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ABSTRACT

Background: Cystic fibrosis (CF) is an inherited genetic disorder caused by mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene, resulting in the production of sticky and thick mucosal fluids. This leads to an environment that
facilitates the colonization of various microorganisms, some of which can cause acute and chronic lung infections, while others may
have a positive influence on the disease process. Rothia mucilaginosa, an oral commensal, is relatively abundant in the lungs of CF
patients. Recent studies have unveiled the anti-inflammatory properties of R. mucilaginosa using in vitro three-dimensional (3-D) lung
epithelial cell cultures and in vivo mouse models relevant to chronic lung diseases. Apart from a potentially beneficial anti-inflammatory
role in chronic lung diseases, R. mucilaginosa has been associated with severe infections. This dual nature highlights the bacterium’s
complexity and diverse impact on health and disease. However, its metabolic capabilities and genotype-phenotype relationships
remain largely unknown.

Results: To gain insights into the cellular metabolism and genetic content of R. mucilaginosa, we developed the first manually curated
genome-scale metabolic model, IRM23NL. Through growth kinetic experiments and high-throughput phenotypic microarray testings,
we defined its complete catabolic phenome. Subsequently, we assessed the model’s effectiveness in accurately predicting growth
behaviors and utilizing multiple substrates. We used constraint-based modeling techniques to formulate novel hypotheses that could
expedite the development of antimicrobial strategies. More specifically, we detected putative essential genes and assessed their
effect on metabolism under varying nutritional conditions. These predictions could offer novel potential antimicrobial targets without
laborious large-scale screening of knock-outs and mutant transposon libraries.

Conclusion: Overall, IRM23NL demonstrates a solid capability to predict cellular phenotypes and holds immense potential as a
valuable resource for accurate predictions in advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor
R. mucilaginosa’'s metabolism for desired performance.

Data Availability: Supplementary data are available along with this article, whereas the metabolic model is accessible through the
BioModels Database.

Keywords:  iIRM23NL, Rothia mucilaginosa DSM20746, ATCC 25296, constraint-based modeling, flux balance analysis,
flux variability analysis, mathematical network, genome-scale metabolic model, metabolic engineering, pathway analysis,
SBML, Gram-positive, nasal microbiome, lung infections, cystic fibrosis, enterobactin, antimicrobial strategies

Introduction

Rothia mucilaginosa is a Gram-positive, encapsulated, non-
motile, and non-spore-forming bacterium of the Micrococ-
caceae family" 2. While it is mainly aerobic, it may also grow
anaerobically as it can switch to fermentation or other non-
oxygen-involving pathways. R. mucilaginosa is a common
commensal of the normal oral, upper and lower respiratory
tract, and part of the skin florae in humans' > %5, This
means it coexists harmlessly within the host and may even
provide benefits. Nonetheless, it can also act as an oppor-
tunistic pathogen, particularly in individuals with weakened
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immune systems, as an etiological agent of serious infections
such as endocarditis, sepsis, and meningitis7. Janek et al.
highlighted the high prevalence of R. mucilaginosa within
the nasal microbiome®. Moreover, they report its suscepti-
bility to certain staphylococcal bacteriocins, indicating its
major competition with the nasal staphylococci and the sub-
stantial impact of bacteriocins in shaping the nasal micro-
biota. In 2020, Uranga et al. revealed that R. mucilaginosa
produces the strongest Fe**-binding archetypal siderophore
known, called enterobactin’. This attribute contributes to
its high virulence against oral microbiota (the cariogenic S.
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mutans, A. timonensis, and Streptococcus sp.) as well as
four methicillin-resistant strains of S. aureus (MRSA). En-
terobactin is a type of siderophore produced by bacteria to
scavenge, chelate, and transport ferric irons from their sur-
rounding environment. These are essential for bacteria when
iron is scarce as they facilitate their acquisition necessary for
their growth and metabolic processes.

Prior metagenomic sequencing analyses have unveiled the
prevalence of R. mucilaginosa at high abundances and its en-
hanced metabolic activity in the lungs of cystic fibrosis (CF)
patients'” ', CF is caused by the hereditary mutation of the
cystic fibrosis transmembrane conductance regulator (CFTR)
gene that disrupts the transepithelial movement of ions, lead-
ing to an aberrant accumulation of thick and sticky mucus
within the airways. The impaired immune clearance creates a
hypoxic environment'? promoting the polymicrobial coloniza-
tion of opportunistic microbes together with fungi and viruses,
ultimately resulting in persistent and recurring infections'>.
Guss et al. and Bittar et al. declared R. mucilaginosa as an
emerging CF pathogen'* 1>, while Lim et al. provided evi-
dence supporting that R. mucilaginosa is a frequently encoun-
tered and metabolically active inhabitant of CF airways'®.
Additionally, a study from 2018 shows that the opportunistic
pathogen Pseudomonas aeruginosa, which frequently causes
infections in CF patients, builds essential primary metabo-
lites, like glutamate, by utilizing compounds produced by
R. mucilaginosa . This symbiotic interaction implies that
P. aeruginosa benefits from its neighboring microbes, which
contributes to its pathogenesis in the CF lungs. On the other
hand, Rigauts et al. revealed the anti-inflammatory activity of
R. mucilaginosa in the lower respiratory tract, which could

impact the seriousness of chronic lung diseases'®.

In systems biology, genome-scale metabolic models
(GEMs) represent comprehensive reconstructions of organ-
isms’ metabolic networks. They are built using genomic
sequences and comprise all known biochemical reactions and
associated genes. These models provide systems-level insights
into cellular metabolism, allowing researchers to simulate and
analyze the flow of metabolites through these networks'”. The
interactions among reactions and metabolites in a metabolic
model are mathematically represented with a stoichiometric
matrix”’. In the past years, an array of in silico methods
have been developed to analyze GEMs and derive valuable
hypotheses. Flux balance analysis (FBA) is such a power-
ful computational technique that operates on the principle
of achieving a steady state by optimizing the flux (rate) of
metabolites through reactions while accounting for various
constraints such as stoichiometry, thermodynamics, and up-
take/secretion boundaries’'. Applying FBA on a GEM pro-
vides insights into the intricate biological system interactions.
This analytical approach facilitates the prediction of cellu-
lar phenotypes and identification of promising drug targets
and contributes to optimizing biotechnological processes’”.
Moreover, such models can guide genetic engineering by
suggesting genetic modifications that could enhance desired
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product formation or cellular behavior. Further applications
include ameliorating culture media by incorporating compo-
nents that increase bacterial growth rates. So far, GEMs have
been an invaluable resource in the systems biology field that
helped untangle the metabolism of various organisms and
especially of high-threat pathogens”® **. As described above,
R. mucilaginosa has gained great interest in the context of
polymicrobial CF environments. However, its metabolic ca-
pabilities and genotype-phenotype relationships in isolated
monoculture settings remain largely unexplored.

Here, we present the first manually curated and high-quality
GEM of R. mucilaginosa, iRM23NL, striving to understand
its metabolism and unique phenotypes under diverse condi-
tions. Our simulation-ready network accounts for thousands
of reactions and is available in a standardized format following
the community guidelines®”. Through growth kinetic exper-
iments and high-throughput phenotypic microarray assays,
we validated iRM23NL’s accuracy in predicting growth and
substrate utilization patterns. We refined the reconstruction by
comparing the in vitro results to in silico simulations, resulting
in novel metabolic reactions and genes. To our knowledge,
this is the first study presenting high-throughput nutrient uti-
lization and comprehensive growth data for R. mucilaginosa.
Finally, we employed FBA to formulate novel gene essential-
ity hypotheses that could expedite the development of antimi-
crobial strategies. Figure 1 summarizes the experimental and
computational work presented here.

