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Abstract

The role of rare non-coding variation in complex human phenotypes is still largely unknown.
To elucidate the impact of rare variants in regulatory elements, we performed awhole-
genome sequencing association analysis for height using 333,100 individuals from three
datasets: UK Biobank (N=200,003), TOPMed (N=87,652) and All of Us (N=45,445). We
performed rare (<0.1% minor-allele-frequency) single-variant and aggregate testing of non-
coding variants in regulatory regions based on proximal, intergenic and deep-intronic
annotation. We observed 29 independent variants associated with height at P < 6 x 10710
after conditioning on previously reported variants, with effect sizes ranging from -7cm to
+4.7cm. We also identified and replicated non-coding aggregate-based associ ations proximal
to HMGAL containing variants associated with a 5cm taller height and of highly-conserved
variantsin MIR497HG on chromosome 17. We have developed a novel approach for
identifying non-coding rare variants in regulatory regions with large effects from whole-

genome sequencing data associated with complex traits.
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Intr oduction

The role of rare non-coding variation in common human phenotypesis till largely unknown.
Previous studies have been largely limited to studying common variation using genotyping
arrays or rare variation in the coding regions of genes using exome sequencing. Studies of
rare variation in the non-coding genome, which is by far the most abundant form of inherited
variation, could lead to the identification of important gene regulatory elements with large

effects on human diseases and traits.

Most genetic variation associated with complex phenotypes lies in non-coding regions of the
genome. Array-based genome-wide association studies have had substantial success at
identifying common variants associated with complex phenotypes and disease”. For height a
large proportion of the common variant heritability has been explained®. In contrast, the
identification of rarer variation, potentially with substantially larger effects, has been largely
limited to coding variation based on exome sequencing (e.g. loss-of-function variantsin
GIGYF1 associated with diabetes®) or imputation of lower frequency variants?.

Despite the success of common variant and rare coding variant-based approaches, the vast
majority of inherited human genetic variation is both rare and in the 99% of the genome that
is non-coding. Identifying the rare non-coding variation associated with common diseases
and traits could reveal new regulatory gene mechanisms, and substantially increase our

understanding of human biology and disease.

Whole genome sequencing (WGS) has been successful at identifying rare non-coding causes
of monogenic disease in several cases™. For example, we have recently shown that rare
variantsin an intronic regulatory element of HK1 causes inappropriate expression of
Hexokinase 1 in pancreatic beta-cells leading to congenital hyperinsulinism®. However, there
have been few sequencing-based studies aiming to identify rare non-coding variation
associated with complex phenotypes’, despite estimates of the relative functional importance
of the non-coding genome of 6-15%%°. Two recent studies from TOPMed performed WGS
rare-variant analysis for lipid-levels' (N = 66,000), where they identified suggestive
associations with variants in DNA hypersensitivity sites proximal to PCSK9 altering lipids,
and in blood pressure™ (N = 51,456), where genomic aggregate signals at KIF3B were
identified.
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Identifying associations between rare variants and complex traits has several advantages over
common variant associations. Firstly, rare causal variants are likely to have larger effect sizes
and so potentially be of greater clinical relevance. Secondly, rare variants are less likely to be
in linkage disequilibrium with other variants and so provide more direct information about
likely causal regulatory regions and genes involved. Finally, rare variant aggregate
associations, where genetic variants of similar predicted consequence and location are tested
in aggregate, can also provide strong evidence for specific non-coding elements that are

responsible for an association compared to single variant associations.

We performed an analysis of height, amodel complex trait, focussed on identifying novel
rare variant associations from large-scale WGS data. We performed a discovery analysis
using WGS data on 200,003 individuals from UK Biobank (UKB) and replicated our results
in 133,097 individuals from All of Us" and TOPMed™. We show that our approach can
identify new rare single variant and aggregate associations in the non-coding genome.
Importantly, our analytical approach to WGS-based association analyses can be applied to

other complex phenotypes.
Methods Summary

We performed discovery association analyses using WGS data on 200,003 individuals from
the UK B, a population cohort from the United Kingdom™. We analysed rank inverse-
normalised standing height, amodel polygenic trait, with genomic data on 789,700,118
genetic variants including single nucleoctide variants (SNV's), small insertions/deletions
(indels) and large structural variants (SV's) including copy number deletions and duplications.
To identify novel rare non-coding genetic associations that have not previously been
identified, we conditioned our analyses on 12,661 variants from the latest GIANT height
consortium analysis of 5.4 million people® based on imputed genotype array data, an exome-
array analysis of height™, and genome-wide significant (P<5 x 10~8) variants from an
exome-wide association study of height'®. Our primary discovery analysis was performed in
183,078 individuals of genetically-inferred European ancestry. We also performed the same
analysesin individuals with genetically-inferred South Asian (N = 4,439) and African
(N=3,077) ancestry. We replicated our results in a cross-ancestry analysis using 87,652
individuals with WGS from TOPMed, and 45,445, 20,548 and 13,683 individuals with
genetically-inferred European, African and self-reported Hispanic ancestry/ethnicity with
WGS datain All of Us respectively (refer to ST1 for a breakdown of ancestries and cohort
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demographics). Statistical significance was defined as P<6.3 x 10710 based on 20 simulated
randomly generated phenotypes (see Methods).

