

1
2
3 **Neural correlates of modality-specific and modality-
4 invariant object recognition in the perirhinal cortex**
5

6 Heung-Yeol Lim¹, and Inah Lee^{1*}
7
8
9
10

11 ¹Department of Brain and Cognitive Sciences
12 Seoul National University
13 Gwanak-ro 1, Gwanak-gu
14 Seoul, Korea
15 08826

16
17
18
19
20 ***Corresponding author:**

21 E-mail: inahlee@snu.ac.kr
22 Phone: +82-2-880-8013

23
24
25 **Acknowledgments**

26 This study was supported by basic research grants (NRF - 2019R1A2C2088799,
27 2021R1A4A2001803, 2022M3E5E8017723) from the National Research Foundation of Korea
28 and the BK21 program.

30 **Summary**

31 The perirhinal cortex (PER) supports multimodal object recognition, but how multimodal
32 information of objects is integrated within the PER remains unknown. Here, we recorded single
33 units within the PER while rats performed a PER-dependent multimodal object-recognition task.
34 In this task, audiovisual cues were simultaneously (multimodally) or separately (unimodally)
35 presented. We identified two types of object-selective neurons in the PER: crossmodal cells,
36 showing constant firing patterns for an object irrespective of its modality, and unimodal cells,
37 showing a preference for a specific modality. Unimodal cells further dissociated unimodal and
38 multimodal versions of the object by modulating their firing rates according to the modality
39 condition. A population-decoding analysis confirmed that the PER could perform both modality-
40 invariant and modality-specific object decoding – the former for recognizing an object as the
41 same in various conditions and the latter for remembering modality-specific experiences of the
42 same object.

43

44 **Introduction**

45 Our brains can effortlessly integrate information from different sensory modalities to form a
46 unified representation of the world ^{1,2}. This natural ability is also evident during object
47 recognition, as one can quickly identify one's cat by visually perceiving its appearance or
48 hearing its distinctive meow. The ability to recognize objects crossmodally has been reported not
49 only in humans, but also in nonhuman primates ^{3,4}, rodents ⁵⁻⁷, dolphins ⁸, and even insects ⁹.
50 However, most studies on object recognition have neglected the multisensory nature of this
51 process. Object recognition has been studied primarily using unimodal stimuli, such as visual
52 stimuli ¹⁰⁻¹², or uncontrolled multimodal stimuli, such as 3D “junk” objects ^{13,14}, without a
53 specific goal of investigating multimodal processing. This tendency is also evident in studies of
54 the perirhinal cortex (PER), a region well known to play a critical role in object recognition ¹⁵⁻²⁰.

55 Findings from several studies have implied that the PER is engaged in “multimodal”
56 object recognition. Anatomically, it has been shown that the PER receives inputs from areas that
57 process diverse sensory modalities, including those from visual, auditory, olfactory, and
58 somatosensory cortices ²¹⁻²³. In rodents in particular, these areas are known to send
59 monosynaptic inputs to the PER ²². Experimental results further support the involvement of the
60 PER in multimodal object recognition. In human functional magnetic resonance imaging (fMRI)
61 studies in which subjects were presented visual-auditory or visual-tactile stimuli that were either
62 from the same (congruent) or different (incongruent) objects, activity within the PER was found
63 to be greater when the two stimuli were congruent ^{24,25}. The necessity of the PER for multimodal
64 object recognition has also been tested using crossmodal versions of a delayed nonmatch-to-
65 sample task in nonhuman primates ⁴ and a spontaneous object-recognition task in rodents ⁵⁻⁷. In
66 these tasks, in which animals sampled an object using one sensory modality (e.g., tactile), and
67 then were tested for retrieval of object information using an unused sensory modality (e.g.,
68 visual), lesioning or inactivating the PER resulted in performance deficits. These results indicate
69 the involvement of the PER in multimodal object recognition, but the mechanisms underlying
70 these functions remain largely unknown.

71 We hypothesized that the PER may support multisensory object recognition by
72 integrating multimodal inputs from an object to form a unified representation of the object.
73 Considering the associative nature of the PER ²⁶⁻²⁹, the region can be expected to integrate

74 information from multiple sensations, rather than processing it separately. Indeed, it has been
75 shown that PER neurons do not represent individual sensory attributes separately in rats
76 performing behavioral tasks using multimodal stimuli^{30,31}. However, these studies have only
77 reported neural correlates of behavioral responses or rewards associated with objects, rather than
78 actual information about the objects themselves. Accordingly, in the current study, we
79 investigated how multimodal information is integrated to create a unified representation of an
80 object while minimizing the influence of other task-related variables, such as behavioral
81 response or reward outcome.

82 To test the abovementioned hypothesis, we developed a multimodal object-recognition
83 task for rats employing visual and auditory cues. By requiring a nose-poke during object cue
84 sampling, our task allowed presentation of different task phases while observing their neural
85 firing correlates in a temporally controlled manner. Our findings suggest that rats can recognize a
86 familiar object (originally learned multimodally) almost immediately when cued by a unimodal
87 sensory attribute alone (e.g., visual or auditory) without additional learning. However,
88 inactivating the PER resulted in performance deficits in both multimodal and unimodal
89 recognition conditions. Physiologically, we discovered that most PER neurons exhibited a
90 constant selectivity pattern for an object regardless of its sensory modality. However, a
91 significant proportion of neurons also showed a preference for a specific sensory modality
92 condition during object information processing. A population-decoding analysis revealed that
93 these subpopulations of neurons enabled both modality-specific and modality-invariant
94 recognition of objects.

95

96

97 **Results**

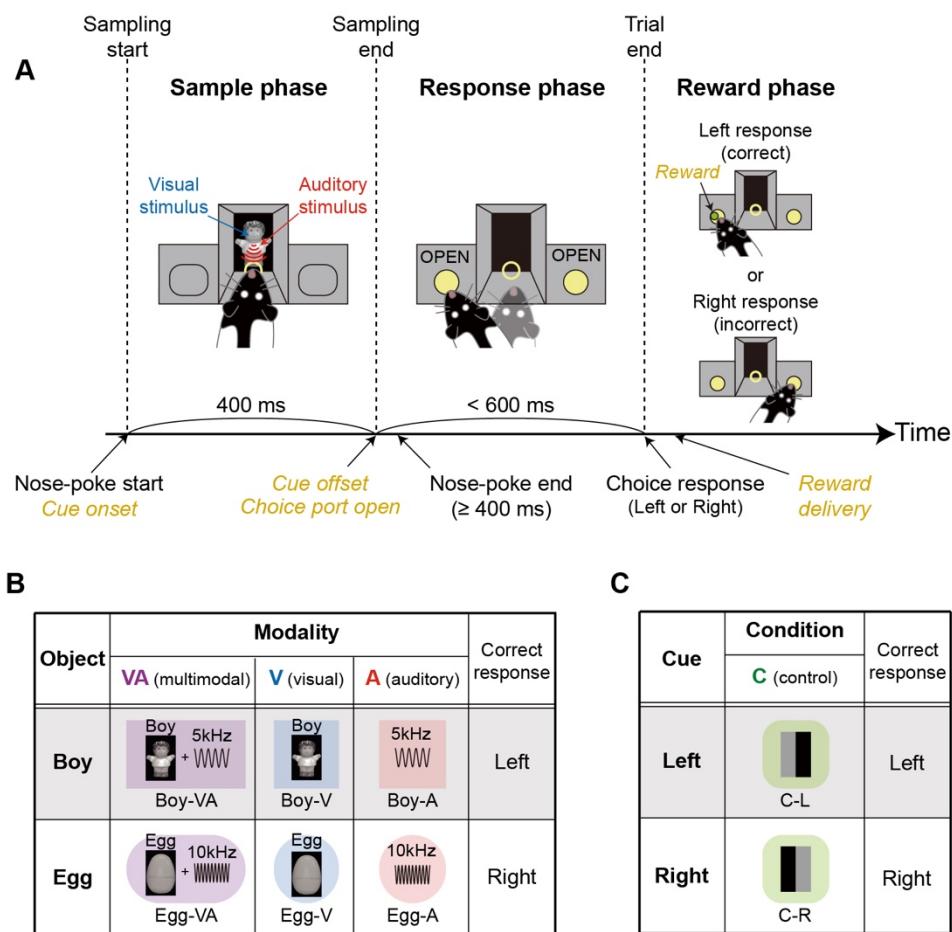
98

99 **The PER is required for multimodal object recognition**

100 To test multimodal object recognition while controlling the sampling of the object's unimodal
101 (i.e., visual and auditory) attributes, we developed a behavioral paradigm for rats that would
102 enable stable, simultaneous sampling of multimodal cues (**Fig. 1A**). In the sample phase of this
103 protocol, rats triggered the onset of cues by nose-poking a center hole and were required to

104 maintain their nose-poke for at least 400 ms. If a rat failed to maintain its nose-poke for 400 ms,
 105 the trial was stopped and the rat was allowed to retry the nose-poke after a 4-s interval (**Fig. S1**).
 106 After a successful (>400 ms) nose-poke, the cues disappeared and doors covering left and right
 107 choice ports were opened simultaneously. In the response phase, rats were required to choose
 108 either the left or right port based on the sampled cue. Rats completed their choice responses
 109 within 600 ms in most trials (**Fig. S2**). A food reward was provided only after a correct choice
 110 response was made (reward phase), followed by 2-s inter-trial interval.

111



112

113 **Fig. 1. Multimodal object-recognition task.** (A) Illustration of the apparatus and the trial structure of the
 114 multimodal object-recognition task. Rats sampled visual and auditory cues simultaneously or separately
 115 for 400 ms (sample phase) and then made a choice response based on the identity of the cue (response
 116 phase). A correct choice response resulted in a food reward (reward phase). (B) Object conditions used in
 117 the multimodal object recognition task. Two different objects (*Boy* and *Egg*) were presented in three

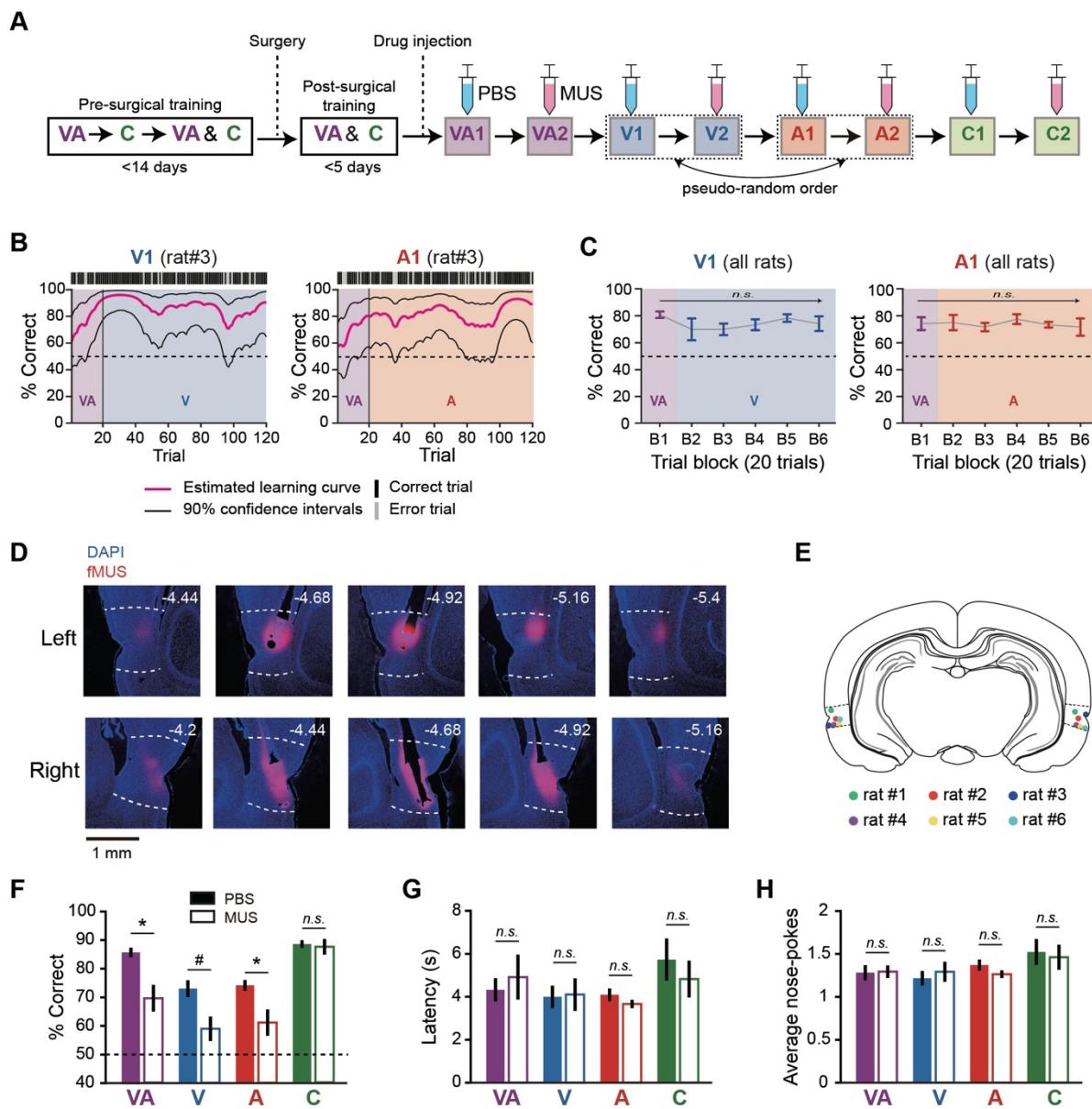
118 different modality conditions: multimodal (VA), visual (V), and auditory (A). The correct choice response
119 was determined by the identity of the object. (C) Two simple visual cues were introduced as control (C)
120 stimuli. Each control stimulus was also associated with either the left (C-L) or right (C-R) choice
121 response (i.e., the same responses required by object conditions).

