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ABSTRACT  1 

Typical statistical practices in biological sciences have been increasingly called into question due to 2 

difficulties in replication of an increasing number of studies, much of which is confounded by the relative 3 

difficulty of null significance hypothesis testing designs and interpretation of p-values. Bayesian inference, 4 

representing a fundamentally different approach to hypothesis testing, is receiving renewed interest as 5 

a potential alternative or complement to traditional null significance hypothesis testing due to its ease of 6 

interpretation and explicit declarations of prior assumptions. Bayesian models are more mathematically 7 

complex than equivalent frequentist approaches, which have historically limited applications to simplified 8 

analysis cases. However, the advent of probability distribution sampling tools with exponential increases 9 

in computational power now allows for quick and robust inference under any distribution of data. Here 10 

we present a practical tutorial on the use of Bayesian inference in the context of neuroscientific studies. 11 

We first start with an intuitive discussion of Bayes’ rule and inference followed by the formulation of 12 

Bayesian-based regression and ANOVA models using data from a variety of neuroscientific studies. We 13 

show how Bayesian inference leads to easily interpretable analysis of data while providing an open-14 

source toolbox to facilitate the use of Bayesian tools. 15 

Significance Statement 16 

Bayesian inference has received renewed interest as an alternative to null-significance hypothesis 17 

testing for its interpretability, ability to encapsulate prior knowledge into current inference, and robust 18 

model comparison paradigms. Despite this renewed interest, discussions of Bayesian inference are often 19 

obfuscated by undue mathematical complexity and misunderstandings underlying the Bayesian 20 

inference process. In this article, we aim to empower neuroscientists to adopt Bayesian statistical 21 

inference by providing a practical methodological walkthrough using single and multi-unit recordings from 22 

the rodent auditory circuit accompanied by a well-documented and user-friendly toolkit containing 23 

regression and ANOVA statistical models commonly encountered in neuroscience. 24 
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Keywords: Bayesian Inference, Neural Data Analysis, Statistical Inference 25 

Introduction 26 

Inference tools are foundational to all studies in neuroscience, providing the necessary machinery to 27 

make decisions and conclusions from data. Frequentist-based null significance hypothesis testing (NHST) 28 

has been the gold standard of inference in neuroscience and science at large in part due to the 29 

computational simplicity of frequentist models compared to permutation sampling or Bayesian-based 30 

methods. A significant problem present in the current practice of NHST, however, arises in the adoption 31 

of the p-value as the de facto metric of experimental “success”, notorious for its difficulty in interpretation 32 

and correct usage (Krueger and Heck, 2019). The confluence of exponential increases in computational 33 

power with the wider discussion of problems with NHST usage has created renewed interest in Bayesian 34 

inference as an alternative to frequentist NHST while offering interpretability benefits over the p-value 35 

and NHST overall. 36 

 37 

The use of p-values, the ubiquitous decision rule in frequentist methods, is fraught with problems due to 38 

fundamental misunderstandings of its use, interpretability, and most pathologically, its susceptibility to 39 

intentional and unintentional p-hacking(Nuzzo, 2014). Contrary to the initial intent of Ronald 40 

Fisher(Fisher, 1992), the p-value has often become the gatekeeper of significance in studies. In this role, 41 

it limits deeper observations into data, and it is often used without proper experimental design to ensure 42 

proper use and control. Methods of statistical inference require that one first define a statistical model 43 

with the power to adequately describe the data-generating process. Inference is then performed to 44 

estimate the population distribution from limited samples of observed data. Once estimates of population 45 

distributions are made, the determination of whether or not these distributions represent a significant 46 

effect is determined. NHST is somewhat a victim of its own success, where common practice has distilled 47 

the practice of NHST to chase the somewhat arbitrary p<0.05 measure of significance devoid of model 48 

or data considerations(Krueger and Heck, 2019). Furthermore, even in the best of experimental designs, 49 
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the p-value is a surrogate for arguably what a researcher is most interested in: how likely is it that 50 

observed data has some effect different from null(Kruschke, 2011; Gelman and Shalizi, 2013).  51 

 52 

Bayesian methods offer a solution to the problem of the p-value, providing a direct measure of the 53 

probability that observations have some effect(Kruschke, 2011; Gelman and Shalizi, 2013). This is done 54 

by reallocation of probability of possibilities as parameters in a mathematical model of the data-55 

generating process, leading to probabilistic estimates desired by but not attainable with p-value analyses. 56 

Bayesian methods are inherently data-driven; models are built with prior knowledge directly incorporated 57 

from parameters estimated directly from observed data.  58 

 59 

Bayesian inference, though chronologically younger than frequentist approaches, was not adopted as 60 

the primary inference paradigm due to the computational demands necessary to solve inference 61 

problems outside of certain canonical forms(Bishop, 2006) and the adoption of frequentist interpretation 62 

of probability(Fienberg, 2006). Inference on arbitrary distributions required a deeper mathematical 63 

knowledge and computation of integrals which were potentially intractable without modern numerical 64 

integration techniques. Frequentist paradigms however were more easily adapted to computationally 65 

simple algorithms, allowing researchers to “do statistics” without extensive formal training. However, 66 

exponential increases in computational power with the development of powerful Markov chain Monte 67 

Carlo (MCMC) sampling methods now allow researchers to perform meaningful Bayesian inference on 68 

arbitrary distributions underlying observed data(Gilks et al., 1996).  69 

 70 

The goal of this tutorial is to remedy the opacity that often accompanies discussions of Bayesian 71 

inference by providing simple, step-by-step walkthroughs of Bayesian inference with four common 72 

inference paradigms. We also aim to demonstrate the explanatory power of Bayesian inference in the 73 

context of neuroscience data. While the aim of this article is focused on application, this tutorial will begin 74 
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with a brief introduction to Bayes’ rule and its constituent components necessary for inference. For more 75 

theoretical and mathematical considerations of Bayesian inference, see the following books and 76 

articles(Gerwinn et al., 2010; Colombo and Seriès, 2012; Bielza and Larranaga, 2014; Kruschke, 2014; 77 

Kruschke and Vanpaemel, 2015; Ma, 2019; Gelman et al., 2021; Van De Schoot et al., 2021). 78 

 79 

Estimation of Spike Rates from Auditory Stimuli: A Motivating Example 80 

To facilitate the discussion of Bayesian inference in neuroscience, consider an example found 81 

prominently in auditory neuroscience(Fig 1A-B). In our first experiment, single unit recordings were made 82 

from the inferior colliculus (IC) in response to applied sinusoidal amplitude-modulated tones (SAM, see 83 

SI Methods). The goal of this analysis is to create a linear model of SAM temporal auditory processing 84 

by quantifying increases in evoked single unit firing rates in response to decreased SAM modulation. 85 

The linear regression model seeks to estimate a linear relationship between one (simple linear) or more 86 

(multilinear) predictor and measured variables. In this model, both the measured result and predictors 87 

are metric variables which map to a continuum of possible values. The simple linear regression model 88 

takes the form of: 89 끫毌 = 끫毸 + 끫毺끫毺 + 끫欬 90 

where 끫毌 is the measured (predicted) group, 끫毺 is the predictor, 끫毺 is the “slope” parameter dictating the 91 

relative increase or decrease in 끫毌 per unit change in 끫毺, 끫毸 is the intercept term which, in models of firing 92 

rate represents non-evoked, spontaneous firing rates, and 끫欬  is an error term which quantifies the 93 

difference between the expected value of 끫毌 at a given 끫毺 given a linear model versus the observed value 94 

of 끫毌 at 끫毺. It should be noted that 끫欬 is not present in all regression models, but the authors suggest 95 

inclusion to quantify deviations from linear fit. 96 

 97 
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Linear regression thus forms a model in which AM depth predicts evoked firing rates in which the model 98 

parameters are estimated and used to draw conclusions about the relative dependency of 끫毌 on 끫毺. To 99 

begin, an observation of the relative distribution of the measured data, in this case firing rates elicited 100 

from IC, will allow for robust inference model design. Inspection of the distribution of firing rates (Fig 1C) 101 

suggests that a log transform would allow for the data to be normally distributed, making model 102 

computations easier through use of canonical normal distributions. Before continuing to inference, it is 103 

important to describe the functional components of Bayesian inference’s computational tool; Bayes rule.   104 

 105 

Bayes’ Rule 106 

Foundational to Bayesian approaches is a complementary, but epistemically differing view of probability 107 

from that of frequentist approaches. While the frequentist perspective treats probability as the relative 108 

frequency of the occurrence of some event, the Bayesian perspective instead treats probability as the 109 

expectation of an event occurring which can be used to not only quantify the state of knowledge of an 110 

event, but also the uncertainty involved in measuring an event. Traditionally, the Bayesian perspective 111 

has been called ‘belief’, a perhaps unfortunate name which belies the fact that the Bayesian perspective 112 

of uncertainty of an event is fundamentally quantifiable. Perhaps a better description of Bayesian belief 113 

is instead quantification of the state of knowledge by accounting for uncertainty. The cornerstone of 114 

Bayesian inference is Bayes rule, defined as: 115 

끫殆(끫歶|끫歰) =  
끫殆(끫歰|끫歶)끫殆(끫歶)끫殆(끫歰)

 116 

where H is the quantification of the state of a hypothesis, and E is the quantification of observed evidence. 117 

In the context of inference, it is helpful to explicitly state the role of the model in Bayesian formulations: 118 

끫殆(끫欆|끫歰,끫殀) =
끫殆(끫歰|끫欆,끫殀)끫殆(끫欆|끫殀)끫殆(끫歰|끫殀)

 119 

where M is the model of the data generating process and 끫欆 are the model parameters. The individual 120 

components of Bayes’ rule are given names corresponding to the purpose they serve, with 끫殆(끫欆|끫歰,끫殀) 121 
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called the posterior distribution, 끫殆(끫歰|끫欆,끫殀)  the likelihood function, 끫殆(끫欆|끫殀)  the prior distribution, and 122 끫殆(끫歰|끫殀) the evidence or marginal likelihood function. Taken together, Bayes’ equation represents the 123 

quantification of observed data accounting for prior knowledge(Fig 2A). Each component plays a key role 124 

in Bayesian inference and each will be discussed briefly below.  125 

 126 

The Model Evidence 127 

The denominator term 끫殆(끫歰|끫殀), called the model evidence (or just the evidence or marginal likelihood in 128 

