

1 **Mass lysis of bacterial predators drives the enrichment of antibiotic resistance in soil microbial
2 communities**

3

4

5 Saheli Saha^{1*}, Jyotsna Kalathera^{1*}, Thoniparambil Sunil Sumi¹, Vishwadeep Mane¹, Sina Zimmermann
6², Silvio Waschina², Samay Pande^{1@}

7

8¹Bacterial Ecology and Evolution Group, Department of Microbiology and Cell Biology, Indian
9 Institute of Science, Bangalore, India

10

11²Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany

12

13 *These authors contributed equally

14

15[@]Corresponding author (samayrp@gmail.com)

16

17

18 **Abstract**

19 While studies on anthropogenic activities and antibiotic resistance are numerous, the impact of
20 microbial interactions on resistance in complex communities remains uncertain. Here we demonstrate
21 a correlation between the presence of *Myxococcus xanthus* in natural soil communities and the
22 abundance of antibiotic-resistant bacteria. Further, introducing *M. xanthus* isolates also enriches
23 antibiotic resistance. This is due to the mass lysis of *M. xanthus* cells, which results in a toxic
24 environment that fosters the proliferation of pre-existing resistant bacteria rather than de novo
25 resistance evolution. Metagenomic analysis revealed that this enrichment is not limited to the tested
26 antibiotics in culture-based methods, indicating its broader relevance. Crucially, these findings go
27 beyond laboratory settings, showing *M. xanthus* introduction enriches resistant isolates in natural soil
28 communities. Finally, we demonstrate that the mass lysis of *M. xanthus* cells during starvation-
29 induced development—key aspect of the lifecycle of *M. xanthus*—also results in the enrichment of
30 antibiotic resistance in soil communities. Together, we demonstrate how life-history traits in bacterial
31 predators, like *M. xanthus*, significantly impact antibiotic resistomes in nature. This study also
32 highlights the complex dynamics at play in the evolution and maintenance of antibiotic resistance,
33 emphasizing the role of interspecies interactions in shaping antibiotic resistance profiles.

34

35

36 **Introduction**

37 Advances in sequencing and molecular technologies over last decade have revealed a previously
38 unfathomable distribution and abundance of antibiotic resistance in varying geographical¹⁻⁴ and
39 ecological⁵⁻⁷ conditions. Anthropogenic activities such as rampant use of antibiotics and husbandry
40 have been attributed to the evolution of novel resistant mechanisms as well as their distribution⁸⁻¹⁰.
41 In addition to rapid emergence of resistance in environments with extreme antibiotic concentrations,
42 resistance can also emerge and be maintained for longer duration in extremely low concentrations of
43 antibiotics¹¹⁻¹⁴. Thus, natural antibiotic resistome is likely affected by the antibiotics irrespective of
44 whether their concentration and source.

45

46 Bacteria use diverse mechanisms to antagonise each other, including production of antibiotics. A
47 number of microbial species are proficient antibiotic producers¹⁵⁻¹⁸. Such microbes generally harbor
48 multiple biosynthetic clusters and show ability to produce distinct antibiotics¹⁹⁻²³. However, influence
49 of antibiotic producing microbes on the emergence or maintenance of resistance mechanisms in
50 nature as well as in lab environment remains little explored.

51

52 *Myxococcus xanthus* is a ubiquitous²⁴⁻²⁶ soil living gram negative predatory bacteria that forms
53 multicellular spore bearing fruiting bodies upon starvation²⁷. During vegetative growth *M. xanthus* can
54 feed on freely available nutrients as well as on other microbes. Killing of prey bacteria by *M. xanthus*
55 is mediated by both contact dependent and independent mechanisms such as antibiotic
56 production^{17,28}, secretion of toxins²⁹, lytic enzymes³⁰, and secretion systems³¹. We hypothesised that
57 the expression of antagonistic traits especially antibiotic production might influence both
58 physiological as well as evolutionary response by local microbial community.

59

60 Here, we show that the presence or introduction of *M. xanthus* in soil communities both in natural
61 as well as lab environment can result in enrichment of antibiotic resistance. Interestingly, changes in
62 the frequency of resistant isolates is brought about by rapid death of *M. xanthus* population in our
63 microcosm experiments. Moreover, our results demonstrate that starvation induced death of *M.*
64 *xanthus* results in the release of substances that are growth inhibitory to non-myxobacterial species
65 and hence can result in the enrichment of bacteria resistant to the growth inhibitory substances
66 released by dying *M. xanthus* cells. Together, we demonstrate a unique instance of single species of
67 bacteria affecting overall maintenance of antibiotic resistance in complex microbial communities.

68

69 **Results**

70 **Presence of *M. xanthus* results in enrichment of antibiotic resistant isolates in natural soil
71 communities**

72 We tested whether presence of *M. xanthus* is correlated with either increased or decreased
73 abundance of antibiotic resistance in natural soil communities. To do so, twenty-five random soil
74 samples were first categorised as the ones in which *M. xanthus* was detected (16 out of 25) and the
75 ones in which *M. xanthus* was not detected (9 out of 25). These samples were named as *M. xanthus*
76 positive and *M. xanthus* negative soil samples, respectively. Next, frequencies of non-myxobacterial
77 isolates resistant against clinically relevant antibiotics (Ampicillin, Gentamycin, Kanamycin,
78 Rifampicin, Tetracycline, Vancomycin) were measured. These experiments revealed that the mean
79 frequency of antibiotic resistant isolates in *M. xanthus* positive samples (0.5878 %) was higher relative
80 to the samples in which *M. xanthus* was not detected (0.0012 %) (Figure 1A, independent-sample t-
81 test for differences between arcsine square root transformed frequency of resistant microbes in *M.*
82 *xanthus* positive soil and *M. xanthus* negative soil sample $p = 1.941e^{-14}$).

83

84 Higher frequencies of resistant isolates can be the result of either one or many distinct isolates
85 carrying resistance against a minority of the antibiotics used in our study. However, we observed
86 resistance against majority of antibiotics in *M. xanthus* associated communities (Figure 1B,
87 independent-sample t-test for differences between soil samples in which *M. xanthus* was detected
88 and the ones in which *M. xanthus* was not detected, $p = 0.0000656$). Twelve out of sixteen *M. xanthus*
89 positive soil samples harbored resistance against each of the six antibiotics and remaining four
90 samples harbored resistance against five out of six antibiotics used. Whereas similar analysis of *M.*
91 *xanthus* negative soil did not exhibit such high prevalence of resistance against the diversity of
92 antibiotics tested.

93

94 Abundance of antibiotic resistant isolates was estimated using three distinct media types (see
95 methods). Therefore, we also tested whether the media types in addition to the presence or absence
96 of *M. xanthus* can influence the frequency of antibiotic resistant isolates (Figure S2, independent-
97 sample t-test between M+ and M- conditions in each media type, LB (0.1X): $p = 3.864e^{-12}$; LB (1X) : p
98 = $2.2e^{-16}$; TSA (0.1X) : $p = 1.002e^{-08}$). Our analysis revealed that only presence or absence of *M. xanthus*
99 had an effect on the resistance frequency and neither the media nor the identity of the soil community
100 had an effect. Further, relative frequency of resistant isolates for different antibiotics varied greatly
101 among distinct soil samples (Figure S1). Together, these results show correlation between presence
102 of *M. xanthus* and enrichment of antibiotic resistance in nature.

103

104 Strong correlation between the presence of *M. xanthus* with a higher antibiotic resistance
105 frequency in natural soil communities suggested that *M. xanthus* is responsible for the abundance of
106 antibiotic resistant bacteria. To test this hypothesis, the effect of addition of *M. xanthus* on the
107 changes in the abundance of antibiotic resistant isolates was measured. For this, *M. xanthus* was
108 inoculated with four randomly sampled soil communities in an antibiotic free environment, and
109 frequency of antibiotic resistant bacteria was estimated after 6 days of co-culture. These experiments
110 revealed that across all the four soil communities introduction of *M. xanthus* resulted in an enrichment
111 of resistant isolates across six clinically relevant antibiotics and three media conditions. On an average,
112 across four soil communities 0.902 % isolates exhibited resistance to at least one or more antibiotics
113 tested when the consortia were co-inoculated with *M. xanthus*. Whereas mean frequency of antibiotic
114 resistant isolates was significantly lower (0.000027 %) in soil communities which were not co-
115 inoculated with *M. xanthus* (Figure 2A, paired-sample t-test for differences between percentage of
116 resistant isolates when soil communities were cocultured with or without *M. xanthus*, $p < 0.000004$
117 and Figure S3A, paired-sample t-test between M+ and M- conditions in each media type, LB (0.1X): p
118 = $4.218e^{-07}$; LB (1X) : $p = 5.554e^{-07}$; TSA (0.1X) : $p = 4.467e^{-05}$)

119

120 We tested whether the enrichment of antibiotic resistant microbes brought about by *M. xanthus*
121 is a more generalised response to presence of any *M. xanthus* isolate, or it is specific to the isolate
122 used here. To do so, we repeated the assay with six randomly selected natural isolates of *M. xanthus*.
123 These experiments revealed that only three of the six natural isolates tested could influence frequency
124 of antibiotic resistant microbes in soil communities (Figure S3B, paired-sample t-test between day 0
125 and day 6 post addition of each *M. xanthus* to the community, $p < 0.05$). These results demonstrate
126 that not all *M. xanthus* isolates can have the similar effect on the frequency of antibiotic resistant
127 bacteria as the focal strain S3 used in this study.

