

Title Page

1. Manuscript Title

Practical Bayesian Inference in Neuroscience: Or How I Learned To Stop Worrying and Embrace the Distribution

2. Abbreviated Title

Practical Bayesian Inference in Neuroscience

3. List all Author Names and Affiliations in order as they would appear in the published article

Brandon S Coventry¹ , Edward L Bartlett²

¹Department of Neurological Surgery and the Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI USA 53705

²Weldon School of Biomedical Engineering, Department of Biological Sciences, and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA 47907

4. Author Contributions:

BSC and ELB designed research, analyzed data, and wrote the manuscript. BSC performed research and provided analytic tools.

5. Correspondence should be addressed to

Edward L Bartlett

email: ebartle@purdue.edu

6. Number of Figures: 6

7. Number of Tables: 1

8. Number of Multimedia: 0

9. Number of Words in Abstract: 197

10. Number of Words for Significance Statement: 97

11. Number of Words for Introduction: 662

12. Number of Words for Discussion: 719

13. Acknowledgements:

Funding for experiments which generated young and aged responses to SAM stimuli was provided by the National Institutes of Health (NIDCD R01DC011580, PI: ELB). Funding for experiments generating INS dose-response data was provided by the Purdue Institute for Integrative Neuroscience collaborative training grant (PI: BSC).

14: Conflict of Interest

BSC and ELB hold a provisional patent (USPTO: 18/083,490) related to INS study data used in this tutorial.

15: Funding sources

ELB: NIDCD R01DC011580

BSC: Purdue Institute for Integrative Neuroscience Collaborative Training Grant.

16. Code and Data Repository

<https://github.com/bscoventry/BayesianNeuralAnalysis>

1 ABSTRACT

2 Typical statistical practices in biological sciences have been increasingly called into question due to
3 difficulties in replication of an increasing number of studies, much of which is confounded by the relative
4 difficulty of null significance hypothesis testing designs and interpretation of p-values. Bayesian inference,
5 representing a fundamentally different approach to hypothesis testing, is receiving renewed interest as
6 a potential alternative or complement to traditional null significance hypothesis testing due to its ease of
7 interpretation and explicit declarations of prior assumptions. Bayesian models are more mathematically
8 complex than equivalent frequentist approaches, which have historically limited applications to simplified
9 analysis cases. However, the advent of probability distribution sampling tools with exponential increases
10 in computational power now allows for quick and robust inference under any distribution of data. Here
11 we present a practical tutorial on the use of Bayesian inference in the context of neuroscientific studies.
12 We first start with an intuitive discussion of Bayes' rule and inference followed by the formulation of
13 Bayesian-based regression and ANOVA models using data from a variety of neuroscientific studies. We
14 show how Bayesian inference leads to easily interpretable analysis of data while providing an open-
15 source toolbox to facilitate the use of Bayesian tools.

16 Significance Statement

17 Bayesian inference has received renewed interest as an alternative to null-significance hypothesis
18 testing for its interpretability, ability to encapsulate prior knowledge into current inference, and robust
19 model comparison paradigms. Despite this renewed interest, discussions of Bayesian inference are often
20 obfuscated by undue mathematical complexity and misunderstandings underlying the Bayesian
21 inference process. In this article, we aim to empower neuroscientists to adopt Bayesian statistical
22 inference by providing a practical methodological walkthrough using single and multi-unit recordings from
23 the rodent auditory circuit accompanied by a well-documented and user-friendly toolkit containing
24 regression and ANOVA statistical models commonly encountered in neuroscience.

25 **Keywords:** Bayesian Inference, Neural Data Analysis, Statistical Inference

26 **Introduction**

27 Inference tools are foundational to all studies in neuroscience, providing the necessary machinery to
28 make decisions and conclusions from data. Frequentist-based null significance hypothesis testing (NHST)
29 has been the gold standard of inference in neuroscience and science at large in part due to the
30 computational simplicity of frequentist models compared to permutation sampling or Bayesian-based
31 methods. A significant problem present in the current practice of NHST, however, arises in the adoption
32 of the p-value as the *de facto* metric of experimental “success”, notorious for its difficulty in interpretation
33 and correct usage (Krueger and Heck, 2019). The confluence of exponential increases in computational
34 power with the wider discussion of problems with NHST usage has created renewed interest in Bayesian
35 inference as an alternative to frequentist NHST while offering interpretability benefits over the p-value
36 and NHST overall.

37

38 The use of p-values, the ubiquitous decision rule in frequentist methods, is fraught with problems due to
39 fundamental misunderstandings of its use, interpretability, and most pathologically, its susceptibility to
40 intentional and unintentional p-hacking(Nuzzo, 2014). Contrary to the initial intent of Ronald
41 Fisher(Fisher, 1992), the p-value has often become the gatekeeper of significance in studies. In this role,
42 it limits deeper observations into data, and it is often used without proper experimental design to ensure
43 proper use and control. Methods of statistical inference require that one first define a statistical model
44 with the power to adequately describe the data-generating process. Inference is then performed to
45 estimate the population distribution from limited samples of observed data. Once estimates of population
46 distributions are made, the determination of whether or not these distributions represent a significant
47 effect is determined. NHST is somewhat a victim of its own success, where common practice has distilled
48 the practice of NHST to chase the somewhat arbitrary $p < 0.05$ measure of significance devoid of model
49 or data considerations(Krueger and Heck, 2019). Furthermore, even in the best of experimental designs,

50 the p-value is a surrogate for arguably what a researcher is most interested in: how likely is it that
51 observed data has some effect different from null(Kruschke, 2011; Gelman and Shalizi, 2013).

52

53 Bayesian methods offer a solution to the problem of the p-value, providing a direct measure of the
54 probability that observations have some effect(Kruschke, 2011; Gelman and Shalizi, 2013). This is done
55 by reallocation of probability of possibilities as parameters in a mathematical model of the data-
56 generating process, leading to probabilistic estimates desired by but not attainable with p-value analyses.
57 Bayesian methods are inherently data-driven; models are built with prior knowledge directly incorporated
58 from parameters estimated directly from observed data.

59

60 Bayesian inference, though chronologically younger than frequentist approaches, was not adopted as
61 the primary inference paradigm due to the computational demands necessary to solve inference
62 problems outside of certain canonical forms(Bishop, 2006) and the adoption of frequentist interpretation
63 of probability(Fienberg, 2006). Inference on arbitrary distributions required a deeper mathematical
64 knowledge and computation of integrals which were potentially intractable without modern numerical
65 integration techniques. Frequentist paradigms however were more easily adapted to computationally
66 simple algorithms, allowing researchers to “do statistics” without extensive formal training. However,
67 exponential increases in computational power with the development of powerful Markov chain Monte
68 Carlo (MCMC) sampling methods now allow researchers to perform meaningful Bayesian inference on
69 arbitrary distributions underlying observed data(Gilks et al., 1996).

70

71 The goal of this tutorial is to remedy the opacity that often accompanies discussions of Bayesian
72 inference by providing simple, step-by-step walkthroughs of Bayesian inference with four common
73 inference paradigms. We also aim to demonstrate the explanatory power of Bayesian inference in the
74 context of neuroscience data. While the aim of this article is focused on application, this tutorial will begin

75 with a brief introduction to Bayes' rule and its constituent components necessary for inference. For more
76 theoretical and mathematical considerations of Bayesian inference, see the following books and
77 articles(Gerwinn et al., 2010; Colombo and Series, 2012; Bielza and Larranaga, 2014; Kruschke, 2014;
78 Kruschke and Vanpaemel, 2015; Ma, 2019; Gelman et al., 2021; Van De Schoot et al., 2021).

79

80 **Estimation of Spike Rates from Auditory Stimuli: A Motivating Example**

81 To facilitate the discussion of Bayesian inference in neuroscience, consider an example found
82 prominently in auditory neuroscience(Fig 1A-B). In our first experiment, single unit recordings were made
83 from the inferior colliculus (IC) in response to applied sinusoidal amplitude-modulated tones (SAM, see
84 SI Methods). The goal of this analysis is to create a linear model of SAM temporal auditory processing
85 by quantifying increases in evoked single unit firing rates in response to decreased SAM modulation.

86 The linear regression model seeks to estimate a linear relationship between one (simple linear) or more
87 (multilinear) predictor and measured variables. In this model, both the measured result and predictors
88 are metric variables which map to a continuum of possible values. The simple linear regression model
89 takes the form of:

90
$$y = \alpha + \beta x + \epsilon$$

91 where y is the measured (predicted) group, x is the predictor, β is the “slope” parameter dictating the
92 relative increase or decrease in y per unit change in x , α is the intercept term which, in models of firing
93 rate represents non-evoked, spontaneous firing rates, and ϵ is an error term which quantifies the
94 difference between the expected value of y at a given x given a linear model versus the observed value
95 of y at x . It should be noted that ϵ is not present in all regression models, but the authors suggest
96 inclusion to quantify deviations from linear fit.

97

98 Linear regression thus forms a model in which AM depth predicts evoked firing rates in which the model
99 parameters are estimated and used to draw conclusions about the relative dependency of y on x . To
100 begin, an observation of the relative distribution of the measured data, in this case firing rates elicited
101 from IC, will allow for robust inference model design. Inspection of the distribution of firing rates (Fig 1C)
102 suggests that a log transform would allow for the data to be normally distributed, making model
103 computations easier through use of canonical normal distributions. Before continuing to inference, it is
104 important to describe the functional components of Bayesian inference's computational tool; Bayes rule.
105

106 **Bayes' Rule**

107 Foundational to Bayesian approaches is a complementary, but epistemically differing view of probability
108 from that of frequentist approaches. While the frequentist perspective treats probability as the **relative**
109 **frequency** of the occurrence of some event, the Bayesian perspective instead treats probability as the
110 **expectation** of an event occurring which can be used to not only quantify the state of knowledge of an
111 event, but also the uncertainty involved in measuring an event. Traditionally, the Bayesian perspective
112 has been called 'belief', a perhaps unfortunate name which belies the fact that the Bayesian perspective
113 of uncertainty of an event is fundamentally quantifiable. Perhaps a better description of Bayesian belief
114 is instead quantification of the state of knowledge by accounting for uncertainty. The cornerstone of
115 Bayesian inference is Bayes rule, defined as:

$$116 \quad P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

117 where H is the quantification of the state of a hypothesis, and E is the quantification of observed evidence.
118 In the context of inference, it is helpful to explicitly state the role of the model in Bayesian formulations:

$$119 \quad P(\theta|E, M) = \frac{P(E|\theta, M)P(\theta|M)}{P(E|M)}$$

120 where M is the model of the data generating process and θ are the model parameters. The individual
121 components of Bayes' rule are given names corresponding to the purpose they serve, with $P(\theta|E, M)$

122 called the posterior distribution, $P(E|\theta, M)$ the likelihood function, $P(\theta|M)$ the prior distribution, and
123 $P(E|M)$ the evidence or marginal likelihood function. Taken together, Bayes' equation represents the
124 quantification of observed data accounting for prior knowledge(Fig 2A). Each component plays a key role
125 in Bayesian inference and each will be discussed briefly below.

126

127 **The Model Evidence**

128 The denominator term $P(E|M)$, called the model evidence (or just the evidence or marginal likelihood in
129 Bayesian parlance) is the quantification of the probability of observing the data under a chosen model of
130 the data generating function. At first glance, the calculation of the total evidence appears to be an
131 insurmountable task. In reality this term is the weighted average of parameter values in a given model
132 weighted by the relative probability of a given parameter value(Kruschke, 2014) and thus acts as a
133 normalization term to ensure the numerator is a proper probability distribution. The structure of $P(E|M)$
134 will change based on whether the distributions represent probability mass functions (discrete case) or
135 probability density functions (continuous case). In the discrete case, the evidence is

136
$$P(E|M) = \sum_{\theta} p(E|\theta, M) p(\theta|M)$$

137 and in the continuous case:

138
$$P(E|M) = \int p(E|\theta, M) p(\theta|M) d\theta$$

139 The evidence function thus represents an average of the likelihood function across all parameter
140 values conditioned on the prior distribution. The marginal likelihood can also be utilized to assess the
141 plausibility of two competing models(Johnson et al., 2023). The evidence, especially in the continuous
142 case, is historically what made Bayesian inference difficult due to the need to evaluate a complex
143 integral numerically. However, the advent of Markov-chain Monte Carlo (MCMC) methods with
144 improvements in personal computer processing power has allowed for computationally efficient

145 integration without the need for supercomputing hardware. MCMC methods will be discussed in a
146 subsequent section.

147

148 **The Prior**

149 The prior, $P(\theta|M)$, is often the major stumbling block for those entering into Bayesian inference, but this
150 hurdle is less about the prior, and more about what the prior is perceived as. The prior, $P(H)$ describes
151 the investigators prior beliefs on the state of knowledge of the study. Critics of Bayesian inference have
152 described the prior as purely subjective, but we, and many others(Kruschke, 2010; Box and Tiao, 2011;
153 Gelman and Shalizi, 2013), argue that the prior represents an explicit declaration of the investigators
154 knowledge, assumptions, and the general state of a field which is implicit and often is present but not
155 stated in frequentist approaches. Moreover, one is encouraged to perform prior predictive checks to
156 compare the sensitivity of competing priors in a Bayesian inference model, as we will show subsequently.
157 The practice of the design of experiments and their resulting publications are rife with implicit priors which
158 are often not acknowledged or realized when reporting results. As an example, consider study of cortical
159 extracellular single unit recordings(Paninski et al., 2004; Bartlett and Wang, 2007; De La Rocha et al.,
160 2007; Coventry et al., 2023a as illustrative examples). The investigator could be leading a project with
161 vast knowledge accumulated over years of study. Or the investigator is a trainee of a career researcher
162 who draws a view of cortical physiology from their experienced mentor mixed with reading current
163 literature. When designing an experiment, the investigator will have some intuition regarding likely and
164 biologically feasible resting state and stimulus-evoked firing rates, cognitively assigning relatively low
165 likelihood of seeing extremes of firing rates with higher likelihood assigned to moderate firing rates
166 previously observed in literature or seen in experiments, and likely will discard or treat as outliers firing
167 rates on the extremes or thought to be non-biological noise. The power of the prior distribution in
168 Bayesian approaches is in part the need to explicitly quantify and report these prior beliefs, which can
169 be analyzed and scrutinized as part of the peer review or post-publication process. Prior distributions

170 also require investigators to consider their biases and relative expectation on the importance of
171 previously recorded and read data, promoting a deeper understanding of not only the data obtained
172 within their lab, but also of the general state of the specific neuroscience field. As the name implies, prior
173 beliefs are quantified as probability distributions by the investigators.

174

175 This begs the question as to what a prior might look like in newer avenues of study where a paucity of
176 data exists. Or in situations where researchers and data analysts want the data to “speak for itself”
177 outside any influence of the prior. In these cases, priors can be designed to be “non-informative” or
178 “weakly-informative”, assigning broad, non-committal distributions to the prior. One might assign a
179 uniform distribution on the prior, effectively treating each parameter outcome as equally likely. Uniformly
180 distributed priors do require some caution, however, as any parameter value outside of the bounds of
181 the uniform distribution is automatically assigned probability 0 in the posterior, even if that value has
182 been observed(Fig 2B). In many cases, it’s better to allow small, but nonzero probabilities to extreme
183 values, such as the tails of a normal distribution, such that evidence for unexpected events is represented
184 in the posterior given strong data(Fig 2C). Conversely, priors can be made to be highly informative in
185 situations where physiological bounds are well known and well-studied, where extreme values are known
186 to be biophysically irrelevant or impossible or known to be due to instrument noise(e.g. large 50/60 Hz
187 noise peak in power spectrum indicative of wall power noise).

