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ABSTRACT

Typical statistical practices in biological sciences have been increasingly called into question due to
difficulties in replication of an increasing number of studies, much of which is confounded by the relative
difficulty of null significance hypothesis testing designs and interpretation of p-values. Bayesian inference,
representing a fundamentally different approach to hypothesis testing, is receiving renewed interest as
a potential alternative or complement to traditional null significance hypothesis testing due to its ease of
interpretation and explicit declarations of prior assumptions. Bayesian models are more mathematically
complex than equivalent frequentist approaches, which have historically limited applications to simplified
analysis cases. However, the advent of probability distribution sampling tools with exponential increases
in computational power now allows for quick and robust inference under any distribution of data. Here
we present a practical tutorial on the use of Bayesian inference in the context of neuroscientific studies.
We first start with an intuitive discussion of Bayes’ rule and inference followed by the formulation of
Bayesian-based regression and ANOVA models using data from a variety of neuroscientific studies. We
show how Bayesian inference leads to easily interpretable analysis of data while providing an open-

source toolbox to facilitate the use of Bayesian tools.

Significance Statement

Bayesian inference has received renewed interest as an alternative to null-significance hypothesis
testing for its interpretability, ability to encapsulate prior knowledge into current inference, and robust
model comparison paradigms. Despite this renewed interest, discussions of Bayesian inference are often
obfuscated by undue mathematical complexity and misunderstandings underlying the Bayesian
inference process. In this article, we aim to empower neuroscientists to adopt Bayesian statistical
inference by providing a practical methodological walkthrough using single and multi-unit recordings from
the rodent auditory circuit accompanied by a well-documented and user-friendly toolkit containing

regression and ANOVA statistical models commonly encountered in neuroscience.
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Introduction

Inference tools are foundational to all studies in neuroscience, providing the necessary machinery to
make decisions and conclusions from data. Frequentist-based null significance hypothesis testing (NHST)
has been the gold standard of inference in neuroscience and science at large in part due to the
computational simplicity of frequentist models compared to permutation sampling or Bayesian-based
methods. A significant problem present in the current practice of NHST, however, arises in the adoption
of the p-value as the de facto metric of experimental “success”, notorious for its difficulty in interpretation
and correct usage (Krueger and Heck, 2019). The confluence of exponential increases in computational
power with the wider discussion of problems with NHST usage has created renewed interest in Bayesian
inference as an alternative to frequentist NHST while offering interpretability benefits over the p-value

and NHST overall.

The use of p-values, the ubiquitous decision rule in frequentist methods, is fraught with problems due to
fundamental misunderstandings of its use, interpretability, and most pathologically, its susceptibility to
intentional and unintentional p-hacking(Nuzzo, 2014). Contrary to the initial intent of Ronald
Fisher(Fisher, 1992), the p-value has often become the gatekeeper of significance in studies. In this role,
it limits deeper observations into data, and it is often used without proper experimental design to ensure
proper use and control. Methods of statistical inference require that one first define a statistical model
with the power to adequately describe the data-generating process. Inference is then performed to
estimate the population distribution from limited samples of observed data. Once estimates of population
distributions are made, the determination of whether or not these distributions represent a significant
effect is determined. NHST is somewhat a victim of its own success, where common practice has distilled
the practice of NHST to chase the somewhat arbitrary p<0.05 measure of significance devoid of model

or data considerations(Krueger and Heck, 2019). Furthermore, even in the best of experimental designs,
2
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the p-value is a surrogate for arguably what a researcher is most interested in: how likely is it that

observed data has some effect different from null(Kruschke, 2011; Gelman and Shalizi, 2013).

Bayesian methods offer a solution to the problem of the p-value, providing a direct measure of the
probability that observations have some effect(Kruschke, 2011; Gelman and Shalizi, 2013). This is done
by reallocation of probability of possibilities as parameters in a mathematical model of the data-
generating process, leading to probabilistic estimates desired by but not attainable with p-value analyses.
Bayesian methods are inherently data-driven; models are built with prior knowledge directly incorporated

from parameters estimated directly from observed data.

Bayesian inference, though chronologically younger than frequentist approaches, was not adopted as
the primary inference paradigm due to the computational demands necessary to solve inference
problems outside of certain canonical forms(Bishop, 2006) and the adoption of frequentist interpretation
of probability(Fienberg, 2006). Inference on arbitrary distributions required a deeper mathematical
knowledge and computation of integrals which were potentially intractable without modern numerical
integration techniques. Frequentist paradigms however were more easily adapted to computationally
simple algorithms, allowing researchers to “do statistics” without extensive formal training. However,
exponential increases in computational power with the development of powerful Markov chain Monte
Carlo (MCMC) sampling methods now allow researchers to perform meaningful Bayesian inference on

arbitrary distributions underlying observed data(Gilks et al., 1996).

The goal of this tutorial is to remedy the opacity that often accompanies discussions of Bayesian
inference by providing simple, step-by-step walkthroughs of Bayesian inference with four common
inference paradigms. We also aim to demonstrate the explanatory power of Bayesian inference in the

context of neuroscience data. While the aim of this article is focused on application, this tutorial will begin
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with a brief introduction to Bayes’ rule and its constituent components necessary for inference. For more
theoretical and mathematical considerations of Bayesian inference, see the following books and
articles(Gerwinn et al., 2010; Colombo and Seriés, 2012; Bielza and Larranaga, 2014; Kruschke, 2014;

Kruschke and Vanpaemel, 2015; Ma, 2019; Gelman et al., 2021; Van De Schoot et al., 2021).

Estimation of Spike Rates from Auditory Stimuli: A Motivating Example

To facilitate the discussion of Bayesian inference in neuroscience, consider an example found
prominently in auditory neuroscience(Fig 1A-B). In our first experiment, single unit recordings were made
from the inferior colliculus (IC) in response to applied sinusoidal amplitude-modulated tones (SAM, see
S| Methods). The goal of this analysis is to create a linear model of SAM temporal auditory processing

by quantifying increases in evoked single unit firing rates in response to decreased SAM modulation.

The linear regression model seeks to estimate a linear relationship between one (simple linear) or more
(multilinear) predictor and measured variables. In this model, both the measured result and predictors
are metric variables which map to a continuum of possible values. The simple linear regression model
takes the form of:
y=a+pfx+e

where y is the measured (predicted) group, x is the predictor, § is the “slope” parameter dictating the
relative increase or decrease in y per unit change in x, « is the intercept term which, in models of firing
rate represents non-evoked, spontaneous firing rates, and € is an error term which quantifies the
difference between the expected value of y at a given x given a linear model versus the observed value
of y at x. It should be noted that ¢ is not present in all regression models, but the authors suggest

inclusion to quantify deviations from linear fit.
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Linear regression thus forms a model in which AM depth predicts evoked firing rates in which the model
parameters are estimated and used to draw conclusions about the relative dependency of y on x. To
begin, an observation of the relative distribution of the measured data, in this case firing rates elicited
from IC, will allow for robust inference model design. Inspection of the distribution of firing rates (Fig 1C)
suggests that a log transform would allow for the data to be normally distributed, making model
computations easier through use of canonical normal distributions. Before continuing to inference, it is

important to describe the functional components of Bayesian inference’s computational tool; Bayes rule.

Bayes’ Rule

Foundational to Bayesian approaches is a complementary, but epistemically differing view of probability
from that of frequentist approaches. While the frequentist perspective treats probability as the relative
frequency of the occurrence of some event, the Bayesian perspective instead treats probability as the
expectation of an event occurring which can be used to not only quantify the state of knowledge of an
event, but also the uncertainty involved in measuring an event. Traditionally, the Bayesian perspective
has been called ‘belief’, a perhaps unfortunate name which belies the fact that the Bayesian perspective
of uncertainty of an event is fundamentally quantifiable. Perhaps a better description of Bayesian belief
is instead quantification of the state of knowledge by accounting for uncertainty. The cornerstone of
Bayesian inference is Bayes rule, defined as:

P(E|H)P(H)
P(H|E) = —rE)
where H is the quantification of the state of a hypothesis, and E is the quantification of observed evidence.
In the context of inference, it is helpful to explicitly state the role of the model in Bayesian formulations:

P(E|8, M)P(6|M)

PBIE,M) = P(E|M)

where M is the model of the data generating process and 6 are the model parameters. The individual

components of Bayes’ rule are given names corresponding to the purpose they serve, with P(6|E, M)

5
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called the posterior distribution, P(E|6, M) the likelihood function, P(6|M) the prior distribution, and
P(E|M) the evidence or marginal likelihood function. Taken together, Bayes’ equation represents the
quantification of observed data accounting for prior knowledge(Fig 2A). Each component plays a key role

in Bayesian inference and each will be discussed briefly below.