Single Variant Association Testing

We tested all genetic variants with aminor allele count (MAC) >20, excluding variants with a
low-quality genotype calling score (graphTyper AA score<0.5), using REGENIEY. Variants
which were associated at our threshold were then clumped using PLINK'®, and a sequential
variant conditioning procedure was applied to determine the variant most likely to be

responsible for the signal (see Methods).

Genomic Aggregate Association Testing

After annotating each variant using the Ensembl Variant Effect Predictor'®, we segmented
variants in the genome into classification groups, including gene-centric (i.e. coding and
splicing; or proximal regulatory, including 5kb upstream and 5kb downstream - +/-5kbp from
the 5/3' UTR’s) and non-gene-centric potentially regulatory variation (intergenic and intronic
based on any transcript), as well as a sliding window test that covered the whole genome,
excluding exons. We performed genomic unit aggregate testing limited to rare (within-sample
minor allele frequency, MAF <0.1%) genetic variants in functionally annotated regions based
on three published weights representing in silico predicted del eteriousness (Combined
Annotation Dependent Depletion, CADD?), conservation (Genomic Evolutionary Rate
Profiling, GERP*!) and non-coding constraint (Junk Annotation Residual Variation
Intolerance Score, JARVIS?). Variants that were classified as coding in any transcript were
excluded from regions we defined as proximal (within 5kbp of the 5/3' UTR™), and variants
in proximal regions were subsequently excluded from regions defined as non-proximal
potentially regulatory regions — see the Methods section for precise definitions. We refer to
proximal-regulatory regions and non-proximal regulatory regions as “proximal” and

“regulatory” respectively for the remainder of the manuscript.
Results

We identfied 29 rare and low-freguency novel single variants, associated with human height
in UKB

After adjusting for published height genetic variants (ST 2), 28 rare (MAF<0.1% &
MAC>20) and low-frequency (0.1%<MAF<1%) SNVs and indels remained independently
associated with height (Fig. 1). These variants had effect sizes ranging from -7.25cm to
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+4.71cm (-0.79 to 0.52SD) — see ST 3,4. As expected, variants with alower minor-allele-
frequency had the largest effect estimates (Fig. 2).

Figure 1. Manhattan plots of results split by single variant and genomic aggregate analysis.
From top to bottom: unconditioned single variants, single variants conditioned on known
height loci, rare (<0.1% minor-allele frequency) coding genome aggregates, followed by rare
non-coding genome units proximal genome aggregates, regulatory genome aggregates and
sliding window aggregates. We plot H0g10(p) on the y-axis. Red horizontal lines indicate the
position of genome-wide significance considering only that panel, whilst blue indicates
genome-wide significance across the entire study. For the single variant, coding and proximal
panels, loci leads are labelled by their annotated gene based on the output of Variant Effect

Sinugle Variants (Unadjissted)

sliding Window Genorre Units

1 2 3 4 5 ] [} 8 9 10

11 12 13 14 15 16 17 18 19 20 21 a2 23
Chromosome

Predictor.

We additionally identified evidence of association with a47,543bp structural deletion in the
pseudo-autosomal region of chromosome X (X:819,814-867,357). The proximal-SHOX
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deletion occurs 173kbp downstream of SHOX, and is present in 0.3% of the population and
associates with lower height (B = -2.79cm [-3.33, -2.25], P =5.01 x 10~2%, ST3). This exact
deletion, downstream of SHOX, has only previously been reported in clinical cohorts with
Leri-Weill dyschondrosteosis™, a genetic disorder characterised by shortened limbs and short
stature. In these clinical cohorts, 15% had at least one copy of the 47.5kbp deletion. In the
UKB population, the deletion was present in 824 individuals (0.3%) (one carrier was a

homozygote).

Figure 2: Variant minor-allele-frequency versus absolute effect size for the 28 genetic
variants (red) identified after adjusting for previously published height loci, contrasted

Absolute Effect Size (SD)
0.4 0.6 0.8

0.2

0.0

0.0 0.2 0:4 0.6 0.8 1.0
Minor Allele Frequency
against the results of Yengo et al. 2022 for common variants (grey).