Bayesian parlance) is the quantification of the probability of observing the data under a chosen model of 129 

the data generating function. At first glance, the calculation of the total evidence appears to be an 130 

insurmountable task. In reality this term is the weighted average of parameter values in a given model 131 

weighted by the relative probability of a given parameter value(Kruschke, 2014) and thus acts as a 132 

normalization term to ensure the numerator is a proper probability distribution. The structure of 끫殆(끫歰|끫殀) 133 

will change based on whether the distributions represent probability mass functions (discrete case) or 134 

probability density functions (continuous case). In the discrete case, the evidence is 135 끫殆(끫歰|끫殀) = �끫殺(끫歰|끫欆,끫殀)끫欆 끫殺(끫欆|끫殀) 136 

and in the continuous case: 137 

끫殆(끫歰|끫殀) =  �끫殺(끫歰|끫欆,끫殀)끫殺(끫欆|끫殀)끫殢끫欆 

 

 138 

The evidence function thus represents an average of the likelihood function across all parameter 139 

values conditioned on the prior distribution. The marginal likelihood can also be utilized to assess the 140 

plausibility of two competing models(Johnson et al., 2023). The evidence, especially in the continuous 141 

case, is historically what made Bayesian inference difficult due to the need to evaluate a complex 142 

integral numerically. However, the advent of Markov-chain Monte Carlo (MCMC) methods with 143 

improvements in personal computer processing power has allowed for computationally efficient 144 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.19.567743doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.19.567743
http://creativecommons.org/licenses/by/4.0/


7 

 

integration without the need for supercomputing hardware. MCMC methods will be discussed in a 145 

subsequent section. 146 

 147 

The Prior 148 

The prior, 끫殆(끫欆|끫殀), is often the major stumbling block for those entering into Bayesian inference, but this 149 

hurdle is less about the prior, and more about what the prior is perceived as. The prior, 끫殆(끫歶) describes 150 

the investigators prior beliefs on the state of knowledge of the study. Critics of Bayesian inference have 151 

described the prior as purely subjective, but we, and many others(Kruschke, 2010; Box and Tiao, 2011; 152 

Gelman and Shalizi, 2013), argue that the prior represents an explicit declaration of the investigators 153 

knowledge, assumptions, and the general state of a field which is implicit and often is present but not 154 

stated in frequentist approaches. Moreover, one is encouraged to perform prior predictive checks to 155 

compare the sensitivity of competing priors in a Bayesian inference model, as we will show subsequently. 156 

The practice of the design of experiments and their resulting publications are rife with implicit priors which 157 

are often not acknowledged or realized when reporting results. As an example, consider study of cortical 158 

extracellular single unit recordings(Paninski et al., 2004; Bartlett and Wang, 2007; De La Rocha et al., 159 

2007; Coventry et al., 2023a as illustrative examples). The investigator could be leading a project with 160 

vast knowledge accumulated over years of study. Or the investigator is a trainee of a career researcher 161 

who draws a view of cortical physiology from their experienced mentor mixed with reading current 162 

literature. When designing an experiment, the investigator will have some intuition regarding likely and 163 

biologically feasible resting state and stimulus-evoked firing rates, cognitively assigning relatively low 164 

likelihood of seeing extremes of firing rates with higher likelihood assigned to moderate firing rates 165 

previously observed in literature or seen in experiments, and likely will discard or treat as outliers firing 166 

rates on the extremes or thought to be non-biological noise. The power of the prior distribution in 167 

Bayesian approaches is in part the need to explicitly quantify and report these prior beliefs, which can 168 

be analyzed and scrutinized as part of the peer review or post-publication process. Prior distributions 169 
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also require investigators to consider their biases and relative expectation on the importance of 170 

previously recorded and read data, promoting a deeper understanding of not only the data obtained 171 

within their lab, but also of the general state of the specific neuroscience field. As the name implies, prior 172 

beliefs are quantified as probability distributions by the investigators. 173 

 174 

This begs the question as to what a prior might look like in newer avenues of study where a paucity of 175 

data exists. Or in situations where researchers and data analysts want the data to “speak for itself” 176 

outside any influence of the prior. In these cases, priors can be designed to be “non-informative” or 177 

“weakly-informative”, assigning broad, non-committal distributions to the prior. One might assign a 178 

uniform distribution on the prior, effectively treating each parameter outcome as equally likely. Uniformly 179 

distributed priors do require some caution, however, as any parameter value outside of the bounds of 180 

the uniform distribution is automatically assigned probability 0 in the posterior, even if that value has 181 

been observed(Fig 2B). In many cases, it’s better to allow small, but nonzero probabilities to extreme 182 

values, such as the tails of a normal distribution, such that evidence for unexpected events is represented 183 

in the posterior given strong data(Fig 2C). Conversely, priors can be made to be highly informative in 184 

situations where physiological bounds are well known and well-studied, where extreme values are known 185 

to be biophysically irrelevant or impossible or known to be due to instrument noise(e.g. large 50/60 Hz 186 

noise peak in power spectrum indicative of wall power noise). 187 

 188 

The Likelihood 189 

The likelihood function, 끫殆(끫歰|끫欆,끫殀) describes the probability that data is observed given parameter values 190 끫欆 in a data generating model M. In the context of inference, the likelihood function updates information 191 

given in a prior distribution to the posterior distribution given the observed data(Etz, 2018). The likelihood 192 

function is generally not a proper distribution, in that it is conditioned on yet unknown parameters and 193 

may not integrate to 1,  but the evidence and prior terms ensures that resultant posterior distributions are 194 
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true probability densities. The idea of likelihood functions are present in both Bayesian and frequentist 195 

models, but has vastly different interpretations. The model parameters in a frequentist viewpoint 196 

converge upon singular values learned, usually though maximum likelihood estimation, from merging 197 

competing hypotheses of data. Bayesian approaches treat model parameters as ranges arising from 198 

distributions after observing the data at-hand. 199 

 200 

The Posterior 201 

The prior, likelihood, and evidence then form the posterior 끫殆(끫欆|끫歰,끫殀), the reallocation or mapping of 202 

probability from likelihood function, prior, and model evidence to an all-encompassing distribution. The 203 

posterior thus is the evidence for parameters 끫欆 conditioned on observed data and a model of the data 204 

generating function. The posterior forms the basis for inference, with all relevant information encoded in 205 

its distribution. Inference on the posterior distribution is covered in a section below. 206 

 207 

Estimation of the Posterior 208 

Despite Bayes’ rule being formulated before Fisher’s description of frequentist methods, a major reason 209 

that Bayesian inference was not been widely adopted was fundamentally a computational one, in that 210 

evaluation of Bayes’ rule often requires solving non-trivial integrals. A subset of computationally tractable 211 

prior distributions and likelihood functions formed canonical posteriors in which the posterior is easily 212 

inferred. However, these cases are not generalizable to experimental data which can be noisy and not 213 

well behaved. Modern Markov-chain Monte-Carlo (MCMC) tools have been developed to quickly and 214 

easily estimate arbitrary distributions. MCMC involves the generation of random samples which converge 215 

to a target probability distribution, the details of which can be learned from the following reviews(Hoffman 216 

and Gelman, 2011; Betancourt, 2017). 217 

 218 

Making Decisions on the Posterior 219 
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We define inference broadly as the process by which reasoning and decisions about a phenomena are 220 

made from a sample of observations of the phenomena. Classical NHST does not offer zero probability 221 

of error hypothesis testing(Blackwell, 1980). However, incorporation of prior knowledge in Bayesian 222 

inference allows for optimal decision making on observed data(Blackwell and Ramamoorthi, 1982). The 223 

posterior contains all necessary information to make inferences on experimental data incorporating prior 224 

knowledge. However, it is best to consider the specific goals of inference before performing statistics. 225 

Possible goals of inference are as follows(Kruschke, 2014): 226 

• Infer the parameters of a model.  227 

• Reject or confirm a null hypothesis 228 

• Compare two or more competing models 229 

In the case of neuroscientific studies, inferring model parameters occurs when an experiment aims to 230 

establish how neural firing rates change with changes in applied stimuli. Or one may want to confirm and 231 

reject a null hypothesis that a treatment has the desired effect or that there are differences between 232 

neural populations. Importantly, because the Bayesian inference operates solely on the posterior 233 

distribution, one can confirm or reject competing hypotheses and not simply reject the null as in 234 

frequentist NHST.  235 

 236 

Regardless of the goal, inference always involves analyzing the posterior, which provides a complete 237 

representation of the distribution of a given parameter given the experimental data. Therefore, decisions 238 

about the data, the effect of model parameters, and/or which hypothesis has more evidence is performed 239 

with calculations on the posterior. There are a multiplicity of decision rules that can be used to assess 240 

the posterior. The most common, and in the author’s opinion, the most intuitive is that of the Bayesian 241 

credible interval. The confidence interval calculates the probability that a population parameter lies in a 242 

certain interval. As credible intervals are not strictly unique, Bayesian inference convention is to fix the 243 

interval to the smallest interval which contains 95% of the posterior distribution density mass called the 244 
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highest density interval (HDI). Observations of posterior HDIs can then be used to assess the relative 245 

effect of a parameter. Regions of practical equivalence (ROPE) may be included in the posterior 246 

distribution that explicitly define a range of values that are effectively equivalent to a null value,  with 247 

parameters considered significant if 95% of the posterior distribution (95% HDI) does not contain 0 or 248 

any values in the ROPE (Kruschke, 2018). Along with posterior HDIs, calculations of maximum a 249 

posteriori (MAP, distribution mode) estimates from the posterior are performed to quantify a most likely 250 

parameter value. While decision rules are important to assess the relative effect of statistical model 251 

parameters, we reiterate that simply passing a decision rule should not conclude the inference step. 252 

Inference should be made in context of the evidence presented in model quality checks, observed data 253 

posterior distributions, and decision metrics. 254 

 255 

Error Quantification and Model Comparison 256 

Critical to any statistical model and inference therein is its fit to observed data. While it is entirely possible 257 

to perform linear regression on data distributions which are highly nonlinear, predictions and inference 258 

made by the model will likely be inaccurate. Both Bayesian and frequentist inference offer robust model 259 

error quantification. Bayesian approaches, however, can utilize the posterior distribution to not only 260 

quantify and bound the distribution of model errors, but also include post hoc posterior predictive 261 

sampling as part of the inference paradigm. Posterior predictive sampling involves making random draws 262 

from the posterior and building a sampling distribution. This distribution is then compared to the observed 263 

data distribution to quantify the model’s disparity from observed data. Along with posterior predictive 264 

checks, prior predictive checks act as a sensitivity measure of the influence of the prior distribution on 265 

the posterior distribution. Taken together, Bayesian inference thus allows for robust statistical inference 266 

on observed experimental data which appropriately includes prior knowledge of the state of the field. 267 