The Model Evidence

The denominator term P(E|M), called the model evidence (or just the evidence or marginal likelihood in
Bayesian parlance) is the quantification of the probability of observing the data under a chosen model of
the data generating function. At first glance, the calculation of the total evidence appears to be an
insurmountable task. In reality this term is the weighted average of parameter values in a given model
weighted by the relative probability of a given parameter value(Kruschke, 2014) and thus acts as a
normalization term to ensure the numerator is a proper probability distribution. The structure of P(E|M)
will change based on whether the distributions represent probability mass functions (discrete case) or

probability density functions (continuous case). In the discrete case, the evidence is
P(EIM) = ) p(EI0, M) p(6]M)
6
and in the continuous case:

P(EIM) = f p(E|6, M)p(6]M)do

The evidence function thus represents an average of the likelihood function across all parameter
values conditioned on the prior distribution. The marginal likelihood can also be utilized to assess the
plausibility of two competing models(Johnson et al., 2023). The evidence, especially in the continuous
case, is historically what made Bayesian inference difficult due to the need to evaluate a complex
integral numerically. However, the advent of Markov-chain Monte Carlo (MCMC) methods with

improvements in personal computer processing power has allowed for computationally efficient
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integration without the need for supercomputing hardware. MCMC methods will be discussed in a

subsequent section.

The Prior

The prior, P(8|M), is often the major stumbling block for those entering into Bayesian inference, but this
hurdle is less about the prior, and more about what the prior is perceived as. The prior, P(H) describes
the investigators prior beliefs on the state of knowledge of the study. Critics of Bayesian inference have
described the prior as purely subjective, but we, and many others(Kruschke, 2010; Box and Tiao, 2011;
Gelman and Shalizi, 2013), argue that the prior represents an explicit declaration of the investigators
knowledge, assumptions, and the general state of a field which is implicit and often is present but not
stated in frequentist approaches. Moreover, one is encouraged to perform prior predictive checks to
compare the sensitivity of competing priors in a Bayesian inference model, as we will show subsequently.
The practice of the design of experiments and their resulting publications are rife with implicit priors which
are often not acknowledged or realized when reporting results. As an example, consider study of cortical
extracellular single unit recordings(Paninski et al., 2004; Bartlett and Wang, 2007; De La Rocha et al.,
2007; Coventry et al., 2023a as illustrative examples). The investigator could be leading a project with
vast knowledge accumulated over years of study. Or the investigator is a trainee of a career researcher
who draws a view of cortical physiology from their experienced mentor mixed with reading current
literature. When designing an experiment, the investigator will have some intuition regarding likely and
biologically feasible resting state and stimulus-evoked firing rates, cognitively assigning relatively low
likelihood of seeing extremes of firing rates with higher likelihood assigned to moderate firing rates
previously observed in literature or seen in experiments, and likely will discard or treat as outliers firing
rates on the extremes or thought to be non-biological noise. The power of the prior distribution in
Bayesian approaches is in part the need to explicitly quantify and report these prior beliefs, which can

be analyzed and scrutinized as part of the peer review or post-publication process. Prior distributions
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also require investigators to consider their biases and relative expectation on the importance of
previously recorded and read data, promoting a deeper understanding of not only the data obtained
within their lab, but also of the general state of the specific neuroscience field. As the name implies, prior

beliefs are quantified as probability distributions by the investigators.

This begs the question as to what a prior might look like in newer avenues of study where a paucity of
data exists. Or in situations where researchers and data analysts want the data to “speak for itself’
outside any influence of the prior. In these cases, priors can be designed to be “non-informative” or
“‘weakly-informative”, assigning broad, non-committal distributions to the prior. One might assign a
uniform distribution on the prior, effectively treating each parameter outcome as equally likely. Uniformly
distributed priors do require some caution, however, as any parameter value outside of the bounds of
the uniform distribution is automatically assigned probability 0 in the posterior, even if that value has
been observed(Fig 2B). In many cases, it’'s better to allow small, but nonzero probabilities to extreme
values, such as the tails of a normal distribution, such that evidence for unexpected events is represented
in the posterior given strong data(Fig 2C). Conversely, priors can be made to be highly informative in
situations where physiological bounds are well known and well-studied, where extreme values are known
to be biophysically irrelevant or impossible or known to be due to instrument noise(e.g. large 50/60 Hz

noise peak in power spectrum indicative of wall power noise).

The Likelihood

The likelihood function, P(E|6, M) describes the probability that data is observed given parameter values
0 in a data generating model M. In the context of inference, the likelihood function updates information
given in a prior distribution to the posterior distribution given the observed data(Etz, 2018). The likelihood
function is generally not a proper distribution, in that it is conditioned on yet unknown parameters and

may not integrate to 1, but the evidence and prior terms ensures that resultant posterior distributions are
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true probability densities. The idea of likelihood functions are present in both Bayesian and frequentist
models, but has vastly different interpretations. The model parameters in a frequentist viewpoint
converge upon singular values learned, usually though maximum likelihood estimation, from merging
competing hypotheses of data. Bayesian approaches treat model parameters as ranges arising from

distributions after observing the data at-hand.

The Posterior

The prior, likelihood, and evidence then form the posterior P(6|E, M), the reallocation or mapping of
probability from likelihood function, prior, and model evidence to an all-encompassing distribution. The
posterior thus is the evidence for parameters 8 conditioned on observed data and a model of the data
generating function. The posterior forms the basis for inference, with all relevant information encoded in

its distribution. Inference on the posterior distribution is covered in a section below.

Estimation of the Posterior

Despite Bayes' rule being formulated before Fisher’'s description of frequentist methods, a major reason
that Bayesian inference was not been widely adopted was fundamentally a computational one, in that
evaluation of Bayes’ rule often requires solving non-trivial integrals. A subset of computationally tractable
prior distributions and likelihood functions formed canonical posteriors in which the posterior is easily
inferred. However, these cases are not generalizable to experimental data which can be noisy and not
well behaved. Modern Markov-chain Monte-Carlo (MCMC) tools have been developed to quickly and
easily estimate arbitrary distributions. MCMC involves the generation of random samples which converge
to a target probability distribution, the details of which can be learned from the following reviews(Hoffman

and Gelman, 2011; Betancourt, 2017).

Making Decisions on the Posterior
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We define inference broadly as the process by which reasoning and decisions about a phenomena are
made from a sample of observations of the phenomena. Classical NHST does not offer zero probability
of error hypothesis testing(Blackwell, 1980). However, incorporation of prior knowledge in Bayesian
inference allows for optimal decision making on observed data(Blackwell and Ramamoorthi, 1982). The
posterior contains all necessary information to make inferences on experimental data incorporating prior
knowledge. However, it is best to consider the specific goals of inference before performing statistics.
Possible goals of inference are as follows(Kruschke, 2014):

¢ Infer the parameters of a model.

e Reject or confirm a null hypothesis

o Compare two or more competing models
In the case of neuroscientific studies, inferring model parameters occurs when an experiment aims to
establish how neural firing rates change with changes in applied stimuli. Or one may want to confirm and
reject a null hypothesis that a treatment has the desired effect or that there are differences between
neural populations. Importantly, because the Bayesian inference operates solely on the posterior
distribution, one can confirm or reject competing hypotheses and not simply reject the null as in

frequentist NHST.

Regardless of the goal, inference always involves analyzing the posterior, which provides a complete
representation of the distribution of a given parameter given the experimental data. Therefore, decisions
about the data, the effect of model parameters, and/or which hypothesis has more evidence is performed
with calculations on the posterior. There are a multiplicity of decision rules that can be used to assess
the posterior. The most common, and in the author’s opinion, the most intuitive is that of the Bayesian
credible interval. The confidence interval calculates the probability that a population parameter lies in a
certain interval. As credible intervals are not strictly unique, Bayesian inference convention is to fix the

interval to the smallest interval which contains 95% of the posterior distribution density mass called the

10
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highest density interval (HDI). Observations of posterior HDIs can then be used to assess the relative
effect of a parameter. Regions of practical equivalence (ROPE) may be included in the posterior
distribution that explicitly define a range of values that are effectively equivalent to a null value, with
parameters considered significant if 95% of the posterior distribution (95% HDI) does not contain O or
any values in the ROPE (Kruschke, 2018). Along with posterior HDIs, calculations of maximum a
posteriori (MAP, distribution mode) estimates from the posterior are performed to quantify a most likely
parameter value. While decision rules are important to assess the relative effect of statistical model
parameters, we reiterate that simply passing a decision rule should not conclude the inference step.
Inference should be made in context of the evidence presented in model quality checks, observed data

posterior distributions, and decision metrics.

Error Quantification and Model Comparison

Critical to any statistical model and inference therein is its fit to observed data. While it is entirely possible
to perform linear regression on data distributions which are highly nonlinear, predictions and inference
made by the model will likely be inaccurate. Both Bayesian and frequentist inference offer robust model
error quantification. Bayesian approaches, however, can utilize the posterior distribution to not only
quantify and bound the distribution of model errors, but also include post hoc posterior predictive
sampling as part of the inference paradigm. Posterior predictive sampling involves making random draws
from the posterior and building a sampling distribution. This distribution is then compared to the observed
data distribution to quantify the model’'s disparity from observed data. Along with posterior predictive
checks, prior predictive checks act as a sensitivity measure of the influence of the prior distribution on
the posterior distribution. Taken together, Bayesian inference thus allows for robust statistical inference

on observed experimental data which appropriately includes prior knowledge of the state of the field.

Formulation of Models and Applied Bayesian Inference

11
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There are a multiplicity of programs and programming languages that facilitate Bayesian analysis, such
as standalone programs of Jasp(Love et al., 2019) and probabilistic programming language packages
such as BUGS(Brooks, 2003) and STAN(Carpenter et al., 2017), we chose to use PyMC(Salvatier et al.,
2016) for its ease in explicitly declaring probability distributions and its implementation in Python which
is in common use in neuroscientific data analysis. Model formation is often conserved between
frequentist and Bayesian approaches; it is only the mode of inference that differs. However, for clarity,

we will discuss both model formation and performing inference in the subsequent sections.