128

129 Although introduction of *M. xanthus* resulted in enrichment of antibiotic resistant isolates, to
130 further understand the dynamics of increase in the frequency of antibiotic resistant bacteria upon
131 introduction of *M. xanthus*, we simultaneously tracked both *M. xanthus*'s growth and overall
132 resistance frequency over the course of co-culture experiment. For this, four distinct soil communities
133 were cocultured with *M. xanthus*, and population size of *M. xanthus* and frequency of antibiotic
134 resistant bacteria was measured every day for 6 days. These experiments demonstrated that *M. xanthus*
135 could grow and increase in number for the first day, and then showed a drastic population
136 decline reaching below detection limit after 2 days on incubation (Figure 3A). Further, the frequency
137 of resistance isolates increased only after day 2 of incubation i.e. once *M. xanthus* could no longer be

138 detected. These findings suggest that the death of *M. xanthus* might be responsible for the
139 enrichment of antimicrobial resistance in soil communities.

140

141 Our culture based detection method can detect frequency of resistant isolates against the
142 antibiotics used in the assay, and may not reveal the overall abundance of antibiotic resistance across
143 distinct antibiotic types. Therefore, to detect if addition of *M. xanthus* can alter the overall abundance
144 of antibiotic resistance alleles within soil communities, total DNA was extracted from the communities
145 that were either cocultured with *M. xanthus* or grown in its absence. Shotgun metagenome analysis
146 of the extracted DNA revealed that antibiotic resistance genes were indeed enriched in the
147 communities that were cocultured with *M. xanthus* (Figure 3B), compared to when *M. xanthus* was
148 not added (Figure 3B). Moreover, amongst the three major classes of antibiotic resistance genes
149 (aminoglycosides, beta lactams and fosfomycins) that were detected in these communities, resistance
150 against aminoglycosides enriched the most in the communities that were cocultured with *M. xanthus*
151 (Figure 3B). Together, metagenome analysis supports the results from culture based assays.

152

153 **Mass-lysis in *M. xanthus* population can modulate the environmental toxicity resulting in
154 enrichment of antibiotic resistance**

155 Since, bacteria are known to release antibiotics and growth inhibitors upon cell death³²⁻³⁵, we
156 hypothesised that mass-lysis of *M. xanthus* population might also result in release of growth inhibitory
157 diffusible substances in environment. *M. xanthus* is known to have a large repertoire of secondary
158 metabolites that contributes differentially to specific life-cycle stages. For example, secretion of
159 antibiotics, toxins, and enzymes during predation, secondary metabolites during development³⁶ and
160 diffusible substances to help germination³⁷. Sudden release of growth inhibitory substances such as
161 antibiotics and toxins because of mass lysis of *M. xanthus* might results in enrichment of microbes
162 resistant to such substances.

163

164 To test this hypothesis, the spent media from coculture experiments in which *M. xanthus* was co-
165 incubated with soil communities, were extracted at every 24 h interval. Freshly harvested soil
166 communities were then inoculated in the medium conditioned with the harvested spent medium. If
167 lysis of *M. xanthus* on day 2 (Figure 3A) results in the release of diffusible molecules that can
168 potentially enrich antibiotic resistant bacteria, then addition of spent media from day 2 to soil
169 communities should also result in the enrichment of antibiotic resistant bacteria. Whereas, spent
170 media from day 1 and day 0 should not result in any enrichment. Since all of the results were
171 consistent across six antibiotics used in earlier experiments, we measured resistance against three

172 representative antibiotics from different classes. This was primarily done for the ease of logistics. In
173 line with our expectations, addition of spent media from second day onwards can results in
174 enrichment of resistance frequencies in complex soil communities (Figure 4A). We further show that
175 the diffusible molecules present in the spent media from 2 day old coculture is indeed growth
176 inhibitory to different lab strains of soil bacteria (*A. globiformis*, *E. coli*, *P. putida* and *R. viginis*) (Figure
177 4B, one-sample t-test [FDR corrected] for relative growth of respective species, $p < 0.02$). Together,
178 these result support the hypothesis that release of growth inhibitory substances in the environment
179 by dying *M. xanthus*, may select for resistant isolates, thereby enriching overall antibiotic resistant
180 isolates in complex communities.

181

182 Although our results show that the enrichment in antibiotic resistance is most likely brought about
183 by presence of diffusible growth inhibitory molecules in the environment, we further tested if these
184 molecules are specifically released as a result of lysis of *M. xanthus* cells. To do so, *M. xanthus* cells
185 were lysed by sonicating the vegetative cells (See methods), and the soil communities were cultured
186 in the medium with and without *M. xanthus* lysate. These experiments demonstrated that on an
187 average, introduction of *M. xanthus* lysate results in enrichment of antibiotic resistant isolates by 6472
188 percentage folds (Figure 4C, paired-sample t-test between resistance frequencies where lysate was
189 added or not added, $p = 0.032$). Identification of the nature of the active molecules released by lysis
190 of *M. xanthus* requires extensive investigation. Hence, though it would be intriguing to identify the
191 active molecules responsible for these observation, this aspect of the study is part of future
192 investigations.

193

194 **Enrichment of AMR in natural soil communities are most likely brought about by cell lysis during
195 development phase of *M. xanthus***

196 Starvation induced development of spore filled fruiting body is an important aspect of *M. xanthus*
197 biology. Importantly, during the development process majority of ($\sim 90\%$) *M. xanthus* cells die³⁸. Thus,
198 death of majority of population is part of *M. xanthus* lifecycle. We hypothesised, that in nature, death
199 during development might be responsible for the release of growth inhibitory substances that enrich
200 antibiotic resistance in soil (Figure S5). To test this, supernatant was extracted from population of *M.*
201 *xanthus* after allowing them to form fruiting bodies on starvation media. Freshly extracted soil
202 communities were then cultured either in the presence or the absence of this supernatant. Estimation
203 of the frequency of antibiotic resistant bacteria in these experiments revealed that the addition of
204 supernatant extracted from starved population of *M. xanthus* results in the enrichment of antibiotic
205 resistant isolates by 13 % compared to when supernatant was not added (Figure 5B, Paired-sample

206 Wilcoxon test, $p = 0.048$). Hence, since mass-lysis of *M. xanthus* population is an essential part of its
207 starvation response phase of the life cycle, abundance of antibiotic resistant isolates in the presence
208 of *M. xanthus* might be because of the presence diffusible substances released by dying cells of *M.*
209 *xanthus* during fruiting body formation.

210

211 Significance of reproducing laboratory experiments in nature has been highlighted time and
212 again^{39,40}. While our laboratory experiments were conducted on liquid minimal media, we understand
213 that conditions in soil may vary significantly, both in terms of nutrient content as well as
214 structuredness of the environment. Additionally, while laboratory controlled experiments allows the
215 maintenance of a constant abiotic conditions, it is expected that in nature, fluctuations in abiotic
216 conditions are more common. Since both spatial structure and abiotic fluctuations can significantly
217 influence community structure and ecological interactions⁴¹⁻⁴⁴ it was possible that our observations
218 may not hold true in nature. Hence, we investigated whether the findings of increased antibiotic
219 resistance upon introduction of *M. xanthus* in complex soil communities, in lab conditions can also be
220 reproduced in natural soil environment. Interestingly, similar to the outcomes from the experiments
221 performed in liquid medium in lab conditions, introduction of natural isolate of *M. xanthus* in soil
222 pockets in natural locations also results in increased frequency of resistant isolates. Overall, samples
223 with *M. xanthus* contained 0.186 % percent resistant isolates relative to 0.005 % percent in the
224 samples where *M. xanthus* was not inoculated. Combined with the first set of results which showed
225 correlation between abundance of resistance and presence of *M. xanthus*, these results demonstrate
226 that in nature *M. xanthus* strongly modulates abundance of antibiotic resistant microbes (Figure 5A,
227 paired-sample t-test for differences between arcsine square root transformed frequency of resistant
228 microbes when soil communities were cocultured with *M. xanthus* and control $p < 2.2e^{-16}$).