Results

Reconstruction of a high-quality metabolic model for
R. mucilaginosa DSM20746

The pipeline we previously developed”® was used to build
the first high-quality and manually curated GEM of R. mu-
cilaginosa DSM20746 (ATCC 25296). An initial draft meta-
bolic model was derived with CarveMe”’ and is based on the
Biochemical, Genetical, and Genomical (BiGG) identifiers>".
The translated sequence with over 1,700 proteins and the
Gram-positive-specific template were employed. This enabled
us to build a more precise reconstruction considering infor-
mation on the peptidoglycan layer for the biomass objective
function (BOF). The draft network contained 1,015 reactions
(141 pseudo-reactions), 788 metabolites, and 265 genes (Fig-
ure 2). In the first gap-filling stage (Draft_2), we expanded
the list of reactions based on the annotated genome and growth
kinetics data in diverse growth environments. For this, we
extensively indexed organism-specific literature and databases
and included additional enzymatic reactions together with
47 new gene-protein-reaction associations (GPRs). Subse-
quently, high-throughput nutrient utilization assays and model
validation incorporated further 71 reactions and their associ-
ated metabolic genes. Non-metabolic genes, which take part
in other cellular processes e.g., signaling pathways or tran-
scription, were not considered. In total, 82 reactions, together
with associated genes and metabolites, were newly added into
the model, along with 62 novel GPRs, increasing the genetic
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Figure 1 | Construction and validation flowchart of the metabolic network for R. mucilaginosa, iRM23NL. The study is divided into
the experimental and computational phases. The proteome-derived metabolic reconstruction and curation was done based on the workflow we

described elsewhere?°,

coverage. Over 20 % of the transport reactions have a GPR
assigned, while 63 % of the total enzymatic reactions have at
least one gene assigned. Moreover, missing exchange reac-
tions were added to all extracellular metabolites to represent
the exchange of substrates between the extracellular environ-
ment and the model. The strain-specific BioCyc®!' database
was further employed to correct the reversibility of biochemi-
cal reactions, while duplicated reactions and metabolites were
eliminated. In all cases, when no organism-specific informa-
tion was available, we leveraged data from closely related
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species based on our phylogenomic analysis (Figure 3). Ac-
cording to the calculated average nucleotide identity (ANI)
matrix, R. mucilaginosa exhibits a similarity to six out of
the 13 tested Rothia genomes. More specifically, it shares a
greater resemblance with R. aeria and R. dentocariosa un-
derscoring a closer evolutionary relationship between these
species.

R. mucilaginosa is primarily aerobic, efficiently generat-
ing ATP through oxic respiration; however, in low-oxygen or
oxygen-absent conditions, it shifts to anaerobic metabolism
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Figure 2 | Properties of the R. mucilaginosa DSM20746 genome-scale metabolic model iIRM23NL. (A) Evolution of metabolic network
content from its initial draft to the final stage of extensive manual gap-filling. The shifts in the sets’ sizes are also displayed in each stage. The
first stage of gap-filling is denoted by Draft_2, while the final stage is upon validation with experimental data. (B) UpSet plots comparing
sets between three model versions, created using the UpSetPlot package®’. The numbers indicate the cardinality of the respective set. (C)
Subsystem-level statistics within pathways along with the distribution of gene- and non-gene-associated reactions. The pathway analysis was
limited to reaction identifiers that could be successfully mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)2® reactions.

to produce energy. This metabolic adaptability enables R. mu-
cilaginosa to adapt in microaerophilic environments like the
oxygen-restricted conditions in CF lungs'®. Our draft model
lacked the ability to demonstrate anaerobic growth. There-
fore, we investigated the metabolic cascade and systematically
incorporated missing enzymes to ensure that the model can
simulate growth even in the absence of oxygen by identify-
ing and integrating alternative pathways. This refinement
included the incorporation of enzymatic reactions, such as
the superoxide dismutase (SPODM) and catalase (CAT) that
are responsible for the breakdown of radical reactive oxy-
gen species (ROS) and shielding the cell against oxidative
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damage (Figure 4 Panel A). Such scavenging enzymes play
an integral role in counteracting the harmful effects of ROS
during anaerobic respiration’”. However, during this process,
we found no associated GPRs for CAT within the organism-
specific BioCyc database. Additional scavenging enzymes
like glutathione and thioredoxin reductases essential for main-
taining the redox balance™ were already present in the initial
draft model (GTHOr, GTHRDabc2pp, and TRDR). Altogether, the
final model, iRM23NL, contains 1,162 reactions (619 gene-
associated; 65 catalysed by enzyme complexes, 70 catalysed
by isozymes, and 484 by simple gene association), 171 ex-
change and sink reactions, 874 metabolites (558 in cytoplasm,
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Figure 3 | Phylogenomic all-vs-all analysis between 13 Rothia
species. Based on the calculated ANI matrix, R. mucilaginosa is
mostly similar to six out of 13 genomes, with higher similarity to R.
aeria and R. dentocariosa.

148 in periplasm, and 168 in the extracellular space), and
372 genes (Figure 2). The model’s metabolic coverage is
at 3.12 %, which indicates a high level of modeling detail
regarding reactions, enzymes, and their associated genes>*.
Additionally, we enriched the model elements with numerous
database cross-references>”, while appropriate and precise
Systems Biology Ontology (SBO) terms were assigned to
each model entity using the SBOannotator package®. The
presence of no energy generating cycles (EGCs) was en-
sured and controlled after each curation stage, and the mass-
and charge-imbalances were corrected. With this, the final
Metabolic Model Testing (MEMOTE)> score of iRM23NL
is 89 %, while with highly specific SBO terms the score drops
by 2%. The final curated model, iRM23NL, is available
as a supplementary file in Systems Biology Markup Lan-
guage (SBML) Level 3 Version 1°® and JavaScript Object No-
tation (JSON) formats with the flux balance constraints (fbc)
and groups plugins available.

