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Summary

The perirhinal cortex (PER) supports multimodal object recognition, but how multimodal
information of objects is integrated within the PER remains unknown. Here, we recorded single
units within the PER while rats performed a PER-dependent multimodal object-recognition task.
In this task, audiovisual cues were simultaneously (multimodally) or separately (unimodally)
presented. We identified two types of object-selective neurons in the PER: crossmodal cells,
showing constant firing patterns for an object irrespective of its modality, and unimodal cells,
showing a preference for a specific modality. Unimodal cells further dissociated unimodal and
multimodal versions of the object by modulating their firing rates according to the modality
condition. A population-decoding analysis confirmed that the PER could perform both modality-
invariant and modality-specific object decoding — the former for recognizing an object as the
same in various conditions and the latter for remembering modality-specific experiences of the

same object.
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Introduction

Our brains can effortlessly integrate information from different sensory modalities to form a
unified representation of the world 2. This natural ability is also evident during object
recognition, as one can quickly identify one’s cat by visually perceiving its appearance or
hearing its distinctive meow. The ability to recognize objects crossmodally has been reported not
only in humans, but also in nonhuman primates *#, rodents >/, dolphins 8, and even insects °.
However, most studies on object recognition have neglected the multisensory nature of this

process. Object recognition has been studied primarily using unimodal stimuli, such as visual

10-12 13,14

stimuli , or uncontrolled multimodal stimuli, such as 3D “junk” objects '>*'#, without a

specific goal of investigating multimodal processing. This tendency is also evident in studies of
the perirhinal cortex (PER), a region well known to play a critical role in object recognition 1529,

Findings from several studies have implied that the PER is engaged in “multimodal”
object recognition. Anatomically, it has been shown that the PER receives inputs from areas that
process diverse sensory modalities, including those from visual, auditory, olfactory, and

somatosensory cortices 2123

. In rodents in particular, these areas are known to send
monosynaptic inputs to the PER 22, Experimental results further support the involvement of the
PER in multimodal object recognition. In human functional magnetic resonance imaging (fMRI)
studies in which subjects were presented visual-auditory or visual-tactile stimuli that were either
from the same (congruent) or different (incongruent) objects, activity within the PER was found
to be greater when the two stimuli were congruent 2+2°, The necessity of the PER for multimodal
object recognition has also been tested using crossmodal versions of a delayed nonmatch-to-
sample task in nonhuman primates * and a spontaneous object-recognition task in rodents 3. In
these tasks, in which animals sampled an object using one sensory modality (e.g., tactile), and
then were tested for retrieval of object information using an unused sensory modality (e.g.,
visual), lesioning or inactivating the PER resulted in performance deficits. These results indicate
the involvement of the PER in multimodal object recognition, but the mechanisms underlying
these functions remain largely unknown.

We hypothesized that the PER may support multisensory object recognition by
integrating multimodal inputs from an object to form a unified representation of the object.

Considering the associative nature of the PER 2672, the region can be expected to integrate
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information from multiple sensations, rather than processing it separately. Indeed, it has been
shown that PER neurons do not represent individual sensory attributes separately in rats
performing behavioral tasks using multimodal stimuli 3%*!, However, these studies have only
reported neural correlates of behavioral responses or rewards associated with objects, rather than
actual information about the objects themselves. Accordingly, in the current study, we
investigated how multimodal information is integrated to create a unified representation of an
object while minimizing the influence of other task-related variables, such as behavioral
response or reward outcome.

To test the abovementioned hypothesis, we developed a multimodal object-recognition
task for rats employing visual and auditory cues. By requiring a nose-poke during object cue
sampling, our task allowed presentation of different task phases while observing their neural
firing correlates in a temporally controlled manner. Our findings suggest that rats can recognize a
familiar object (originally learned multimodally) almost immediately when cued by a unimodal
sensory attribute alone (e.g., visual or auditory) without additional learning. However,
inactivating the PER resulted in performance deficits in both multimodal and unimodal
recognition conditions. Physiologically, we discovered that most PER neurons exhibited a
constant selectivity pattern for an object regardless of its sensory modality. However, a
significant proportion of neurons also showed a preference for a specific sensory modality
condition during object information processing. A population-decoding analysis revealed that
these subpopulations of neurons enabled both modality-specific and modality-invariant

recognition of objects.

Results

The PER is required for multimodal object recognition

To test multimodal object recognition while controlling the sampling of the object’s unimodal
(i.e., visual and auditory) attributes, we developed a behavioral paradigm for rats that would
enable stable, simultaneous sampling of multimodal cues (Fig. 1A). In the sample phase of this

protocol, rats triggered the onset of cues by nose-poking a center hole and were required to
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maintain their nose-poke for at least 400 ms. If a rat failed to maintain its nose-poke for 400 ms,
the trial was stopped and the rat was allowed to retry the nose-poke after a 4-s interval (Fig. S1).
After a successful (>400 ms) nose-poke, the cues disappeared and doors covering left and right
choice ports were opened simultaneously. In the response phase, rats were required to choose
either the left or right port based on the sampled cue. Rats completed their choice responses
within 600 ms in most trials (Fig. S2). A food reward was provided only after a correct choice

response was made (reward phase), followed by 2-s inter-trial interval.

Sampling Sampling Trial
start end end
Sample phase . Response phase : Reward phase
; Left response
' ' ' (correct)
i Visual Auditory ! : ™
i stimulus stimulus . . i’!ﬁm

= . |OPEN| &g [OPEN ; v
O Q) Ol or
: - : Right response
(incorrect)

A

400 ms <600 ms

D ; » Ti
75 S~
Nose-poke start Nose-poke end  Choice response
(=400 ms) (Left or Right)
B C
Modality Condition
Object Correct Cue Correct
VA (multimodal)| V (visual) | A (auditory) |F€SPonse C (control) |response
BY 5kHz pe 5kHz
Boy +\Ww ww Left Left I Left
Boy-VA Boy-V Boy-A C-L
10kHz = 10kHz
Egg * N G T Right Right I Right
Egg-VA Egg-V Egg-A C-R

Fig. 1. Multimodal object-recognition task. (A) Illustration of the apparatus and the trial structure of the
multimodal object-recognition task. Rats sampled visual and auditory cues simultaneously or separately
for 400 ms (sample phase) and then made a choice response based on the identity of the cue (response
phase). A correct choice response resulted in a food reward (reward phase). (B) Object conditions used in

the multimodal object recognition task. Two different objects (Boy and Egg) were presented in three
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118  different modality conditions: multimodal (VA), visual (V), and auditory (A). The correct choice response
119  was determined by the identity of the object. (C) Two simple visual cues were introduced as control (C)
120  stimuli. Each control stimulus was also associated with either the left (C-L) or right (C-R) choice

121  response (i.c., the same responses required by object conditions).

122

123 To test the rat’s ability to recognize objects with multiple sensory modalities, we

124 presented two different multimodal objects, Boy and Egg, consisting of different combinations of
125 visual (images of a boy-shaped and an egg-shaped toy) and auditory (5 and 10 kHz sine-wave

126  tones) attributes during the sample phase (Fig. 1B). Objects were tested under three modality

127 conditions: multimodal, visual, and auditory. In the multimodal condition, visual and auditory

128 cues associated with an object were presented simultaneously during the sample phase. In

129  unimodal — visual or auditory — conditions, only the object’s visual or auditory information was
130 presented as a cueing stimulus. If the rat responded correctly to the object’s identity regardless of
131 the modality condition, it was rewarded with a piece of cereal. The combination of audiovisual
132 cues and stimulus-response contingency were counterbalanced across rats. In control conditions,
133 rats learned to dissociate two simple visual stimuli composed of black and gray bars (Fig. 1C). In
134 these conditions, the required left and right choice responses were the same as those in object

135 conditions. In sum, eight stimulus conditions were used in this task: six object conditions (two
136 objects x three modality conditions) and two control conditions.