122
123 To test the rat's ability to recognize objects with multiple sensory modalities, we
124 presented two different multimodal objects, *Boy* and *Egg*, consisting of different combinations of
125 visual (images of a boy-shaped and an egg-shaped toy) and auditory (5 and 10 kHz sine-wave
126 tones) attributes during the sample phase (**Fig. 1B**). Objects were tested under three modality
127 conditions: multimodal, visual, and auditory. In the multimodal condition, visual and auditory
128 cues associated with an object were presented simultaneously during the sample phase. In
129 unimodal – visual or auditory – conditions, only the object's visual or auditory information was
130 presented as a cueing stimulus. If the rat responded correctly to the object's identity regardless of
131 the modality condition, it was rewarded with a piece of cereal. The combination of audiovisual
132 cues and stimulus-response contingency were counterbalanced across rats. In control conditions,
133 rats learned to dissociate two simple visual stimuli composed of black and gray bars (**Fig. 1C**). In
134 these conditions, the required left and right choice responses were the same as those in object
135 conditions. In sum, eight stimulus conditions were used in this task: six object conditions (two
136 objects × three modality conditions) and two control conditions.

137 To test whether rats are able to retrieve multimodal objects when cued by a unimodal
138 stimulus under conditions in which the PER is inactivated, we conducted a drug-inactivation
139 experiment (n = 6). After training in multimodal and control conditions, rats were sequentially
140 tested under multimodal, visual, auditory, and control conditions in separate sessions (**Fig. 2A**).
141 The order of visual and auditory sessions was counterbalanced across rats. For each condition,
142 we first established baseline performance by injecting vehicle control (phosphate-buffered saline
143 [PBS]) into the PER; we then tested performance in rats with an inactivated PER, achieved by
144 injecting muscimol (MUS) bilaterally into the PER. Importantly, the sessions with PBS
145 injections, either visual (V1) or auditory (A1) (**Fig. 2A**), marked the first instances where rats
146 were required to recognize objects, originally learned multimodally, solely based on their
147 unimodal sensory attributes. In a unimodal object recognition session, objects were presented

148 multimodally (visual and auditory) for the first 20 trials, and then subsequently presented in a
 149 unimodal (visual or auditory) fashion.

150



151

152 **Fig. 2. Necessity of the PER for multimodal object recognition.** (A) Illustration of behavioral training
 153 and testing schedules for the PER-inactivation experiment. Note that animals were subjected to either the
 154 visual or auditory condition for the first time in PBS-injected visual (V1) or auditory (A1) sessions. (B)
 155 Estimated learning in V1 (left) and A1 (right) sessions of an example rat. In trial 21, where visual or
 156 auditory conditions were first introduced, the rat quickly adapted without additional learning. (C) On

157 average, correctness did not significantly change across trials within V1 (left) or A1 (right) session,
158 indicating that rats could perform unimodal retrieval without additional learning. Each trial block
159 consisted of 20 trials. **(D)** Histological verification of injection sites in the PER. White dotted lines
160 indicate the border of the PER. The numbers on each section indicate the distance from bregma. **(E)**
161 Summary of cannula-tip locations in all rats. **(F)** Behavioral performance in each condition was compared
162 between PBS and MUS sessions. Performance was significantly impaired in all object conditions (VA, V,
163 and A) by inactivation of the PER, but remained intact in the control (C) condition. **(G)** The latency
164 median did not change significantly after inactivating the PER. **(H)** The average number of nose-poke
165 attempts did not change significantly after inactivating the PER. Data are presented as means \pm SEM (n =
166 6; $^*p < 0.05$, $^{\#}p = 0.062$; n.s., not significant).

167

168 Performance dynamics of PBS-injected rats in visual and auditory sessions were
169 displayed as learning curves, estimated from a given session (**Fig. 2B**). Upon first encountering
170 the visual or auditory condition (Trial 21), rats showed no significant drop in performance and
171 their performance remained stable until the end of the session. A statistical analysis of results for
172 all PBS-injected rats revealed no significant increase or decrease in performance across trial
173 blocks (20 trials) in either visual ($F_{(5,25)} = 0.95, p = 0.47$) or auditory ($F_{(5,25)} = 0.22, p = 0.95$;
174 one-way repeated measures ANOVA) sessions (**Fig. 2C**). These results indicate that rats easily
175 recognized an object originally learned multimodally using one of its unimodal attributes, and
176 this crossmodal recognition process required minimal training.

177 To verify the necessity of the PER in the task, we examined the effect of MUS injection
178 on task performance. Histological results confirmed that MUS was successfully bilaterally
179 injected into the PER (**Fig. 2D and 2E**). The average performance of rats (n = 6) in PBS sessions
180 was significantly higher than predicted by chance (50%) in all conditions – multimodal ($t_{(5)} =$
181 $21.2, p < 0.0001$); visual ($t_{(5)} = 7.8, p = 0.0005$); auditory ($t_{(5)} = 13.1, p < 0.0001$); and control ($t_{(5)} =$
182 $29.3, p < 0.0001$) – as determined by one-sample t-test. Inactivating the PER with MUS
183 significantly decreased performance ($F_{(1,5)} = 165.4, p = 0.0006$, two-way repeated measures
184 ANOVA) (**Fig. 2F**). A post hoc analysis revealed performance deficits in multimodal ($t_{(5)} = 3.72,$
185 $p = 0.028$), visual ($t_{(5)} = 2.39, p = 0.062$), and auditory ($t_{(5)} = 3.45, p = 0.027$) conditions (paired
186 t-test with Holm-Bonferroni correction), but not in the control condition ($t_{(5)} = 0.37, p = 0.36$,
187 paired t-test). Trial latency (i.e., from trial onset to end of choice) was not significantly affected

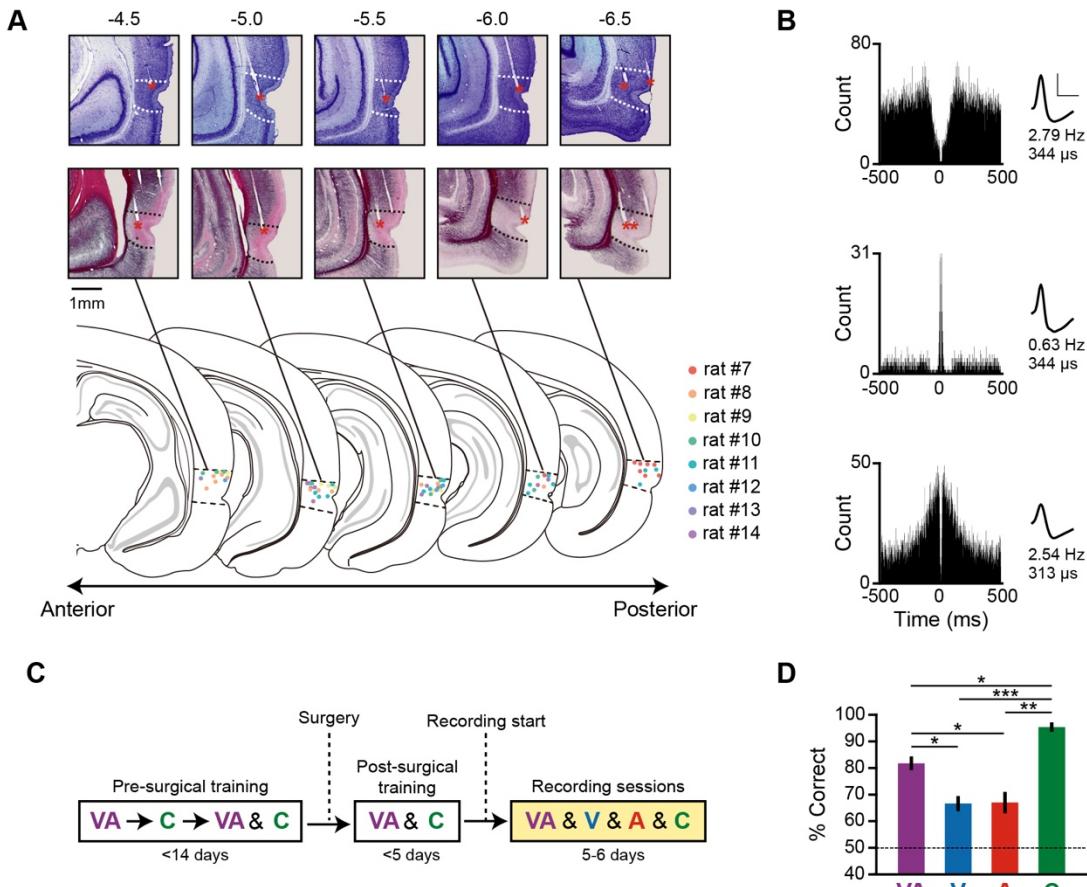
188 by MUS injection ($F_{(1,5)} = 0.13, p = 0.73$; two-way repeated measures ANOVA) (**Fig. 2G**).
189 Nose-poking behavior was not affected by PER inactivation, as the average number of nose-poke
190 attempts was not significantly different between PBS and MUS sessions ($F_{(1,5)} = 0.92, p = 0.38$,
191 two-way repeated measures ANOVA) (**Fig. 2H**). Collectively, these results demonstrate that the
192 PER is necessary for object recognition in all modality conditions and that the decrease in
193 performance is not attributable to a generic deficit.

194

195 **Object-selective neural activity in the PER is characterized by its transient and sequential
196 firing patterns**

197 Inactivation of the PER resulted in performance deficits whenever object recognition was
198 required regardless of the modality condition. To further understand the functions of the PER in
199 multimodal object recognition, we searched for neural correlates of multimodal object
200 recognition by recording single-unit spiking activity in the PER using tetrodes (**Fig. 3A**). Based
201 on their basic firing properties, most neurons could be classified into regular-spiking neurons
202 (68%, 234 of 348), with bursting (24%, 82 of 348) and unclassified (9%, 32 of 348) neurons also
203 being observed (**Fig. 3B**), as previously reported ^{16,32}.

204 Before obtaining single-unit recordings, rats were first trained in multimodal and control
205 conditions; unimodal (visual or auditory) recognition conditions were introduced upon initiation
206 of recordings (**Fig. 3C**). All testing conditions (multimodal, visual, auditory, and control) were
207 presented pseudo-randomly within a recording session. We confirmed that rats ($n = 8$) were able
208 to successfully recognize objects in all conditions in their first recording session – multimodal
209 ($t_{(7)} = 12.36, p < 0.0001$); visual ($t_{(7)} = 5.88, p = 0.0006$); auditory ($t_{(7)} = 4.26, p = 0.0037$); and
210 control ($t_{(7)} = 25.9, p < 0.0001$) – as determined using one-sample t-test (chance level, 50%) (**Fig.**
211 **3D**). Significant differences in performance were also noted among conditions ($F_{(3,21)} = 22.87, p$
212 < 0.0001 , one-way repeated measures ANOVA), with rats performing significantly better in the
213 multimodal condition than in either the visual ($t_{(7)} = 3.43, p = 0.022$) or auditory ($t_{(7)} = 4.22, p =$
214 0.016; paired t-test with Holm-Bonferroni correction) condition. Performance in the control
215 condition was significantly higher than that in all other conditions (control vs. multimodal, $t_{(7)} =$
216 3.92, $p = 0.017$; control vs. visual, $t_{(7)} = 15.47, p < 0.0001$; control vs. auditory, $t_{(7)} = 6.19, p =$
217 0.0023; paired t-test with Holm-Bonferroni correction). Similar behavioral results were observed
218 in all recording sessions (**Fig. S2**).