The first validation step of iIRM23NL aimed to evaluate its
ability to correctly simulate biomass production across diverse
environmental conditions and growth media formulations. To
elucidate the bacterium’s optimal conditions and metabolic
preferences, we experimentally tested five commonly used
media, including three general nutrient media; brain heart
infusion (BHI) and Luria-Bertani (LB), and tryptic soy broth
(TSB), and two defined media; M9 minimal medium (M9)
pure and Roswell Park Memorial Institute (RPMI) (Figure 4
Panel B). The BHI medium was used as a baseline for the
in vitro experiments since it is a known and well-established
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environment for the growth of R. mucilaginosa and enabled us
to compare the bacterium’s growth characteristics to the newly
tested media. For the in silico simulations, we applied FBA
and added additional constraints to the linear programming
problem defined in Equation (5). In more detail, we specified
the flux constraints such that only extracellular metabolites
defined in the medium of interest could flow freely through
the system (unconstrained, finite fluxes) while the remaining
fluxes were constrained to zero. We compared the in vitro to
the in silico observed growth using the FCqp as a qualitative
measure of growth (see Materials and Methods). Furthermore,
we compared the OD at the start and the end of the experi-
ment, considering a statistically significant difference between
these measurements as an indication of growth. Our meta-
bolic network, iIRM23NL, simulated positive fluxes through
the biomass reaction for all tested media except for the M9
pure medium, where a zero flux was observed. These findings
align with the experimentally observed data. More specif-
ically, there is no statistically significant difference in OD
between the initial and final time-points in M9 pure medium
(p-value = 0.1202 and FCqp < 1.4) indicating no significant
growth. Conversely, in the remaining examined media, sta-
tistically significant growth was observed (p-value = 0.00006
- 0.00142 and FCgp > 1.4) indicating significant growth in
these settings. The highest aerobic growth rate was predicted
in TSB (1.6 mmol/(gpy - h)), while the lowest biomass pro-
duction flux was recorded for the M9 pure medium containing
only essential salts. However, the RPMI medium followed
as the second-highest in supporting bacterial in vitro cellular
growth, offering a defined medium suitable for R. mucilagi-
nosa’s cultivation. Although R. mucilaginosa increased its
biomass after 24 h, it slightly declined after 48 h. On the other
hand, the simulated network resulted in a contrary outcome
compared to the expected experimental effect. More specif-
ically, iRM23NL simulated a lower flux through biomass
(0.44 mmol/(gpy - h)) with RPMI when compared to LB. It
is important to note here that in order to simulate growth in
RPMI medium, six metal ions (cobalt (Co*), cooper (Cu®*),
manganese (Mn2*), zinc (Zn>*), ferric iron (Fe*), and fer-
rous iron (Fe*)) were supplemented. These compounds were
missing from the providers’ medium formulation. Our find-
ings underscored R. mucilaginosa’s adaptability to various
nutritional environments, growing best in nutrient-rich con-
ditions while revealing specific growth requirements beyond
minimal settings.

We further employed iRM23NL to examine whether it
could generate biomass within the human nasal environment
and the CF lungs. For this purpose, we performed in sil-
ico simulations using the synthetic cystic fibrosis sputum
medium (SCFM)* and synthetic nasal medium (SNM)*’
(Figure 4 Panel C). Our computational model successfully
simulated positive growth in both media, with a growth rate
of 0.43 mmol/(gpy - h) in SNM and 0.45 mmol/(gpy - h) in
SCFM. These results align with the documented metabolic ac-
tivity of R. mucilaginosa in CF lungs and its frequent isolation
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Figure 4 | Investigation of R. mucilaginosa’s growth behavior in different nutrient media. (A) Metabolic response of R. mucilaginosa
under anaerobic stress as represented in i/RM23NL. Reduction process of oxygen (O3 ) generating ROS is indicated by red arrows, while
pathways highlighted in green arrows represent reactions governed by ROS scavenging enzymes leading to bacterial cell detoxification.
(B) Experimentally-derived growth curves for R. mucilaginosa DSM20746 in multiple liquid growth media along with the respective fold
changes (FCs) of the acquired optical densitys (ODs) at 590 nm, as defined in Equation (1). The data shown here are an average of three
biological replicates (n=3). Based on the experimental results, a threshold of FCop = 1.4 was established to qualitatively describe bacterial
growth. We verified the correctness of the threshold by performing statistical analysis as described in Materials and Methods. All data are
normally distributed, while there is no significant difference between their variances. The asterisks flag the significance levels. The BHI
medium was used as a baseline, while the Control line represents blank measurements of pure media. Bacterial growth was aerobically
measured by the OD at 590 nm (ordinate) at three distinct time points ranging from 0 h to 48 h (abscissa). (C) In silico-simulated growth rates

using iIRM23NL. Detailed in silico media formulations are provided in Table S3.

from the human nasal cavity. Notably, the observed growth
rates closely resembled the flux rate predicted for biomass
production in RPMI medium. Additionally, we confirmed that
iRM23NL accurately represented R. mucilaginosa’s capacity
for facultative anaerobic respiration. In more detail, when the
oxygen uptake was turned off /RM23NL could successfully
exhibit growth using alternative metabolic pathways across
all tested nutritional media. When the oxygen level was de-
creased, the model predicted up to 68 % reduction in biomass
yield compared to aerobic conditions. Consequently, the re-
markably lower anaerobic rates in all tested media mimic
R. mucilaginosa’s inherent facultative anaerobic capabilities.

Nutrient utilization profile of R. mucilaginosa and pre-
dictive performance of iRM23NL

We experimentally characterized the metabolic phenotype of
R. mucilaginosa DSM20746 using four 96 well Biolog PM
microplates (Figure 5). These high-throughput assays serve as
proxies for bacterial growth by measuring cellular respiration

Nantia Leonidou et al.
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across several conditions. Active respiration in the minimal
medium is detected by the reduction of tetrazolium dye over
time, indicating the utilization of the provided sole source*!.
We cultivated our strain in a minimal medium supplemented
with various sources, and growth was monitored over 48 hours
to identify suitable nutrients for the bacterium (as described in
Materials and Methods). The derived OD measurements were
normalized according to the average growth over replicates
per plate and converted to qualitative data representing non-
growth (NG) or growth (G). In total, we tested the uptake and
utilization of 379 distinct carbon, nitrogen, phosphorus, and
sulfur substrates. R. mucilaginosa demonstrated the ability to
utilize 61 of 190 tested carbon substrates, including carboxy-
lates, saccharides, and amino acids, while 10 of 95 were found
to be viable nitrogen sources (Figure 5 Panel B). Furthermore,
out of 59 tested phosphorus sources, R. mucilaginosa exhib-
ited a loss of metabolic activity for 28 compounds, resulting
in a non-viable phenotype, while only 71.4 % of all analyzed
sulfur substrates supported positive growth. More specifically,
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Figure 5 | Complete experimentally-derived nutrient utilization phenome of R. mucilaginosa DSM20746. (A) Utilization of individual
nutrients by the bacterium across four Biolog phenotypic microarrays. Bacterial growth was measured by OD at 590 nm. (B) Numerical
summary nutrient sources experimentally tested in each Biolog phenotype microarray (PM), classified into those resulting in bacterial growth
and those that R. mucilaginosa could not utilize. (C) Categorization of all tested phosphorous sources during the high-throughput Biolog
assay. Utilization of totally 31 phosphorus sources resulted in positive phenotype (green chart), while the cell exhibited an inability to utilize
the remaining 28 (orange chart).
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six inorganic phosphorus (IP), 14 organic phosphorus (OP),
two cyclic nucleoside monophosphates (c(NMPs), and nine nu-
cleoside monophosphates (NMPs) were successfully utilized
as sole phosphorus sources (Figure 5 Panel C). The experimen-
tally defined nutrient utilization phenome of R. mucilaginosa
can be found in Supplementary Figure S1. An overview of
all experimentally tested substrates, along with the assay re-
sults, can be found in Table S4. We independently confirmed
the Biolog nutrient utilization data by testing the ability of
DSM20746 to grow on minimal media in the presence of ten
compounds (see Materials and Methods, Figure S2).