 268 

Formulation of Models and Applied Bayesian Inference 269 
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There are a multiplicity of programs and programming languages that facilitate Bayesian analysis, such 270 

as standalone programs of Jasp(Love et al., 2019) and probabilistic programming language packages 271 

such as BUGS(Brooks, 2003) and STAN(Carpenter et al., 2017), we chose to use PyMC(Salvatier et al., 272 

2016) for its ease in explicitly declaring probability distributions and its implementation in Python which 273 

is in common use in neuroscientific data analysis. Model formation is often conserved between 274 

frequentist and Bayesian approaches; it is only the mode of inference that differs. However, for clarity, 275 

we will discuss both model formation and performing inference in the subsequent sections.  276 

 277 

Performing Bayesian Inference on the Linear Regression Model 278 

Turning back to the example of IC single unit firing rates in response to SAM depth stimuli, the first step 279 

in inference is to place a prior distribution on the data. Previous studies and data can be used to inform 280 

the prior, but for this example we chose to demonstrate regression with moderately informative priors on 281 끫毸,끫毺, and 끫欬 so as to let observed data drive posterior inference. Given that the data observed data is 282 

roughly normal, a good first pass is to place a normal distribution on the prior with mean equal to the 283 

mean of the observed data and a variance that is wide enough to capture all observed data. After 284 

inference is made, sensitivity analyses can be performed to assess the relative importance of the prior 285 

parameter values on posterior estimates. Larger prior variances allow for small, but non-zero probabilities 286 

on extreme values. This tends to be a more robust approach than setting a value of 0 on extreme events, 287 

as observed data with strong evidence for an extreme value can be adequately represented in the 288 

posterior. After observation of the underlying distribution of the observed data and decision on a prior 289 

distribution, a linear regression inference model can be easily described in code as follows:  290 

 291 

Code Example 1: PyMC initialization of a simple linear regression model 292 
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    with pm.Model() as regression:        #Define a model that we call regression 

        a = pm.Normal('a', mu=prMean, sigma = 5) #Normally distributed prior on a 

        B = pm.Normal('B', mu=prMean, sigma = 5) #Normally distributed prior on B 

        eps = pm.HalfCauchy("eps", 5)            #Model error prior 

# Now we define our likelihood function, which for regression is our regression 

function 

        reg = pm.Deterministic('reg', a + (B*modDepth))       

        likelihood = pm.Normal('Y',mu = reg, sigma = eps, observed = fir-

ingRate)     

#Deterministic is for non probabilistic data. This is a modification to help sam-

pling, inference is still probabilistic.  
 

 293 

The likelihood variable then translates our model to one of Bayesian inference by casting the model as 294 

a probability distribution, in this case 295 끫毌~끫殂(끫毸 + 끫毺끫毺 + 끫欬) 296 

noting that observed firing rates are incorporated by the ‘observed’ parameter in the likelihood distribution. 297 

To generate the posterior, all that needs to be done is to initialize and run MCMC as follows: 298 

 299 

Code Example 2: Running the MCMC sampler 300 

with regression:                 #Access our defined model 

trace = pm.sample(numSamples, tune=numBurnIn, target_accept=0.90,chains = 4)           

#4 parallel, independent MCMC chains. 

 
 301 

This routine then generates a trace variable containing the posterior distributions of all model parameters 302 

after sampling numSamples with numBurnIn samples to initialize chains. We also ran 4 chains in parallel 303 

with a target_accept probability of 90%. Acceptance probability is somewhat based on the statistics of 304 

observed data and model, with more difficult posteriors benefiting from higher accept probability 305 

values(Gilks et al., 1996). Improper acceptance probabilities can give rise to insufficient number of draws 306 

and malformation of posterior distributions. PyMC provides a helpful readout for when posterior draws 307 

are malignant and indicative of higher acceptance probabilities. In summary, in a few lines of code the 308 

researcher has observed distributions of the data and explicitly defined a model of the data generator 309 
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and likely now has a better intuition of the data and how it is distributed. All that’s left to observe the 310 

posteriors with HDIs to infer significance from the model.  311 

 312 

Plotting the 95% HDI estimation of the regression line (Fig 3a) on modulation depth vs natural log-313 

transformed firing rates suggest a small but significant increase in firing rates with increases in 314 

modulation depth. Posterior distributions of model parameters (Fig. 3B) also show that there is an 315 

estimated basal firing rate above 0 (α MAP = 3.1) and a slope increase small but significantly above 0 (β 316 

MAP = 0.018) with model error terms considered small for being significantly smaller than intercept term 317 

(ε MAP = 0.74). The spread of the 95% HDI on inferred parameters is used as a measure of uncertainty 318 

of the parameter, with narrow HDIs representing more certainty in MAP estimated parameter. In our 319 

model, the 끫毸 parameter has a spread between 3.02 to 3.13, with a difference of 0.11 containing 95% of 320 

its posterior distribution, suggesting strong certainty in the MAP estimate of 3.1. Similar narrow spread 321 

is see in the 끫毺 parameter, with a difference of 0.007 containing 95% of the posterior. The model error 322 

term shows that observed data deviation from the model is constrained between 0.71 and 0.76 323 

suggesting relative certainty in the magnitude of deviation of the data from the model. 324 

 325 

Statistical conclusions should not end after making inferences on model parameters however. Critical to 326 

the validity of statistical inference is the quality of the model fit to observed data. This goodness of fit in 327 

Bayesian approaches can be analyzed by posterior predictive checks, in which sample draws are made 328 

from the posterior distribution, simulating observations of data generated from the experiment from which 329 

the statistical model was fit, and comparing sampled to observed data to assess deviation of model 330 

predictions from observed data distributions. In PyMC, posterior predictive checks can be easily 331 

performed using the following code: 332 

 333 

Code Example 3: Performing posterior predictive checks 334 
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 """ 

Now let's do some posterior predictive checks. PyMC has some nice functions      

that make this quite easy. We will also sample the posterior distribution for the 

standard 16,000 samples, which for this posterior should be more than enough. 

    """ 

    with regression: 

ppcRegression = pm.sample_posterior_predictive(trace, random_seed=Random-

seed) 

#The above code envokes the regression mode, then uses the posterior from 

the trace, pulling synthetic samples to compare to observed. Random seed 

is set so that each run can be perfectly replicated 

    az.plot_bpv(ppcRegression, hdi_prob=0.95,kind='p_value') 

#Bayes p-values, similar to frequentist,can be used to assess if posterior 

predictive is sufficiently close to observed density. Should be centered 

around 0.50. 

    az.plot_ppc(ppcRegression) 

    az.plot_trace(trace,var_names=['a', 'B','eps']) 

    plt.show() 
 

 335 

To illustrate how posterior predictive checks can be used, a competing model was made which performs 336 

Bayesian linear regression to the same data and priors except without log transformation of the data. In 337 

each case, random draws were made from each log transformed and non-log transformed posteriors to 338 

create empirical data distributions. Comparison of empirical distributions qualitatively show that log-339 

transformed models present a better fit to observed data than non-log transformed models. The relative 340 

disparity between posterior predictive model fits and observed data can be   quantified by use of Bayesian 341 

p-values, a distance measure between two distributions( for details of Bayesian p-values, see Kruschke, 342 

2014). The closer the Bayesian p-value is to 0.5, the better data sampled from the posterior overlaps 343 

with the distribution of observed data. Plotting the resulting distributions and the Bayesian p-values 344 

indeed show the log-transformed model fits better to observed data than the non-transformed model. 345 

Similar analyses can be performed around model free parameters, such as prior variables, to form a 346 

sensitivity analysis of prior distributions on resulting posterior inferences.  347 

 348 
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A secondary and quick check of posterior sampling can be performed by qualitative evaluation of the 349 

MCMC sampling chains, often called traces. Traces represent the long term run of a Markov chain which 350 

represent the distribution of interest. As such, good traces show evidence of effective sampling and 351 

convergence to target probability distributions. PyMC offers easy ways to visualize posterior MCMC 352 

traces using the plot_trace function. Figure 3 shows traces obtained from our Bayesian regression 353 

example. Kernel density estimates of traces corresponding to the posterior distributions of regression 354 

parameters show good convergence of MCMC traces to a target distribution (Fig 3A).  As MCMC chains 355 

are time series samples which form a distribution, evaluation of traces through sampling time can also 356 

be used as a diagnostic of sampling convergence. Traces should have a “fuzzy caterpillar” like 357 

appearance (Fig 3B) without any stark jump discontinuities from sample to sample. Quantitative trace 358 

evaluations are also available, with the Gelman-Rubin statistic ( 끫̂殾)  being the most prominent. The 359 

Gelman-Rubin statistic measures the variance between MCMC chains to the within chain variance, 360 

effectively measuring chain stationarity and convergence(Gelman and Rubin, 1992). Heuristically, 끫̂殾 <361 

1.05 is considered good convergence of MCMC chains. This value can be calculated post hoc after 362 

sampling and PyMC will automatically flag if 끫̂殾 ≥ 1.05 is detected.  363 

 364 

While there are many reporting guidelines for Bayesian inference, we follow the Bayesian Analysis 365 

Reporting Guidelines as given by Kruscke(Kruschke, 2021)  and provide an example reporting document 366 

including posterior predictive checks, Bayesian model comparisons, and sensitivity analysis as 367 

supplementary material. 368 

 369 

Multilinear Regressions, Repeated Measures, and Hierarchical Models 370 

In many experiments, inference across multiple possible data generating parameters must be analyzed 371 

and accounted for. These models, called multilinear regressions, are extensions of standard linear 372 

regression as follows: 373 
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끫毌 = 끫殖끫殎끫毺 + 끫欬 → 끫毌 =  끫毺0 + 끫毺1끫毺1 + 끫毺2끫毺2 … + 끫毺끫殶끫毺끫殶 + 끫欬 374 

where n is the total number predictors.  375 

 376 

To illustrate the use of multilinear regressions, consider the case of thalamocortical infrared neural 377 

stimulation (INS)(Fig 5A). Auditory thalamic neurons in the medial geniculate body were excited by pulse 378 

trains of optical stimuli varying in pulse energy and time between pulses. The resulting auditory cortex 379 

single unit responses are recorded using a planar, Utah style array in layer 3/4. An important and 380 

understudied aspect of INS is the effect of laser energy and interstimulus interval changes on evoked 381 

firing rate responses; a so-called dose-response curve. We begin by specifying predicted and predictor 382 

values. Dose-response relationships were measured by predicting maximum firing rates in response to 383 

applied INS energy (E) and inter-pulse intervals (ISI). As we suspect an interaction between E and ISI, 384 

an interaction term of E*ISI was incorporated. Therefore, the model was defined as: 385 

max(끫歲끫歲) =  끫毸 + 끫毺1끫歰 + 끫毺2끫歸끫歸끫歸 +  끫毺3(끫歰 ∗ 끫歸끫歸끫歸) + 끫欬 386 

An important aspect of this study was that rats underwent chronic recordings through the duration of the 387 

lifetime of the implant. It almost a certainty that stimulation and recording quality will change over the 388 

lifetime of the devices due to neural adaptation to stimulation(Falowski et al., 2011) and glial response 389 

and encapsulation of the devices(Van Kuyck et al., 2007; Woolley et al., 2013). This experimental 390 

paradigm is thus complicated by potentially meaningful repeated measures within subject variability. 391 

