

Genome-Scale Modeling of *Rothia mucilaginosa* Reveals Insights into Metabolic Capabilities and Therapeutic Strategies for Cystic Fibrosis

Nantia Leonidou^{1,2,3,4,*} , Lisa Ostyn⁵, Tom Coenye⁵ , Aurélie Crabbé⁵ , and Andreas Dräger^{1,2,3,4}

¹Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany

²Department of Computer Science, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany

³Cluster of Excellence 'Controlling Microbes to Fight Infections', Eberhard Karls University of Tübingen, Germany

⁴German Center for Infection Research (DZIF), partner site Tübingen, Germany

⁵Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, 9000 Ghent, Belgium

*Correspondence: nantia.leonidou@uni-tuebingen.de

ABSTRACT

Background: Cystic fibrosis (CF) is an inherited genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in the production of sticky and thick mucosal fluids. This leads to an environment that facilitates the colonization of various microorganisms, some of which can cause acute and chronic lung infections, while others may have a positive influence on the disease process. *Rothia mucilaginosa*, an oral commensal, is relatively abundant in the lungs of CF patients. Recent studies have unveiled the anti-inflammatory properties of *R. mucilaginosa* using *in vitro* three-dimensional (3-D) lung epithelial cell cultures and *in vivo* mouse models relevant to chronic lung diseases. Apart from a potentially beneficial anti-inflammatory role in chronic lung diseases, *R. mucilaginosa* has been associated with severe infections. This dual nature highlights the bacterium's complexity and diverse impact on health and disease. However, its metabolic capabilities and genotype-phenotype relationships remain largely unknown.

Results: To gain insights into the cellular metabolism and genetic content of *R. mucilaginosa*, we developed the first manually curated genome-scale metabolic model, *iRM23NL*. Through growth kinetic experiments and high-throughput phenotypic microarray testings, we defined its complete catabolic genome. Subsequently, we assessed the model's effectiveness in accurately predicting growth behaviors and utilizing multiple substrates. We used constraint-based modeling techniques to formulate novel hypotheses that could expedite the development of antimicrobial strategies. More specifically, we detected putative essential genes and assessed their effect on metabolism under varying nutritional conditions. These predictions could offer novel potential antimicrobial targets without laborious large-scale screening of knock-outs and mutant transposon libraries.

Conclusion: Overall, *iRM23NL* demonstrates a solid capability to predict cellular phenotypes and holds immense potential as a valuable resource for accurate predictions in advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor *R. mucilaginosa*'s metabolism for desired performance.

Data Availability: Supplementary data are available along with this article, whereas the metabolic model is accessible through the BioModels Database.

Keywords: *iRM23NL*, *Rothia mucilaginosa* DSM20746, ATCC 25296, constraint-based modeling, flux balance analysis, flux variability analysis, mathematical network, genome-scale metabolic model, metabolic engineering, pathway analysis, SBML, Gram-positive, nasal microbiome, lung infections, cystic fibrosis, enterobactin, antimicrobial strategies

1 Introduction

2 *Rothia mucilaginosa* is a Gram-positive, encapsulated, non-
3 motile, and non-spore-forming bacterium of the *Micrococcaceae* family^{1,2}. While it is mainly aerobic, it may also grow
4 anaerobically as it can switch to fermentation or other non-
5 oxygen-involving pathways. *R. mucilaginosa* is a common
6 commensal of the normal oral, upper and lower respiratory
7 tract, and part of the skin flora in humans^{1,3,4,5,6}. This
8 means it coexists harmlessly within the host and may even
9 provide benefits. Nonetheless, it can also act as an oppor-
10 tunistic pathogen, particularly in individuals with weakened
11

12 immune systems, as an etiological agent of serious infections
13 such as endocarditis, sepsis, and meningitis⁷. Janek et al.
14 highlighted the high prevalence of *R. mucilaginosa* within
15 the nasal microbiome⁸. Moreover, they report its suscepti-
16 bility to certain staphylococcal bacteriocins, indicating its
17 major competition with the nasal staphylococci and the sub-
18 stantial impact of bacteriocins in shaping the nasal micro-
19 biota. In 2020, Uranga et al. revealed that *R. mucilaginosa*
20 produces the strongest Fe³⁺-binding archetypal siderophore
21 known, called enterobactin⁹. This attribute contributes to
22 its high virulence against oral microbiota (the cariogenic *S.*

23 *mutans*, *A. timonensis*, and *Streptococcus* sp.) as well as
24 four methicillin-resistant strains of *S. aureus* (MRSA). Enterobactin
25 is a type of siderophore produced by bacteria to
26 scavenge, chelate, and transport ferric irons from their
27 surrounding environment. These are essential for bacteria when
28 iron is scarce as they facilitate their acquisition necessary for
29 their growth and metabolic processes.

30 Prior metagenomic sequencing analyses have unveiled the
31 prevalence of *R. mucilaginosa* at high abundances and its en-
32 hanced metabolic activity in the lungs of cystic fibrosis (CF)
33 patients^{10, 11}. CF is caused by the hereditary mutation of the
34 cystic fibrosis transmembrane conductance regulator (CFTR)
35 gene that disrupts the transepithelial movement of ions, leading
36 to an aberrant accumulation of thick and sticky mucus
37 within the airways. The impaired immune clearance creates a
38 hypoxic environment¹² promoting the polymicrobial coloniza-
39 tion of opportunistic microbes together with fungi and viruses,
40 ultimately resulting in persistent and recurring infections¹³.
41 Guss et al. and Bittar et al. declared *R. mucilaginosa* as an
42 emerging CF pathogen^{14, 15}, while Lim et al. provided evi-
43 dence supporting that *R. mucilaginosa* is a frequently encoun-
44 tered and metabolically active inhabitant of CF airways¹⁶.
45 Additionally, a study from 2018 shows that the opportunistic
46 pathogen *Pseudomonas aeruginosa*, which frequently causes
47 infections in CF patients, builds essential primary metabo-
48 lites, like glutamate, by utilizing compounds produced by
49 *R. mucilaginosa*¹⁷. This symbiotic interaction implies that
50 *P. aeruginosa* benefits from its neighboring microbes, which
51 contributes to its pathogenesis in the CF lungs. On the other
52 hand, Rigauts et al. revealed the anti-inflammatory activity of
53 *R. mucilaginosa* in the lower respiratory tract, which could
54 impact the seriousness of chronic lung diseases¹⁸.

55 In systems biology, genome-scale metabolic models
56 (GEMs) represent comprehensive reconstructions of organ-
57 isms' metabolic networks. They are built using genomic
58 sequences and comprise all known biochemical reactions and
59 associated genes. These models provide systems-level insights
60 into cellular metabolism, allowing researchers to simulate and
61 analyze the flow of metabolites through these networks¹⁹. The
62 interactions among reactions and metabolites in a metabolic
63 model are mathematically represented with a stoichiometric
64 matrix²⁰. In the past years, an array of *in silico* methods
65 have been developed to analyze GEMs and derive valuable
66 hypotheses. Flux balance analysis (FBA) is such a power-
67 ful computational technique that operates on the principle
68 of achieving a steady state by optimizing the flux (rate) of
69 metabolites through reactions while accounting for various
70 constraints such as stoichiometry, thermodynamics, and up-
71 take/secretion boundaries²¹. Applying FBA on a GEM pro-
72 vides insights into the intricate biological system interactions.
73 This analytical approach facilitates the prediction of cellular
74 phenotypes and identification of promising drug targets
75 and contributes to optimizing biotechnological processes²².
76 Moreover, such models can guide genetic engineering by
77 suggesting genetic modifications that could enhance desired

78 product formation or cellular behavior. Further applications
79 include ameliorating culture media by incorporating compo-
80 nents that increase bacterial growth rates. So far, GEMs have
81 been an invaluable resource in the systems biology field that
82 helped untangle the metabolism of various organisms and
83 especially of high-threat pathogens^{23, 24}. As described above,
84 *R. mucilaginosa* has gained great interest in the context of
85 polymicrobial CF environments. However, its metabolic ca-
86 pabilities and genotype-phenotype relationships in isolated
87 monoculture settings remain largely unexplored.

88 Here, we present the first manually curated and high-quality
89 GEM of *R. mucilaginosa*, *iRM23NL*, striving to understand
90 its metabolism and unique phenotypes under diverse condi-
91 tions. Our simulation-ready network accounts for thousands
92 of reactions and is available in a standardized format following
93 the community guidelines²⁵. Through growth kinetic exper-
94 iments and high-throughput phenotypic microarray assays,
95 we validated *iRM23NL*'s accuracy in predicting growth and
96 substrate utilization patterns. We refined the reconstruction by
97 comparing the *in vitro* results to *in silico* simulations, resulting
98 in novel metabolic reactions and genes. To our knowledge,
99 this is the first study presenting high-throughput nutrient uti-
100 lization and comprehensive growth data for *R. mucilaginosa*.
101 Finally, we employed FBA to formulate novel gene essential-
102 ity hypotheses that could expedite the development of antimic-
103 obial strategies. Figure 1 summarizes the experimental and
104 computational work presented here.

Results

Reconstruction of a high-quality metabolic model for *R. mucilaginosa* DSM20746

105 The pipeline we previously developed²⁶ was used to build
106 the first high-quality and manually curated GEM of *R. mu-
107 cilaginosa* DSM20746 (ATCC 25296). An initial draft meta-
108 bolic model was derived with CarveMe²⁹ and is based on the
109 Biochemical, Genetical, and Genomical (BiGG) identifiers³⁰.
110 The translated sequence with over 1,700 proteins and the
111 Gram-positive-specific template were employed. This enabled
112 us to build a more precise reconstruction considering infor-
113 mation on the peptidoglycan layer for the biomass objective
114 function (BOF). The draft network contained 1,015 reactions
115 (141 pseudo-reactions), 788 metabolites, and 265 genes (Fig-
116 ure 2). In the first gap-filling stage (Draft_2), we expanded
117 the list of reactions based on the annotated genome and growth
118 kinetics data in diverse growth environments. For this, we
119 extensively indexed organism-specific literature and databases
120 and included additional enzymatic reactions together with
121 47 new gene-protein-reaction associations (GPRs). Subse-
122 quently, high-throughput nutrient utilization assays and model
123 validation incorporated further 71 reactions and their associ-
124 ated metabolic genes. Non-metabolic genes, which take part
125 in other cellular processes e.g., signaling pathways or tran-
126 scription, were not considered. In total, 82 reactions, together
127 with associated genes and metabolites, were newly added into
128 the model, along with 62 novel GPRs, increasing the genetic
129 130 131

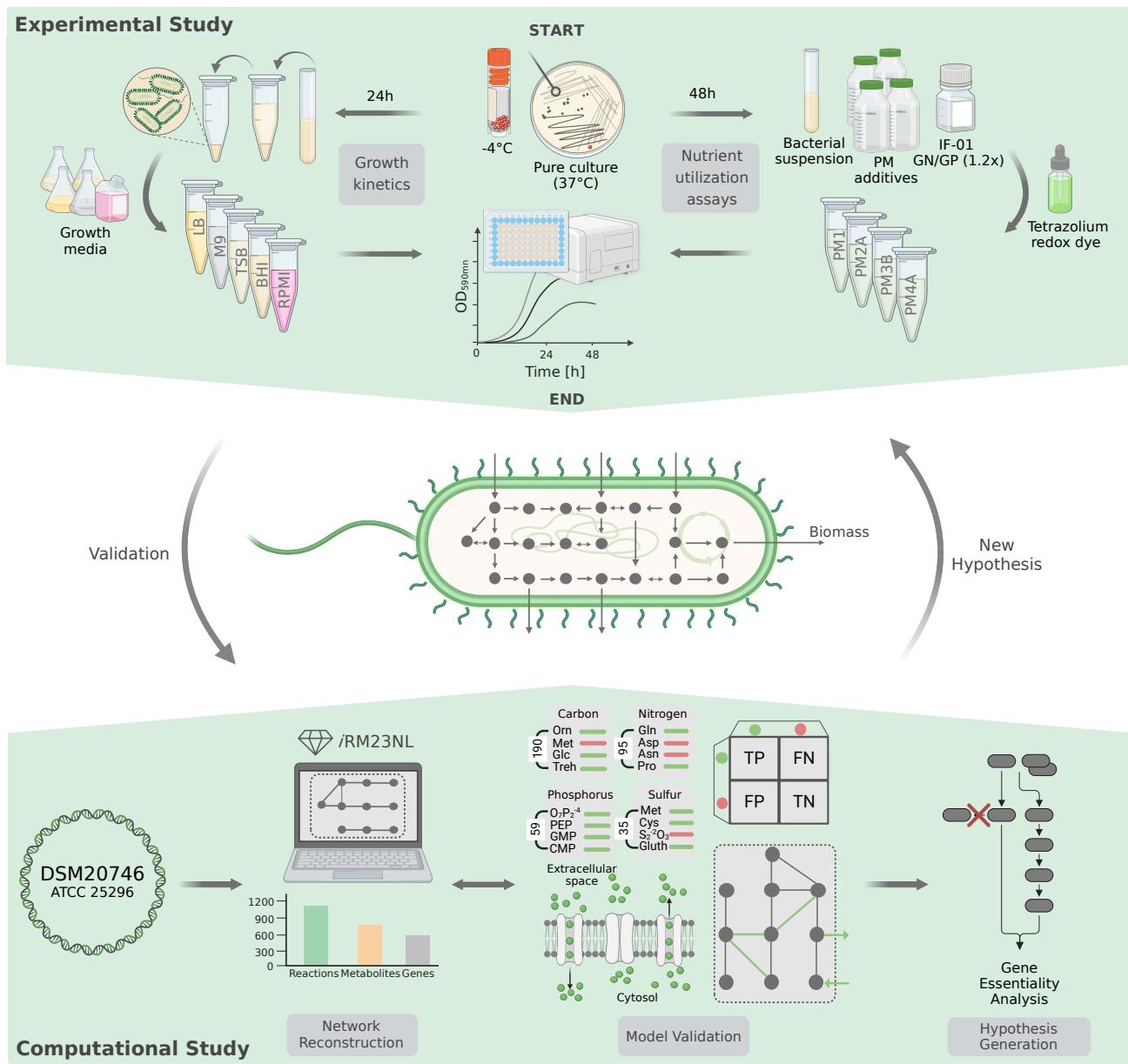


Figure 1 | Construction and validation flowchart of the metabolic network for *R. mucilaginosa*, iRM23NL. The study is divided into the experimental and computational phases. The proteome-derived metabolic reconstruction and curation was done based on the workflow we described elsewhere²⁶.