Threerare single variant associations showed robust evidence of replication in TOPMed and
All of Us

Ten of the 28 rare and low-frequency SNV s/indels we identified showed nominal (p<0.05)
evidence of replication in ameta-analysis of TOPMed and All of Us when we would expect
1-2 (1.4 expected at P = 0.05) — ST5. Three loci replicated at Bonferroni significance
(P<0.05/27) in a meta-analysis of the replication datasets. These variants were in the
promoters of HMGAL (6:34237902:G:A, B = 4.71cm [3.41, 6.01cm], P =1.29 x 10712,
replication P = 6.82 x 10~7), GHRH (20:37261871:G:A, p = 1.82cm [1.43, 2.23cm], P =
2.52 x 1071, replication P = 6.82 x 10~7), and proximal to CUL3 (2:224492608:T:C, B =
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2.72cm [2.24, 3.19cm], P=4.29 x 10711, replication P = 6.82 x 10~7). Chromosome X

data was unavailable for replication.

Wedid not identify any novel replicating associations in the South Asian or African ancestry
specific analysesin the UKB. Only one genetic variant achieved genome-wide significancein
an analysis of individuals of South Asian ancestry (X:116495780:AGTGTGTGTGT:A,
P=1.43x 10719), but did not associate in the European (P=0.91) or African (P=0.98)
ancestry-specific analyses (we were unable to test this variant in All of Us or TOPMed).

We identified and replicated threerare (MAF<0.1%) non-coding regions associated with
height

We performed 57,608,498 genomic aggregate associ ation tests, consisting of 5,941,548
coding, 13,005,638 proximal regulatory, 4,861,759 intergenic/deep intronic and 33,799,553
non-coding sliding window association tests. We performed three different types of statistical
test: i) ‘BURDEN’, where the direction of effects for all variantsis assumed to be the same,
i) *SKAT’, where there is no assumption about directionality or similarity of magnitude of
effects, and iii) * ACAT’, where there is no assumption about directionality or magnitude of

effects and not all variants need be associated with the outcome®”.

We identified six non-coding regions of interest based on aggregate tests (P<6.31x 10719;
ST6,7). Four regions remained significant after adjusting for previously identified height loci
(Table 1). The four regions consisted of nine genomic aggregate tests proximal to: HMGAL,
Cl70rf49, GH1, CSHL1, PRR5-ARGHGAPS and MIR6835. We did not find any novel
genomic unit associ ations based on African or South Asian ancestry-specific analyses in our
discovery analysis. The aggregate-based tests at HMGAL and C170r 49 replicated in All of
Us and TOPMed when combined with genetically inferred individuals of South Asian (SAS)
and African (AFR) in the UKB, and we were unable to replicate PRR5-ARHGAPS (Table 1).
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Table 1. Significant rare (<0.1%) non-coding genetic aggregate associ ations with human
height. Genomic aggregates which were significant after correcting for known height loci
(‘log10p conditioned') are assigned aloci number and appear in bold if they lie within the
same region with evidence of correlation. The classification column denotes how variants
were classified according to Figure 1, and the annotation column denotes how the variants
were additionally grouped together (see methods) based on variant scores. Replication was
calculated as a meta-analysis of TOPMed, All of Us and non-EUR analyses within UKB. *
Indicates that the meta-analysis was calculated using the ACAT p-value combination method,
as betas are not produced for the ACAT aggregate tests.

. o . . S T y crion | e ———— " e P Replication -
CHR START (b38) | END (b38) CLASS GENE/UNTT ANNOTATION TEST BETA (8D) SE (81)) p p conditioned conditioned+ Value

6 34233791 34238791 Proximal IMGAL Upstream & Upstream (JARVIS > 0.99))  ACAT NA NA 1.58E-11 L55E-10 3.72E07 0.00183 =

17 7017304 7023304 Proximal CITorf49 Downstream (GERI=2) BURDEN 0.14 0.02 1.26E-11 1.26E-11 2.00E-11 0.014

17 63918839 63923839 Proximal Gl Upstream (GERP>2) BURDEN -0.33 0.05 S.01E-12 2.00E-12 4.27E-04 0.286

22 44809805 44814805 Proximal | PRR5-ARIIGAPS Upstream (JARVIS=0.99) SKAT NA NA 3.72E-10 4.37E-10 4.27E-10 NA

We then performed afinal analysis additionally adjusting aggregate-based tests for variants
identified in our single variant analysis. Two non-coding aggregate associ ations remained
genome-wide significant: C170rf49 (downstream, GERP>2, 3 =1.34cm [95% CI 0.931,
1.66], P =2.00 x 10~1) and PRR5-ARHGAPS (upstream, JARVIS> 0.99, P =4.27 x
10719).,

Multiplerare variants, and a common variant, forman allelic seriesin aregulatory region
upstream of HMGAL, with substantial effects on height