137 To test whether rats are able to retrieve multimodal objects when cued by a unimodal

138 stimulus under conditions in which the PER is inactivated, we conducted a drug-inactivation

139 experiment (n = 6). After training in multimodal and control conditions, rats were sequentially
140 tested under multimodal, visual, auditory, and control conditions in separate sessions (Fig. 2A).
141 The order of visual and auditory sessions was counterbalanced across rats. For each condition,
142 we first established baseline performance by injecting vehicle control (phosphate-buffered saline
143 [PBS]) into the PER; we then tested performance in rats with an inactivated PER, achieved by
144 injecting muscimol (MUS) bilaterally into the PER. Importantly, the sessions with PBS

145 injections, either visual (V1) or auditory (A1) (Fig. 2A), marked the first instances where rats

146  were required to recognize objects, originally learned multimodally, solely based on their

147 unimodal sensory attributes. In a unimodal object recognition session, objects were presented
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148 multimodally (visual and auditory) for the first 20 trials, and then subsequently presented in a

149 unimodal (visual or auditory) fashion.

150
A
Surgery Drug injection
E Post-surgical E PBS MUS
Pre-surgical training H training . AN D .
VA> C > VA& C |_>| VA& C |—1->|VA1|—>|VA2|—> V1 _>|vz —{ A1 _> A2 _>| c1 |_>| c2|
<14 days <5 days
pseudo-random order
B c
V1 (rat#3) A1 (rat#3) V1 (all rats) A1 (all rats)
100 1 O 1 T 0 O 1 0 100 10000 U 100 = 100 —
— += 80 < = + 80 T
8 g J 3 1 5T ¢+ T=
g 2 60 Iz 2 60 I
3] 8 10 8 10
X R 204 \a v X 204 va A
T y v v T 1 0 T v v T T 1 0 0
20 40 69 80 100 120 20 40 60 80 100 120 B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6
Trial Trial Trial block (20 trials) Trial block (20 trials)
—— Estimated learning curve | Correct trial
—— 90% confidence intervals | Error trial
D DAPI E
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erat#1 erat#2 erat#3
erat#4 rat #5 rat #6
F H
%)
Q
£
o
B ‘."-
8 2
5 o)
S :
R 2
g
<
151

152 Fig. 2. Necessity of the PER for multimodal object recognition. (A) Illustration of behavioral training
153 and testing schedules for the PER-inactivation experiment. Note that animals were subjected to either the
154 visual or auditory condition for the first time in PBS-injected visual (V1) or auditory (A1) sessions. (B)
155  Estimated learning in V1 (left) and A1 (right) sessions of an example rat. In trial 21, where visual or

156  auditory conditions were first introduced, the rat quickly adapted without additional learning. (C) On
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157  average, correctness did not significantly change across trials within V1 (left) or Al (right) session,

158  indicating that rats could perform unimodal retrieval without additional learning. Each trial block

159  consisted of 20 trials. (D) Histological verification of injection sites in the PER. White dotted lines

160  indicate the border of the PER. The numbers on each section indicate the distance from bregma. (E)

161  Summary of cannula-tip locations in all rats. (F) Behavioral performance in each condition was compared
162 between PBS and MUS sessions. Performance was significantly impaired in all object conditions (VA, V,
163  and A) by inactivation of the PER, but remained intact in the control (C) condition. (G) The latency

164  median did not change significantly after inactivating the PER. (H) The average number of nose-poke

165  attempts did not change significantly after inactivating the PER. Data are presented as means + SEM (n =
166 6;*p <0.05, "p = 0.062; n.s., not significant).

167

168 Performance dynamics of PBS-injected rats in visual and auditory sessions were

169  displayed as learning curves, estimated from a given session (Fig. 2B). Upon first encountering
170 the visual or auditory condition (Trial 21), rats showed no significant drop in performance and
171 their performance remained stable until the end of the session. A statistical analysis of results for
172 all PBS-injected rats revealed no significant increase or decrease in performance across trial

173 blocks (20 trials) in either visual (F(s2s) = 0.95, p = 0.47) or auditory (Fs2s) = 0.22, p = 0.95;

174 one-way repeated measures ANOVA) sessions (Fig. 2C). These results indicate that rats easily
175  recognized an object originally learned multimodally using one of its unimodal attributes, and
176  this crossmodal recognition process required minimal training.

177 To verify the necessity of the PER in the task, we examined the effect of MUS injection
178  on task performance. Histological results confirmed that MUS was successfully bilaterally

179  injected into the PER (Fig. 2D and 2E). The average performance of rats (n = 6) in PBS sessions
180  was significantly higher than predicted by chance (50%) in all conditions — multimodal (ts) =

181  21.2 p<0.0001); visual (ts5) = 7.8, p = 0.0005); auditory (ts) = 13.1, p <0.0001); and control (ts)
182 =29.3, p<0.0001) — as determined by one-sample t-test. Inactivating the PER with MUS

183 significantly decreased performance (F(1,5)= 165.4, p = 0.0006, two-way repeated measures

184  ANOVA) (Fig. 2F). A post hoc analysis revealed performance deficits in multimodal (ts) = 3.72,
185 p=0.028), visual (t5) = 2.39, p = 0.062), and auditory (t5) = 3.45, p = 0.027) conditions (paired
186  t-test with Holm-Bonferroni correction), but not in the control condition (ts) = 0.37, p = 0.36,

187  paired t-test). Trial latency (i.e., from trial onset to end of choice) was not significantly affected
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by MUS injection (F(1,5) = 0.13, p = 0.73; two-way repeated measures ANOVA) (Fig. 2G).
Nose-poking behavior was not affected by PER inactivation, as the average number of nose-poke
attempts was not significantly different between PBS and MUS sessions (F(1,5) = 0.92, p = 0.38,
two-way repeated measures ANOVA) (Fig. 2H). Collectively, these results demonstrate that the
PER is necessary for object recognition in all modality conditions and that the decrease in

performance is not attributable to a generic deficit.

Object-selective neural activity in the PER is characterized by its transient and sequential
firing patterns

Inactivation of the PER resulted in performance deficits whenever object recognition was
required regardless of the modality condition. To further understand the functions of the PER in
multimodal object recognition, we searched for neural correlates of multimodal object
recognition by recording single-unit spiking activity in the PER using tetrodes (Fig. 3A). Based
on their basic firing properties, most neurons could be classified into regular-spiking neurons
(68%, 234 of 348), with bursting (24%, 82 of 348) and unclassified (9%, 32 of 348) neurons also
being observed (Fig. 3B), as previously reported 632,

Before obtaining single-unit recordings, rats were first trained in multimodal and control
conditions; unimodal (visual or auditory) recognition conditions were introduced upon initiation
of recordings (Fig. 3C). All testing conditions (multimodal, visual, auditory, and control) were
presented pseudo-randomly within a recording session. We confirmed that rats (n = 8) were able
to successfully recognize objects in all conditions in their first recording session — multimodal
(tn =12.36, p < 0.0001); visual (t7) = 5.88, p = 0.0006); auditory (t;7y = 4.26, p = 0.0037); and
control (t7) = 25.9, p <0.0001) — as determined using one-sample t-test (chance level, 50%) (Fig.
3D). Significant differences in performance were also noted among conditions (Fi21) = 22.87, p
<0.0001, one-way repeated measures ANOVA), with rats performing significantly better in the
multimodal condition than in either the visual (t7) = 3.43, p = 0.022) or auditory (t(7)=4.22,p =
0.016; paired t-test with Holm-Bonferroni correction) condition. Performance in the control
condition was significantly higher than that in all other conditions (control vs. multimodal, t(7) =
3.92, p = 0.017; control vs. visual, t;7y = 15.47, p < 0.0001; control vs. auditory, t7y = 6.19, p =
0.0023; paired t-test with Holm-Bonferroni correction). Similar behavioral results were observed

in all recording sessions (Fig. S2).
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220  Fig. 3. Single-neuron recordings during multimodal object recognition. (A) Histological verification
221  of tetrode locations in the PER by Nissl (top) and myelin (middle) staining of sections across the

222 anteroposterior axis. The estimated tetrode tip locations in all rats are summarized on the atlas (bottom).
223 Dotted lines demarcate the borders of the PER. Tetrode tip locations are marked with red asterisks. The
224 numbers above each section indicate the distance from bregma (mm). (B) Examples of single neurons
225  classified according to their basic firing properties. Based on the autocorrelograms (left), cells were

226  categorized as regular-spiking (top), bursting (middle), or unclassified (bottom). Scale bars in each spike
227  waveform (right) indicate amplitude (vertical, 100 pV) and width (horizontal, 500 ps). The numbers

228  below the waveform show the mean firing rate and spike width of each neuron. (C) Illustration of training
229  and recording schedules for electrophysiological experiments. In the recording sessions, all stimulus

230  conditions (VA, V, A, C) were pseudo-randomly presented within a session. Rats experienced visual or
231  auditory conditions only in the recording sessions. (D) Behavioral performance in the first recording

232 session. Although rats performed better in pre-trained multimodal and control conditions, they still

10
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233 showed better than chance-level performance in visual and auditory conditions. Data are presented as

234 means = SEM (n=8; *p <0.05, *p <0.05, **p < 0.01, ***p <0.001; n.s., not significant.)