188

189 **The Likelihood**

190 The likelihood function, $P(E|\theta, M)$ describes the probability that data is observed given parameter values
191 θ in a data generating model M. In the context of inference, the likelihood function updates information
192 given in a prior distribution to the posterior distribution given the observed data(Etz, 2018). The likelihood
193 function is generally not a proper distribution, in that it is conditioned on yet unknown parameters and
194 may not integrate to 1, but the evidence and prior terms ensures that resultant posterior distributions are

195 true probability densities. The idea of likelihood functions are present in both Bayesian and frequentist
196 models, but has vastly different interpretations. The model parameters in a frequentist viewpoint
197 converge upon singular values learned, usually though maximum likelihood estimation, from merging
198 competing hypotheses of data. Bayesian approaches treat model parameters as ranges arising from
199 distributions after observing the data at-hand.

200

201 **The Posterior**

202 The prior, likelihood, and evidence then form the posterior $P(\theta|E, M)$, the reallocation or mapping of
203 probability from likelihood function, prior, and model evidence to an all-encompassing distribution. The
204 posterior thus is the evidence for parameters θ conditioned on observed data and a model of the data
205 generating function. The posterior forms the basis for inference, with all relevant information encoded in
206 its distribution. Inference on the posterior distribution is covered in a section below.

207

208 **Estimation of the Posterior**

209 Despite Bayes' rule being formulated before Fisher's description of frequentist methods, a major reason
210 that Bayesian inference was not been widely adopted was fundamentally a computational one, in that
211 evaluation of Bayes' rule often requires solving non-trivial integrals. A subset of computationally tractable
212 prior distributions and likelihood functions formed canonical posteriors in which the posterior is easily
213 inferred. However, these cases are not generalizable to experimental data which can be noisy and not
214 well behaved. Modern Markov-chain Monte-Carlo (MCMC) tools have been developed to quickly and
215 easily estimate arbitrary distributions. MCMC involves the generation of random samples which converge
216 to a target probability distribution, the details of which can be learned from the following reviews(Hoffman
217 and Gelman, 2011; Betancourt, 2017).

218

219 **Making Decisions on the Posterior**

220 We define inference broadly as the process by which reasoning and decisions about a phenomena are
221 made from a sample of observations of the phenomena. Classical NHST does not offer zero probability
222 of error hypothesis testing(Blackwell, 1980). However, incorporation of prior knowledge in Bayesian
223 inference allows for optimal decision making on observed data(Blackwell and Ramamoorthi, 1982). The
224 posterior contains all necessary information to make inferences on experimental data incorporating prior
225 knowledge. However, it is best to consider the specific goals of inference before performing statistics.
226 Possible goals of inference are as follows(Kruschke, 2014):

- 227 • Infer the parameters of a model.
- 228 • Reject or confirm a null hypothesis
- 229 • Compare two or more competing models

230 In the case of neuroscientific studies, inferring model parameters occurs when an experiment aims to
231 establish how neural firing rates change with changes in applied stimuli. Or one may want to confirm and
232 reject a null hypothesis that a treatment has the desired effect or that there are differences between
233 neural populations. Importantly, because the Bayesian inference operates solely on the posterior
234 distribution, one can confirm or reject competing hypotheses and not simply reject the null as in
235 frequentist NHST.

236
237 Regardless of the goal, inference always involves analyzing the posterior, which provides a complete
238 representation of the distribution of a given parameter given the experimental data. Therefore, decisions
239 about the data, the effect of model parameters, and/or which hypothesis has more evidence is performed
240 with calculations on the posterior. There are a multiplicity of decision rules that can be used to assess
241 the posterior. The most common, and in the author's opinion, the most intuitive is that of the Bayesian
242 credible interval. The confidence interval calculates the probability that a population parameter lies in a
243 certain interval. As credible intervals are not strictly unique, Bayesian inference convention is to fix the
244 interval to the smallest interval which contains 95% of the posterior distribution density mass called the

245 highest density interval (HDI). Observations of posterior HDIs can then be used to assess the relative
246 effect of a parameter. Regions of practical equivalence (ROPE) may be included in the posterior
247 distribution that explicitly define a range of values that are effectively equivalent to a null value, with
248 parameters considered significant if 95% of the posterior distribution (95% HDI) does not contain 0 or
249 any values in the ROPE (Kruschke, 2018). Along with posterior HDIs, calculations of maximum *a*
250 *posteriori* (MAP, distribution mode) estimates from the posterior are performed to quantify a most likely
251 parameter value. While decision rules are important to assess the relative effect of statistical model
252 parameters, we reiterate that simply passing a decision rule should not conclude the inference step.
253 Inference should be made in context of the evidence presented in model quality checks, observed data
254 posterior distributions, and decision metrics.

255

256 **Error Quantification and Model Comparison**

257 Critical to any statistical model and inference therein is its fit to observed data. While it is entirely possible
258 to perform linear regression on data distributions which are highly nonlinear, predictions and inference
259 made by the model will likely be inaccurate. Both Bayesian and frequentist inference offer robust model
260 error quantification. Bayesian approaches, however, can utilize the posterior distribution to not only
261 quantify and bound the distribution of model errors, but also include *post hoc* posterior predictive
262 sampling as part of the inference paradigm. Posterior predictive sampling involves making random draws
263 from the posterior and building a sampling distribution. This distribution is then compared to the observed
264 data distribution to quantify the model's disparity from observed data. Along with posterior predictive
265 checks, prior predictive checks act as a sensitivity measure of the influence of the prior distribution on
266 the posterior distribution. Taken together, Bayesian inference thus allows for robust statistical inference
267 on observed experimental data which appropriately includes prior knowledge of the state of the field.

268

269 **Formulation of Models and Applied Bayesian Inference**

270 There are a multiplicity of programs and programming languages that facilitate Bayesian analysis, such
271 as standalone programs of Jasp(Love et al., 2019) and probabilistic programming language packages
272 such as BUGS(Brooks, 2003) and STAN(Carpenter et al., 2017), we chose to use PyMC(Salvatier et al.,
273 2016) for its ease in explicitly declaring probability distributions and its implementation in Python which
274 is in common use in neuroscientific data analysis. Model formation is often conserved between
275 frequentist and Bayesian approaches; it is only the mode of inference that differs. However, for clarity,
276 we will discuss both model formation and performing inference in the subsequent sections.

277

278 **Performing Bayesian Inference on the Linear Regression Model**

279 Turning back to the example of IC single unit firing rates in response to SAM depth stimuli, the first step
280 in inference is to place a prior distribution on the data. Previous studies and data can be used to inform
281 the prior, but for this example we chose to demonstrate regression with moderately informative priors on
282 α , β , and ϵ so as to let observed data drive posterior inference. Given that the data observed data is
283 roughly normal, a good first pass is to place a normal distribution on the prior with mean equal to the
284 mean of the observed data and a variance that is wide enough to capture all observed data. After
285 inference is made, sensitivity analyses can be performed to assess the relative importance of the prior
286 parameter values on posterior estimates. Larger prior variances allow for small, but non-zero probabilities
287 on extreme values. This tends to be a more robust approach than setting a value of 0 on extreme events,
288 as observed data with strong evidence for an extreme value can be adequately represented in the
289 posterior. After observation of the underlying distribution of the observed data and decision on a prior
290 distribution, a linear regression inference model can be easily described in code as follows:

291

292 *Code Example 1: PyMC initialization of a simple linear regression model*

```
with pm.Model() as regression:          #Define a model that we call regression
    a = pm.Normal('a', mu=prMean, sigma = 5) #Normally distributed prior on a
    B = pm.Normal('B', mu=prMean, sigma = 5) #Normally distributed prior on B
    eps = pm.HalfCauchy("eps", 5)           #Model error prior
# Now we define our likelihood function, which for regression is our regression
# function
    reg = pm.Deterministic('reg', a + (B*modDepth))
    likelihood = pm.Normal('Y', mu = reg, sigma = eps, observed = fir-
ingRate)
#Deterministic is for non probabilistic data. This is a modification to help sam-
pling, inference is still probabilistic.
```

293

294 The likelihood variable then translates our model to one of Bayesian inference by casting the model as
295 a probability distribution, in this case

296 $y \sim N(\alpha + \beta x + \epsilon)$

297 noting that observed firing rates are incorporated by the 'observed' parameter in the likelihood distribution.

298 To generate the posterior, all that needs to be done is to initialize and run MCMC as follows:

299

300 *Code Example 2: Running the MCMC sampler*

```
with regression:          #Access our defined model
    trace = pm.sample(numSamples, tune=numBurnIn, target_accept=0.90, chains = 4)
    #4 parallel, independent MCMC chains.
```

301

302 This routine then generates a trace variable containing the posterior distributions of all model parameters
303 after sampling numSamples with numBurnIn samples to initialize chains. We also ran 4 chains in parallel
304 with a target_accept probability of 90%. Acceptance probability is somewhat based on the statistics of
305 observed data and model, with more difficult posteriors benefiting from higher accept probability
306 values(Gilks et al., 1996). Improper acceptance probabilities can give rise to insufficient number of draws
307 and malformation of posterior distributions. PyMC provides a helpful readout for when posterior draws
308 are malignant and indicative of higher acceptance probabilities. In summary, in a few lines of code the
309 researcher has observed distributions of the data and explicitly defined a model of the data generator

310 and likely now has a better intuition of the data and how it is distributed. All that's left to observe the
311 posteriors with HDIs to infer significance from the model.

312

313 Plotting the 95% HDI estimation of the regression line (Fig 3a) on modulation depth vs natural log-
314 transformed firing rates suggest a small but significant increase in firing rates with increases in
315 modulation depth. Posterior distributions of model parameters (Fig. 3B) also show that there is an
316 estimated basal firing rate above 0 (α MAP = 3.1) and a slope increase small but significantly above 0 (β
317 MAP = 0.018) with model error terms considered small for being significantly smaller than intercept term
318 (ϵ MAP = 0.74). The spread of the 95% HDI on inferred parameters is used as a measure of uncertainty
319 of the parameter, with narrow HDIs representing more certainty in MAP estimated parameter. In our
320 model, the α parameter has a spread between 3.02 to 3.13, with a difference of 0.11 containing 95% of
321 its posterior distribution, suggesting strong certainty in the MAP estimate of 3.1. Similar narrow spread
322 is seen in the β parameter, with a difference of 0.007 containing 95% of the posterior. The model error
323 term shows that observed data deviation from the model is constrained between 0.71 and 0.76
324 suggesting relative certainty in the magnitude of deviation of the data from the model.

325

326 Statistical conclusions should not end after making inferences on model parameters however. Critical to
327 the validity of statistical inference is the quality of the model fit to observed data. This goodness of fit in
328 Bayesian approaches can be analyzed by posterior predictive checks, in which sample draws are made
329 from the posterior distribution, simulating observations of data generated from the experiment from which
330 the statistical model was fit, and comparing sampled to observed data to assess deviation of model
331 predictions from observed data distributions. In PyMC, posterior predictive checks can be easily
332 performed using the following code:

333

334 *Code Example 3: Performing posterior predictive checks*

Now let's do some posterior predictive checks. PyMC has some nice functions that make this quite easy. We will also sample the posterior distribution for the standard 16,000 samples, which for this posterior should be more than enough.

```
with regression:
    ppcRegression = pm.sample_posterior_predictive(trace, random_seed=Random-
seed)
    #The above code envoes the regression mode, then uses the posterior from
    #the trace, pulling synthetic samples to compare to observed. Random seed
    #is set so that each run can be perfectly replicated
    az.plot_bpv(ppcRegression, hdi_prob=0.95, kind='p_value')
    #Bayes p-values, similar to frequentist, can be used to assess if posterior
    #predictive is sufficiently close to observed density. Should be centered
    #around 0.50.
    az.plot_ppc(ppcRegression)
    az.plot_trace(trace, var_names=['a', 'B', 'eps'])
    plt.show()
```

335

336 To illustrate how posterior predictive checks can be used, a competing model was made which performs
337 Bayesian linear regression to the same data and priors except without log transformation of the data. In
338 each case, random draws were made from each log transformed and non-log transformed posteriors to
339 create empirical data distributions. Comparison of empirical distributions qualitatively show that log-
340 transformed models present a better fit to observed data than non-log transformed models. The relative
341 disparity between posterior predictive model fits and observed data can be quantified by use of Bayesian
342 p-values, a distance measure between two distributions(for details of Bayesian p-values, see Kruschke,
343 2014). The closer the Bayesian p-value is to 0.5, the better data sampled from the posterior overlaps
344 with the distribution of observed data. Plotting the resulting distributions and the Bayesian p-values
345 indeed show the log-transformed model fits better to observed data than the non-transformed model.
346 Similar analyses can be performed around model free parameters, such as prior variables, to form a
347 sensitivity analysis of prior distributions on resulting posterior inferences.

348

349 A secondary and quick check of posterior sampling can be performed by qualitative evaluation of the
350 MCMC sampling chains, often called traces. Traces represent the long term run of a Markov chain which
351 represent the distribution of interest. As such, good traces show evidence of effective sampling and
352 convergence to target probability distributions. PyMC offers easy ways to visualize posterior MCMC
353 traces using the *plot_trace* function. Figure 3 shows traces obtained from our Bayesian regression
354 example. Kernel density estimates of traces corresponding to the posterior distributions of regression
355 parameters show good convergence of MCMC traces to a target distribution (Fig 3A). As MCMC chains
356 are time series samples which form a distribution, evaluation of traces through sampling time can also
357 be used as a diagnostic of sampling convergence. Traces should have a “fuzzy caterpillar” like
358 appearance (Fig 3B) without any stark jump discontinuities from sample to sample. Quantitative trace
359 evaluations are also available, with the Gelman-Rubin statistic (\hat{r}) being the most prominent. The
360 Gelman-Rubin statistic measures the variance between MCMC chains to the within chain variance,
361 effectively measuring chain stationarity and convergence(Gelman and Rubin, 1992). Heuristically, $\hat{r} <$
362 1.05 is considered good convergence of MCMC chains. This value can be calculated *post hoc* after
363 sampling and PyMC will automatically flag if $\hat{r} \geq 1.05$ is detected.

364

365 While there are many reporting guidelines for Bayesian inference, we follow the Bayesian Analysis
366 Reporting Guidelines as given by Kruscke(Kruschke, 2021) and provide an example reporting document
367 including posterior predictive checks, Bayesian model comparisons, and sensitivity analysis as
368 supplementary material.

369

370 **Multilinear Regressions, Repeated Measures, and Hierarchical Models**

371 In many experiments, inference across multiple possible data generating parameters must be analyzed
372 and accounted for. These models, called multilinear regressions, are extensions of standard linear
373 regression as follows:

374 $y = X^T \beta + \epsilon \rightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_n x_n + \epsilon$

375 where n is the total number predictors.