Additionally, we evaluated the predictive performance
of our metabolic model by using various C-, N-, P-, and
S-containing substrates. All compounds from the high-
throughput phenotypic data were mapped to BiGG " identi-
fiers and subsequently to i/RM23NL. In total, 286 could be
successfully mapped to the BiGG database. From these, 126
existed as extracellular metabolites in i/RM23NL and were
considered for further analysis. Model simulations were per-
formed under aerobic conditions with the minimal medium
defined in Table S3 and FBA (see Materials and Methods).
An extracellular reaction was enabled for each tested sub-
strate to force the model to use its transporters. Discrepancies
between the Biolog data and the model simulations were uti-
lized as basis for hypotheses to further improve and refine
the network reconstruction. We resolved most inconsisten-
cies via extensive literature mining and iterative gap analysis.
For this, we used the organism- and strain-specific BioCyc?’'
database. Throughout this process, we encountered differ-
ent scenarios regarding incorrect model predictions. These
included compounds present in all compartments, including
the extracellular space, as well as substrates defined within
the intracellular space and periplasm, with no transporter de-
fined towards the extracellular space. If the experimental
results indicated utilization of an undefined compound, we
searched BioCyc’! to find strain-specific and gene-based miss-
ing transporters or enzymatic reactions. When no organism-
specific evidence was available, we sought supporting data
from genomically identical species (Figure 3). For instance,
the compound 3-sulfino-L-alanine (3sala) was initially absent
from any compartment in the preliminary draft model. Since
no strain-specific information was available, we conducted a
homology-based search using Basic Local Alignment Search
Tool (BLAST)* to find genes with high similarity (similar-
ity threshold: > 80 %) in related species. Subsequently, we
identified cysteine desulfurase (SULFCYS) along with three
associated transport reactions (proton-mediated; SULFCYSpp,
diffusion; SULFCYStex, and ABC transport; SULFCYSabc) that
displayed a similarity over 80 % with R. dentocariosa. These
components were consequently incorporated into iRM23NL,
resulting in the expected positive utilization phenotype. Gen-
erally, false negative or false positive predictions arise from
missing or erroneous involvement of transporters, respectively.
We resolved false positives by removing transport reactions
lacking supporting gene evidence or adjusting their reversibil-
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ity to facilitate export solely. More specifically, initial model
predictions indicated that iRM23NL could not sustain growth
when supplied with either L-cysteate (Lcyst) or AMP (amp)
as sole sources, while Biolog assays indicated the opposite.
To rectify this, we introduced the corresponding irreversible
transporters (LCYStex and AMPt) and enabled their in silico
utilization of these compounds. Moreover, several metabolites
(e.g., phosphoenolpyruvate; pep, trimetaphosphate; tmp, hy-
potaurine; hyptaur, and inorganic triphosphate; pppi) which
were absent from the initial draft model but exhibited positive
growth in utilization assays, were subsequently incorporated
into the final network, leading to additional true positives pre-
dictions. All in all, over 50 transport reactions were added
into the network, while 37 wrongly added enzymatic functions
were removed. We also incorporated novel GPRs encoding
over 60 biochemical reactions. Nevertheless, we identified
approximately 20 instances where the resolution of incon-
sistencies necessitated the inclusion of metabolic reactions
lacking associated gene evidence. For instance, to enable
the utilization of L-aspartate, we introduced a transporter via
diffusion from extracellular to periplasm (ASPtex), for which
no associated GPR was available. Similar scenarios arose
for other compounds, e.g., D-galactose, D-glucuronate, and
acetate. These instances underscore knowledge gaps in the
metabolism of DSM20746 that require in-depth investigation.
In total, 14 carbon and nitrogen sources failed to promote
growth in iRM23NL. Surprisingly, all of these sources had
corresponding transport reactions iRM23NL but still remained
ineffective (e.g., L-fucose, L-arabinose, and L-rhamnose) and
nitrogen (L-tyrosin). We could not find further information on
their transport or metabolic mechanism either in the genome
annotation or the literature.

In summary, the final prediction accuracy of nutrient assimi-
lation and utilization achieved by iRM23NL was 77 % for car-
bon sources (MCC for PM1 = 0.52 and PM2A =0.58), 94.4 %
for nitrogen sources (MCC = 0.82), 97 % for phosphorus and
sulfur sources (ACC = 100 %; MCC = 1.0 and ACC =92.3 %;
MCC = 0.82 respectively) (Figure 6). Our model’s perfor-
mance was notably increased by 40 % post-comprehensive
curation compared to the initial draft model. Our refinement
reduced false positive predictions by 17, leaving only three un-
resolved mismatches. The most remarkable improvement was
in nitrogen and phosphorus sources predictions. The high pre-
dictive accuracy indicates that core metabolic pathways and
multiple catabolic routes of DSM20746 have been accurately
reconstructed within i/RM23NL. Consequently, the network
can predict the catabolism of numerous common compounds,
such as sugars and amino acids.

Formulating novel hypotheses using iRM23NL

Gene essentiality analysis and identification of novel targets
Given the increased percentage of gene-associated reactions
(Figure 2 Panel C) and the high predictive accuracy of the me-
tabolic reconstruction, we employed iRM23NL further to pre-
dict exploitable single gene knock-outs. For this purpose, we
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Figure 6 | Predictive accuracy performance of iRM23NL using nutrient utilization data. Only substrates that exhibited complete
mapping to both BiGG and model identifiers could be analysed. Green represents correct predictions, and orange represents inconsistent
predictions. The overall prediction accuracy of iRM23NL was computed using Equation (6).

systematically removed each biochemical reaction from the
network and optimized iRM23NL to produce biomass using
FBA. To mitigate the inherent variability of the optimization
algorithm, we repeated our FBA simulation 100 times. Addi-
tionally, we employed parsimonious enzyme usage flux bal-
ance analysis (pFBA), which involves solving two sequential
linear optimization problems to determine the flux distribution
of the optimal solution while minimizing the total sum of flux.
Then, we compared the predicted growth rates before and after
introducing the simulated gene deletion. The FCgy; between
the knocked-out and wild-type growth rates was employed
as a proxy for the gene’s essentiality. We proceeded with in
silico single gene deletions using a minimal and nutrient-rich
medium (LB and M9 supplemented with glucose) as well as
two growth media that mimic intra-human nasal passages and
the lungs of CF patients (SNM*’ and SCFM*") (Table S3).
Generally, when subjected to nutrient-limited conditions, the
model predicted a higher number of genes as essential for
growth, while the count of essential genes remained consis-
tent among oxic and anoxic conditions (Figure 7 Panel A).
In total, four metabolic genes exhibited a partially essential
effect across all tested media. This indicates that these genes
promote cellular fitness, and their deletion partially impairs
the bacterium’s capacity to generate biomass. These genes are
the TrkA family potassium uptake protein (WP_005506372.1),
ribulose-phosphate 3-epimerase (WP_ee5507411.1), glucose-
6-phosphate isomerase (WP_005508482. 1), and transaldolase
(WP_ees5509117.1). The majority of essential genes involved
in nucleotide metabolism, peptidoglycan biosynthesis, or
the energy metabolism. These over-represented subsystems
among the identified essential genes suggest their impor-
tance in supporting the bacterium’s respiration (Figure S4).
Nevertheless, in nutrient-poor conditions (M9 medium)
genes from the biosynthesis of leucine (2-isopropylmalate
synthase; WP_005508679.1 and 3-isopropylmalate dehy-
dratase; WP_o005507445.1), valine (ketol-acid reductoi-
somerase; WP_005508646.1 and dihydroxy-acid dehy-
dratase; WP_005509229.1), and chorismate (shikimate ki-
nase; WP_005508729.1 and 3-dehydroquinate dehydratase;
WP_005504658. 1) were found to be critical for the organism’s
survival. Tables S5 and S6 list in detail the predicted essential
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genes, each corresponding to specific approaches employed
in this study.