235

236 We next sought to describe object selectivity of PER cells by determining how these

237  neurons respond to different object identities regardless of sensory modality. To this end, we
238 grouped all correct trials into different object and modality conditions and then calculated the
239  firing rates associated with each condition during the task epoch, measured from the start of the
240  sample phase to the end of the response phase (900-ms duration) (Fig. 4A). Overall firing

241  patterns were obtained by averaging firing rates in different modality conditions for each object,
242 Boy and Egg (Fig. 4A and 4B, black lines). For each neuron, we defined an object-selective

243 epoch as the period in which the firing rate for either object was significantly different from that
244 of the other object in more than five consecutive time bins (10 ms/bin) (Fig. 4B, example

245 neurons #1-6). Since the object-selective epoch defined here could be attributable to the choice
246  response and not necessarily to the identity of the object, we further excluded response-selective
247  cells identified under control condition and considered the remaining neurons to be object-

248 selective cells (hereafter, object cells) (Fig. S4). Selectivity was not maintained throughout

249  sample and response phases; thus, individual object cells were characterized by their transient
250  firing patterns. Moreover, the time bin at which the firing rate difference between objects was
251  maximal (i.e., peak selectivity time) occurred at various time points during the task epoch (Fig.

252 4B).

11
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253

254 Fig. 4. Object-selective firing patterns in the PER. (A) Raster plots (top) and spike density functions
255  (bottom) of an example neuron for Boy (left) and Egg (right) object conditions. Overall firing rates for
256  each object (black line) were obtained by averaging firing rates in different modality conditions (VA, V,
257  and A). This sample neuron showed increased firing rates for the Boy, but not the Egg object (i.e., Boy-
258  preferring neuron). Note that the interval from 0 to 900 ms after the cue onset, designated the task epoch,
259  was the analysis target. (B) Example object cells in the PER showing selective firing patterns for an

260  object over the object-selective epoch, indicated in yellow. Orange arrowheads indicate the peak

261  selectivity time (i.e., time when selectivity was maximal). (C) Population object selectivity of all object
262 cells and their peak selectivity times. The selective epoch of each object cell was marked and then aligned
263  according to their peak selectivity time. The vertical gray line indicates the temporal boundary of sample

264  and response phases. (D) Peak selectivity time and duration of the selective epoch. Each dot indicates an
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265  individual object cell. Dotted line denotes the median selectivity duration (80 ms). (H) Comparison of
266  selectivity durations between cells whose peak selectivity times appeared in different time ranges. No

267  significant difference was found. Data are presented as means = SEM (n.s., not significant).
268

269 To visualize the characteristics of object cells at the population level, we constructed a
270  population object-selectivity plot (Fig. 4C), in which object-selective epochs of individual object
271 cells were marked and then aligned by their peak selectivity time. Interestingly, we observed a
272 sequentially ordered firing of object-selective cells such that the population of object cells tiled
273 the task epoch (from the sample phase to the response phase) with their object selectivity. We
274 further investigated the possibility that object selectivity might be stronger in certain time bins,
275 even when this sequential pattern was present. For this, we used the duration of selectivity as a
276  measure of the magnitude of object selectivity and examined the relationship between the

277  selectivity duration and peak selectivity time (Fig. 4D). The median selectivity duration was

278 80 ms, confirming the transient nature of object-selective firing in the PER. We found no

279 evidence that cells with greater selectivity were more active in certain time bins. Selectivity

280  durations were not significantly different upon grouping cells into four temporal intervals based
281  on their peak selectivity time (F,145) = 0.14, p = 0.96; one-way ANOVA) (Fig. 4E). Taken

282  together, these observations indicate that object cells in the PER are characterized by their

283  transient and sequential activity patterns, which tiled the entire task epoch. Notably, these

284  characteristics were present regardless of whether the rats were sampling the cues (sample phase)

285  or choosing a behavioral response in the absence of cues (response phase).

286

287  Both visual and auditory information processings occur during object-selectivity firing in
288 the PER

289  If PER neurons solely focus on the identity of an object and its associated behavioral response,
290  object-selective patterns should remain constant irrespective of the modality condition.

291  Conversely, it could be argued that distinguishing between events associated with experiencing
292 an object based on its distinct modality information is crucial for episodic memory. To determine

293 whether PER object cells can encode a particular sensory modality, we applied multiple linear

13


https://doi.org/10.1101/2023.11.20.567750
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567750; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

294 regression to firing rates during the object-selective epoch (see Methods for details). In this

295  regression model, f; and > are regression coefficients that represent the visual and auditory

296  responsiveness, respectively, of the preferred object (i.e., the object condition with higher firing
297  rates). Visual and auditory information-processing neurons within the PER were identified based
298  on the relationship between £; and £ (Fig. SA). An example of an object cell that predominantly
299  fired for the visual attribute of Boy is cell #7 (Fig. SA-ii), which had higher firing rates in

300  multimodal and visual conditions compared with the auditory condition. This pattern is reflected
301  in higher B; versus > values (Fig. SA-iii). Cell #8, on the other hand, was responsive to the

302 auditory attribute of Boy, as its firing rates in the multimodal and visual condition were higher
303  compared with those in the visual condition (Fig. SA-ii); it also had higher £> than f; values

304  (Fig. 5A-iii). A crossmodal cell type, distinct from the unimodal cell type described above that
305  exhibited no significant preference for a particular sensory modality, was also observed (Fig.

306  5B). An example of a crossmodal cell is cell #9, which exhibited almost equal firing in response
307  to both sensory modalities of its preferred object (Boy) (Fig. 5B-ii); its £; and /> values were also
308  similar (Fig. SB-iii).

309 To illustrate the patterns of modality correlates, we created a scatter plot of ; and £

310  values for all object cells (Fig. 5C). We then verified that the PER system did not preferentially
311 process one of the sensory modalities by first comparing £; and f> for all object cells (Fig. SD).
312 This analysis showed no significant difference between f; and 2 (W = 4794, p = 0.13; Wilcoxon
313 signed-rank test), indicating that the PER did not have a significant bias toward a specific

314 sensory modality. We then classified neurons based on the difference between their #; and £

315  values such that neurons whose f; values were significantly higher than their §> values were

316  classified as visual cells, whereas those with significantly higher > than f; values were classified
317  as auditory cells. Other object cells were classified as crossmodal cells. Although the majority of
318  object cells were categorized as crossmodal (68%), both auditory cells (18%) and visual cells

319 (14%) were identified (Fig. SE). The small difference in the proportion of visual and auditory
320  cell categories was determined to be insignificant (% = 0.89, p = 0.34; chi-square test). Detailed
321  comparisons of selectivity patterns revealed that auditory cells exhibited stronger selectivity in
322 the sample phase and their selective period was longer than that of visual cells (Fig. SS). These
323 findings suggest that modality information processing within the PER is heterogeneous,

324  potentially enabling the retrieval of both object identity and its associated modality information.
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325

326  Fig. 5. Unimodal and crossmodal response patterns of object cells in the PER. (A) Examples of

327  unimodal cells that were responsive to either the visual or auditory attribute of an object during the