coverage. Over 20 % of the transport reactions have a GPR assigned, while 63 % of the total enzymatic reactions have at least one gene assigned. Moreover, missing exchange reactions were added to all extracellular metabolites to represent the exchange of substrates between the extracellular environment and the model. The strain-specific BioCyc³¹ database was further employed to correct the reversibility of biochemical reactions, while duplicated reactions and metabolites were eliminated. In all cases, when no organism-specific information was available, we leveraged data from closely related

species based on our phylogenomic analysis (Figure 3). According to the calculated average nucleotide identity (ANI) matrix, *R. mucilaginosa* exhibits a similarity to six out of the 13 tested *Rothia* genomes. More specifically, it shares a greater resemblance with *R. aeria* and *R. dentocariosa* underscoring a closer evolutionary relationship between these species.

R. mucilaginosa is primarily aerobic, efficiently generating ATP through oxic respiration; however, in low-oxygen or oxygen-absent conditions, it shifts to anaerobic metabolism

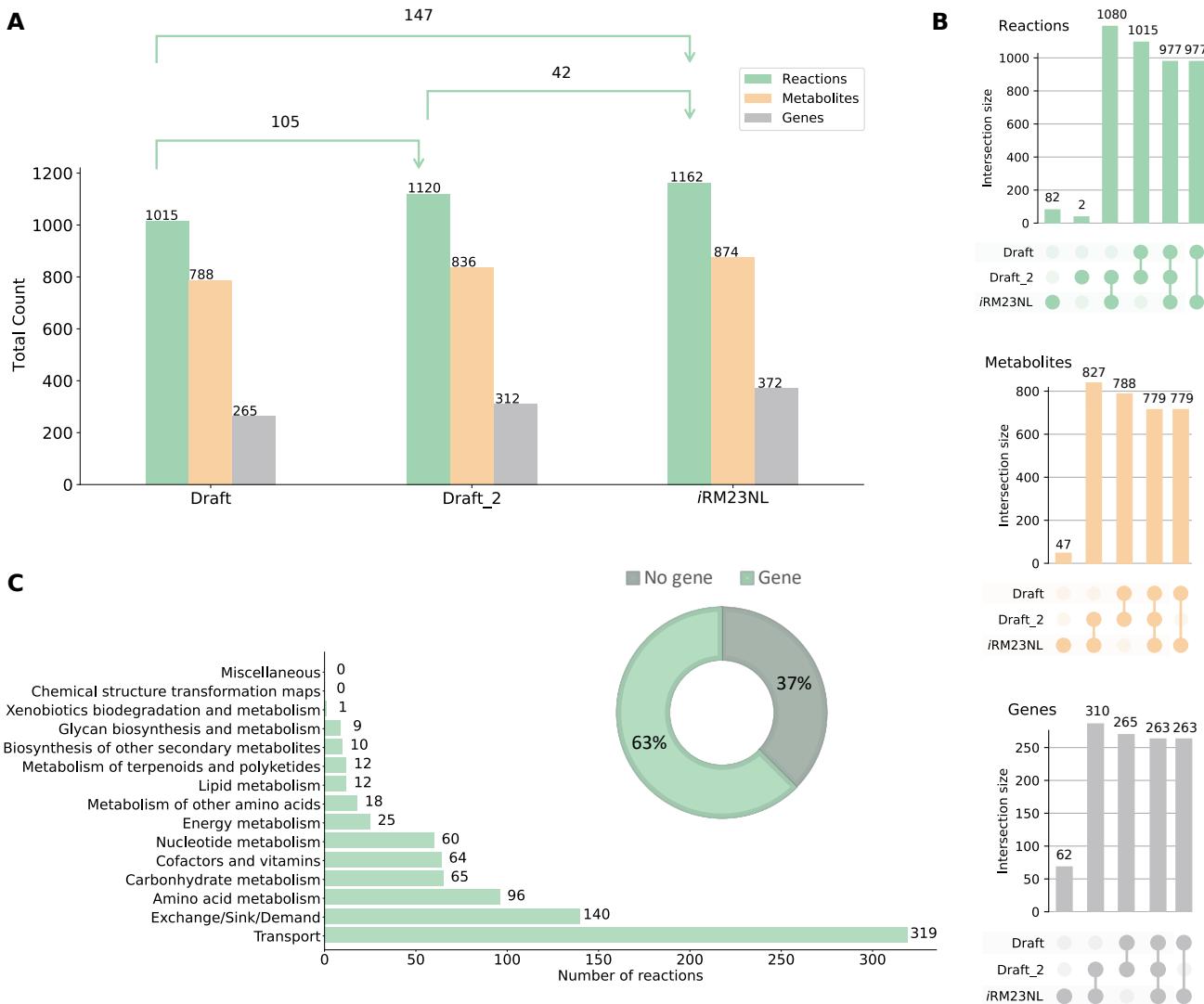


Figure 2 | Properties of the *R. mucilaginosa* DSM20746 genome-scale metabolic model iRM23NL. (A) Evolution of metabolic network content from its initial draft to the final stage of extensive manual gap-filling. The shifts in the sets' sizes are also displayed in each stage. The first stage of gap-filling is denoted by Draft_2, while the final stage is upon validation with experimental data. (B) UpSet plots comparing sets between three model versions, created using the UpSetPlot package²⁷. The numbers indicate the cardinality of the respective set. (C) Subsystem-level statistics within pathways along with the distribution of gene- and non-gene-associated reactions. The pathway analysis was limited to reaction identifiers that could be successfully mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)²⁸ reactions.

152 to produce energy. This metabolic adaptability enables *R. mucilaginosa* to adapt in microaerophilic environments like the
 153 oxygen-restricted conditions in CF lungs¹⁶. Our draft model
 154 lacked the ability to demonstrate anaerobic growth. Therefore,
 155 we investigated the metabolic cascade and systematically
 156 incorporated missing enzymes to ensure that the model can
 157 simulate growth even in the absence of oxygen by identifying
 158 and integrating alternative pathways. This refinement
 159 included the incorporation of enzymatic reactions, such as
 160 the superoxide dismutase (SPODM) and catalase (CAT) that
 161 are responsible for the breakdown of radical reactive oxy-
 162 gen species (ROS) and shielding the cell against oxidative
 163

164 damage (Figure 4 Panel A). Such scavenging enzymes play
 165 an integral role in counteracting the harmful effects of ROS
 166 during anaerobic respiration³². However, during this process,
 167 we found no associated GPRs for CAT within the organism-
 168 specific BioCyc database. Additional scavenging enzymes
 169 like glutathione and thioredoxin reductases essential for main-
 170 taining the redox balance³³ were already present in the initial
 171 draft model (GTH0r, GTHRDabc2pp, and TRDR). Altogether, the
 172 final model, iRM23NL, contains 1,162 reactions (619 gene-
 173 associated; 65 catalysed by enzyme complexes, 70 catalysed
 174 by isozymes, and 484 by simple gene association), 171 ex-
 175 change and sink reactions, 874 metabolites (558 in cytoplasm,

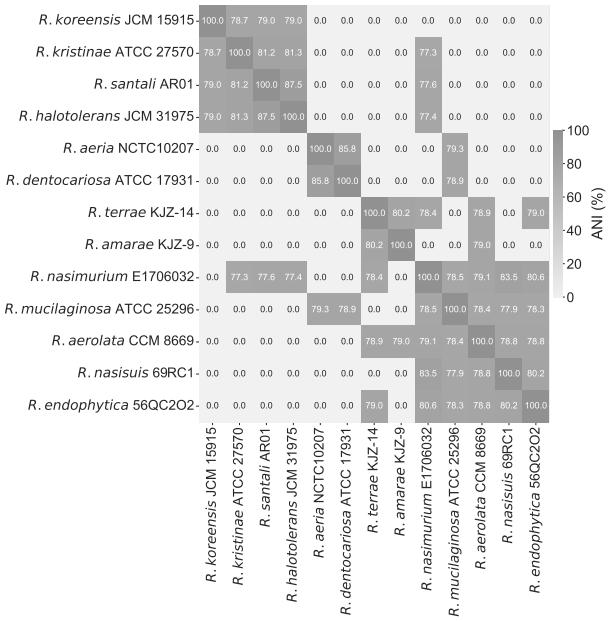


Figure 3 | Phylogenomic all-vs-all analysis between 13 *Rothia* species. Based on the calculated ANI matrix, *R. mucilaginosa* is mostly similar to six out of 13 genomes, with higher similarity to *R. aeria* and *R. dentocariosa*.

148 in periplasm, and 168 in the extracellular space), and 177 372 genes (Figure 2). The model's metabolic coverage is 178 at 3.12 %, which indicates a high level of modeling detail 179 regarding reactions, enzymes, and their associated genes³⁴. 180 Additionally, we enriched the model elements with numerous 181 database cross-references³⁵, while appropriate and precise 182 Systems Biology Ontology (SBO) terms were assigned to 183 each model entity using the SBOannotator package³⁶. The 184 presence of no energy generating cycles (EGCs) was 185 ensured and controlled after each curation stage, and the 186 mass- and charge-imbalances were corrected. With this, the final 187 Metabolic Model Testing (MEMOTE)³⁷ score of *iRM23NL* 188 is 89 %, while with highly specific SBO terms the score drops 189 by 2 %. The final curated model, *iRM23NL*, is available 190 as a supplementary file in Systems Biology Markup Language (SBML) Level 3 Version 1³⁸ and JavaScript Object Notation (JSON) formats with the flux balance constraints (fbc) 191 and groups plugins available.