376

377 To illustrate the use of multilinear regressions, consider the case of thalamocortical infrared neural
378 stimulation (INS)(Fig 5A). Auditory thalamic neurons in the medial geniculate body were excited by pulse
379 trains of optical stimuli varying in pulse energy and time between pulses. The resulting auditory cortex
380 single unit responses are recorded using a planar, Utah style array in layer 3/4. An important and
381 understudied aspect of INS is the effect of laser energy and interstimulus interval changes on evoked
382 firing rate responses; a so-called dose-response curve. We begin by specifying predicted and predictor
383 values. Dose-response relationships were measured by predicting maximum firing rates in response to
384 applied INS energy (E) and inter-pulse intervals (ISI). As we suspect an interaction between E and ISI,
385 an interaction term of E*ISI was incorporated. Therefore, the model was defined as:

386
$$\max(FR) = \alpha + \beta_1 E + \beta_2 ISI + \beta_3 (E * ISI) + \epsilon$$

387 An important aspect of this study was that rats underwent chronic recordings through the duration of the
388 lifetime of the implant. It almost a certainty that stimulation and recording quality will change over the
389 lifetime of the devices due to neural adaptation to stimulation(Falowski et al., 2011) and glial response
390 and encapsulation of the devices(Van Kuyck et al., 2007; Woolley et al., 2013). This experimental
391 paradigm is thus complicated by potentially meaningful repeated measures within subject variability.
392 Furthermore, slight differences in electrode and optrode placement between rodents could create a
393 heterogeneity in the receptive fields of recorded neurons(Vasquez-Lopez et al., 2017), representing a
394 potentially meaningful between-subject variance.

395

396 **Hierarchical Structures Capture Latent Variables**

397 Models in both Bayesian and frequentist paradigms capture these within and between subject variances
398 by adding hierarchical structure to the model. From the Bayesian perspective, hierarchical models are

399 defined by allocating hyperparameters on the prior which encode within and between group variances in
400 the model, with each hyperparameter containing hyperprior distributions. Graphically, this is organized
401 in Fig 5B. Bayesian and frequentist hierarchical models share similar roots, with particular hyperprior
402 distributions in Bayesian paradigms becoming proportional to frequentist random effects models.

403

404 While this appears to be a herculean task in data modeling, PyMC allows for declarations of hierarchical
405 models, as shown in Code Snippet 4:

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421 *Code Example 4: Creating a hierarchical regression model*

```
animal_code_idx = data.animal_code.values           #Encodes within and between
subject variances as parameter indices
with pm.Model() as Heirarchical_Regression:
    # Hyperpriors for group nodes
    mu_a = pm.Normal("mu_a", mu=0.0, sigma=1)
    sigma_a = pm.HalfNormal("sigma_a", 5)
    mu_b = pm.Normal("mu_b", mu=0.0, sigma=1)
    sigma_b = pm.HalfNormal("sigma_b", 5)
    mu_b2 = pm.Normal("mu_b2", mu=0.0, sigma=1)
    sigma_b2 = pm.HalfNormal("sigma_b2", 5)
    mu_b3 = pm.Normal("mu_b3", 1)
    sigma_b3 = pm.HalfNormal("sigma_b3", 5)

    sigma_nu = pm.Exponential("sigma_nu", 5.0)
    #Base layer
    nu = pm.HalfCauchy('nu', sigma_nu)           #Nu for robust regression
    a_offset = pm.Normal('a_offset', mu=0, sigma=1, shape=(n_channels))
    a = pm.Deterministic("a", mu_a + a_offset * sigma_a)
    # Declare Regression parameters under a normal distribution
    b1_offset = pm.Normal('b1_offset', mu=0, sigma=1, shape=(n_channels))
    b1 = pm.Deterministic("b1", mu_b + b1_offset * sigma_b)

    b2_offset = pm.Normal("b2_offset", mu=0, sigma=1, shape=(n_channels))
    b2 = pm.Deterministic("b2", mu_b2 + b2_offset*sigma_b2)

    b3_offset = pm.Normal("b3_offset", mu=0, sigma=1, shape=(n_channels))
    b3 = pm.Deterministic("b3", mu_b3 + b3_offset*sigma_b3)
    #Add in the error term
    eps = pm.HalfCauchy("eps", 5, shape=(n_channels))
    #Declare regression model
    regression = a[animal_code_idx] + (b1[animal_code_idx] *
XenergyPerPulse) + (b2[animal_code_idx] * XDist)
+(b3[animal_code_idx]*XenergyPerPulse*XDist)
    #Encode model into likelihood function
    likelihood =
pm.StudentT("MaxZ_like", nu=nu, mu=regression, sigma=eps[animal_code_idx],
observed= MaxZ)
```

422

423 Owing to the scarcity of thalamocortical INS data, we assigned noninformative, wide spread normal
424 distributions on the priors and hyperpriors so as to let the data speak for itself. We also utilized a student-
425 T distribution as the likelihood function to accommodate outliers in a modification known as “robust

426 regression"(Kruschke, 2014). Student-T distributions have tails which are not bounded by the exponential
427 function, meaning that extreme values have less impact or skew on the posterior distribution. Half-
428 Cauchy distributions are placed on the error term and Student-T normality parameter ν . Half-Cauchy
429 distributions are advantageous in learning scale parameters from the data in hierarchical models
430 (Gelman, 2006; Polson and Scott, 2012).

431

432 It is important to validate that our model and data generating functions indeed represent the observed
433 data. Sensitivity analyses and posterior predictive checks thus can be performed to ensure the model
434 chosen is the one that best describes the observed data. Sensitivity analyses were performed by varying
435 prior variance and comparing models which were nominal or natural log transformed with normal and
436 student-T likelihood functions. Model comparisons can be performed in many ways, but a common
437 paradigm is the leave-one-out cross validation (LOO)(Gelman et al., 2014). LOO consists of partitioning
438 data into training and test sets and iteratively fitting the model under test with training data and testing
439 out of sample fits with test data. Models are then ranked using the expected log pointwise predictive
440 density (ELPD) measure:

$$441 \quad ELPD = \sum_{i=1}^k \int dy_i p_t \bar{y}_i \log(p(\bar{y}_i|y))$$

442 where p_t, y_i are unknown distributions representing the true data generating function for estimates of true
443 posterior predictive function ($\bar{y}|y$) from observed data y (Vehtari et al., 2017). In general, larger values of
444 ELPD represent better out of sample fits indicative of a better model conditioned on observed data. We
445 can then use standard errors between the model with the best ELPD (dse) and all competing models to
446 rank all models to observed data. Importantly, these metrics should be understood only in the context of
447 a model relative to other models, and not a global predictor of model validity. Observations of posterior
448 fits to the data using posterior predictive fits and Bayesian p-values should be utilized on the final model

449 to determine model fit. This seemingly complex model comparison can be quickly and easily done in
450 PyMC with the following commands:

451 *Code Example 5: Model Comparisons*

```
Var5_loo = az.loo(trace_Var5)
Var100_loo = az.loo(trace_Var100)
df_comp_loo = az.compare({"Var5": trace_Var5, "Var100": trace_100})
```

452

453 Model comparison results are given in Table 1. Similar to the simple regression above, the log
454 transformed model provided much better fits to observed data than non-log transformed models.
455 Interestingly and instructively, moderately informative priors (variance 5) outperformed noninformative
456 priors (variance 100), suggesting that constraining prior variance can have predictive power in inference.
457 Posterior predictive checks on the winning model show good fits to observed data with a Bayesian p-
458 value near 0.5.

459

460 We can now perform inference on our multiregression model. It was found (Fig 5C) that α was
461 significantly above 0 (MAP = 2.2, 95% HDI does not cross 0) suggesting that basal firing rates of recorded
462 neurons were typically above 0 as expected. It was also seen that maximal firing rates were significantly
463 dependent on applied INS energy (β_1 MAP = 0.58, HDI does not cross 0) with increases in INS energy
464 leading to larger evoked maximal firing rates. The relative spread of the 95% HDI on β_1 of 0.27-0.88
465 suggests a heterogeneity in neuron dose-response characteristics that can be explored more. Somewhat
466 surprisingly, there was no significant effect of ISI on maximum firing rates (β_2 MAP = -0.055). The relative
467 spread across 0 of -0.45 to 0.3 suggests that extreme values of ISI might potentially have an effect, with
468 smaller ISIs causing neural integration of singular INS pulses into a singular, large pulse. However, that
469 cannot be determined given the INS parameters used in this study. Also surprisingly, there was no

470 significant effect of Energy-ISI interactions (β_3 MAP = 0.028), suggesting that INS energy is the primary
471 mediator of evoked firing rates.

472

473 **Bayesian ANOVAs**

474 Comparison of differences between groups is another routine statistical procedure used when predictor
475 variables are nominal or categorical in nature or a mixture of metric and categorical predictors. The
476 frequentist treatment of these experimental designs largely uses analysis of variances methods, namely
477 ANOVA for categorical predictors and, more generally, ANCOVAs for categorical predictors with metric
478 covariates. ANOVAs are models that take the form of:

479

$$y = \alpha + \sum_i \beta_i x_i$$

480 where β_i, x_i are the parameters corresponding to nominal predictor class i , α is the offset or bias
481 parameter, and y is the metric dependent variable. ANOVA parameters and class values β_i, x_i are
482 treated differently than the regression case, as x_i are categorical as opposed to continuous, metric
483 values. As such x categories are recast into “one-hot” encoded vectors $\vec{x} = [x_0, x_1, \dots, x_i]$ in which only a
484 singular value in an array can have a value of 1 and all other elements are cast to 0, allowing for binary
485 indication of a given class among a group of classes. If an individual value falls into group j , for example,
486 $\vec{x}_{i \neq j} = 0, \vec{x}_{i=j} = 1$. The coefficients β_i then encodes the change in dependent variable y from inclusion of
487 datapoint x in category i . Importantly, deflections from baseline are constrained such that $\sum_i \beta_i = 0$. Both
488 Bayesian and frequentist ANOVA models treat β_i parameters as group deflections about the baseline
489 level of the dependent variable.

490

491 ANCOVA is a modification to the ANOVA model to include a metric covariance term:

492

$$y = \alpha + \sum_i \beta_i x_i + \beta_{co} x_{co}$$

493

494 where β_{co}, x_{co} are the parameters corresponding to metric predictors. Metric predictors terms are
495 valuable in accounting for within group variance which is attributable to some other metric measurable
496 variable, such as decreased firing rates in response to an applied stimulus found in a class of aged
497 animals.

498 Bayesian analogues of ANOVA and ANCOVA can be easily defined in PyMC and are termed BANOVA
499 and BANCOVA (Fig 5A) respectively to distinguish models from their frequentist counterparts. Traditional
500 ANOVAs make two key assumptions; that underlying data is normally distributed and a homogeneity of
501 variance among groups. To account for these assumptions, normal distributions are placed on prior
502 parameter and observed data distributions and a uniform distribution prior is placed on observed data
503 variance σ_y . Importantly, observed data distributions should be assessed to assure distributions are
504 normally distributed. While not strictly an ANOVA-like structure, an advantage of Bayesian approaches
505 is the ability to create models which handle arbitrary distributions. While traditional ANOVAs also assume
506 independent group variances, the relative shared influence between groups can be learned from the data
507 by imposing a hyperprior on group variance σ_β (Gelman, 2006). As with any prior distributions, selection
508 of σ_β should be informed by prior inspection of the data. A Half-Cauchy distribution is once again chosen
509 as it weakly informative and allows for extreme values if data dictates (Gelman, 2006; Polson and Scott,
510 2012). Setting σ_β to a large constant replicates a traditional ANOVA.

511 As a guiding example, consider a similar experiment to that done in simple linear regression. In this
512 experiment, we aim to understand age-related changes in IC auditory processing of sinusoidal amplitude
513 modulated sounds. This experiment consisted of two groups of young (animals < 6 months in age) and
514 aged (animals > 22 months in age). SAM stimuli at increasing modulation depths were played to the

515 animals with evoked single unit responses recorded from IC. As seen in the regression experiment (Fig
516 2), there is a significant increase in evoked firing rate with increased modulation depth in young animals.
517 As such, it should be included in comparison between the two groups. Taken together, this suggests
518 BANCOVA will serve as an appropriate model. BANCOVAs are inherently hierarchical(Gelman, 2005;
519 Kruschke, 2014) (Fig 6A) to allow for between subject variances to be represented in the prior if these
520 variances mutually inform one another. Setting this hyperprior to a constant creates a model analogous
521 to a frequentist ANCOVA(Kruschke, 2014). The formation of the BANCOVA is again relatively
522 straightforward:

523 *Code Example 6: Creating a Bayesian ANCOVA*

```
with pm.Model() as BANCOVA:  
    #Define hyperprior on sigma  
    bSigma = pm.HalfCauchy('bSigma',2.0) #Recommended by Gelman, this  
    parameter doesn't overemphasize 0 on sigma.  
    #Define Prior, likelihood distributions. Relatively noninformative  
    a = pm.Normal('a',yMean,sigma = np.sqrt(yStDv))  
    B = pm.Normal('B',0,sigma=bSigma,shape=numCategories)  
    Bcov = pm.Normal('Bcov',yMean,sigma = np.sqrt(yStDv))  
    sigmaLikelihood = pm.Uniform('sigmaLikelihood',yStDv/100,yStDv*10)  
    BancovaModel = a + B[ClassAge] + (Bcov*(modDepth - modDepthMean))  
    y = pm.Normal('y',mu=BancovaModel,sigma = yStDv,observed=firingRate)  
    #Now, make sure model coefficients sum to 0 to create an ANOVA-like  
    structure  
    aScaled = pm.Deterministic('aScaled',a+aesara.tensor.mean(B) + Bcov*(-  
    modDepthMean))  
    bScaled = pm.Deterministic('bScaled',B - aesara.tensor.mean(B))
```

524
525 with inference made in the exact same way as the previous models.

526 After model sampling, posterior sampling checks were performed to ensure posterior distributions adhere
527 well to observed data. Posterior predictive distributions show good qualitative fit to observed firing rate
528 data with Bayesian p-values centered around 0.51, suggesting good model fits to observed data (Fig 6B).
529 Comparisons between groups is simple once posterior distributions are obtained. All that needs to be

530 done is to measure differences between aged and young group parameter posteriors (Fig 6C), encoding
531 relative influence of young and age groups on firing rates. Aged and young contrasts show significantly
532 elevated firing rates in young rats across all SAM stimuli (Young-aged difference MAP = 0.25, 95% HDI
533 excludes 0). Another advantage of Bayesian inference is the ability to observe the distribution, and thus
534 the most likely value and spread of effect size. In this analysis, the effect of age in SAM stimulus
535 processing is significant but small (effect size MAP = 0.058, 95% HDI excludes 0) but with a wide spread
536 of effect (95% HDI between 0.025-0.64) suggesting variable temporal acuity between rodent subjects.
537 Finally, firing rates vs SAM amplitude depth for each class are plotted with $y = \alpha +$
538 $\beta_{young/age}x_{young/age} + \beta_{cov}x_{cov}$ superimposed.

539

540 **Multiple Comparisons in Bayesian Inference**

541 In traditional frequentist analyses, corrections for multiple comparisons are necessary in order to ensure
542 that maximum Type I errors (false positives) are constrained to a maximum of 5% ($\alpha = 0.05$). With
543 Bayesian inference, a posterior distribution across all parameters is obtained which remains unchanged
544 no matter how many comparisons are made(Kruschke, 2014). Furthermore, frequentist type I errors are
545 classically defined in the context of rejection of a null hypothesis. Bayesian inference is not strictly
546 concerned with rejection of a null hypothesis, instead weighing competing hypotheses given observed
547 data. Bayesian models are not immune to making false conclusions about data. These errors, called type
548 M for errors in magnitude and type S for errors in sign occur when outliers in data exert too much influence
549 on inference. These errors can be controlled by proper choice of priors or by building hierarchical models
550 (Fig 5A, Fig 6A) which can account for outliers by pulling parameters towards group means when
551 evidence is small and allowing parameters with good evidence to remain in a phenomenon called partial
552 pooling implicit to hierarchical structures(Gelman et al., 2009).