There were 2,006 rare variants included in the upstream non-coding association for HMGAL
(High-mobility group protein) in the UKB — ST8. Several variants appeared to be
responsible for these aggregate signals (Fig. 3). The two rare variants most strongly
associated with increased height were 6:34237902:G:A (8=4.83cm, P = 2.00 x 10713, MAF
= 0.04%) and 6:34236873:C:G (B = 3.97cm, P = 1.00 x 1071°, MAF=0.0470%). The five
most-strongly associated variants, at P<5.76 x 10~° (Fig. 3C), were statistically independent
of each other, as determined by sequential conditional testing. Our results remained
statistically significant after removing several low-quality indels (P = 1.45e-11).
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Figure 3: A) UCSC genome browser window showing genomic featuresin the region
upstream of HMGAL, including JARVIS score and conservation score. Custom track
‘Common Variants' shows the locations and —og10(P) values of variants with MAF>0.01%,
and ‘Rare Variant Associations’ displays the locations and —og10(P) values of variants
which contributed to the genomic aggregate (M AF<0.001%). B) Manhattan plot showing the
distribution of 10g10-pvalues centred on the common GWAS signal at the HMGAL locus. C)
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The most strongly associated rare variant alters the first base of the transcription start site of
the MANE Select transcript (ENST00000311487.9, NM_145899.3) of HMGA1? (Fig. 3).
This variant could result in reduced transcription of this transcript and may result in an

aternative start site becoming dominant.

The next four most-strongly associated variants clustered in two adjacent enhancersin the
promoter region of HMGAL (Fig. 3A). We aso fine-mapped a previously reported GWAS
signal to the same enhancer (6:34237688:G:GGAGCCC, MAF=10.9%, P = 6.50 x 107103),
with posterior probability >0.99 and 95% credible set of size 1 (Fig 3B).

We next searched for evidence of arole for coding variation in the impact of HMGAL in
height. HMGAL is a constrained gene (pLI score =0.83) and there are no predicted protein
truncating variants in the UKB and only asingle individual with afirst exon frameshift in

gnomAD. There was aso no evidence of individual missense or aggregate coding association
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with height for HMGAL either in the UKB WGS data (min(P)=3.09e-4), or in GeneBass,
based on 394,841 exome-sequences from UKB (min(P) = 0.284).

Rar e variants of micr oRNA host-gene MIR497HG affect height

There were 235 highly conserved (GERP>2) rare variants which contributed to the non-
coding C170rf49 (Chromosome 17 Open Reading Frame 49) genomic aggregate result in the
UKB, cumulatively associated with a1.36cm reduction in height (95% CI 1.11, 1.48cm, P =
1.26 x 10711) —see ST9. Of the 235 variants that contributed to the aggregate signal, 152
(64.7%) had an effect estimate with the same direction of effect as the aggregate (binomial P
=7.96 x 107°), suggesting that multiple variants are responsible.

The proximal region of C170r49 overlaps with microRNA host cluster MIR497HG, from
which microRNAs MIR195 and MIR497 are derived (Fig. 4A). We thus re-analysed the
C170rf49 proximal region excluding miRNA variants, and additionally tested the microRNA
as independent genome units (Fig. 4B). The strength of association between the identified
C170rf49 proximal aggregate and height was reduced after removing any variant overlapping
miRNA (B = 1.11cm, P =3.98 x 10~°) — ST 10. Further, the association between a genomic
aggregate of miRNA variants in MIR195 and height was more than double that of the primary
Cl7orf49 signal (B = 3.05cm [95% ClI 1.44, 4.65cm, P = 1.97 x 10~*]), showing nominal
evidence of heterogeneity (P=0.0454) to the primary signal.

Figure 4: A) UCSC genome browser window showing genomic featuresin the region of the
region upstream of C170rf49, including JARVIS score and conservation score. —0g10(P)
values of rare (<0.01%) variants which contributed to the aggregate association are
highlighted in a custom track. The vertical blue, red and green lines show the boundaries of
MIR195, MIR497 and MIR497-HG respectively. B) Forest plot demonstrating how the effect
estimate for the association between the proximal and miRNA aggregates, depending on how
variants are allocated. C) QQ plot for variants in the C170rf49 proximal aggregate
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The variants contributing to the MIR497HG signal occurred in the promoter region and in the
two 2 miRNA products, MIR195 and MIR497. This suggests the possibility of two
mechanisms that contribute to the association — variants altering the expression of the host

gene MIR497HG, and variants specifically affecting the miRNA sequence.