Furthermore, slight differences in electrode and optrode placement between rodents could create a 392 

heterogeneity in the receptive fields of recorded neurons(Vasquez-Lopez et al., 2017), representing a 393 

potentially meaningful between-subject variance.  394 

 395 

Hierarchical Structures Capture Latent Variables 396 

Models in both Bayesian and frequentist paradigms capture these within and between subject variances 397 

by adding hierarchical structure to the model.  From the Bayesian perspective, hierarchical models are 398 
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defined by allocating hyperparameters on the prior which encode within and between group variances in 399 

the model, with each hyperparameter containing hyperprior distributions. Graphically, this is organized 400 

in Fig 5B. Bayesian and frequentist hierarchical models share similar roots, with particular hyperprior 401 

distributions in Bayesian paradigms becoming proportional to frequentist random effects models.  402 

 403 

While this appears to be a herculean task in data modeling, PyMC allows for declarations of hierarchical 404 

models, as shown in Code Snippet 4: 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

Code Example 4: Creating a hierarchical regression model 421 
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animal_code_idx = data.animal_code.values       #Encodes within and between 

subject variances as parameter indices 

    with pm.Model() as Heirarchical_Regression: 

        # Hyperpriors for group nodes 

        mu_a = pm.Normal("mu_a", mu=0.0, sigma=1) 

        sigma_a = pm.HalfNormal("sigma_a", 5) 

        mu_b = pm.Normal("mu_b", mu=0.0, sigma=1) 

        sigma_b = pm.HalfNormal("sigma_b", 5) 

        mu_b2 = pm.Normal("mu_b2",mu=0.0, sigma=1) 

        sigma_b2 = pm.HalfNormal("sigma_b2",5) 

        mu_b3 = pm.Normal("mu_b3", 1) 

        sigma_b3 = pm.HalfNormal("sigma_b3",5) 

         

        sigma_nu = pm.Exponential("sigma_nu",5.0) 

        #Base layer 

        nu = pm.HalfCauchy('nu', sigma_nu)          #Nu for robust regression 

        a_offset = pm.Normal('a_offset', mu=0, sigma=1, shape=(n_channels)) 

        a = pm.Deterministic("a", mu_a + a_offset * sigma_a) 

        # Declare Regression parameters under a normal distribution 

        b1_offset = pm.Normal('b1_offset', mu=0, sigma=1, shape=(n_channels))     

        b1 = pm.Deterministic("b1", mu_b + b1_offset * sigma_b) 

         

        b2_offset = pm.Normal("b2_offset",mu=0, sigma=1, shape=(n_channels)) 

        b2 = pm.Deterministic("b2", mu_b2 + b2_offset*sigma_b2) 

 

        b3_offset = pm.Normal("b3_offset",mu=0, sigma=1, shape=(n_channels)) 

        b3 = pm.Deterministic("b3", mu_b3 + b3_offset*sigma_b3) 

        #Add in the error term 

        eps = pm.HalfCauchy("eps", 5,shape=(n_channels)) 

        #Declare regression model 

  regression = a[animal_code_idx] + (b1[animal_code_idx] *     

XenergyPerPulse) + (b2[animal_code_idx] * XDist) 

+(b3[animal_code_idx]*XenergyPerPulse*XDist) 

        #Encode model into likelihood function  

   likelihood = 

pm.StudentT("MaxZ_like",nu=nu,mu=regression,sigma=eps[animal_code_idx], 

observed= MaxZ)  

 

 
 422 

Owing to the scarcity of thalamocortical INS data, we assigned noninformative, wide spread normal 423 

distributions on the priors and hyperpriors so as to let the data speak for itself. We also utilized a student-424 

T distribution as the likelihood function to accommodate outliers in a modification known as  “robust 425 
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regression”(Kruschke, 2014). Student-T distributions have tails which are not bounded by the exponential 426 

function, meaning that extreme values have less impact or skew on the posterior distribution. Half-427 

Cauchy distributions are placed on the error term and Student-T normality parameter 끫欐. Half-Cauchy 428 

distributions are advantageous in learning scale parameters from the data in hierarchical models 429 

(Gelman, 2006; Polson and Scott, 2012). 430 

 431 

It is important to validate that our model and data generating functions indeed represent the observed 432 

data. Sensitivity analyses and posterior predictive checks thus can be performed to ensure the model 433 

chosen is the one that best describes the observed data. Sensitivity analyses were performed by varying 434 

prior variance and comparing models which were nominal or natural log transformed with normal and 435 

student-T likelihood functions. Model comparisons can be performed in many ways, but a common 436 

paradigm is the leave-one-out cross validation (LOO)(Gelman et al., 2014). LOO consists of partitioning 437 

data into training and test sets and iteratively fitting the model under test with training data and testing 438 

out of sample fits with test data. Models are then ranked using the expected log pointwise predictive 439 

density (ELPD) measure: 440 

끫歰끫歰끫殆끫歰 =  ��끫殢끫毌끫殬끫殺끫毂끫毌끫歈� log �끫殺(끫毌끫歈�|끫毌)�끫殰
끫殬=1  441 

where 끫殺끫毂 ,끫毌끫殬 are unknown distributions representing the true data generating function for estimates of true 442 

posterior predictive function (끫毌�|끫毌) from observed data 끫毌(Vehtari et al., 2017). In general, larger values of 443 

ELPD represent better out of sample fits indicative of a better model conditioned on observed data. We 444 

can then use standard errors between the model with the best ELPD (dse) and all competing models to 445 

rank all models to observed data. Importantly, these metrics should be understood only in the context of 446 

a model relative to other models, and not a global predictor of model validity. Observations of posterior 447 

fits to the data using posterior predictive fits and Bayesian p-values should be utilized on the final model 448 
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to determine model fit. This seemingly complex model comparison can be quickly and easily done in 449 

PyMC with the following commands: 450 

Code Example 5: Model Comparisons 451 

    Var5_loo = az.loo(trace_Var5) 

    Var100_loo = az.loo(trace_Var100) 

    df_comp_loo = az.compare({"Var5": trace_Var5, "Var100": trace_100}) 

 
 452 

Model comparison results are given in Table 1. Similar to the simple regression above, the log 453 

transformed model provided much better fits to observed data than non-log transformed models. 454 

Interestingly and instructively, moderately informative priors (variance 5) outperformed noninformative 455 

priors (variance 100), suggesting that constraining prior variance can have predictive power in inference. 456 

Posterior predictive checks on the winning model show good fits to observed data with a Bayesian p-457 

value near 0.5.  458 

 459 

We can now perform inference on our multiregression model. It was found (Fig 5C) that 끫毸  was 460 

significantly above 0 (MAP = 2.2, 95% HDI does not cross 0) suggesting that basal firing rates of recorded 461 

neurons were typically above 0 as expected. It was also seen that maximal firing rates were significantly 462 

dependent on applied INS energy (끫毺1MAP = 0.58, HDI does not cross 0) with increases in INS energy 463 

leading to larger evoked maximal firing rates. The relative spread of the 95% HDI on 끫毺1 of 0.27-0.88 464 

suggests a heterogeneity in neuron dose-response characteristics that can be explored more. Somewhat 465 

surprisingly, there was no significant effect of ISI on maximum firing rates (끫毺2 MAP = -0.055). The relative 466 

spread across 0 of -0.45 to 0.3 suggests that extreme values of ISI might potentially have an effect, with 467 

smaller ISIs causing neural integration of singular INS pulses into a singular, large pulse. However, that 468 

cannot be determined given the INS parameters used in this study. Also surprisingly, there was no 469 
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significant effect of Energy-ISI interactions (끫毺3 MAP = 0.028), suggesting that INS energy is the primary 470 

mediator of evoked firing rates.  471 

 472 

Bayesian ANOVAs 473 

Comparison of differences between groups is another routine statistical procedure used when predictor 474 

variables are nominal or categorical in nature or a mixture of metric and categorical predictors. The 475 

frequentist treatment of these experimental designs largely uses analysis of variances methods, namely 476 

ANOVA for categorical predictors and, more generally, ANCOVAs for categorical predictors with metric 477 

covariates. ANOVAs are models that take the form of:  478 

끫毌 =  끫毸 + �끫毺끫殬끫毺끫殬끫殬  479 

where 끫毺끫殬, 끫毺끫殬  are the parameters corresponding to nominal predictor class 끫殬 , 끫毸  is the offset or bias 480 

parameter, and 끫毌  is the metric dependent variable. ANOVA parameters and class values 끫毺끫殬 , 끫毺끫殬  are 481 

treated differently than the regression case, as 끫毺끫殬  are categorical as opposed to continuous, metric 482 

values. As such 끫毺 categories are recast into “one-hot” encoded vectors 끫⃗毺 = [끫毺0,끫毺1, … , 끫毺끫殬]in which only a 483 

singular value in an array can have a value of 1 and all other elements are cast to 0, allowing for binary 484 

indication of a given class among a group of classes. If an individual value falls into group 끫殮, for example, 485 끫⃗毺끫殬≠끫殮 = 0, 끫⃗毺끫殬=끫殮 = 1. The coefficients 끫毺끫殬 then encodes the change in dependent variable 끫毌 from inclusion of 486 

datapoint 끫毺 in category 끫殬. Importantly, deflections from baseline are constrained such that ∑ 끫毺끫殬끫殬 = 0. Both 487 

Bayesian and frequentist ANOVA models treat 끫毺끫殬 parameters as group deflections about the baseline 488 

level of the dependent variable.  489 

 490 

ANCOVA is a modification to the ANOVA model to include a metric covariance term: 491 
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끫毌 =  끫毸 + �끫毺끫殬끫毺끫殬 +끫殬 끫毺끫殠끫殠, 끫毺끫殠끫殠 492 