553 **Discussion**

554 Bayesian inference approaches present a powerful statistical tool which encourages deep and
555 meaningful exploration of data and allows for presentation of data in intuitive and transparent ways. In
556 this tutorial, we demonstrate the ease by which Bayesian inference can be performed across a wide
557 variety of experimental designs and provide source code which can be modified to accommodate
558 neuroscientific experiments using all free and open source tools. We intentionally used the base PyMC
559 toolchain in order to explicitly show Bayesian model creation. However, there are PyMC plugin tools such
560 as Bambi (Capretto et al., 2022) which can facilitate creation of Bayesian models in single lines of code.
561 An example of Bambi-enabled model creation is provided in our Bayesian inference toolbox.
562

563 **Tempering Expectations of Bayesian Inference**

564 Despite the enthusiasm of some Bayesian advocates, Bayesian inference is not a panacea. It is subject
565 to similar problems as frequentist NHST, in that models can be used which do not adequately fit
566 underlying data statistics or priors can be chosen which dominate model performance and deemphasize
567 observed data. However, Bayesian approaches support and encourage model transparency, requiring
568 researchers to declare model priors and posteriors while encouraging continued discussion of inference
569 on data as opposed to stopping if a p-value is below an arbitrary threshold. A second caveat is that
570 running MCMCs can be slower than frequentist approaches, with run times sometimes in minutes as
571 opposed to seconds. However, time increases are not astronomical and can be further reduced to levels
572 similar to frequentist approaches by using GPU computing or using programs such as JASP(Love et al.,
573 2019) which utilize a C backend to speed up computation.

574

575 **The Controversy of the Prior**

576 The prior is arguably the most contentious aspect of Bayesian inference, with arguments that the prior
577 unduly influences decisions on data. It is absolutely possible to have priors that distort posterior
578 distributions into poor inference. Similar arguments can be levied at Frequentist approaches which

579 perform similar distortions on decision metrics, such as applying ANOVA tests when underlying data is
580 not normal. Often times, these mistakes are not done out of malevolence, but due to the modern
581 framework of how statistics is performed. We argue that having to consider what prior to use, and thus
582 what one's assumptions are, what distributions are physiologically relevant, and the distributions of
583 observed data will help to prevent errors in statistical modeling while creating greater transparency in
584 how conclusions on data are drawn.

585

586 **Decisions with Bayes Factors**

587 Some studies which utilize Bayesian inference use a decision metric called a Bayes' factor, which is a
588 measurement of the ratio of marginal likelihoods of two competing models providing log likelihood of
589 evidence for one model over another(Johnson et al., 2023). We intentionally chose not to utilize Bayes'
590 factor metrics because, in the authors' opinions, they reduce inference to evaluation of a single metric
591 over an arbitrary threshold, as opposed to analysis over posterior distributions of observed data.
592 Furthermore, certain prior declarations yield undefined Bayes' factors(Gelman and Rubin, 1995)
593 potentially encouraging using suboptimum models in order to provide arbitrary decision metrics.

594

595 **Bayesian and Frequentist Approaches: A Wholistic Approach to Inference**

596 Following in the steps of Bayarri and Berger(Bayarri and Berger, 2004), data analysis should not consist
597 solely of Bayesian or frequentist approaches devoid of the other. There are certainly cases where
598 frequentist approaches should be used, such as clinical trials where preregistration and proper protocol
599 design can provide bounds on false-positive and false negative rates necessary for translation of medical
600 therapeutics. Hybrid frequentist and Bayesian approaches can also provide richer insight into analyses
601 where posterior distributions are unidentifiable or difficult to sample(Raue et al., 2013) or in identifying
602 when improper models have been chosen(Berger et al., 1997). Bayesian ideas of posterior predictive
603 checks and model comparisons can also be applied to frequentist NHST, many of which would help

604 address problems of replication and data transparency. As frequentist approaches are often baked into
605 the pedagogy of neuroscience and neural engineering, we aim for this tutorial to be a thorough
606 introduction into the application of Bayesian statistics to help develop a toolkit which can be used for
607 robust data analysis or in conjunction with previously established frequentist approaches. These models
608 are also easily extendable into Bayesian analogs of logistic or multinomial regressions, gaussian mixture
609 models, Bayesian time series analyses, among many more.

610 **Code and Data Availability**

611 The code/software described in the paper is freely available online at [URL redacted for double-blind
612 review]. The code is available as Extended Data.

613 **References**

614 Bartlett EL, Wang X (2007) Neural Representations of Temporally Modulated Signals in the Auditory
615 Thalamus of Awake Primates. *J Neurophysiol* 97:1005–1017.

616 Bayarri MJ, Berger JO (2004) The Interplay of Bayesian and Frequentist Analysis. *Stat Sci* 19 Available
617 at: <https://projecteuclid.org/journals/statistical-science/volume-19/issue-1/The-Interplay-of->
618 Bayesian-and-Frequentist-Analysis/10.1214/088342304000000116.full.

619 Berger JO, Boukai B, Wang Y (1997) Unified frequentist and Bayesian testing of a precise hypothesis.
620 *Stat Sci* 12 Available at: <https://projecteuclid.org/journals/statistical-science/volume-12/issue-3/Unified-frequentist-and-Bayesian-testing-of-a-precise-hypothesis/10.1214/ss/1030037904.full>.

622 Betancourt M (2017) A Conceptual Introduction to Hamiltonian Monte Carlo. Available at:
623 <https://arxiv.org/abs/1701.02434>.

624 Bielza C, Larranaga P (2014) Bayesian networks in neuroscience: a survey. *Front Comput Neurosci* 8
625 Available at: <http://journal.frontiersin.org/article/10.3389/fncom.2014.00131/abstract>.

626 Bishop C (2006) Pattern Recognition and Machine Learning, 1st ed. New York, NY: Springer.

627 Blackwell DL (1980) There are no Borel SPLIFs. *Ann Probab* 8:1189–1190.

628 Blackwell DL, Ramamoorthi RV (1982) A Bayes but Not Classically Sufficient Statistic. *Ann Stat*
629 10:1025–1026.

630 Box GEP, Tiao GC (2011) Bayesian Inference in Statistical Analysis, 1st ed. Germany: Wiley.

631 Brooks SP (2003) Bayesian Computation: A Statistical Revolution. *Philos Trans Math Phys Eng Sci*
632 361:2681–2697.

633 Capretto T, Piho C, Kumar R, Westfall J, Yarkoni T, Martin OA (2022) **Bambi** : A Simple Interface for
634 Fitting Bayesian Linear Models in *Python*. *J Stat Softw* 103 Available at:
635 <https://www.jstatsoft.org/v103/i15/>.

636 Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P,
637 Riddell A (2017) *Stan* : A Probabilistic Programming Language. *J Stat Softw* 76 Available at:
638 <http://www.jstatsoft.org/v76/i01/>.

639 Colombo M, Seriès P (2012) Bayes in the Brain—On Bayesian Modelling in Neuroscience. *Br J Philos
640 Sci* 63:697–723.

641 Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL (2023) Spatially specific, closed-loop
642 infrared thalamocortical deep brain stimulation. *bioRxiv* Available at:
643 <http://biorxiv.org/lookup/doi/10.1101/2023.10.04.560859>.

644 De La Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A (2007) Correlation between neural spike
645 trains increases with firing rate. *Nature* 448:802–806.

646 Etz A (2018) Introduction to the Concept of Likelihood and Its Applications. *Adv Methods Pract Psychol
647 Sci* 1:60–69.

648 Falowski SM, Sharan A, Reyes BAS, Sikkema C, Szot P, Van Bockstaele EJ (2011) An Evaluation of
649 Neuroplasticity and Behavior After Deep Brain Stimulation of the Nucleus Accumbens in an
650 Animal Model of Depression. *Neurosurgery* 69:1281–1290.

651 Fienberg SE (2006) When did Bayesian inference become “Bayesian”? *Bayesian Anal* 1 Available at:
652 <https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-1/When-did-Bayesian-inference-become-Bayesian/10.1214/06-BA101.full>.

653

654 Fisher RA (1992) Statistical Methods for Research Workers. In: *Breakthroughs in Statistics* (Kotz S,
655 Johnson NL, eds), pp 66–70 Springer Series in Statistics. New York, NY: Springer New York.
656 Available at: http://link.springer.com/10.1007/978-1-4612-4380-9_6.

657 Gelman A (2005) Analysis of variance—why it is more important than ever. *Ann Stat* 33 Available at:
658 <https://projecteuclid.org/journals/annals-of-statistics/volume-33/issue-1/Analysis-of-variance-why-it-is-more-important-than-ever/10.1214/009053604000001048.full>.

659

660 Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article
661 by Browne and Draper). *Bayesian Anal* 1 Available at: <https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-3/Prior-distributions-for-variance-parameters-in-hierarchical-models-comment-on/10.1214/06-BA117A.full>.

662

663

664 Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2021) *Bayesian Data Analysis*, 3rd ed. Boca
665 Raton: Chapman and Hall/CRC.

666 Gelman A, Hill J, Yajima M (2009) Why we (usually) don't have to worry about multiple comparisons.
667 Available at: <https://arxiv.org/abs/0907.2478>.

668 Gelman A, Hwang J, Vehtari A (2014) Understanding predictive information criteria for Bayesian models.
669 *Stat Comput* 24:997–1016.

670 Gelman A, Rubin DB (1992) Inference from Iterative Simulation Using Multiple Sequences. *Stat Sci*
671 7:457–472.

672 Gelman A, Rubin DB (1995) Avoiding Model Selection in Bayesian Social Research. *Sociol Methodol*
673 25:165.

674 Gelman A, Shalizi CR (2013) Philosophy and the practice of Bayesian statistics: *Philosophy and the*
675 *practice of Bayesian statistics*. *Br J Math Stat Psychol* 66:8–38.

676 Gerwinn S, Macke JH, Bethge M (2010) Bayesian inference for generalized linear models for spiking
677 neurons. *Front Comput Neurosci* 4 Available at:
678 <http://journal.frontiersin.org/article/10.3389/fncom.2010.00012/abstract>.

679 Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in Practice. Boca Raton:
680 Chapman and Hall/CRC.

681 Hoffman MD, Gelman A (2011) The No-U-Turn Sampler: Adaptively Setting Path Lengths in
682 Hamiltonian Monte Carlo. Available at: <https://arxiv.org/abs/1111.4246>.

683 Johnson VE, Pramanik S, Shudde R (2023) Bayes factor functions for reporting outcomes of hypothesis
684 tests. *Proc Natl Acad Sci* 120:e2217331120.

685 Krueger JI, Heck PR (2019) Putting the *P* -Value in its Place. *Am Stat* 73:122–128.

686 Kruschke JK (2010) What to believe: Bayesian methods for data analysis. *Trends Cogn Sci* 14:293–300.

687 Kruschke JK (2011) Bayesian Assessment of Null Values Via Parameter Estimation and Model
688 Comparison. *Perspect Psychol Sci* 6:299–312.

689 Kruschke JK (2014) Doing Bayesian Data Analysis: A tutorial with R, JAGS, and stan, 2nd ed. Academic
690 Press. Available at: <http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/>.

691 Kruschke JK (2018) Rejecting or Accepting Parameter Values in Bayesian Estimation. *Adv Methods
692 Pract Psychol Sci* 1:270–280.

693 Kruschke JK (2021) Bayesian Analysis Reporting Guidelines. *Nat Hum Behav* 5:1282–1291.

694 Kruschke JK, Vanpaemel W (2015) Bayesian Estimation in Hierarchical Models. In: *The Oxford
695 Handbook of Computational and Mathematical Psychology*, pp 279–299. Oxford University Press.

696 Love J, Selker R, Marsman M, Jamil T, Dropmann D, Verhagen J, Ly A, Gronau QF, Smíra M, Epskamp
697 S, Matzke D, Wild A, Knight P, Rouder JN, Morey RD, Wagenmakers E-J (2019) **JASP** :

698 Graphical Statistical Software for Common Statistical Designs. *J Stat Softw* 88 Available at:
699 <http://www.jstatsoft.org/v88/i02/>.

700 Ma WJ (2019) Bayesian Decision Models: A Primer. *Neuron* 104:164–175.

701 Nuzzo R (2014) Scientific method: Statistical errors. *Nature* 506:150–152.

702 Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal Tuning of Motor Cortical
703 Neurons for Hand Position and Velocity. *J Neurophysiol* 91:515–532.

704 Polson NG, Scott JG (2012) On the Half-Cauchy Prior for a Global Scale Parameter. *Bayesian Anal* 7
705 Available at: <https://projecteuclid.org/journals/bayesian-analysis/volume-7/issue-4/On-the-Half->
706 Cauchy-Prior-for-a-Global-Scale-Parameter/10.1214/12-BA730.full.

707 Raue A, Kreutz C, Theis FJ, Timmer J (2013) Joining forces of Bayesian and frequentist methodology: a
708 study for inference in the presence of non-identifiability. *Philos Trans R Soc Math Phys Eng Sci*
709 371:20110544.

710 Salvatier J, Wiecki TV, Fonnesbeck C (2016) Probabilistic programming in Python using PyMC3. *PeerJ*
711 Comput Sci 2:e55.

712 Van De Schoot R, Depaoli S, King R, Kramer B, Märtens K, Tadesse MG, Vannucci M, Gelman A, Veen
713 D, Willemse J, Yau C (2021) Bayesian statistics and modelling. *Nat Rev Methods Primer* 1:1.

714 Van Kuyck K, Welkenhuysen M, Arckens L, Sciot R, Nuttin B (2007) Histological Alterations Induced
715 by Electrode Implantation and Electrical Stimulation in the Human Brain: A Review.
716 *Neuromodulation Technol Neural Interface* 10:244–261.

717 Vasquez-Lopez SA, Weissenberger Y, Lohse M, Keating P, King AJ, Dahmen JC (2017) Thalamic input
718 to auditory cortex is locally heterogeneous but globally tonotopic. *eLife* 6:e25141.

719 Vehtari A, Gelman A, Gabry J (2017) Practical Bayesian model evaluation using leave-one-out cross-
720 validation and WAIC. *Stat Comput* 27:1413–1432.

721 Woolley AJ, Desai HA, Otto KJ (2013) Chronic intracortical microelectrode arrays induce non-uniform,
722 depth-related tissue responses. *J Neural Eng* 10:026007.