There is extensive literature on the genes that MIR195 and MIR497 bind and affect
expression of, while there islittle previous literature referencing C170rf49, except for a small
number of studies of cancer phenotypes®. MIR497 and MIR195 expression have been
associated with arange of genes that influence cancer?’, and both have been implicated in
quiescence of skeletal muscle cells*®. Reduced expression of MIR497 has also been shown to
promote osteoblast proliferation and collagen synthesis®. Zhao et al. also reported an
association between down-regulation of MIR497, one of the three miRNA which overlapped
with the proximal aggregate, and idiopathic short stature in aclinical cohort of Chinese
children with short stature™ (P<0.05). Zhang et al.** have additionally implicated MIR497 in
chondrogenesis (cartilage development), and shown that the miRNA impacts IHH (Indian
Hedgehog Homolog), which is essential for bone formation®.

MIR195 has also been shown to interact with HMGAL and affect expression. For example, it
has been shown that MIR195 and MIR497 repress HMGAL, which in turn downregulates one
of the HMGA 1 downstream targets Id3, which has an inhibitory effect on myogenic
differentiation®. We therefore tested interaction of the common HMGAL variant and the
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miRNA, but did not detect an association either at the aggregate (min(P) = 0.541) or single
variant (min(P) = 3.09 x 1073) level.

Promoter variants of GH1 have substantial effects on height

Ninerare highly conserved (GERP>2) variants contributed to the upstream non-coding
aggregate for GH1 (Growth Hormone 1) in the UKB — see ST 11. The aggregate signal was
associated with a0.34SD (3.11cm) reduction in height. One of the 9 variants, which
replicated, was independently associated with height (17:63918961:A:G, 3 = -4.24cm [95%
Cl -5.53, -2.94cm], P = 1.46 x 1071°, MAF = 0.04%), and has previously been reported as a
variant of unknown significance in multiple clinical cohorts for idiopathic short stature as
NM_000515.5 ¢.185T > C. Thesefindingsin clinical cohorts of idiopathic short stature
include: three carriers of the variant we identified (c.185T > C) were previously identified in
a Sri Lankan cohort of patients with Isolated Growth Hormone deficiency® (IGHD) ; three
siblings with consanguineous parents with IGHD®. The variant was originally identified in a
cohort of 41 unrelated children with short stature, and 11 unrelated patients with IGHD™ (as -
123T>C). That study showed that that the variant occurs in adistal binding site for
POU1F1%* (Pituitary-specific positive transcription factor 1), which might regulate GH1*".

Discussion

By conducting one of the largest whole-genome sequence-based analyses to date with a focus
on rare non-coding variation, we have provided novel insights into the genetic architecture of
height not previously detected by standard array-based GWAS or exome sequencing
approaches. Our results clearly demonstrate that our approach to analysing whole-genome
sequencing data has revealed a largely untapped potential for linking rare non-coding genetic

variation to complex, common human phenotypes.

We identified six non-coding regions based on genomic aggregate testing, four of which
contained at least one genomic aggregate that survived adjustment for genetic variation
known to impact height. We presented evidence for replication of three of these non-coding
genomic aggregates, proximal to C170rf49, GH1 and HMGAL. These loci implicated novel
highly-conserved miRNA regulating gene expression, an altered transcription start site,
pituitary growth factor co-gene regulation, multiple proximal enhancers, and conservation

and constraint of genetic variation in the biology of human growth via height.
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We additionally found evidence of 23 low-frequency (0.1%<MAF<1%) and 5 rare (MAC>20
and MAF<0.1%) single variants, after conditioning on al previously published variants.
Three of the variants identified were proximal, non-coding associations (CUL3, HMGAL,
GHRH) that showed strong evidence of replication in the All of Us and TOPMed studies.

Our work further highlights the importance of adjusting for common variantsin rare and low
frequency variant discovery analyses to circumvent linkage-driven associations. Before
adjustment for common variants, we observed 319 rare and low frequency variants, which
dropped to 80 (non-independent) after adjusting. We observed no additional rare variant
associations after adjusting for common variation, despite some recent claims to the
contrary®®, although we did not explicitly test adjusting for a polygenic risk score, as the
study suggested.

We chose to report genetic aggregate results after correcting for known variation only,
despite some genes (e.g. HMGAL1) containing genetic variants that were independently
significant in our analysis. Although conditioning upon independent variants within the
aggregates often decreased the strength of association, we do not interpret this as a suggestion
that the association at the locusis driven entirely by asingle variant. Thisis atopical point
for rare variant analyses: at sufficiently high sample sizes, we predict that alarge proportion
of genetic variants within an identified genetic aggregate will be independently associated.
We propose that this does not imply, however, that the association itself is not aggregate.