192 The first validation step of *iRM23NL* aimed to evaluate its 193 ability to correctly simulate biomass production across diverse 194 environmental conditions and growth media formulations. To 195 elucidate the bacterium's optimal conditions and metabolic 196 preferences, we experimentally tested five commonly used 197 media, including three general nutrient media; brain heart 198 infusion (BHI) and Luria-Bertani (LB), and tryptic soy broth 199 (TSB), and two defined media; M9 minimal medium (M9) 200 pure and Roswell Park Memorial Institute (RPMI) (Figure 4 201 Panel B). The BHI medium was used as a baseline for the 202 *in vitro* experiments since it is a known and well-established 203

204 environment for the growth of *R. mucilaginosa* and enabled us 205 to compare the bacterium's growth characteristics to the newly 206 tested media. For the *in silico* simulations, we applied FBA 207 and added additional constraints to the linear programming 208 problem defined in Equation (5). In more detail, we specified 209 the flux constraints such that only extracellular metabolites 210 defined in the medium of interest could flow freely through 211 the system (unconstrained, finite fluxes) while the remaining 212 fluxes were constrained to zero. We compared the *in vitro* to 213 the *in silico* observed growth using the FC_{OD} as a qualitative 214 measure of growth (see Materials and Methods). Furthermore, 215 we compared the OD at the start and the end of the experiment, 216 considering a statistically significant difference between 217 these measurements as an indication of growth. Our 218 metabolic network, *iRM23NL*, simulated positive fluxes through 219 the biomass reaction for all tested media except for the M9 220 pure medium, where a zero flux was observed. These findings 221 align with the experimentally observed data. More specifically, 222 there is no statistically significant difference in OD 223 between the initial and final time-points in M9 pure medium 224 (*p*-value = 0.1202 and FC_{OD} < 1.4) indicating no significant 225 growth. Conversely, in the remaining examined media, 226 statistically significant growth was observed (*p*-value = 0.00006 227 - 0.00142 and FC_{OD} > 1.4) indicating significant growth in 228 these settings. The highest aerobic growth rate was predicted 229 in TSB (1.6 mmol/(g_{DW} · h)), while the lowest biomass 230 production flux was recorded for the M9 pure medium containing 231 only essential salts. However, the RPMI medium followed 232 as the second-highest in supporting bacterial *in vitro* cellular 233 growth, offering a defined medium suitable for *R. mucilaginosa*'s 234 cultivation. Although *R. mucilaginosa* increased its 235 biomass after 24 h, it slightly declined after 48 h. On the other 236 hand, the simulated network resulted in a contrary outcome 237 compared to the expected experimental effect. More specifically, 238 *iRM23NL* simulated a lower flux through biomass 239 (0.44 mmol/(g_{DW} · h)) with RPMI when compared to LB. It 240 is important to note here that in order to simulate growth in 241 RPMI medium, six metal ions (cobalt (Co²⁺), copper (Cu²⁺), 242 manganese (Mn²⁺), zinc (Zn²⁺), ferric iron (Fe³⁺), and ferrous 243 iron (Fe²⁺)) were supplemented. These compounds were 244 missing from the providers' medium formulation. Our 245 findings underscored *R. mucilaginosa*'s adaptability to various 246 nutritional environments, growing best in nutrient-rich 247 conditions while revealing specific growth requirements beyond 248 minimal settings.

249 We further employed *iRM23NL* to examine whether it 250 could generate biomass within the human nasal environment 251 and the CF lungs. For this purpose, we performed *in silico* 252 simulations using the synthetic cystic fibrosis sputum 253 medium (SCFM)³⁹ and synthetic nasal medium (SNM)⁴⁰ 254 (Figure 4 Panel C). Our computational model successfully 255 simulated positive growth in both media, with a growth rate 256 of 0.43 mmol/(g_{DW} · h) in SNM and 0.45 mmol/(g_{DW} · h) in 257 SCFM. These results align with the documented metabolic 258 activity of *R. mucilaginosa* in CF lungs and its frequent isolation 259

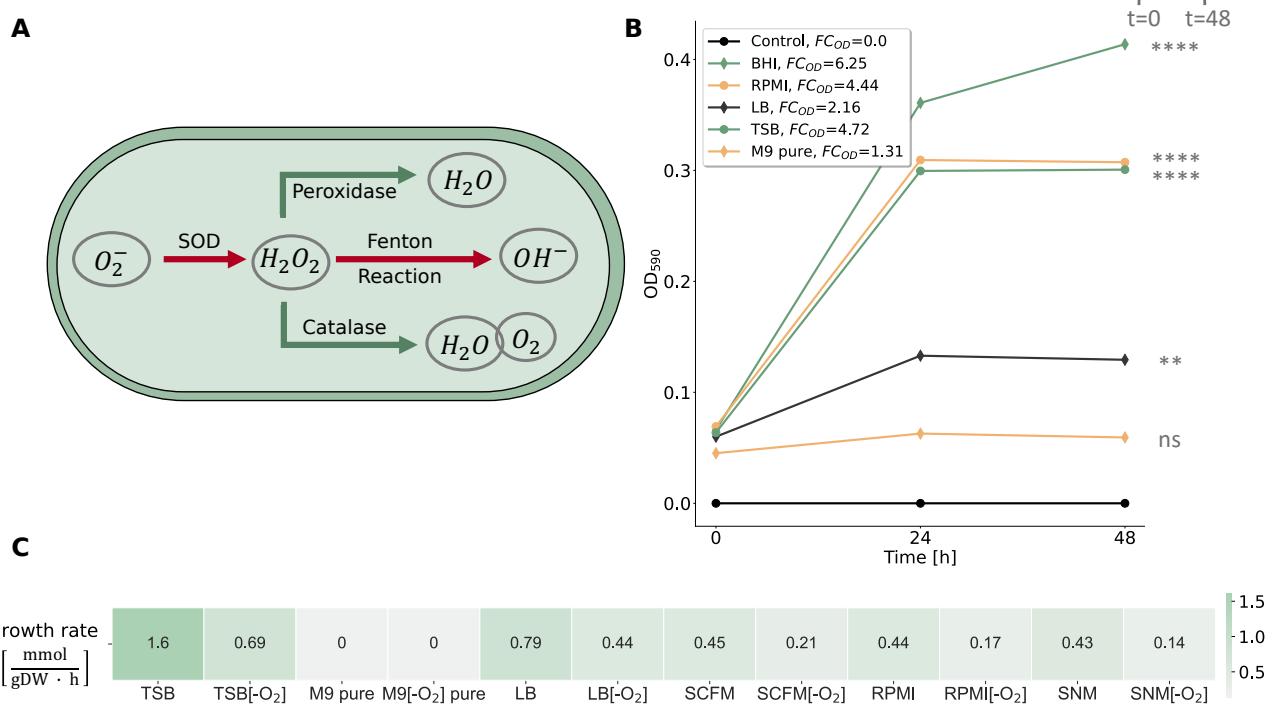


Figure 4 | Investigation of *R. mucilaginosa*'s growth behavior in different nutrient media. (A) Metabolic response of *R. mucilaginosa* under anaerobic stress as represented in *i*RM23NL. Reduction process of oxygen (O_2^-) generating ROS is indicated by red arrows, while pathways highlighted in green arrows represent reactions governed by ROS scavenging enzymes leading to bacterial cell detoxification. (B) Experimentally-derived growth curves for *R. mucilaginosa* DSM20746 in multiple liquid growth media along with the respective fold changes (FCs) of the acquired optical densities (ODs) at 590 nm, as defined in Equation (1). The data shown here are an average of three biological replicates ($n=3$). Based on the experimental results, a threshold of $FC_{OD} = 1.4$ was established to qualitatively describe bacterial growth. We verified the correctness of the threshold by performing statistical analysis as described in Materials and Methods. All data are normally distributed, while there is no significant difference between their variances. The asterisks flag the significance levels. The BHI medium was used as a baseline, while the Control line represents blank measurements of pure media. Bacterial growth was aerobically measured by the OD at 590 nm (ordinate) at three distinct time points ranging from 0 h to 48 h (abscissa). (C) *In silico*-simulated growth rates using *i*RM23NL. Detailed *in silico* media formulations are provided in Table S3.

from the human nasal cavity. Notably, the observed growth rates closely resembled the flux rate predicted for biomass production in RPMI medium. Additionally, we confirmed that *i*RM23NL accurately represented *R. mucilaginosa*'s capacity for facultative anaerobic respiration. In more detail, when the oxygen uptake was turned off *i*RM23NL could successfully exhibit growth using alternative metabolic pathways across all tested nutritional media. When the oxygen level was decreased, the model predicted up to 68 % reduction in biomass yield compared to aerobic conditions. Consequently, the remarkably lower anaerobic rates in all tested media mimic *R. mucilaginosa*'s inherent facultative anaerobic capabilities.

272 Nutrient utilization profile of *R. mucilaginosa* and pre- 273 dictive performance of *i*RM23NL

274 We experimentally characterized the metabolic phenotype of
275 *R. mucilaginosa* DSM20746 using four 96 well Biolog PM
276 microplates (Figure 5). These high-throughput assays serve as
277 proxies for bacterial growth by measuring cellular respiration

across several conditions. Active respiration in the minimal medium is detected by the reduction of tetrazolium dye over time, indicating the utilization of the provided sole source⁴¹. We cultivated our strain in a minimal medium supplemented with various sources, and growth was monitored over 48 hours to identify suitable nutrients for the bacterium (as described in Materials and Methods). The derived OD measurements were normalized according to the average growth over replicates per plate and converted to qualitative data representing non-growth (NG) or growth (G). In total, we tested the uptake and utilization of 379 distinct carbon, nitrogen, phosphorus, and sulfur substrates. *R. mucilaginosa* demonstrated the ability to utilize 61 of 190 tested carbon substrates, including carboxylates, saccharides, and amino acids, while 10 of 95 were found to be viable nitrogen sources (Figure 5 Panel B). Furthermore, out of 59 tested phosphorus sources, *R. mucilaginosa* exhibited a loss of metabolic activity for 28 compounds, resulting in a non-viable phenotype, while only 71.4 % of all analyzed sulfur substrates supported positive growth. More specifically,

B

	Growth	No Growth	Total
C-source	61	129	190
N-source	10	85	95
P-source	31	28	59
S-source	25	10	35

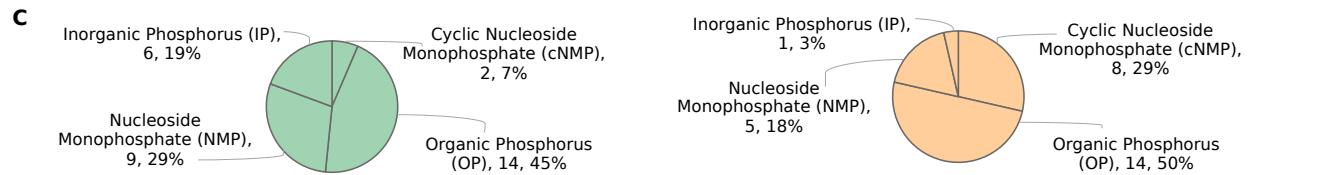


Figure 5 | Complete experimentally-derived nutrient utilization phenotype of *R. mucilaginosa* DSM20746. (A) Utilization of individual nutrients by the bacterium across four Biolog phenotypic microarrays. Bacterial growth was measured by OD at 590 nm. (B) Numerical summary nutrient sources experimentally tested in each Biolog phenotype microarray (PM), classified into those resulting in bacterial growth and those that *R. mucilaginosa* could not utilize. (C) Categorization of all tested phosphorous sources during the high-throughput Biolog assay. Utilization of totally 31 phosphorus sources resulted in positive phenotype (green chart), while the cell exhibited an inability to utilize the remaining 28 (orange chart).

297 six inorganic phosphorus (IP), 14 organic phosphorus (OP),
298 two cyclic nucleoside monophosphates (cNMPs), and nine nu-
299 cleoside monophosphates (NMPs) were successfully utilized
300 as sole phosphorus sources (Figure 5 Panel C). The experimen-
301 tally defined nutrient utilization phenotype of *R. mucilaginosa*
302 can be found in Supplementary Figure S1. An overview of
303 all experimentally tested substrates, along with the assay re-
304 sults, can be found in Table S4. We independently confirmed
305 the Biolog nutrient utilization data by testing the ability of
306 DSM20746 to grow on minimal media in the presence of ten
307 compounds (see Materials and Methods, Figure S2).