328  selective epoch. Spike density functions (i) and mean firing rates within the object-selective epoch (ii).
329  Multiple linear regression was applied to firing rates within the object-selective epoch to obtain 3; and B,
330  —regression coefficients reflecting the magnitude of visual and auditory responses, respectively (iii). Cell
331  #7 mainly responded to the visual attribute of Boy (1 > 2), whereas cell #9 was responsive to the

332 auditory attribute of Boy (1 < B2). (B) Spike density functions (i), mean firing rates (ii), and regression
333 coefficients (iii) of a crossmodal cell. The cell showed no specific bias for visual or auditory information
334  processing, as indicated by similar B, and 3, values. (C) Scatter plot and histograms of visual (B;) and
335  auditory (B2) coefficients in all object cells. Neurons were classified as either visual (cyan) or auditory

336 (pink) cells if the difference between visual and auditory coefficient was significant. Others were
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337  classified as crossmodal cells (gray). (D) Visual and auditory coefficients of all object-selective cells were
338  not significantly different. Each line indicates an individual object cell. (E) Proportions of visual,

339  auditory, and crossmodal neurons within the object cell category. Visual and auditory cells were grouped

340  as a unimodal cell type. The numbers in parentheses denote the number of neurons. (F) Anatomical

341  locations of object cells along the anteroposterior axis of the PER and their unimodal (or crossmodal)

342 response patterns. Differences between B; and [, did not exhibit a significant linear relationship with

343  anatomical locations of the cells. The dotted black line indicates the linear regression line, and the shaded

344  area is the 95% confidence interval (n.s., not significant).

345

346 Since the PER receives direct inputs from visual and auditory cortices %23

, it is possible
347  that the activity of visual and auditory cells in the PER is driven solely by inputs from the

348 sensory cortices. If so, the posterior PER, where visual inputs are relatively dominant, might
349 have more visual cells, whereas the anterior PER, which receives more auditory inputs, might
350  possess more auditory cells. To test this hypothesis, we examined the relationship between the
351  anatomical locations of cells along the anteroposterior axis of the PER and differences between
352 visual (#;) and auditory (f2) coefficients (Fig. SF). We found no evidence for regional bias in
353 coefficients in the posterior PER that would indicate the dominance of visual processing over
354  auditory processing. Instead, visual and auditory cell types were evenly distributed along the
355  anteroposterior axis of the PER. These results suggest that the activities of visual and auditory
356  cells in the PER do not solely rely on inputs from visual and auditory cortices, respectively.

357

358  Unimodal cells in the PER can further dissociate different modality conditions

359  Ifunimodal neurons are invariably activated by a specific sensory input, their activity levels
360  should remain constant between multimodal and their preferred unimodal conditions, reflecting
361  the fact that both conditions contain the same image or sound of an object. However, it is also
362  possible that unimodal cells are further modulated by different modality conditions while

363  maintaining their preferred visual or auditory information. To examine the modulation of firing
364  rates across modality conditions, we defined a rate modulation index (RMI) based on Cohen’s d,
365  where larger d values indicate a greater difference between groups (see Methods). RMIs,

366  calculated as the difference in mean firing rates between modality conditions, were determined
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367  for multimodal and visual conditions (VA — V) and multimodal and auditory conditions
368 (VA-A).
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371  Fig. 6. Further dissociation of modality conditions by visual and auditory cells. (A) Examples of
372 visual cells (cells #10 and #11) demonstrating further dissociation of visual and multimodal conditions,
373 but not multimodal and auditory conditions, as shown by their spike density functions (i) and mean firing
374  rates within the selective epoch (ii). Differences in firing rate, quantified as RMI, showed that firing rates
375

were different between visual and multimodal conditions (i.e., negative VA — V), but not between
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376  multimodal and auditory conditions (i.e., VA — A near zero). (B) Scatter plot and histograms of VA -V
377  and VA — A in visual cells. For visual cells, the average VA — V (vertical red line) was significantly

378  different from zero, whereas the average VA — A (horizontal gray line) was not. (C) Examples of auditory
379 cells (cells #12 and #13) demonstrating further dissociation of all modality conditions, as shown by their
380  spike density functions (i) and mean firing rates within the selective epoch (ii). RMIs showed that firing
381  rates were different between auditory and multimodal conditions (i.e., negative VA — A), and also

382  between multimodal and visual conditions (i.e., positive VA — V). (D) Scatter plot and histograms of

383 VA -—Aand VA -V in auditory cells. The average VA — A (vertical red line) and average VA -V

384  (horizontal red line) differed significantly from zero (***p < 0.001, ****p < 0.0001; n.s., not significant).

385

386 Cells #10 and #11, examples of visual cells, are shown in Figure 6A with their RMIs.
387  The subtracted value between multimodal and unimodal conditions (VA — V) was large and

388  negative in both cells, indicating higher activities during the visual condition compared with the
389 multimodal condition. Notably, visual cells exhibited “multisensory suppression”, such that

390  firing rates were lower in the multimodal condition even though that condition contained the

391  same visual information as the visual condition. However, VA — A values in both cells were

392 small (near zero), indicating that their firing rates for multimodal conditions were not

393 significantly different from those for auditory conditions. To visualize these patterns, we created
394  scatter plots and histograms of RMI values for visual cells (Fig. 6B). VA —V values for visual
395  cells were significantly different from zero (to0) = 8.9, p <0.0001; one-sample t-test), indicating
396  that visual cells further dissociated visual and multimodal conditions. However, VA — A values
397  for visual cells were not significantly different from zero (t0) = 1.78, p = 0.091; one-sample t-
398  test), suggesting that visual cells are not a suitable neuronal substrate for dissociating multimodal
399  and auditory conditions.

400 Next, we examined RMI values in auditory cells (Fig. 6C). In cells #12 and #13, the

401  mean firing rates for the auditory condition were higher than those in the multimodal condition
402 (i.e., negative VA — A), although both conditions contained the same auditory information. That
403 s, auditory cells, like visual cells, exhibited multisensory suppression. In addition, auditory cells
404  further dissociated multimodal and visual conditions, showing relatively higher firing rates in the
405  multimodal condition (i.e., positive VA — V). These patterns in auditory cells were visualized

406  using scatter plots and histograms of RMI values (Fig. 6D). Further analyses showed that
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407 VA — A values for auditory cells were significantly different from zero (t2¢) = 4.48, p = 0.00013;
408  one-sample t-test), indicating that these cells dissociated auditory and multimodal conditions.
409 VA —V values for auditory cells were also significantly different from zero (tze) = 9.18, p <

410  0.0001; one-sample t-test).

411 Collectively, these findings demonstrate that visual, auditory, and multimodal conditions
412 can be distinguished based on the firing rates of single auditory cells, which exhibited a rank

413 order of firing rate of A > VA > V. Further analyses revealed that crossmodal cells exhibited

414 heterogeneous patterns of neural modulation compared with unimodal cells (Fig. S7). The

415 multisensory suppression displayed by both visual and auditory cells could not be explained by
416  familiarity-coding for the multimodal condition (i.e., repetition suppression; Fig. S8). Taken

417  together, these results suggest that unimodal cell types in the PER do not merely respond to the
418  presence or absence of specific modality information. Instead, they are capable of differentially
419  representing different modality conditions by modulating their firing rates according to the

420  specific modality conditions.

421

422 The PER neuronal population can decode object identities in both a modality-specific and
423 modality-invariant manner

424  Having described different categories of object cells and their heterogeneous activity patterns in
425  response to objects with different sensory modalities, we next sought to directly assess how PER
426  neurons support multimodal object recognition. To this end, we conducted a population-

427  decoding analysis using two different linear support vector machine (SVM) classifiers to

428  evaluate distinct multimodal object-recognition processes. These two classifiers were designed to
429  test whether the PER neurons as a population could decode object identities in a modality-

430  specific manner (classifier 1; Fig. 7A—C) or a modality-invariant manner (classifier 2; Fig. 7D—
431  F). For each classifier, we sought to determine if decoding performance was significant, and

432 which cell categories contributed to the decoding.