Performing Bayesian Inference on the Linear Regression Model

Turning back to the example of IC single unit firing rates in response to SAM depth stimuli, the first step
in inference is to place a prior distribution on the data. Previous studies and data can be used to inform
the prior, but for this example we chose to demonstrate regression with moderately informative priors on
a,f, and € so as to let observed data drive posterior inference. Given that the data observed data is
roughly normal, a good first pass is to place a normal distribution on the prior with mean equal to the
mean of the observed data and a variance that is wide enough to capture all observed data. After
inference is made, sensitivity analyses can be performed to assess the relative importance of the prior
parameter values on posterior estimates. Larger prior variances allow for small, but non-zero probabilities
on extreme values. This tends to be a more robust approach than setting a value of 0 on extreme events,
as observed data with strong evidence for an extreme value can be adequately represented in the
posterior. After observation of the underlying distribution of the observed data and decision on a prior

distribution, a linear regression inference model can be easily described in code as follows:

Code Example 1: PyMC initialization of a simple linear regression model
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with pm.Model() as regression: #Define a model that we call regression
a = pm.Normal('a', mu=prMean, sigma = 5) #Normally distributed prior on a
B = pm.Normal('B', mu=prMean, sigma = 5) #Normally distributed prior on B
eps = pm.HalfCauchy("eps", 5) #Model error prior
# Now we define our likelihood function, which for regression is our regression
function
reg = pm.Deterministic('reg', a + (B*modDepth))
likelihood = pm.Normal('Y',mu = reg, sigma = eps, observed = fir-
ingRate)
#Deterministic is for non probabilistic data. This is a modification to help sam-
pling, inference is still probabilistic.

The likelihood variable then translates our model to one of Bayesian inference by casting the model as
a probability distribution, in this case

y~N(a + Bx +€)
noting that observed firing rates are incorporated by the ‘observed’ parameter in the likelihood distribution.

To generate the posterior, all that needs to be done is to initialize and run MCMC as follows:

Code Example 2: Running the MCMC sampler

with regression: #Access our defined model
trace = pm.sample(numSamples, tune=numBurnIn, target accept=0.90,chains = 4)
#4 parallel, independent MCMC chains.

This routine then generates a trace variable containing the posterior distributions of all model parameters
after sampling numSamples with numBurnin samples to initialize chains. We also ran 4 chains in parallel
with a target_accept probability of 90%. Acceptance probability is somewhat based on the statistics of
observed data and model, with more difficult posteriors benefiting from higher accept probability
values(Gilks et al., 1996). Improper acceptance probabilities can give rise to insufficient number of draws
and malformation of posterior distributions. PyMC provides a helpful readout for when posterior draws
are malignant and indicative of higher acceptance probabilities. In summary, in a few lines of code the

researcher has observed distributions of the data and explicitly defined a model of the data generator
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and likely now has a better intuition of the data and how it is distributed. All that’s left to observe the

posteriors with HDIs to infer significance from the model.

Plotting the 95% HDI estimation of the regression line (Fig 3a) on modulation depth vs natural log-
transformed firing rates suggest a small but significant increase in firing rates with increases in
modulation depth. Posterior distributions of model parameters (Fig. 3B) also show that there is an
estimated basal firing rate above 0 (a MAP = 3.1) and a slope increase small but significantly above 0 (8
MAP = 0.018) with model error terms considered small for being significantly smaller than intercept term
(¢ MAP = 0.74). The spread of the 95% HDI on inferred parameters is used as a measure of uncertainty
of the parameter, with narrow HDIs representing more certainty in MAP estimated parameter. In our
model, the a parameter has a spread between 3.02 to 3.13, with a difference of 0.11 containing 95% of
its posterior distribution, suggesting strong certainty in the MAP estimate of 3.1. Similar narrow spread
is see in the B parameter, with a difference of 0.007 containing 95% of the posterior. The model error
term shows that observed data deviation from the model is constrained between 0.71 and 0.76

suggesting relative certainty in the magnitude of deviation of the data from the model.

Statistical conclusions should not end after making inferences on model parameters however. Critical to
the validity of statistical inference is the quality of the model fit to observed data. This goodness of fit in
Bayesian approaches can be analyzed by posterior predictive checks, in which sample draws are made
from the posterior distribution, simulating observations of data generated from the experiment from which
the statistical model was fit, and comparing sampled to observed data to assess deviation of model
predictions from observed data distributions. In PyMC, posterior predictive checks can be easily

performed using the following code:

Code Example 3: Performing posterior predictive checks
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Now let's do some posterior predictive checks. PyMC has some nice functions
that make this quite easy. We will also sample the posterior distribution for the
standard 16,000 samples, which for this posterior should be more than enough.

with regression:
ppcRegression = pm.sample_posterior_predictive(trace, random_seed=Random-
seed)
#The above code envokes the regression mode, then uses the posterior from
the trace, pulling synthetic samples to compare to observed. Random seed
is set so that each run can be perfectly replicated

az.plot_bpv(ppcRegression, hdi prob=0.95,kind="p_value')
#Bayes p-values, similar to frequentist,can be used to assess if posterior
predictive is sufficiently close to observed density. Should be centered
around 0.50.

az.plot_ppc(ppcRegression)

az.plot_trace(trace,var_names=['a', 'B','eps'])

plt.show()

To illustrate how posterior predictive checks can be used, a competing model was made which performs
Bayesian linear regression to the same data and priors except without log transformation of the data. In
each case, random draws were made from each log transformed and non-log transformed posteriors to
create empirical data distributions. Comparison of empirical distributions qualitatively show that log-
transformed models present a better fit to observed data than non-log transformed models. The relative
disparity between posterior predictive model fits and observed data can be quantified by use of Bayesian
p-values, a distance measure between two distributions( for details of Bayesian p-values, see Kruschke,
2014). The closer the Bayesian p-value is to 0.5, the better data sampled from the posterior overlaps
with the distribution of observed data. Plotting the resulting distributions and the Bayesian p-values
indeed show the log-transformed model fits better to observed data than the non-transformed model.
Similar analyses can be performed around model free parameters, such as prior variables, to form a

sensitivity analysis of prior distributions on resulting posterior inferences.
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A secondary and quick check of posterior sampling can be performed by qualitative evaluation of the
MCMC sampling chains, often called traces. Traces represent the long term run of a Markov chain which
represent the distribution of interest. As such, good traces show evidence of effective sampling and
convergence to target probability distributions. PyMC offers easy ways to visualize posterior MCMC
traces using the plot_trace function. Figure 3 shows traces obtained from our Bayesian regression
example. Kernel density estimates of traces corresponding to the posterior distributions of regression
parameters show good convergence of MCMC traces to a target distribution (Fig 3A). As MCMC chains
are time series samples which form a distribution, evaluation of traces through sampling time can also
be used as a diagnostic of sampling convergence. Traces should have a “fuzzy caterpillar’ like
appearance (Fig 3B) without any stark jump discontinuities from sample to sample. Quantitative trace
evaluations are also available, with the Gelman-Rubin statistic () being the most prominent. The
Gelman-Rubin statistic measures the variance between MCMC chains to the within chain variance,
effectively measuring chain stationarity and convergence(Gelman and Rubin, 1992). Heuristically, #* <
1.05 is considered good convergence of MCMC chains. This value can be calculated post hoc after

sampling and PyMC will automatically flag if # > 1.05 is detected.

While there are many reporting guidelines for Bayesian inference, we follow the Bayesian Analysis
Reporting Guidelines as given by Kruscke(Kruschke, 2021) and provide an example reporting document
including posterior predictive checks, Bayesian model comparisons, and sensitivity analysis as

supplementary material.

Multilinear Regressions, Repeated Measures, and Hierarchical Models
In many experiments, inference across multiple possible data generating parameters must be analyzed
and accounted for. These models, called multilinear regressions, are extensions of standard linear

regression as follows:
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y=XTB+e—>y= Bo+ P1x;+ Poxy ..t Ppxy,+€

where n is the total number predictors.

To illustrate the use of multilinear regressions, consider the case of thalamocortical infrared neural
stimulation (INS)(Fig 5A). Auditory thalamic neurons in the medial geniculate body were excited by pulse
trains of optical stimuli varying in pulse energy and time between pulses. The resulting auditory cortex
single unit responses are recorded using a planar, Utah style array in layer 3/4. An important and
understudied aspect of INS is the effect of laser energy and interstimulus interval changes on evoked
firing rate responses; a so-called dose-response curve. We begin by specifying predicted and predictor
values. Dose-response relationships were measured by predicting maximum firing rates in response to
applied INS energy (E) and inter-pulse intervals (ISI). As we suspect an interaction between E and ISI,
an interaction term of E*ISI was incorporated. Therefore, the model was defined as:
max(FR) = a + B1E + BoISI + B3(E +ISI) + €

An important aspect of this study was that rats underwent chronic recordings through the duration of the
lifetime of the implant. It almost a certainty that stimulation and recording quality will change over the
lifetime of the devices due to neural adaptation to stimulation(Falowski et al., 2011) and glial response
and encapsulation of the devices(Van Kuyck et al., 2007; Woolley et al., 2013). This experimental
paradigm is thus complicated by potentially meaningful repeated measures within subject variability.
Furthermore, slight differences in electrode and optrode placement between rodents could create a
heterogeneity in the receptive fields of recorded neurons(Vasquez-Lopez et al., 2017), representing a

potentially meaningful between-subject variance.