There are some limitations to our study. First, we acknowledge that our study is currently
limited by sample size: amaximum allele frequency cut-off of 0.1% for genomic aggregate
restricts our analysis to approximately 183 carriers per variant. Upcoming releases of whole-
genome sequencing data from UKB (500,000 total by early 2024), All of Us and TOPMed
will substantially increase the identification of novel findings. Sample sizes for analysis of
individuals not of inferred-European genetic ancestry were particularly limited, restricting
rare variant analysis and reducing statistical power more so than for common variant analysis.
We were additionally limited to replication in non-UKB datasets: future methodological
advances will alow individual-level meta-analysis, substantially increasing statistical power.
However, this should not understate the significance of replication of our findingsin
independent cohorts with differing different ancestral backgrounds. Further, thereis alack of
high-quality tissue-based functional data available for the non-coding genome, which will

improve as more non-coding sequencing data becomes available.


https://doi.org/10.1101/2023.11.19.566520
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.19.566520; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In conclusion, we have identified several non-coding single variant and genomic aggregate
genetic loci associated with human height using generalised annotation criteria. Our approach
provides atemplate for future rare-variant analyses of whole-genome sequencing data of

other complex phenotypes.
Methods

UK Biobank and Whole Genome Seguencing

The whole genome sequencing performed for UKB had an average coverage of 32.5X, with a
minimum of 23.5X, using Illumina NovaSeq sequencing machines provided by deCODE®.
The genome build used for sequencing was GRCh38: single variant nucleotide
polymorphisms and short ‘indels’ were jointly called using GraphTypher*’. deCODE found
that the number of variantsidentified per individual was 40 times larger than that found using
WES in theinitial 150,000 release of whole genome sequences. Structural variants were

called using the same process.

Of the 200,000 individuals whose genomes were sequenced, we found, using genetic
principal components as previously described*, there were 183,078 individuals of European
ancestry in this subset of the UK Biobank.

Genetic Data Format

We performed a multi-allele splitting procedure on each of the 60,648 pV CF whole genome
sequencing files provided by the UK Biobank using bcftools™ and then converted those
pVCFsto PLINK®® (v1.9) .bed/bim/fam format. We then grouped multiple PLINK files
together, to produce 1,196 non-overlapping PLINK files each covering approximately
2.5Mbp of the genome, which we use asinput to REGENIE"’ (v3.1) to perform both single

variant and genome unit testing.

Common Variant Conditioning

We adjusted for all known loci at most SMbp from each variant by further grouping each of
the 1,196 PLINK format filesinto triplets, with the two genotype files up- and downstream of
the central PLINK file, to ensure that a genetic variant which was close to the beginning of an
individual genome chunk was conditioned on sufficiently distant loci. We merged genome
chunks at the beginning and end of a chromosome, and at either end of the centromere with

only one chunk, be it downstream or upstream as appropriate.
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Genetic Variant Exclusion

We excluded all variants from our association analyses if GraphTypher, the software used to
by the UK Biobank to perform genotype calling, assigned an AAScore which was less than
0.5*, denoting variant quality.

Single Variant Association Testing

We performed single variant association testing on any variant with at least 20 carriersin the
population (MAC=20). We conditioned our association tests on all common variants
identified in the most recently published GWAS? as well as published exome array variants"™,
and significant (P<5.00 x 10~8) exome variants published by Regeneron for standing
height®, to minimise the likelihood that novel non-coding associations were driven by known
common GWAS or coding loci — ST 2.

Null Association Model

We randomly generated and performed association testing for 20 normally distributed (mean
zero and unit standard deviation) ‘dummy’ phenotypes, with an N matching that of our
European ancestry analysis, in order to estimate the number of independent tests, because
Bonferroni correction is known to be over-conservative for highly correlated tests. To
determine a significance threshold, we took the minimum p-value across all single variant
and genomic unit tests across any of the 20 simulated phenotypes, representing a 95%

significance level relative to the null.

Defining independent variants

Single variants which passed genome-wide significance were analysed using PLINK’s
clumping procedure, based on %<0.001 (linkage disequilibrium) and a minimum clump
distance of 250kb. Variants classified as independent by PLINK then underwent a formal
conditional analysis step. For each window (as defined above) containing more than one
‘clumped’ variant, we conditioned on the top variant in the window, which we classify as an

independent variant.
LocusZoom

We generated a LocusZoom™ plot for each genetic variant which passed our clumping
procedure, based on statistical linkage disequilibrium derived from the UK Biobank whole
genome sequencing data. In these cases, all variants with MAC=1 within +/- 750kbp of the
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lead variant were tested for association with height, and the lead variant within the locus was
determined using the PLINK clumping procedure with a maximum r2<=0.001 and distance
of at least 250kbp. If a variant passed only one of these criteria, we performed a bespoke
independence test, where significant variants are conditioned on one-by-one until no

association remains.