 493 

 where 끫毺끫殠끫殠, 끫毺끫殠끫殠  are the parameters corresponding to metric predictors. Metric predictors terms are 494 

valuable in accounting for within group variance which is attributable to some other metric measurable 495 

variable, such as decreased firing rates in response to an applied stimulus found in a class of aged 496 

animals.  497 

Bayesian analogues of ANOVA and ANCOVA can be easily defined in PyMC and are termed BANOVA 498 

and BANCOVA (Fig 5A) respectively to distinguish models from their frequentist counterparts. Traditional 499 

ANOVAs make two key assumptions; that underlying data is normally distributed and a homogeneity of 500 

variance among groups. To account for these assumptions, normal distributions are placed on prior 501 

parameter and observed data distributions and a uniform distribution prior is placed on observed data 502 

variance 끫欜끫毌. Importantly, observed data distributions should be assessed to assure distributions are 503 

normally distributed. While not strictly an ANOVA-like structure, an advantage of Bayesian approaches 504 

is the ability to create models which handle arbitrary distributions. While traditional ANOVAs also assume 505 

independent group variances, the relative shared influence between groups can be learned from the data 506 

by imposing a hyperprior on group variance 끫欜끫毺(Gelman, 2006). As with any prior distributions, selection 507 

of 끫欜끫毺 should be informed by prior inspection of the data. A Half-Cauchy distribution is once again chosen 508 

as it weakly informative and allows for extreme values if data dictates(Gelman, 2006; Polson and Scott, 509 

2012). Setting 끫欜끫毺 to a large constant replicates a traditional ANOVA. 510 

 As a guiding example, consider a similar experiment to that done in simple linear regression. In this 511 

experiment, we aim to understand age-related changes in IC auditory processing of sinusoidal amplitude 512 

modulated sounds. This experiment consisted of two groups of young (animals < 6 months in age) and 513 

aged (animals > 22 months in age). SAM stimuli at increasing modulation depths were played to the 514 
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animals with evoked single unit responses recorded from IC. As seen in the regression experiment (Fig 515 

2), there is a significant increase in evoked firing rate with increased modulation depth in young animals. 516 

As such, it should be included in comparison between the two groups. Taken together, this suggests 517 

BANCOVA will serve as an appropriate model. BANCOVAs are inherently hierarchical(Gelman, 2005; 518 

Kruschke, 2014) (Fig 6A) to allow for between subject variances to be represented in the prior if these 519 

variances mutually inform one another. Setting this hyperprior to a constant creates a model analogous 520 

to a frequentist ANCOVA(Kruschke, 2014). The formation of the BANCOVA is again relatively 521 

straightforward: 522 

Code Example 6: Creating a Bayesian ANCOVA 523 

with pm.Model() as BANCOVA: 

        #Define hyperprior on sigma 

  bSigma = pm.HalfCauchy('bSigma',2.0) #Recommended by Gelman, this  

parameter doesn't overemphasize 0 on sigma. 

        #Define Prior, likelihood distributions. Relatively noninformative  

        a = pm.Normal('a',yMean,sigma = np.sqrt(yStDv)) 

        B = pm.Normal('B',0,sigma=bSigma,shape=numCategories) 

        Bcov = pm.Normal('Bcov',yMean,sigma = np.sqrt(yStDv)) 

        sigmaLikelihood = pm.Uniform('sigmaLikelihood',yStDv/100,yStDv*10) 

        BancovaModel = a + B[ClassAge] + (Bcov*(modDepth - modDepthMean)) 

        y = pm.Normal('y',mu=BancovaModel,sigma = yStDv,observed=firingRate) 

        #Now, make sure model coefficients sum to 0 to create an ANOVA-like 

structure 

        aScaled = pm.Deterministic('aScaled',a+aesara.tensor.mean(B) + Bcov*(-

modDepthMean)) 

        bScaled = pm.Deterministic('bScaled',B - aesara.tensor.mean(B)) 
 

 524 

with inference made in the exact same way as the previous models. 525 

After model sampling, posterior sampling checks were performed to ensure posterior distributions adhere 526 

well to observed data. Posterior predictive distributions show good qualitative fit to observed firing rate 527 

data with Bayesian p-values centered around 0.51, suggesting good model fits to observed data (Fig 6B). 528 

Comparisons between groups is simple once posterior distributions are obtained. All that needs to be 529 
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done is to measure differences between aged and young group parameter posteriors (Fig 6C), encoding 530 

relative influence of young and age groups on firing rates. Aged and young contrasts show significantly 531 

elevated firing rates in young rats across all SAM stimuli (Young-aged difference MAP = 0.25, 95% HDI 532 

excludes 0). Another advantage of Bayesian inference is the ability to observe the distribution, and thus 533 

the most likely value and spread of effect size. In this analysis, the effect of age in SAM stimulus 534 

processing is significant but small (effect size MAP =0.058, 95% HDI excludes 0) but with a wide spread 535 

of effect (95% HDI between 0.025-0.64) suggesting variable temporal acuity between rodent subjects. 536 

Finally, firing rates vs SAM amplitude depth for each class are plotted with 끫毌 = 끫毸 +537 끫毺끫毌끫殠끫毌끫殶끫毌/끫殜끫毌끫殜끫毺끫毌끫殠끫毌끫殶끫毌/끫殜끫毌끫殜 + 끫毺끫殠끫殠끫殠끫毺끫殠끫殠끫殠 superimposed. 538 

 539 

Multiple Comparisons in Bayesian Inference  540 

In traditional frequentist analyses, corrections for multiple comparisons are necessary in order to ensure 541 

that maximum Type I errors (false positives) are constrained to a maximum of 5% (끫毸 = 0.05). With 542 

Bayesian inference, a posterior distribution across all parameters is obtained which remains unchanged 543 

no matter how many comparisons are made(Kruschke, 2014). Furthermore, frequentist type I errors are 544 

classically defined in the context of rejection of a null hypothesis. Bayesian inference is not strictly 545 

concerned with rejection of a null hypothesis, instead weighing competing hypotheses given observed 546 

data. Bayesian models are not immune to making false conclusions about data. These errors, called type 547 

M for errors in magnitude and type S for errors in sign occur when outliers in data exert too much influence 548 

on inference. These errors can be controlled by proper choice of priors or by building hierarchical models 549 

(Fig 5A, Fig 6A) which can account for outliers by pulling parameters towards group means when 550 

evidence is small and allowing parameters with good evidence to remain in a phenomenon called partial 551 

pooling implicit to hierarchical structures(Gelman et al., 2009). 552 

Discussion 553 
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Bayesian inference approaches present a powerful statistical tool which encourages deep and 554 

meaningful exploration of data and allows for presentation of data in intuitive and transparent ways. In 555 

this tutorial, we demonstrate the ease by which Bayesian inference can be performed across a wide 556 

variety of experimental designs and provide source code which can be modified to accommodate 557 

neuroscientific experiments using all free and open source tools. We intentionally used the base PyMC 558 

toolchain in order to explicitly show Bayesian model creation. However, there are PyMC plugin tools such 559 

as Bambi (Capretto et al., 2022) which can facilitate creation of Bayesian models in single lines of code. 560 

An example of Bambi-enabled model creation is provided in our Bayesian inference toolbox. 561 

 562 

Tempering Expectations of Bayesian Inference 563 

Despite the enthusiasm of some Bayesian advocates, Bayesian inference is not a panacea. It is subject 564 

to similar problems as frequentist NHST, in that models can be used which do not adequately fit 565 

underlying data statistics or priors can be chosen which dominate model performance and deemphasize 566 

observed data. However, Bayesian approaches support and encourage model transparency, requiring 567 

researchers to declare model priors and posteriors while encouraging continued discussion of inference 568 

on data as opposed to stopping if a p-value is below an arbitrary threshold. A second caveat is that 569 

running MCMCs can be slower than frequentist approaches, with run times sometimes in minutes as 570 

opposed to seconds. However, time increases are not astronomical and can be further reduced to levels 571 

similar to frequentist approaches by using GPU computing or using programs such as JASP(Love et al., 572 

2019) which utilize a C backend to speed up computation. 573 

 574 

The Controversy of the Prior 575 

The prior is arguably the most contentious aspect of Bayesian inference, with arguments that the prior 576 

unduly influences decisions on data. It is absolutely possible to have priors that distort posterior 577 

distributions into poor inference. Similar arguments can be levied at Frequentist approaches which 578 
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perform similar distortions on decision metrics, such as applying ANOVA tests when underlying data is 579 

not normal. Often times, these mistakes are not done out of malevolence, but due to the modern 580 

framework of how statistics is performed. We argue that having to consider what prior to use, and thus 581 

what one’s assumptions are, what distributions are physiologically relevant, and the distributions of 582 

observed data will help to prevent errors in statistical modeling while creating greater transparency in 583 

how conclusions on data are drawn.  584 

 585 

Decisions with Bayes Factors 586 

Some studies which utilize Bayesian inference use a decision metric called a Bayes’ factor, which is a 587 

measurement of the ratio of marginal likelihoods of two competing models providing log likelihood of 588 

evidence for one model over another(Johnson et al., 2023). We intentionally chose not to utilize Bayes’ 589 

factor metrics because, in the authors’ opinions, they reduce inference to evaluation of a single metric 590 

over an arbitrary threshold, as opposed to analysis over posterior distributions of observed data. 591 

Furthermore, certain prior declarations yield undefined Bayes’ factors(Gelman and Rubin, 1995) 592 

potentially encouraging using suboptimum models in order to provide arbitrary decision metrics. 593 

 594 

Bayesian and Frequentist Approaches: A Wholistic Approach to Inference 595 

Following in the steps of Bayarri and Berger(Bayarri and Berger, 2004), data analysis should not consist 596 

solely of Bayesian or frequentist approaches devoid of the other. There are certainly cases where 597 

frequentist approaches should be used, such as clinical trials where preregistration and proper protocol 598 

design can provide bounds on false-positive and false negative rates necessary for translation of medical 599 

therapeutics. Hybrid frequentist and Bayesian approaches can also provide richer insight into analyses 600 

where posterior distributions are unidentifiable or difficult to sample(Raue et al., 2013) or in identifying 601 

when improper models have been chosen(Berger et al., 1997). Bayesian ideas of posterior predictive 602 

checks and model comparisons can also be applied to frequentist NHST, many of which would help 603 
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address problems of replication and data transparency. As frequentist approaches are often baked into 604 

the pedagogy of neuroscience and neural engineering, we aim for this tutorial to be a thorough 605 

introduction into the application of Bayesian statistics to help develop a toolkit which can be used for 606 

robust data analysis or in conjunction with previously established frequentist approaches. These models 607 

are also easily extendable into Bayesian analogs of logistic or multinomial regressions, gaussian mixture 608 

models, Bayesian time series analyses, among many more. 609 

Code and Data Availability 610 

The code/software described in the paper is freely available online at [URL redacted for double-blind 611 

review]. The code is available as Extended Data. 612 
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Figures 727 