723

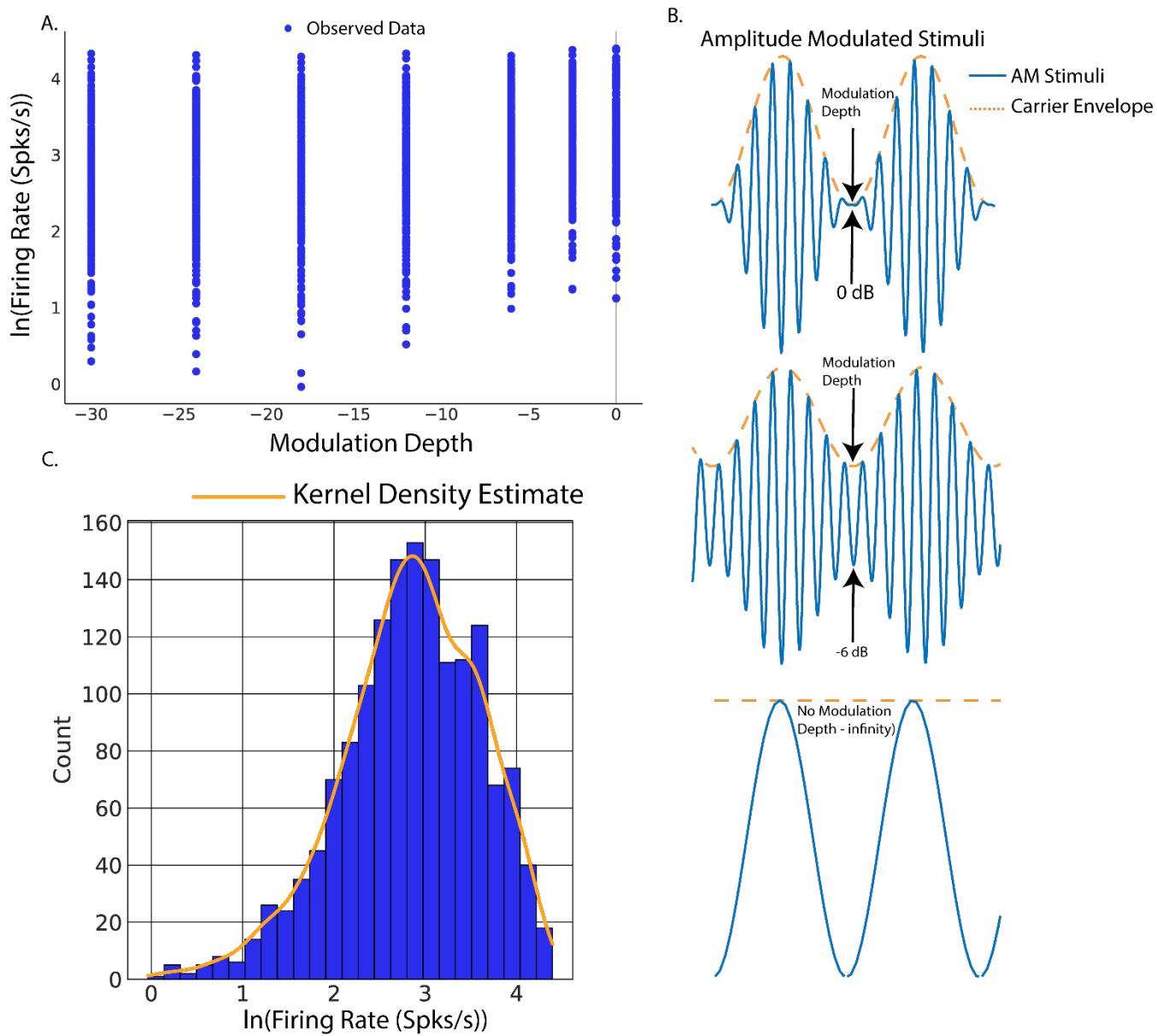
724

725

726

727

Figures



728

729 Figure 1: Example of Bayesian simple linear regression on population estimates of firing rate vs
730 amplitude modulation depth stimuli. This model was applied to population single unit firing rates
731 elicited from inferior colliculus with sinusoidal amplitude modulated (SAM) tones. The goal of this
732 model was to predict evoked firing rates from increases in SAM modulation depths. A. Scatterplot of
733 observed firing rates vs SAM modulation depth and fitted regression estimates. B. Schematic of

734 amplitude modulated stimuli. C. Kernel density estimates of the observed log transformed data
735 probability distribution function. C. An example of Bayesian model comparison. Left: Regression
736 model with untransformed data. Right: natural log transformed firing rate model. Posterior predictive
737 checks reveal that natural log transformed firing rate models better match observed data.

738

739

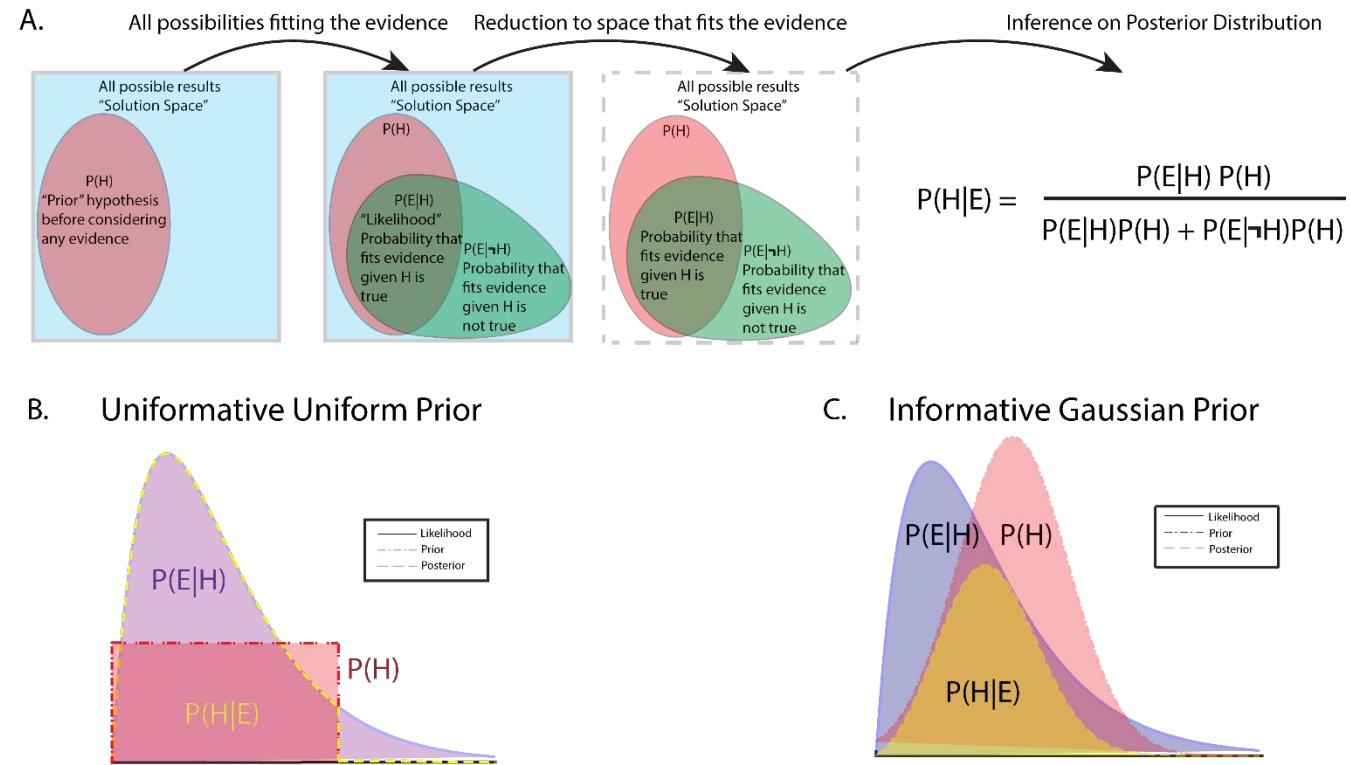
740

741

742

743

Bayesian Inference as reallocation of probabilities



744

745 **Figure 2:** Graphical description of Bayes rule and the interaction between prior distributions and
 746 likelihood functions leading to the final posterior distribution. A. Bayes rule can be thought of as a
 747 reallocation of probability to the posterior after accounting for prior distributions and observed
 748 evidence. B. An example of posterior generated from an inverse-Gamma distributed likelihood and a
 749 uniformly distributed prior. Uniform priors reflect the likelihood function, and thus the observed data
 750 with no redistribution probability, making uniform distributions uninformative priors. However, care
 751 must be taken in using uniform distributions as observed data outside of prior bounds is mapped to 0
 752 probability. C. An example of a posterior generated from an inverse-Gamma distributed likelihood and a
 753 gaussian distributed prior. This prior is considered informative as it shapes the posterior distribution to a
 754 greater extent than a uniform distribution. Prior distributions with longer tails can handle extremes of

755 observed data by mapping extreme events to low, but non-zero representation in the posterior. Examples
756 B and C represent extremes of prior choices, with minimally informative priors often chosen to let the
757 data “speak for itself” with little change to posterior from prior influence.

758

759

760

761

762

763

764

765

766

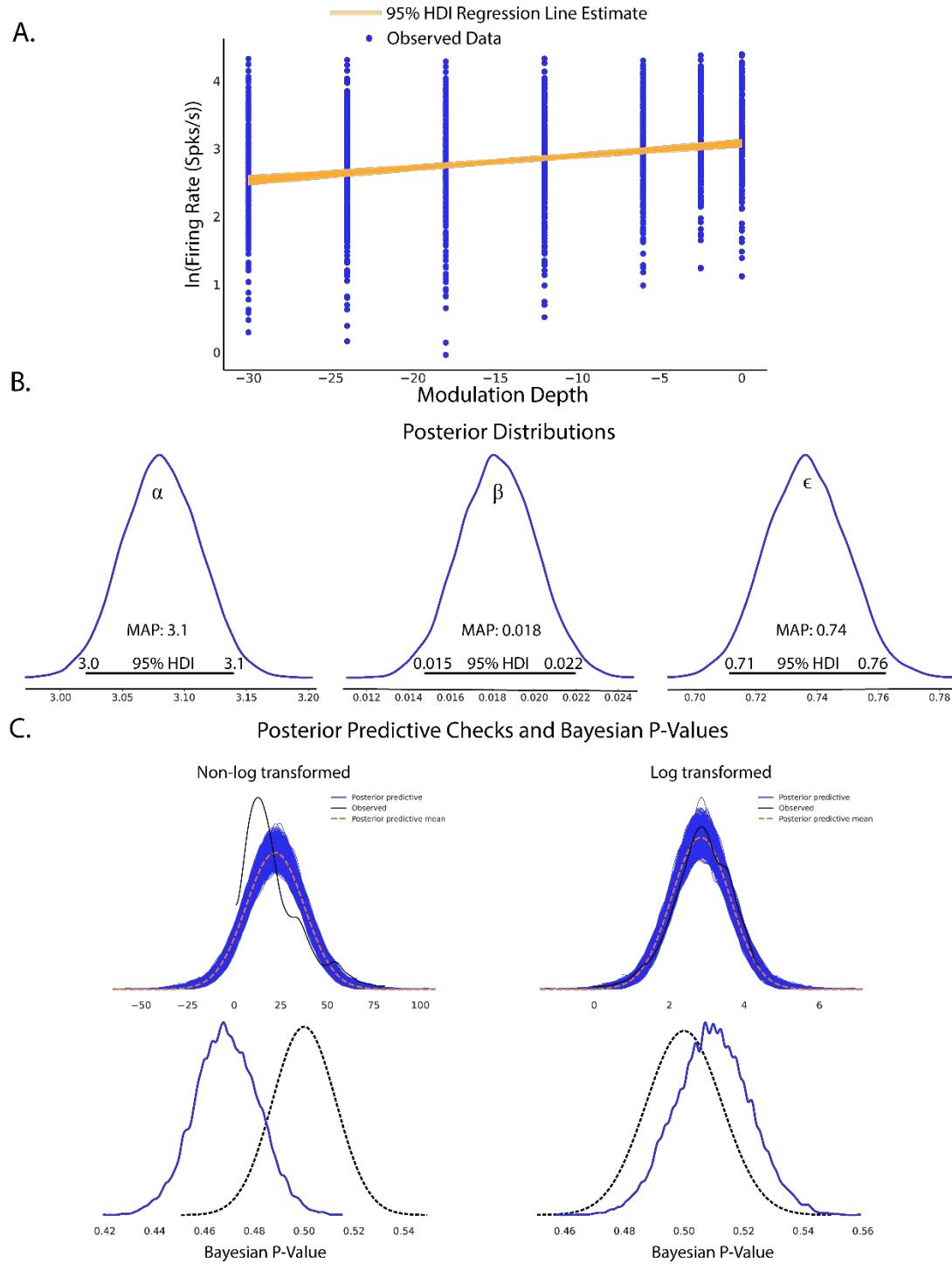
767

768

769

770

771



772

773 **Figure 3:** Completed Bayesian inference quantifying linear relationships in evoked firing rate from
774 increases in modulation depth. A. Scatterplot of observed firing rates vs SAM depth stimuli with fitted
775 regression line estimates superimposed. 95% HDI estimates of regression slopes are shown in orange,

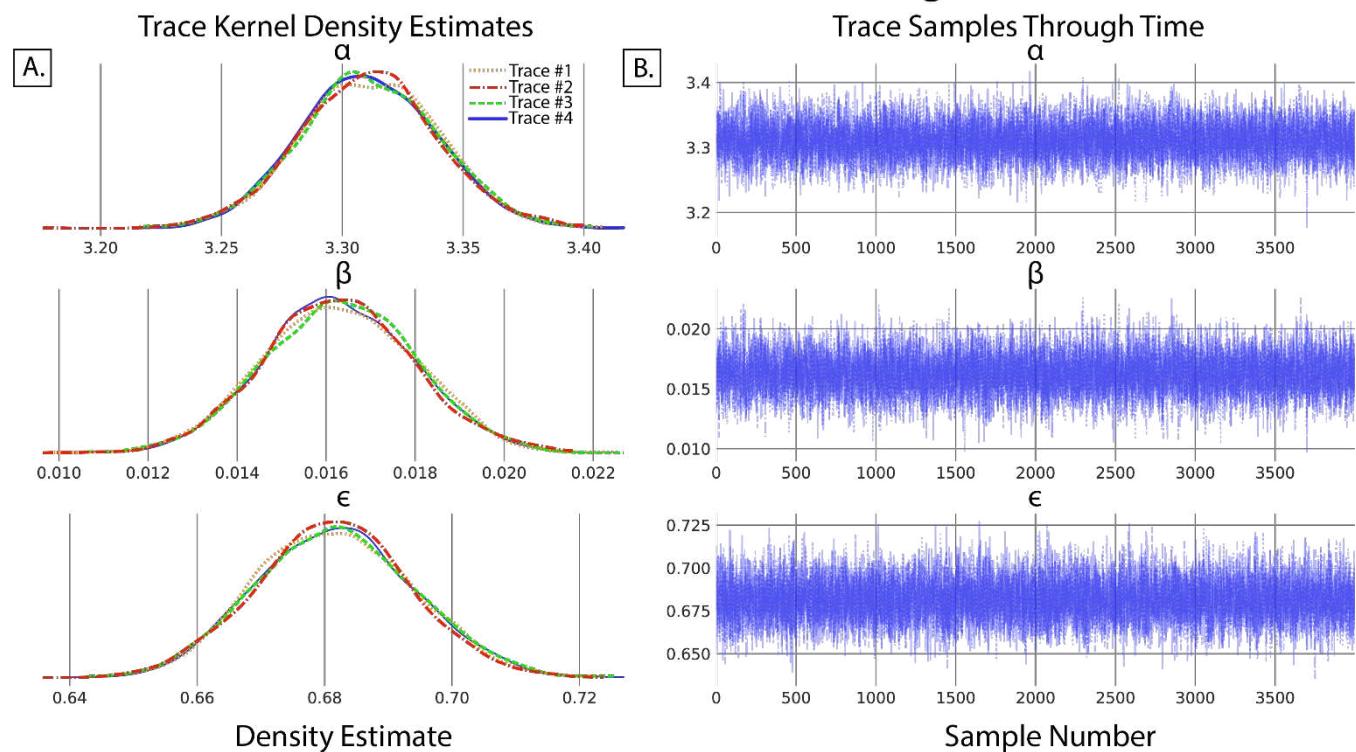
776 with the spread of lines encoding the 95th percentile of most likely slope values. B. Estimates of
777 Bayesian linear regression parameters. Intercept term α was significantly above 0 (MAP = 3.1, 95% HDI
778 does not overlap 0) which indicates basal firing rates above 0. Regression slope was small but
779 significantly above 0 (MAP = 0.018, 95% HDI does not overlap 0) suggesting an increase in evoked
780 firing rates with increased modulation depth. Error term ϵ was significantly above 0 (MAP = 0.74, 95%
781 HDI does not overlap 0) suggesting some model deviation from observed data. However, error terms
782 were considered small as ϵ MAP < α basal firing rate MAPs. C. Posterior predictive checks of linear
783 (left) and log linear (right) regression models show that log transformed firing rate models produce
784 posterior predictions most inline with observed data. Disparity of empirical posterior predictive
785 distributions from observed data as quantified through Bayesian P-values also suggest log transformed
786 firing rates creates a superior model fit.