308 Additionally, we evaluated the predictive performance
309 of our metabolic model by using various C-, N-, P-, and
310 S-containing substrates. All compounds from the high-
311 throughput phenotypic data were mapped to BiGG³⁰ identi-
312 fiers and subsequently to *iRM23NL*. In total, 286 could be
313 successfully mapped to the BiGG database. From these, 126
314 existed as extracellular metabolites in *iRM23NL* and were
315 considered for further analysis. Model simulations were per-
316 formed under aerobic conditions with the minimal medium
317 defined in Table S3 and FBA (see Materials and Methods).
318 An extracellular reaction was enabled for each tested sub-
319 strate to force the model to use its transporters. Discrepancies
320 between the Biolog data and the model simulations were uti-
321 lized as basis for hypotheses to further improve and refine
322 the network reconstruction. We resolved most inconsisten-
323 cies via extensive literature mining and iterative gap analysis.
324 For this, we used the organism- and strain-specific BioCyc³¹
325 database. Throughout this process, we encountered differ-
326 ent scenarios regarding incorrect model predictions. These
327 included compounds present in all compartments, including
328 the extracellular space, as well as substrates defined within
329 the intracellular space and periplasm, with no transporter de-
330 fined towards the extracellular space. If the experimental
331 results indicated utilization of an undefined compound, we
332 searched BioCyc³¹ to find strain-specific and gene-based miss-
333 ing transporters or enzymatic reactions. When no organism-
334 specific evidence was available, we sought supporting data
335 from genomically identical species (Figure 3). For instance,
336 the compound 3-sulfino-L-alanine (3sa1a) was initially absent
337 from any compartment in the preliminary draft model. Since
338 no strain-specific information was available, we conducted a
339 homology-based search using Basic Local Alignment Search
340 Tool (BLAST)⁴² to find genes with high similarity (similarity
341 threshold: > 80 %) in related species. Subsequently, we
342 identified cysteine desulfurase (SULFCYS) along with three
343 associated transport reactions (proton-mediated; SULFCYSpp,
344 diffusion; SULFCYS_{tex}, and ABC transport; SULFCYSabc) that
345 displayed a similarity over 80 % with *R. dentocariosa*. These
346 components were consequently incorporated into *iRM23NL*,
347 resulting in the expected positive utilization phenotype. Gen-
348 erally, false negative or false positive predictions arise from
349 missing or erroneous involvement of transporters, respectively.
350 We resolved false positives by removing transport reactions
351 lacking supporting gene evidence or adjusting their reversibil-

352 ity to facilitate export solely. More specifically, initial model
353 predictions indicated that *iRM23NL* could not sustain growth
354 when supplied with either L-cysteate (Lcyst) or AMP (amp)
355 as sole sources, while Biolog assays indicated the opposite.
356 To rectify this, we introduced the corresponding irreversible
357 transporters (LCYST_{tex} and AMP_t) and enabled their *in silico*
358 utilization of these compounds. Moreover, several metabolites
359 (e.g., phosphoenolpyruvate; pep, trimetaphosphate; tmp, hy-
360 potaurine; hyptaur, and inorganic triphosphate; pppi) which
361 were absent from the initial draft model but exhibited positive
362 growth in utilization assays, were subsequently incorporated
363 into the final network, leading to additional true positives pre-
364 dictions. All in all, over 50 transport reactions were added
365 into the network, while 37 wrongly added enzymatic functions
366 were removed. We also incorporated novel GPRs encoding
367 over 60 biochemical reactions. Nevertheless, we identified
368 approximately 20 instances where the resolution of inconsi-
369 stencies necessitated the inclusion of metabolic reactions
370 lacking associated gene evidence. For instance, to enable
371 the utilization of L-aspartate, we introduced a transporter via
372 diffusion from extracellular to periplasm (ASPt_{tex}), for which
373 no associated GPR was available. Similar scenarios arose
374 for other compounds, e.g., D-galactose, D-glucuronate, and
375 acetate. These instances underscore knowledge gaps in the
376 metabolism of DSM20746 that require in-depth investigation.
377 In total, 14 carbon and nitrogen sources failed to promote
378 growth in *iRM23NL*. Surprisingly, all of these sources had
379 corresponding transport reactions *iRM23NL* but still remained
380 ineffective (e.g., L-fucose, L-arabinose, and L-rhamnose) and
381 nitrogen (L-tyrosin). We could not find further information on
382 their transport or metabolic mechanism either in the genome
383 annotation or the literature.

384 In summary, the final prediction accuracy of nutrient assimila-
385 tion and utilization achieved by *iRM23NL* was 77 % for car-
386 bon sources (MCC for PM1 = 0.52 and PM2A = 0.58), 94.4 %
387 for nitrogen sources (MCC = 0.82), 97 % for phosphorus and
388 sulfur sources (ACC = 100 %; MCC = 1.0 and ACC = 92.3 %;
389 MCC = 0.82 respectively) (Figure 6). Our model's perfor-
390 mance was notably increased by 40 % post-comprehensive
391 curation compared to the initial draft model. Our refinement
392 reduced false positive predictions by 17, leaving only three un-
393 resolved mismatches. The most remarkable improvement was
394 in nitrogen and phosphorus sources predictions. The high pre-
395 dictive accuracy indicates that core metabolic pathways and
396 multiple catabolic routes of DSM20746 have been accurately
397 reconstructed within *iRM23NL*. Consequently, the network
398 can predict the catabolism of numerous common compounds,
399 such as sugars and amino acids.

400 Formulating novel hypotheses using *iRM23NL*

401 Gene essentiality analysis and identification of novel targets

402 Given the increased percentage of gene-associated reactions
403 (Figure 2 Panel C) and the high predictive accuracy of the me-
404 tabolic reconstruction, we employed *iRM23NL* further to pre-
405 dict exploit single gene knock-outs. For this purpose, we

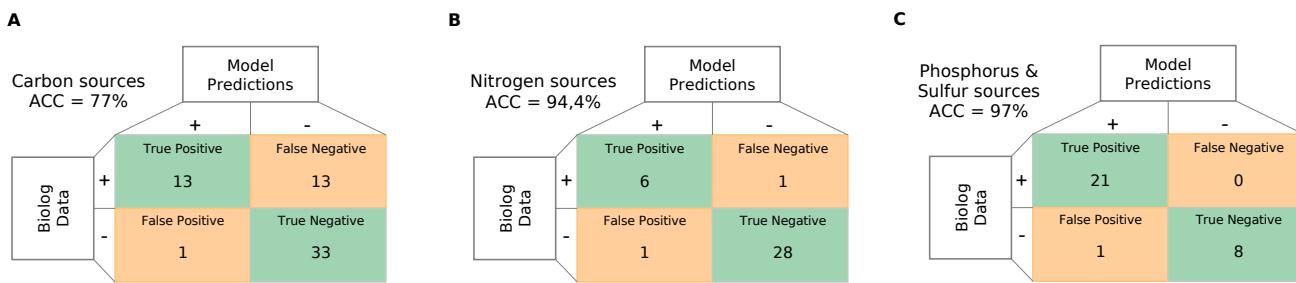


Figure 6 | Predictive accuracy performance of iRM23NL using nutrient utilization data. Only substrates that exhibited complete mapping to both BiGG and model identifiers could be analysed. Green represents correct predictions, and orange represents inconsistent predictions. The overall prediction accuracy of iRM23NL was computed using Equation (6).

406 systematically removed each biochemical reaction from the
407 network and optimized iRM23NL to produce biomass using
408 FBA. To mitigate the inherent variability of the optimization
409 algorithm, we repeated our FBA simulation 100 times. Addi-
410 tionally, we employed parsimonious enzyme usage flux bal-
411 ance analysis (pFBA), which involves solving two sequential
412 linear optimization problems to determine the flux distribution
413 of the optimal solution while minimizing the total sum of flux.
414 Then, we compared the predicted growth rates before and after
415 introducing the simulated gene deletion. The FC_{gr} between
416 the knocked-out and wild-type growth rates was employed
417 as a proxy for the gene's essentiality. We proceeded with *in*
418 *silico* single gene deletions using a minimal and nutrient-rich
419 medium (LB and M9 supplemented with glucose) as well as
420 two growth media that mimic intra-human nasal passages and
421 the lungs of CF patients (SNM⁴⁰ and SCFM³⁹) (Table S3).
422 Generally, when subjected to nutrient-limited conditions, the
423 model predicted a higher number of genes as essential for
424 growth, while the count of essential genes remained consist-
425 ent among oxic and anoxic conditions (Figure 7 Panel A).
426 In total, four metabolic genes exhibited a partially essential
427 effect across all tested media. This indicates that these genes
428 promote cellular fitness, and their deletion partially impairs
429 the bacterium's capacity to generate biomass. These genes are
430 the TrkA family potassium uptake protein (WP_005506372.1),
431 ribulose-phosphate 3-epimerase (WP_005507411.1), glucose-
432 6-phosphate isomerase (WP_005508482.1), and transaldolase
433 (WP_005509117.1). The majority of essential genes involved
434 in nucleotide metabolism, peptidoglycan biosynthesis, or
435 the energy metabolism. These over-represented subsystems
436 among the identified essential genes suggest their impor-
437 tance in supporting the bacterium's respiration (Figure S4).
438 Nevertheless, in nutrient-poor conditions (M9 medium)
439 genes from the biosynthesis of leucine (2-isopropylmalate
440 synthase; WP_005508679.1 and 3-isopropylmalate dehy-
441 dratase; WP_005507445.1), valine (ketol-acid reductoi-
442 somerase; WP_005508646.1 and dihydroxy-acid dehy-
443 dratase; WP_005509229.1), and chorismate (shikimate ki-
444 nase; WP_005508729.1 and 3-dehydroquinate dehydratase;
445 WP_005504658.1) were found to be critical for the organism's
446 survival. Tables S5 and S6 list in detail the predicted essential

genes, each corresponding to specific approaches employed
447 in this study.

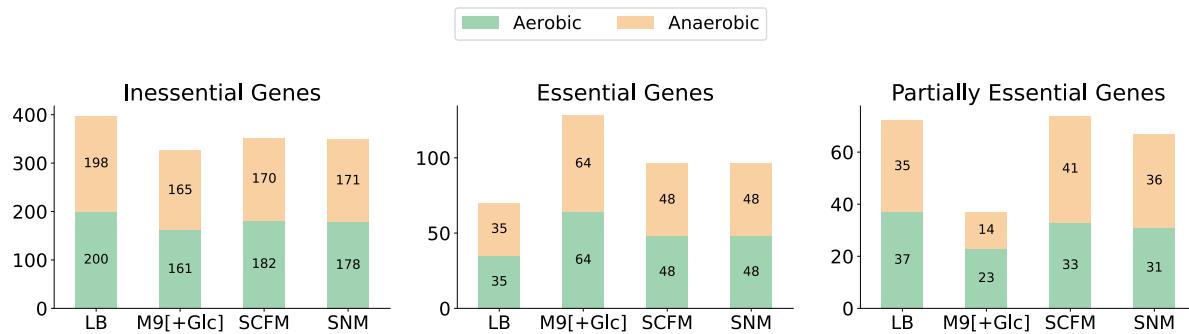
448 Subsequently, we conducted a protein sequence homol-
449 ogy analysis with BLAST against the human proteome to
450 detect potential antimicrobial targets. For this, only genes
451 highlighted as essential in both laboratory and synthetically-
452 defined media were considered (Figure 7 Panel B). Over-
453 all, 35 essential genes were common in LB and M9, of
454 which 20 common genes reported homologous counter-
455 parts in the human genome. Further analysis revealed that among
456 these genes, five genes exhibited over 50 % sequence simi-
457 larity with homologous proteins, although none resulted in
458 over 80 % similarity. Similarly, when iRM23NL was sim-
459 ulated with SCFM and SNM in both aerobic and anaerobic
460 conditions, 45 shared genes were predicted to be essential.
461 Homology analysis against the human genome yielded 31
462 genes with exhibited homology in the human genomes, with
463 seven demonstrating over 50 % sequence similarity. For in-
464 stance, genes encoding proteins such as phosphopyruvate hy-
465 dratase (WP_005506838.1), CTP synthase (WP_044141843.1),
466 and adenylosuccinate synthase (WP_005509175.1) consis-
467 tently exhibited human counterparts with similarity exceed-
468 ing 50 % across all tested growth media and oxygen lev-
469 els. Among the essential genes shared between both LB
470 and M9, 15 of them did not have any homologous hits.
471 The same was observed for 20 common essential genes in
472 SCFM and SNM. Some examples of these genes include
473 orotate phosphoribosyltransferase (WP_005507935.1), type I
474 pantothenate kinase (WP_005505041.1), dihydronoopterin al-
475 dolase (WP_005507619.1), and pantetheine-phosphate adeny-
476 lyltransferase (WP_005508106.1). A more detailed compari-
477 son can be found in Table S7.

478 Our *in silico* transposon mutant analysis using iRM23NL
479 could serve as a basis for several research and practical appli-
480 cations from rational drug target development to biotechno-
481 logical applications and metabolic engineering.