Genetic Variant Annotation

We annotated all genetic variants using Variant Effect Predictor (VEP)™. Where possible, we
assigned each variant to one of three classifications: coding, proximal-regulatory or
intergenic-regulatory. A variant was classified as coding if it had an impact on an exon of
any transcript; proximal-regulatory if the variant lay within a Skbp window around a
transcript, and was not already a coding variant in any transcript, and finally intergenic-
regulatory if the variant fell within a conserved, constrained, intronic or non-coding exon
region (details below), and was neither proximal-regulatory or coding. We additionally tested
variantsin sliding windows of size 2000 base pairs, regardless of the number of variantsin

each window, with proximal and coding variants excluded to minimise hypothesis overlap.

We then assigned each variant to groupings, which we refer to as masks, according to their
predicted consequence and location. We used five published variant scores to group variants

by conseguence:
1. Genomic Evolutionary Rate Profiling (GERP)

The GERP score is a measure of conservation at the variant level?. We classified a
variant if it had a GERP score >2.

2. phastConsscore
phastCon is a window-based measure of conservation across species™: either strictly
mammalian (phastCon 30), or for all species (phast_100). We tested non-coding
genome windows, i.e. excluding any window containing an exon, that had a phastCon

score in the top percentile.

3. Constrained Score

Constraint was calculated in windows of size 1kbp® based on the local mutability and
observed mutation rate of each window. We tested windows with a constraint z-score

greater than or equal to four.
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4. Splice Al (Al) score
The splice Al score™ is ameasure of how well predicted each variant within a pre-
mMRNA region is of being a splice donor/acceptor, or neither. A variant was classified

as asplice site with high confidence if it had an AI>70.

5. Combined Annotation Dependent Deletion score (CADD)
The CADD score® predicts how deleterious avariant is likely to be. We applied the
CADD score only to coding variants, and considered |oss-of-function variants only if
tagged as high confidence by VEP. Missense variants with CADD>25 were
segregated for testing in a separate mask.

6. JARVIS Score
The JARVIS score was derived to better prioritise non-coding genetic variation for
association study, based on a machine learning model derived from measures of

constraint®.

Each genome mask consisted of a number of variants with different consequences, based on
their location, one of the above scores and/or predicted coding consequences. For example,
for avariant to be classified as missense CADD>25, it must change a codon of an exon of a

gene transcript, and be predicted to be highly deleterious.

In Table 2 we present the full list of consequences assigned to each mask and

classification.

Table 2 Genetic variants included in each grouping. UTR = Untranslated Region, 3" =
variants at the 3" end of atranscript, 5 = variants at the 5° end of atranscript, GERP =
Genomic Evolutionary Rate Profiling score (a measure of conservation), Start Gained/Lost =
the inclusion or removal of a start codon, Downstream = downstream of a transcript, CADD
= Combined Annotation Dependent Deletion score, Al = Splice Al (Al) score.

CLASSIFICATION MASK CONSEQUENCES
3UTR 3 UTR
3 UTR (GERP>2) 3 UTR (GERP>2)

Proximal-Regulatory

5 Start Gained, 5° Start Lost, 5° Start
Rest

5 UTR
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5 Start Gained 5" Start Gained
5 Start Lost 5" Start Lost
Conserved
(GERP>4) and Conserved (GERP>4) and Intragenic
Intronic
Conserved and _
_ Constrained
Intronic
Downstream Any Downstream
Downstream and )
Downstream with GERP>2

Conserved

_ _ Intron Splice Acceptor gain/loss with
Intron Splice Variant _ _
Al>70, Intron Splice Donor gain/loss

with AI1>70 _
with AI>70
Splice Variant Splice Region Variant
Upstream Variant _
_ Upstream Variant (GERP>2)
with GERP>2
Upstream Variant Upstream Variant
Conserved,
Constrained and Constrained and Conserved
Intergenic
Conserved (GERP _ _
_ Constrained and conserved with GERP
>2) Constrained and 5
>
Intergenic
Regulatory Region
_ ) .y =~ Regulatory Region Variant
Intergenic-Regulatory Variant
Conserved Top 1% conserved variants in
(phastCon 30) phastCon 30 window
Conserved Top 1% conserved variants in
(phastCon 100) phastCon 100 window
Any phastcon variant (top 1%) for both
Phastcon100& 30 and
phastcon 100 and 30 and conserved
Conserved

(GERP>2)
Phastcon100 and Phastcon100 (top 1%) and conserved
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Conserved (GERP>2)
Phastcon30 and Phastcon100 (top 1%) and conserved
Conserved (GERP>2)
Any phastcon variant (top 1%) for both
Phastcon100& 30
phastcon 100 and 30
Phastcon100& 30 and _
Any phastcon variant (top 1%) for
Conserved at any
phastcon 100 and conserved
level
Phastcon100 and _
Any phastcon variant (top 1%) for
Conserved at any
phastcon 100 and conserved
level
Phastcon30 and _
Any phastcon variant (top 1%) for
Conserved at any
phastcon 100 and conserved
level
Synonymous Synonymous
Missense Missense
Coding Missense with _ _
Missense variant (CADD>25)
CADD>25
LoF High Confidence Loss of Function