 728 

Figure 1: Example of Bayesian simple linear regression on population estimates of firing rate vs 729 

amplitude modulation depth stimuli. This model was applied to population single unit firing rates 730 

elicited from inferior colliculus with sinusoidal amplitude modulated (SAM) tones. The goal of this 731 

model was to predict evoked firing rates from increases in SAM modulation depths. A. Scatterplot of 732 

observed firing rates vs SAM modulation depth and fitted regression estimates. B. Schematic of 733 
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amplitude modulated stimuli. C. Kernel density estimates of the observed log transformed data 734 

probability distribution function. C. An example of Bayesian model comparison. Left: Regression 735 

model with untransformed data. Right: natural log transformed firing rate model. Posterior predictive 736 

checks reveal that natural log transformed firing rate models better match observed data. 737 

 738 
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 742 
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 744 

Figure 2: Graphical description of Bayes rule and the interaction between prior distributions and 745 

likelihood functions leading to the final posterior distribution. A. Bayes rule can be thought of as a 746 

reallocation of probability to the posterior after accounting for prior distributions and observed 747 

evidence. B. An example of posterior generated from an inverse-Gamma distributed likelihood and a 748 

uniformly distributed prior. Uniform priors reflect the likelihood function, and thus the observed data 749 

with no redistribution probability, making uniform distributions uninformative priors. However, care 750 

must be taken in using uniform distributions as observed data outside of prior bounds is mapped to 0 751 

probability. C. An example of a posterior generated from an inverse-Gamma distributed likelihood and a 752 

gaussian distributed prior. This prior is considered informative as it shapes the posterior distribution to a 753 

greater extent than a uniform distribution. Prior distributions with longer tails can handle extremes of 754 
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observed data by mapping extreme events to low, but non-zero representation in the posterior. Examples 755 

B and C represent extremes of prior choices, with minimally informative priors often chosen to let the 756 

data “speak for itself” with little change to posterior from prior influence. 757 

 758 

 759 
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 772 

Figure 3: Completed Bayesian inference quantifying linear relationships in evoked firing rate from 773 

increases in modulation depth. A. Scatterplot of observed firing rates vs SAM depth stimuli with fitted 774 

regression line estimates superimposed. 95% HDI estimates of regression slopes are shown in orange, 775 
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with the spread of lines encoding the 95th percentile of most likely slope values. B. Estimates of 776 

Bayesian linear regression parameters. Intercept term 끫毸 was significantly above 0 (MAP = 3.1, 95%HDI 777 

does not overlap 0) which indicates basal firing rates above 0. Regression slope was small but 778 

significantly above 0 (MAP = 0.018, 95% HDI does not overlap 0) suggesting an increase in evoked 779 

firing rates with increased modulation depth. Error term 끫欬 was significantly above 0 (MAP = 0.74, 95% 780 

HDI does not overlap 0) suggesting some model deviation from observed data. However, error terms 781 

were considered small as 끫欬 MAP <  끫毸 basal firing rate MAPs. C. Posterior predictive checks of linear 782 

(left) and log linear (right) regression models show that log transformed firing rate models produce 783 

posterior predictions most inline with observed data. Disparity of empirical posterior predictive 784 

distributions from observed data as quantified through Bayesian P-values also suggest log transformed 785 

firing rates creates a superior model fit. 786 

 787 

 788 

 789 
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 790 

Figure 4: Evaluation of Markov-chain Monte Carlo (MCMC) chains can help diagnose ill fitting 791 

distributions. A. Kernel density estimates of the marginal posteriors corresponding to each of the 792 

regression parameters of each MCMC trace. Qualitatively, chain distributions should appear similar to 793 

each other, suggesting good convergence to target distributions. B. Time series plot of trace value vs 794 

sample number of marginal posteriors corresponding to each regression parameter. Qualitatively good 795 

traces should have a “fuzzy caterpillar” like shape, evident in all parameters of this model, indicative of 796 

good integration over the joint posterior distribution and effective sampling of the posterior.  797 

 798 

 799 

 800 
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 801 

Figure5: Example of Bayesian multilinear regression incorporating a hierarchical structure. A. In this 802 

experiment, rodents were implanted with fiber optic arrays into auditory thalamus and planar recording 803 

arrays into auditory cortex. Single unit responses were recorded from INS stimuli with applied energy 804 

and interstimulus intervals varied to derive dose-response curves. Figure was drawn using BioRender 805 

under publication license (www.biorender.com). B. Hierarchical schematic of Bayesian multilinear 806 

regression. Hierarchical structures are advantageous in accounting for within and between subject 807 

variability or for repeated measures designs. C. Resulting parameter distributions from dose-response 808 

models. Energy was a significant contributor to maximum firing rate, with increasing laser energy 809 

resulting in increased maximum firing rate, as determined by 95% HDI of the laser energy term 끫毺1 810 
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excluding 0 (MAP = 0.58). Laser pulse interstimulus interval did not significantly contribute to changes 811 

in max firing rate as indicated by ISI parameter 끫毺2 overlapping 0 in its 95% HDI with a MAP value near 812 

0 (MAP = 0.028). The relatively wide spread about zero does suggest that there may be a subset of ISIs 813 

which contribute more strongly to firing rates and warrants further study. Laser energy-ISI interactions 814 

also did not significantly contribute to max firing rate as evidenced by interaction parameter 끫毺3 815 

including 0 in its 95% HDI. The intercept term 끫毸, correspondint to basal firing rates, were significantly 816 

above 0 (MAP = 2.2, 95% HDI excludes 0). 817 

 818 

 819 

 820 

 821 

 822 

 823 
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 824 

Figure 6: An example of Bayesian inference using ANOVA-like models. A. General schematic of 825 

BANOVA/BANCOVA models. Traditional ANOVAs have two key assumptions; normality of group 826 

data and homogeneity of variance. Normality of group data is imposed in BANOVA-like models as 827 

normal distributions around group parameters with homogeneity of variance encoded as a uniform 828 

distribution around posterior variance term 끫欜끫毌. Traditional ANOVAs assume a fixed variance on group 829 

parameter values 끫欜끫毺, imposing the constraint that each group is estimated independently from each other 830 

group. A uniquely Bayesian approach is to instead learn 끫欜끫毺 values from the data itself by placing a 831 

distribution on 끫欜끫毺. B. Posterior predictive checks suggest posterior distributions show good fit in mean 832 

and variance to observed data. C. Once posterior distributions are calculated, group comparisons can be 833 

easily done by subtracting young and aged posteriors to yield a contrast distribution. It is found that 834 

firing rates across all modulation depths are significantly higher in aged vs young rodents (contrast 835 

MAP = 0.25, 95% HDI does not overlap 0). Another unique feature of Bayesian approaches is the 836 

ability to assess distributions on effect size. In this BANCOVA, while group differences are significant, 837 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.19.567743doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.19.567743
http://creativecommons.org/licenses/by/4.0/


42 

 

their relative effective size is small but significant (effect size MAP = 0.057, 95% HDI does not cross 0) 838 

suggesting marginal impact of age on firing rates elicited from SAM stimuli. Finally, metric covariates 839 

of firing rate in response to varying SAM depth in young and aged groups can be plotted as regressions 840 

superimposed on raw data. 841 

 842 

 843 

 844 

 845 

 846 

 847 
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Tables 856 

Table 1: LOO Model comparisons and sensitivity analyses 857 

Model R ELPD DSE 

St Log Var 5 1 -5337.48 0.00 

ST Log Var 100 2 -5337.62 0.420867 

ST Log Var 0.5 3 -5337.76 0.409773 

St Log Var 25 4 -5338.15 0.492297 

ST Log Var 10 5 -5338.18 0.300197 

ST Log Var 1 6 -5338.26 0.331152 

N  Log Var 10 7 -5340.60 3.308668 

N Log var 1 8 -5341.09 3.293779 

N log var 5 9 -5341.16 3.296273 

N log var 0.5 10 -5342.46 3.300550 

ST Semilog Var 1 11 -5466.76 15.845916 

St Semilog var 5 12 -5467.12 15.856552 

ST semilog var 10 13 -5467.15 15.895646 

ST semilog var 0.5 14 -5467.18 15.866405 

ST Var 1 15 -15336.31 79.406629 

ST var 0.5 16 -15355.67 80.415787 

St var 5 17 -15355.67 80.415787 

N var 10 18 -16119.11 82.384329 
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 858 

 859 

 860 

 861 

N var 1 19 -16132.23 83.549811 

N var 0.5 20 -16154.55 84.262219 
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1. Materials and Methods 
 

Bayesian inference was performed on a range of data typical to neuroscience experiments. 

Regression models, ANOVA models, and group comparisons are performed on single-unit 

activity recorded from inferior colliculus (IC) neurons in response to auditory stimuli in young 

and aged rats(Palombi et al., 2001; Simon et al., 2004; C.F et al., 2012; Herrmann et al., 2017). 

Random-effects regression models are performed on single units recorded in the auditory cortex 

(A1) using high-density recording arrays in response to infrared neural stimulation(Izzo et al., 

2007; Cayce et al., 2011, 2014; Coventry et al., 2023) of the medial geniculate body (MGB). To 

underscore that meaningful Bayesian inference does not require cluster computing or extensive 

computational resources, all computations were performed on an MSI GS-66 laptop with an Intel 

i7 processor with an Nvidia RTX2070 GPU. Our inference programs are CPU-bound, not 

requiring any GPU resources. Computations can be performed on most modern CPUs, but 

accelerate with more CPU threads and cores and parallelization on GPUs. All surgical procedures 

used in this study were approved by [redacted for double-blind review]. 