787

788

789

Markov-Chain Monte Carlo Trace Diagnostics



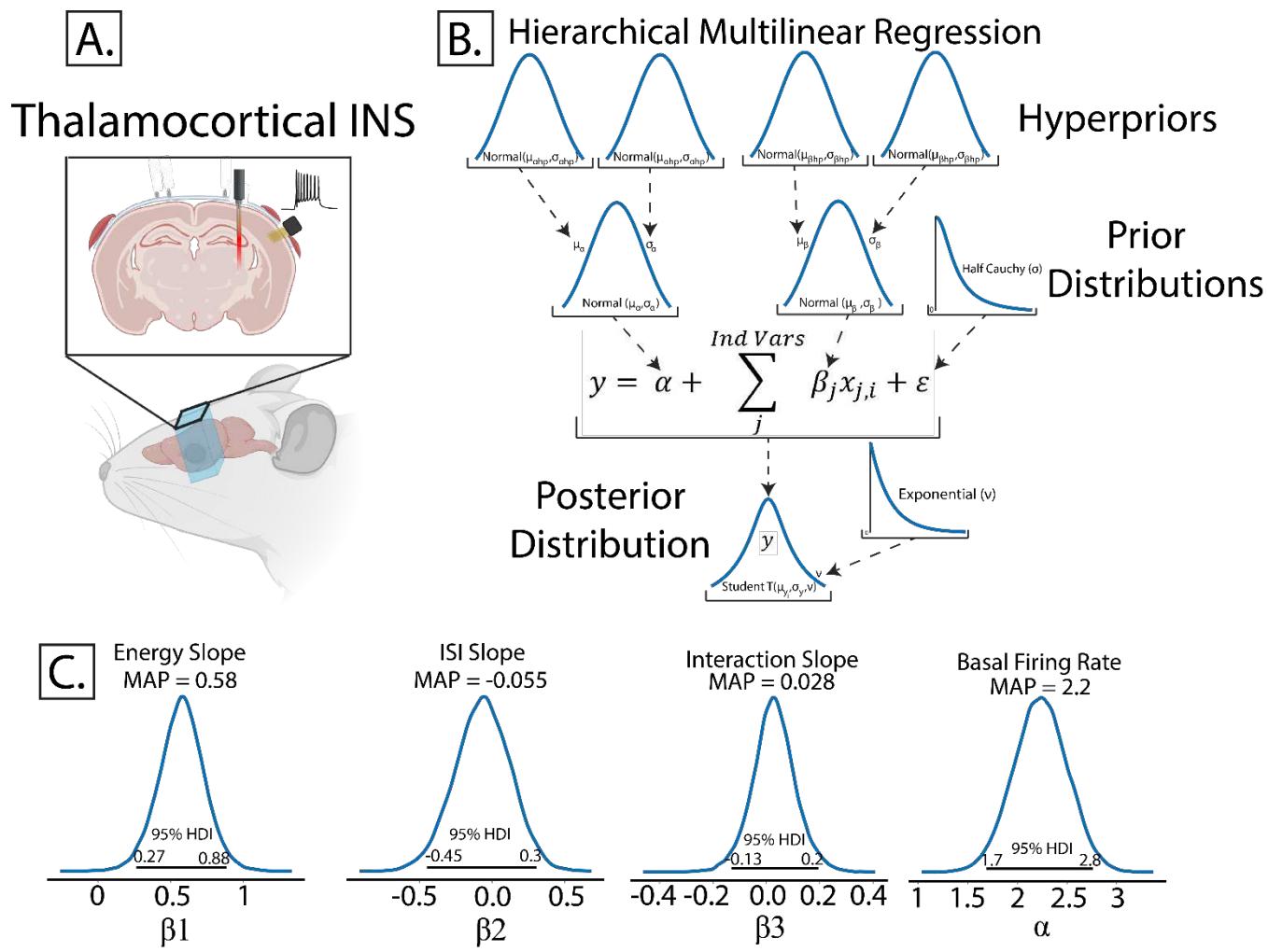
790

791 **Figure 4:** Evaluation of Markov-chain Monte Carlo (MCMC) chains can help diagnose ill fitting
792 distributions. A. Kernel density estimates of the marginal posteriors corresponding to each of the
793 regression parameters of each MCMC trace. Qualitatively, chain distributions should appear similar to
794 each other, suggesting good convergence to target distributions. B. Time series plot of trace value vs
795 sample number of marginal posteriors corresponding to each regression parameter. Qualitatively good
796 traces should have a “fuzzy caterpillar” like shape, evident in all parameters of this model, indicative of
797 good integration over the joint posterior distribution and effective sampling of the posterior.

798

799

800



802 **Figure5:** Example of Bayesian multilinear regression incorporating a hierarchical structure. A. In this
 803 experiment, rodents were implanted with fiber optic arrays into auditory thalamus and planar recording
 804 arrays into auditory cortex. Single unit responses were recorded from INS stimuli with applied energy
 805 and interstimulus intervals varied to derive dose-response curves. Figure was drawn using BioRender
 806 under publication license (www.biorender.com). B. Hierarchical schematic of Bayesian multilinear
 807 regression. Hierarchical structures are advantageous in accounting for within and between subject
 808 variability or for repeated measures designs. C. Resulting parameter distributions from dose-response
 809 models. Energy was a significant contributor to maximum firing rate, with increasing laser energy
 810 resulting in increased maximum firing rate, as determined by 95% HDI of the laser energy term β_1

811 excluding 0 (MAP = 0.58). Laser pulse interstimulus interval did not significantly contribute to changes
812 in max firing rate as indicated by ISI parameter β_2 overlapping 0 in its 95% HDI with a MAP value near
813 0 (MAP = 0.028). The relatively wide spread about zero does suggest that there may be a subset of ISIs
814 which contribute more strongly to firing rates and warrants further study. Laser energy-ISI interactions
815 also did not significantly contribute to max firing rate as evidenced by interaction parameter β_3
816 including 0 in its 95% HDI. The intercept term α , correspondint to basal firing rates, were significantly
817 above 0 (MAP = 2.2, 95% HDI excludes 0).

818

819

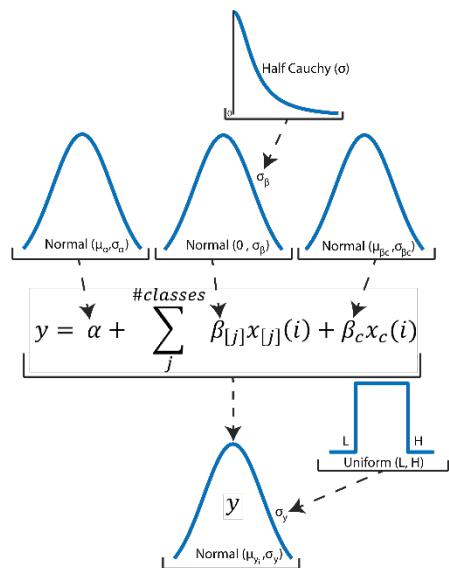
820

821

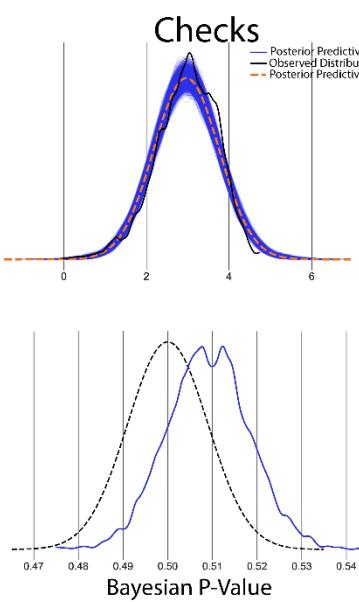
822

823

A. BANCOVA Model



B. Posterior Predictive Checks



C. Group Comparisons



824

825 **Figure 6:** An example of Bayesian inference using ANOVA-like models. A. General schematic of
 826 BANOVA/BANCOVA models. Traditional ANOVAs have two key assumptions; normality of group
 827 data and homogeneity of variance. Normality of group data is imposed in BANOVA-like models as
 828 normal distributions around group parameters with homogeneity of variance encoded as a uniform
 829 distribution around posterior variance term σ_y . Traditional ANOVAs assume a fixed variance on group
 830 parameter values σ_β , imposing the constraint that each group is estimated independently from each other
 831 group. A uniquely Bayesian approach is to instead learn σ_β values from the data itself by placing a
 832 distribution on σ_β . B. Posterior predictive checks suggest posterior distributions show good fit in mean
 833 and variance to observed data. C. Once posterior distributions are calculated, group comparisons can be
 834 easily done by subtracting young and aged posteriors to yield a contrast distribution. It is found that
 835 firing rates across all modulation depths are significantly higher in aged vs young rodents (contrast
 836 MAP = 0.25, 95% HDI does not overlap 0). Another unique feature of Bayesian approaches is the
 837 ability to assess distributions on effect size. In this BANCOVA, while group differences are significant,

838 their relative effective size is small but significant (effect size MAP = 0.057, 95% HDI does not cross 0)
839 suggesting marginal impact of age on firing rates elicited from SAM stimuli. Finally, metric covariates
840 of firing rate in response to varying SAM depth in young and aged groups can be plotted as regressions
841 superimposed on raw data.

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856 **Tables**

857 *Table 1: LOO Model comparisons and sensitivity analyses*

<i>Model</i>	<i>R</i>	<i>ELPD</i>	<i>DSE</i>
<i>St Log Var 5</i>	1	-5337.48	0.00
<i>ST Log Var 100</i>	2	-5337.62	0.420867
<i>ST Log Var 0.5</i>	3	-5337.76	0.409773
<i>St Log Var 25</i>	4	-5338.15	0.492297
<i>ST Log Var 10</i>	5	-5338.18	0.300197
<i>ST Log Var 1</i>	6	-5338.26	0.331152
<i>N Log Var 10</i>	7	-5340.60	3.308668
<i>N Log var 1</i>	8	-5341.09	3.293779
<i>N log var 5</i>	9	-5341.16	3.296273
<i>N log var 0.5</i>	10	-5342.46	3.300550
<i>ST Semilog Var 1</i>	11	-5466.76	15.845916
<i>St Semilog var 5</i>	12	-5467.12	15.856552
<i>ST semilog var 10</i>	13	-5467.15	15.895646
<i>ST semilog var 0.5</i>	14	-5467.18	15.866405
<i>ST Var 1</i>	15	-15336.31	79.406629
<i>ST var 0.5</i>	16	-15355.67	80.415787
<i>St var 5</i>	17	-15355.67	80.415787
<i>N var 10</i>	18	-16119.11	82.384329

858	<i>N var 1</i>	19	-16132.23	83.549811
859	<i>N var 0.5</i>	20	-16154.55	84.262219

860

861

Supplementary Material Outline

1. Materials and Methods

- 1.1. Introduction
- 1.2. Disruption of Temporal Processing in the Inferior Colliculus Due to Aging
- 1.3. Thalamocortical Infrared Neural Stimulation

2. An Example of Bayesian Analysis Reporting Guidelines

3. Supplementary Figures

4. Supplementary References

1. Materials and Methods

Bayesian inference was performed on a range of data typical to neuroscience experiments. Regression models, ANOVA models, and group comparisons are performed on single-unit activity recorded from inferior colliculus (IC) neurons in response to auditory stimuli in young and aged rats(Palombi et al., 2001; Simon et al., 2004; C.F et al., 2012; Herrmann et al., 2017). Random-effects regression models are performed on single units recorded in the auditory cortex (A1) using high-density recording arrays in response to infrared neural stimulation(Izzo et al., 2007; Cayce et al., 2011, 2014; Coventry et al., 2023) of the medial geniculate body (MGB). To underscore that meaningful Bayesian inference does not require cluster computing or extensive computational resources, all computations were performed on an MSI GS-66 laptop with an Intel i7 processor with an Nvidia RTX2070 GPU. Our inference programs are CPU-bound, not requiring any GPU resources. Computations can be performed on most modern CPUs, but accelerate with more CPU threads and cores and parallelization on GPUs. All surgical procedures used in this study were approved by [redacted for double-blind review].

1.1 Disruption of Temporal Processing in the Inferior Colliculus Due to Aging

The inferior colliculus (IC) is the major integrative center of the auditory pathway, receiving excitatory inputs from ventral and dorsal cochlear nuclei, excitatory and inhibitory inputs from the lateral and medial superior olive complex(Kelly and Caspary, 2005) and inhibitory inputs from superior paraolivary nucleus and the dorsal and ventral nuclei of the lateral lemniscus(Cant and Benson, 2006; Loftus et al., 2010). The IC encodes auditory information through hierarchical processing of input synaptics with local IC circuitry(Caspary et al., 2002; Rabang et al., 2012; Grimsley et al., 2013; Coventry et al., 2017). Age-related changes in auditory processing primarily arise as deficits in temporal processing(Frisina and Frisina, 1997; Parthasarathy et al., 2010; Parthasarathy and Bartlett, 2012; Herrmann et al., 2017). This dataset is composed of single unit responses recorded from young (Age \leq 6 months) and aged (age \geq 22 months) Fisher 344 rats. Auditory brainstem responses were recorded from animal subjects a few days prior to surgery to ensure hearing thresholds were typical of the rodent's age. Single unit recordings were performed in a 9'x9' double-walled, electrically isolated anechoic chamber (Industrial Acoustics Corporation). Animals were initially anesthetized via a bolus injection of ketamine (VetaKet, 60-80 mg/kg) and medetomidine (0.1-0.2 mg/kg) mixture via intramuscular injection. Oxygen was maintained via a manifold and pulse rate and blood oxygenation monitored through pulse oximetry. Supplemental doses of ketamine/medetomidine (20 mg/kg ketamine, 0.05 mg/kg medetomidine) were administered intramuscularly as required to maintain surgical plane of anesthesia. An incision was made down midline and the skull exposed. Periosteum was resected and a stainless steel headpost was secured anterior to bregma via 3 stainless steel bone screws. A craniectomy was made above inferior colliculus (-8.5 anterior/posterior, 1 mm medial/lateral from bregma). A single tungsten electrode was advanced dorsally towards the central nucleus of the inferior colliculus (ICC) during which bandpass noise (200 ms, center frequencies 1-36kHz in five steps per octave, 0.5 octave bandwidth) was delivered. ICC was identified based on short-latency driven responses to bandpass noise search stimuli with ascending tonotopy and narrowly tuned responses to pure tones of varying frequencies. Once neurons were identified, responses from 5-10 repetitions of sinusoidal amplitude-modulated tones (750 ms tone length, modulation depth between -30 to 0 dB) were recorded using a preamplifying headstage (RA4PA, Tucker-Davis Technologies) and discretized at a sampling rate of 24.41 kHz (RZ-5, TDT). Sinusoidal amplitude-modulated tones were defined as:

$$s(t) = A[1 + m * \cos(2\pi f_m t + \varphi)] * n(t)$$

where m is modulation depth ranging between 0.032-1 (-30 – 0 dB), f_m the modulation frequency, φ the reference phase of the modulator, A the scaling factor for stimulus sound level, and $n(t)$ the broadband noise stimulus. Single units were filtered between 0.3 and 5 kHz. Offline spike sorting was performed using OpenExplorer (TDT).