433 For the first classifier, six object conditions — two objects, each with three modality

434 conditions — were decoded using a 6-class SVM classifier (Fig. 7A). To create a dataset, we

435  generated pseudo-populations of object cells and their firing rates during the task epoch for each
436  rat (n=15) by subsampling 5 trials from each condition (see Methods for details). We then

437  employed a 5-fold cross-validation approach to train and test the dataset, repeating the
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438  procedures (subsampling, training, and testing) 100 times. A confusion matrix was created by
439 averaging the proportions of actual and predicted conditions across rats (Fig. 7B). In the

440  confusion matrix, the proportion in the diagonal line (i.e., decoding accuracy) was significantly
441  higher compared with that in the shuffled distribution (p < 0.0001), indicating the successful

442 decoding of both object identities and modality conditions (permutation test).

443
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445  Fig. 7. Modality-specific and modality-invariant decoding of object identities by the neuronal

446  population in the PER (A) Diagram summarizing modality-specific object decoding using a linear

447  support vector machine (SVM). (B) Confusion matrix showing the average decoding accuracy of the

448  classifier depicted in A (n =5). (C) Comparison of the contribution of a single neuron to the decoding
449  accuracy between unimodal and crossmodal cells, showing a significantly higher contribution of

450  unimodal neurons to this type of decoding (n = 5). (D) Diagram summarizing the decoding of multimodal

451  objects based on unimodal information (i.e., modality-invariant object decoding) with a linear SVM. Note
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452  that the classifier was trained with visual and auditory trials only, and tested on multimodal trials only.
453  (E) Confusion matrix showing the average decoding accuracy of the classifier depicted in E (n =5). (F)
454 The contribution of a single neuron to modality-invariant object decoding was similar between unimodal
455  and crossmodal cells. Data are presented as means = SEM (*p < 0.05, ****p < 0.0001; n.s., not

456  significant).

457

458 Next, we analyzed how unimodal and crossmodal cells, defined in the previous analysis
459  (Fig. S5E), contributed to the decoding performance. We speculated that unimodal cells would
460  make a greater contribution to the dissociation of modality conditions owing to their ability to
461  dissociate not only visual and auditory inputs (Fig. SC) but also unimodal and multimodal

462 conditions (Fig. 6B and 6D). For this analysis, we tested the respective contributions to decoding
463 by quantifying the extent to which decoding accuracy decreased after shuffling data from a given
464  cell category (see Methods for details). For example, to calculate the contribution of crossmodal
465  cells to decoding, we shuffled trial labels (rows) only in features (columns) that were derived

466  from crossmodal cells. We then assessed decoding accuracy before and after implementing this
467  permutation, comparing the contribution of a single neuron in unimodal and crossmodal cell

468  categories to decoding accuracy (Fig. 7C). Single unimodal cells exhibited significantly higher
469  contributions to decoding accuracy compared with individual crossmodal neurons (t4) = 3.7, p =
470 0.021; paired t-test), indicating that the PER can decode modality-specific object information

471  based on the activities of a limited number of unimodal cells.

472 Next, we investigated whether the neuronal population in the PER could achieve

473 modality-invariant decoding of object identities. Specifically, we sought to determine if

474  multimodal objects could be decoded solely from unimodal trials, by analogy to the ability of
475  rats to retrieve multimodal objects when only unimodal cues are available (Fig. 2B, 2C, and 3D).
476  For this analysis, we trained the SVM to classify Boy and Egg objects using only unimodal trials
477  (i.e., V and A). After training, we tested the classifier with multimodal trials to determine if the
478  object identity could be successfully decoded (Fig. 7D). The creation of pseudo-populations

479  followed a process similar to that described in the previous section. In the confusion matrix, the
480  proportion along the diagonal, indicating the accuracy of invariant object decoding, was

481  significantly higher than that in the shuffled distribution (p < 0.0001; permutation test) (Fig. 7E).
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482  Thus, successful modality-invariant decoding did not simply result from multimodal and

483  unimodal conditions sharing the same choice response (Fig. S9).

484 Finally, we examined how different cell categories contributed to invariant object

485  decoding (Fig. 7F). To measure the contribution to decoding, we quantified the degree of

486  decrease in decoding accuracy after shuffling data from a given cell category (i.e., unimodal or
487  crossmodal), as in Figure 7C. In contrast to the differentiation of modality information, the
488  contribution of a single neuron to decoding performance was minimal for invariant objects. In
489  addition, both crossmodal and unimodal cells contributed similarly to decoding (t4) = 0.29, p =
490  0.78; paired t-test) (Fig. 7F). These results suggest that the PER can also accomplish modality-
491  invariant recognition of objects and further that this process is supported by population activity

492  patterns of multiple neurons, rather than by a limited subset of single neurons.
493
494

495 Discussion

496  In the current study, we investigated how the PER contributes to multimodal object recognition
497  using a behavioral paradigm in which rats retrieved multimodal objects based on the objects’
498  multimodal or unimodal attributes. Rats identified multimodal objects correctly even when

499  provided only unimodal cues, and the PER was required for normal performance. Single-unit
500  recordings revealed that PER neurons exhibited transient object-selective signals that fired

501  sequentially throughout the entire task epoch. Certain object-selective neurons responded

502 primarily to visual or auditory attributes of an object (unimodal cells), whereas others exhibited
503  equivalent selectivity across different object modalities (crossmodal cells). Unimodal cells

504  further dissociated different modality conditions through modulation of their firing rates. Lastly,
505  using a population-decoding analysis, we found that the PER was capable of accomplishing both
506  modality-specific and modality-invariant object recognition. Specifically, modality-specific

507  decoding was enabled by a small number of unimodal cells, whereas modality-invariant

508  decoding was achieved through collective activity patterns of a relatively large number of

509  neurons, regardless of their cell types. Overall, our findings suggest that the PER supports

510  multimodal object recognition by engaging in both invariant recognition of a multimodal object

511  and separation of object experiences based on modality information.
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512 As previously reported, PER inactivation in our study resulted in performance deficits in
513  the multimodal object-recognition task >7. Based on behavioral results, however, it remains

514 uncertain whether the PER is important solely in “multimodal” situations. Specifically, because
515  performance deficits were observed in both multimodal and unimodal conditions, the possibility
516  remains that the role of the PER is limited to the separate processing of visual and auditory

517  information 6. Indeed, it has been reported that the rodent PER is engaged in various tasks that
518  employ visual- or auditory-only cues **34. A similar issue is applicable to previous behavioral
519  experiments that reported performance deficits in tests of spontaneous object recognition in both
520  crossmodal and unimodal conditions °~7. Therefore, understanding the function of the PER in
521  multisensory processing requires a detailed investigation of neural activity patterns under

522 different modality conditions.

523

524  Possible advantages of transient and sequential object selectivity within the PER

525 Since we controlled the sampling and response times of rats precisely by compelling nose-poke
526  behaviors, we were able to describe the detailed temporal dynamics of neuronal activity during
527 multimodal object recognition. We discovered that object-selective signals were elicited in PER
528  neurons for a short period of time. However, this result is inconsistent with previous reports of

3536 and in vivo ¥7 settings. There are several possible

529  persistent PER activity in both in vitro
530  explanations for why we did not observe persistent object selectivity. One possibility is that PER
531  neurons in our study actually did maintain persistent firing, but object selectivity emerged

532 transiently during the persistent firing. Most neurons analyzed in the current study were

533 physiologically categorized as regular-spiking neurons, so their activities were rather persistent
534  throughout the task epoch. In addition, it is important to note that the persistent selectivity of the
535 PER reported in previous studies may be more closely related to neural correlates of a behavioral
536 response than the stimulus itself. In our task, we were able to dissociate object- and response-
537  selective signals by introducing a control condition. Notably, response signals displayed longer
538 durations of selectivity compared with object selectivity (Fig. S4). We postulate that this long-
539  lasting selectivity for the choice response might overlap with the previously reported persistent
540  selectivity.