 

1.1 Disruption of Temporal Processing in the Inferior Colliculus Due to 
Aging 

 
The inferior colliculus (IC) is the major integrative center of the auditory pathway, receiving 

excitatory inputs from ventral and dorsal cochlear nuclei, excitatory and inhibitory inputs from 

the lateral and medial superior olivary complex(Kelly and Caspary, 2005) and inhibitory inputs 

from superior paraolivary nucleus and the dorsal and ventral nuclei of the lateral lemniscus(Cant 

and Benson, 2006; Loftus et al., 2010). The IC encodes auditory information through hierarchical 

processing of input synaptics with local IC circuitry(Caspary et al., 2002; Rabang et al., 2012; 

Grimsley et al., 2013; Coventry et al., 2017). Age-related changes in auditory processing 

primarily arise as deficits in temporal processing(Frisina and Frisina, 1997; Parthasarathy et al., 

2010; Parthasarathy and Bartlett, 2012; Herrmann et al., 2017). This dataset is composed of single 

unit responses recorded from young (Age≤ 6 months) and aged (age ≥ 22 months) Fisher 344 
rats. Auditory brainstem responses were recorded from animal subjects a few days prior to 

surgery to ensure hearing thresholds were typical of the rodent’s age. Single unit recordings were 

performed in a 9’x9’ double-walled, electrically isolated anechoic chamber (Industrial Acoustics 

Corporation). Animals were initially anesthetized via a bolus injection of ketamine (VetaKet, 60-

80 mg/kg) and medetomidine (0.1-0.2 mg/kg) mixture via intramuscular injection. Oxygen was 

maintained via a manifold and pulse rate and blood oxygenation monitored through pulse 

oximetry. Supplemental doses of ketamine/medetomidine (20 mg/kg ketamine, 0.05 mg/kg 

medetomidine) were administered intramuscularly as required to maintain surgical plane of 

anesthesia. An incision was made down midline and the skull exposed. Periosteum was resected 

and a stainless steel headpost was secured anterior to bregma via 3 stainless steel bone screws. A 

craniectomy was made above inferior colliculus (-8.5 anterior/posterior, 1 mm medial/lateral 

from bregma). A single tungsten electrode was advanced dorsally towards the central nucleus of 

the inferior colliculus (ICC) during which bandpass noise (200 ms, center frequencies 1-36kHz in 

five steps per octave, 0.5 octave bandwidth) was delivered. ICC was identified based on short-

latency driven responses to bandpass noise search stimuli with ascending tonotopy and narrowly 

tuned responses to pure tones of varying frequencies. Once neurons were identified, responses 

from 5-10 repetitions of sinusoidal amplitude-modulated tones (750 ms tone length, modulation 

depth between -30 to 0 dB) were recorded using a preamplifying headstage (RA4PA, Tucker-

Davis Technologies) and discretized at a sampling rate of 24.41 kHz (RZ-5, TDT). Sinusoidal 

amplitude-modulated tones were defined as: 끫毀(끫毂) = 끫歨[1 + 끫殴 ∗ 끫殠끫殠끫毀(2끫欖끫欖_끫殴 끫毂 + 끫欢)] ∗ 끫殶(끫毂) 
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where m is modulation depth ranging between 0.032-1 (-30 – 0 dB), 끫欖끫殴   the modulation 

frequency, φ the reference phase of the modulator, A the scaling factor for stimulus sound level, 
and 끫殶(끫毂) the broadband noise stimulus. Single units were filtered between 0.3 and 5 kHz. Offline 

spike sorting was performed using OpenExplorer (TDT). 

 

1.2 Thalamocortical Infrared Neural Stimulation  
 

Infrared neural stimulation (INS) is an optical technique using coherent infrared light to stimulate 

nerves and neurons without the need for genetic modification of the target or direct contact with 

tissue that offers spatially constrained activation above electrical stimulation(Wells et al., 2005; 

Izzo et al., 2007; Cayce et al., 2011, 2014; Coventry et al., 2020, 2023). In this study, rats were 

chronically implanted in A1 with 16 channel planar Utah-style arrays (TDT, Alacua FL) and 

stimulating optrodes in the medial geniculate body of auditory thalamus (Thor Labs, Newton NJ). 

Rodents were initially anesthetized with a bolus injection of a ketamine (80 mg/kg) and 

medetomidine (0.2 mg/kg) cocktail. Oxygen was maintained via a manifold and pulse rate and 

blood oxygenation monitored through pulse oximetry. Supplemental doses of 

ketamine/medetomidine (20 mg/kg ketamine, 0.05 mg/kg medetomidine) were administered 

intramuscularly as required to maintain surgical plane of anesthesia. An incision was made down 

midline and the skull exposed. The periosteum was removed via blunt dissection and 3 stainless 

steel bone screws were placed in skull for headcap stability. An additional titanium bones crew 

was placed in skull to serve as a chronic ground and reference point for recording electrodes. 

Craniectomies were made above medial geniculate body (-6 anterior/posterior, -3.5 medial/lateral 

from bregma) and auditory cortex (-6 anterior/posterior, -5 medial/lateral from bregma). Fiber 

optic stimulating optrodes were placed in the midpoint of MGB (-6 dorsal/ventral from dura) and 

affixed to the skull using UV-curable dental acrylic (MidWest Dental). A 16 recording channel 

planar array was putatively placed in layers 3/4 of auditory cortex, with placement confirmed by 

short-latency high amplitude multiunit activity elicited from band pass noise (200 ms, center 

frequencies 1-36kHz in five steps per octave, 0.5 octave bandwidth) test stimuli. Recording 

electrodes were sealed onto the headcap. Animals were allowed to recover for 72 hours prior to 

the beginning of the recording regime. All recordings were performed in a 9’x9’ electrically 

isolated anechoic chamber. During recording periods, animals received a intramuscular injection 

of medetomidine(0.2 mg/kg) for sedation. Optical stimuli were delivered from a 1907 nm diode 

laser (INSight open source optical stimulation system) coupled to the optrode with a 200 μm, 
0.22 NA fiber (Thor Labs FG200LCC). Laser stimuli were controlled via a RX-7 stimulator 

(TDT) and consisted of train stimuli with pulse widths between 0.2-10 ms, interstimulus intervals 

between 0.2-100 ms and energy per pulse between 0-4 mJ. Applied laser energies were 

randomized to limit effects from neural adaptation with 30-60 repetitions per pulse 

width/interstimulus interval combinations. Signals from recording electrodes were amplified via a 

Medusa 32 channel preamplifier and discretized and sampled at 24.414 kHz with a RZ-2 

biosignal processor and visualized using Open-Ex software (TDT). Action potentials were 

extracted from raw waveforms via real-time digital band-pass filtering with cutoff frequencies of 

300-5000 Hz. Single units were extracted offline via superparamagnetic clustering in WaveClus 

(Quiroga et al., 2004). Studies were performed to assess the dose-response profiles of optically-

based deep brain stimulation over the span of several months. As each electrode recorded diverse 

populations of neurons which are potentially subject to change due to electrode healing in, age of 

the device, and adaptation to the stimulus, a within subjects, repeated measures regression model 

was warranted. Bayesian hierarchical regressions can easily deal with complex models such as 

these. 

 

2. An Example of Bayesian Analysis Reporting Guidelines 
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Bayesian Analysis Reporting Guidelines (BARG)(Kruschke, 2021) was initially proposed to 

promote transparent and reproducible Bayesian statistics reporting. While initially devised for 

social and psychological sciences, we adapted the BARG to suit neuroscientific data. 

 
1. Bayesian Model Descriptions and Sensitivity Analyses. This report follows the 

guidelines for reporting of Bayesian Analysis (BARG) (Kruschke, 2021) consisting of: 
 

• Necessary software and source code directory 

• Goals of the analysis 

• Model descriptions and decision criterion 

• Prior and hyperprior descriptions 

• Sensitivity analyses for varying prior distributions 

• Posterior and MCMC diagnostics 
 

1.1 Necessary software and source code directory 
 

BARG: Step 2A, 6 
This section describes the computational tools used for statistical analyses, including CPU and 
GPU use. For example: 
 
Bayesian modeling was performed using Python 3.6.8 on a Razer Blade 15 Laptop with an Intel 
Core i7 processor (6 cores) and an Nvidia RTX2070 GPU. Models were implemented in PyMC 
version 4.11.5 (Salvatier et al., 2016), a probabilistic programming module in the Python 
environment. All source code is available at this paper’s github repository (Link to software). All 
source data is available at this article’s open science framework repository (Link to Data). 
 
1.2 Goals of the Analyses 
This section serves to establish goals of the analyses, brief description of the statistical models 
used and validation of Bayesian approaches. 
 
 

BARG: Preamble 
The goal of Bayesian regression analyses is to infer a linear relationship within inferior colliculus 
single unit firing rates resulting from changes in depth of sinusoidal amplitude modulated stimuli. 
While this is normally established using frequentist linear regression methods, Bayesian 
approaches allow for flexible and explicit model descriptions which provide rich and descriptive 
inference and quantification of uncertainty in measurement of single unit activity. Inference is 
completed using direct probability measures on posterior distributions as opposed to less intuitive 
and difficult to interpret p-values. Bayesian approaches are also data driven and account for 
previous knowledge to be encoded as prior distributions (see section 1.3). 
The regression model utilized is: 
 

ln (끫歲끫歲) =  끫毸 + 끫毺 ∗ 끫殴 + 끫欬 
 
where FR is the mean evoked firing rate. Firing rate functions were calculated from recorded 
peristimulus time histograms. Parameter 끫毺  quantifies the effect of modulation depth (m) on 
evoked firing rates respectively. The 끫毸 parameter describes the model intercept and quantifies 

subthreshold spontaneous activity and the 끫欬 quantifies model error.  
 

1.3 Prior Selection 
 

Priors and rational for prior choice is described in this section 
 
There is significant data detailing inferior colliculus responses to SAM stimuli from our lab and the 
auditory neuroscience community writ large(Citations redacted for double blind review). However, 
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the role of modulation depth on IC firing rates is understudied. As observations of single unit IC 
activity tends towards normal distributions, normal likelihood and prior distributions were chosen. 
Normal distributions also have the advantage of being moderately informative, refraining from 
undue influence on the posterior from the prior, allowing data to “speak for itself.” 
 
 
1.4 Posterior Decision Rules 

 
This section details the decision rules used in inference (ROPE+HDI, Bayes factors, etc). 
 
Inference was performed on posterior distributions with credible regions (analogous to frequentist 
confidence intervals) defined as a highest density interval (HDI) of 95% of parameter maximal a 

posteriori density (MAP) parameter estimates which represent the most probable value of the 
coefficient. MAP estimates are analogous to maximum likelihood estimation found in frequentist 
approaches. This allows for the quantification of parameter uncertainty as variance observed in 
posterior parameter distributions, with narrow HDIs representing more certain estimates. It is 
customary to define a region of practical equivalence (ROPE) if prior information dictates that 
incremental parameter changes are effectively the same. As we lack prior knowledge to inform 
the choice of a prior rope, we take an agnostic approach that any change seen is worth 
investigating and thus ROPEs are not presented. An effect was deemed significant if it’s 95% HDI 
did not overlap with 0, in line with proposed decision rules typical of Bayesian 
inference(Kruschke, 2011, 2014).  
 