229

230 **Discussion**

231 Our results demonstrate that both in lab as well as natural conditions, resistance to clinically used
232 antibiotics is enriched in the presence of *M. xanthus*. First, we observed that *M. xanthus* associated
233 soil communities harbor significantly higher frequency of antibiotic resistant isolates relative to the
234 communities that seem to be not associated with *M. xanthus*. Next, we demonstrated that
235 introduction of *M. xanthus* in soil communities in lab as well as in natural conditions results in
236 enrichment of antibiotic resistant isolates. Contrary to our expectations, antibiotic resistant isolates
237 were not enriched directly by the presence of *M. xanthus* within the communities. Instead, the
238 changes in the microbial communities detected in our study were manifested by death of *M. xanthus*.
239 Taken together, we demonstrate that death of *M. xanthus* population, can result in the enrichment of

240 antibiotic resistant bacteria. Further, the death of *M. xanthus* populations can be the result of the
241 lifecycle of *M. xanthus* in which majority of the cells die during starvation induced fruiting body
242 development, possibly explaining the reason for enrichment of the antibiotic resistant bacteria in the
243 presence of *M. xanthus* in natural communities. Significantly, our result demonstrates the correlation
244 between presence of *M. xanthus* and abundance of antibiotic resistant bacteria in the nature and
245 explains the reason behind it.

246

247 The increased frequency of resistant isolates is most likely because of the enrichment of pre-
248 existing resistant bacteria in the soil communities and not a result of de-novo evolution of resistance.
249 This is because, all the soil samples used in our study exhibited antibiotic resistance even before the
250 start of the co-inoculation experiments with *M. xanthus*. Enrichment in frequencies of antibiotic
251 resistant bacteria in these communities can either result from the ability of the resistant isolates to
252 grow in the toxic environment or by simply persisting in that environment, while the abundance of
253 the sensitive isolates declines. This is also evident in the metagenome analysis which revealed
254 presence of genetic determinants previously reported to be responsible for antibiotic resistance.
255 Moreover, the experiments were conducted for a total duration of six days, which is a relatively
256 shorter time span for de-novo evolution of resistance against variety of antibiotics to emerge and to
257 raise to the frequencies observed in our experiments.

258

259 Our experiments were conducted using natural soil communities, which might explain large
260 differences in the outcomes of the experiments. Further, we primarily report increased abundance of
261 antibiotic resistant isolates among culturable microbes. Therefore, it is important to be cautious and
262 refrain from extrapolating the results to complete microbial communities where unculturable
263 microbes are a dominant fraction. However, the metagenome analysis does reveal that the
264 observations are likely to be true for overall microbiome which includes unculturable majority.
265 Importantly, since most bacterial pathogens are culturable microbes that grow on heterotrophic
266 proteinaceous medium lend importance to the findings reported here, even if the effects shown here
267 are limited to culturable heterotrophic microbial diversity.

268

269 Death of *M. xanthus* cells is responsible for the changes in the frequency of antibiotic resistant
270 bacteria. Important aspect of *M. xanthus* biology, i.e., formation multicellular spore filled fruiting
271 bodies upon starvation is associated with death of majority of the population of *M. xanthus*. Analysis
272 of the sporulation efficiency of natural isolates of *M. xanthus* revealed that the highest sporulation
273 efficiency among natural isolates was approximately ten percent³⁸. Thus, at least ninety percent of

274 vegetative cells in a population die during starvation induced development, and only minority become
275 spores. Results presented in this manuscript demonstrate that the diffusible substances released
276 during the fruiting body formation results in the enrichment of antibiotic resistant bacteria. Thus, we
277 predict that in nature too, death of *M. xanthus* because of feast and famine cycles that drive growth
278 and fruiting body development of *M. xanthus* respectively, will result in the enrichment of antibiotic
279 resistant microbes.

280

281 Although, we show that it is indeed the lysate of *M. xanthus* that enriches resistance in prey, the
282 precise mechanism or the active molecules that are primarily responsible for this environmental
283 toxification are yet to be identified. Previously, analysis of the genome of lab strain of *M. xanthus*
284 reveled presence of 19 biosynthetic clusters that are predicted to be involved in the synthesis of
285 diffusible antimicrobial substances including antibiotics⁴⁵. Here we demonstrate that with respect to
286 the abundance of antibiotic resistant bacteria, *M. xanthus* associated soil communities are different
287 from the ones that were not associated with *M. xanthus*. suggesting that in nature *M. xanthus* has a
288 long-term influence on local microbial community dynamics. Therefore, a detailed study to identify
289 the nature of diffusible substances involved will be crucial for two reasons. First, understanding of the
290 mechanisms driving community structure in the presence of *M. xanthus*. Second, to decipher the
291 molecular basis for the observations reported in this manuscript.

292

293 Spread and abundance of antibiotic resistance has been primarily linked to the anthropogenic
294 activities. However, it is becoming increasingly evident that resistance alleles can evolve even in the
295 absence of antibiotics in the environment⁴⁶⁻⁴⁸. Though our results do not demonstrate the evolution
296 of antibiotic resistance, they demonstrate the possibility that microbial interactions can influence
297 resistance in natural communities. Recently it was demonstrated that social interactions can modulate
298 mechanisms and rate of emergence of antibiotic resistance in the presence of antibiotics⁴⁹. These
299 results demonstrated that obligate dependencies could reduce rate of emergence of resistance in
300 cooperative populations. On the contrary, our results strengthen the possibility that microbes such as
301 *M. xanthus* and other antimicrobial producers might accelerate the evolution of resistance in complex
302 natural communities. Further, metagenome analysis in the past has also suggested that eukaryotic
303 predators might also influence the abundance of antibiotic resistance bacteria, but it is unclear
304 whether the predators themselves are the causal agents or it is in fact the bacterial interactions that
305 drive the changes in the frequency of resistant isolates⁵⁰. Therefore, we call for a broader investigation
306 which will increase our awareness of the influence of microbial interaction dynamics on the ecology

307 and evolution of resistance mechanisms. These studies are crucial for the overall understanding of the
308 spread of antibiotic resistance in nature, and especially in pristine environments.

309 **Acknowledgements**

310 The authors thank Jessica M. Laloo from Bacterial Ecology and Evolution group, Department of
311 Microbiology and Cell Biology at IISc, Bangalore, for her help with the illustrations in figures S4 and S5.
312 The authors also thank DST-FIST for support to the Department of Microbiology and Cell Biology, UGC
313 Centre for advanced study, and the DBT-IISc partnership. This study was supported by the funds from
314 India Alliance Intermediate fellowship to SP (IA/I/20/1/504921).

315

316 **Author contribution**

317 SP conceived the project. TSS made the initial observation, VM independently confirmed the initial
318 observation. SS, JK and SP designed experiments. SS performed the experiments and JK analysed the
319 data. SP, SS, and JK designed the metagenome analysis. JK analysed the metagenome data with the
320 help of SW, SP and SZ. SP and SS wrote the first draft of the manuscript. SP edited the manuscript. All
321 authors amended the manuscript.

322

323 **Methods**

324 **Strains and culture condition**

325 *M. xanthus* isolate S2, S3 and CVH1 were isolated from the Indian Institute of Science (IISc) campus
326 using methods described in Kraemer & Velicer, 2011⁵¹. Whereas isolate MC2, MC8 and GH1 were
327 previously reported as MC3.5.9_C5 and MC3.5.9_C29, and GH3.5.6_C27 respectively (reported
328 previously in Pande et al³⁸). For isolation of natural isolates, soil was collected with the help of a sterile
329 10 mL syringe from which the tip had been removed. After removing 5 mm of soil from each end of
330 the column rest of the core was crushed and plated on a selective agar medium [CTT⁵² medium with
331 1.5 % bacto agar, Difco), containing antibiotics and antifungals, Vancomycin (10 mg/L, Sigma), Nystatin
332 (1000 units/L, Sigma), Cyclohexamide (50 mg/L, Sigma) and Crystal violet (10 mg/L, Sigma)]. Plates
333 were incubated at 32 °C for two weeks. Following incubation plates were examined for presence of
334 fruiting bodies on the soil surfaces. Single fruiting body was picked with a sterile toothpick and
335 transferred to 1 mL autoclaved distilled water, incubated at 50 °C for 2 h, sonicated, and plated on
336 CTT soft agar medium (0.5 % bacto agar, Difco). After 6 days of incubation at 32 °C clones were
337 randomly picked. *M. xanthus* strains were stored frozen in liquid CTT⁵³ medium with 20 % glycerol at
338 -80 °C.

339

340 Three different media types were used to culture and estimate non-myxobacterial isolates directly
341 in natural soil communities, and in complex soil communities cultured in the lab. Two types of LB
342 medium i.e., ten times diluted (0.1 x) and standard LB media (HiMedia), and ten times diluted (0.1 x)
343 TSB (Tryptic Soy Broth, HiMedia) medium. CTT medium was used to grow and estimate the population
344 size of *M. xanthus*. Except for the experiments conducted in natural locations all experiments were
345 conducted at 32 °C, and liquid cultures were incubated in shaking (200 rpm) conditions.

346

347 **Generation of S3 Rif strains**

348 *M. xanthus* is naturally resistant to gentamycin and sensitive to salt. Therefore, CTT medium with
349 Rifampicin has been used in many studies to distinguish *M. xanthus* from cocultured prey species.
350 Similarly, media with salts (such as LB and TSA (Tryptic Soy Agar)) can be used to estimate population
351 size of non myxobacterial isolates. However, since soil samples harbored Rifampicin resistant non-
352 myxobacterial isolates that can grow on CTT, we generated Rifampicin resistant variant of S3 isolate.
353 Dual resistance coupled with distinct colony morphology allowed us to estimate population size of *M.*
354 *xanthus* in mixed culture experiments.