541 We also observed that object selectivity in the PER exhibited sequential characteristics.

542 Although this sequential nature has rarely been observed in the PER, it is commonly reported in
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543 other brain regions, such as the prefrontal cortex 3, posterior parietal cortex *°, and hippocampus
544 %, This sequential pattern may have arisen because a specific behavioral sequence — maintaining
545 nose-poke and then choosing left or right — was always evoked in our task. However, it should be
546  noted that sequential coding has been reported to be beneficial for various aspects of memory
547  processing. That is, a sequential activity pattern is a way to achieve high-dimensional

548  information processing, which can enhance memory capacity and mitigate memory loss #!. It has
549  also been suggested that sequential firing patterns within the medial temporal lobe represent

550  temporal information of events, as exemplified by time cells in the hippocampus #2. The lateral
551  entorhinal cortex, which receives extensive monosynaptic inputs from the PER, has also been
552 reported to represent task-related time information 4. Thus, the PER may also contribute to the
553 time component of episodic memory by representing both time and object information in an

554  associative manner through sequential activity patterns.

555

556  Operation of both integrated and segregated encoding of multimodal object information in
557  the PER

558  Previous studies have described the PER as an associative area in terms of both its physiological
559  characteristics ?° and task-related firing patterns 2°. For example, neurons in the PER were found
560  to be responsive to two paired visual stimuli that were associated with a reward outcome 6. The
561  PER was also theorized to primarily function in the “unitization” process **. That is, it was

562 suggested that the PER plays a role in situations where complex features of a single entity must
563  be integrated, such as when experiencing a complex object with multisensory information rather
564  than sampling a simple cue. Based on these hypotheses, the PER is expected to encode

565  multimodal objects in an integrated fashion instead of representing information of a single object
566  separately based on its modality. Consistent with these expectations, we discovered that most
567  object cells in the PER exhibit constant selectivity patterns, irrespective of the modality

568  condition (i.e., crossmodal cells). We believe that our task requirements were suitable for

569  facilitating the unitization process, as the multisensory cues were spatially and temporally

570  congruent, and each audiovisual combination required the same behavioral response. Thus, our
571  results provide experimental support for the idea that single neurons in the PER can encode

572 multimodal objects in a unitized representation.
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573 However, it should also be noted that a significant proportion of unimodal cells in the
574  PER primarily responded to a specific sensory modality when processing object information, an
575 outcome that is not expected based on previous literature reports 31#4. These neurons not only
576  preferred a particular sensory modality, they also further dissociated unimodal and multimodal
577  conditions through modulation of their firing rates. These unimodal activities could be

578  interpreted as purely perceptual signals that reflect the physical attributes of visual and auditory
579  cues. The perceptual-mnemonic hypothesis, which posits that the PER is involved in both

580  perception and memory, may further support the interpretation that unimodal cells indeed

581  represent perceptual information 4~*°. However, it is unlikely that unimodal neurons simply

582  mirrored low-level perceptual features of the stimuli. If unimodal cells represented perceptual
583  signals originating from the visual (or auditory) cortex, it is likely that the posterior (or anterior)
584  PER would have more visual (or auditory) cells since visual (or auditory) input is more dominant
585  in the corresponding area. Instead, we observed that each cell category appeared to be equally
586  distributed along the anteroposterior axis of the PER. Moreover, unimodal cells showed

587  modulation by their non-preferred sensory modality, indicating that they were not simply

588  responding to the presence of a specific modality cue. Thus, unimodal cell activity in this area
589 could have been driven by intrinsic connections within the PER 2 or by inputs from other

590  higher-order associative areas, such as the prefrontal cortex and hippocampus °2. Given that
591  the PER is part of the medial temporal lobe memory system, it can be argued that unimodal

592 representations exist for memory encoding and retrieval rather than for simple sensory

593  processing.

594

595  Dual functions of the PER in multimodal object recognition: invariant recognition and

596  episodic memory

597  From a computational standpoint, an object-recognition system should be able to recognize an
598  object through an invariant representation, even if the object's physical attributes are modified '2.
599  In multimodal object recognition, it is also important that objects be identified invariantly to

600  modality information. This modality invariance can be attained by individual neurons, as
601  exemplified by “concept cells” that fire invariantly to both the image and voice of a person >3-,
602  Crossmodal cells in our study shared some commonalities with concept cells from the human

603  hippocampus as they showed some degree of invariance to modality information when coding
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object identities. However, we discovered that individual crossmodal cells within the PER do not
contribute significantly to modality-invariant object recognition, making contributions to
decoding accuracy similar to those of the unimodal cell type. This may be because crossmodal
cells were not fully invariant to modality conditions, but instead showed slight modulations in
response to different modality conditions of objects (Fig. S7). More detailed investigations of
concept-like representations also suggest that firing patterns of individual neurons can be
heterogeneous, and that population-level activities are better suited to achieve invariance %7,

In addition to the invariant recognition process, we discovered that populations of PER
neurons can perform modality-specific object decoding, a process that seems to be
counterproductive for the invariant identification of objects. However, in terms of episodic
memory, segregation of similar events (i.e., pattern separation) is a crucial computational step for
encoding and retrieving correct memory *%°°. In cases where a single object is experienced by
multiple senses, each experience should be separated into different episodes, even though they
involve the same object. Pattern separation for episodic memory is thought to be primarily
implemented in the dentate gyrus %%°!. However, since a significant portion of information
received by the dentate gyrus relies on connections between the PER and entorhinal cortex,
modality-specific information in the PER could be an essential source for pattern separation
within the dentate gyrus. In addition, it has been suggested that the PER itself can support pattern
separation when two visual stimuli are highly overlapped as they morph into each other #°.
Validating the relationship between modality-specific representations and pattern separation will
require future studies that systematically manipulate the amount of information from each

modality.

Methods

Subjects

Male Long-Evans rats (10 wk old; n = 14) were obtained and individually housed in a
temperature- and humidity-controlled animal colony. Rats were allowed free access to food and
water for 1 wk before food restriction, during which they were allowed only 2 to 3 pellets (6—10

g) per day to maintain them at ~80% of their free-feeding body weight (~400—420 g). Rats were
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housed on a 12-h light/dark cycle (lights on at § AM), and all experiments were performed in the
light phase. All animal procedures were performed in accordance with the regulations of the

International Animal Care and Use Committee of Seoul National University.

Behavioral apparatus

The apparatus consisted of an elevated chamber (22 x 35 x 40 cm; 94 cm above the floor) with a
custom-built device (22 x 18 cm) at the front of the chamber that was used for manipulating cues
and measuring animal behaviors with Arduino MEGA (Arduino) and MATLAB (MathWorks).
The frame of the device was printed with a 3D printer (Mojo; Stratasys), and the center of the
device contained a transparent acrylic window (8 x 10 cm) with a nose-poke hole (diameter, 2.4
cm; depth, 1.5 cm). The hole was equipped with an infrared sensor for measuring the onset and
maintenance of nose-poking behaviors during cue sampling. An LCD panel (3.5 inch; Nextion)
for presenting a visual cue, operated by Arduino, was positioned behind the acrylic window.
Directly behind the LCD panel was a 3W speaker, operated through an Arduino music player
module (DFPlayer Mini Mp3 Player; DFRobot), for presenting an auditory cue. The device
contained two identical ports located on the left and right side. Each port was equipped with a
servo-motorized door for controlling access and infrared sensors for detecting choice responses.
Another servo-motorized door located on the top of the port controlled the gravity-fed delivery
of a pre-loaded food reward to the choice port. A small buzzer was placed on the back of the
chamber to provide auditory feedback about the correctness of the rat’s choice. The experimental
room was dimly lit with a circular array of LEDs (0.8 lux), and white noise (68 dB) was played

through loudspeakers to block out uncontrolled noise.