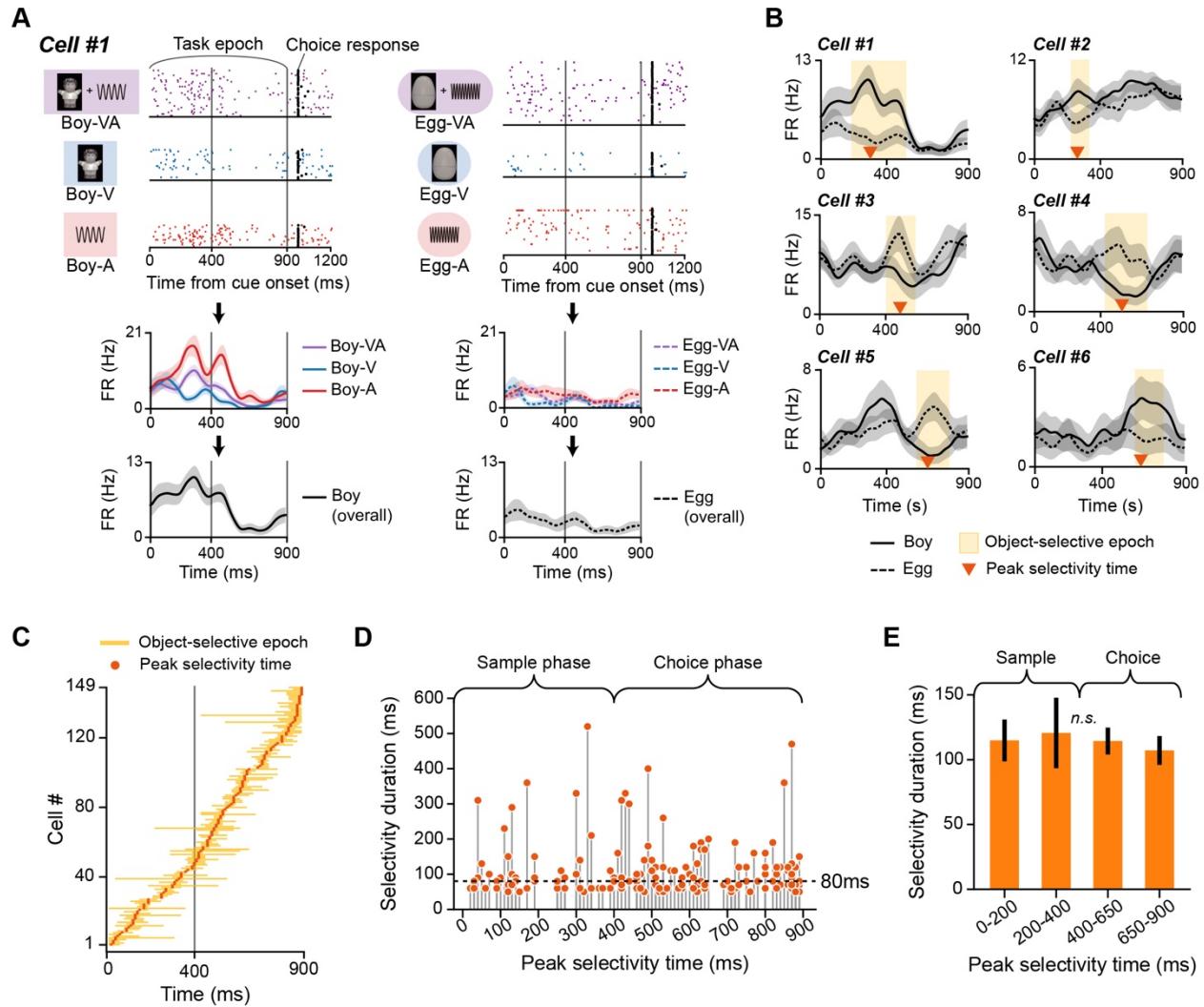
219

220 **Fig. 3. Single-neuron recordings during multimodal object recognition. (A)** Histological verification
 221 of tetrode locations in the PER by Nissl (top) and myelin (middle) staining of sections across the
 222 anteroposterior axis. The estimated tetrode tip locations in all rats are summarized on the atlas (bottom).
 223 Dotted lines demarcate the borders of the PER. Tetrode tip locations are marked with red asterisks. The
 224 numbers above each section indicate the distance from bregma (mm). **(B)** Examples of single neurons
 225 categorized according to their basic firing properties. Based on the autocorrelograms (left), cells were
 226 categorized as regular-spiking (top), bursting (middle), or unclassified (bottom). Scale bars in each spike
 227 waveform (right) indicate amplitude (vertical, 100 µV) and width (horizontal, 500 µs). The numbers
 228 below the waveform show the mean firing rate and spike width of each neuron. **(C)** Illustration of training
 229 and recording schedules for electrophysiological experiments. In the recording sessions, all stimulus
 230 conditions (VA, V, A, C) were pseudo-randomly presented within a session. Rats experienced visual or
 231 auditory conditions only in the recording sessions. **(D)** Behavioral performance in the first recording
 232 session. Although rats performed better in pre-trained multimodal and control conditions, they still

233 showed better than chance-level performance in visual and auditory conditions. Data are presented as
234 means \pm SEM (n = 8; * p < 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001; n.s., not significant.)

235

236 We next sought to describe object selectivity of PER cells by determining how these
237 neurons respond to different object identities regardless of sensory modality. To this end, we
238 grouped all correct trials into different object and modality conditions and then calculated the
239 firing rates associated with each condition during the task epoch, measured from the start of the
240 sample phase to the end of the response phase (900-ms duration) (Fig. 4A). Overall firing
241 patterns were obtained by averaging firing rates in different modality conditions for each object,
242 *Boy* and *Egg* (Fig. 4A and 4B, black lines). For each neuron, we defined an object-selective
243 epoch as the period in which the firing rate for either object was significantly different from that
244 of the other object in more than five consecutive time bins (10 ms/bin) (Fig. 4B, example
245 neurons #1–6). Since the object-selective epoch defined here could be attributable to the choice
246 response and not necessarily to the identity of the object, we further excluded response-selective
247 cells identified under control condition and considered the remaining neurons to be object-
248 selective cells (hereafter, object cells) (Fig. S4). Selectivity was not maintained throughout
249 sample and response phases; thus, individual object cells were characterized by their transient
250 firing patterns. Moreover, the time bin at which the firing rate difference between objects was
251 maximal (i.e., peak selectivity time) occurred at various time points during the task epoch (Fig.
252 4B).



254 **Fig. 4. Object-selective firing patterns in the PER.** (A) Raster plots (top) and spike density functions
 255 (bottom) of an example neuron for *Boy* (left) and *Egg* (right) object conditions. Overall firing rates for
 256 each object (black line) were obtained by averaging firing rates in different modality conditions (VA, V,
 257 and A). This sample neuron showed increased firing rates for the *Boy*, but not the *Egg* object (i.e., *Boy*-
 258 preferring neuron). Note that the interval from 0 to 900 ms after the cue onset, designated the task epoch,
 259 was the analysis target. (B) Example object cells in the PER showing selective firing patterns for an
 260 object over the object-selective epoch, indicated in yellow. Orange arrowheads indicate the peak
 261 selectivity time (i.e., time when selectivity was maximal). (C) Population object selectivity of all object
 262 cells and their peak selectivity times. The selective epoch of each object cell was marked and then aligned
 263 according to their peak selectivity time. The vertical gray line indicates the temporal boundary of sample
 264 and response phases. (D) Peak selectivity time and duration of the selective epoch. Each dot indicates an

265 individual object cell. Dotted line denotes the median selectivity duration (80 ms). (H) Comparison of
266 selectivity durations between cells whose peak selectivity times appeared in different time ranges. No
267 significant difference was found. Data are presented as means \pm SEM (n.s., not significant).

268

269 To visualize the characteristics of object cells at the population level, we constructed a
270 population object-selectivity plot (**Fig. 4C**), in which object-selective epochs of individual object
271 cells were marked and then aligned by their peak selectivity time. Interestingly, we observed a
272 sequentially ordered firing of object-selective cells such that the population of object cells tiled
273 the task epoch (from the sample phase to the response phase) with their object selectivity. We
274 further investigated the possibility that object selectivity might be stronger in certain time bins,
275 even when this sequential pattern was present. For this, we used the duration of selectivity as a
276 measure of the magnitude of object selectivity and examined the relationship between the
277 selectivity duration and peak selectivity time (**Fig. 4D**). The median selectivity duration was
278 80 ms, confirming the transient nature of object-selective firing in the PER. We found no
279 evidence that cells with greater selectivity were more active in certain time bins. Selectivity
280 durations were not significantly different upon grouping cells into four temporal intervals based
281 on their peak selectivity time ($F_{(3,145)} = 0.14, p = 0.96$; one-way ANOVA) (**Fig. 4E**). Taken
282 together, these observations indicate that object cells in the PER are characterized by their
283 transient and sequential activity patterns, which tiled the entire task epoch. Notably, these
284 characteristics were present regardless of whether the rats were sampling the cues (sample phase)
285 or choosing a behavioral response in the absence of cues (response phase).

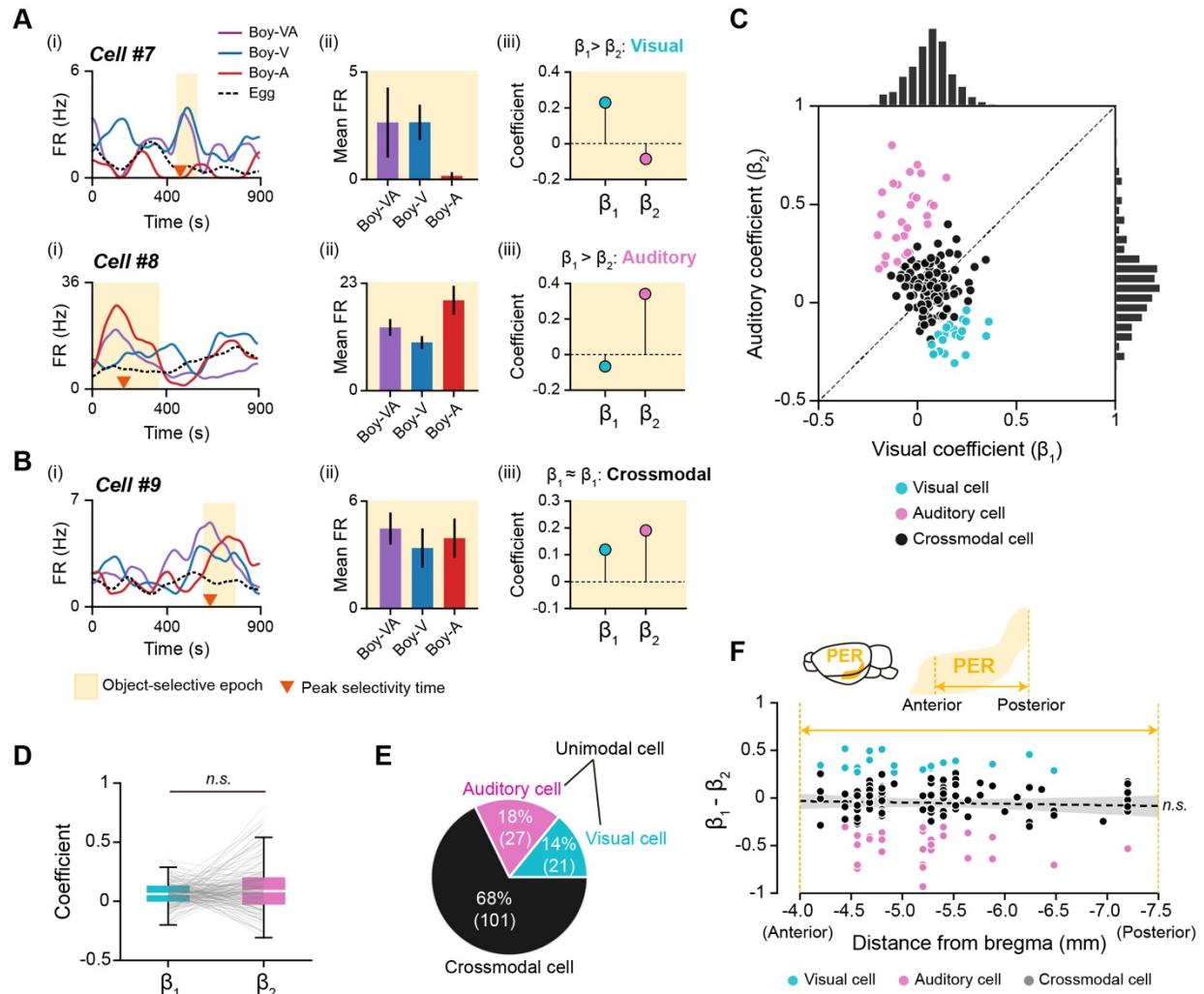
286

287 **Both visual and auditory information processings occur during object-selectivity firing in
288 the PER**

289 If PER neurons solely focus on the identity of an object and its associated behavioral response,
290 object-selective patterns should remain constant irrespective of the modality condition.
291 Conversely, it could be argued that distinguishing between events associated with experiencing
292 an object based on its distinct modality information is crucial for episodic memory. To determine
293 whether PER object cells can encode a particular sensory modality, we applied multiple linear

294 regression to firing rates during the object-selective epoch (see Methods for details). In this
295 regression model, β_1 and β_2 are regression coefficients that represent the visual and auditory
296 responsiveness, respectively, of the preferred object (i.e., the object condition with higher firing
297 rates). Visual and auditory information-processing neurons within the PER were identified based
298 on the relationship between β_1 and β_2 (Fig. 5A). An example of an object cell that predominantly
299 fired for the visual attribute of *Boy* is cell #7 (Fig. 5A-ii), which had higher firing rates in
300 multimodal and visual conditions compared with the auditory condition. This pattern is reflected
301 in higher β_1 versus β_2 values (Fig. 5A-iii). Cell #8, on the other hand, was responsive to the
302 auditory attribute of *Boy*, as its firing rates in the multimodal and visual condition were higher
303 compared with those in the visual condition (Fig. 5A-ii); it also had higher β_2 than β_1 values
304 (Fig. 5A-iii). A crossmodal cell type, distinct from the unimodal cell type described above that
305 exhibited no significant preference for a particular sensory modality, was also observed (Fig.
306 5B). An example of a crossmodal cell is cell #9, which exhibited almost equal firing in response
307 to both sensory modalities of its preferred object (*Boy*) (Fig. 5B-ii); its β_1 and β_2 values were also
308 similar (Fig. 5B-iii).

309 To illustrate the patterns of modality correlates, we created a scatter plot of β_1 and β_2
310 values for all object cells (Fig. 5C). We then verified that the PER system did not preferentially
311 process one of the sensory modalities by first comparing β_1 and β_2 for all object cells (Fig. 5D).
312 This analysis showed no significant difference between β_1 and β_2 ($W = 4794, p = 0.13$; Wilcoxon
313 signed-rank test), indicating that the PER did not have a significant bias toward a specific
314 sensory modality. We then classified neurons based on the difference between their β_1 and β_2
315 values such that neurons whose β_1 values were significantly higher than their β_2 values were
316 classified as visual cells, whereas those with significantly higher β_2 than β_1 values were classified
317 as auditory cells. Other object cells were classified as crossmodal cells. Although the majority of
318 object cells were categorized as crossmodal (68%), both auditory cells (18%) and visual cells
319 (14%) were identified (Fig. 5E). The small difference in the proportion of visual and auditory
320 cell categories was determined to be insignificant ($\chi^2 = 0.89, p = 0.34$; chi-square test). Detailed
321 comparisons of selectivity patterns revealed that auditory cells exhibited stronger selectivity in
322 the sample phase and their selective period was longer than that of visual cells (Fig. S5). These
323 findings suggest that modality information processing within the PER is heterogeneous,
324 potentially enabling the retrieval of both object identity and its associated modality information.