482 Discussion

483 The metabolic phenotype of *R. mucilaginosa*, a bacterium with
484 both beneficial and pathogenic behavior, remains still largely
485

A



B

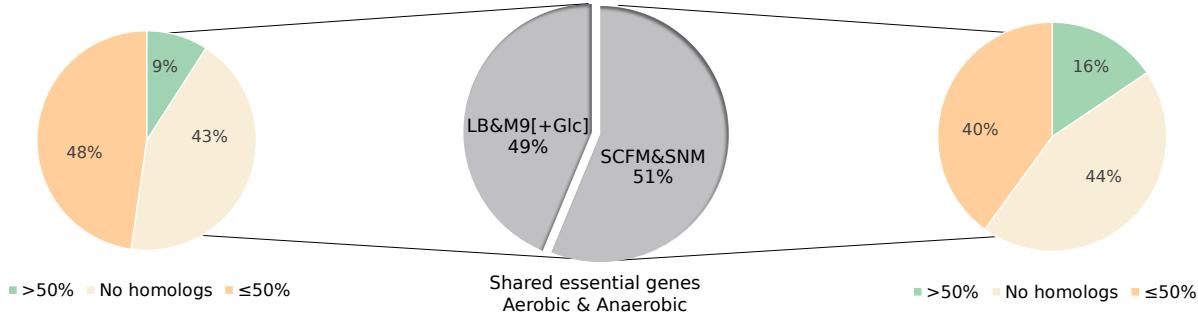


Figure 7 | Comparative analysis of novel gene essentialities in *iRM23NL* across four distinct growth media. (A) Classification of network-derived single gene deletions within *iRM23NL*, classified into essential, inessential, and partially essential genes, when subjected to aerobic (green) and anaerobic (orange) environments. Details regarding the classification schema can be found in Materials and Methods. (B) Protein sequence homology analysis of genes predicted to be essential in the laboratory media (LB and M9 pure supplemented with glucose) and the synthetically defined SNM and SCFM in both oxygen-rich and -limited conditions. The percentage identity threshold was set to 50 % similarity to the human proteome.

unexplored. Investigating its metabolic traits is of great importance as it holds the potential to unveil unique capabilities, including substrate utilization, byproduct production, and contributions to host-microbe interactions. *R. mucilaginosa* is a versatile microbe found in humans' oral, respiratory, and skin flora, where it coexists harmoniously. However, in immunocompromised individuals, *R. mucilaginosa* can act as an opportunistic pathogen, causing severe infections. Our study focuses on the metabolic aspects of *R. mucilaginosa*, particularly its behavior in isolated cultures. In 2019, a 17-species bacterial community model was reconstructed to simulate the polymicrobial community of the CF airways⁴³. This model accurately predicted the abundance of specific pathogens within patients' CF lung communities by linking metabolomics and 16S rRNA gene sequencing data. However, studying a bacterium's metabolism and genotype-phenotype relationships in monoculture provides a more controlled knowledge base. This allows for the precise manipulation of variables, enhancing our understanding of its individual traits, genetic makeup, metabolic pathways, and responses to stimuli^{22, 23}. Moreover, one can elucidate the bacterium's unique contributions

to nutrient uptake, substrate production, and growth dynamics, crucial for understanding its role in a broader ecosystem. Monoculture studies identify key genes and pathways, revealing how the bacterium functions autonomously. Such analysis serves as a valuable reference, differentiating inherent characteristics from those influenced by external interactions. To this end, we empirically analyzed the metabolic phenotype of *R. mucilaginosa* DSM20746 and developed the first high-quality strain-specific GEM of *R. mucilaginosa*, called *iRM23NL*. We considered literature and database organism-specific evidence to manually gap-fill the model and include highly relevant biochemical reactions. Phylogenetic analysis of further *Rothia* species provided insights into the relationship and genetic diversity between these species and was utilized to extend the metabolic network's completeness. Our model is simulation-ready, follows strictly community standards²⁵, and exhibits a high content quality MEMOTE score.

R. mucilaginosa is primarily aerobic and can perform oxic respiration by efficiently generating energy in the form of adenosine triphosphate (ATP)¹. However, when oxygen is limited or absent, *R. mucilaginosa* switches to anaerobic

metabolism, which may involve fermentation or other alternative pathways to generate energy. As already mentioned, *R. mucilaginosa* has been previously found to be metabolically active in CF lungs where the oxygen levels are notably restricted¹⁶. This indicates that the bacterium undergoes metabolic shift and can survive in microaerophilic environments. Various ROS products emerge as byproducts in the bacterial response to the fluctuating oxygen levels³². In more detail, the cascade of ROS is initiated by the formation of O₂⁻ upon univalent oxygen reduction within the electron transport chain (ETC). Extreme oxygen fluctuations may be lethal and can ultimately damage cellular structure. The detoxifying pathway includes the enzymes superoxide dismutase (SOD), catalase, and peroxidase that break down lethal radicals to water and oxygen enabling the cell to neutralize the oxidative stress⁴⁴ (see Figure 4). However, the exact anaerobic respiration mechanism of *R. mucilaginosa* must be thoroughly examined in experimental settings.

Since *R. mucilaginosa*'s metabolic behavior and adaptability is mainly yet unknown, we started by testing its growth behavior in various nutrient media. Exploring how bacteria react to various growth conditions within the human body is pivotal for understanding diseases and developing effective treatments. Moreover, they are essential for evaluating their evolution and adaptation to different environmental conditions, leading to new ecological niches in which the bacterium could be metabolically active. We ultimately validated *iRM23NL* using our growth kinetics data in various growth media. Overall, *iRM23NL*'s predictions were in line with the experimental observations. *R. mucilaginosa* demonstrated higher experimental growth in nutrient-rich media. The model successfully simulated growth for most media, while no biomass production was achieved in the M9 pure medium. When comparing LB to RPMI, the simulated growth rate was higher in LB, while the empirical growth in RPMI was twice as high as that in LB. This can be attributed to the fact that computer models cannot mimic the entire experimental settings and lack kinetic parameters. As of September 2023, bacteria like *S. aureus*, *B. subtilis*, and *E. coli* have been extensively researched for decades, with hundreds of thousands of PubMed⁴⁵ entries since the early 1990s. In contrast, *R. mucilaginosa*'s scientific prominence only began in the 21st century, with only 423 publications to date, indicating significant knowledge gaps crucial for metabolic reconstructions. More specialized BOF would enhance the predictive power and would reflect a more organism-specific metabolism. Therefore, this scarcity underscores the urgent need for further research efforts to uncover the hidden facets of *R. mucilaginosa*'s metabolism and its significance. Notably, to simulate *in silico* growth in RPMI and SCFM media, six metal ions needed to be supplemented. These metals have also been confirmed as essential for the *in silico* growth of *S. aureus* in RPMI⁴⁶. According to the model's predictions RPMI, supplementation with manganese, zinc, and molybdate was required. Transition metals could be highly toxic; however in controlled levels are important

in the survival of all living organisms⁴⁷. For instance, they are involved in redox catalysis, needed for energy production through respiration, and in non-redox catalysis, necessary for many biosynthetic and metabolic processes. Additionally, transition metals are required for the activity of many enzymes, including those involved in genomic replication and repair and nitrogen fixation. However, since these compounds were absent from the providers' medium formulation for RPMI, we speculate that the provided medium definition may not be exact. In all cases, the suggested metal co-factor promiscuity in *R. mucilaginosa* by *iRM23NL*, needs to be examined to shed light on whether the bacterium could survive in the absence of one of the suggested metals.

Moreover, we experimentally characterized the strain's ability to assimilate and utilize substrates using high-throughput phenotypic microarray assays. The utilization of various nitrogen sources did not result in active respiration, indicating that the bacterial genome lacks genes encoding for respective transporters. We used the phenotypic results to validate and extend our metabolic reconstruction, *iRM23NL*. Inconsistencies between the model and the phenotypic microarray results served as a basis for further model refinement. We enriched the model with missing transport reactions and their respective GPRs by referring to the organism- and strain-specific BioCyc³¹ registry and the General Feature Format (GFF) annotation file. All in all, characterizing and determining the repertoire of nutrient sources a strain can use or assimilate is a critical factor of pathogenesis. It provides valuable insights into how pathogens adapt to host environments and evade host defenses. Our transporter-augmented model reflects a high accuracy degree with the experimental data regarding using carbon, nitrogen, phosphorus, and sulfur sources. Discrepancies between computational and empirical results highlight areas of current uncertainty knowledge regarding the metabolism of *R. mucilaginosa*. They could be attributed to non-metabolic factors that fall beyond the metabolic models' scope, including regulatory processes, gene expression, and signaling pathways. However, targeted experiments are needed to fill the remaining network gaps and reveal novel enzymatic processes.

Considering the predictive precision of our metabolic reconstruction, we utilized *iRM23NL* to derive novel hypotheses. We examined the effects of single gene knock-outs on the bacterial capacity to produce biomass. We created a high-throughput *in silico*-derived transposon mutant library considering two standard growth media, LB and M9, along with two growth media formulated to mimic the environment within the human body, SNM and SCFM. In this regard, we identified putative essential and partially essential genes and assessed their potential vulnerability under varying nutritional environments. With this, we opted for detecting candidate genes that could be considered in future antimicrobial and -inflammatory strategies in immunocompromised and CF patients. Determining which essential genes have human counterparts is of great importance for antibiotic drug development, as it helps as

638 sess potential side effects and cross-species effects on human
639 genes targeted by antibiotics. Moreover, it provides insights
640 into the molecular mechanisms of host-pathogen interactions,
641 explaining how pathogens manipulate host cells and evade the
642 immune system. Utilizing our GEM offers promising venues
643 for future targeted engineering strategies without the need for
644 laborious large-scale screening of knock-outs and mutant li-
645 braries. This methodology would facilitate the rapid design of
646 metabolic gene knockout strains by eliminating the associated
647 reaction(s) from the model.

648 Altogether, creating a genome-scale metabolic network
649 for *R. mucilaginosa* reveals insights that would have been
650 resource-intensive to acquire using traditional wet-lab means.
651 Understanding the metabolic complexities of *R. mucilaginosa*
652 is essential for expanding our basic understanding of bac-
653 terium's microbiology and would benefit various practical
654 applications. In medicine, it could facilitate the development
655 of strategies to deal with caused infections, while in biotech-
656 nology, it would allow us to use its metabolic abilities for
657 bioprocessing and bioengineering purposes. Hence, our high-
658 quality metabolic network, *iRM23NL*, could provide a system-
659 atic and detailed framework for analyzing *R. mucilaginosa*'s
660 metabolism, yielding valuable insights with broad-reaching
661 impacts.

662 Materials and Methods

663 Experimental settings

664 Bacterial strain and growth conditions

665 The *R. mucilaginosa* DSM20746 (ATCC 25296) used for the
666 experimental work in this study is a type strain, and it was
667 purchased from the American Type Culture Collection (ATCC,
668 US). To create an inoculum, the bacterium was streaked onto
669 nutrient agar (NA, Neogen, Heywood, UK) plates from a
670 cryopreserved glycerol stock stored at -80°C using a sterile
671 loop. Subsequently, the plates were incubated at 37°C for 48 h
672 to form colonies (pure cultures). It is important to note that
673 each biological replicate was conducted using pure cultures
674 derived from the initial frozen stock (no sub-culturing). This
675 ensures maintaining the genetic and phenotypic characteristics
676 of the strain without introducing any potential mutations or
677 adaptations.

678 Growth kinetics protocol

679 *R. mucilaginosa* overnight liquid cultures were prepared by
680 adding bacterial colonies from pure cultures to 5 mL BHI
681 (Neogen, Heywood, UK) and were put at 37°C in a shaking
682 incubator for 24 h. The initial OD was assessed and, if nec-
683 essary, adjusted via up-concentration or dilution to achieve
684 $\text{OD}_{590\text{nm}} = 0.25$. Then, the bacterial suspension was sub-
685 jected to centrifugation at 10,000 RPM for 5 min, and the
686 resulting pellet was re-suspended in the medium of interest
687 at a dilution of 1 : 10. Ultimately, the inoculated growth me-
688 dia were transferred to a sterile 96 well-plate, including three
689 technical replicates for each tested condition together with
690 their corresponding control conditions (sterile growth media).

691 The outer wells were filled with milliQ water (MQ) to prevent
692 evaporation. The respective $\text{OD}_{590\text{nm}}$ was measured aerobi-
693 cally at three distinct time points (0 h, 24 h and 48 h) using
694 an EnVision microplate reader (Perkin Elmer, Waltham, MA,
695 US). The microplates were incubated at 37°C during the in-
696 terim periods between measurements. The final growth curves
697 were generated for three biological replicates ($n=3$) for the fol-
698 lowing growth media: BHI (baseline medium), LB (Neogen,
699 Heywood, UK), M9 pure, RPMI medium (RPMI-1640 Sigma-
700 Aldrich), and TSB (Neogen, Heywood, UK). In the M9 pure
701 medium only salts were considered. For detailed information
702 regarding the constitution of M9, see Table S1. The rest of the
703 media were prepared according to the providers' instructions.

704 The raw data were normalized by subtracting the blank
705 values from the measured ODs and were summarized by cal-
706 culating the arithmetic mean across all replicates. To interpret
707 the growth of bacterial cells in all tested media and compare
708 their growth characteristics, we employed the FC_{OD} ratio,
709 which is defined as follows:

$$710 \text{FC}_{\text{OD}} = \frac{\text{OD}_{590\text{nm}}^{t=48\text{h}}}{\text{OD}_{590\text{nm}}^{t=0\text{h}}} \quad (1)$$

711 In this context, we define FC_{OD} below 1.4 as no growth, while
712 FC_{OD} ratios greater than 1.4 indicate a growth increase over
713 time.

714 Phenotypic microarray screenings

715 DSM20746 was tested for utilizing multiple carbon, nitro-
716 gen, phosphorus, and nitrogen sources. Biolog Phenotype
717 Microarrays (PM, Hayward, CA, USA) were employed to
718 test the utilization of 190 carbon (PM1 and PM2A), 95 nitro-
719 gen (PM3B), 59 phosphorus (PM4A), and 35 sulfur sources
720 (PM4A). These assays use a tetrazolium redox dye to enable
721 a colorimetric detection of active cell respiration across differ-
722 ent nutrient sources⁴¹. Normal cell respiration is indicated by
723 the formation of a purple color as a result of the reduction of
724 the colorless dye during incubation.