Hierarchical Structures Capture Latent Variables
Models in both Bayesian and frequentist paradigms capture these within and between subject variances

by adding hierarchical structure to the model. From the Bayesian perspective, hierarchical models are
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defined by allocating hyperparameters on the prior which encode within and between group variances in
the model, with each hyperparameter containing hyperprior distributions. Graphically, this is organized
in Fig 5B. Bayesian and frequentist hierarchical models share similar roots, with particular hyperprior

distributions in Bayesian paradigms becoming proportional to frequentist random effects models.

While this appears to be a herculean task in data modeling, PyMC allows for declarations of hierarchical

models, as shown in Code Snippet 4:

Code Example 4: Creating a hierarchical regression model
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animal_code_idx = data.animal_code.values #Encodes within and between
subject variances as parameter indices
with pm.Model() as Heirarchical_ Regression:

# Hyperpriors for group nodes
mu_a = pm.Normal("mu_a", mu=0.0, sigma=1)
sigma_a = pm.HalfNormal("sigma_a", 5)
mu_b = pm.Normal("mu_b", mu=0.0, sigma=1)
sigma_b = pm.HalfNormal("sigma_b", 5)
mu_b2 = pm.Normal("mu_b2",mu=0.0, sigma=1)
sigma_b2 = pm.HalfNormal("sigma_b2",5)
mu_b3 = pm.Normal("mu_b3", 1)
sigma_b3 = pm.HalfNormal("sigma_b3",5)

sigma_nu = pm.Exponential("sigma_nu",5.0)

#Base layer

nu = pm.HalfCauchy('nu', sigma_nu) #Nu for robust regression
a_offset = pm.Normal('a offset', mu=@, sigma=1l, shape=(n_channels))

a = pm.Deterministic("a", mu_a + a_offset * sigma_a)

# Declare Regression parameters under a normal distribution

bl_offset = pm.Normal('bl_offset', mu=0, sigma=1l, shape=(n_channels))
bl = pm.Deterministic("b1l", mu_b + bl _offset * sigma_b)

b2_offset = pm.Normal("b2_ offset",mu=0, sigma=1l, shape=(n_channels))
b2 = pm.Deterministic("b2", mu_b2 + b2 offset*sigma_b2)

b3_offset = pm.Normal("b3_offset",mu=0, sigma=1, shape=(n_channels))

b3 = pm.Deterministic("b3", mu_b3 + b3 _offset*sigma_b3)

#Add in the error term

eps = pm.HalfCauchy("eps", 5,shape=(n_channels))

#Declare regression model

regression = a[animal_code_idx] + (bl[animal code idx] *
XenergyPerPulse) + (b2[animal code idx] * XDist)
+(b3[animal_code_idx]*XenergyPerPulse*XDist)

#Encode model into likelihood function

likelihood =

pm.StudentT("MaxZ_like",nu=nu,mu=regression,sigma=eps[animal_code_idx],
observed= MaxZ)

Owing to the scarcity of thalamocortical INS data, we assigned noninformative, wide spread normal
distributions on the priors and hyperpriors so as to let the data speak for itself. We also utilized a student-

T distribution as the likelihood function to accommodate outliers in a modification known as “robust
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regression’(Kruschke, 2014). Student-T distributions have tails which are not bounded by the exponential
function, meaning that extreme values have less impact or skew on the posterior distribution. Half-
Cauchy distributions are placed on the error term and Student-T normality parameter v. Half-Cauchy
distributions are advantageous in learning scale parameters from the data in hierarchical models

(Gelman, 2006; Polson and Scott, 2012).

It is important to validate that our model and data generating functions indeed represent the observed
data. Sensitivity analyses and posterior predictive checks thus can be performed to ensure the model
chosen is the one that best describes the observed data. Sensitivity analyses were performed by varying
prior variance and comparing models which were nominal or natural log transformed with normal and
student-T likelihood functions. Model comparisons can be performed in many ways, but a common
paradigm is the leave-one-out cross validation (LOO)(Gelman et al., 2014). LOO consists of partitioning
data into training and test sets and iteratively fitting the model under test with training data and testing
out of sample fits with test data. Models are then ranked using the expected log pointwise predictive

density (ELPD) measure:

k
ELPD = Z j dypcylog (p(mly))
i=1

where p;, y; are unknown distributions representing the true data generating function for estimates of true
posterior predictive function (y|y) from observed data y(Vehtari et al., 2017). In general, larger values of
ELPD represent better out of sample fits indicative of a better model conditioned on observed data. We
can then use standard errors between the model with the best ELPD (dse) and all competing models to
rank all models to observed data. Importantly, these metrics should be understood only in the context of
a model relative to other models, and not a global predictor of model validity. Observations of posterior

fits to the data using posterior predictive fits and Bayesian p-values should be utilized on the final model
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to determine model fit. This seemingly complex model comparison can be quickly and easily done in

PyMC with the following commands:

Code Example 5: Model Comparisons

Var5_ loo = az.loo(trace_Vars)
Varlee loo = az.loo(trace Varleo)
df comp loo = az.compare({"Var5": trace_Var5, "Varle0": trace_ 100})

Model comparison results are given in Table 1. Similar to the simple regression above, the log
transformed model provided much better fits to observed data than non-log transformed models.
Interestingly and instructively, moderately informative priors (variance 5) outperformed noninformative
priors (variance 100), suggesting that constraining prior variance can have predictive power in inference.
Posterior predictive checks on the winning model show good fits to observed data with a Bayesian p-

value near 0.5.

We can now perform inference on our multiregression model. It was found (Fig 5C) that a was
significantly above 0 (MAP = 2.2, 95% HDI does not cross 0) suggesting that basal firing rates of recorded
neurons were typically above 0 as expected. It was also seen that maximal firing rates were significantly
dependent on applied INS energy (8;MAP = 0.58, HDI does not cross 0) with increases in INS energy
leading to larger evoked maximal firing rates. The relative spread of the 95% HDI on g; of 0.27-0.88
suggests a heterogeneity in neuron dose-response characteristics that can be explored more. Somewhat
surprisingly, there was no significant effect of ISI on maximum firing rates (5, MAP =-0.055). The relative
spread across 0 of -0.45 to 0.3 suggests that extreme values of ISI might potentially have an effect, with
smaller ISls causing neural integration of singular INS pulses into a singular, large pulse. However, that

cannot be determined given the INS parameters used in this study. Also surprisingly, there was no
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significant effect of Energy-ISI interactions (8; MAP = 0.028), suggesting that INS energy is the primary

mediator of evoked firing rates.

Bayesian ANOVAs

Comparison of differences between groups is another routine statistical procedure used when predictor
variables are nominal or categorical in nature or a mixture of metric and categorical predictors. The
frequentist treatment of these experimental designs largely uses analysis of variances methods, namely
ANOVA for categorical predictors and, more generally, ANCOVAs for categorical predictors with metric

covariates. ANOVAs are models that take the form of:

y= CH‘Zﬁixi
7

where B;,x; are the parameters corresponding to nominal predictor class i, a is the offset or bias
parameter, and y is the metric dependent variable. ANOVA parameters and class values S;, x; are
treated differently than the regression case, as x; are categorical as opposed to continuous, metric
values. As such x categories are recast into “one-hot” encoded vectors ¥ = [xg, x4, ..., x;]in which only a
singular value in an array can have a value of 1 and all other elements are cast to 0, allowing for binary
indication of a given class among a group of classes. If an individual value falls into group j, for example,
Xi+j = 0,%;=; = 1. The coefficients g; then encodes the change in dependent variable y from inclusion of
datapoint x in category i. Importantly, deflections from baseline are constrained such that };; 8; = 0. Both
Bayesian and frequentist ANOVA models treat §; parameters as group deflections about the baseline

level of the dependent variable.

ANCOVA is a modification to the ANOVA model to include a metric covariance term:

22


https://doi.org/10.1101/2023.11.19.567743
http://creativecommons.org/licenses/by/4.0/

492

493

494

495

496

497

498

499

500

501

502
503

504

505

506

507

508

509

510

511
512
513

514

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.19.567743; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

y=a +z.8ixi + Beor Xco
i

where .., x., are the parameters corresponding to metric predictors. Metric predictors terms are
valuable in accounting for within group variance which is attributable to some other metric measurable
variable, such as decreased firing rates in response to an applied stimulus found in a class of aged

animals.