Subsequently, we conducted a protein sequence homol-
ogy analysis with BLAST against the human proteome to
detect potential antimicrobial targets. For this, only genes
highlighted as essential in both laboratory and synthetically-
defined media were considered (Figure 7 Panel B). Over-
all, 35 essential genes were common in LB and M9, of
which 20 common genes reported homologous counterparts
in the human genome. Further analysis revealed that among
these genes, five genes exhibited over 50 % sequence simi-
larity with homologous proteins, although none resulted in
over 80 % similarity. Similarly, when iRM23NL was simu-
lated with SCFM and SNM in both aerobic and anaerobic
conditions, 45 shared genes were predicted to be essential.
Homology analysis against the human genome yielded 31
genes with exhibited homology in the human genomes, with
seven demonstrating over 50 % sequence similarity. For in-
stance, genes encoding proteins such as phosphopyruvate hy-
dratase (WP_005506838. 1), CTP synthase (WP_044141843.1),
and adenylosuccinate synthase (WP_e05509175.1) consis-
tently exhibited human counterparts with similarity exceed-
ing 50 % across all tested growth media and oxygen lev-
els. Among the essential genes shared between both LB
and M9, 15 of them did not have any homologous hits.
The same was observed for 20 common essential genes in
SCFM and SNM. Some examples of these genes include
orotate phosphoribosyltransferase (WP_005507935. 1), type 1
pantothenate kinase (WP_oe05505041. 1), dihydroneopterin al-
dolase (WP_o005507619. 1), and pantetheine-phosphate adeny-
lyltransferase (WP_e05508106.1). A more detailed compari-
son can be found in Table S7.

Our in silico transponson mutant analysis using iIRM23NL
could serve as a basis for several research and practical appli-
cations from rational drug target development to biotechno-
logical applications and metabolic engineering.

Discussion

The metabolic phenome of R. mucilaginosa, a bacterium with
both beneficial and pathogenic behavior, remains still largely
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A Aerobic Anaerobic
Inessential Genes Essential Genes Partially Essential Genes
400
3001 198 100 64 601 55 41
170 171 36
165
48 48
200 40
50 35 14
100 200 64 20 37
161 182 178 s 48 48 . 33 31
0 0 0
LB  M9[+GlIc] SCFM SNM LB  M9[+GIc] SCFM SNM LB  M9[+GIc] SCFM SNM
B
16%
40%
48% SCFM&SNM
51% 44%
>50% No homologs = =50% Shared essential genes >50% No homologs = =50%

Aerobic & Anaerobic

Figure 7 | Comparative analysis of novel gene essentialities in IRM23NL across four distinct growth media. (A) Classification of
network-derived single gene deletions within IRM23NL, classified into essential, inessential, and partially essential genes, when subjected to
aerobic (green) and anaerobic (orange) environments. Details regarding the classification schema can be found in Materials and Methods. (B)
Protein sequence homology analysis of genes predicted to be essential in the laboratory media (LB and M9 pure supplemented with glucose)
and the synthetically defined SNM and SCFM in both oxygen-rich and -limited conditions. The percentage identity threshold was set to 50 %

similarity to the human proteome.

unexplored. Investigating its metabolic traits is of great im-
portance as it holds the potential to unveil unique capabilities,
including substrate utilization, byproduct production, and con-
tributions to host-microbe interactions. R. mucilaginosa is
a versatile microbe found in humans’ oral, respiratory, and
skin flora, where it coexists harmoniously. However, in im-
munocompromised individuals, R. mucilaginosa can act as an
opportunistic pathogen, causing severe infections. Our study
focuses on the metabolic aspects of R. mucilaginosa, particu-
larly its behavior in isolated cultures. In 2019, a 17-species
bacterial community model was reconstructed to simulate the
polymicrobial community of the CF airways**. This model ac-
curately predicted the abundance of specific pathogens within
patients’ CF lung communities by linking metabolomics and
16S rRNA gene sequencing data. However, studying a bac-
terium’s metabolism and genotype-phenotype relationships
in monoculture provides a more controlled knowledge base.
This allows for the precise manipulation of variables, enhanc-
ing our understanding of its individual traits, genetic makeup,
metabolic pathways, and responses to stimuli’*>*>. More-
over, one can elucidate the bacterium’s unique contributions
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to nutrient uptake, substrate production, and growth dynam-
ics, crucial for understanding its role in a broader ecosystem.
Monoculture studies identify key genes and pathways, reveal-
ing how the bacterium functions autonomously. Such analysis
serves as a valuable reference, differentiating inherent charac-
teristics from those influenced by external interactions. To this
end, we empirically analyzed the metabolic phenome of R. mu-
cilaginosa DSM20746 and developed the first high-quality
strain-specific GEM of R. mucilaginosa, called iRM23NL. We
considered literature and database organism-specific evidence
to manually gap-fill the model and include highly relevant bio-
chemical reactions. Phylogenetic analysis of further Rothia
species provided insights into the relationship and genetic
diversity between these species and was utilized to extend the
metabolic network’s completeness. Our model is simulation-
ready, follows strictly community standards”, and exhibits a
high content quality MEMOTE score.

R. mucilaginosa is primarily aerobic and can perform oxic
respiration by efficiently generating energy in the form of
adenosine triphosphate (ATP)'. However, when oxygen is
limited or absent, R. mucilaginosa switches to anaerobic
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metabolism, which may involve fermentation or other alter-
native pathways to generate energy. As already mentioned,
R. mucilaginosa has been previously found to be metaboli-
cally active in CF lungs where the oxygen levels are notably
restricted'®. This indicates that the bacterium undergoes me-
tabolic shift and can survive in microaerophilic environments.
Various ROS products emerge as byproducts in the bacte-
rial response to the fluctuating oxygen levels*>. In more de-
tail, the cascade of ROS is initiated by the formation of O, ~
upon univalent oxygen reduction within the electron transport
chain (ETC). Extreme oxygen fluctuations may be lethal and
can ultimately damage cellular structure. The detoxifying
pathway includes the enzymes superoxide dismutase (SOD),
catalase, and peroxidase that break down lethal radicals to
water and oxygen enabling the cell to neutralize the oxida-
tive stress** (see Figure 4). However, the exact anaerobic
respiration mechanism of R. mucilaginosa must be thoroughly
examined in experimental settings.