325

326 **Fig. 5. Unimodal and crossmodal response patterns of object cells in the PER.** (A) Examples of
327 unimodal cells that were responsive to either the visual or auditory attribute of an object during the
328 selective epoch. Spike density functions (i) and mean firing rates within the object-selective epoch (ii).
329 Multiple linear regression was applied to firing rates within the object-selective epoch to obtain β_1 and β_2
330 – regression coefficients reflecting the magnitude of visual and auditory responses, respectively (iii). Cell
331 #7 mainly responded to the visual attribute of *Boy* ($\beta_1 > \beta_2$), whereas cell #9 was responsive to the
332 auditory attribute of *Boy* ($\beta_1 < \beta_2$). (B) Spike density functions (i), mean firing rates (ii), and regression
333 coefficients (iii) of a crossmodal cell. The cell showed no specific bias for visual or auditory information
334 processing, as indicated by similar β_1 and β_2 values. (C) Scatter plot and histograms of visual (β_1) and
335 auditory (β_2) coefficients in all object cells. Neurons were classified as either visual (cyan) or auditory
336 (pink) cells if the difference between visual and auditory coefficient was significant. Others were

337 classified as crossmodal cells (gray). **(D)** Visual and auditory coefficients of all object-selective cells were
338 not significantly different. Each line indicates an individual object cell. **(E)** Proportions of visual,
339 auditory, and crossmodal neurons within the object cell category. Visual and auditory cells were grouped
340 as a unimodal cell type. The numbers in parentheses denote the number of neurons. **(F)** Anatomical
341 locations of object cells along the anteroposterior axis of the PER and their unimodal (or crossmodal)
342 response patterns. Differences between β_1 and β_2 did not exhibit a significant linear relationship with
343 anatomical locations of the cells. The dotted black line indicates the linear regression line, and the shaded
344 area is the 95% confidence interval (n.s., not significant).

345

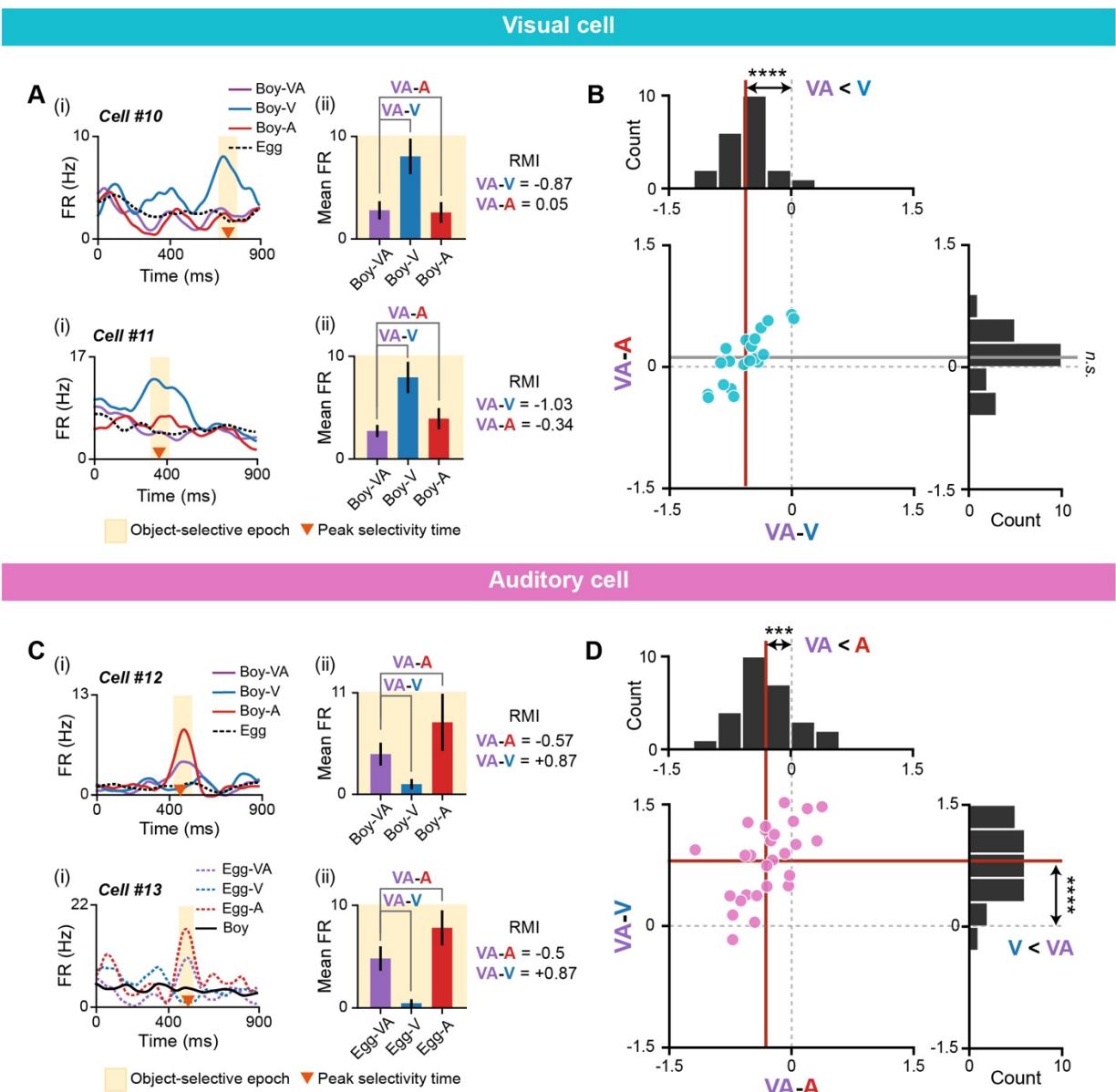
346 Since the PER receives direct inputs from visual and auditory cortices^{22,23}, it is possible
347 that the activity of visual and auditory cells in the PER is driven solely by inputs from the
348 sensory cortices. If so, the posterior PER, where visual inputs are relatively dominant, might
349 have more visual cells, whereas the anterior PER, which receives more auditory inputs, might
350 possess more auditory cells. To test this hypothesis, we examined the relationship between the
351 anatomical locations of cells along the anteroposterior axis of the PER and differences between
352 visual (β_1) and auditory (β_2) coefficients (**Fig. 5F**). We found no evidence for regional bias in
353 coefficients in the posterior PER that would indicate the dominance of visual processing over
354 auditory processing. Instead, visual and auditory cell types were evenly distributed along the
355 anteroposterior axis of the PER. These results suggest that the activities of visual and auditory
356 cells in the PER do not solely rely on inputs from visual and auditory cortices, respectively.

357

358 **Unimodal cells in the PER can further dissociate different modality conditions**

359 If unimodal neurons are invariably activated by a specific sensory input, their activity levels
360 should remain constant between multimodal and their preferred unimodal conditions, reflecting
361 the fact that both conditions contain the same image or sound of an object. However, it is also
362 possible that unimodal cells are further modulated by different modality conditions while
363 maintaining their preferred visual or auditory information. To examine the modulation of firing
364 rates across modality conditions, we defined a rate modulation index (RMI) based on Cohen's d ,
365 where larger d values indicate a greater difference between groups (see Methods). RMIs,
366 calculated as the difference in mean firing rates between modality conditions, were determined

367 for multimodal and visual conditions (VA – V) and multimodal and auditory conditions
 368 (VA – A).
 369



376 multimodal and auditory conditions (i.e., VA – A near zero). **(B)** Scatter plot and histograms of VA – V
377 and VA – A in visual cells. For visual cells, the average VA – V (vertical red line) was significantly
378 different from zero, whereas the average VA – A (horizontal gray line) was not. **(C)** Examples of auditory
379 cells (cells #12 and #13) demonstrating further dissociation of all modality conditions, as shown by their
380 spike density functions (i) and mean firing rates within the selective epoch (ii). RMIs showed that firing
381 rates were different between auditory and multimodal conditions (i.e., negative VA – A), and also
382 between multimodal and visual conditions (i.e., positive VA – V). **(D)** Scatter plot and histograms of
383 VA – A and VA – V in auditory cells. The average VA – A (vertical red line) and average VA – V
384 (horizontal red line) differed significantly from zero (** $p < 0.001$, *** $p < 0.0001$; n.s., not significant).

385
386 Cells #10 and #11, examples of visual cells, are shown in **Figure 6A** with their RMIs.
387 The subtracted value between multimodal and unimodal conditions (VA – V) was large and
388 negative in both cells, indicating higher activities during the visual condition compared with the
389 multimodal condition. Notably, visual cells exhibited “multisensory suppression”, such that
390 firing rates were lower in the multimodal condition even though that condition contained the
391 same visual information as the visual condition. However, VA – A values in both cells were
392 small (near zero), indicating that their firing rates for multimodal conditions were not
393 significantly different from those for auditory conditions. To visualize these patterns, we created
394 scatter plots and histograms of RMI values for visual cells (**Fig. 6B**). VA – V values for visual
395 cells were significantly different from zero ($t_{(20)} = 8.9, p < 0.0001$; one-sample t-test), indicating
396 that visual cells further dissociated visual and multimodal conditions. However, VA – A values
397 for visual cells were not significantly different from zero ($t_{(20)} = 1.78, p = 0.091$; one-sample t-
398 test), suggesting that visual cells are not a suitable neuronal substrate for dissociating multimodal
399 and auditory conditions.

400 Next, we examined RMI values in auditory cells (**Fig. 6C**). In cells #12 and #13, the
401 mean firing rates for the auditory condition were higher than those in the multimodal condition
402 (i.e., negative VA – A), although both conditions contained the same auditory information. That
403 is, auditory cells, like visual cells, exhibited multisensory suppression. In addition, auditory cells
404 further dissociated multimodal and visual conditions, showing relatively higher firing rates in the
405 multimodal condition (i.e., positive VA – V). These patterns in auditory cells were visualized
406 using scatter plots and histograms of RMI values (**Fig. 6D**). Further analyses showed that

407 VA – A values for auditory cells were significantly different from zero ($t_{(26)} = 4.48, p = 0.00013$;
408 one-sample t-test), indicating that these cells dissociated auditory and multimodal conditions.
409 VA – V values for auditory cells were also significantly different from zero ($t_{(26)} = 9.18, p <$
410 0.0001; one-sample t-test).

411 Collectively, these findings demonstrate that visual, auditory, and multimodal conditions
412 can be distinguished based on the firing rates of single auditory cells, which exhibited a rank
413 order of firing rate of A > VA > V. Further analyses revealed that crossmodal cells exhibited
414 heterogeneous patterns of neural modulation compared with unimodal cells (**Fig. S7**). The
415 multisensory suppression displayed by both visual and auditory cells could not be explained by
416 familiarity-coding for the multimodal condition (i.e., repetition suppression; **Fig. S8**). Taken
417 together, these results suggest that unimodal cell types in the PER do not merely respond to the
418 presence or absence of specific modality information. Instead, they are capable of differentially
419 representing different modality conditions by modulating their firing rates according to the
420 specific modality conditions.

