics, suggesting that 162

variability in iPSC-derived pyramidal cell activity is potentially a candidate independent 163

marker of episodic memory impairments in lithium nonresponders. Pattern completion 164

errors arising from variability of neuronal excitability arose mainly because some cells 165

were more hyperexcitable than others. However, under some circumstances (that is, 166

when the overall average excitability levels are low), pattern completion errors arise 167

primarily from neurons that are hypoexcitable relative to the rest of the population. 168

Our findings predict that mechanisms of cognitive impairment related to pattern 169

completion and episodic memory in lithium nonresponders may have physiologically 170

distinct mechanisms compared to impairments arising in lithium responders. 171
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Furthermore, our results suggest that remedying pattern completion deficits in lithium 172

responders and nonresponders, should they be identified experimentally, may require 173

different approaches. 174

The 50% most excitable neurons (that is, the hyperexcitable fraction) substantially 175

contributed to pattern completion errors. However, when overall excitability levels were 176

low (high inhibition, corresponding to high µ), we observed an increase in the minimum 177

error rate driven primarily by the 50% least excitable neurons (that is, the 178

hypoexcitable fraction). This increase in error rates in response to increasing inhibition 179

predicts that lithium nonresponsive patients receiving excitability-lowering mood 180

stabilizers, potentially including anticonvulsants [46,50], may exhibit a ceiling effect on 181

their cognitive performance with treatment. In other words, reduction of pyramidal cell 182

hyperexcitability may improve memory performance to a point, after which it may 183

worsen again. These results highlight the importance of understanding how mood 184

stabilizers may normalize the distribution of neuronal excitability, rather than merely 185

reducing hyperexcitability overall. The complexity of this type of intervention stands in 186

contrast to the potential effects of treatment on lithium responders, whose CA3 187

pyramidal cells do not show a wide variation in hyperexcitability levels [47,48]. For 188

lithium responders, simply limiting cellular hyperexcitability would be predicted to 189

improve pattern completion. Future studies should examine behavioural measures of 190

pattern completion in lithium responders and nonresponders from whom iPSC-derived 191

CA3 pyramidal cell-like neurons have been cultured, and whose excitability 192

distributions (mean excitability and variance) are well characterized. Such studies 193

should then characterize how neuronal excitability distributions are affected when the 194

neuronal cultures are exposed to mood stabilizers to which patients demonstrably 195

respond or fail to respond. Our results predict that persistent variance in excitability 196

despite treatment with excitability-lowering mood stabilizers will be associated with 197

worse behavioural pattern completion performance in patients with BD. 198

Our results also emphasize the importance of understanding the mechanisms 199

underlying the diversity of neuronal excitability in lithium nonresponders. Stern et 200

al. [47, 48, 51] showed that BD nonresponders have reduced sodium currents on average 201

as compared to the neurons derived from healthy individuals. This reduction in sodium 202

currents is paired with an increase of several types of potassium currents. Differences in 203

sodium currents were found to potentially mediate variation between hyperexcitable and 204

hypoexcitable neurons from lithium nonresponders; the neurons with the average or 205

high sodium currents were mostly hyperexcitable, while the neurons with sodium 206

currents below the average (which is already lower in the nonresponders compared to 207

both controls and the responders) were mostly hypoexcitable and unable to produce 208

action potentials even in response to current injections. We believe that this reduction 209

in the sodium currents that is paired with an increase in potassium currents may have a 210

strong influence on the BD nonresponders’ neuronal electrophysiological diversity. 211