Bayesian analogues of ANOVA and ANCOVA can be easily defined in PyMC and are termed BANOVA
and BANCOVA (Fig 5A) respectively to distinguish models from their frequentist counterparts. Traditional
ANOVAs make two key assumptions; that underlying data is normally distributed and a homogeneity of
variance among groups. To account for these assumptions, normal distributions are placed on prior
parameter and observed data distributions and a uniform distribution prior is placed on observed data
variance o,,. Importantly, observed data distributions should be assessed to assure distributions are
normally distributed. While not strictly an ANOVA-like structure, an advantage of Bayesian approaches
is the ability to create models which handle arbitrary distributions. While traditional ANOVAs also assume
independent group variances, the relative shared influence between groups can be learned from the data
by imposing a hyperprior on group variance oz (Gelman, 2006). As with any prior distributions, selection
of oz should be informed by prior inspection of the data. A Half-Cauchy distribution is once again chosen

as it weakly informative and allows for extreme values if data dictates(Gelman, 2006; Polson and Scott,

2012). Setting o5 to a large constant replicates a traditional ANOVA.

As a guiding example, consider a similar experiment to that done in simple linear regression. In this
experiment, we aim to understand age-related changes in IC auditory processing of sinusoidal amplitude
modulated sounds. This experiment consisted of two groups of young (animals < 6 months in age) and

aged (animals > 22 months in age). SAM stimuli at increasing modulation depths were played to the
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animals with evoked single unit responses recorded from IC. As seen in the regression experiment (Fig
2), there is a significant increase in evoked firing rate with increased modulation depth in young animals.
As such, it should be included in comparison between the two groups. Taken together, this suggests
BANCOVA will serve as an appropriate model. BANCOVAs are inherently hierarchical(Gelman, 2005;
Kruschke, 2014) (Fig 6A) to allow for between subject variances to be represented in the prior if these
variances mutually inform one another. Setting this hyperprior to a constant creates a model analogous
to a frequentist ANCOVA(Kruschke, 2014). The formation of the BANCOVA is again relatively

straightforward:

Code Example 6: Creating a Bayesian ANCOVA

with pm.Model() as BANCOVA:

#Define hyperprior on sigma

bSigma = pm.HalfCauchy('bSigma',2.0) #Recommended by Gelman, this
parameter doesn't overemphasize © on sigma.

#Define Prior, likelihood distributions. Relatively noninformative

a = pm.Normal('a',yMean,sigma = np.sqrt(yStDv))

B = pm.Normal('B",0,sigma=bSigma, shape=numCategories)

Bcov = pm.Normal('Bcov',yMean,sigma = np.sqrt(yStDv))

sigmalLikelihood = pm.Uniform('sigmalLikelihood',yStDv/100,yStDv*10)

BancovaModel = a + B[ClassAge] + (Bcov*(modDepth - modDepthMean))

y = pm.Normal('y',mu=BancovaModel,sigma = yStDv,observed=firingRate)

#Now, make sure model coefficients sum to @ to create an ANOVA-like
structure

aScaled = pm.Deterministic('aScaled',a+aesara.tensor.mean(B) + Bcov*(-
modDepthMean))

bScaled

pm.Deterministic('bScaled’',B - aesara.tensor.mean(B))

with inference made in the exact same way as the previous models.

After model sampling, posterior sampling checks were performed to ensure posterior distributions adhere
well to observed data. Posterior predictive distributions show good qualitative fit to observed firing rate
data with Bayesian p-values centered around 0.51, suggesting good model fits to observed data (Fig 6B).

Comparisons between groups is simple once posterior distributions are obtained. All that needs to be
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done is to measure differences between aged and young group parameter posteriors (Fig 6C), encoding
relative influence of young and age groups on firing rates. Aged and young contrasts show significantly
elevated firing rates in young rats across all SAM stimuli (Young-aged difference MAP = 0.25, 95% HDI
excludes 0). Another advantage of Bayesian inference is the ability to observe the distribution, and thus
the most likely value and spread of effect size. In this analysis, the effect of age in SAM stimulus
processing is significant but small (effect size MAP =0.058, 95% HDI excludes 0) but with a wide spread
of effect (95% HDI between 0.025-0.64) suggesting variable temporal acuity between rodent subjects.

Finally, firing rates vs SAM amplitude depth for each class are plotted with y=a+

Byoung/agexyoung/age + lgcovxcov SUperimposed-

Multiple Comparisons in Bayesian Inference

In traditional frequentist analyses, corrections for multiple comparisons are necessary in order to ensure
that maximum Type | errors (false positives) are constrained to a maximum of 5% (a = 0.05). With
Bayesian inference, a posterior distribution across all parameters is obtained which remains unchanged
no matter how many comparisons are made(Kruschke, 2014). Furthermore, frequentist type | errors are
classically defined in the context of rejection of a null hypothesis. Bayesian inference is not strictly
concerned with rejection of a null hypothesis, instead weighing competing hypotheses given observed
data. Bayesian models are not immune to making false conclusions about data. These errors, called type
M for errors in magnitude and type S for errors in sign occur when outliers in data exert too much influence
on inference. These errors can be controlled by proper choice of priors or by building hierarchical models
(Fig 5A, Fig 6A) which can account for outliers by pulling parameters towards group means when
evidence is small and allowing parameters with good evidence to remain in a phenomenon called partial

pooling implicit to hierarchical structures(Gelman et al., 2009).

Discussion
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Bayesian inference approaches present a powerful statistical tool which encourages deep and
meaningful exploration of data and allows for presentation of data in intuitive and transparent ways. In
this tutorial, we demonstrate the ease by which Bayesian inference can be performed across a wide
variety of experimental designs and provide source code which can be modified to accommodate
neuroscientific experiments using all free and open source tools. We intentionally used the base PyMC
toolchain in order to explicitly show Bayesian model creation. However, there are PyMC plugin tools such
as Bambi (Capretto et al., 2022) which can facilitate creation of Bayesian models in single lines of code.

An example of Bambi-enabled model creation is provided in our Bayesian inference toolbox.

Tempering Expectations of Bayesian Inference

Despite the enthusiasm of some Bayesian advocates, Bayesian inference is not a panacea. It is subject
to similar problems as frequentist NHST, in that models can be used which do not adequately fit
underlying data statistics or priors can be chosen which dominate model performance and deemphasize
observed data. However, Bayesian approaches support and encourage model transparency, requiring
researchers to declare model priors and posteriors while encouraging continued discussion of inference
on data as opposed to stopping if a p-value is below an arbitrary threshold. A second caveat is that
running MCMCs can be slower than frequentist approaches, with run times sometimes in minutes as
opposed to seconds. However, time increases are not astronomical and can be further reduced to levels
similar to frequentist approaches by using GPU computing or using programs such as JASP(Love et al.,

2019) which utilize a C backend to speed up computation.

The Controversy of the Prior
The prior is arguably the most contentious aspect of Bayesian inference, with arguments that the prior
unduly influences decisions on data. It is absolutely possible to have priors that distort posterior

distributions into poor inference. Similar arguments can be levied at Frequentist approaches which
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perform similar distortions on decision metrics, such as applying ANOVA tests when underlying data is
not normal. Often times, these mistakes are not done out of malevolence, but due to the modern
framework of how statistics is performed. We argue that having to consider what prior to use, and thus
what one’s assumptions are, what distributions are physiologically relevant, and the distributions of
observed data will help to prevent errors in statistical modeling while creating greater transparency in

how conclusions on data are drawn.

Decisions with Bayes Factors

Some studies which utilize Bayesian inference use a decision metric called a Bayes’ factor, which is a
measurement of the ratio of marginal likelihoods of two competing models providing log likelihood of
evidence for one model over another(Johnson et al., 2023). We intentionally chose not to utilize Bayes’
factor metrics because, in the authors’ opinions, they reduce inference to evaluation of a single metric
over an arbitrary threshold, as opposed to analysis over posterior distributions of observed data.
Furthermore, certain prior declarations yield undefined Bayes' factors(Gelman and Rubin, 1995)

potentially encouraging using suboptimum models in order to provide arbitrary decision metrics.

Bayesian and Frequentist Approaches: A Wholistic Approach to Inference

Following in the steps of Bayarri and Berger(Bayarri and Berger, 2004), data analysis should not consist
solely of Bayesian or frequentist approaches devoid of the other. There are certainly cases where
frequentist approaches should be used, such as clinical trials where preregistration and proper protocol
design can provide bounds on false-positive and false negative rates necessary for translation of medical
therapeutics. Hybrid frequentist and Bayesian approaches can also provide richer insight into analyses
where posterior distributions are unidentifiable or difficult to sample(Raue et al., 2013) or in identifying
when improper models have been chosen(Berger et al., 1997). Bayesian ideas of posterior predictive

checks and model comparisons can also be applied to frequentist NHST, many of which would help
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address problems of replication and data transparency. As frequentist approaches are often baked into
the pedagogy of neuroscience and neural engineering, we aim for this tutorial to be a thorough
introduction into the application of Bayesian statistics to help develop a toolkit which can be used for
robust data analysis or in conjunction with previously established frequentist approaches. These models
are also easily extendable into Bayesian analogs of logistic or multinomial regressions, gaussian mixture

models, Bayesian time series analyses, among many more.