421

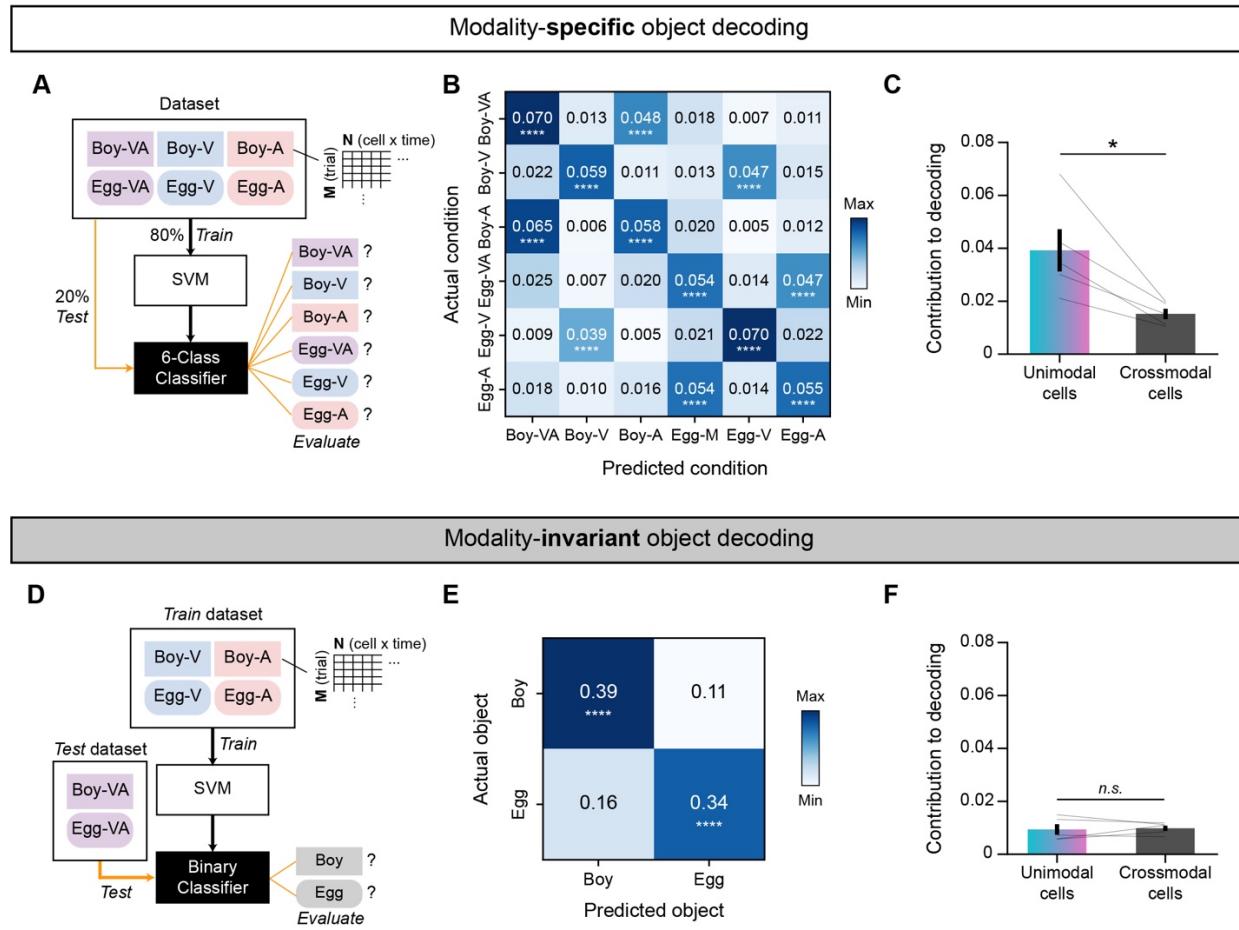
422 **The PER neuronal population can decode object identities in both a modality-specific and 423 modality-invariant manner**

424 Having described different categories of object cells and their heterogeneous activity patterns in
425 response to objects with different sensory modalities, we next sought to directly assess how PER
426 neurons support multimodal object recognition. To this end, we conducted a population-
427 decoding analysis using two different linear support vector machine (SVM) classifiers to
428 evaluate distinct multimodal object-recognition processes. These two classifiers were designed to
429 test whether the PER neurons as a population could decode object identities in a modality-
430 specific manner (classifier 1; **Fig. 7A–C**) or a modality-invariant manner (classifier 2; **Fig. 7D–**
431 **F**). For each classifier, we sought to determine if decoding performance was significant, and
432 which cell categories contributed to the decoding.

433 For the first classifier, six object conditions – two objects, each with three modality
434 conditions – were decoded using a 6-class SVM classifier (**Fig. 7A**). To create a dataset, we
435 generated pseudo-populations of object cells and their firing rates during the task epoch for each
436 rat ($n = 5$) by subsampling 5 trials from each condition (see Methods for details). We then
437 employed a 5-fold cross-validation approach to train and test the dataset, repeating the

438 procedures (subsampling, training, and testing) 100 times. A confusion matrix was created by
 439 averaging the proportions of actual and predicted conditions across rats (**Fig. 7B**). In the
 440 confusion matrix, the proportion in the diagonal line (i.e., decoding accuracy) was significantly
 441 higher compared with that in the shuffled distribution ($p < 0.0001$), indicating the successful
 442 decoding of both object identities and modality conditions (permutation test).

443



444

445 **Fig. 7. Modality-specific and modality-invariant decoding of object identities by the neuronal**
 446 **population in the PER** (A) Diagram summarizing modality-specific object decoding using a linear
 447 support vector machine (SVM). (B) Confusion matrix showing the average decoding accuracy of the
 448 classifier depicted in A ($n = 5$). (C) Comparison of the contribution of a single neuron to the decoding
 449 accuracy between unimodal and crossmodal cells, showing a significantly higher contribution of
 450 unimodal neurons to this type of decoding ($n = 5$). (D) Diagram summarizing the decoding of multimodal
 451 objects based on unimodal information (i.e., modality-invariant object decoding) with a linear SVM. Note

452 that the classifier was trained with visual and auditory trials only, and tested on multimodal trials only.
453 (E) Confusion matrix showing the average decoding accuracy of the classifier depicted in E (n = 5). (F)
454 The contribution of a single neuron to modality-invariant object decoding was similar between unimodal
455 and crossmodal cells. Data are presented as means \pm SEM (* $p < 0.05$, *** $p < 0.0001$; n.s., not
456 significant).

457
458 Next, we analyzed how unimodal and crossmodal cells, defined in the previous analysis
459 (Fig. 5E), contributed to the decoding performance. We speculated that unimodal cells would
460 make a greater contribution to the dissociation of modality conditions owing to their ability to
461 dissociate not only visual and auditory inputs (Fig. 5C) but also unimodal and multimodal
462 conditions (Fig. 6B and 6D). For this analysis, we tested the respective contributions to decoding
463 by quantifying the extent to which decoding accuracy decreased after shuffling data from a given
464 cell category (see Methods for details). For example, to calculate the contribution of crossmodal
465 cells to decoding, we shuffled trial labels (rows) only in features (columns) that were derived
466 from crossmodal cells. We then assessed decoding accuracy before and after implementing this
467 permutation, comparing the contribution of a single neuron in unimodal and crossmodal cell
468 categories to decoding accuracy (Fig. 7C). Single unimodal cells exhibited significantly higher
469 contributions to decoding accuracy compared with individual crossmodal neurons ($t_{(4)} = 3.7$, $p =$
470 0.021; paired t-test), indicating that the PER can decode modality-specific object information
471 based on the activities of a limited number of unimodal cells.

472 Next, we investigated whether the neuronal population in the PER could achieve
473 modality-invariant decoding of object identities. Specifically, we sought to determine if
474 multimodal objects could be decoded solely from unimodal trials, by analogy to the ability of
475 rats to retrieve multimodal objects when only unimodal cues are available (Fig. 2B, 2C, and 3D).
476 For this analysis, we trained the SVM to classify *Boy* and *Egg* objects using only unimodal trials
477 (i.e., V and A). After training, we tested the classifier with multimodal trials to determine if the
478 object identity could be successfully decoded (Fig. 7D). The creation of pseudo-populations
479 followed a process similar to that described in the previous section. In the confusion matrix, the
480 proportion along the diagonal, indicating the accuracy of invariant object decoding, was
481 significantly higher than that in the shuffled distribution ($p < 0.0001$; permutation test) (Fig. 7E).

482 Thus, successful modality-invariant decoding did not simply result from multimodal and
483 unimodal conditions sharing the same choice response (**Fig. S9**).

484 Finally, we examined how different cell categories contributed to invariant object
485 decoding (**Fig. 7F**). To measure the contribution to decoding, we quantified the degree of
486 decrease in decoding accuracy after shuffling data from a given cell category (i.e., unimodal or
487 crossmodal), as in **Figure 7C**. In contrast to the differentiation of modality information, the
488 contribution of a single neuron to decoding performance was minimal for invariant objects. In
489 addition, both crossmodal and unimodal cells contributed similarly to decoding ($t_{(4)} = 0.29, p =$
490 0.78; paired t-test) (**Fig. 7F**). These results suggest that the PER can also accomplish modality-
491 invariant recognition of objects and further that this process is supported by population activity
492 patterns of multiple neurons, rather than by a limited subset of single neurons.

493
494

495 **Discussion**

496 In the current study, we investigated how the PER contributes to multimodal object recognition
497 using a behavioral paradigm in which rats retrieved multimodal objects based on the objects'
498 multimodal or unimodal attributes. Rats identified multimodal objects correctly even when
499 provided only unimodal cues, and the PER was required for normal performance. Single-unit
500 recordings revealed that PER neurons exhibited transient object-selective signals that fired
501 sequentially throughout the entire task epoch. Certain object-selective neurons responded
502 primarily to visual or auditory attributes of an object (unimodal cells), whereas others exhibited
503 equivalent selectivity across different object modalities (crossmodal cells). Unimodal cells
504 further dissociated different modality conditions through modulation of their firing rates. Lastly,
505 using a population-decoding analysis, we found that the PER was capable of accomplishing both
506 modality-specific and modality-invariant object recognition. Specifically, modality-specific
507 decoding was enabled by a small number of unimodal cells, whereas modality-invariant
508 decoding was achieved through collective activity patterns of a relatively large number of
509 neurons, regardless of their cell types. Overall, our findings suggest that the PER supports
510 multimodal object recognition by engaging in both invariant recognition of a multimodal object
511 and separation of object experiences based on modality information.

512 As previously reported, PER inactivation in our study resulted in performance deficits in
513 the multimodal object-recognition task ^{5,7}. Based on behavioral results, however, it remains
514 uncertain whether the PER is important solely in “multimodal” situations. Specifically, because
515 performance deficits were observed in both multimodal and unimodal conditions, the possibility
516 remains that the role of the PER is limited to the separate processing of visual and auditory
517 information ⁶. Indeed, it has been reported that the rodent PER is engaged in various tasks that
518 employ visual- or auditory-only cues ^{33,34}. A similar issue is applicable to previous behavioral
519 experiments that reported performance deficits in tests of spontaneous object recognition in both
520 crossmodal and unimodal conditions ⁵⁻⁷. Therefore, understanding the function of the PER in
521 multisensory processing requires a detailed investigation of neural activity patterns under
522 different modality conditions.

523

524 **Possible advantages of transient and sequential object selectivity within the PER**

525 Since we controlled the sampling and response times of rats precisely by compelling nose-poke
526 behaviors, we were able to describe the detailed temporal dynamics of neuronal activity during
527 multimodal object recognition. We discovered that object-selective signals were elicited in PER
528 neurons for a short period of time. However, this result is inconsistent with previous reports of
529 persistent PER activity in both *in vitro* ^{35,36} and *in vivo* ³⁷ settings. There are several possible
530 explanations for why we did not observe persistent object selectivity. One possibility is that PER
531 neurons in our study actually did maintain persistent firing, but object selectivity emerged
532 transiently during the persistent firing. Most neurons analyzed in the current study were
533 physiologically categorized as regular-spiking neurons, so their activities were rather persistent
534 throughout the task epoch. In addition, it is important to note that the persistent selectivity of the
535 PER reported in previous studies may be more closely related to neural correlates of a behavioral
536 response than the stimulus itself. In our task, we were able to dissociate object- and response-
537 selective signals by introducing a control condition. Notably, response signals displayed longer
538 durations of selectivity compared with object selectivity (**Fig. S4**). We postulate that this long-
539 lasting selectivity for the choice response might overlap with the previously reported persistent
540 selectivity.

541 We also observed that object selectivity in the PER exhibited sequential characteristics.
542 Although this sequential nature has rarely been observed in the PER, it is commonly reported in

543 other brain regions, such as the prefrontal cortex ³⁸, posterior parietal cortex ³⁹, and hippocampus
544 ⁴⁰. This sequential pattern may have arisen because a specific behavioral sequence – maintaining
545 nose-poke and then choosing left or right – was always evoked in our task. However, it should be
546 noted that sequential coding has been reported to be beneficial for various aspects of memory
547 processing. That is, a sequential activity pattern is a way to achieve high-dimensional
548 information processing, which can enhance memory capacity and mitigate memory loss ⁴¹. It has
549 also been suggested that sequential firing patterns within the medial temporal lobe represent
550 temporal information of events, as exemplified by time cells in the hippocampus ⁴². The lateral
551 entorhinal cortex, which receives extensive monosynaptic inputs from the PER, has also been
552 reported to represent task-related time information ⁴³. Thus, the PER may also contribute to the
553 time component of episodic memory by representing both time and object information in an
554 associative manner through sequential activity patterns.

555

556 **Operation of both integrated and segregated encoding of multimodal object information in 557 the PER**

558 Previous studies have described the PER as an associative area in terms of both its physiological
559 characteristics ²⁹ and task-related firing patterns ²⁶. For example, neurons in the PER were found
560 to be responsive to two paired visual stimuli that were associated with a reward outcome ²⁶. The
561 PER was also theorized to primarily function in the “unitization” process ⁴⁴. That is, it was
562 suggested that the PER plays a role in situations where complex features of a single entity must
563 be integrated, such as when experiencing a complex object with multisensory information rather
564 than sampling a simple cue. Based on these hypotheses, the PER is expected to encode
565 multimodal objects in an integrated fashion instead of representing information of a single object
566 separately based on its modality. Consistent with these expectations, we discovered that most
567 object cells in the PER exhibit constant selectivity patterns, irrespective of the modality
568 condition (i.e., crossmodal cells). We believe that our task requirements were suitable for
569 facilitating the unitization process, as the multisensory cues were spatially and temporally
570 congruent, and each audiovisual combination required the same behavioral response. Thus, our
571 results provide experimental support for the idea that single neurons in the PER can encode
572 multimodal objects in a unitized representation.