However, the underlying cause of this diversity in sodium and potassium conductances 212

within individual patients is unknown. Upon application of chronic lithium treatment, 213

neurons derived from the BD lithium responders, increased their sodium currents and 214

decreased their potassium currents, “normalizing” their neurophysiology and making 215

them more like control neurons [47,51]. Lithium even had the effect of normalizing 216

neuronal morphology. In contrast, when treating the neurons with valproic acid [50], 217

both neurons derived from BD responders and the nonresponders, exhibited a reduction 218

in their sodium currents. This drives neurons derived from BD nonresponders even 219

further away from the normal neurophysiology [52], further supporting the notion that 220

using medication to simply decrease hyperexcitability may not be the optimal treatment 221

and the overall neurophysiological features of the neurons and the network that they 222

form should be considered. 223
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A major strength of our study is the simplified and well-controlled nature of our 224

computational model of the CA3. This facilitated precise control over the overall and 225

mean levels of excitability variance in the CA3 pyramidal cell population. The 226

simplicity of this model facilitated the testing of many potential confounding factors, 227

ultimately demonstrating that the relationship between variance in CA3 pyramidal cell 228

excitability and pattern completion deficits were invariant to overall levels of inhibition, 229

connectivity levels, pattern load, and network sparsity. However, the simplicity of this 230

model is also a limitation, given that it is (by definition) an abstraction of real-world 231

neuronal networks. For example, our model does not include the large diversity of 232

interneuron types in the CA3 that may be considered in more detailed biophysical 233

models [22]. The leaky integrate and fire point neurons used in our model also do not 234

capture the nuances of the structural and biophysical properties of the somatodendritic 235

tree of CA3 pyramidal cells [40, 41]. Although we could not identify a specific level of 236

experimentally-determined variance in CA3 pyramidal cell-like excitability, our results 237

are robust to this because we examined pattern completion performance across the full 238

range of excitability variance available under our model. Our model also employs a 239

relatively simple and dense connectivity pattern between CA3 pyramidal cells. The 240

connectivity patterns between CA3 pyramidal cells have previously been shown to 241

incorporate complex motifs [18], although simpler dense and random connectivity 242

patterns as employed in the present study have been shown to generate similar network 243

behaviour [19]. To efficiently use computational resources, we employed the simpler 244

approach, which facilitated our examination of different network conditions in 245

sensitivity analyses. 246

Conclusion 247

In conclusion, our study suggests that the diverse excitability of CA3 pyramidal cell-like 248

neurons observed in lithium nonresponders may predict pattern completion deficits in 249

these patients. These pattern completion deficits are invariant to overall excitability 250

levels, suggesting that even if overall CA3 pyramidal cell excitability is controlled in 251

lithium nonresponsive BD patients, these patients may continue to exhibit cognitive 252

deficits that depend on pattern completion. These predictions should be validated 253

experimentally using behavioural paradigms that require patients to first encode a set of 254

stimuli, after which they must either (A) recall those stimuli or (B) discriminate the 255

studied stimuli from novel/lure stimuli, given partial or noisy/corrupted cues. Such 256

paradigms exist [20], and should be used to study behavioural pattern completion in 257

lithium responsive and nonresponsive patients, in parallel with excitability variance 258

investigations using iPSC-derived CA3 pyramidal cell-like neurons derived from the 259

same patients. Furthermore, it would be useful to examine these behavioural pattern 260

completion deficits and how they correlate to both clinical and cellular responses to 261

lithium or anticonvulsant mood stabilizers. Our results suggest that without 262

normalizing the complete distribution of cellular excitability in the CA3, pattern 263

completion deficits may persist in patients with BD. 264

Materials and Methods 265

Computational Model 266

Encoding Phase and Learning in the Model 267

For a given storage cycle, a pattern i ∈ {1, 2, . . . , m} is presented to the CA3. Each 268

pattern is characterized by activity in na = +n × a, neurons, where a ∈ [0, 1] is the 269
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proportion of neurons active in a given pattern, and +x, is the floor function. 270

For each pattern i ∈ {1, 2, . . . , m} presented to the CA3 in a given storage cycle, let 271

Tij ∼ Normal(0, sT ) be the spiking time of neuron j ∈ {1, 2, . . . , n}, with mean 0, and 272

standard deviation sT > 0. Following Mishra et al. [19] we set sT = 0.2, corresponding 273

to 20% of a storage cycle. The activation level of neuron j in pattern i is 274

Zij = exp
{

−T 2
ij

}

(Fig 1). For the excitatory synapse from neuron j to i, plasticity 275

during the encoding phase was implemented using the following symmetric spike 276

timing-dependent plasticity rule [19]: 277

Jij = ϵij ×

(

J0 +
m
∑

k=1

¶ijk

[

exp

{

−
|Tki − Tkj |

Äpot

}]1

0

)