1.5 Final Model 
This section details the final model after prior and posterior sensitivity analyses. Helpful to include 
a descriptive figure of the inference model 
 
Posterior predictive checks and sensitivity analysis were performed to titrate the best performing 
models as measured against observed data (Section 3). The final regression model is 
schematized in figure S1. Final models included deterministic nodes at outputs of prior nodes to 
prevent NUTS from becoming stuck in regions of the sampling space which are difficult to 
explore  1. 
 
1.6 Model Sensitivity analyses  
 

BARG: Step 3A,C 
This section details the methods and results of any model sensitivity analyses. As an example, 
Model sensitivity analyses from hierarchical linear regression are given below.  
 
To evaluate the dependance of hyperprior and prior parameters on Bayesian hierarchical linear 
regression, leave one out (LOO) cross validation(Gelman et al., 2014). A series of models were 
evaluated with model variances varied to test sensitivity of each model. Initial data analyses 
suggested that natural-log transformations of the dependent variable (firing rate) produced 
distributions which are better modeled as normal distributions. To this end, hierarchical models 
under test were as follows: 
 

MODEL NAME MODEL 

REGRESSION 끫歲끫歲 =  끫毸 + 끫毺1 ∗ 끫歰끫殶끫歰끫歰끫歰끫歰 + 끫毺2 ∗ 끫歸끫歸끫歸 + 끫毺3 ∗ 끫歰끫殶끫歰끫歰끫歰끫歰 ∗ 끫歸끫歸끫歸 + 끫欬 

SEMILOG 

REGRESSION 
끫殲끫殶(끫歲끫歲) =  끫毸 + 끫毺1 ∗ 끫歰끫殶끫歰끫歰끫歰끫歰 + 끫毺2 ∗ 끫歸끫歸끫歸 + 끫毺3 ∗ 끫歰끫殶끫歰끫歰끫歰끫歰 ∗ 끫歸끫歸끫歸 + 끫欬 

NATURAL 

LOG 

REGRESSION 

끫殲끫殶(끫歲끫歲) =  끫毸 + 끫毺1 ∗ 끫殲끫殶(끫歰끫殶끫歰끫歰끫歰끫歰) + 끫毺2 ∗ 끫殲끫殶(끫歸끫歸끫歸) + 끫毺3 ∗ 끫殲끫殶(끫歰끫殶끫歰끫歰끫歰끫歰) ∗ 끫殲끫殶(끫歸끫歸끫歸)
+ 끫欬 

Table S1: Regression models under test 
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For each model, the variance hyperprior was varied to assess the impact of prior parameters on 
posterior predictions. Prior classes were defined as: informative (variance ≤ 1), moderately 

informative (variance = 5), and weakly informative (variance ≥ 10). Primary metrics for model 
comparison were expected log pointwise predictive density (ELPD), defined as(Vehtari et al., 
2017): 끫歰끫殲끫殤끫殤 =  ��끫殤끫歰끫殬끫殤끫毂끫歰끫歈� log �끫殤(끫歰끫歈�|끫歰)�끫殰

끫殬=1  

where 끫殤끫毂 , 끫歰끫殬 are unknown distributions representing the true data generating function for 

estimates of true posterior predictive function (끫歰 �|끫歰) from observed data y. Estimated 끫殤끫毂 , 끫歰끫殬 
distributions are obtained via cross validation during LOO analysis. In general, higher values of 
ELPD are a result of higher out of sample predictive fit indicative of a better model. Weight values 
generated by LOO cross validation were also analyzed and predict the probability of each model 
given observed data. Finally, we observed the standard error of the ELPD estimate (SE), and the 
difference between the model with highest ELPD and every other model (dSE) with dSE of the 
top model set to 0.00 by definition. All LOO calculations were performed post hoc with the python 
package arviz, a plugin for PyMC. 

MODEL R ELPD WEIGHT SE DSE 

ST LOG VAR 5 1 -5337.48 2.046623e-01 46.220458 0.00 

ST LOG VAR 100 2 -5337.62 1.763745e-01 46.227682 0.420867 

ST LOG VAR 0.5 3 -5337.76 1.552051e-01 49.173347 0.409773 

ST LOG VAR 25 4 -5338.15 1.058393e-01 46.358847 0.492297 

ST LOG VAR 10 5 -5338.18 9.996540e-02 46.141502 0.300197 

ST LOG VAR 1 6 -5338.26 9.238175e-02 49.030330 0.331152 

N  LOG VAR 10 7 -5340.60 7.103823e-02 49.024680 3.308668 

N LOG VAR 1 8 -5341.09 4.291607e-02 48.985814 3.293779 

N LOG VAR 5 9 -5341.16 3.978488e-02 89.737613 3.296273 

N LOG VAR 0.5 10 -5342.46 1.183257e-02 89.930943 3.300550 

ST SEMILOG VAR 1 11 -5466.76 4.359604e-37 84.933022 15.845916 

ST SEMILOG VAR 5 12 -5467.12 3.535240e-37 89.043113 15.856552 

ST SEMILOG VAR 10 13 -5467.15 5.622764e-37 85.266895 15.895646 
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Table S2: LOO model comparison results for the Bayesian hierarchical regression models. Var: 
Prior variance parameter, log: log predictor and predicted variable model. semilog: semilog  
predictor model. ST: Student T Likelihood models. N: Normal likelihood models 

1.7 Posterior and MCMC Diagnostics 

This section details model diagnostics surrounding the Bayesian Inference procedure. 

BARG: Step 1E, 2A-D, 3A,C 

1.7.1 Choice of MCMC method 

This section details the choice of Markov-chain Monte Carlo model used. Many are available, 
but NUTS is the most common. 

For sampling, the Hamiltonian-based MCMC method no U-turn sampling (NUTS)(Hoffman and 
Gelman, 2011) was used. NUTS presents a modification of general Hamiltonian Monte Carlo 
samplers and presents an efficient sampler for hierarchical and high-dimensional models at the 
cost of slower sampling times. Regression models ran 4 simultaneous chains with 2000 burn in 
samples and 4000 iterations with a 90% target inclusion probability.  

MCMC Diagnostics 

Energy transition plots were used to assess how well MCMC sampled the target posterior 
distribution of the best performing model as assessed by PSIS-LOO metrics which were 
compared between models(Betancourt, 2017). NUTS sampling is based off dynamical systems 
modeling (Hamiltonian Monte Carlo) movement through the high entropy distributions towards a 
target distribution. MCMCs are modeled as dynamical systems with “position” and “momentum” 
associated with transition between states. This allows for a measurement of kinetic energy 
associated with the sampler. Efficiency in MCMC trajectory towards the target distribution can be 
assessed by comparing energy associated with the marginal energy distribution. The regression 
model displayed overlapping marginal energy and energy transition distributions (Fig S2) 
suggesting that sample to sample movement was nearly independent and indicative of efficient 
sampling of the target posterior distribution. 

Furthermore, traces of sampled prior parameters in regression models suggest effective sampling 
of the posterior distribution (Fig S3). Furthermore, the Gelman-Rubin statistic, quantifying within 

ST SEMILOG VAR 

0.5 
14 -5467.18 3.483572e-37 85.266895 15.866405 

ST VAR 1 15 -15336.31 0.000000e+00 49.465018 79.406629 

ST VAR 0.5 16 -15355.67 0.000000e+00 49.509352 80.415787 

ST VAR 5 17 -15355.67 0.000000e+00 49.487001 80.415787 

N VAR 10 18 -16119.11 0.000000e+00 49.510419 82.384329 

N VAR 1 19 -16132.23 0.000000e+00 49.524316 83.549811 

N VAR 0.5 20 -16154.55 0.000000e+00 49.514661 84.262219 
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and between chain estimates and correlation was  끫欦�  < 끫殞.끫殜끫殜, indicative of convergence of 
marginal posterior parameter values(Gelman and Rubin, 1992). 

1.7.2 Posterior Predictive Checks 

This section describes any posterior predictive checks performed and a description of the 
posterior predictive decision rule. 

A key advantage of Bayesian-based inference approaches is the ability to directly and explicitly 
compare model fits to observed data. During model development, posterior predictive checks 
were performed by sampling from the posterior distribution (16,000 draws). Kernel density 
estimates of posterior predictive draws from the posterior distribution were compared to kernel 
densities of observed data. Goodness of fit was quantified using the Bayesian p-value(Gelman et 
al., 2021). Similar to the frequentist p-value, the Bayesian p-value is also a measure of 
discrepancy, quantifying the probability that posterior predictive-based draws are more extreme 
than observed data. The Bayesian p-value is defined as: 끫殤끫歪 = �끫殤끫歰끫殾끫殤끫殢 끫歸끫殎(끫毌끫殾,끫欆)≥끫殎(끫毌끫殾,끫欆)끫殤(끫歰끫殾|끫殢)끫殤(끫殢|끫歰) 

where I is the indicator function, 끫欴끫欦 is the posterior predictive distribution and y is the posterior 
distribution. Similar to the posterior distribution, posterior predictive distribution and Bayesian p-
values were estimated using NUTS. The closer the Bayesian p-value is to 0.5, the better the data 
sampled from the posterior distribute around the observed data. 

Posterior predictive fits and Bayesian p-values for the hierarchical linear and multinominal 
regression models suggest excellent posterior predictive fits with 끫欢�  =  끫殜.끫殜끫殞 for the hierarchical 
linear regression model (Main article, Fig 4). 

Prior and Posterior Trace plots 

This section presents prior and posterior trace plots which are useful for diagnosing model fits. 

BARG: Step 2B,C 

Critical to the performance of HMC MCMC sampling is the convergence of sampling traces. 
Output trace plots display the chain of sampled values and the resulting kernel density estimates 
of sampled prior distributions. All sampled traces showed no divergences in sampling, suggesting 
that sampled traces were “well behaved”, providing accuate and effective sampling of the 
distribution. The Gelman-Rubin statistic, quantifying within and between chain estimates and 
correlation was 끫欦�  < 끫殞.끫殜 for all sampled traces thus showing good MCMC convergence. For 
clarity, traces are available on open science framework, with traces for the posterior presented in 
Figure S3. Traces were checked for characteristic sampling behavior(Hoffman and Gelman, 
2011) with no pathological traces found in models. 
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3. Supplementary Figures 
 

 
 

Figure S1: Schematic diagram of Bayesian Linear Regression 
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Figure S2: Energy transition diagram for Bayesian linear regression. Overlap of marginal energy 

with energy transition distributions suggests effective sampling of target distributions. 
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Figure S3: Bayesian regression posterior MCMC traces. MCMC chain distributions (left) built 

from HMC traces (right). 
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