355

356 To generate Rifampicin resistant variant isolate S3 was grown in 8 mL CTT medium in a 50 mL flask
357 for 24 h, at 32 °C, 200 rpm. After 24 hours, the culture was diluted into eight 50 mL flask with 8 mL

358 CTT media, incubated at 32 °C at 200 rpm, and was grown up to 0.5-0.6 OD. The complete content of
359 each flask was plated in CTT soft agar with Rifampicin (5 µg/mL, MP Biochemicals) in eight 150 mm
360 plates, respectively. The plates were incubated for two weeks, and the eight Rifampicin resistant
361 colonies were picked. Resistance to antibiotics can impart some cost of resistance and hence influence
362 the growth with respect to the parental strain. Hence, the growth neutrality of the Rifampicin resistant
363 strains was tested by growing both the parental (S3 strain) and Rifampicin resistant (S3 Rif strains) in
364 CTT liquid till mid-log phase, adjusting their density to 5×10^9 cells/mL and spotting 10 µL of this density
365 adjusted cultures on 20 mL CTT hard agar (1.5 % bacto agar) in 90 mm plates. The relative swarms of
366 the strains on agar beds were recorded as a parameter of determining their respective growth. The
367 relative growth of the resistant strain was to that of its parent stain was estimated by taking a ration
368 of their swarm on CTT hard agar. For further experiments, S3Rif4 strain was selected since the relative
369 growth of this strain was statistically indistinguishable from its parent strain (Data not shown here).

370

371 **Estimation of antibiotic resistance frequency**

372 To estimate frequency of resistant isolates samples were dilution plated on antibiotic free 0.1x TSA
373 (Tryptic Soy Broth, HiMedia + 0.5 % Agar-Agar, Qualigens) media and on 0.1x TSA media with one
374 antibiotic for which the resistance frequency was to be estimated. We used six different antibiotics
375 for the experiments (Kanamycin (40 µg/mL, Sigma Aldrich), Rifampicin (5 µg/mL, MP Biochemicals),
376 Ampicillin (50 µg/mL, Sigma), Cycloheximide (5 µg/mL, Sigma), Gentamycin (10 µg/mL, SRL) and
377 Vancomycin (1 µg/mL, Sigma) and Tetracycline (10 µg/mL, Sigma). Plates were incubated at 32 °C for
378 2 days.

$$379 \text{Percent resistant} = 100 \left(\frac{\frac{\text{CFU}}{\text{ml}} \text{ on antibiotic medium}}{\frac{\text{CFU}}{\text{ml}} \text{ on antibiotic free medium}} \right)$$

380

381

382 **Sample collection and classification of natural soil communities to test correlation between 383 presence of *M. xanthus* and resistance in nature**

384 Soil from twenty-five randomly selected locations was used to estimate the frequency of antibiotic
385 resistance in nature and its correlation with the presence or absence of *M. xanthus*. In brief, soil
386 samples were collected with the help of a sterile 10 mL syringe from which the tip had been removed.
387 After removing 5 mm of soil from each end, central core from the soil column was equally split to test
388 for the presence of *M. xanthus* and to estimate the frequency of resistant isolates.

389

390 To estimate the frequency of antibiotic resistant isolates 4 mL of each soil column was dissolved in
391 20 mL of sterile water and mixed thoroughly. Next, the soil samples were allowed to stand for 4 h at
392 room temperature, and the antibiotic resistance frequency assay (See estimation of antibiotic
393 resistance frequency) was performed with the natural soil communities obtained from the
394 supernatant of the soil samples. In our experience 4 h incubation allowed for highest CFU count in the
395 conditions used in our experiments, suggesting most microbes dissociated from soil particle. No
396 technical replicates for the estimation of the frequency of resistant bacteria in the soil sample were
397 performed, and therefore each estimation was used as a single biological replicate for statical analysis.

398

399 Each soil sample was also tested for the presence of *M. xanthus*. For this 4 mL soil core from each
400 sample was crushed and plated on selective media [modified CTT medium with 0.5 % casitone, 1.5 %
401 agar, Vancomycin (10 mg/L), Nystatin (1000 units/L), Cyclohexamide (50 mg/L) and crystal violet (10
402 mg/L)]. *M. xanthus* is a gram-negative soil bacterium that forms spore filled multicellular fruiting
403 bodies upon starvation. These fruiting bodies are easily visible under light microscope, and hence
404 provide a simple mode of detection for Myxobacteria in natural soil isolates. We used presence or
405 absence of fruiting bodies on selective media to classify each soil sample either as *M. xanthus* positive
406 (M+) or negative (M-), by visually observing for presence (designated M+) or absence (designated M-)
407 of *M. xanthus* fruiting bodies.

408

409

410 **Influence of *M. xanthus* on antibiotic resistome in natural soil communities in laboratory conditions**

411 Microbial communities were derived from four random locations (named Location-1, Location-2,
412 Location-3, and Location-4) inside IISc. campus. The soil samples were collected up to the mark of 10
413 mL in sterile 50 mL falcon tubes. To extract the communities from these derived soil samples, 20 mL
414 of sterile double distilled water was added to these soil samples, mixed uniformly, and allowed to
415 stand at room temperature for 4 h. Once most of the sediments had settled down, 100 μ L of these
416 communities (supernatant post-sedimentation) were inoculated with or without 1 mL (10^6 cells) of
417 Rifampicin resistant S3 strain, in 8mL of 0.1x TSB liquid in 50 mL flasks. The cultures were incubated
418 at 32 °C, 200 rpm for 6 days.

419

420 Resistance frequency was measured by dilution plating cultures 0.1x TSA + 0.5 % Bacto agar (soft
421 agar medium) either supplemented with or without different antibiotics (See *estimation of antibiotic*
422 *resistance frequency*) over a period of 6 days, with plating done every 24 h, starting from 0 h. To
423 estimate the growth of *M. xanthus* within these communities, dilution plating was done in CTT 0.5%

424 agar medium with Rifampicin (final concentration 5 µg/mL) and Gentamycin (final concentration 10
425 µg/mL every 24 h over a period of 6 days. These experiments were performed in three independent
426 blocks of biological replicate for each of the soil sample.

427

428 **Influence of spent media from *M. xanthus* supplemented communities on antibiotic resistome in
429 natural soil communities**

430 Spent media was collected from three distinct soil communities cultured in laboratory condition,
431 either supplemented with or without *M. xanthus*, as described earlier (See Influence of *M. xanthus* on
432 antibiotic resistome in natural soil communities in laboratory conditions). The spent media was
433 collected by sampling the cultures every 24 h and spinning down the cultures to extract the
434 supernatant. The supernatant collected from these samples were filter sterilised using 0.20 -micron
435 membrane filter (Minisart, Sartorius Stedim Biotech GmbH, Germany) to obtain cell-free spent media.
436 To further estimate whether the presence of diffusible molecules in the spent media were responsible
437 for the enrichment of resistant isolates, freshly collected soil communities were subjected to the spent
438 media extracted from communities where either *M. xanthus* were either added or not added (as
439 controls), diluted with fresh 0.1x TSB liquid media (1:1). 100 µL of freshly isolated communities were
440 further cultured in the spent media from the respective two conditions, for 6 days at 32 °C and 200
441 rpm. Post-incubation the frequency of resistant isolates was estimated by dilution plating as described
442 earlier (See estimation of antibiotic resistance frequency). These experiments were performed in
443 three independent biological replicates.

444

445 **Influence of spent media from *M. xanthus* supplemented community on growth of common prey
446 bacteria found in soil**

447 Though the introduction of spent media enriched the overall resistant isolates in natural
448 communities, to further understand whether this enrichment is the result of growth inhibitory effects
449 of the diffusible molecules present in the spent media, that were extracted from cultures inoculated
450 with *M. xanthus*, common prey species were grown under laboratory culture conditions either in
451 presence or absence of the spent media. Five distinct prey species were used for this assay,
452 *Arthrobacter globiformis*, *Escherichia coli*, *Pseudomonas putida* and *Rhizobium vitis*. These preys were
453 grown to mid-log phase in LB liquid and OD was adjusted to 0.1 OD using buffer. 100 µL of the density
454 adjusted cultures was inoculated in 8 ml of media supplemented with either the cell-free spent media
455 or buffer in 1:1 ratio. The cultures were incubated at 32 °C, 200 rpm for 24 h. The final ODs were
456 recorded at 600nm to determine the growth of different bacteria (thermoScientific, Varioskan LUX).
457 These experiments were performed in three independent biological replicates.