(3)

where ϵij ∼ Bernoulli(cij) is a binary random variable with probability cij indicating 278

whether there is an excitatory connection from neuron j to i, ¶ijk is an indicator 279

variable denoting whether both neurons i and j are active during pattern k, and 280

[x]10 = max {min {x, 1} , 0}. The value J0 = 0 indicates that the base synaptic strength 281

is 0. The synaptic plasticity time constant Äpot was set to 1, corresponding to a single 282

storage cycle [19]. 283

Pattern Completion Task and Recall Dynamics in the Model 284

After a CA3 network learns patterns Z = (Zij)
j=1,...,n

i=1,...,m
, we evaluated pattern 285

completion by presenting the network with an incomplete/corrupted version of each 286

pattern in Z, and evaluating the accuracy with which the CA3 network could recover 287

the original pattern. 288

Dynamics of pattern completion during recall were simulated by feeding a partial or 289

noisy “seed” input pattern to the CA3 network, and allowing network dynamics to 290

equilibrate over 10 recall cycles. The seed pattern corresponding to pattern 291

k = {1, 2, . . . , m} is controlled by parameters, b1 ∈ [0, 1] (the proportion of neurons in 292

the seed pattern that correspond to valid activations in pattern k) and b2 ∈ [0, 1] (the 293

proportion of spurious additional activations that were not present in the true pattern 294

k). Increasing b1 corresponds to providing the network with a seed pattern that is more 295

accurately reflective of a true pattern upon which the synapses were trained during 296

encoding. Increasing b2 corresponds to adding more “noise” in the form of spuriously 297

active neurons. In the present study, as in Mishra et al., [19] we set b1 = 0.5, and b2 = 0. 298

The total synaptic input into neuron i at recall cycle t is: 299

hi(t) = n−1

n
∑

j=1

JijΘ (t − Tj) exp

{

−
t − Tj

Äm

}

(4)

where Θ(x) is the Heaviside step function, which takes a value of 1 for x > 0, and 0 300

otherwise, Äm is the time constant for neuron i’s membrane potential (Äm is assumed to 301

be the same for all pyramidal cells in the model), and Tj is the spike time of neuron j at 302

the previous recall cycle. Neuron i spikes as part of pattern k ∈ {1, 2, . . . , m} if 303

hi(t) > go
i + gI

i S, where S is the sum of all neural activity at the previous recall cycle, 304

go
i = 0 is the basal action potential threshold for neuron i, and gI

i is a factor scaling the 305

degree of inhibition received by neuron i. S models a general inhibitory population 306

whose activity is proportional to the total network activity at the previous recall cycle. 307

All simulations were conducted using custom scripts in the Julia programming language 308

(v. 1.9.0), which are available as supplementary material (S1 File). 309
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Supporting information 310

S1 Fig. Interactions between model parameters and pattern correlation. 311

Activity correlation (y-axis) and interactions between the diversity of hyperexcitability 312

(Ãg; x-axis), activation level (a), and mean level of inhibition (µg). Coloured lines 313

represent the pattern load, ranging from m=5 (red) to m=65 (indigo), in steps of 5, 314

according to a rainbow palette. 315

S2 Fig. Interactions between model parameters and hit rates. Hit rates 316

(y-axis) and interactions between the diversity of hyperexcitability (Ãg; x-axis), 317

activation level (a), and mean level of inhibition (µg). Coloured lines represent the 318

pattern load, ranging from m=5 (red) to m=65 (indigo), in steps of 5, according to a 319

rainbow palette. 320

S3 Fig. Interactions between model parameters and false alarm rates. False 321

alarm rates (y-axis) and interactions between the diversity of hyperexcitability (Ãg; 322

x-axis), activation level (a), and mean level of inhibition (µg). Coloured lines represent 323

the pattern load, ranging from m=5 (red) to m=65 (indigo), in steps of 5, according to 324

a rainbow palette. 325

S1 File. Code repository to reproduce experiments and analyses. 326
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