725 **Table 1 | Assay configuration for diverse Biolog PM microplates**
726 **combinations.** Volumes are expressed in μL . The provided volume
727 quantities are adequate for inoculating the specified number of plates
728 in this study, using 100 $\mu\text{L}/\text{well}$ with an additional excess.

	For 1X PM
IF-0a GN/GP (1.2 \times)	10.0
Dye mix (100 \times)	0.12
PM additive (12 \times)	1.0
81 % T cell suspension	0.88
Total Volume	12.0

729 The PM plates were prepared following the manufacturer's
730 protocol for Gram-positive bacteria. Table 1 lists the assay
731 set up for of PM plates. However, modifications were made
732 during the cell suspension preparation. The strain was grown
733

728 on nutrient agar plates without undergoing sub-culturing. Using
729 an inoculation loop, individual colonies were picked and
730 suspended in an inoculating fluid (IF-0) at an absorbance of
731 0.0915 at 590 nm. Per the established protocol, 81 % of trans-
732mittance (T) should be achieved. Given our measurement of
733 OD, the subsequent conversion of transmittance to absorbance
734 was carried out employing the following formula:

$$\text{Absorbance} = 2 - \log_{10}(\%T) \quad (2)$$

735 In each well of a 96 well-plate, we introduced 100 μ L of cell
736 suspension, followed by a 48-hour incubation period at 37 °C.
737 Bacterial growth was measured by the OD at 590 nm using an
738 VICTOR Nivo Multimode microplate reader. Each PM plate
739 was tested in duplicate.

740 The subsequent analysis of the acquired data included calcu-
741 lating the arithmetic mean across all technical and biological
742 replicates for all measured n time points. Background noise
743 was also removed, and the data were normalized by subtract-
744 ing the blank values from the actual measurements. The area
745 under curve (AUC) was used to distinguish between growth
746 (AUC ≥ 50) and no growth (AUC < 50). The computa-
747 tion of the AUCs was carried out by leveraging the linear
748 trapezoidal rule that expresses the interpolation between data
749 points:

$$\begin{aligned} \text{AUC}_{(t_{i+1}-t_i)} &= \int_{t_i}^{t_{i+1}} f(x) \, dx \\ &= (t_{i+1} - t_i) \cdot \frac{1}{2} (\text{OD}_{t_{i+1}} + \text{OD}_{t_i}) \end{aligned} \quad (3)$$

750 where t_i is the respective measured time point and $i \in$
751 $\{0, \dots, e\}$. More specifically, the trapezoidal rule is iter-
752 atively applied to adjacent data points defined along the curve
753 whose summation resulted in the final AUC value. Hence
754 for n measured data points, the final AUC value is defined as
755 follows:

$$\text{AUC}_{t_e} = \sum_{i=0}^{e-1} \text{AUC}_{(t_{i+1}-t_i)} \quad (4)$$

756 Finally, we repeated this across the spectrum of tested com-
757 pounds within the microarray plates.

758 **Independent confirmatory testings of Biolog data**

759 To independently confirm the Biolog data, we applied the
760 growth kinetics protocol described above to 10 compounds.
761 Although the base inoculating fluid (IF) used for the meta-
762 bolic PM plates is proprietary, it is considered to reflect a
763 minimal medium composed mainly of salts and buffers^{41, 48}.
764 Hence, we used the M9 pure medium supplemented with dif-
765 ferent substrates to perform the independent tests (Figure S2).
766 The following compounds were examined: α -D-glucose, D-
767 mannose, adonitol, L-ornithine, L-methionine, salicin, succi-
768 nate, L-alanine, L-malate, and L-histidine. We also included
769 negative controls of substrates with the Biolog inoculation
770 fluid zero (IF-0). To ensure accuracy, triplicates were carried

771 out for each tested compound. The M9 pure medium was
772 created as described in Table S1, while Table S2 lists the exact
773 concentrations of added substrates. All bacterial cell suspen-
774 sions were prepared in 1:10 dilutions, and the ODs_{590 nm} were
775 measured at 0 h, 24 h and 48 h using an EnVision microplate
776 reader (Perkin Elmer, Waltham, MA, US) and the associated
777 software package.

778 We computed the arithmetic mean across the three repli-
779 cates from the collected dataset for each measured time point.
780 Additionally, we performed a background correction to miti-
781 gate the influence of background noise or unwanted signal
782 interference present in the measured ODs.

783 **Statistical Hypothesis Analysis**

784 We conducted statistical tests to evaluate the chosen thresh-
785 old and potential statistically significant differences between
786 measurements at the initial and final time-points, thereby indi-
787 cating the significant growth or no growth. Specifically, we
788 employed the Student's *t*-test for each experimental condi-
789 tion, taking into account the data from the three biological
790 replicates. The null hypothesis is formulated as following:
791 there is no significant difference between the measured OD
792 values in starting and end time-points. Prior to hypothesis
793 testing, we checked the correctness of associated assumptions.
794 More specifically, we assessed data normality through the
795 Shapiro-Wilk test and verified the homogeneity of variances
796 using the Levene's test.

797 **Computational framework and modeling methodology**

798 **Phylogenomic analysis**

799 We supported the gap-filling process using evidence of closely
800 related species within the *Rothia* genus. Employing ANIcluster-
801 map v.1.1.0⁴⁹, we conducted a comprehensive genomic
802 comparison involving *R. mucilaginosa* DSM20746 and 12
803 distinct *Rothia* species: *R. koreensis*, *R. kristinae*, *R. santali*,
804 *R. halotolerans*, *R. aeria*, *R. dentocariosa*, *R. terrae*, *R. ama-
805 rae*, *R. nasimurium*, *R. mucilaginosa*, *R. aerolata*, *R. nasisuis*,
806 and *R. endophytica* (see Figure 3). In brief, ANIclustermap
807 creates an all-vs-all genome ANI clustermap and groups mi-
808 crobial genomes based on their genetic similarity. ANI is
809 a pairwise measure to classify bacterial genomes according
810 to their genetic similarity. It is defined as the genetic simi-
811 larity across all orthologous genes shared between any two
812 genomes^{50, 51}. It serves as a powerful tool for distinguishing
813 strains of the same species or closely related species.

814 **Draft model reconstruction and curation**

815 The proteome of *R. mucilaginosa* DSM20746
816 (GCF_000175615.1) served as the basis for reconstructing
817 a draft metabolic network. The DSM20746 (ATCC
818 25296) represents a type strain obtained from the throat, and
819 its genetic and proteomic sequences were retrieved from
820 National Centre for Biotechnology Information (NCBI)¹. The
821 genome sequence was annotated using the NCBI Prokaryotic
822 Genome Annotation Pipeline (PGAP)⁵². An initial draft

¹<https://www.ncbi.nlm.nih.gov>

model was built using CarveMe 1.5.1²⁹. CarveMe uses mixed-integer linear programming (MILP) to convert a universal model into an organism-specific one by deleting metabolites and reactions with low occurrence scores within the specific organism of interest. The universal BOF might yield incorrect gene essentiality predictions for biosynthesis pathways that rely on precursors unique to Gram-positive bacteria due to the absence of specific membrane and cell wall information. Hence, we chose the specialized Gram-positive template instead of the universal one to build our model more accurately.

We conducted an extensive two-staged iterative gap-filling to address incomplete or missing information in the metabolic model. Gaps or missing reactions can arise for various reasons, such as incomplete genome annotations or undiscovered enzymatic activities. For this purpose, we leveraged information from both the genome and biochemical databases, including BioCyc³¹. Thus, we ensured that the model could support the growth and viability of the organism under specific conditions.

We applied our previously-published pipeline²⁶ to curate further the model based on community standards. The pipeline consists of eight steps, from which five (steps 3-step 4) are related to model curation and ensure a high quality of the final model. In Summary, ModelPolisher³⁵ and SBOannotator³⁶ were employed to enrich the model with multiple cross-references, while the mass- and charge-unbalanced reactions were fixed. Further annotations integrated into the model encompassed: Evidence and Conclusion Ontology (ECO) terms representing the confidence level and the assertion method (biological qualifier: BQB_IS_DESCRIBED_BY), KEGG²⁸ subsystems as groups:member (biological qualifier: BQB_OCCURS_IN), and gene annotations. The latter was done by mapping the gene locus tags to the old tags using the GenBank GFF³³. Finally, we checked the presence of potential EGCs that could bias the final predictions⁵⁴. To manipulate the model structure, we employed the libSBML library⁵⁵.

The SBML Validator from libSBML⁵⁵ was used to assure a correct syntax of the model, while the quality control was carried out employing MEMOTE³⁷. However, it is worth noting that, as we discussed in our previous publication, MEMOTE considers only the parent nodes of the SBO directed acyclic graph excluding their respective children²⁶. Hence, MEMOTE was used carefully and not as an absolute quality indicator.

867 **Linear programming: formulation of assumptions and constraints**

868 FBA is used to determine the flux distribution through optimization of the objective function, typically the maximization of biomass production rate, under steady-state conditions²¹. To address the under-determined nature of the system, constraints are imposed to define an allowable solution space that aligns with cellular functions. These constraints, encompassing mass balance, thermodynamics, and capacity, contribute to the FBA maximization problem. The linear programming

problem used to obtain growth rates is described as follows:

$$\begin{aligned} \text{maximize} \quad & Z = \vec{c}^T \vec{v} \\ \text{subject to:} \quad & \mathbf{S} \cdot \vec{v} = 0 \\ & v_{\min} \leq v_r \leq v_{\max} \quad \text{for } r \in \{1, \dots, n\} \\ & \forall r \in I : 0 \leq v_r \end{aligned} \quad (5)$$

878 where \vec{v} is the vector of fluxes within the network, \mathbf{S} is the stoichiometric matrix, Z is the linear objective function, \vec{c} is the 879 vector of coefficients, and I represents an index set containing 880 the indices of all irreversible reactions. The dimensionality of 881 vector \vec{v} matches the number of reactions, denoted as n in the 882 system, and is consistent with the n columns in the matrix \mathbf{S} . 883

884 **Bacterial growth analysis and nutrient utilization assays**

885 Bacterial cell growth within various media and multiple substrate 886 utilization evaluations were determined by solving Equation 887 (5). The medium and the nutrient source of interest defined 888 additional constraints. To achieve this objective, adjustments 889 were made to the upper and lower limits of exchange 890 reactions, as appropriate. We set specific uptake rates for 891 key components within the growth medium as follows: the 892 uptake rate of transition metals was set at 5.0 mmol/(g_{DW} · h), 893 the uptake rate of oxygen under aerobic conditions was estab- 894 lished at 20.0 mmol/(g_{DW} · h), and the rest media components 895 equal to 10.0 mmol/(g_{DW} · h). As previously mentioned, the 896 M9 pure medium was used for the substrate utilization as- 897 says. Only substrates present in the metabolic network as 898 intra- or extracellular metabolites were considered for the *in* 899 *silico* validation. The results from the experimental and the *in* 900 *silico* growth tests were categorized into “growth” (G) or “non- 901 growth” (NG). Here, “growth” indicates the network’s ability 902 to generate biomass and, therefore, a positive growth rate. The 903 model’s overall prediction performance was assessed using 904 the following statistical parameters: 905 overall agreement (ACC): 906

$$\text{ACC} = \frac{TP + TN}{TP + TN + FP + FN} \quad (6)$$

907 and Matthews Correlation Coefficient (MCC): 908

$$\text{MCC} = \frac{(TP \cdot TN - FP \cdot FN)}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \quad (7)$$

909 where true negative (TN) and true positive (TP) represent 910 accurate predictions, and false negative (FN) and false positive 911 (FP) indicate incorrect predictions. Inconsistencies were 912 resolved via iterative manual network gap-filling. For all FBA 913 simulations, we employed the Constraints-Based Reconstruc- 914 tion and Analysis for Python (COBRApy)⁵⁶ package. All 915 growth media definitions are listed in Table S3. 916

914 **Gene lethality analysis**

915 The *in silico* single-gene knockouts were performed as de- 916 scribed in our previous study using FBA²⁶. To address the 917

917 degeneracy issue of optimization, we additionally ran out₆₃
918 FBA simulations in a total of 100 independent runs. Further₆₄
919 more, we utilized pFBA, a method that allows us to ascertain₆₅
920 the flux distribution of the optimal solution while concurrently
921 minimizing the overall flux sum⁵⁷. The results were categor-
922 ized as either essential $FC_{gr} = 0$, inessential ($FC_{gr} = 1$), or
923 partially essential ($0 < FC_{gr} < 1$), where FC_{gr} denotes the
924 FC bacterial growth rate before and after deletion²⁶. Shared
925 essential genes between FBA and pFBA, as well as all tested
926 conditions, were further aligned against the human genome
927 using BLAST⁴².