Behavioral paradigm

Shaping: After 6 d of handling, a shaping stage was included during which rats learned how to
maintain nose-poking of the center hole. The required duration for nose-poke was 10 ms
beginning in the first shaping trial, and then was increased by 10 ms for each successful poke to
a maximum of 400 ms. When rats failed to maintain their nose-poke for the required duration,
the trial was stopped and a 4-s interval was given together with auditory feedback (buzzer, 230
Hz, 76 dB). Once rats successfully completed 100 trials of 400-ms nose-pokes within a 30-min

session, they advanced to the multimodal object-recognition task.
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666  Multimodal object recognition — training: Rats learned to make an associated choice response
667  based on a presented cue. Initially, the rats were trained under multimodal object conditions

668  (designated VA), in which a combination of visual and auditory cues was presented

669  simultaneously. The visual cues used were 2D photographic images of two junk objects — a boy
670  and an egg — presented via an LCD panel (1.6 lux). The two object images were adjusted to equal
671  luminance by matching their average gray values in Photoshop (Adobe). Auditory cues were

672 5 kHz and 10 kHz sine-wave tones (81 dB) that briefly repeated twice. Each object was

673  associated with either a left or right choice response. The combination of audiovisual cue and
674  stimulus-response contingency was counterbalanced across rats. An object containing a boy (or
675  egg) image was called a Boy (or Egg) object, regardless of the auditory cue associated with it.
676  Nose-poking to the center hole simultaneously triggered the onset of visual and auditory cues,
677  which remained presented for up to 400 ms while the rat maintained the nose-poke. If rats failed
678  to maintain the nose-poke for at least 400 ms (i.e., prematurely withdrawn nose-poke), cues

679  disappeared and the auditory feedback was given together with a 4-s interval. On the next nose-
680  poking, a pseudo-random stimulus was presented regardless of the previously experienced

681  stimulus. Prematurely withdrawn nose-pokes did not increase trial numbers. In successful nose-
682  pokes (>400 ms), the doors covering the left and right choice ports were opened, allowing the rat
683  to access one of the choice ports. A correct choice response resulted in delivery of a food reward,
684  whereas incorrect responses resulted in auditory feedback without a food reward together with an
685  8-s inter-trial interval. Rats performed 100 to 120 trials in total within a session. After rats

686  exceeded the learning criterion (>75% correct in all conditions for two consecutive days), they
687  learned the same task but using two simple visual cues as a control (C) condition. Rats that

688  exceeded the learning criterion in the control condition were then trained with both multimodal
689  objects and control stimuli within a session until they reached the criterion. After completing all
690  training procedures, rats underwent either cannula or hyperdrive implantation surgery (see below
691  for details). After surgery, they were again trained simultaneously on multimodal and control

692  conditions and then proceeded to the test phase.

693  Multimodal object recognition — testing: Unimodal conditions (visual or auditory) were

694  introduced for the first time in the test phase of multimodal object recognition. In the visual (V)
695  condition, only the boy or egg image was presented without an auditory cue. In the auditory (A)

696  condition, only a 5 or 10 kHz sound was presented without an image. Rats were required to make
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697  the same choice response associated with the multimodal object based on the unimodal stimulus.
698  In the drug-infusion study, rats were serially tested under multimodal, visual, auditory, and

699  control conditions in separate sessions and performed 120 trials per session. In the

700  electrophysiological study, all eight conditions (two objects x three modality conditions plus two
701  control stimuli) were pseudo-randomly presented within a session, and rats performed 180 to 240
702 trials per session (see below for details).

703

704  Drug infusion

705  The guide cannula (24 gauge, 18 mm long), internal cannula (30 gauge, 19 mm long), and

706  dummy cannula (30 gauge, 19 mm long) were built in-house. A surgery targeting the bilateral
707 PER was performed by first carefully retracting the left and right temporalis muscle, after which
708  two holes were drilled bilaterally on the skull surface (4.8 mm posterior to bregma, 5.2 mm

709  lateral to the midline). Guide cannulas were angled 15 degrees outward, lowered to 7 mm below
710 the cortical surface, and chronically fixed with four anchoring screws and dental cement. The

711 procedure was completed by placing dummy cannulas inside the guide cannulas. During

712 insertion, the tips of internal and dummy cannulas were protruded 1 mm from the tip of guide
713 cannulas. Cannulas were cleaned at least once every 2 d. The drug infusion schedule was started
714 after all rats had been retrained to multimodal and control conditions. PBS (0.5 pl per site) and
715 the GABA-A receptor antagonist, muscimol (MUS; 0.5 pl per site), were bilaterally injected into
716  the PER on alternate days using a Hamilton syringe (10 pl). After one rat (rat #5) showed

717 immobilization side effects following muscimol injection, the injection amount was reduced to
718 0.3 pl. Drug infusions were made 20 min before the start of the behavioral experiment. Rats were
719  tested in each condition on a different day in the following order: multimodal, unimodal (visual
720  and auditory), and control. The order of visual and auditory sessions was pseudo-randomized for
721 each rat. At the end of the experiment (20 min before sacrifice), the diffusion range of MUS was
722 estimated by injecting rats with fluorescent BODIPY TMR-X-labeled MUS (fMUS) and

723 monitoring fMUS by fluorescence microscopy.

724

725  Hyperdrive implantation

29


https://doi.org/10.1101/2023.11.20.567750
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567750; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

726  The hyperdrive containing 27 tetrodes was built in-house. Tetrodes were prepared by winding
727 together four formvar-insulated nichrome wires (diameter, 17.8 pm) and bonding them with heat.
728  Impedance was reduced to ~200 kQ at 1 kHz by gold-plating wires using a Nano-Z plating

729  system (Neuralynx). For targeting the PER along the anteroposterior axis, a 12G stainless-steel
730  cannula bundle housing 27 tetrodes was formed into an elliptical shape (major axis, 3.4-3.8 mm;
731  minor axis, 2—2.4 mm). After performing surgery to target the right hemisphere of the PER, as
732 described above, a hole sized to fit the tetrode bundle was drilled on the skull surface. The

733 bundle tip was angled 12 degrees outward and lowered until it touched the cortical surface, after
734 which the hyperdrive was chronically fixed with 11 anchoring screws and bone cement.

735

736  Electrophysiological recording

737 After allowing 3 d to recover from surgery, rats were reacclimated to experimentation by

738 handling for 4 d and then retrained to perform the multimodal object recognition task under

739 multimodal and control conditions. Individual tetrodes were lowered daily. After most of the

740  tetrodes had reached the PER and rats showed greater than 75% correct responses in both

741 multimodal and control conditions for two consecutive days, recording sessions were begun. In
742 the recording sessions, the unimodal condition was introduced for the first time, such that

743 multimodal, visual, auditory, and control conditions were all presented pseudo-randomly during
744  asession. Recordings were conducted in each rat for 5 to 6 d, and no attempt was made to record
745  the same neuron across days. Neural signals were amplified 1000—10,000-fold and bandpass

746  filtered (300—6000 Hz) using a Digital Lynx data-acquisition system (Neuralynx). Spike

747  waveforms exceeding a preset threshold (adjusted within the range of 40—150 pV) were digitized
748 at 32 kHz and timestamped.

749

750  Histology

751  Rats were sacrificed with an overdose of CO; and transcardially perfused first with PBS and then
752 with a 4% (v/v) formaldehyde solution. The brain was extracted and maintained in a 4% (v/v)
753 formaldehyde-30% sucrose solution at 4°C until it sank to the bottom of the container. The brain
754  was subsequently coated with gelatin, soaked again in 4% (v/v) formaldehyde-30% sucrose

755  solution, and then sectioned at a thickness of 40 um using a freezing microtome (HM 430;

756  ThermoFisher Scientific). For every three consecutive sections, the second and third sections
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757  were mounted for staining. For the drug infusion study (n = 6), every second section was Nissl-
758 stained with thionin solution, and every third section was stained with DAPI solution

759 (Vectashield) for fluorescence microscopy. For the electrophysiological study (n = 8), every

760  second section was stained with thionin solution, and every third section was stained with gold
761  solution for myelin staining. Photomicrographs of each brain section were obtained using a

762 microscope mounted with a digital camera (Eclipse 80i; Nikon). To accurately estimate the

763 position of tetrodes, we reconstructed the configuration of tetrodes based on histology results,
764  and then compared it with the actual configuration to match the numbering of the tetrodes

765  (Voxwin, UK).

766

767  Unit isolation

768 All single units were manually isolated using a custom program (WinClust), as previously

769  described 3262, Various waveform parameters (i.e., peak amplitude, energy, and peak-to-trough
770 latencies) were used for isolating single units, but peak amplitude was the primary criterion.

771 Units were excluded if more than 1% of spikes occurred within the refractory period (1 ms) and
772 mean firing rates during the task epoch (from cue onset to response) were lower than 0.5 Hz.