573 However, it should also be noted that a significant proportion of unimodal cells in the
574 PER primarily responded to a specific sensory modality when processing object information, an
575 outcome that is not expected based on previous literature reports ^{31,44}. These neurons not only
576 preferred a particular sensory modality, they also further dissociated unimodal and multimodal
577 conditions through modulation of their firing rates. These unimodal activities could be
578 interpreted as purely perceptual signals that reflect the physical attributes of visual and auditory
579 cues. The perceptual-mnemonic hypothesis, which posits that the PER is involved in both
580 perception and memory, may further support the interpretation that unimodal cells indeed
581 represent perceptual information ⁴⁵⁻⁴⁹. However, it is unlikely that unimodal neurons simply
582 mirrored low-level perceptual features of the stimuli. If unimodal cells represented perceptual
583 signals originating from the visual (or auditory) cortex, it is likely that the posterior (or anterior)
584 PER would have more visual (or auditory) cells since visual (or auditory) input is more dominant
585 in the corresponding area. Instead, we observed that each cell category appeared to be equally
586 distributed along the anteroposterior axis of the PER. Moreover, unimodal cells showed
587 modulation by their non-preferred sensory modality, indicating that they were not simply
588 responding to the presence of a specific modality cue. Thus, unimodal cell activity in this area
589 could have been driven by intrinsic connections within the PER ²⁹ or by inputs from other
590 higher-order associative areas, such as the prefrontal cortex and hippocampus ⁵⁰⁻⁵². Given that
591 the PER is part of the medial temporal lobe memory system, it can be argued that unimodal
592 representations exist for memory encoding and retrieval rather than for simple sensory
593 processing.

594

595 **Dual functions of the PER in multimodal object recognition: invariant recognition and
596 episodic memory**

597 From a computational standpoint, an object-recognition system should be able to recognize an
598 object through an invariant representation, even if the object's physical attributes are modified ¹².
599 In multimodal object recognition, it is also important that objects be identified invariantly to
600 modality information. This modality invariance can be attained by individual neurons, as
601 exemplified by “concept cells” that fire invariantly to both the image and voice of a person ⁵³⁻⁵⁵.
602 Crossmodal cells in our study shared some commonalities with concept cells from the human
603 hippocampus as they showed some degree of invariance to modality information when coding

604 object identities. However, we discovered that individual crossmodal cells within the PER do not
605 contribute significantly to modality-invariant object recognition, making contributions to
606 decoding accuracy similar to those of the unimodal cell type. This may be because crossmodal
607 cells were not fully invariant to modality conditions, but instead showed slight modulations in
608 response to different modality conditions of objects (Fig. S7). More detailed investigations of
609 concept-like representations also suggest that firing patterns of individual neurons can be
610 heterogeneous, and that population-level activities are better suited to achieve invariance^{56,57}.

611 In addition to the invariant recognition process, we discovered that populations of PER
612 neurons can perform modality-specific object decoding, a process that seems to be
613 counterproductive for the invariant identification of objects. However, in terms of episodic
614 memory, segregation of similar events (i.e., pattern separation) is a crucial computational step for
615 encoding and retrieving correct memory^{58,59}. In cases where a single object is experienced by
616 multiple senses, each experience should be separated into different episodes, even though they
617 involve the same object. Pattern separation for episodic memory is thought to be primarily
618 implemented in the dentate gyrus^{60,61}. However, since a significant portion of information
619 received by the dentate gyrus relies on connections between the PER and entorhinal cortex,
620 modality-specific information in the PER could be an essential source for pattern separation
621 within the dentate gyrus. In addition, it has been suggested that the PER itself can support pattern
622 separation when two visual stimuli are highly overlapped as they morph into each other⁴⁹.
623 Validating the relationship between modality-specific representations and pattern separation will
624 require future studies that systematically manipulate the amount of information from each
625 modality.

626
627

628 **Methods**

629

630 **Subjects**

631 Male Long-Evans rats (10 wk old; n = 14) were obtained and individually housed in a
632 temperature- and humidity-controlled animal colony. Rats were allowed free access to food and
633 water for 1 wk before food restriction, during which they were allowed only 2 to 3 pellets (6–10
634 g) per day to maintain them at ~80% of their free-feeding body weight (~400–420 g). Rats were

635 housed on a 12-h light/dark cycle (lights on at 8 AM), and all experiments were performed in the
636 light phase. All animal procedures were performed in accordance with the regulations of the
637 International Animal Care and Use Committee of Seoul National University.

638

639 **Behavioral apparatus**

640 The apparatus consisted of an elevated chamber (22 × 35 × 40 cm; 94 cm above the floor) with a
641 custom-built device (22 × 18 cm) at the front of the chamber that was used for manipulating cues
642 and measuring animal behaviors with Arduino MEGA (Arduino) and MATLAB (MathWorks).
643 The frame of the device was printed with a 3D printer (Mojo; Stratasys), and the center of the
644 device contained a transparent acrylic window (8 × 10 cm) with a nose-poke hole (diameter, 2.4
645 cm; depth, 1.5 cm). The hole was equipped with an infrared sensor for measuring the onset and
646 maintenance of nose-poking behaviors during cue sampling. An LCD panel (3.5 inch; Nextion)
647 for presenting a visual cue, operated by Arduino, was positioned behind the acrylic window.
648 Directly behind the LCD panel was a 3W speaker, operated through an Arduino music player
649 module (DFPlayer Mini Mp3 Player; DFRobot), for presenting an auditory cue. The device
650 contained two identical ports located on the left and right side. Each port was equipped with a
651 servo-motorized door for controlling access and infrared sensors for detecting choice responses.
652 Another servo-motorized door located on the top of the port controlled the gravity-fed delivery
653 of a pre-loaded food reward to the choice port. A small buzzer was placed on the back of the
654 chamber to provide auditory feedback about the correctness of the rat's choice. The experimental
655 room was dimly lit with a circular array of LEDs (0.8 lux), and white noise (68 dB) was played
656 through loudspeakers to block out uncontrolled noise.

657

658 **Behavioral paradigm**

659 *Shaping:* After 6 d of handling, a shaping stage was included during which rats learned how to
660 maintain nose-poking of the center hole. The required duration for nose-poke was 10 ms
661 beginning in the first shaping trial, and then was increased by 10 ms for each successful poke to
662 a maximum of 400 ms. When rats failed to maintain their nose-poke for the required duration,
663 the trial was stopped and a 4-s interval was given together with auditory feedback (buzzer, 230
664 Hz, 76 dB). Once rats successfully completed 100 trials of 400-ms nose-pokes within a 30-min
665 session, they advanced to the multimodal object-recognition task.

666 *Multimodal object recognition – training:* Rats learned to make an associated choice response
667 based on a presented cue. Initially, the rats were trained under multimodal object conditions
668 (designated VA), in which a combination of visual and auditory cues was presented
669 simultaneously. The visual cues used were 2D photographic images of two junk objects – a boy
670 and an egg – presented via an LCD panel (1.6 lux). The two object images were adjusted to equal
671 luminance by matching their average gray values in Photoshop (Adobe). Auditory cues were
672 5 kHz and 10 kHz sine-wave tones (81 dB) that briefly repeated twice. Each object was
673 associated with either a left or right choice response. The combination of audiovisual cue and
674 stimulus-response contingency was counterbalanced across rats. An object containing a boy (or
675 egg) image was called a *Boy* (or *Egg*) object, regardless of the auditory cue associated with it.
676 Nose-poking to the center hole simultaneously triggered the onset of visual and auditory cues,
677 which remained presented for up to 400 ms while the rat maintained the nose-poke. If rats failed
678 to maintain the nose-poke for at least 400 ms (i.e., prematurely withdrawn nose-poke), cues
679 disappeared and the auditory feedback was given together with a 4-s interval. On the next nose-
680 poking, a pseudo-random stimulus was presented regardless of the previously experienced
681 stimulus. Prematurely withdrawn nose-pokes did not increase trial numbers. In successful nose-
682 pokes (>400 ms), the doors covering the left and right choice ports were opened, allowing the rat
683 to access one of the choice ports. A correct choice response resulted in delivery of a food reward,
684 whereas incorrect responses resulted in auditory feedback without a food reward together with an
685 8-s inter-trial interval. Rats performed 100 to 120 trials in total within a session. After rats
686 exceeded the learning criterion (>75% correct in all conditions for two consecutive days), they
687 learned the same task but using two simple visual cues as a control (C) condition. Rats that
688 exceeded the learning criterion in the control condition were then trained with both multimodal
689 objects and control stimuli within a session until they reached the criterion. After completing all
690 training procedures, rats underwent either cannula or hyperdrive implantation surgery (see below
691 for details). After surgery, they were again trained simultaneously on multimodal and control
692 conditions and then proceeded to the test phase.

693 *Multimodal object recognition – testing:* Unimodal conditions (visual or auditory) were
694 introduced for the first time in the test phase of multimodal object recognition. In the visual (V)
695 condition, only the boy or egg image was presented without an auditory cue. In the auditory (A)
696 condition, only a 5 or 10 kHz sound was presented without an image. Rats were required to make

697 the same choice response associated with the multimodal object based on the unimodal stimulus.
698 In the drug-infusion study, rats were serially tested under multimodal, visual, auditory, and
699 control conditions in separate sessions and performed 120 trials per session. In the
700 electrophysiological study, all eight conditions (two objects \times three modality conditions plus two
701 control stimuli) were pseudo-randomly presented within a session, and rats performed 180 to 240
702 trials per session (see below for details).

703

704 **Drug infusion**

705 The guide cannula (24 gauge, 18 mm long), internal cannula (30 gauge, 19 mm long), and
706 dummy cannula (30 gauge, 19 mm long) were built in-house. A surgery targeting the bilateral
707 PER was performed by first carefully retracting the left and right temporalis muscle, after which
708 two holes were drilled bilaterally on the skull surface (4.8 mm posterior to bregma, 5.2 mm
709 lateral to the midline). Guide cannulas were angled 15 degrees outward, lowered to 7 mm below
710 the cortical surface, and chronically fixed with four anchoring screws and dental cement. The
711 procedure was completed by placing dummy cannulas inside the guide cannulas. During
712 insertion, the tips of internal and dummy cannulas were protruded 1 mm from the tip of guide
713 cannulas. Cannulas were cleaned at least once every 2 d. The drug infusion schedule was started
714 after all rats had been retrained to multimodal and control conditions. PBS (0.5 μ l per site) and
715 the GABA-A receptor antagonist, muscimol (MUS; 0.5 μ l per site), were bilaterally injected into
716 the PER on alternate days using a Hamilton syringe (10 μ l). After one rat (rat #5) showed
717 immobilization side effects following muscimol injection, the injection amount was reduced to
718 0.3 μ l. Drug infusions were made 20 min before the start of the behavioral experiment. Rats were
719 tested in each condition on a different day in the following order: multimodal, unimodal (visual
720 and auditory), and control. The order of visual and auditory sessions was pseudo-randomized for
721 each rat. At the end of the experiment (20 min before sacrifice), the diffusion range of MUS was
722 estimated by injecting rats with fluorescent BODIPY TMR-X-labeled MUS (fMUS) and
723 monitoring fMUS by fluorescence microscopy.

724

725 **Hyperdrive implantation**

726 The hyperdrive containing 27 tetrodes was built in-house. Tetrodes were prepared by winding
727 together four formvar-insulated nichrome wires (diameter, 17.8 μm) and bonding them with heat.
728 Impedance was reduced to \sim 200 $\text{k}\Omega$ at 1 kHz by gold-plating wires using a Nano-Z plating
729 system (Neuralynx). For targeting the PER along the anteroposterior axis, a 12G stainless-steel
730 cannula bundle housing 27 tetrodes was formed into an elliptical shape (major axis, 3.4–3.8 mm;
731 minor axis, 2–2.4 mm). After performing surgery to target the right hemisphere of the PER, as
732 described above, a hole sized to fit the tetrode bundle was drilled on the skull surface. The
733 bundle tip was angled 12 degrees outward and lowered until it touched the cortical surface, after
734 which the hyperdrive was chronically fixed with 11 anchoring screws and bone cement.

735

736 **Electrophysiological recording**

737 After allowing 3 d to recover from surgery, rats were reacclimated to experimentation by
738 handling for 4 d and then retrained to perform the multimodal object recognition task under
739 multimodal and control conditions. Individual tetrodes were lowered daily. After most of the
740 tetrodes had reached the PER and rats showed greater than 75% correct responses in both
741 multimodal and control conditions for two consecutive days, recording sessions were begun. In
742 the recording sessions, the unimodal condition was introduced for the first time, such that
743 multimodal, visual, auditory, and control conditions were all presented pseudo-randomly during
744 a session. Recordings were conducted in each rat for 5 to 6 d, and no attempt was made to record
745 the same neuron across days. Neural signals were amplified 1000–10,000-fold and bandpass
746 filtered (300–6000 Hz) using a Digital Lynx data-acquisition system (Neuralynx). Spike
747 waveforms exceeding a preset threshold (adjusted within the range of 40–150 μV) were digitized
748 at 32 kHz and timestamped.

749

750 **Histology**

751 Rats were sacrificed with an overdose of CO_2 and transcardially perfused first with PBS and then
752 with a 4% (v/v) formaldehyde solution. The brain was extracted and maintained in a 4% (v/v)
753 formaldehyde-30% sucrose solution at 4°C until it sank to the bottom of the container. The brain
754 was subsequently coated with gelatin, soaked again in 4% (v/v) formaldehyde-30% sucrose
755 solution, and then sectioned at a thickness of 40 μm using a freezing microtome (HM 430;
756 ThermoFisher Scientific). For every three consecutive sections, the second and third sections

757 were mounted for staining. For the drug infusion study ($n = 6$), every second section was Nissl-
758 stained with thionin solution, and every third section was stained with DAPI solution
759 (Vectashield) for fluorescence microscopy. For the electrophysiological study ($n = 8$), every
760 second section was stained with thionin solution, and every third section was stained with gold
761 solution for myelin staining. Photomicrographs of each brain section were obtained using a
762 microscope mounted with a digital camera (Eclipse 80i; Nikon). To accurately estimate the
763 position of tetrodes, we reconstructed the configuration of tetrodes based on histology results,
764 and then compared it with the actual configuration to match the numbering of the tetrodes
765 (Voxwin, UK).