Code and Data Availability

The code/software described in the paper is freely available online at [URL redacted for double-blind

review]. The code is available as Extended Data.
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Figure 1: Example of Bayesian simple linear regression on population estimates of firing rate vs
amplitude modulation depth stimuli. This model was applied to population single unit firing rates
elicited from inferior colliculus with sinusoidal amplitude modulated (SAM) tones. The goal of this
model was to predict evoked firing rates from increases in SAM modulation depths. A. Scatterplot of

observed firing rates vs SAM modulation depth and fitted regression estimates. B. Schematic of

32


https://doi.org/10.1101/2023.11.19.567743
http://creativecommons.org/licenses/by/4.0/

734

735

736

737

738

739

740

741

742

743

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.19.567743; this version posted November 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

amplitude modulated stimuli. C. Kernel density estimates of the observed log transformed data
probability distribution function. C. An example of Bayesian model comparison. Left: Regression
model with untransformed data. Right: natural log transformed firing rate model. Posterior predictive

checks reveal that natural log transformed firing rate models better match observed data.
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Bayesian Inference as reallocation of probabilities
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Figure 2: Graphical description of Bayes rule and the interaction between prior distributions and

likelihood functions leading to the final posterior distribution. A. Bayes rule can be thought of as a

reallocation of probability to the posterior after accounting for prior distributions and observed

evidence. B. An example of posterior generated from an inverse-Gamma distributed likelihood and a

uniformly distributed prior. Uniform priors reflect the likelihood function, and thus the observed data

with no redistribution probability, making uniform distributions uninformative priors. However, care

must be taken in using uniform distributions as observed data outside of prior bounds is mapped to 0

probability. C. An example of a posterior generated from an inverse-Gamma distributed likelihood and a

gaussian distributed prior. This prior is considered informative as it shapes the posterior distribution to a

greater extent than a uniform distribution. Prior distributions with longer tails can handle extremes of
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observed data by mapping extreme events to low, but non-zero representation in the posterior. Examples

B and C represent extremes of prior choices, with minimally informative priors often chosen to let the

data “speak for itself” with little change to posterior from prior influence.
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Figure 3: Completed Bayesian inference quantifying linear relationships in evoked firing rate from

increases in modulation depth. A. Scatterplot of observed firing rates vs SAM depth stimuli with fitted

regression line estimates superimposed. 95% HDI estimates of regression slopes are shown in orange,
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with the spread of lines encoding the 95" percentile of most likely slope values. B. Estimates of
Bayesian linear regression parameters. Intercept term a was significantly above 0 (MAP = 3.1, 95%HDI
does not overlap 0) which indicates basal firing rates above 0. Regression slope was small but
significantly above 0 (MAP = 0.018, 95% HDI does not overlap 0) suggesting an increase in evoked
firing rates with increased modulation depth. Error term € was significantly above 0 (MAP = 0.74, 95%
HDI does not overlap 0) suggesting some model deviation from observed data. However, error terms
were considered small as € MAP < «a basal firing rate MAPs. C. Posterior predictive checks of linear
(left) and log linear (right) regression models show that log transformed firing rate models produce
posterior predictions most inline with observed data. Disparity of empirical posterior predictive
distributions from observed data as quantified through Bayesian P-values also suggest log transformed

firing rates creates a superior model fit.
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Markov-Chain Monte Carlo Trace Diagnostics
Trace Kernel Density Estimates Trace Samples Through Time
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Figure 4: Evaluation of Markov-chain Monte Carlo (MCMC) chains can help diagnose ill fitting
distributions. A. Kernel density estimates of the marginal posteriors corresponding to each of the
regression parameters of each MCMC trace. Qualitatively, chain distributions should appear similar to
each other, suggesting good convergence to target distributions. B. Time series plot of trace value vs
sample number of marginal posteriors corresponding to each regression parameter. Qualitatively good
traces should have a “fuzzy caterpillar” like shape, evident in all parameters of this model, indicative of

good integration over the joint posterior distribution and effective sampling of the posterior.
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B. | Hierarchical Multilinear Regression
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FigureS: Example of Bayesian multilinear regression incorporating a hierarchical structure. A. In this

experiment, rodents were implanted with fiber optic arrays into auditory thalamus and planar recording

arrays into auditory cortex. Single unit responses were recorded from INS stimuli with applied energy

and interstimulus intervals varied

under publication license (Www.b

to derive dose-response curves. Figure was drawn using BioRender

iorender.com). B. Hierarchical schematic of Bayesian multilinear

regression. Hierarchical structures are advantageous in accounting for within and between subject

variability or for repeated measures designs. C. Resulting parameter distributions from dose-response

models. Energy was a significant contributor to maximum firing rate, with increasing laser energy

resulting in increased maximum firing rate, as determined by 95% HDI of the laser energy term S,
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excluding 0 (MAP = 0.58). Laser pulse interstimulus interval did not significantly contribute to changes
in max firing rate as indicated by ISI parameter f3, overlapping 0 in its 95% HDI with a MAP value near
0 (MAP = 0.028). The relatively wide spread about zero does suggest that there may be a subset of ISIs
which contribute more strongly to firing rates and warrants further study. Laser energy-ISI interactions
also did not significantly contribute to max firing rate as evidenced by interaction parameter f3
including 0 in its 95% HDI. The intercept term a, correspondint to basal firing rates, were significantly

above 0 (MAP = 2.2, 95% HDI excludes 0).
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Figure 6: An example of Bayesian inference using ANOVA-like models. A. General schematic of
BANOVA/BANCOVA models. Traditional ANOVAs have two key assumptions; normality of group
data and homogeneity of variance. Normality of group data is imposed in BANOV A-like models as
normal distributions around group parameters with homogeneity of variance encoded as a uniform
distribution around posterior variance term a,,. Traditional ANOVAs assume a fixed variance on group
parameter values o, imposing the constraint that each group is estimated independently from each other
group. A uniquely Bayesian approach is to instead learn o values from the data itself by placing a
distribution on agg. B. Posterior predictive checks suggest posterior distributions show good fit in mean
and variance to observed data. C. Once posterior distributions are calculated, group comparisons can be
easily done by subtracting young and aged posteriors to yield a contrast distribution. It is found that
firing rates across all modulation depths are significantly higher in aged vs young rodents (contrast
MAP = 0.25, 95% HDI does not overlap 0). Another unique feature of Bayesian approaches is the

ability to assess distributions on effect size. In this BANCOVA, while group differences are significant,
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their relative effective size is small but significant (effect size MAP = 0.057, 95% HDI does not cross 0)
suggesting marginal impact of age on firing rates elicited from SAM stimuli. Finally, metric covariates
of firing rate in response to varying SAM depth in young and aged groups can be plotted as regressions

superimposed on raw data.
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856  Tables

857  Table 1: LOO Model comparisons and sensitivity analyses

Model R  ELPD DSE

St Log Var 5 1 -5337.48 0.00
ST Log Var 100 2 -5337.62 0.420867
ST Log Var 0.5 3 -533776 0.409773
St Log Var 25 4  -5338.15 0.492297
ST Log Var 10 5 -5338.18 0.300197
ST Log Var 1 6  -533826 0.331152
N Log Var 10 7 -5340.60 3.308668
N Log var 1 g  -5341.09 3.293779
N log var 5 9  -5341.16 3.296273
N log var 0.5 10 -5342.46 3.300550
ST Semilog Var 1 11 -5466.76 15.845916
St Semilog var 5 12 -5467.12 15.856552
ST semilog var 10 13 -5467.15 15.895646
ST semilog var 0.5 14  -5467.18 15.866405
ST Var 1 15 -1533631 79.406629
STvar 0.5 16 -15355.67 80.415787
Stvar5s 17 -15355.67 80.415787
N var 10 18 -16119.11 82.384329
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N var 1 ‘ 19 -1613223 83.549811

N var 0.5 ‘ 20 -16154.55 84262219
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1. Materials and Methods

Bayesian inference was performed on a range of data typical to neuroscience experiments.
Regression models, ANOVA models, and group comparisons are performed on single-unit
activity recorded from inferior colliculus (IC) neurons in response to auditory stimuli in young
and aged rats(Palombi et al., 2001; Simon et al., 2004; C.F et al., 2012; Herrmann et al., 2017).
Random-effects regression models are performed on single units recorded in the auditory cortex
(A1) using high-density recording arrays in response to infrared neural stimulation(Izzo et al.,
2007; Cayce et al., 2011, 2014; Coventry et al., 2023) of the medial geniculate body (MGB). To
underscore that meaningful Bayesian inference does not require cluster computing or extensive
computational resources, all computations were performed on an MSI GS-66 laptop with an Intel
17 processor with an Nvidia RTX2070 GPU. Our inference programs are CPU-bound, not
requiring any GPU resources. Computations can be performed on most modern CPUs, but
accelerate with more CPU threads and cores and parallelization on GPUs. All surgical procedures
used in this study were approved by [redacted for double-blind review].