458

459 **Influence of *M. xanthus* lysate on resistome of natural communities**

460 To understand if the enrichment of resistant isolates is brought about specifically as a result of *M.*
461 *xanthus*' lysis, lysate of *M. xanthus* (S3Rif strains) cells was prepared by removing the growth media,
462 resuspending the exponentially growing vegetative cells in buffer and sonicating (25 % intensity, 10
463 cycles of 30 sec ON and 10 sec OFF, Qsonica-700 sonicator) them to lyse the vegetative cells. 4 mL of
464 this lysate was further introduced along with 100 μ L of freshly isolated soil communities in 4 mL of
465 0.1x TSB liquid, under previously described culture conditions for 6 days. As a control, communities
466 were also cultured under similar condition without the addition of the lysate. The final resistance
467 frequency was recorded by dilution plating on 0.1x TSA with and without different antibiotics (See
468 estimation of antibiotic resistance frequency). These experiments were performed in three
469 independent biological replicates.

470

471 **Influence of supernatant extracted from *M. xanthus* fruiting bodies on resistome of natural
472 communities**

473 *M. xanthus* (S3Rif strains) cells were grown in CTT liquid to mid-log phase and the cell-density was
474 adjusted to 5×10^9 cell/mL. 100 μ L of this density adjusted cultures were spotted on 10 mL of starvation
475 media in 60 mm plates (TPM media, same composition as that of CTT without the casitone as carbon
476 source + 1.5 % Bacto agar). The plates were incubated for 3 days at 32°C to allow the development of
477 fruiting bodies. After 3 days incubation, the fruiting bodies was harvested by washing the TPM agar
478 beds with 1 mL of TPM buffer and the supernatant was extracted after spinning down the resuspended
479 spores. The supernatant was further filter sterilised using 0.45-micron membrane filter. 100 μ L of
480 freshly isolated soil communities were then cultured in 8mL of 0.1x TSB liquid with 1 mL of supernatant
481 extracted from the fruiting bodies. As controls, 1mL of TPM buffer was added to the communities. The
482 culture conditions were similar to previous experiments, and the cultures were incubated at 32 °C,
483 200 rpm for 6 days. Post 6 days incubation, the resistance frequencies were determined by dilution
484 plating on 0.1x TSA with and without different antibiotics (See estimation of antibiotic resistance
485 frequency). These experiments were performed in six independent biological replicates.

486

487 **Sample preparation and DNA extraction for metagenome sequencing**

488 Soil sample of three independent locations were collected and communities were derived as
489 described above (See Influence of *M. xanthus* on antibiotic resistome in natural soil communities in
490 laboratory conditions). The communities were cultured in 8 mL of 0.1x TSB with or without *M. xanthus*
491 as described earlier. Cultures incubated for 6 days were sent to sequencing facility for isolation and

492 shotgun metagenome sequencing. DNA extraction and shotgun metagenome sequencing was done
493 by the sequencing agency, Nucleome Informatics, Hyderabad, India. For isolating the total DNA from
494 the communities, CTAB method was used. To 50 μ L of the culture sample 700 μ L of CTAB buffer was
495 added, vortexed briefly and incubated at 65 °C for 45 mins. Post incubation, the DNA was purified
496 using phenol-chloroform extraction method and eluted in nuclease free water. Primary QC was
497 performed with the extracted DNA using Nanodrop and gel. Finally, genomic libraries were prepared
498 using KAPA HyperPlus Kit (cat no-KR1145-v8.21). Sequencing was done using Illumina Novoseq 6000
499 S4 flow cell.

500

501 **Influence of *M. xanthus* on antibiotic resistome in nature**

502 Natural soil samples were collected from 15 locations within the IISc campus. From each location,
503 soil was collected up to the mark of 10 mL in sterile 50 mL falcon tubes. An additional amount of soil
504 was collected from each of these locations, which was autoclaved, and re-used as sterile soil samples
505 for respective locations. Next, 20 mL water was added to each falcon, thoroughly mixed, and kept
506 standing in room temperature for 4 hours. 1 mL soil supernatant with 1 mL (10^6 cells) Rifampicin
507 resistant variant of S3 isolate was added to previously autoclaved 20 mL soil samples derived from
508 respective location. Falcons were mixed by inverting for 12 times, planted at their respective locations,
509 and incubated for 5 days. For these experiments we constructed 50 mL falcons which only allow
510 exchange of resources (but not cell) between internal and external environment (Figure S4). In control
511 experiments soil supernatant without S3 isolate was inoculated in respective soil sample.

512

513 To harvest the communities within the soil sample, after 5 days of incubation, 20 mL of autoclaved
514 water was added to each falcon, mixed thoroughly and allowed to stand for 4 h at room temperature.
515 100 μ L supernatant from each falcon was dilution plated on 1x LB and 0.1x LB (diluted LB media) agar
516 plate (0.5 % agar) with or without antibiotics, incubated at 32 °C. For this, we used six different
517 antibiotics namely, Kanamycin (40 μ g/mL), Rifampicin (5 μ g/mL), Ampicillin (50 μ g/mL), Cycloheximide
518 (5 μ g/mL), Gentamycin (10 μ g/mL) and Vancomycin (1 μ g/mL). *M. xanthus* cells do not grow in LB
519 medium. Therefore, growth of *M. xanthus* was measured by dilution plating 100 μ L supernatant in
520 CTT 0.5 % agar with Rifampicin and Gentamycin (*M. xanthus* is naturally resistant to Gentamycin).
521 These experiments were performed in three independent biological replicates.

522

523 **Metagenome data processing**

524 Metagenomic reads were processed using the metagenome-atlas workflow v2.18.1⁵³ with default
525 parametrisation if not stated otherwise in the following description. In brief, the applied atlas

526 workflow consisted of three main steps: (1) Quality control and filtering, (2) read assembly, and (3)
527 binning of contigs. For step (1 – quality filtering), reads were quality trimmed and reads, which are
528 likely contaminations from Illumina PhiX control sequences, were removed using functions from the
529 BBmap suite v39.01 (BBMap - Bushnell B. - sourceforge.net/projects/bbmap/). In step (2), reads were
530 assembled into contigs using metaSPAdes v3.15.5⁵⁴. For the binning step (3), assembled contigs were
531 assigned to bins using metabat v2.15⁵⁵. The completeness and contamination percentages of refined
532 bins were estimated using checkM2 v1.0.1⁵⁶.

533 Subsequently, filtered bins were clustered, and cluster-representative bins were selected using dRep
534 v3.4.5⁵⁷ by re-using the contamination and specific completeness percentages predicted by checkM2
535 from the previous analysis step. Secondary clustering was performed for the average nucleotide
536 identity of $\geq 95\%$ as threshold. Representative bins (from here on termed MAGs) were quantified in
537 each metagenome sample by mapping quality control-filtered reads to the MAG genomic sequences
538 using coverM v0.6.1⁵⁸ in default parametrisation. Taxonomic classification of MAGs was predicted
539 using GTDB-tk v2.3.2⁵⁹ and the reference data version r207_v2.

540

541 **ARG analysis**

542 Technical University of Denmark (DTU) sponsored KmerResistance ARG tool (v2.2.0)^{60,61} was used to
543 estimate antibiotic resistance alleles. KmerResistance is available at
544 <http://genomicepidemiology.org/services/>. Clean reads' fastq files for day 6 were submitted to
545 KmerResistance algorithm which were then mapped based on the co-occurrence of k-mers against a
546 class of resistance alleles that were available in ResFinder database. A minimum of 90% coverage, and
547 90% query identity cut-offs were used to determine the best matchable resistance alleles. The
548 identified alleles were then grouped into their respective resistance classes such as aminoglycoside,
549 betalactam, fosfomycin.

550

551 **Statistical Analysis**

552 All data analysis was done using R (Version 4.3.1). Each experiment was performed in at least three or
553 more blocks of independent replicates unless otherwise specified. Data was checked for homogeneity
554 and appropriate statistical tests were used. Wherever required, multiple testing was corrected for
555 false discovery rate. Wherever applicable, data transformations are mentioned in figure legends.