766

767 **Unit isolation**

768 All single units were manually isolated using a custom program (WinClust), as previously
769 described^{32,62}. Various waveform parameters (i.e., peak amplitude, energy, and peak-to-trough
770 latencies) were used for isolating single units, but peak amplitude was the primary criterion.
771 Units were excluded if more than 1% of spikes occurred within the refractory period (1 ms) and
772 mean firing rates during the task epoch (from cue onset to response) were lower than 0.5 Hz.

773

774 **Single-unit analysis**

775 *Basic firing properties.* Single units were grouped into bursting, regular-spiking, and unclassified
776 neurons based on their autocorrelograms and interspike-interval histograms (Bartho et al., 2004).
777 Specifically, cells were classified as bursting neurons if they met the following criterion:

$$778 \quad \max(\text{autocorrelogram of } 3\text{--}5 \text{ ms}) > \max(\text{autocorrelogram of } 0\text{--}50 \text{ ms})/2$$

779 Among the remaining neurons, those in which the mode of the interspike-interval histogram was
780 less than 35 ms were classified as regular-spiking neurons. Neurons that did not belong to either
781 group were categorized as unclassified neurons. Spike width was measured as the distance from
782 peak to trough.

783 *Trial filtering:* All subsequent analyses described below were performed using correct trials
784 only. An overview of the subsequent single-unit analysis process is presented in **Figure S3**. To
785 control for variability in response latency (i.e., from cue offset to the end of choice response), we
786 excluded trials where the latency exceeded 3 absolute median deviations of all correct trials. If a

787 recording session had less than five correct trials in any of the eight stimulus conditions, all units
788 recorded in that session were excluded from further analysis.

789 *Defining selective epoch:* Firing rates were calculated within 50-ms time bins with increments of
790 10 ms. All subsequent analyses described below were performed on firing rates within the task
791 epoch, defined as the 900-ms interval from the start of the sample phase to immediately
792 preceding the end of the response phase. To identify a selective epoch in which firing rates were
793 significantly different between *Boy* and *Egg* objects, we performed two-way repeated measures
794 ANOVA (object identity and modality condition as two factors) in each time bin using trials
795 from object conditions (two objects with three modality conditions). The time bin with the
796 largest effect size (η^2) for the object identity factor was designated “peak selectivity time”,
797 representing the moment when the firing rate difference between the two objects was maximal.
798 The selective epoch was defined as having more than five consecutive time bins around the peak
799 selectivity time, each with a p-value < 0.05 for the object identity factor.

800 *Multiple linear regression:* The following multiple linear regression models were used to
801 describe firing patterns in relation to task-related conditions:

802

$$FR = \beta_0 + \beta_1 \times X_1 + \beta_2 \times X_2 + \beta_3 \times X_3 + \beta_4 \times X_4 \quad (1)$$

803

$$FR = \beta_0 + \beta_1 \times X_1 + \beta_2 \times X_2 + \beta_3 \times X_3 + \beta_4 \times X_4 + \beta_5 \times X_5, \quad (2)$$

804 where the dependent variable FR, is the firing rate within the selective epoch, described above.
805 In the standard model (1), β_1 is the constant term, $\beta_1 \times X_1$ is the term for visual information of the
806 preferred object, $\beta_2 \times X_2$ is the term for auditory information of the preferred object, $\beta_3 \times X_3$ is
807 the term for visual information of the non-preferred object, and $\beta_4 \times X_4$ is the term for auditory
808 information of the non-preferred object. The independent variables (X) were binary coded to
809 reflect the existence of an image or sound for an object. For example, if a neuron was classified
810 as a *Boy*-preferring object cell, X_1 had a value of one in Boy-VA and Boy-V trials, and zero in all
811 other conditions. In the extended model (2), the term $\beta_5 \times X_5$ was added to further examine the
812 influence of the response factor. X_5 had a value of one if a trial required a left choice response,
813 and zero if it required a right choice response. All trial conditions (VA, V, A, C) were used to
814 estimate the regression model. β coefficients were standardized by z-scoring both dependent and

816 independent variables prior to regression fitting. To dissociate neurons that were mainly
817 modulated by choice responses (i.e., response cell) rather than object information, we quantified
818 how much the model was improved by adding the response factor. Specifically, we subtracted
819 the AIC (Akaike Information Criterion) for the extended model (2) from that for the standard
820 model (1). If a neuron exhibited a significantly higher AIC difference, we concluded that most of
821 its activity patterns were explained by the response factor, and thus classified it as a response
822 cell. The significance of the AIC difference was determined by comparison with the null
823 distribution, obtained by shuffling trial conditions (shuffled 1000 times; $\alpha = 0.01$). Neurons with
824 a selective epoch but not classified as response cells were categorized as object cells. To describe
825 how object cells responded to different modality information, we examined regression
826 coefficients in the standard model (1) using β_1 and β_2 to quantify how strongly an object cell
827 responded to visual and auditory information, respectively, of a preferred object. We did not
828 further examine regression coefficients for a non-preferred object (i.e., β_3 and β_4) (see **Fig. S6**).
829 Neurons for which the difference between β_1 and β_2 was significantly higher or lower than the
830 difference obtained after shuffling trial conditions were classified as visual or auditory cells,
831 respectively (shuffled 1000 times; $\alpha = 0.05$, two-sided permutation test).

832 *Rate modulation index.* We calculated a “rate modulation index” (RMI) to quantify increases or
833 decreases in a neuron’s firing rates in the multimodal condition relative to the unimodal
834 condition. Firing rate differences between the multimodal and unimodal condition were
835 quantified using Cohen’s d as follows:

$$836 \quad RMI = \frac{\text{mean(VA)} - \text{mean(V or A)}}{\text{std(VA,V or A)}}$$

837 The index was calculated only in the modality conditions of the preferred object, and was
838 referred to as “VA – V” when the index was calculated between multimodal and visual
839 conditions, and "VA – A" when it was calculated between multimodal and auditory conditions.
840

841 **Population decoding**

842 A linear support vector machine (*sklearn.svm.SVC*, Python function), with cost parameter set to
843 0.01, was used for population decoding. Population decoding was performed on rats in which at
844 least 20 object cells were recorded across sessions (5 of 8 rats). Spikes were binned into 100-ms
845 time bins within the task epoch (900-ms duration) and z-scored. Pseudo-populations of neurons

were constructed in each rat as follows: For each object cell, five trials for each of the six object conditions (two objects \times three modalities) were subsampled. Firing rates in the subsampled trials were horizontally concatenated to the pseudo-population. Thus, each pseudo-population had 30 rows (5 trials \times 6 conditions) and N columns (or features), where N was the number of time bins (9) multiplied by the number of object cells. For modality-specific object decoding (Fig. 7A), the entire subsampled dataset (30 samples) was used for both training and testing. One-vs.-one classification was performed using stratified 5-fold cross-validation. For modality-invariant object decoding (Fig. 7D), a binary classifier was trained using only unimodal trials, and then tested with multimodal trials ⁶³. We did not perform cross-validation here since the training and test sets were completely separate. Subsampling, training, and testing were repeated 100 times in both decoding procedures, and the average of these repeated results was used as the representative value for each rat. A permutation test, performed by shuffling trial conditions, was used for significance testing (shuffled 1000 times; $\alpha = 0.05$). Confusion matrices (Fig. 7B and 7E) were constructed by averaging the results from all rats. Contributions to decoding performance (Fig. 7C and 7F) were measured using the permutation feature importance method. Specifically, after training the classifier, we selected all features from a given cell category (unimodal or crossmodal) and shuffled their rows (or trial labels) to break the relationship between the true label and selected features. The decrease in decoding accuracy after permutation was used as an indicator of how much the selected features contributed to decoding performance. Contribution to decoding was calculated as follows:

$$\text{Contributions to decoding} = \frac{\text{Accuracy}(\text{baseline}) - \text{Accuracy}(\text{after permutation})}{\text{Accuracy}(\text{baseline}) + \text{Accuracy}(\text{after permutation})}$$

To measure the contribution of a single cell to decoding performance in a given category, we divided the value by the number of cells in that category within each rat.

869

870 Quantification and statistical analysis

871 Data were statistically tested using custom-made codes written in MATLAB and Python.
872 Student's t-test, analysis of variance (ANOVA), Wilcoxon sign-rank test, Chi-square test, and
873 permutation test were used for statistical comparisons. A one-sample t-test was used to verify
874 that the behavioral performance was above the level of chance and RMI values were
875 significantly different from zero. One-way repeated measures ANOVA was implemented for

876 comparing behavioral results across modality conditions. Two-way repeated measures ANOVA
877 was used to compare behavioral results (drug and modality condition as two factors), as well as
878 to identify object-selective epoch (object and modality condition as two factors). Post hoc
879 analyses were carried out using t-test with p-values corrected using the Holm-Bonferroni
880 method. Wilcoxon signed-rank test was used to compare the regression coefficients, β_1 and β_2 .
881 An ordinary least squares method was used for both multiple and simple linear regression. Chi-
882 square test was used for comparisons of proportions. A permutation test was used for
883 categorizing response-selective neurons and defining significance levels for population decoding
884 accuracy. Unless otherwise indicated, the significance level was set at $\alpha = 0.05$. Error bars
885 indicate standard error of the mean (SEM) unless stated otherwise.

886

887

888 **Author contributions**

889 Conceptualization, H.-Y.L. and I.L.; Methodology, H.-Y.L. and I.L.; Software, H.-Y.L. and I.L.;
890 Validation, H.-Y.L. and I.L.; Formal analysis, H.-Y.L.; Investigation, H.-Y.L.; Resources, I.L.;
891 Data curation, H.-Y.L. and I.L.; Wiring – Original Draft, H.-Y.L.; Wiring – Review & Editing,
892 H.-Y.L. and I.L.; Visualization, H.-Y.L. and I.L.; Supervision, I.L.; Project Administration, I.L.;
893 Funding Acquisition, I.L.

894

895 **Declaration of Interests**

896 The authors declare no competing interests.

897

898 **Data Availability**

899 The datasets generated and/or analyzed during the current study are available from the
900 corresponding author upon reasonable request.

901

902 **References**

- 903 1. Jones, E.G., and Powell, T.P.S. (1970). An Anatomical Study of Converging Sensory Pathways.
904 *Brain* *93*, 793–820. 10.1037/a0015325.
- 905 2. Ghazanfar, A.A., and Schroeder, C.E. (2006). Is neocortex essentially multisensory? *Trends in*
906 *Cognitive Sciences* *10*, 278–285. 10.1016/j.tics.2006.04.008.
- 907 3. Davenport, R.K., and Rogers, C.M. (1970). Intermodal Equivalence of Stimuli in Apes. *Science* *168*,
908 279–280. 10.1126/science.168.3928.279.
- 909 4. Murray, E.A., and Mishkin, M. (1985). Amygdalectomy Impairs Crossmodal Association in
910 Monkeys. *Science* *228*, 604–606. 10.1126/science.3983648.
- 911 5. Winters, B.D., and Reid, J.M. (2010). A Distributed Cortical Representation Underlies Crossmodal
912 Object Recognition in Rats. *Journal of Neuroscience* *30*, 6253–6261. 10.1523/JNEUROSCI.6073-
913 09.2010.
- 914 6. Albasser, M.M., Amin, E., Iordanova, M.D., Brown, M.W., Pearce, J.M., and Aggleton, J.P. (2011).
915 Separate but interacting recognition memory systems for different senses: The role of the rat
916 perirhinal cortex. *Learning & Memory* *18*, 435–443. 10.1101/lm.2132911.
- 917 7. Jacklin, D.L., Cloke, J.M., Potvin, A., Garrett, I., and Winters, B.D. (2016). The Dynamic
918 Multisensory Engram: Neural Circuitry Underlying Crossmodal Object Recognition in Rats Changes
919 with the Nature of Object Experience. *Journal of Neuroscience* *36*, 1273–1289.
920 10.1523/JNEUROSCI.3043-15.2016.
- 921 8. Bruck, J.N., Walmsley, S.F., and Janik, V.M. (2022). Cross-modal perception of identity by sound
922 and taste in bottlenose dolphins. *Science Advances* *8*, eabm7684. 10.1126/sciadv.abm7684.
- 923 9. Solvi, C., Al-Khudhairy, S.G., and Chittka, L. (2020). Bumble bees display cross-modal object
924 recognition between visual and tactile senses. *Science* *367*, 910–912. 10.1126/science.aay8064.
- 925 10. Ito, M., Tamura, H., Fujita, I., and Tanaka, K. (1995). Size and position invariance of neuronal
926 responses in monkey inferotemporal cortex. *Journal of Neurophysiology* *73*, 218–226.
927 10.1152/jn.1995.73.1.218.

928 11. Booth, M.C., and Rolls, E.T. (1998). View-invariant representations of familiar objects by neurons in
929 the inferior temporal visual cortex. *Cerebral Cortex* 8, 510–523. 10.1093/cercor/8.6.510.

930 12. DiCarlo, J.J., Zoccolan, D., and Rust, N.C. (2012). How does the brain solve visual object
931 recognition? *Neuron* 73, 415–434. 10.1016/j.neuron.2012.01.010.

932 13. Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate
933 removal of amygdala and hippocampus. *Nature* 273, 297–298. 10.1038/273297a0.

934 14. Ennaceur, A. (2010). One-trial object recognition in rats and mice: Methodological and theoretical
935 issues. *Behavioural Brain Research* 215, 244–254. 10.1016/j.bbr.2009.12.036.