928 Data availability

929 Supplementary data are available along with this article. Addi-
930 tionally, *iRM23NL* is available at the BioModels Database⁵⁸
931 as an SBML Level 3 Version 1³⁸ file. Access the model at
932 <https://www.ebi.ac.uk/biomodels/MODEL2310240001>.

933 Acknowledgments

934 N.L. is supported by the *Deutsche Forschungsgemeinschaft*
935 (DFG, German Research Foundation) under Germany's Ex-
936 cellence Strategy – EXC 2124 – 390838134 and by the
937 Cluster of Excellence 'Controlling Microbes to Fight Infec-
938 tions' (CMFI). A.D. is supported by the German Center
939 for Infection Research (DZIF, doi: [10.13039/100009139](https://doi.org/10.13039/100009139))
940 within the Federal Ministry of Education and Research
941 (BMBF, German Centers for Health Research of the Fed-
942 eral Ministry of Education and Research (BMBF)), grant
943 № 8020708703. The authors acknowledge the support by
944 the Open Access Publishing Fund of the University of Tübin-
945 gen (<https://uni-tuebingen.de/en/216529>). The authors
946 also thank Charlotte Rigauts and Anouk Van Hauwermeire
947 for assistance with the Biolog assays.

948 Author contributions

949 N.L. conceptualized the project, reconstructed and curated the
950 model, conducted the laboratory experiments, and analyzed
951 the data. L.O. supervised the laboratory work. A.C. and
952 A.D. supervised the project. N.L. wrote and prepared the draft
953 manuscript. N.L., T.C., A.C., and A.D. revised the manuscript.
954 All authors approved the publishing of the manuscript.

955 Competing interests:

956 The authors declare no conflict of interest.

957 List of Abbreviations

958 **ANI** average nucleotide identity
959 **ATP** adenosine triphosphate
960 **AUC** area under curve
961 **BHI** brain heart infusion
962 **BiGG** Biochemical, Genetical, and Genomical

BLAST	Basic Local Alignment Search Tool	
BMBF	Federal Ministry of Education and Research (<i>Bundesministerium für Bildung und Forschung</i>)	
BOF	biomass objective function	966
CF	cystic fibrosis	967
CFTR	cystic fibrosis transmembrane conductance regulator	969
CMFI	Controlling Microbes to Fight Infections	970
cNMP	cyclic nucleoside monophosphate	971
COBRApy	Constraints-Based Reconstruction and Analysis for Python	972
DFG	<i>Deutsche Forschungsgemeinschaft</i>	974
DZIF	German Center for Infection Research	975
ECO	Evidence and Conclusion Ontology	976
EGC	energy generating cycle	977
ETC	electron transport chain	978
FBA	flux balance analysis	979
fbc	flux balance constraints	980
FC	fold change	981
FN	false negative	982
FP	false positive	983
GEM	genome-scale metabolic model	984
GFF	General Feature Format	985
GO	Gene Ontology	986
GPR	gene-protein-reaction association	987
IF	inoculating fluid	988
IP	inorganic phosphorus	989
JSON	JavaScript Object Notation	990
KEGG	Kyoto Encyclopedia of Genes and Genomes	991
LB	Luria-Bertani	992
M9	M9 minimal medium	993
MEMOTE	Metabolic Model Testing	994
MILP	mixed-integer linear programming	995
MQ	milliQ water	996
NA	nutrient agar	997
NCBI	National Centre for Biotechnology Information	998
NMP	nucleoside monophosphate	999
OD	optical density	1000
OMEX	Open Modelling EXchange format	1001
OP	organic phosphorus	1002
pFBA	parsimonious enzyme usage flux balance analysis	1003
PGAP	Prokaryotic Genome Annotation Pipeline	1005
PM	phenotype microarray	1006
ROS	reactive oxygen species	1007
RPM	revolutions per minute	1008
RPMT	Roswell Park Memorial Institute	1009
SBML	Systems Biology Markup Language	1010
SBO	Systems Biology Ontology	1011
SCFM	synthetic cystic fibrosis sputum medium	1012
SNM	synthetic nasal medium	1013

1015	TN	true negative
1016	TP	true positive
1017	TSB	tryptic soy broth

References

1 T. Bergan and M. Kocur. “*Stomatococcus mucilaginosus* gen. nov., sp. nov., ep. rev., a member of the family *Micrococcaceae*”. In: *International Journal of Systematic and Evolutionary Microbiology* 32.3 (1982), pp. 374–377.

2 M. Collins, R. Hutson, V. Båverud, and E. Falsen. “Characterization of a *Rothia*-like organism from a mouse: description of *Rothia nasimurum* sp. nov. and reclassification of *Stomatococcus mucilaginosus* as *Rothia mucilaginosa* comb. nov.” In: *International journal of systematic and evolutionary microbiology* 50.3 (2000), pp. 1247–1251. DOI: [10.1099/00207713-50-3-1247](https://doi.org/10.1099/00207713-50-3-1247).

3 I. Olsen, D. Preza, J. A. Aas, and B. J. Paster. “Cultivated and not-yet-cultivated bacteria in oral biofilms”. In: *Microbial Ecology in Health and Disease* 21.2 (2009), pp. 65–71. DOI: [10.1080/08910600902907509](https://doi.org/10.1080/08910600902907509).

4 S. Guglielmetti, V. Taverniti, M. Minuzzo, S. Arioli, M. Stuknyte, M. Karp, and D. Mora. “Oral bacteria as potential probiotics for the pharyngeal mucosa”. In: *Applied and environmental microbiology* 76.12 (2010), pp. 3948–3958. DOI: [10.1128/AEM.00109-10](https://doi.org/10.1128/AEM.00109-10).

5 M. L. Wos-Oxley, I. Plumeier, C. Von Eiff, S. Taudien, M. Platzer, R. Vilchez-Vargas, K. Becker, and D. H. Pieper. “A peek into the diversity and associations within human anterior nares microbial communities”. In: *The ISME journal* 4.7 (2010), pp. 839–851. DOI: [10.1038/ismej.2010.15](https://doi.org/10.1038/ismej.2010.15).

6 S. A. Wilbert, J. L. M. Welch, and G. G. Borisy. “Spatial ecology of the human tongue dorsum microbiome”. In: *Cell reports* 30.12 (2020), pp. 4003–4015. DOI: [10.1016/j.celrep.2020.02.097](https://doi.org/10.1016/j.celrep.2020.02.097).

7 S. G. Dastager, S. Krishnamurthi, N. Rameshkumar, and M. Dharne. “The family *micrococcaceae*”. In: *The Prokaryotes* (2014), pp. 455–498.

8 D. Janek, A. Zipperer, A. Kulik, B. Krismer, and A. Peschel. “High frequency and diversity of antimicrobial activities produced by nasal *Staphylococcus* strains against bacterial competitors”. In: *PLoS pathogens* 12.8 (2016), e1005812. DOI: [10.1371/journal.ppat.1005812](https://doi.org/10.1371/journal.ppat.1005812).

9 C. C. Uranga, P. Arroyo Jr, B. M. Duggan, W. H. Gerwick, and A. Edlund. “Commensal oral *Rothia mucilaginosus* produces enterobactin, a metal-chelating siderophore”. In: *Msystems* 5.2 (2020), pp. 10–1128. DOI: [10.1128/mSystems.00161-20](https://doi.org/10.1128/mSystems.00161-20).

10 M. M. Tunney, T. R. Field, T. F. Moriarty, S. Patrick, G. Doering, M. S. Muhlebach, M. C. Wolfgang, R. Boucher, D. F. Gilpin, A. McDowell, et al. “Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis”. In: *American journal of respiratory and critical care medicine* 177.9 (2008), pp. 995–1001. DOI: [10.1164/rccm.200708-11510C](https://doi.org/10.1164/rccm.200708-11510C).

11 Y. W. Lim, R. Schmieder, M. Haynes, D. Willner, M. Furlan, M. Youle, K. Abbott, R. Edwards, J. Evangelista, D. Conrad, et al. “Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities”. In: *Journal of Cystic Fibrosis* 12.2 (2013), pp. 154–164. DOI: [10.1016/j.jcf.2012.07.009](https://doi.org/10.1016/j.jcf.2012.07.009).

12 D. Worlitzsch, R. Tarhan, M. Ulrich, U. Schwab, A. Cekici, K. C. Meyer, P. Birrer, G. Bellon, J. Berger, T. Weiss, et al. “Effects of reduced mucus oxygen concentration in airway *Pseudomonas* infections of cystic fibrosis patients”. In: *The Journal of clinical investigation* 109.3 (2002), pp. 317–325. DOI: [10.1172/JCI13870](https://doi.org/10.1172/JCI13870).

13 L. M. Filkins and G. A. O’Toole. “Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat”. In: *PLoS pathogens* 11.12 (2015), e1005258. DOI: [10.1371/journal.ppat.1005258](https://doi.org/10.1371/journal.ppat.1005258).

1014 A. M. Guss, G. Roeselers, I. L. Newton, C. R. Young, V. Klepac-Ceraj, S. Lory, and C. M. Cavanaugh. “Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis”. In: *The ISME journal* 5.1 (2011), pp. 20–29. DOI: [10.1038/ismej.2010.88](https://doi.org/10.1038/ismej.2010.88).

15 F. Bittar, H. Richet, J.-C. Dubus, M. Reynaud-Gaubert, N. Stremler, J. Sarles, D. Raoult, and J.-M. Rolain. “Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients”. In: *Plos one* 3.8 (2008), e2908. DOI: [10.1371/journal.pone.0002908](https://doi.org/10.1371/journal.pone.0002908).

16 Y. W. Lim, R. Schmieder, M. Haynes, M. Furlan, T. D. Matthews, K. Whiteson, S. J. Poole, C. S. Hayes, D. A. Low, H. Maughan, et al. “Mechanistic model of *Rothia mucilaginosus* adaptation toward persistence in the CF lung, based on a genome reconstructed from metagenomic data”. In: *Plos one* 8.5 (2013), e64285. DOI: [10.1371/journal.pone.0064285](https://doi.org/10.1371/journal.pone.0064285).

17 B. Gao, T. Gallagher, Y. Zhang, M. Elbadawi-Sidhu, Z. Lai, O. Fiehn, and K. L. Whiteson. “Tracking polymicrobial metabolism in cystic fibrosis airways: *Pseudomonas aeruginosa* metabolism and physiology are influenced by *Rothia mucilaginosus*-derived metabolites”. In: *Msystems* 3.2 (2018), pp. 10–1128. DOI: [10.1128/mSphere.00151-18](https://doi.org/10.1128/mSphere.00151-18).

18 C. Rigauts, J. Aizawa, S. L. Taylor, G. B. Rogers, M. Govaerts, P. Cos, L. Ostyn, S. Sims, E. Vandeplasch, M. Sze, et al. “*Rothia mucilaginosus* is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease”. In: *European Respiratory Journal* 59.5 (2022). DOI: [10.1183/13993003.01293-2021](https://doi.org/10.1183/13993003.01293-2021).

19 A. Passi, J. D. Tibocha-Bonilla, M. Kumar, D. Tec-Campos, K. Zengler, and C. Zuniga. “Genome-scale metabolic modeling enables in-depth understanding of big data”. In: *Metabolites* 12.1 (2021), p. 14. DOI: [10.3390/metabolites12010014](https://doi.org/10.3390/metabolites12010014).

20 B. Ø. Palsson. *Systems biology: properties of reconstructed networks*. Cambridge university press, 2006, pp. 151–171. DOI: [10.1017/CBO9781139854610.012](https://doi.org/10.1017/CBO9781139854610.012).

21 J. D. Orth, I. Thiele, and B. Ø. Palsson. “What is flux balance analysis?” In: *Nature biotechnology* 28.3 (2010), pp. 245–248. DOI: [10.1038/nbt.1614](https://doi.org/10.1038/nbt.1614).

22 M. A. Oberhardt, B. Ø. Palsson, and J. A. Papin. “Applications of genome-scale metabolic reconstructions”. In: *Molecular systems biology* 5.1 (2009), p. 320. DOI: [10.1371/msb.2009.77](https://doi.org/10.1371/msb.2009.77).

23 C. Gu, G. B. Kim, W. J. Kim, H. U. Kim, and S. Y. Lee. “Current status and applications of genome-scale metabolic models”. In: *Genome biology* 20 (2019), pp. 1–18. DOI: [10.1186/s13059-019-1730-3](https://doi.org/10.1186/s13059-019-1730-3).

24 M. Sertbas and K. O. Ulgen. “Genome-scale metabolic modeling for unraveling molecular mechanisms of high threat pathogens”. In: *Frontiers in Cell and Developmental Biology* 8 (2020), p. 566702. DOI: [10.3389/fcell.2020.566702](https://doi.org/10.3389/fcell.2020.566702).