1.2 Thalamocortical Infrared Neural Stimulation

Infrared neural stimulation (INS) is an optical technique using coherent infrared light to stimulate nerves and neurons without the need for genetic modification of the target or direct contact with tissue that offers spatially constrained activation above electrical stimulation(Wells et al., 2005; Izzo et al., 2007; Cayce et al., 2011, 2014; Coventry et al., 2020, 2023). In this study, rats were chronically implanted in A1 with 16 channel planar Utah-style arrays (TDT, Alacua FL) and stimulating optrodes in the medial geniculate body of auditory thalamus (Thor Labs, Newton NJ). Rodents were initially anesthetized with a bolus injection of a ketamine (80 mg/kg) and medetomidine (0.2 mg/kg) cocktail. Oxygen was maintained via a manifold and pulse rate and blood oxygenation monitored through pulse oximetry. Supplemental doses of ketamine/medetomidine (20 mg/kg ketamine, 0.05 mg/kg medetomidine) were administered intramuscularly as required to maintain surgical plane of anesthesia. An incision was made down midline and the skull exposed. The periosteum was removed via blunt dissection and 3 stainless steel bone screws were placed in skull for headcap stability. An additional titanium bone screw was placed in skull to serve as a chronic ground and reference point for recording electrodes. Craniectomies were made above medial geniculate body (-6 anterior/posterior, -3.5 medial/lateral from bregma) and auditory cortex (-6 anterior/posterior, -5 medial/lateral from bregma). Fiber optic stimulating optrodes were placed in the midpoint of MGB (-6 dorsal/ventral from dura) and affixed to the skull using UV-curable dental acrylic (MidWest Dental). A 16 recording channel planar array was putatively placed in layers 3/4 of auditory cortex, with placement confirmed by short-latency high amplitude multiunit activity elicited from band pass noise (200 ms, center frequencies 1-36kHz in five steps per octave, 0.5 octave bandwidth) test stimuli. Recording electrodes were sealed onto the headcap. Animals were allowed to recover for 72 hours prior to the beginning of the recording regime. All recordings were performed in a 9'x9' electrically isolated anechoic chamber. During recording periods, animals received a intramuscular injection of medetomidine(0.2 mg/kg) for sedation. Optical stimuli were delivered from a 1907 nm diode laser (INSight open source optical stimulation system) coupled to the optrode with a 200 μ m, 0.22 NA fiber (Thor Labs FG200LCC). Laser stimuli were controlled via a RX-7 stimulator (TDT) and consisted of train stimuli with pulse widths between 0.2-10 ms, interstimulus intervals between 0.2-100 ms and energy per pulse between 0-4 mJ. Applied laser energies were randomized to limit effects from neural adaptation with 30-60 repetitions per pulse width/interstimulus interval combinations. Signals from recording electrodes were amplified via a Medusa 32 channel preamplifier and discretized and sampled at 24.414 kHz with a RZ-2 biosignal processor and visualized using Open-Ex software (TDT). Action potentials were extracted from raw waveforms via real-time digital band-pass filtering with cutoff frequencies of 300-5000 Hz. Single units were extracted offline via superparamagnetic clustering in WaveClus (Quiroga et al., 2004). Studies were performed to assess the dose-response profiles of optically-based deep brain stimulation over the span of several months. As each electrode recorded diverse populations of neurons which are potentially subject to change due to electrode healing in, age of the device, and adaptation to the stimulus, a within subjects, repeated measures regression model was warranted. Bayesian hierarchical regressions can easily deal with complex models such as these.

2. An Example of Bayesian Analysis Reporting Guidelines

Bayesian Analysis Reporting Guidelines (BARG)(Kruschke, 2021) was initially proposed to promote transparent and reproducible Bayesian statistics reporting. While initially devised for social and psychological sciences, we adapted the BARG to suit neuroscientific data.

1. **Bayesian Model Descriptions and Sensitivity Analyses.** This report follows the guidelines for reporting of Bayesian Analysis (BARG) ([Kruschke, 2021](#)) consisting of:
 - Necessary software and source code directory
 - Goals of the analysis
 - Model descriptions and decision criterion
 - Prior and hyperprior descriptions
 - Sensitivity analyses for varying prior distributions
 - Posterior and MCMC diagnostics

1.1 Necessary software and source code directory

BARG: Step 2A, 6

This section describes the computational tools used for statistical analyses, including CPU and GPU use. For example:

Bayesian modeling was performed using Python 3.6.8 on a Razer Blade 15 Laptop with an Intel Core i7 processor (6 cores) and an Nvidia RTX2070 GPU. Models were implemented in PyMC version 4.11.5 ([Salvatier et al., 2016](#)), a probabilistic programming module in the Python environment. All source code is available at this paper's github repository ([Link to software](#)). All source data is available at this article's open science framework repository ([Link to Data](#)).

1.2 Goals of the Analyses

This section serves to establish goals of the analyses, brief description of the statistical models used and validation of Bayesian approaches.

BARG: Preamble

The goal of Bayesian regression analyses is to infer a linear relationship within inferior colliculus single unit firing rates resulting from changes in depth of sinusoidal amplitude modulated stimuli. While this is normally established using frequentist linear regression methods, Bayesian approaches allow for flexible and explicit model descriptions which provide rich and descriptive inference and quantification of uncertainty in measurement of single unit activity. Inference is completed using direct probability measures on posterior distributions as opposed to less intuitive and difficult to interpret p-values. Bayesian approaches are also data driven and account for previous knowledge to be encoded as prior distributions (see section 1.3).

The regression model utilized is:

$$\ln(FR) = \alpha + \beta * m + \epsilon$$

where FR is the mean evoked firing rate. Firing rate functions were calculated from recorded peristimulus time histograms. Parameter β quantifies the effect of modulation depth (m) on evoked firing rates respectively. The α parameter describes the model intercept and quantifies subthreshold spontaneous activity and the ϵ quantifies model error.

1.3 Prior Selection

Priors and rational for prior choice is described in this section

There is significant data detailing inferior colliculus responses to SAM stimuli from our lab and the auditory neuroscience community writ large(Citations redacted for double blind review). However,

the role of modulation depth on IC firing rates is understudied. As observations of single unit IC activity tends towards normal distributions, normal likelihood and prior distributions were chosen. Normal distributions also have the advantage of being moderately informative, refraining from undue influence on the posterior from the prior, allowing data to “speak for itself.”

1.4 Posterior Decision Rules

This section details the decision rules used in inference (ROPE+HDI, Bayes factors, etc).

Inference was performed on posterior distributions with credible regions (analogous to frequentist confidence intervals) defined as a highest density interval (HDI) of 95% of parameter maximal *a posteriori* density (MAP) parameter estimates which represent the most probable value of the coefficient. MAP estimates are analogous to maximum likelihood estimation found in frequentist approaches. This allows for the quantification of parameter uncertainty as variance observed in posterior parameter distributions, with narrow HDIs representing more certain estimates. It is customary to define a region of practical equivalence (ROPE) if prior information dictates that incremental parameter changes are effectively the same. As we lack prior knowledge to inform the choice of a prior rope, we take an agnostic approach that any change seen is worth investigating and thus ROPEs are not presented. An effect was deemed significant if it's 95% HDI did not overlap with 0, in line with proposed decision rules typical of Bayesian inference([Kruschke, 2011, 2014](#)).

1.5 Final Model

This section details the final model after prior and posterior sensitivity analyses. Helpful to include a descriptive figure of the inference model

Posterior predictive checks and sensitivity analysis were performed to titrate the best performing models as measured against observed data (Section 3). The final regression model is schematized in figure S1. Final models included deterministic nodes at outputs of prior nodes to prevent NUTS from becoming stuck in regions of the sampling space which are difficult to explore ¹.

1.6 Model Sensitivity analyses

BARG: Step 3A,C

This section details the methods and results of any model sensitivity analyses. As an example, Model sensitivity analyses from hierarchical linear regression are given below.

To evaluate the dependance of hyperprior and prior parameters on Bayesian hierarchical linear regression, leave one out (LOO) cross validation(Gelman et al., 2014). A series of models were evaluated with model variances varied to test sensitivity of each model. Initial data analyses suggested that natural-log transformations of the dependent variable (firing rate) produced distributions which are better modeled as normal distributions. To this end, hierarchical models under test were as follows:

MODEL NAME	MODEL
REGRESSION	$FR = \alpha + \beta_1 * Energy + \beta_2 * ISI + \beta_3 * Energy * ISI + \epsilon$
SEMILOG REGRESSION	$ln(FR) = \alpha + \beta_1 * Energy + \beta_2 * ISI + \beta_3 * Energy * ISI + \epsilon$
NATURAL LOG REGRESSION	$ln(FR) = \alpha + \beta_1 * ln(Energy) + \beta_2 * ln(ISI) + \beta_3 * ln(Energy) * ln(ISI) + \epsilon$

Table S1: Regression models under test

For each model, the variance hyperprior was varied to assess the impact of prior parameters on posterior predictions. Prior classes were defined as: informative (variance ≤ 1), moderately informative (variance = 5), and weakly informative (variance ≥ 10). Primary metrics for model comparison were expected log pointwise predictive density (ELPD), defined as (Vehtari et al., 2017):

$$elpd = \sum_{i=1}^k \int dy_i p_t \bar{y}_i \log(p(\bar{y}_i|y))$$

where p_t, y_i are unknown distributions representing the true data generating function for estimates of true posterior predictive function ($\bar{y}|y$) from observed data y . Estimated p_t, y_i distributions are obtained via cross validation during LOO analysis. In general, higher values of ELPD are a result of higher out of sample predictive fit indicative of a better model. Weight values generated by LOO cross validation were also analyzed and predict the probability of each model given observed data. Finally, we observed the standard error of the ELPD estimate (SE), and the difference between the model with highest ELPD and every other model (dSE) with dSE of the top model set to 0.00 by definition. All LOO calculations were performed *post hoc* with the python package arviz, a plugin for PyMC.

MODEL	R	ELPD	WEIGHT	SE	DSE
ST LOG VAR 5	1	-5337.48	2.046623e-01	46.220458	0.00
ST LOG VAR 100	2	-5337.62	1.763745e-01	46.227682	0.420867
ST LOG VAR 0.5	3	-5337.76	1.552051e-01	49.173347	0.409773
ST LOG VAR 25	4	-5338.15	1.058393e-01	46.358847	0.492297
ST LOG VAR 10	5	-5338.18	9.996540e-02	46.141502	0.300197
ST LOG VAR 1	6	-5338.26	9.238175e-02	49.030330	0.331152
N LOG VAR 10	7	-5340.60	7.103823e-02	49.024680	3.308668
N LOG VAR 1	8	-5341.09	4.291607e-02	48.985814	3.293779
N LOG VAR 5	9	-5341.16	3.978488e-02	89.737613	3.296273
N LOG VAR 0.5	10	-5342.46	1.183257e-02	89.930943	3.300550
ST SEMILOG VAR 1	11	-5466.76	4.359604e-37	84.933022	15.845916
ST SEMILOG VAR 5	12	-5467.12	3.535240e-37	89.043113	15.856552
ST SEMILOG VAR 10	13	-5467.15	5.622764e-37	85.266895	15.895646

ST SEMILOG VAR 0.5	14	-5467.18	3.483572e-37	85.266895	15.866405
ST VAR 1	15	-15336.31	0.000000e+00	49.465018	79.406629
ST VAR 0.5	16	-15355.67	0.000000e+00	49.509352	80.415787
ST VAR 5	17	-15355.67	0.000000e+00	49.487001	80.415787
N VAR 10	18	-16119.11	0.000000e+00	49.510419	82.384329
N VAR 1	19	-16132.23	0.000000e+00	49.524316	83.549811
N VAR 0.5	20	-16154.55	0.000000e+00	49.514661	84.262219

Table S2: LOO model comparison results for the Bayesian hierarchical regression models. Var: Prior variance parameter, log: log predictor and predicted variable model. semilog: semilog predictor model. ST: Student T Likelihood models. N: Normal likelihood models

1.7 Posterior and MCMC Diagnostics

This section details model diagnostics surrounding the Bayesian Inference procedure.

BARG: Step 1E, 2A-D, 3A,C

1.7.1 Choice of MCMC method

This section details the choice of Markov-chain Monte Carlo model used. Many are available, but NUTS is the most common.

For sampling, the Hamiltonian-based MCMC method no U-turn sampling (NUTS)(**Hoffman and Gelman, 2011**) was used. NUTS presents a modification of general Hamiltonian Monte Carlo samplers and presents an efficient sampler for hierarchical and high-dimensional models at the cost of slower sampling times. Regression models ran 4 simultaneous chains with 2000 burn in samples and 4000 iterations with a 90% target inclusion probability.

MCMC Diagnostics

Energy transition plots were used to assess how well MCMC sampled the target posterior distribution of the best performing model as assessed by PSIS-LOO metrics which were compared between models(**Betancourt, 2017**). NUTS sampling is based off dynamical systems modeling (Hamiltonian Monte Carlo) movement through the high entropy distributions towards a target distribution. MCMCs are modeled as dynamical systems with “position” and “momentum” associated with transition between states. This allows for a measurement of kinetic energy associated with the sampler. Efficiency in MCMC trajectory towards the target distribution can be assessed by comparing energy associated with the marginal energy distribution. The regression model displayed overlapping marginal energy and energy transition distributions (Fig S2) suggesting that sample to sample movement was nearly independent and indicative of efficient sampling of the target posterior distribution.

Furthermore, traces of sampled prior parameters in regression models suggest effective sampling of the posterior distribution (Fig S3). Furthermore, the Gelman-Rubin statistic, quantifying within

and between chain estimates and correlation was $\hat{r} < 1.05$, indicative of convergence of marginal posterior parameter values(Gelman and Rubin, 1992).

1.7.2 Posterior Predictive Checks

This section describes any posterior predictive checks performed and a description of the posterior predictive decision rule.

A key advantage of Bayesian-based inference approaches is the ability to directly and explicitly compare model fits to observed data. During model development, posterior predictive checks were performed by sampling from the posterior distribution (16,000 draws). Kernel density estimates of posterior predictive draws from the posterior distribution were compared to kernel densities of observed data. Goodness of fit was quantified using the Bayesian p-value(Gelman et al., 2021). Similar to the frequentist p-value, the Bayesian p-value is also a measure of discrepancy, quantifying the probability that posterior predictive-based draws are more extreme than observed data. The Bayesian p-value is defined as:

$$p_B = \iint dy^r d\theta I_{T(y^r, \theta) \geq T(y^r, \theta)} p(y^r | \theta) p(\theta | y)$$

where I is the indicator function, y^r is the posterior predictive distribution and y is the posterior distribution. Similar to the posterior distribution, posterior predictive distribution and Bayesian p-values were estimated using NUTS. The closer the Bayesian p-value is to 0.5, the better the data sampled from the posterior distribute around the observed data.