936 15. Fahy, F.L., Riches, I.P., and Brown, M.W. (1993). Neuronal activity related to visual recognition
937 memory: long-term memory and the encoding of recency and familiarity information in the primate
938 anterior and medial inferior temporal and rhinal cortex. *Exp Brain Res* 96, 457–472.
939 10.1007/BF00234113.

940 16. Ahn, J.-R., and Lee, I. (2015). Neural Correlates of Object-Associated Choice Behavior in the
941 Perirhinal Cortex of Rats. *Journal of Neuroscience* 35, 1692–1705. 10.1523/JNEUROSCI.3160-
942 14.2015.

943 17. Zola-Morgan, S., Squire, L.R., Amaral, D.G., and Suzuki, W.A. (1989). Lesions of perirhinal and
944 parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory
945 impairment. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 9,
946 4355–4370. 10.1523/JNEUROSCI.09-12-04355.1989.

947 18. Burke, S.N., Maurer, A.P., Hartzell, A.L., Nematollahi, S., Upadhyay, A., Wallace, J.L., and Barnes,
948 C.A. (2012). Representation of three-dimensional objects by the rat perirhinal cortex. *Hippocampus*
949 22, 2032–2044. 10.1002/hipo.22060.

950 19. Deshmukh, S.S., Johnson, J.L., and Knierim, J.J. (2012). Perirhinal cortex represents nonspatial, but
951 not spatial, information in rats foraging in the presence of objects: Comparison with lateral entorhinal
952 cortex. *Hippocampus* 22, 2045–2058. 10.1002/hipo.22046.

953 20. Norman, G., and Eacott, M.J. (2005). Dissociable effects of lesions to the perirhinal cortex and the
954 postrhinal cortex on memory for context and objects in rats. *Behavioral Neuroscience* 119, 557–566.
955 10.1037/0735-7044.119.2.557.

956 21. Suzuki, W.A., and Amaral, D.G. (1994). Perirhinal and parahippocampal cortices of the macaque
957 monkey: Cortical afferents. *Journal of Comparative Neurology* *350*, 497–533.
958 10.1002/cne.903500402.

959 22. Burwell, R.D., and Amaral, D.G. (1998). Cortical afferents of the perirhinal, postrhinal, and
960 entorhinal cortices of the rat. *Journal of Comparative Neurology* *398*, 179–205. 10.1002/(SICI)1096-
961 9861(19980824)398:2<179::AID-CNE3>3.0.CO;2-Y.

962 23. Burwell, R.D. (2006). The Parahippocampal Region: Corticocortical Connectivity. *Annals of the
963 New York Academy of Sciences* *911*, 25–42. 10.1111/j.1749-6632.2000.tb06717.x.

964 24. Taylor, K.I., Moss, H.E., Stamatakis, E.A., and Tyler, L.K. (2006). Binding crossmodal object
965 features in perirhinal cortex. *Proceedings of the National Academy of Sciences* *103*, 8239–8244.
966 10.1073/pnas.0509704103.

967 25. Holdstock, J.S., Hocking, J., Notley, P., Devlin, J.T., and Price, C.J. (2009). Integrating visual and
968 tactile information in the perirhinal cortex. *Cerebral Cortex* *19*, 2993–3000. 10.1093/cercor/bhp073.

969 26. Sakai, K., and Miyashita, Y. (1991). Neural organization for the long-term memory of paired
970 associates. *Nature* *354*, 152–155. 10.1038/354152a0.

971 27. Naya, Y., Yoshida, M., and Miyashita, Y. (2003). Forward processing of long-term associative
972 memory in monkey inferotemporal cortex. *The Journal of neuroscience : the official journal of the
973 Society for Neuroscience* *23*, 2861–2871. 23/7/2861 [pii].

974 28. Suzuki, W. a., and Naya, Y. (2014). The Perirhinal Cortex. *Annual Review of Neuroscience* *37*, 39–
975 53. 10.1146/annurev-neuro-071013-014207.

976 29. Unal, G., Apergis-Schoute, J., and Paré, D. (2012). Associative Properties of the Perirhinal Network.
977 *Cerebral Cortex* *22*, 1318–1332. 10.1093/cercor/bhr212.

978 30. Ohnuki, T., Osako, Y., Manabe, H., Sakurai, Y., and Hirokawa, J. (2020). Dynamic coordination of
979 the perirhinal cortical neurons supports coherent representations between task epochs.
980 *Communications biology*, 1-. 10.1038/s42003-020-01129-3.

981 31. Fiorilli, J., Marchesi, P., Ruikes, T., Veld, G.H. in 't, Buckton, R., Quintero, M.D., Reiten, I., Bjaalie,
982 J., and Pennartz, C.M.A. (2023). Neural correlates of object identity and reward outcome in the

983 corticohippocampal hierarchy: double dissociation between perirhinal and secondary visual cortex.

984 Preprint at bioRxiv, 10.1101/2023.05.24.542117 10.1101/2023.05.24.542117.

985 32. Lim, H., Ahn, J., and Lee, I. (2022). The Interaction of Cue Type and Its Associated Behavioral
986 Response Dissociates the Neural Activity between the Perirhinal and Posterior Cortices. *eNeuro* 9,
987 1–17.

988 33. Park, E.H., Ahn, J.-R., and Lee, I. (2017). Interactions between stimulus and response types are more
989 strongly represented in the entorhinal cortex than in its upstream regions in rats. *eLife* 6, 1–11.
990 10.7554/eLife.33415.001.

991 34. Kholodar-Smith, D.B., Boguszewski, P., and Brown, T.H. (2008). Auditory trace fear conditioning
992 requires perirhinal cortex. *Neurobiology of Learning and Memory* 90, 537–543.
993 10.1016/j.nlm.2008.06.006.

994 35. Beggs, J.M., Moyer, J.R., McGann, J.P., and Brown, T.H. (2000). Prolonged Synaptic Integration in
995 Perirhinal Cortical Neurons. *Journal of Neurophysiology* 83, 3294–3298. 10.1152/jn.2000.83.6.3294.

996 36. Navaroli, V.L., Zhao, Y., Boguszewski, P., and Brown, T.H. (2012). Muscarinic receptor activation
997 enables persistent firing in pyramidal neurons from superficial layers of dorsal perirhinal cortex.
998 *Hippocampus* 22, 1392–1404. 10.1002/hipo.20975.

999 37. Bos, J.J., Vinck, M., van Mourik-Donga, L.A., Jackson, J.C., Witter, M.P., and Pennartz, C.M.A.
1000 (2017). Perirhinal firing patterns are sustained across large spatial segments of the task environment.
1001 *Nature Communications* 8, 15602. 10.1038/ncomms15602.

1002 38. Bolkan, S.S., Stujenske, J.M., Parnaudeau, S., Spellman, T.J., Rauffenbart, C., Abbas, A.I., Harris,
1003 A.Z., Gordon, J.A., and Kellendonk, C. (2017). Thalamic projections sustain prefrontal activity
1004 during working memory maintenance. *Nature Neuroscience* 20, 987–996. 10.1038/nn.4568.

1005 39. Harvey, C.D., Coen, P., and Tank, D.W. (2012). Choice-specific sequences in parietal cortex during a
1006 virtual-navigation decision task. *Nature* 484, 62–68. 10.1038/nature10918.

1007 40. Pastalkova, E., Itskov, V., Amarasingham, A., and Buzsáki, G. (2008). Internally Generated Cell
1008 Assembly Sequences in the Rat Hippocampus. *Science* 321, 1322–1327. 10.1126/science.1159775.

1009 41. Rajan, K., Harvey, C.D., and Tank, D.W. (2016). Recurrent Network Models of Sequence Generation
1010 and Memory. *Neuron* *90*, 128–142. 10.1016/j.neuron.2016.02.009.

1011 42. Kraus, B.J., Robinson, R.J., White, J.A., Eichenbaum, H., and Hasselmo, M.E. (2013). Hippocampal
1012 “Time Cells”: Time versus Path Integration. *Neuron* *78*, 1090–1101. 10.1016/j.neuron.2013.04.015.

1013 43. Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J.J., Moser, M.-B., and Moser, E.I. (2018). Integrating
1014 time from experience in the lateral entorhinal cortex. *Nature* *561*, 57–62. 10.1038/s41586-018-0459-
1015 6.

1016 44. Fiorilli, J., Bos, J.J., Grande, X., Lim, J., Düzel, E., and Pennartz, C.M.A. (2021). Reconciling the
1017 object and spatial processing views of the perirhinal cortex through task-relevant unitization.
1018 *Hippocampus*, 1–19. 10.1002/hipo.23304.

1019 45. Eacott, M.J., Gaffan, D., and Murray, E.A. (1994). Preserved Recognition Memory for Small Sets,
1020 and Impaired Stimulus Identification for Large Sets, Following Rhinal Cortex Ablations in Monkeys.
1021 *European Journal of Neuroscience* *6*, 1466–1478. 10.1111/j.1460-9568.1994.tb01008.x.

1022 46. Bussey, T.J., and Saksida, L.M. (2005). Object memory and perception in the medial temporal lobe:
1023 An alternative approach. *Current Opinion in Neurobiology* *15*, 730–737. 10.1016/j.conb.2005.10.014.

1024 47. Bussey, T.J., Saksida, L.M., and Murray, E.A. (2006). Perirhinal cortex and feature-ambiguous
1025 discriminations. *Learning & Memory* *13*, 103–105. 10.1101/lm.163606.

1026 48. Bartko, S.J., Winters, B.D., Cowell, R.A., Saksida, L.M., and Bussey, T.J. (2007). Perceptual
1027 Functions of Perirhinal Cortex in Rats: Zero-Delay Object Recognition and Simultaneous Oddity
1028 Discriminations. *Journal of Neuroscience* *27*, 2548–2559. 10.1523/JNEUROSCI.5171-06.2007.

1029 49. Ahn, J.-R., and Lee, I. (2017). Neural Correlates of Both Perception and Memory for Objects in the
1030 Rodent Perirhinal Cortex. *Cerebral Cortex*, 1–13. 10.1093/cercor/bhw093.

1031 50. Hwang, J., and Romanski, L.M. (2015). Prefrontal neuronal responses during audiovisual mnemonic
1032 processing. *Journal of Neuroscience* *35*, 960–971. 10.1523/JNEUROSCI.1328-14.2015.

1033 51. Peng, X., and Burwell, R.D. (2021). Beyond the hippocampus: The role of parahippocampal-
1034 prefrontal communication in context-modulated behavior. *Neurobiology of Learning and Memory*
1035 *185*, 107520. 10.1016/j.nlm.2021.107520.

1036 52. Van Groen, T., and Wyss, J.M. (1990). Extrinsic projections from area CA1 of the rat hippocampus:
1037 Olfactory, cortical, subcortical, and bilateral hippocampal formation projections. *Journal of*
1038 *Comparative Neurology* *302*, 515–528. 10.1002/cne.903020308.

1039 53. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant visual representation
1040 by single neurons in the human brain. *Nature* *435*, 1102–1107. 10.1038/nature03687.

1041 54. Quiroga, R.Q., Kraskov, A., Koch, C., and Fried, I. (2009). Explicit Encoding of Multimodal
1042 Percepts by Single Neurons in the Human Brain. *Current Biology* *19*, 1308–1313.
1043 10.1016/j.cub.2009.06.060.

1044 55. Quiroga, R.Q. (2012). Concept cells: the building blocks of declarative memory functions. *Nature*
1045 *Neuroscience* *13*, 587–597. 10.1038/nrn3251.

1046 56. Reber, T.P., Bausch, M., Mackay, S., Boström, J., Elger, C.E., and Mormann, F. (2019).
1047 Representation of abstract semantic knowledge in populations of human single neurons in the medial
1048 temporal lobe. *PLoS Biol* *17*, e3000290. 10.1371/journal.pbio.3000290.

1049 57. Tyree, T.J., Metke, M., and Miller, C.T. (2023). Cross-modal representation of identity in the primate
1050 hippocampus. *Science* *382*, 417–423. 10.1126/science.adf0460.

1051 58. Yassa, M.A., and Stark, C.E.L. (2011). Pattern separation in the hippocampus. *Trends in*
1052 *Neurosciences* *34*, 515–525. 10.1016/j.tins.2011.06.006.

1053 59. Kent, B.A., Hvoslef-Eide, M., Saksida, L.M., and Bussey, T.J. (2016). The representational-
1054 hierarchical view of pattern separation: Not just hippocampus, not just space, not just memory?
1055 *Neurobiology of Learning and Memory* *129*, 99–106. 10.1016/j.nlm.2016.01.006.

1056 60. Marr, D., and Brindley, G.S. (1971). Simple memory: a theory for archicortex. *Philosophical*
1057 *Transactions of the Royal Society of London. B, Biological Sciences* *262*, 23–81.
1058 10.1098/rstb.1971.0078.

1059 61. Leutgeb, J.K., Leutgeb, S., Moser, M.-B., and Moser, E.I. (2007). Pattern Separation in the Dentate
1060 Gyrus and CA3 of the Hippocampus. *Science* *315*, 961–966. 10.1126/science.1135801.

1061 62. Ahn, J.-R., Lee, H.-W., and Lee, I. (2019). Rhythmic Pruning of Perceptual Noise for Object
1062 Representation in the Hippocampus and Perirhinal Cortex in Rats. *Cell Reports* 26, 2362-2376.e4.
1063 10.1016/j.celrep.2019.02.010.

1064 63. Kaplan, J.T., Man, K., and Greening, S.G. (2015). Multivariate cross-classification: applying
1065 machine learning techniques to characterize abstraction in neural representations. *Frontiers in Human
1066 Neuroscience* 9, 1–12. 10.3389/fnhum.2015.00151.

1067