Since R. mucilaginosa’s metabolic behavior and adaptabil-
ity is mainly yet unknown, we started by testing its growth
behavior in various nutrient media. Exploring how bacteria
react to various growth conditions within the human body is
pivotal for understanding diseases and developing effective
treatments. Moreover, they are essential for evaluating their
evolution and adaptation to different environmental conditions,
leading to new ecological niches in which the bacterium could
be metabolically active. We ultimately validated iRM23NL
using our growth kinetics data in various growth media. Over-
all, iIRM23NL’s predictions were in line with the experimental
observations. R. mucilaginosa demonstrated higher experi-
mental growth in nutrient-rich media. The model successfully
simulated growth for most media, while no biomass produc-
tion was achieved in the M9 pure medium. When comparing
LB to RPMI, the simulated growth rate was higher in LB,
while the empirical growth in RPMI was twice as high as that
in LB. This can be attributed to the fact that computer models
cannot mimic the entire experimental settings and lack kinetic
parameters. As of September 2023, bacteria like S. aureus,
B. subtilis, and E. coli have been extensively researched for
decades, with hundreds of thousands of PubMed*® entries
since the early 1990s. In contrast, R. mucilaginosa’s scientific
prominence only began in the 21% century, with only 423
publications to date, indicating significant knowledge gaps
crucial for metabolic reconstructions. More specialized BOF
would enhance the predictive power and would reflect a more
organism-specific metabolism. Therefore, this scarcity under-
scores the urgent need for further research efforts to uncover
the hidden facets of R. mucilaginosa’s metabolism and its
significance. Notably, to simulate in silico growth in RPMI
and SCFM media, six metal ions needed to be supplemented.
These metals have also been confirmed as essential for the
in silico growth of S. aureus in RPMI*. According to the
model’s predictions RPMI, supplementation with manganese,
zinc, and molybdate was required. Transition metals could
be highly toxic; however in controlled levels are important
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in the survival of all living organisms*’. For instance, they
are involved in redox catalysis, needed for energy produc-
tion through respiration, and in non-redox catalysis, necessary
for many biosynthetic and metabolic processes. Additionally,
transition metals are required for the activity of many enzymes,
including those involved in genomic replication and repair
and nitrogen fixation. However, since these compounds were
absent from the providers’ medium formulation for RPMI, we
speculate that the provided medium definition may not be ex-
act. In all cases, the suggested metal co-factor promiscuity in
R. mucilaginosa by iRM23NL, needs to be examined to shed
light on whether the bacterium could survive in the absence
of one of the suggested metals.

Moreover, we experimentally characterized the strain’s abil-
ity to assimilate and utilize substrates using high-throughput
phenotypic microarray assays. The utilization of various ni-
trogen sources did not result in active respiration, indicating
that the bacterial genome lacks genes encoding for respective
transporters. We used the phenotypic results to validate and
extend our metabolic reconstruction, (RM23NL. Inconsisten-
cies between the model and the phenotypic microarray results
served as a basis for further model refinement. We enriched
the model with missing transport reactions and their respec-
tive GPRs by referring to the organism- and strain-specific
BioCyc®! registry and the General Feature Format (GFF) an-
notation file. All in all, characterizing and determining the
repertoire of nutrient sources a strain can use or assimilate is
a critical factor of pathogenesis. It provides valuable insights
into how pathogens adapt to host environments and evade
host defenses. Our transporter-augmented model reflects a
high accuracy degree with the experimental data regarding
using carbon, nitrogen, phosphorus, and sulfur sources. Dis-
crepancies between computational and empirical results high-
light areas of current uncertainty knowledge regarding the
metabolism of R. mucilaginosa. They could be attributed to
non-metabolic factors that fall beyond the metabolic mod-
els’ scope, including regulatory processes, gene expression,
and signaling pathways. However, targeted experiments are
needed to fill the remaining network gaps and reveal novel
enzymatic processes.

Considering the predictive precision of our metabolic recon-
struction, we utilized i/RM23NL to derive novel hypotheses.
We examined the effects of single gene knock-outs on the
bacterial capacity to produce biomass. We created a high-
throughput in silico-derived transposon mutant library consid-
ering two standard growth media, LB and M9, along with two
growth media formulated to mimic the environment within the
human body, SNM and SCFM. In this regard, we identified
putative essential and partially essential genes and assessed
their potential vulnerability under varying nutritional environ-
ments. With this, we opted for detecting candidate genes that
could be considered in future antimicrobial and -inflammatory
strategies in immunocompromised and CF patients. Determin-
ing which essential genes have human counterparts is of great
importance for antibiotic drug development, as it helps as-
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sess potential side effects and cross-species effects on human
genes targeted by antibiotics. Moreover, it provides insights
into the molecular mechanisms of host-pathogen interactions,
explaining how pathogens manipulate host cells and evade the
immune system. Utilizing our GEM offers promising venues
for future targeted engineering strategies without the need for
laborious large-scale screening of knock-outs and mutant li-
braries. This methodology would facilitate the rapid design of
metabolic gene knockout strains by eliminating the associated
reaction(s) from the model.

Altogether, creating a genome-scale metabolic network
for R. mucilaginosa reveals insights that would have been
resource-intensive to acquire using traditional wet-lab means.
Understanding the metabolic complexities of R. mucilaginosa
is essential for expanding our basic understanding of bac-
terium’s microbiology and would benefit various practical
applications. In medicine, it could facilitate the development
of strategies to deal with caused infections, while in biotech-
nology, it would allow us to use its metabolic abilities for
bioprocessing and bioengineering purposes. Hence, our high-
quality metabolic network, iRM23NL, could provide a system-
atic and detailed framework for analyzing R. mucilaginosa’s
metabolism, yielding valuable insights with broad-reaching
impacts.

Materials and Methods

Experimental settings

Bacterial strain and growth conditions

The R. mucilaginosa DSM20746 (ATCC 25296) used for the
experimental work in this study is a type strain, and it was
purchased from the American Type Culture Collection (ATCC,
US). To create an inoculum, the bacterium was streaked onto
nutrient agar (NA, Neogen, Heywood, UK) plates from a
cryopreserved glycerol stock stored at —80 °C using a sterile
loop. Subsequently, the plates were incubated at 37 °C for 48 h
to form colonies (pure cultures). It is important to note that
each biological replicate was conducted using pure cultures
derived from the initial frozen stock (no sub-culturing). This
ensures maintaining the genetic and phenotypic characteristics
of the strain without introducing any potential mutations or
adaptations.

Growth kinetics protocol

R. mucilaginosa overnight liquid cultures were prepared by
adding bacterial colonies from pure cultures to 5 mL BHI
(Neogen, Heywood, UK) and were put at 37 °C in a shaking
incubator for 24 h. The initial OD was assessed and, if nec-
essary, adjusted via up-concentration or dilution to achieve
ODsgonm = 0.25. Then, the bacterial suspension was sub-
jected to centrifugation at 10,000 RPM for 5 min, and the
resulting pellet was re-suspended in the medium of interest
at a dilution of 1 : 10. Ultimately, the inoculated growth me-
dia were transferred to a sterile 96 well-plate, including three
technical replicates for each tested condition together with
their corresponding control conditions (sterile growth media).
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The outer wells were filled with milliQ water (MQ) to prevent
evaporation. The respective ODsgpn, Was measured aerobi-
cally at three distinct time points (Oh, 24h and 48 h) using
an EnVision microplate reader (Perkin Elmer, Waltham, MA,
US). The microplates were incubated at 37 °C during the in-
terim periods between measurements. The final growth curves
were generated for three biological replicates (n=3) for the fol-
lowing growth media: BHI (baseline medium), LB (Neogen,
Heywood, UK), M9 pure, RPMI medium (RPMI-1640 Sigma-
Aldrich), and TSB (Neogen, Heywood, UK). In the M9 pure
medium only salts were considered. For detailed information
regarding the constitution of M9, see Table S1. The rest of the
media were prepared according to the providers’ instructions.

The raw data were normalized by subtracting the blank
values from the measured ODs and were summarized by cal-
culating the arithmetic mean across all replicates. To interpret
the growth of bacterial cells in all tested media and compare
their growth characteristics, we employed the FCop ratio,
which is defined as follows:

t=48h
oD 590nm

FCOD - 7:(”‘
ODIS9Onm

ey

In this context, we define FCop below 1.4 as no growth, while
FCop ratios greater than 1.4 indicate a growth increase over
time.