1.1 Disruption of Temporal Processing in the Inferior Colliculus Due to
Aging

The inferior colliculus (IC) is the major integrative center of the auditory pathway, receiving
excitatory inputs from ventral and dorsal cochlear nuclei, excitatory and inhibitory inputs from
the lateral and medial superior olivary complex(Kelly and Caspary, 2005) and inhibitory inputs
from superior paraolivary nucleus and the dorsal and ventral nuclei of the lateral lemniscus(Cant
and Benson, 2006; Loftus et al., 2010). The IC encodes auditory information through hierarchical
processing of input synaptics with local IC circuitry(Caspary et al., 2002; Rabang et al., 2012;
Grimsley et al., 2013; Coventry et al., 2017). Age-related changes in auditory processing
primarily arise as deficits in temporal processing(Frisina and Frisina, 1997; Parthasarathy et al.,
2010; Parthasarathy and Bartlett, 2012; Herrmann et al., 2017). This dataset is composed of single
unit responses recorded from young (Age< 6 months) and aged (age > 22 months) Fisher 344
rats. Auditory brainstem responses were recorded from animal subjects a few days prior to
surgery to ensure hearing thresholds were typical of the rodent’s age. Single unit recordings were
performed in a 9°x9’ double-walled, electrically isolated anechoic chamber (Industrial Acoustics
Corporation). Animals were initially anesthetized via a bolus injection of ketamine (VetaKet, 60-
80 mg/kg) and medetomidine (0.1-0.2 mg/kg) mixture via intramuscular injection. Oxygen was
maintained via a manifold and pulse rate and blood oxygenation monitored through pulse
oximetry. Supplemental doses of ketamine/medetomidine (20 mg/kg ketamine, 0.05 mg/kg
medetomidine) were administered intramuscularly as required to maintain surgical plane of
anesthesia. An incision was made down midline and the skull exposed. Periosteum was resected
and a stainless steel headpost was secured anterior to bregma via 3 stainless steel bone screws. A
craniectomy was made above inferior colliculus (-8.5 anterior/posterior, 1 mm medial/lateral
from bregma). A single tungsten electrode was advanced dorsally towards the central nucleus of
the inferior colliculus (ICC) during which bandpass noise (200 ms, center frequencies 1-36kHz in
five steps per octave, 0.5 octave bandwidth) was delivered. ICC was identified based on short-
latency driven responses to bandpass noise search stimuli with ascending tonotopy and narrowly
tuned responses to pure tones of varying frequencies. Once neurons were identified, responses
from 5-10 repetitions of sinusoidal amplitude-modulated tones (750 ms tone length, modulation
depth between -30 to 0 dB) were recorded using a preamplifying headstage (RA4PA, Tucker-
Davis Technologies) and discretized at a sampling rate of 24.41 kHz (RZ-5, TDT). Sinusoidal
amplitude-modulated tones were defined as:

s(t) =A[l+m=xcos2rnf_mt+ ¢)] *n(t)
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where m is modulation depth ranging between 0.032-1 (-30 — 0 dB), f;;;, the modulation
frequency, ¢ the reference phase of the modulator, A the scaling factor for stimulus sound level,
and n(t) the broadband noise stimulus. Single units were filtered between 0.3 and 5 kHz. Offline
spike sorting was performed using OpenExplorer (TDT).

1.2 Thalamocortical Infrared Neural Stimulation

Infrared neural stimulation (INS) is an optical technique using coherent infrared light to stimulate
nerves and neurons without the need for genetic modification of the target or direct contact with
tissue that offers spatially constrained activation above electrical stimulation(Wells et al., 2005;
Izzo et al., 2007; Cayce et al., 2011, 2014; Coventry et al., 2020, 2023). In this study, rats were
chronically implanted in A1 with 16 channel planar Utah-style arrays (TDT, Alacua FL) and
stimulating optrodes in the medial geniculate body of auditory thalamus (Thor Labs, Newton NJ).
Rodents were initially anesthetized with a bolus injection of a ketamine (80 mg/kg) and
medetomidine (0.2 mg/kg) cocktail. Oxygen was maintained via a manifold and pulse rate and
blood oxygenation monitored through pulse oximetry. Supplemental doses of
ketamine/medetomidine (20 mg/kg ketamine, 0.05 mg/kg medetomidine) were administered
intramuscularly as required to maintain surgical plane of anesthesia. An incision was made down
midline and the skull exposed. The periosteum was removed via blunt dissection and 3 stainless
steel bone screws were placed in skull for headcap stability. An additional titanium bones crew
was placed in skull to serve as a chronic ground and reference point for recording electrodes.
Craniectomies were made above medial geniculate body (-6 anterior/posterior, -3.5 medial/lateral
from bregma) and auditory cortex (-6 anterior/posterior, -5 medial/lateral from bregma). Fiber
optic stimulating optrodes were placed in the midpoint of MGB (-6 dorsal/ventral from dura) and
affixed to the skull using UV-curable dental acrylic (MidWest Dental). A 16 recording channel
planar array was putatively placed in layers 3/4 of auditory cortex, with placement confirmed by
short-latency high amplitude multiunit activity elicited from band pass noise (200 ms, center
frequencies 1-36kHz in five steps per octave, 0.5 octave bandwidth) test stimuli. Recording
electrodes were sealed onto the headcap. Animals were allowed to recover for 72 hours prior to
the beginning of the recording regime. All recordings were performed in a 9°x9’ electrically
isolated anechoic chamber. During recording periods, animals received a intramuscular injection
of medetomidine(0.2 mg/kg) for sedation. Optical stimuli were delivered from a 1907 nm diode
laser (INSight open source optical stimulation system) coupled to the optrode with a 200 um,
0.22 NA fiber (Thor Labs FG200LCC). Laser stimuli were controlled via a RX-7 stimulator
(TDT) and consisted of train stimuli with pulse widths between 0.2-10 ms, interstimulus intervals
between 0.2-100 ms and energy per pulse between 0-4 mJ. Applied laser energies were
randomized to limit effects from neural adaptation with 30-60 repetitions per pulse
width/interstimulus interval combinations. Signals from recording electrodes were amplified via a
Medusa 32 channel preamplifier and discretized and sampled at 24.414 kHz with a RZ-2
biosignal processor and visualized using Open-Ex software (TDT). Action potentials were
extracted from raw waveforms via real-time digital band-pass filtering with cutoff frequencies of
300-5000 Hz. Single units were extracted offline via superparamagnetic clustering in WaveClus
(Quiroga et al., 2004). Studies were performed to assess the dose-response profiles of optically-
based deep brain stimulation over the span of several months. As each electrode recorded diverse
populations of neurons which are potentially subject to change due to electrode healing in, age of
the device, and adaptation to the stimulus, a within subjects, repeated measures regression model
was warranted. Bayesian hierarchical regressions can easily deal with complex models such as
these.

2. An Example of Bayesian Analysis Reporting Guidelines
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Bayesian Analysis Reporting Guidelines (BARG)(Kruschke, 2021) was initially proposed to
promote transparent and reproducible Bayesian statistics reporting. While initially devised for
social and psychological sciences, we adapted the BARG to suit neuroscientific data.

1. Bayesian Model Descriptions and Sensitivity Analyses. This report follows the
guidelines for reporting of Bayesian Analysis (BARG) (Kruschke, 2021) consisting of:

Necessary software and source code directory
Goals of the analysis

Model descriptions and decision criterion

Prior and hyperprior descriptions

Sensitivity analyses for varying prior distributions
Posterior and MCMC diagnostics

1.1 Necessary software and source code directory

BARG: Step 2A, 6
This section describes the computational tools used for statistical analyses, including CPU and
GPU use. For example:

Bayesian modeling was performed using Python 3.6.8 on a Razer Blade 15 Laptop with an Intel
Core i7 processor (6 cores) and an Nvidia RTX2070 GPU. Models were implemented in PyMC
version 4.11.5 (Salvatier et al., 2016), a probabilistic programming module in the Python
environment. All source code is available at this paper’s github repository (Link to software). All
source data is available at this article’s open science framework repository (Link to Data).

1.2 Goals of the Analyses
This section serves to establish goals of the analyses, brief description of the statistical models
used and validation of Bayesian approaches.

BARG: Preamble
The goal of Bayesian regression analyses is to infer a linear relationship within inferior colliculus
single unit firing rates resulting from changes in depth of sinusoidal amplitude modulated stimuli.
While this is normally established using frequentist linear regression methods, Bayesian
approaches allow for flexible and explicit model descriptions which provide rich and descriptive
inference and quantification of uncertainty in measurement of single unit activity. Inference is
completed using direct probability measures on posterior distributions as opposed to less intuitive
and difficult to interpret p-values. Bayesian approaches are also data driven and account for
previous knowledge to be encoded as prior distributions (see section 1.3).
The regression model utilized is:

In(FR)=a +f*m+e
where FR is the mean evoked firing rate. Firing rate functions were calculated from recorded
peristimulus time histograms. Parameter g quantifies the effect of modulation depth (m) on
evoked firing rates respectively. The a parameter describes the model intercept and quantifies
subthreshold spontaneous activity and the e quantifies model error.
1.3 Prior Selection

Priors and rational for prior choice is described in this section

There is significant data detailing inferior colliculus responses to SAM stimuli from our lab and the
auditory neuroscience community writ large(Citations redacted for double blind review). However,
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the role of modulation depth on IC firing rates is understudied. As observations of single unit IC
activity tends towards normal distributions, normal likelihood and prior distributions were chosen.
Normal distributions also have the advantage of being moderately informative, refraining from
undue influence on the posterior from the prior, allowing data to “speak for itself.”

1.4 Posterior Decision Rules
This section details the decision rules used in inference (ROPE+HDI, Bayes factors, etc).

Inference was performed on posterior distributions with credible regions (analogous to frequentist
confidence intervals) defined as a highest density interval (HDI) of 95% of parameter maximal a
posteriori density (MAP) parameter estimates which represent the most probable value of the
coefficient. MAP estimates are analogous to maximum likelihood estimation found in frequentist
approaches. This allows for the quantification of parameter uncertainty as variance observed in
posterior parameter distributions, with narrow HDIs representing more certain estimates. It is
customary to define a region of practical equivalence (ROPE) if prior information dictates that
incremental parameter changes are effectively the same. As we lack prior knowledge to inform
the choice of a prior rope, we take an agnostic approach that any change seen is worth
investigating and thus ROPEs are not presented. An effect was deemed significant if it's 95% HDI
did not overlap with 0, in line with proposed decision rules typical of Bayesian
inference(Kruschke, 2011, 2014).