25 M. A. Carey, A. Dräger, M. E. Beber, J. A. Papin, and J. T. Yurkovich. “Community standards to facilitate development and address challenges in metabolic modeling”. In: *Molecular Systems Biology* 16.8 (Aug. 2020), e9235. DOI: [10.15252/msb.20199235](https://doi.org/10.15252/msb.20199235).

26 N. Leonidou, Y. Xia, and A. Dräger. “Exploring the metabolic profiling of *A. baumannii* for antimicrobial development using genome-scale modeling”. In: *bioRxiv* (2023). DOI: [10.1101/2023.09.13.557502](https://doi.org/10.1101/2023.09.13.557502).

27 A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. “Up-Set: visualization of intersecting sets”. In: *IEEE transactions on visualization and computer graphics* 20.12 (2014), pp. 1983–1992. DOI: [10.1109/TVCG.2014.2346248](https://doi.org/10.1109/TVCG.2014.2346248).

28 M. Kanehisa, M. Furumichi, Y. Sato, M. Ishiguro-Watanabe, and M. Tanabe. “KEGG: integrating viruses and cellular organisms”. In: *Nucleic acids research* (Oct. 2020). ISSN: 1362-4962. DOI: [10.1093/nar/gkaa970](https://doi.org/10.1093/nar/gkaa970). aheadofprint.

29 D. Machado, S. Andrejev, M. Tramontano, and K. R. Patil. “Fast automated reconstruction of genome-scale metabolic models for microbial species and communities”. In: *Nucleic acids research* 46.15 (2018), pp. 7542–7553. DOI: [10.1093/nar/gky537](https://doi.org/10.1093/nar/gky537).

1137 30 C. J. Norsigian, N. Pusarla, J. L. McConn, J. T. Yurkovich, A. Dräger, 1201
1138 B. O. Palsson, and Z. King. “BiGG Models 2020: multi-strain genome- 1202
1139 scale models and expansion across the phylogenetic tree”. In: *Nucleic 1203
1140 Acids Research* 48.D1 (Nov. 2019). gkz1054. ISSN: 0305-1048. DOI: 1204
1141 [10.1093/nar/gkz1054](https://doi.org/10.1093/nar/gkz1054). 1205

1142 31 P. D. Karp, R. Billington, R. Caspi, C. A. Fulcher, M. Latendresse, 1206
1143 A. Kothari, I. M. Keseler, M. Krummenacker, P. E. Midford, Q. Ong, 1207
1144 et al. “The BioCyc collection of microbial genomes and metabolic 1208
1145 pathways”. In: *Briefings in bioinformatics* 20.4 (2019), pp. 1085–1093. 1209
1146 DOI: [10.1093/bib/bbx085](https://doi.org/10.1093/bib/bbx085). 1210

1147 32 X. Zhao and K. Drlica. “Reactive oxygen species and the bacterial 1211
1148 response to lethal stress”. In: *Current opinion in microbiology* 21 (2014), 1212
1149 pp. 1–6. DOI: [10.1016/j.mib.2014.06.008](https://doi.org/10.1016/j.mib.2014.06.008). 1213

1150 33 P. Korge, G. Calmettes, and J. N. Weiss. “Increased reactive oxygen 1214
1151 species production during reductive stress: the roles of mitochondrial 1215
1152 glutathione and thioredoxin reductases”. In: *Biochimica et Biophysica 1216
1153 Acta (BBA)-Bioenergetics* 1847.6-7 (2015), pp. 514–525. DOI: [10.1016/j.bbabiobio.2015.02.012](https://doi.org/10.1016/j.bbabiobio.2015.02.012). 1217

1155 34 J. Monk, J. Nogales, and B. O. Palsson. “Optimizing genome-scale 1218
1156 network reconstructions”. In: *Nature biotechnology* 32.5 (2014), pp. 447– 1219
1157 452. DOI: [10.1038/nbt.2870](https://doi.org/10.1038/nbt.2870). 1220

1158 35 M. Römer, J. Eichner, A. Dräger, C. Wrzodek, F. Wrzodek, and A. 1221
1159 Zell. “ZBIT Bioinformatics Toolbox: a Web-Platform for Systems 1222
1160 Biology and Expression Data Analysis”. In: *PLoS ONE* 11.2 (Feb. 2016), 1223
1161 e0149263. DOI: [10.1371/journal.pone.0149263](https://doi.org/10.1371/journal.pone.0149263). 1224

1162 36 N. Leonidou, E. Fritze, A. Renz, and A. Dräger. “SBOannotator: a 1225
1163 Python Tool for the Automated Assignment of Systems Biology 1226
1164 Ontology Terms”. In: *Bioinformatics* 39.7 (July 2023), btad437. ISSN: 1227
1165 1367-4811. DOI: [10.1093/bioinformatics/btad437](https://doi.org/10.1093/bioinformatics/btad437). 1228

1166 37 C. Lieven, M. E. Beber, B. G. Olivier, F. T. Bergmann, M. Ataman, 1229
1167 P. Babaei, J. A. Bartell, L. M. Blank, S. Chauhan, K. Correia, et al. 1230
1168 “MEMOTE for standardized genome-scale metabolic model testing”. 1231
1169 In: *Nature Biotechnology* (3 Mar. 2020). ISSN: 1546-1696. DOI: [10.1038/s41587-020-0446-y](https://doi.org/10.1038/s41587-020-0446-y). 1232

1170 38 M. Hucka, F. T. Bergmann, A. Dräger, S. Hoops, S. M. Keating, N. 1233
1171 Le Novère, C. J. Myers, B. G. Olivier, S. Sahle, J. C. Schaff, L. P. 1234
1172 Smith, D. Waltemath, and D. J. Wilkinson. “Systems Biology Markup 1235
1173 Language (SBML) Level 3 Version 1 Core”. In: *Journal of Integrative 1236
1174 Bioinformatics* 15.1 (Apr. 2018), p. 1. DOI: [10.1515/jib-2017-0080](https://doi.org/10.1515/jib-2017-0080). 1237

1176 39 K. H. Turner, A. K. Wessel, G. C. Palmer, J. L. Murray, and M. Whiteley. 1238
1177 “Essential genome of *Pseudomonas aeruginosa* in cystic fibrosis 1239
1178 sputum”. In: *Proceedings of the National Academy of Sciences* 112.13 1240
1179 (2015), pp. 4110–4115. DOI: [10.1073/pnas.1419677112](https://doi.org/10.1073/pnas.1419677112). 1241

1180 40 B. Krismer, M. Liebeke, D. Janek, M. Nega, M. Rautenberg, G. Hornig, 1242
1181 C. Unger, C. Weidenmaier, M. Lalk, and A. Peschel. “Nutrient limitation 1243
1182 governs *Staphylococcus aureus* metabolism and niche adaptation 1244
1183 in the human nose”. In: *PLoS pathogens* 10.1 (2014), e1003862. DOI: 1245
1184 [10.1371/journal.ppat.1003862](https://doi.org/10.1371/journal.ppat.1003862). 1246

1185 41 B. R. Bochner, P. Gadzinski, and E. Panomiratos. “Phenotype micro- 1247
1186 arrays for high-throughput phenotypic testing and assay of gene function”. 1248
1187 In: *Genome research* 11.7 (2001), pp. 1246–1255. DOI: [10.1101/gr.186501](https://doi.org/10.1101/gr.186501). 1249

1189 42 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1250
1190 “Basic local alignment search tool”. In: *Journal of molecular biology* 1251
1191 215.3 (1990), pp. 403–410. DOI: [Basiclocalalignmentsearchtool](https://doi.org/10.1016/0022-2833(90)90501-0). 1252

1192 43 M. A. Henson, G. Orazi, P. Phalak, and G. A. O’Toole. “Metabolic 1253
1193 modeling of cystic fibrosis airway communities predicts mechanisms 1254
1194 of pathogen dominance”. In: *MSystems* 4.2 (2019), e00026–19. DOI: 1255
1195 [10.1128/msystems.00026-19](https://doi.org/10.1128/msystems.00026-19). 1256

1196 44 S. Baron. “Medical microbiology”. In: (1996). 1257

1197 45 D. L. Wheeler, C. Chappay, A. E. Lash, D. D. Leipe, T. L. Madden, 1258
1198 G. D. Schuler, T. A. Tatusova, and B. A. Rapp. “Database resources of 1259
1199 the national center for biotechnology information”. In: *Nucleic acids 1260
research* 28.1 (2000), pp. 10–14. DOI: [10.1093/nar/28.1.10](https://doi.org/10.1093/nar/28.1.10). 1261

60 M. L. Neal, M. König, D. Nickerson, G. Misirli, R. Kalbasi, A. Dräger¹³¹⁵, salicin, Glc: α -D-glucose, Succ: succinate, Ala: l-alanine, K. Atalag, V. Chelliah, M. T. Cooling, D. L. Cook, S. Crook, M. de Alba¹³¹⁶, His: L-histidine, and IF: inoculation fluid. The M9 pure¹³¹⁷ medium was prepared according to the specifications outlined¹³¹⁸ in Table S1, and individual substrates were supplemented at the concentrations detailed in Table S2. The corresponding¹³¹⁹ Biolog results are presented in tabular format, classified by¹³²⁰ growth (G) and no growth (NG).

1264
1265
1266
1267
1321
1322
1323
1324
1325
1326
1327
1328
1329

ISSN: 1477-4054. DOI: [10.1093/bib/bby087](https://doi.org/10.1093/bib/bby087).

1268 Supporting Information

1269 **S1 Table. Reconstitution of 10X M9.** The stock solutions
1270 were made by adding the respective grams of compound to
1271 100 mL of MQ water. All solutions were autoclaved and
1272 stored at 4 °C.

1273 **S2 Table. Amount of substrates supplemented to M9**
1274 **pure medium.** The stock solutions were made by adding the
1275 respective grams of the compound to 10 mL of MQ water. All
1276 solutions were autoclaved and stored at 4 °C.

1277 **S3 Table. Detailed definition of growth media used for**
1278 ***in silico* simulations.** Descriptive names and BiGG identifiers
1279 are included as additional columns.

1280 **S4 Table. Summary of high-throughput Biolog PM re-**
1281 **sults.** Descriptive names and mappable BiGG identifiers are
1282 included as supplementary columns. “G” denotes a growth
1283 phenotype, while “N” represents non-viable phenotypes. In
1284 the case of multiple existing BiGG identifiers for a single
1285 tested compound, all were included in the table as additional
1286 rows to ensure comprehensive recognition by the model, re-
1287 gardless of which identifier the model employs. This approach
1288 guarantees that the model can accurately identify and asso-
1289 ciate the compound with the corresponding BiGG identifier,
1290 regardless of its nomenclature.

1291 **S5 Table. List of essential genes predicted by FBA in**
1292 **different nutritional media.** The gene essentiality results
1293 were obtained as the average of 100 consecutive single gene
1294 knock-outs, simulating various growth conditions, including
1295 nutrient-rich and nutrient-limited media.

1296 **S6 Table. List of essential genes predicted by pFBA in**
1297 **different nutritional media.** The gene essentiality results
1298 were obtained through systematic single gene knock-outs,
1299 simulating various growth conditions, including nutrient-rich
1300 and nutrient-limited media.

1301 **S7 Table. Comparative analysis of predicted essential**
1302 **genes for *R. mucilaginosa* in different nutrient environ-**
1303 **ments.** Additionally, shared genes with over 50 % similarity
1304 to the human genome are listed along with the respective
1305 functional subsystems.

1306 **S1 Figure. Experimentally-derived catabolic phenotype**
1307 **of *R. mucilaginosa* DSM20746.** The OD values were pro-
1308 cessed and analyzed as described in Materials and Methods.
1309 The heatmaps in Figure 5 facilitate the direct association of
1310 plate well labels with their corresponding compounds.

1311 **S2 Figure. Growth curves of the independent confirma-**
1312 **tory tests for validating the Biolog PM results.** The abbrevi-
1313 ations used in the figure legend are as follows: Man: mannose,
1314 Met: L-methionine, Ado: adonitol, Orn: L-ornithine, Sal:

salicin, Glc: α -D-glucose, Succ: succinate, Ala: l-alanine,
1321 His: L-histidine, and IF: inoculation fluid. The M9 pure
1322 medium was prepared according to the specifications outlined
1323 in Table S1, and individual substrates were supplemented at
1324 the concentrations detailed in Table S2. The corresponding
1325 Biolog results are presented in tabular format, classified by
1326 growth (G) and no growth (NG).

1327 **S3 Figure. Detailed comparative analysis of gene essen-**
1328 **tiality in *silico* predictions using iRM23NL.** Comparison
1329 of predicted essential genes using four nutrient environments
(LB, M9 supplemented with glucose, SCFM, and SNM) under
both oxic and anoxic conditions.

1330 **S4 Figure. Distribution of essential genes in metabolic**
1331 **subsystems** The classification of *in silico*-predicted essential
1332 genes based on annotated Gene Ontology (GO) terms.