Phenotypic microarray screenings

DSM20746 was tested for utilizing multiple carbon, nitro-
gen, phosphorus, and nitrogen sources. Biolog Phenotype
Microarrays (PM, Hayward, CA, USA) were employed to
test the utilization of 190 carbon (PM1 and PM2A), 95 nitro-
gen (PM3B), 59 phosphorus (PM4A), and 35 sulfur sources
(PM4A). These assays use a tetrazolium redox dye to enable
a colorimetric detection of active cell respiration across differ-
ent nutrient sources*'. Normal cell respiration is indicated by
the formation of a purple color as a result of the reduction of
the colorless dye during incubation.

Table 1 | Assay configuration for diverse Biolog PM microplates
combinations. Volumes are expressed in pL. The provided volume
quantities are adequate for inoculating the specified number of plates
in this study, using 100 uL/well with an additional excess.

For 1X PM
IF-0a GN/GP (1.2x) 10.0
Dye mix (100x) 0.12
PM additive (12x) 1.0
81 % T cell suspension 0.88
Total Volume 12.0

The PM plates were prepared following the manufacturer’s
protocol for Gram-positive bacteria. Table 1 lists the assay
set up for of PM plates. However, modifications were made
during the cell suspension preparation. The strain was grown
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on nutrient agar plates without undergoing sub-culturing. Us-
ing an inoculation loop, individual colonies were picked and
suspended in an inoculating fluid (IF-0) at an absorbance of
0.0915 at 590 nm. Per the established protocol, 81 % of trans-
mittance (T) should be achieved. Given our measurement of
OD, the subsequent conversion of transmittance to absorbance
was carried out employing the following formula:

Absorbance =2 —log;o(%T) (2)

In each well of a 96 well-plate, we introduced 100 pL of cell
suspension, followed by a 48-hour incubation period at 37 °C.
Bacterial growth was measured by the OD at 590 nm using an
VICTOR Nivo Multimode microplate reader. Each PM plate
was tested in duplicate.

The subsequent analysis of the acquired data included calcu-
lating the arithmetic mean across all technical and biological
replicates for all measured n time points. Background noise
was also removed, and the data were normalized by subtract-
ing the blank values from the actual measurements. The area
under curve (AUC) was used to distinguish between growth
(AUC >= 50) and no growth (AUC < 50). The computa-
tion of the AUCs was carried out by leveraging the linear
trapezoidal rule that expresses the interpolation between data
points:

tit1
AUC(, 1) = /t flx)dx
1
= (tip1—1;) - E(ODt,-H +0Dy) 3)

where #; is the respective measured time point and i €
{0,...,e}. More specifically, the trapezoidal rule is itera-
tively applied to adjacent data points defined along the curve
whose summation resulted in the final AUC value. Hence
for n measured data points, the final AUC value is defined as
follows:

e—1
AUC, = Y AUC(,,, . “4)
i=0

Finally, we repeated this across the spectrum of tested com-
pounds within the microarray plates.

Independent confirmatory testings of Biolog data

To independently confirm the Biolog data, we applied the
growth kinetics protocol described above to 10 compounds.
Although the base inoculating fluid (IF) used for the meta-
bolic PM plates is proprietary, it is considered to reflect a
minimal medium composed mainly of salts and buffers*! 4%,
Hence, we used the M9 pure medium supplemented with dif-
ferent substrates to perform the independent tests (Figure S2).
The following compounds were examined: q-D-glucose, D-
mannose, adonitol, L-ornithine, L-methionine, salicin, succi-
nate, L-alanine, L-malate, and L-histidine. We also included
negative controls of substrates with the Biolog inoculation
fluid zero (IF-0). To ensure accuracy, triplicates were carried
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out for each tested compound. The M9 pure medium was
created as described in Table S1, while Table S2 lists the exact
concentrations of added substrates. All bacterial cell suspen-
sions were prepared in 1:10 dilutions, and the ODssgg ,, Were
measured at O h, 24 h and 48 h using an EnVision microplate
reader (Perkin Elmer, Waltham, MA, US) and the associated
software package.

We computed the arithmetic mean across the three repli-
cates from the collected dataset for each measured time point.
Additionally, we performed a background correction to mit-
igate the influence of background noise or unwanted signal
interference present in the measured ODs.

Statistical Hypothesis Analysis

We conducted statistical tests to evaluate the chosen thresh-
old and potential statistically significant differences between
measurements at the initial and final time-points, thereby indi-
cating the significant growth or no growth. Specifically, we
employed the Student’s z-test for each experimental condi-
tion, taking into account the data from the three biological
replicates. The null hypothesis is formulated as following:
there is no significant difference between the measured OD
values in starting and end time-points. Prior to hypothesis
testing, we checked the correctness of associated assumptions.
More specifically, we assessed data normality through the
Shapiro—Wilk test and verified the homogeneity of variances
using the Levene’s test.

Computational framework and modeling methodology
Phylogenomic analysis

We supported the gap-filling process using evidence of closely
related species within the Rothia genus. Employing ANIclus-
termap v.1.1.0*°, we conducted a comprehensive genomic
comparison involving R. mucilaginosa DSM20746 and 12
distinct Rothia species: R. koreensis, R. kristinae, R. santali,
R. halotolerans, R. aeria, R. dentocariosa, R. terrae, R. ama-
rae, R. nasimurium, R. mucilaginosa, R. aerolata, R. nasisuis,
and R. endophytica (see Figure 3). In brief, ANIclustermap
creates an all-vs-all genome ANI clustermap and groups mi-
crobial genomes based on their genetic similarity. ANI is
a pairwise measure to classify bacterial genomes according
to their genetic similarity. It is defined as the genetic simi-
larity across all orthologous genes shared between any two
genomes’ ! It serves as a powerful tool for distinguishing
strains of the same species or closely related species.

Draft model reconstruction and curation

The proteome of R. mucilaginosa DSM20746
(GCF_oo0175615.1) served as the basis for reconstruct-
ing a draft metabolic network. The DSM20746 (ATCC
25296) represents a type strain obtained from the throat, and
its genetic and proteomic sequences were retrieved from
National Centre for Biotechnology Information (NCBI)'. The
genome sequence was annotated using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP)’”>. An initial draft

1https://www.ncbi.nlm.nih.gov
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model was built using CarveMe 1.5.17°. CarveMe uses
mixed-integer linear programming (MILP) to convert a
universal model into an organism-specific one by deleting
metabolites and reactions with low occurrence scores within
the specific organism of interest. The universal BOF might
yield incorrect gene essentiality predictions for biosynthesis
pathways that rely on precursors unique to Gram-positive
bacteria due to the absence of specific membrane and cell wall
information. Hence, we chose the specialized Gram-positive
template instead of the universal one to build our model more
accurately.

We conducted an extensive two-staged iterative gap-filling
to address incomplete or missing information in the metabo-
lic model. Gaps or missing reactions can arise for various
reasons, such as incomplete genome annotations or undis-
covered enzymatic activities. For this purpose, we leveraged
information from both the bibliome and biochemical databa-
ses, including BioCyc31. Thus, we ensured that the model
could support the growth and viability of the organism under
specific conditions.

We applied our previously-published pipeline’® to curate
further the model based on community standards. The
pipeline consists of eight steps, from which five (steps 3-
step 4) are related to model curation and ensure a high qual-
ity of the final model. In Summary, ModelPolisher>> and
SBOannotator*® were employed to enrich the model with mul-
tiple cross-references, while the mass- and charge-unbalanced
reactions were fixed. Further annotations integrated into
the model encompassed: Evidence and Conclusion Ontol-
ogy (ECO) terms representing the confidence level and the as-
sertion method (biological qualifier: BQB_IS_DESCRIBED_BY),
KEGG”® subsystems as groups :member (biological qualifier:
BQB_OCCURS_IN), and gene annotations. The latter was done
by mapping the gene locus tags to the old tags using the Gen-
Bank GFF>’. Finally, we checked the presence of potential
EGCs that could bias the final predictions®*. To manipulate
the model structure, we employed the libSBML library>>.