1.5 Final Model
This section details the final model after prior and posterior sensitivity analyses. Helpful to include
a descriptive figure of the inference model

Posterior predictive checks and sensitivity analysis were performed to titrate the best performing
models as measured against observed data (Section 3). The final regression model is
schematized in figure S1. Final models included deterministic nodes at outputs of prior nodes to
prevent NUTS from becoming stuck in regions of the sampling space which are difficult to
explore 1.

1.6 Model Sensitivity analyses

BARG: Step 3A,C
This section details the methods and results of any model sensitivity analyses. As an example,
Model sensitivity analyses from hierarchical linear regression are given below.

To evaluate the dependance of hyperprior and prior parameters on Bayesian hierarchical linear
regression, leave one out (LOO) cross validation(Gelman et al., 2014). A series of models were
evaluated with model variances varied to test sensitivity of each model. Initial data analyses
suggested that natural-log transformations of the dependent variable (firing rate) produced
distributions which are better modeled as normal distributions. To this end, hierarchical models
under test were as follows:

MODEL NAME MODEL

REGRESSION FR = a + B, * Energy + B, x ISI + B5 * Energy = ISI + €
SEMILOG

REGRESSION In(FR) = a+ B, * Energy + [, * ISI + 33 * Energy * IS + €
NATURAL

LOG In(FR) = a + B, * In(Energy) + B, * In(ISI) + B * In(Energy) = In(ISI)
REGRESSION e

Table S1: Regression models under test
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For each model, the variance hyperprior was varied to assess the impact of prior parameters on
posterior predictions. Prior classes were defined as: informative (variance < 1), moderately
informative (variance = 5), and weakly informative (variance > 10). Primary metrics for model
comparison were expected log pointwise predictive density (ELPD), defined as(Vehtari et al.,
2017):

k
elpd = )" [ dyiezilog (pGily)
i=1

where p;, y; are unknown distributions representing the true data generating function for
estimates of true posterior predictive function (¥ |y) from observed data y. Estimated p,, y;
distributions are obtained via cross validation during LOO analysis. In general, higher values of
ELPD are a result of higher out of sample predictive fit indicative of a better model. Weight values
generated by LOO cross validation were also analyzed and predict the probability of each model
given observed data. Finally, we observed the standard error of the ELPD estimate (SE), and the
difference between the model with highest ELPD and every other model (dSE) with dSE of the
top model set to 0.00 by definition. All LOO calculations were performed post hoc with the python
package arviz, a plugin for PyMC.

MODEL R ELPD WEIGHT SE DSE

ST LOG VAR 5 1 -5337.48 2.046623¢-01 46.220458 0.00
ST LOG VAR 100 2 -5337.62 1.763745¢-01 46.227682 0.420867
ST LOG VAR 0.5 3 -5337.76 1.552051¢-01 49.173347 0.409773
ST LOG VAR 25 4  -5338.15 1.058393¢-01 46.358847 0.492297
ST LOG VAR 10 5 -5338.18 9.996540¢-02 46.141502 0.300197
STLOG VAR 1 6  -533826 9.238175¢-02 49.030330 0.331152
N LOG VAR 10 7 -5340.60 7.103823¢-02 49.024680 3.308668
NLOG VAR 1 8  -5341.09 4.291607¢-02 48.985814 3.293779
N LOG VARS 9  -5341.16 3.978488¢-02 89.737613 3.296273
N LOG VAR 0.5 10 -5342.46 1.183257¢-02 89.930943 3.300550
ST SEMILOG VAR1 | 11 -5466.76 4.359604¢-37 84.933022 15.845916
ST SEMILOG VARS | 12 -5467.12 3.535240e-37 89.043113 15.856552
ST SEMILOG VAR 10 | 13 -5467.15 5.622764¢-37 85.266895 15.895646
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ST SEM%SOG VAR 14  -5467.18 3.483572¢-37 85.266895 15.866405
ST VAR 1 15  -15336.31 0.000000e+00 49.465018 79.406629

ST VAR 0.5 16 -15355.67 0.000000e+00 49.509352 80.415787

ST VAR5 17 -15355.67 0.000000e+00 49.487001 80.415787

N VAR 10 18 -16119.11 0.000000e+00 49.510419 82.384329

N VAR 1 19 -16132.23 0.000000e+00 49.524316 83.549811

N VAR 0.5 20 -16154.55 0.000000e+00 49.514661 84262219

Table S2: LOO model comparison results for the Bayesian hierarchical regression models. Var:
Prior variance parameter, log: log predictor and predicted variable model. semilog: semilog
predictor model. ST: Student T Likelihood models. N: Normal likelihood models

1.7 Posterior and MCMC Diagnostics
This section details model diagnostics surrounding the Bayesian Inference procedure.
BARG: Step 1E, 2A-D, 3A,C
1.7.1 Choice of MCMC method

This section details the choice of Markov-chain Monte Carlo model used. Many are available,
but NUTS is the most common.

For sampling, the Hamiltonian-based MCMC method no U-turn sampling (NUTS)(Hoffman and
Gelman, 2011) was used. NUTS presents a modification of general Hamiltonian Monte Carlo
samplers and presents an efficient sampler for hierarchical and high-dimensional models at the
cost of slower sampling times. Regression models ran 4 simultaneous chains with 2000 burn in
samples and 4000 iterations with a 90% target inclusion probability.

MCMC Diagnostics

Energy transition plots were used to assess how well MCMC sampled the target posterior
distribution of the best performing model as assessed by PSIS-LOO metrics which were
compared between models(Betancourt, 2017). NUTS sampling is based off dynamical systems
modeling (Hamiltonian Monte Carlo) movement through the high entropy distributions towards a
target distribution. MCMCs are modeled as dynamical systems with “position” and “momentum”
associated with transition between states. This allows for a measurement of kinetic energy
associated with the sampler. Efficiency in MCMC trajectory towards the target distribution can be
assessed by comparing energy associated with the marginal energy distribution. The regression
model displayed overlapping marginal energy and energy transition distributions (Fig S2)
suggesting that sample to sample movement was nearly independent and indicative of efficient
sampling of the target posterior distribution.

Furthermore, traces of sampled prior parameters in regression models suggest effective sampling
of the posterior distribution (Fig S3). Furthermore, the Gelman-Rubin statistic, quantifying within
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and between chain estimates and correlation was # < 1.05, indicative of convergence of
marginal posterior parameter values(Gelman and Rubin, 1992).

1.7.2 Posterior Predictive Checks

This section describes any posterior predictive checks performed and a description of the
posterior predictive decision rule.

A key advantage of Bayesian-based inference approaches is the ability to directly and explicitly
compare model fits to observed data. During model development, posterior predictive checks
were performed by sampling from the posterior distribution (16,000 draws). Kernel density
estimates of posterior predictive draws from the posterior distribution were compared to kernel
densities of observed data. Goodness of fit was quantified using the Bayesian p-value(Gelman et
al., 2021). Similar to the frequentist p-value, the Bayesian p-value is also a measure of
discrepancy, quantifying the probability that posterior predictive-based draws are more extreme
than observed data. The Bayesian p-value is defined as:

pp = f dy"de It gysriymeyp (" 10)p(8]y)

where | is the indicator function, y™ is the posterior predictive distribution and y is the posterior
distribution. Similar to the posterior distribution, posterior predictive distribution and Bayesian p-
values were estimated using NUTS. The closer the Bayesian p-value is to 0.5, the better the data
sampled from the posterior distribute around the observed data.

Posterior predictive fits and Bayesian p-values for the hierarchical linear and multinominal
regression models suggest excellent posterior predictive fits with p = 0.51 for the hierarchical
linear regression model (Main article, Fig 4).

Prior and Posterior Trace plots
This section presents prior and posterior trace plots which are useful for diagnosing model fits.
BARG: Step 2B,C

Critical to the performance of HMC MCMC sampling is the convergence of sampling traces.
Output trace plots display the chain of sampled values and the resulting kernel density estimates
of sampled prior distributions. All sampled traces showed no divergences in sampling, suggesting
that sampled traces were “well behaved”, providing accuate and effective sampling of the
distribution. The Gelman-Rubin statistic, quantifying within and between chain estimates and
correlation was # < 1.5 for all sampled traces thus showing good MCMC convergence. For
clarity, traces are available on open science framework, with traces for the posterior presented in
Figure S3. Traces were checked for characteristic sampling behavior(Hoffman and Gelman,
2011) with no pathological traces found in models.
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3. Supplementary Figures
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Figure S1: Schematic diagram of Bayesian Linear Regression
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Figure S2: Energy transition diagram for Bayesian linear regression. Overlap of margina?energy
with energy transition distributions suggests effective sampling of target distributions.
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Posterior MCMC Traces
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Figure S3: Bayesian regression posterior MCMC traces. MCMC chain distributions (left) built
from HMC traces (right).
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