556

557 **References**

- 558 1. Nesme, J., Cécillon, S., Delmont, T. O., Monier, J. M., Vogel, T. M., & Simonet, P. (2014). Large-
559 scale metagenomic-based study of antibiotic resistance in the environment. *Curr. Biol.*, 24(10),
560 1096-1100.
- 561 2. Bhullar, K. et al., (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. *PLoS*
562 *One*, 7(4), e34953.
- 563 3. Demaneche, S. et al., (2008). Antibiotic-resistant soil bacteria in transgenic plant fields. *Proc. Nat.*
564 *Acad. Sci.*, 105(10), 3957-3962.
- 565 4. Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A., & Handelsman, J. (2009). Functional
566 metagenomics reveals diverse β -lactamases in a remote Alaskan soil. *ISME J.*, 3(2), 243-251.
- 567 5. D'Costa, V. M. et al., (2011). Antibiotic resistance is ancient. *Nature*, 477(7365), 457-461.
- 568 6. Ma, L., Li, B., & Zhang, T. (2014). Abundant Rifampin resistance genes and significant correlations
569 of antibiotic resistance genes and plasmids in various environments revealed by metagenomic
570 analysis. *Appl. Microbiol. Biotechnol.*, 98, 5195-5204.
- 571 7. Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J. M., & Zhang, T. (2015). Metagenomic and network
572 analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes.
573 *ISME J.*, 9(11), 2490-2502.
- 574 8. Tucker, K. et al., (2022). Spatiotemporal investigation of antibiotic resistance in the urban water
575 cycle influenced by environmental and anthropogenic activity. *Microbiol. Spectr.*, 10(5), e02473-
576 22.
- 577 9. Luu Quynh, H., Nguyen Thi Bich, T., Ta Hoang, L., Erickson, V. I., & Padungtod, P. (2021). Quality
578 testing of veterinary antimicrobial products used for livestock in Vietnam, 2018–2019. *PLoS One*,
579 16(3), e0247337.
- 580 10. Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes
581 identified in wastewater treatment plant systems—a review. *Sci. Total Environ.*, 697, 134023.
- 582 11. Stanton, I. C., Murray, A. K., Zhang, L., Snape, J., & Gaze, W. H. (2020). Evolution of antibiotic
583 resistance at low antibiotic concentrations including selection below the minimal selective
584 concentration. *Commun. Biol.*, 3(1), 467.
- 585 12. Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011).
586 Selection of resistant bacteria at very low antibiotic concentrations. *PLoS Pathog.*, 7(7), e1002158.
- 587 13. Liu, A. et al., (2011). Selective advantage of resistant strains at trace levels of antibiotics: a simple
588 and ultrasensitive color test for detection of antibiotics and genotoxic agents. *Antimicrob. Agents*
589 *Chemother.*, 55(3), 1204-1210.

590 14. Wistrand-Yuen, E., Knopp, M., Hjort, K., Koskineni, S., Berg, O. G., & Andersson, D. I. (2018).
591 Evolution of high-level resistance during low-level antibiotic exposure. *Nat. Commun.*, 9(1), 1599.

592 15. Zhang, Z. et al., (2020). Antibiotic production in *Streptomyces* is organized by a division of labor
593 through terminal genomic differentiation. *Sci. Adv.*, 6(3), eaay5781.

594 16. Westhoff, S., Kloosterman, A. M., van Hoesel, S. F., van Wezel, G. P., & Rozen, D. E. (2021).
595 Competition sensing changes antibiotic production in *Streptomyces*. *MBio*, 12(1), 10-1128.

596 17. Xiao, Y., Gerth, K., Müller, R., & Wall, D. (2012). Myxobacterium-produced antibiotic TA
597 (myxovirescin) inhibits type II signal peptidase. *Antimicrob. Agents Chemother.*, 56(4), 2014-2021.

598 18. Lee, N. et al., (2020). Iron competition triggers antibiotic biosynthesis in *Streptomyces coelicolor*
599 during coculture with *Myxococcus xanthus*. *ISME J.*, 14(5), 1111-1124.

600 19. Ahearne, A., Phillips, K. E., Knehans, T., Hoing, M., Dowd, S. E., & Stevens, D. C. (2023).
601 Chromosomal organization of biosynthetic gene clusters, including that of nine novel species,
602 suggests plasticity of Myxobacterial specialized metabolism. *Front. Microbiol.*, 14, 1227206.

603 20. Gregory, K., Salvador, L. A., Akbar, S., Adaikpoh, B. I., & Stevens, D. C. (2019). Survey of
604 biosynthetic gene clusters from sequenced Myxobacteria reveals unexplored biosynthetic
605 potential. *Microorganisms*, 7(6), 181.

606 21. Belknap, K. C., Park, C. J., Barth, B. M., & Andam, C. P. (2020). Genome mining of biosynthetic and
607 chemotherapeutic gene clusters in *Streptomyces* bacteria. *Sci. Rep.*, 10(1), 2003.

608 22. Pospiech, A., Cluzel, B., Bietenhader, J., & Schupp, T. (1995). A new *Myxococcus xanthus* gene
609 cluster for the biosynthesis of the antibiotic saframycin Mx1 encoding a peptide synthetase.
610 *Microbiology*, 141(8), 1793-1803.

611 23. Liu, Z., Zhao, Y., Huang, C., & Luo, Y. (2021). Recent advances in silent gene cluster activation in
612 *Streptomyces*. *Front. Bioeng. Biotechnol.*, 9, 632230.

613 24. Shimkets, L. J., Dworkin, M., & Reichenbach, H. (2006). The Myxobacteria. *The prokaryotes*, 7, 31-
614 115.

615 25. Dawid, W. (2000). Biology and global distribution of myxobacteria in soils. *FEMS Microbiol. Rev.*,
616 24(4), 403-427.

617 26. Velicer, G. J., & Vos, M. (2009). Sociobiology of the Myxobacteria. *Annu. Rev. Microbiol.*, 63, 599-
618 623.

619 27. Muñoz-Dorado, J., Marcos-Torres, F. J., García-Bravo, E., Moraleda-Muñoz, A., & Pérez, J. (2016).
620 Myxobacteria: moving, killing, feeding, and surviving together. *Front. Microbiol.*, 7, 781.

621 28. Cortina, N. S., Krug, D., Plaza, A., Revermann, O., & Müller, R. (2012). Myxoprincomide: a natural
622 product from *Myxococcus xanthus* discovered by comprehensive analysis of the secondary
623 metabolome. *Angew. Chemie Int. Ed.*, 51(3), 811-816.

624 29. Berleman, J. E. et al., (2014). The lethal cargo of *Myxococcus xanthus* outer membrane vesicles.
625 *Front. Microbiol.*, 5, 474.

626 30. Sudo, S., & Dworkin, M. (1972). Bacteriolytic enzymes produced by *Myxococcus xanthus*. *J.*
627 *Bacteriol.*, 110(1), 236-245.

628 31. Thiery, S., Turowski, P., Berleman, J. E., & Kaimer, C. (2022). The predatory soil bacterium
629 *Myxococcus xanthus* combines a Tad-and an atypical type 3-like protein secretion system to kill
630 bacterial cells. *Cell Rep.*, 40(11).

631 32. Manteca, A., Mäder, U., Connolly, B. A., & Sanchez, J. (2006). A proteomic analysis of *Streptomyces*
632 *coelicolor* programmed cell death. *Proteomics*, 6(22), 6008-6022.

633 33. Tenconi, E., Traxler, M. F., Hoebreck, C., Van Wezel, G. P., & Rigali, S. (2018). Production of
634 prodiginines is part of a programmed cell death process in *Streptomyces coelicolor*. *Front.*
635 *Microbiol.*, 9, 1742.

636 34. Allocati, N., Masulli, M., Di Ilio, C., & De Laurenzi, V. (2015). Die for the community: an overview
637 of programmed cell death in bacteria. *Cell Death Dis.*, 6(1), e1609-e1609.

638 35. Lee, B., Holkenbrink, C., Treuner-Lange, A., & Higgs, P. I. (2012). *Myxococcus xanthus*
639 developmental cell fate production: heterogeneous accumulation of developmental regulatory
640 proteins and re-examination of the role of MazF in developmental lysis. *J. Bacteriol.*, 194(12),
641 3058-3068.

642 36. Skotnicka, D. et al., (2016). A minimal threshold of c-di-GMP is essential for fruiting body
643 formation and sporulation in *Myxococcus xanthus*. *PLoS Genet.*, 12(5), e1006080.

644 37. Pande, S., Escriva, P. P., Yu, Y. T. N., Sauer, U., & Velicer, G. J. (2020). Cooperation and cheating
645 among germinating spores. *Curr. Biol.*, 30(23), 4745-4752.

646 38. Pande, S., & Velicer, G. J. (2018). Chimeric synergy in natural social groups of a cooperative
647 microbe. *Curr. Biol.*, 28(2), 262-267.

648 39. Palková, Z. (2004). Multicellular microorganisms: laboratory versus nature. *EMBO Rep.*, 5(5), 470-
649 476.

650 40. Carl, S., Mohr, S., Sahm, R., & Baschien, C. (2022). Laboratory conditions can change the
651 complexity and composition of the natural aquatic mycobiome on *Alnus glutinosa* leaf litter.
652 *Fungal Ecol.*, 57, 101142.

653 41. Estrela, S., & Brown, S. P. (2018). Community interactions and spatial structure shape selection on
654 antibiotic resistant lineages. *PLoS Comput. Biol.*, 14(6), e1006179.

655 42. Kim, H. J., Boedicker, J. Q., Choi, J. W., & Ismagilov, R. F. (2008). Defined spatial structure stabilizes
656 a synthetic multispecies bacterial community. *Proc. Nat. Acad. Sci.*, 105(47), 18188-18193.

657 43. Bottos, E. M., Laughlin, D. C., Herbold, C. W., Lee, C. K., McDonald, I. R., & Cary, S. C. (2020). Abiotic
658 factors influence patterns of bacterial diversity and community composition in the Dry Valleys of
659 Antarctica. *FEMS Microbiol. Ecol.*, 96(5), fiaa042.

660 44. Dunson, W. A., & Travis, J. (1991). The role of abiotic factors in community organization. *Am. Nat.*,
661 138(5), 1067-1091.