773

774  Single-unit analysis

775 Basic firing properties. Single units were grouped into bursting, regular-spiking, and unclassified
776  neurons based on their autocorrelograms and interspike-interval histograms (Bartho et al., 2004).
777 Specifically, cells were classified as bursting neurons if they met the following criterion:

778 max (autocorrelogram of 3—5 ms) > max (autocorrelogram of 0—50 ms)/2

779  Among the remaining neurons, those in which the mode of the interspike-interval histogram was
780  less than 35 ms were classified as regular-spiking neurons. Neurons that did not belong to either
781  group were categorized as unclassified neurons. Spike width was measured as the distance from
782  peak to trough.

783 Trial filtering: All subsequent analyses described below were performed using correct trials

784  only. An overview of the subsequent single-unit analysis process is presented in Figure S3. To
785  control for variability in response latency (i.e., from cue offset to the end of choice response), we

786  excluded trials where the latency exceeded 3 absolute median deviations of all correct trials. If a
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787  recording session had less than five correct trials in any of the eight stimulus conditions, all units
788  recorded in that session were excluded from further analysis.

789  Defining selective epoch: Firing rates were calculated within 50-ms time bins with increments of
790 10 ms. All subsequent analyses described below were performed on firing rates within the task
791  epoch, defined as the 900-ms interval from the start of the sample phase to immediately

792 preceding the end of the response phase. To identify a selective epoch in which firing rates were
793 significantly different between Boy and Egg objects, we performed two-way repeated measures
794  ANOVA (object identity and modality condition as two factors) in each time bin using trials

795  from object conditions (two objects with three modality conditions). The time bin with the

796  largest effect size (n?) for the object identity factor was designated “peak selectivity time”,

797  representing the moment when the firing rate difference between the two objects was maximal.
798  The selective epoch was defined as having more than five consecutive time bins around the peak
799  selectivity time, each with a p-value < 0.05 for the object identity factor.

800  Multiple linear regression: The following multiple linear regression models were used to

801  describe firing patterns in relation to task-related conditions:

802

FR= fo+ 1 x X1 + P2 x Xy + P3x X5+ By x X, (1)
803

FR= Bo+ 1 x X1 + P2 x Xy + B3 X X3 + By x Xy + Ps X X5, (2)
804

805  where the dependent variable FR, is the firing rate within the selective epoch, described above.
806  In the standard model (1), B1 is the constant term, 1 x Xj is the term for visual information of the
807  preferred object, B2 x X2 is the term for auditory information of the preferred object, B3 x X; is
808  the term for visual information of the non-preferred object, and B4 x X4 is the term for auditory
809  information of the non-preferred object. The independent variables (X) were binary coded to

810  reflect the existence of an image or sound for an object. For example, if a neuron was classified
811  as a Boy-preferring object cell, X; had a value of one in Boy-VA and Boy-V trials, and zero in all
812 other conditions. In the extended model (2), the term Bs x X5 was added to further examine the
813  influence of the response factor. Xs had a value of one if a trial required a left choice response,
814  and zero if it required a right choice response. All trial conditions (VA, V, A, C) were used to

815  estimate the regression model.  coefficients were standardized by z-scoring both dependent and
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816  independent variables prior to regression fitting. To dissociate neurons that were mainly

817  modulated by choice responses (i.e., response cell) rather than object information, we quantified
818  how much the model was improved by adding the response factor. Specifically, we subtracted
819  the AIC (Akaike Information Criterion) for the extended model (2) from that for the standard

820  model (1). If a neuron exhibited a significantly higher AIC difference, we concluded that most of
821  its activity patterns were explained by the response factor, and thus classified it as a response

822  cell. The significance of the AIC difference was determined by comparison with the null

823  distribution, obtained by shuffling trial conditions (shuffled 1000 times; o = 0.01). Neurons with
824  aselective epoch but not classified as response cells were categorized as object cells. To describe
825  how object cells responded to different modality information, we examined regression

826  coefficients in the standard model (1) using 1 and B2 to quantify how strongly an object cell

827  responded to visual and auditory information, respectively, of a preferred object. We did not

828  further examine regression coefficients for a non-preferred object (i.e., B3 and P4) (see Fig. S6).
829  Neurons for which the difference between 1 and 2 was significantly higher or lower than the
830  difference obtained after shuffling trial conditions were classified as visual or auditory cells,

831  respectively (shuffled 1000 times; a = 0.05, two-sided permutation test).

832  Rate modulation index. We calculated a “rate modulation index” (RMI) to quantify increases or
833  decreases in a neuron’s firing rates in the multimodal condition relative to the unimodal

834  condition. Firing rate differences between the multimodal and unimodal condition were

835  quantified using Cohen’s d as follows:

mean(VA) - mean(V or A)
std(VA,Vor A)

836 RMI =

837  The index was calculated only in the modality conditions of the preferred object, and was

838  referred to as “VA — V”” when the index was calculated between multimodal and visual

839  conditions, and "VA — A" when it was calculated between multimodal and auditory conditions.
840

841  Population decoding

842 A linear support vector machine (sklearn.svm.SVC, Python function), with cost parameter set to
843  0.01, was used for population decoding. Population decoding was performed on rats in which at
844  least 20 object cells were recorded across sessions (5 of 8 rats). Spikes were binned into 100-ms

845  time bins within the task epoch (900-ms duration) and z-scored. Pseudo-populations of neurons
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were constructed in each rat as follows: For each object cell, five trials for each of the six object
conditions (two objects x three modalities) were subsampled. Firing rates in the subsampled
trials were horizontally concatenated to the pseudo-population. Thus, each pseudo-population
had 30 rows (5 trials x 6 conditions) and N columns (or features), where N was the number of
time bins (9) multiplied by the number of object cells. For modality-specific object decoding
(Fig. 7A), the entire subsampled dataset (30 samples) was used for both training and testing.
One-vs.-one classification was performed using stratified 5-fold cross-validation. For modality-
invariant object decoding (Fig. 7D), a binary classifier was trained using only unimodal trials,
and then tested with multimodal trials 3. We did not perform cross-validation here since the
training and test sets were completely separate. Subsampling, training, and testing were repeated
100 times in both decoding procedures, and the average of these repeated results was used as the
representative value for each rat. A permutation test, performed by shuffling trial conditions, was
used for significance testing (shuffled 1000 times; a. = 0.05). Confusion matrices (Fig. 7B and
7E) were constructed by averaging the results from all rats. Contributions to decoding
performance (Fig. 7C and 7F) were measured using the permutation feature importance method.
Specifically, after training the classifier, we selected all features from a given cell category
(unimodal or crossmodal) and shuffled their rows (or trial labels) to break the relationship
between the true label and selected features. The decrease in decoding accuracy after
permutation was used as an indicator of how much the selected features contributed to decoding

performance. Contribution to decoding was calculated as follows:

Accuracy(baseline)-Accuracy(after permutation)

Contributions to decoding =
g Accuracy(baseline)+Accuracy(after permutation)

To measure the contribution of a single cell to decoding performance in a given category, we

divided the value by the number of cells in that category within each rat.

Quantification and statistical analysis

Data were statistically tested using custom-made codes written in MATLAB and Python.
Student’s t-test, analysis of variance (ANOVA), Wilcoxon sign-rank test, Chi-square test, and
permutation test were used for statistical comparisons. A one-sample t-test was used to verify
that the behavioral performance was above the level of chance and RMI values were

significantly different from zero. One-way repeated measures ANOVA was implemented for
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876  comparing behavioral results across modality conditions. Two-way repeated measures ANOVA
877  was used to compare behavioral results (drug and modality condition as two factors), as well as
878  to identify object-selective epoch (object and modality condition as two factors). Post hoc

879  analyses were carried out using t-test with p-values corrected using the Holm-Bonferroni

880  method. Wilcoxon signed-rank test was used to compare the regression coefficients, 1 and f2.
881  An ordinary least squares method was used for both multiple and simple linear regression. Chi-
882  square test was used for comparisons of proportions. A permutation test was used for

883  categorizing response-selective neurons and defining significance levels for population decoding
884  accuracy. Unless otherwise indicated, the significance level was set at a = 0.05. Error bars

885  indicate standard error of the mean (SEM) unless stated otherwise.
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