The SBML Validator from libSBML™ was used to assure
a correct syntax of the model, while the quality control was
carried out employing MEMOTE>’. However, it is worth noting
that, as we discussed in our previous publication, MEMOTE
considers only the parent nodes of the SBO directed acyclic
graph excluding their respective children’®. Hence, MEMOTE
was used carefully and not as an absolute quality indicator.

Linear programming: formulation of assumptions and con-
straints

FBA is used to determine the flux distribution through opti-
mization of the objective function, typically the maximization
of biomass production rate, under steady-state conditions?'.
To address the under-determined nature of the system, con-
straints are imposed to define an allowable solution space that
aligns with cellular functions. These constraints, encompass-
ing mass balance, thermodynamics, and capacity, contribute
to the FBA maximization problem. The linear programming

Nantia Leonidou et al.
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problem used to obtain growth rates is described as follows:

maximize Z=c'v
subjectto: S-v=0
‘ (%)
Viin < Vr <Vmax forre{l,...,n}
Vrel:0<vy,

where V is the vector of fluxes within the network, S is the stoi-
chiometric matrix, Z is the linear objective function, ¢ is the
vector of coefficients, and I represents an index set containing
the indices of all irreversible reactions. The dimensionality of
vector ¥ matches the number of reactions, denoted as n in the
system, and is consistent with the n columns in the matrix S.

Bacterial growth analysis and nutrient utilization assays
Bacterial cell growth within various media and multiple sub-
strate utilization evaluations were determined by solving Equa-
tion (5). The medium and the nutrient source of interest de-
fined additional constraints. To achieve this objective, adjust-
ments were made to the upper and lower limits of exchange
reactions, as appropriate. We set specific uptake rates for
key components within the growth medium as follows: the
uptake rate of transition metals was set at 5.0 mmol/(gpw - h),
the uptake rate of oxygen under aerobic conditions was estab-
lished at 20.0 mmol/(gpyw - h), and the rest media components
equal to 10.0 mmol/(gpy - h). As previously mentioned, the
M9 pure medium was used for the substrate utilization as-
says. Only substrates present in the metabolic network as
intra- or extracellular metabolites were considered for the in
silico validation. The results from the experimental and the in
silico growth tests were categorized into “growth” (G) or “non-
growth” (NG). Here, “growt” indicates the network’s ability
to generate biomass and, therefore, a positive growth rate. The
model’s overall prediction performance was assessed using
the following statistical parameters:

overall agreement (ACC):

TP+TN

Al =
cc TP+TN+FP+FN

(6)
and Matthews Correlation Coefficient (MCC):

(TP-TN—FP-FN)
\/(TP+FP)(TP+FN)(TN +FP)(TN+FN)
(N

MCC =

where true negative (TN) and true positive (TP) represent
accurate predictions, and false negative (FN) and false posi-
tive (FP) indicate incorrect predictions. Inconsistencies were
resolved via iterative manual network gap-filling. For all FBA
simulations, we employed the Constraints-Based Reconstruc-
tion and Analysis for Python (COBRApy)® package. All
growth media definitions are listed in Table S3.

Gene lethality analysis
The in silico single-gene knockouts were performed as de-
scribed in our previous study using FBA”®. To address the
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degeneracy issue of optimization, we additionally ran ousss
FBA simulations in a total of 100 independent runs. Furthergs,
more, we utilized pFBA, a method that allows us to ascertaings
the flux distribution of the optimal solution while concurrently
minimizing the overall flux sum’’. The results were catego-
rized as either essential FC,, = 0, inessential (FCy = 1), or
partially essential (0 < FCy < 1), where FCy; denotes the
FC bacterial growth rate before and after deletion’®. Shared
essential genes between FBA and pFBA, as well as all tested
conditions, were further aligned against the human genome
using BLAST*.

Data availability

Supplementary data are available along with this article. Addi-
tionally, iRM23NL is available at the BioModels Database®
as an SBML Level 3 Version 1 file. Access the model at
https://www.ebi.ac.uk/biomodels/MODEL2310240001.
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Supporting Information

S1 Table. Reconstitution of 10X M9. The stock solutions
were made by adding the respective grams of compound to
100mL of MQ water. All solutions were autoclaved and
stored at 4 °C.

S2 Table. Amount of substrates supplemented to M9
pure medium. The stock solutions were made by adding the
respective grams of the compound to 10 mL of MQ water. All
solutions were autoclaved and stored at 4 °C.

S3 Table. Detailed definition of growth media used for
in silico simulations. Descriptive names and BiGG identifiers
are included as additional columns.

S4 Table. Summary of high-throughput Biolog PM re-
sults. Descriptive names and mappable BiGG identifiers are
included as supplementary columns. “G” denotes a growth
phenotype, while “N” represents non-viable phenotypes. In
the case of multiple existing BiGG identifiers for a single
tested compound, all were included in the table as additional
rows to to ensure comprehensive recognition by the model, re-
gardless of which identifier the model employs. This approach
guarantees that the model can accurately identify and asso-
ciate the compound with the corresponding BiGG identifier,
regardless of its nomenclature.

S5 Table. List of essential genes predicted by FBA in
different nutritional media. The gene essentiality results
were obtained as the average of 100 consecutive single gene
knock-outs, simulating various growth conditions, including
nutrient-rich and nutrient-limited media.

S6 Table. List of essential genes predicted by pFBA in
different nutritional media. The gene essentiality results
were obtained through systematic single gene knock-outs,
simulating various growth conditions, including nutrient-rich
and nutrient-limited media.

S7 Table. Comparative analysis of predicted essential
genes for R. mucilaginosa in different nutrient environ-
ments. Additionally, shared genes with over 50 % similarity
to the human genome are listed along with the respective
functional subsystems.

S1 Figure. Experimentally-derived catabolic phenome
of R. mucilaginosa DSM20746. The OD values were pro-
cessed and analyzed as described in Materials and Methods.
The heatmaps in Figure 5 facilitate the direct association of
plate well labels with their corresponding compounds.

S2 Figure. Growth curves of the independent confirma-
tory tests for validating the Biolog PM results. The abbrevi-
ations used in the figure legend are as follows: Man: mannose,
Met: L-methionine, Ado: adonitol, Orn: L-ornithine, Sal:
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r@alicin, Glc: a-D-glucose, Succ: succinate, Ala: 1-alanine,
2#{is: L-histidine, and IF: inoculation fluid. The M9 pure
fzrznedium was prepared according to the specifications outlined
in Table S1, and individual substrates were supplemented at
the concentrations detailed in Table S2. The corresponding
Biolog results are presented in tabular format, classified by
growth (G) and no growth (NG).

S3 Figure. Detailed comparative analysis of gene essen-
tiality in silico predictions using iRM23NL. Comparison
of predicted essential genes using four nutrient environments
(LB, M9 supplemented with glucose, SCFM, and SNM) un-
der both oxic and anoxic conditions.

S4 Figure. Distribution of essential genes in metabolic
subsystems The classification of in silico-predicted essential
genes based on annotated Gene Ontology (GO) terms.
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