662 45. Goldman, B. S. et al., (2006). Evolution of sensory complexity recorded in a Myxobacterial genome.
663 *Proc. Nat. Acad. Sci.*, 103(41), 15200-15205.

664 46. Knöppel, A., Näsvall, J., & Andersson, D. I. (2017). Evolution of antibiotic resistance without
665 antibiotic exposure. *Antimicrob. Agents Chemother.*, 61(11), 10-1128.

666 47. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call
667 of the wild: antibiotic resistance genes in natural environments. *Nat. Rev. Microbiol.*, 8(4), 251-
668 259.

669 48. Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of
670 antibiotic and metal resistance. *Trends Microbiol.*, 14(4), 176-182.

671 49. Pauli, B., Oña, L., Hermann, M., & Kost, C. (2022). Obligate mutualistic cooperation limits
672 evolvability. *Nat. Commun.*, 13(1), 337.

673 50. Nguyen, T. B. A., Bonkowski, M., Dumack, K., Chen, Q. L., He, J. Z., & Hu, H. W. (2023). Protistan
674 predation selects for antibiotic resistance in soil bacterial communities. *ISME J.*, 1-8.

675 51. Kraemer, S. A., & Velicer, G. J. (2011). Endemic social diversity within natural kin groups of a
676 cooperative bacterium. *Proc. Nat. Acad. Sci.*, 108(supplement_2), 10823-10830.

677 52. Hodgkin, J., & Kaiser, D. (1977). Cell-to-cell stimulation of movement in nonmotile mutants of
678 *Myxococcus*. *Proc. Nat. Acad. Sci.*, 74(7), 2938-2942.

679 53. Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M., & McCue, L. A. (2020). ATLAS: a Snakemake
680 workflow for assembly, annotation, and genomic binning of metagenome sequence data. *BMC
681 Bioinform.*, 21, 1-8.

682 54. Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPADEs: a new versatile
683 metagenomic assembler. *Genome Res.*, 27(5), 824-834.

684 55. Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., & Wang, Z. (2019). MetaBAT 2: an
685 adaptive binning algorithm for robust and efficient genome reconstruction from metagenome
686 assemblies. *PeerJ*, 7, e7359.

687 56. Chklovski, A., Parks, D. H., Woodcroft, B. J., & Tyson, G. W. (2023). CheckM2: a rapid, scalable and
688 accurate tool for assessing microbial genome quality using machine learning. *Nat. Methods.*,
689 20(8), 1203-1212.

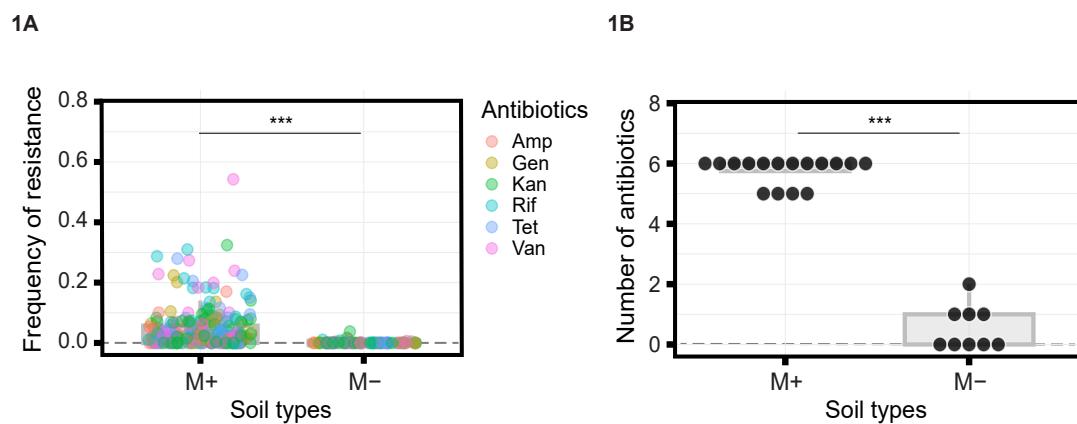
690 57. Sieber, C. M., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018).
691 Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy.
692 *Nat. Microbiol.*, 3(7), 836-843.

693 58. Woodcroft, B. J. *CoverM*. (2023).

694 59. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: a toolkit to classify
695 genomes with the Genome Taxonomy Database. *Bioinformatics* 36, 1925–1927.

696 60. Clausen, P. T., Zankari, E., Aarestrup, F. M., & Lund, O. (2016). Benchmarking of methods for
697 identification of antimicrobial resistance genes in bacterial whole genome data. *J. Antimicrob.*
698 *Chemother.*, 71(9), 2484-2488.

699 61. Clausen, P. T., Aarestrup, F. M., & Lund, O. (2018). Rapid and precise alignment of raw reads
700 against redundant databases with KMA. *BMC Bioinform.*, 19, 1-8.

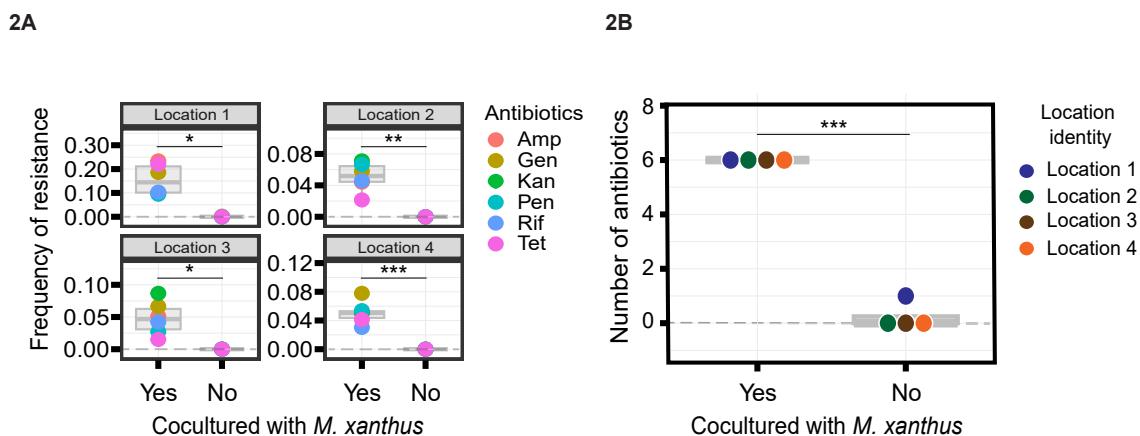

701

702

703

704 **Figure and figure legends**

705

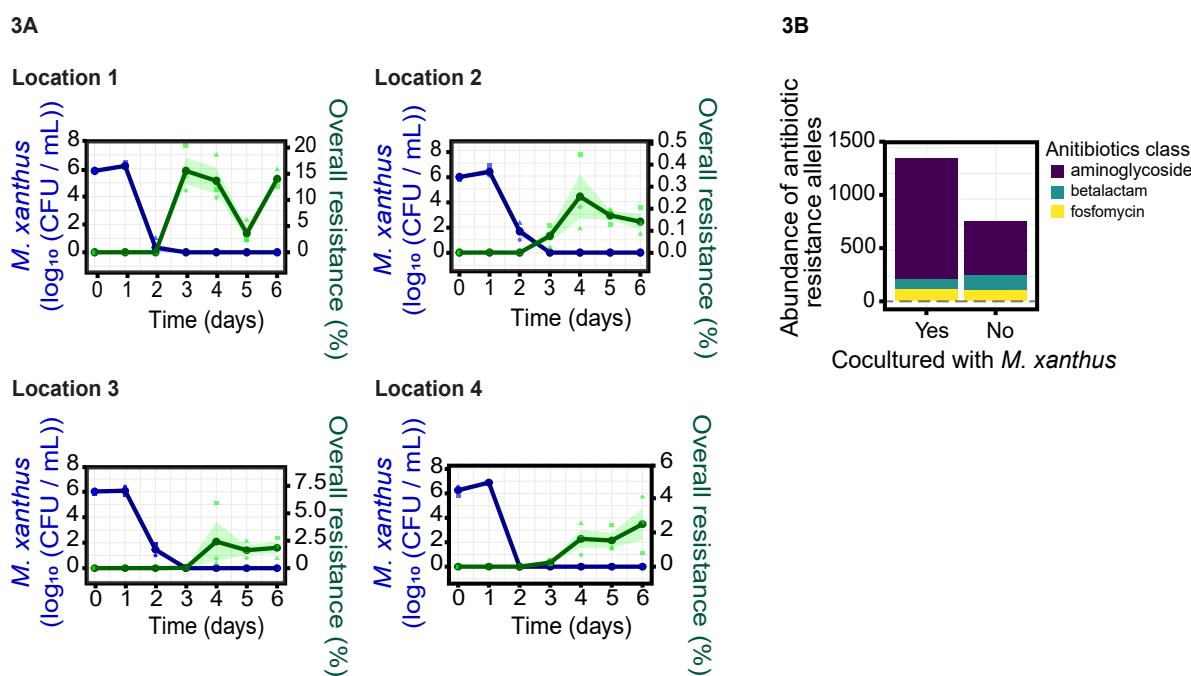


706

707

708 **Figure 1. Higher frequency of antibiotic resistant bacteria is correlated with presence of *M. xanthus***
709 **in natural soil samples.** A) Overall frequency of antibiotic resistant isolates across twenty-five distinct
710 locations and three distinct media types is shown. Independent-sample t-test for the differences in
711 the arcsine square root transformed frequency of antibiotics resistant isolates between soil sample in
712 which *M. xanthus* was detected (M+) (16 out of 25) and the ones in which *M. xanthus* was not detected
713 (M-) (9 out of 25), $p = 1.941e^{-14}$. Each dot represents distinct soil community and different colours
714 represent different antibiotics (Ampicillin, Gentamycin, Kanamycin, Rifampicin, Tetracycline,
715 Vancomycin). B) Number of antibiotics against which resistant isolates were found in individual soil
716 sample is shown. Independent-sample t-test for differences between soil samples in which *M. xanthus*
717 was detected (M+) (16 out of 25) and the ones in which *M. xanthus* was not detected (9 out of 25)
718 (M-), $p = 0.0000656$. Each dot represents distinct soil community and different colours represent
719 different antibiotics (Ampicillin, Gentamycin, Kanamycin, Rifampicin, Tetracycline, Vancomycin).