We re-assigned variants that fulfilled two distinct criteria within a given genome unit to avoid
duplication. In these cases, avariant was re-labelled as a combination of the two criteria, and

were attached to any mask which selects variants from at least one of those criteria.
Pseudo Genes

We assigned variants to pseudo gene transcriptsif they contained pseudo-exons. However,
pseudo-exons wer e not excluded from proximal regions of non-pseudo gene associations,
instead being tested as a regulatory genome unit. If a pseudo-exon overlapped with any

significant genome unit signal, we performed a bespoke analysis.

Association Testing

All association analyses were corrected for age, sex, age squared, UK Biobank recruitment

centre (as a proxy for geography) and the first forty genetic principal components.

Genome Unit Testing
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Genome unit testing was performed for variants with a maximum allele frequency threshold
of 0.1%, using REGENIE, based on the genetic units specified in Table 2. REGENIE

performs four types of genome unit tests:

1. Standard BURDEN tests, under the assumption that each variant in a given gene unit
mask has approximately the same effect size and sign on the phenotype

2. SKAT tests, where the sign of association of each variant in the unit is allowed to
vary

3. ACAT tests, where the sign of association of each variant in the unit can differ, and
only asmall number of variantsin the mask need be associated at all

4. ACAT-O, whichisan omnibus test of BURDEN, SKAT and ACAT to maximise the
statistical power across the three tests

We performed each of the four statistical tests above for each mask for which a genome unit
has at least one variant. Additionally, a singleton association test was performed for all
variants with MAC=1 in each unit. REGENIE aso estimated an "all-mask™ association
strength for each genome unit, which is an aggregation of the test statistics of the individual
masks. To ensure that this did not result in a mixing of non-coding and coding association
statistics, we split each gene transcript into a coding transcript, which we tested for all coding
masks, and a proximal transcript that we tested for all proximal masks. Regulatory genome
units were either classified by their ENSR assignment, by the extent of a 1kb constrained
window, or a phastCon conserved window. We named sliding windows by the range of

chromosome which they covered.

Signal Classification

We determined whether a genomic unit signal was the result of the net effect of many
variants of similar consequence or driven by one variant/asingle loci of variants, by
performing a second batch of genomic unit association testing corrected for single variants

that passed the significance threshold in the single variant analysis.

Fine Mapping

To calculate the credible set for any common variant which lay within our rare-variant loci
(single variant or aggregate), we performed a fine-mapping procedure using the recently-
released SUSIEx* software. SuSiEx leverages linkage-disequilibrium information across
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ancestries. R? between all variants was calculated directly from UKB WGS data, stratified by
genetically determined ancestry.

Heterogeneity Calculations

We used the R-package metafor®’ to calculate all heterogeneity p-values between effect

estimates, under the assumption of a fixed-effects model.

Replication within non-European UKBB ancestries

We first attempted to replicate our results by repeating our analysis for individuals of South
Asian (SAS) and African (AFR) ancestry, with samples sizes of 4,439 and 3,077 respectively.

Replication using TOPMed

We have conducted a mutual-replication analysis with TOPMed (“Trans-Omics for Precision
Medicine’), who have analysed TOPMed WGS data using the STAARpipeline®° program.
The National Institutes of Health and the National Heart Lung and Blood in the US sponsored
the creation TOPMed. The WGS was performed at a target depth of >30x using DNA
extracted from blood. We analysed 87,652 multi-population samples from 33 studiesin the
freeze 8 TOPMed (ST1). Population group was defined by self-reported information from
participant questionnaires in each study (Supplementary Note). For individuals who had
unreported or non-specific population memberships (e.g., “Multiple’ or “ Other”), we applied
the Harmonized Ancestry and Race/Ethnicity (HARE) method (Fang et al. 2019; Zhang et al.
2023) to infer their group memberships using genetic data. The population groups were thus
labelled by their self-identified or primary inferred population group. Among the 87,652
participants, 52,519 (60%) were female and 44,846 (51%) were non-European. Additional

descriptive tables of the participants are presented in ST1.

Replication using All of Us

We have also conducted a mutual-replication analysis with short read WGS data from All of
Us freeze 6, stratified by continental genetic ancestries European (EUR), AFR, and Admixed
American (AMR). The AllofUs team pre-computed principal components by projecting
AllofUs into the same PC space as the Human Genome Diversity Project and 1000 Genomes.
These PCs were then used as input into a random forest classifier to derive continental
ancestry classifications. Low quality variants were removed from the dataset before

association analyses were performed using REGENIE".
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