Posterior predictive fits and Bayesian p-values for the hierarchical linear and multinomial regression models suggest excellent posterior predictive fits with $\bar{p} = 0.51$ for the hierarchical linear regression model (Main article, Fig 4).

Prior and Posterior Trace plots

This section presents prior and posterior trace plots which are useful for diagnosing model fits.

BARG: Step 2B,C

Critical to the performance of HMC MCMC sampling is the convergence of sampling traces. Output trace plots display the chain of sampled values and the resulting kernel density estimates of sampled prior distributions. All sampled traces showed no divergences in sampling, suggesting that sampled traces were “well behaved”, providing accurate and effective sampling of the distribution. The Gelman-Rubin statistic, quantifying within and between chain estimates and correlation was $\hat{r} < 1.5$ for all sampled traces thus showing good MCMC convergence. For clarity, traces are available on open science framework, with traces for the posterior presented in Figure S3. Traces were checked for characteristic sampling behavior(Hoffman and Gelman, 2011) with no pathological traces found in models.

3. Supplementary Figures

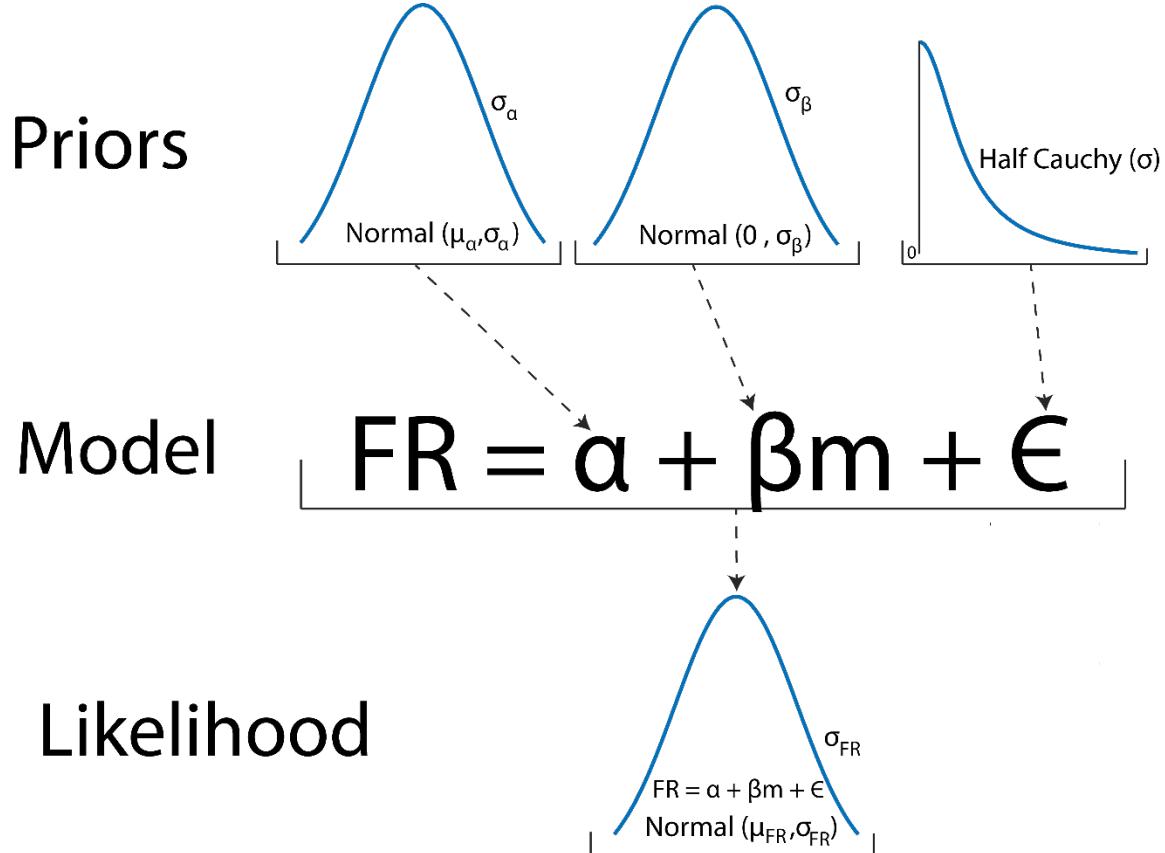


Figure S1: Schematic diagram of Bayesian Linear Regression

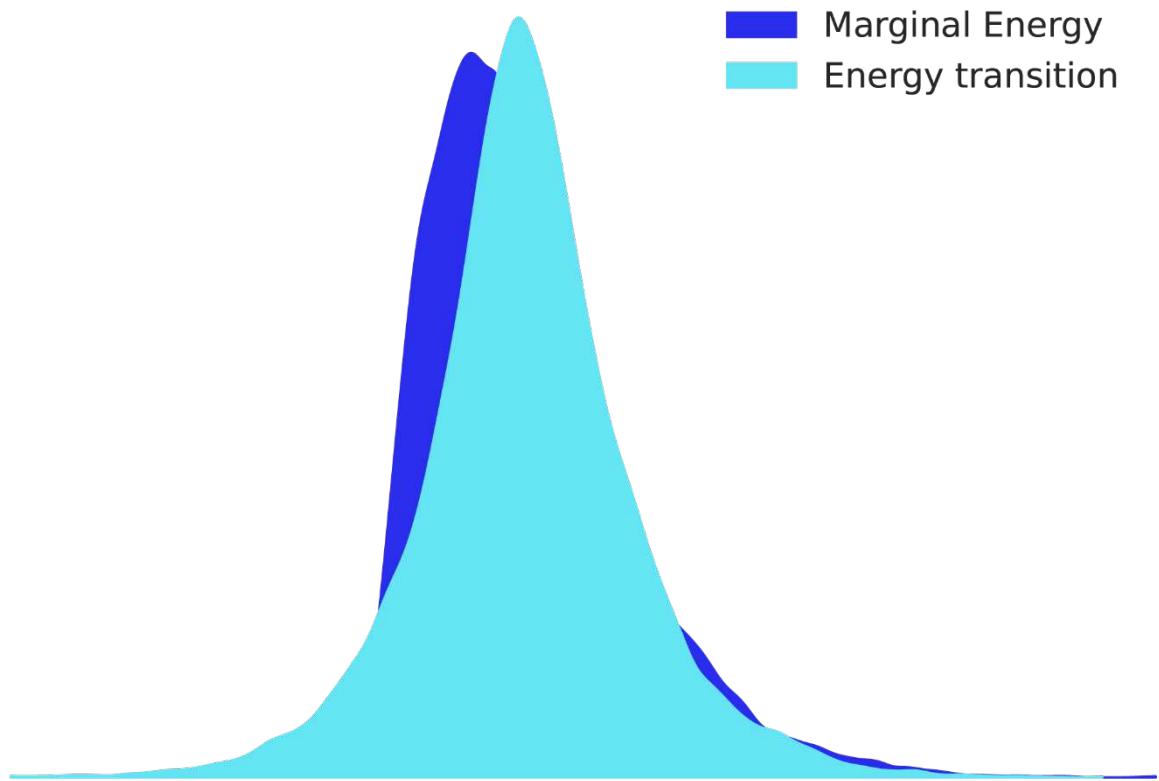


Figure S2: Energy transition diagram for Bayesian linear regression. Overlap of marginal energy with energy transition distributions suggests effective sampling of target distributions.

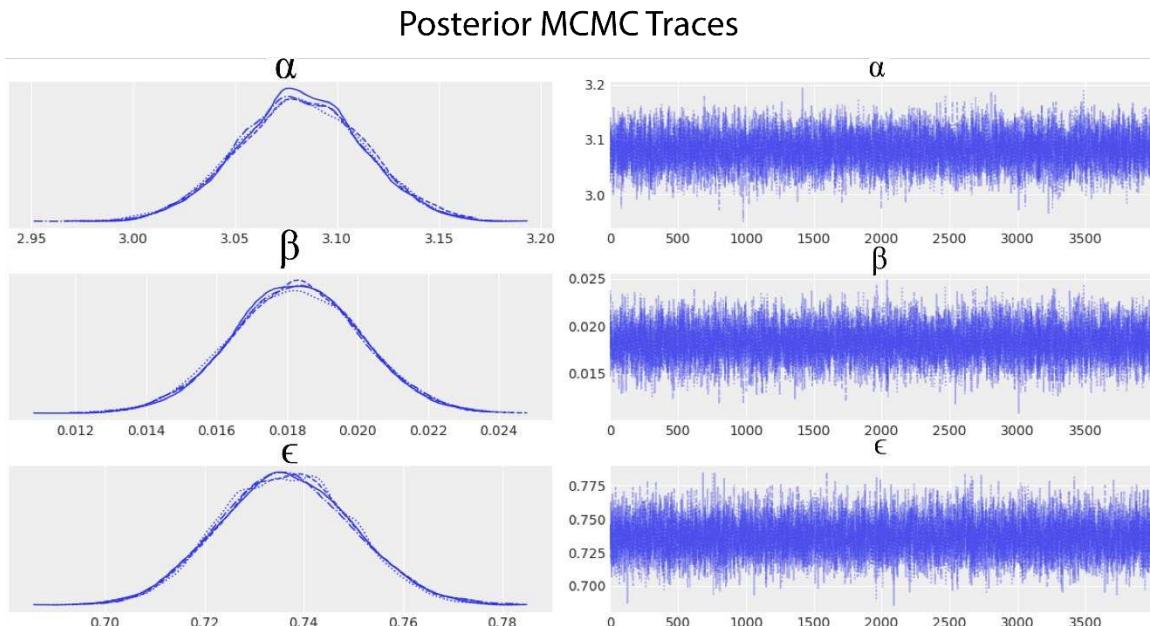


Figure S3: Bayesian regression posterior MCMC traces. MCMC chain distributions (left) built from HMC traces (right).

4. Supplementary References

Betancourt M (2017) A Conceptual Introduction to Hamiltonian Monte Carlo. Available at: <https://arxiv.org/abs/1701.02434> [Accessed July 26, 2023].

Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (*Meriones unguiculatus*): Differences in distribution of projections from the cochlear nuclei and the superior olivary complex. *J Comp Neurol* 495:511–528.

Caspary DM, Palombi PS, Hughes LF (2002) GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus. *Hearing Research* 168:163–173.

Cayce JM, Friedman RM, Chen G, Jansen ED, Mahadevan-Jansen A, Roe AW (2014) Infrared neural stimulation of primary visual cortex in non-human primates. *NeuroImage* 84:181–190.

Cayce JM, Friedman RM, Jansen ED, Mahavaden-Jansen A, Roe AW (2011) Pulsed infrared light alters neural activity in rat somatosensory cortex *in vivo*. *NeuroImage* 57:155–166.

C.F R, Parthasarathy A, Venkataraman Y, Fisher ZL, Gardner SM, Bartlett EL (2012) A computational model of inferior colliculus responses to amplitude modulated sounds in young and aged rats. *Frontiers in Neural Circuits* 6.

Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL (2023) Spatially specific, closed-loop infrared thalamocortical deep brain stimulation. *bioRxiv* Available at: <http://biorxiv.org/lookup/doi/10.1101/2023.10.04.560859> [Accessed October 12, 2023].

Coventry BS, Parthasarathy A, Sommer AL, Bartlett EL (2017) Hierarchical winner-take-all particle swarm optimization social network for neural model fitting. *Journal of Computational Neuroscience* 42:72–85.

Coventry BS, Sick JT, Talavage TM, Stantz KM, Bartlett EL (2020) Short-wave Infrared Neural Stimulation Drives Graded Sciatic Nerve Activation Across A Continuum of Wavelengths. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE.

Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. *Hearing Research* 106:95–104.

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2021) *Bayesian Data Analysis*, 3rd ed. Boca Raton: Chapman and Hall/CRC.

Gelman A, Hwang J, Vehtari A (2014) Understanding predictive information criteria for Bayesian models. *Stat Comput* 24:997–1016.

Gelman A, Rubin DB (1992) Inference from Iterative Simulation Using Multiple Sequences. *Statistical Science* 7:457–472.

Grimsley CA, Sanchez JT, Sivaramakrishnan S (2013) Midbrain local circuits shape sound intensity codes. *Front Neural Circuits* 7 Available at: <http://journal.frontiersin.org/article/10.3389/fncir.2013.00174/abstract> [Accessed August 27, 2023].

Herrmann B, Parthasarathy A, Bartlett EL (2017) Ageing affects dual encoding of periodicity and envelope shape in rat inferior colliculus neurons Foxe J, ed. *Eur J Neurosci* 45:299–311.

Hoffman MD, Gelman A (2011) The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Available at: <https://arxiv.org/abs/1111.4246> [Accessed July 26, 2023].

Izzo AD, Suh E, Pathria J, Walsh JT, Whitlon DS, Richter C-P (2007) Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. *Journal of biomedical optics* 12:021008.

Kelly JB, Caspary DM (2005) Pharmacology of the inferior colliculus. In: *The inferior colliculus.*, 1st ed. New York, NY: Springer.

Kruschke JK (2011) Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison. *Perspectives on Psychological Science* 6:299–312.

Kruschke JK (2014) Doing Bayesian Data Analysis: A tutorial with R, JAGS, and stan, 2nd ed. Academic Press. Available at: <http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/>.

Kruschke JK (2021) Bayesian Analysis Reporting Guidelines. *Nat Hum Behav* 5:1282–1291.

Loftus WC, Bishop DC, Oliver DL (2010) Differential Patterns of Inputs Create Functional Zones in Central Nucleus of Inferior Colliculus. *J Neurosci* 30:13396–13408.

Palombi PS, Backoff PM, Caspary DM (2001) Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. *Hearing Research* 153:174–180.

Parthasarathy A, Bartlett E (2012) Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing. *Hearing Research* 289:52–62.

Parthasarathy A, Cunningham PA, Bartlett EL (2010) Age-Related Differences in Auditory Processing as Assessed by Amplitude-Modulation Following Responses in Quiet and in Noise. *Front Ag Neurosci* 2 Available at: <http://journal.frontiersin.org/article/10.3389/fnagi.2010.00152/abstract> [Accessed March 13, 2023].

Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. *Neural computation* 16:1661–1687.

Rabang CF, Parthasarathy A, Venkataraman Y, Fisher ZL, Gardner SM, Bartlett EL (2012) A computational model of inferior colliculus responses to amplitude modulated sounds in young and aged rats. *Frontiers in neural circuits* 6:77.

Salvatier J, Wiecki TV, Fonnesbeck C (2016) Probabilistic programming in Python using PyMC3. *PeerJ Computer Science* 2:e55.

Simon H, Frisina RD, Walton JP (2004) Age reduces response latency of mouse inferior colliculus neurons to AM sounds. *The Journal of the Acoustical Society of America* 116:469–477.

Vehtari A, Gelman A, Gabry J (2017) Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Stat Comput* 27:1413–1432.

Wells J, Kao C, Mariappan K, Albea J, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Optical stimulation of neural tissue in vivo. *Optics Letters* 30:504.