720


721

722

723 **Figure 2. Antibiotic resistant isolates are enriched in soil communities cocultured with *M. xanthus*.**

724 Soil from four distinct locations was cultured either with or without *M. xanthus*. A) Frequency of
725 resistant isolates post 6 days of incubation are shown. Paired-sample t-test for the differences in the
726 arcsine square root transformed frequency of antibiotics resistant isolates between soil sample in
727 which *M. xanthus* was added and the ones in which *M. xanthus* was not added, $p < 0.000004$. Each
728 dot represents distinct soil community and different colours represent different antibiotics (Ampicillin,
729 Gentamycin, Kanamycin, Rifampicin, Tetracycline, Vancomycin) B) Number of antibiotics against
730 which resistant isolates were found is shown. Paired-sample t-test for differences in the number of
731 antibiotics against which resistance was observed in the two experimental conditions, where *M.*
732 *xanthus* was added or not added, $p = 0.00018$. Each dot represents distinct soil community and
733 different colours indicate different locations.

734

735

736

737 **Figure 3. Frequency of antibiotic resistant bacteria increases only after the death of *M. xanthus***

738 **population A)** Green lines represent changes in overall percentage of resistant isolates over 6 days, in

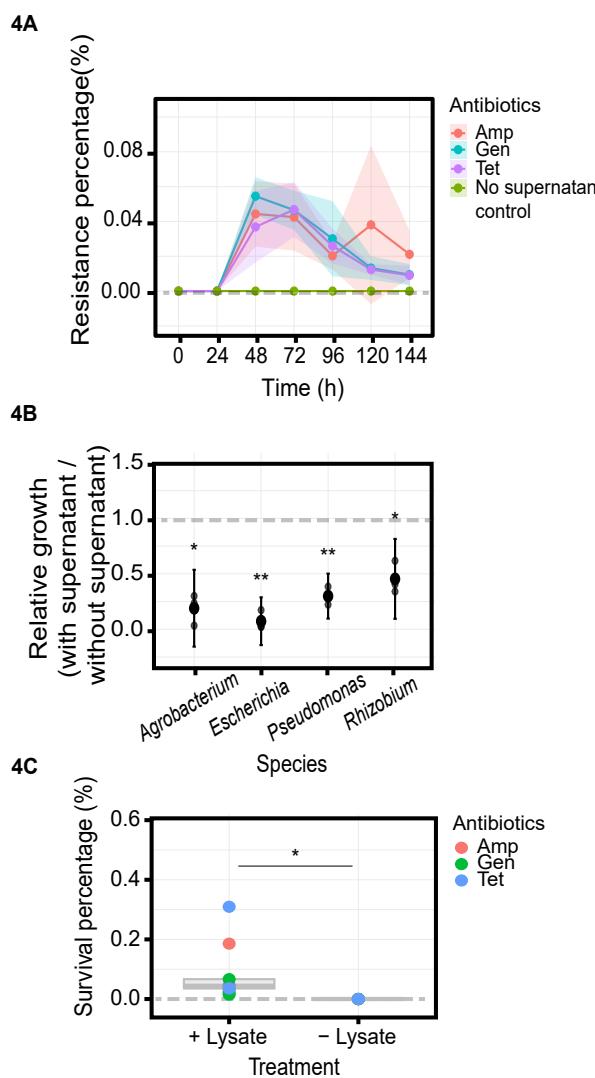
739 four distinct soil communities when cocultured with *M. xanthus*. The concurrent *M. xanthus* cell

740 counts (\log (CFU/ml)) in all four communities are represented by the blue lines. Squares, triangles, and

741 circles in lighter colours represents average frequency of antibiotic resistant bacteria (for six

742 antibiotics i.e., Ampicillin, Gentamycin, Kanamycin, Rifampicin, Tetracycline and Vancomycin) within

743 respective independent replicate ($n = 3$). B) Abundance of the antibiotic resistance alleles were

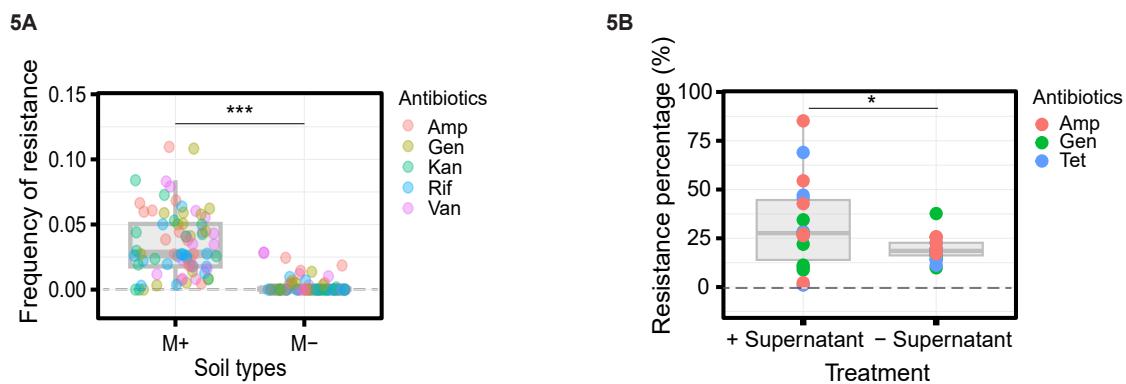

744 determined from metagenome data obtained from second location using KmerResistance algorithm.

745 The abundance of various resistance class alleles when soil communities were either cocultured with

746 *M. xanthus* or grown alone for 6 days is shown. Different colours show the distinct classes of antibiotic

747 resistance alleles.

748



749

750

751 **Figure 4. Lysis of *M. xanthus* cells is responsible for enrichment of resistant isolates in complex soil**
752 **communities.** A) Spent media from soil communities that were cocultured with *M. xanthus* results in
753 enrichment of resistant isolates. Distinct lines represent the percentage of isolates resistant against
754 three distinct antibiotics (Ampicillin, Gentamicin and Tetracycline). Green line at 0.00 is the control
755 where no spent media was added to the soil communities. B) Spent media from soil communities that
756 were cocultured with *M. xanthus* inhibits the growth of soil bacteria. Each dot represents growth of
757 bacterial species in the presence of supernatant relative to their growth in the absence of
758 supernatant. Error bars represents 95% confidence intervals. One-sample t-test [FDR corrected], to
759 test if the relative growth is different from one, * $p < 0.05$, ** $p < 0.005$ ($n = 3$). C) Introduction of
760 supernatant extracted from *M. xanthus* lysate can enrich resistant isolates in complex soil
761 communities. Percentage of resistant isolates when *M. xanthus* lysate is either added or not added is
762 shown. Each dot represents distinct soil sample and different colours represent three distinct

763 antibiotics (Ampicillin, Gentamicin and Tetracycline). Paired-sample t-test between percentage
764 resistant isolates in the presence of lysate compared to in its absence, $p = 0.032$ ($n = 3$).
765

766

767 **Figure 5. Mass-lysis of *M. xanthus* cells during fruiting body development results in enrichment of**
768 **antibiotic resistant isolates in the environment.** A) Soil communities cocultured with *M. xanthus*
769 show enrichment of antibiotic resistance. Frequency of antibiotic resistant isolates in soil communities
770 is shown. Paired-sample t-test for differences in the arcsine square root transformed frequency of
771 resistant isolates in the presence of *M. xanthus* (M+) relative to in absence of *M. xanthus* (M-), $p = < 2.2e^{-16}$ ($n = 3$). B) Addition of supernatant extracted from *M. xanthus* fruiting bodies to three distinct
773 soil communities results in enrichment of antibiotic resistance. (Paired-sample Wilcoxon-test between
774 the percentage resistances in conditions where supernatant was added or not added, $p = 0.048$ ($n = 6$)).

776