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Abstract 

The role of rare non-coding variation in complex human phenotypes is still largely unknown. 

To elucidate the impact of rare variants in regulatory elements, we performed a whole-

genome sequencing association analysis for height using 333,100 individuals from three 

datasets: UK Biobank (N=200,003), TOPMed (N=87,652) and All of Us (N=45,445). We 

performed rare (<0.1% minor-allele-frequency) single-variant and aggregate testing of non-

coding variants in regulatory regions based on proximal, intergenic and deep-intronic 

annotation. We observed 29 independent variants associated with height at P < 6 � 10��� 

after conditioning on previously reported variants, with effect sizes ranging from -7cm to 

+4.7cm. We also identified and replicated non-coding aggregate-based associations proximal 

to HMGA1 containing variants associated with a 5cm taller height and of highly-conserved 

variants in MIR497HG on chromosome 17. We have developed a novel approach for 

identifying non-coding rare variants in regulatory regions with large effects from whole-

genome sequencing data associated with complex traits. 
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lntroduction 

The role of rare non-coding variation in common human phenotypes is still largely unknown. 

Previous studies have been largely limited to studying common variation using genotyping 

arrays or rare variation in the coding regions of genes using exome sequencing. Studies of 

rare variation in the non-coding genome, which is by far the most abundant form of inherited 

variation, could lead to the identification of important gene regulatory elements with large 

effects on human diseases and traits.  

 

Most genetic variation associated with complex phenotypes lies in non-coding regions of the 

genome1. Array-based genome-wide association studies have had substantial success at 

identifying common variants associated with complex phenotypes and disease2. For height a 

large proportion of the common variant heritability has been explained2. In contrast, the 

identification of rarer variation, potentially with substantially larger effects, has been largely 

limited to coding variation based on exome sequencing (e.g. loss-of-function variants in 

GIGYF1 associated with diabetes3) or imputation of lower frequency variants2.  

Despite the success of common variant and rare coding variant-based approaches, the vast 

majority of inherited human genetic variation is both rare and in the 99% of the genome that 

is non-coding. Identifying the rare non-coding variation associated with common diseases 

and traits could reveal new regulatory gene mechanisms, and substantially increase our 

understanding of human biology and disease. 

 

Whole genome sequencing (WGS) has been successful at identifying rare non-coding causes 

of monogenic disease in several cases4,5. For example, we have recently shown that rare 

variants in an intronic regulatory element of HK1 causes inappropriate expression of 

Hexokinase 1 in pancreatic beta-cells leading to congenital hyperinsulinism6. However, there 

have been few sequencing-based studies aiming to identify rare non-coding variation 

associated with complex phenotypes7, despite estimates of the relative functional importance 

of the non-coding genome of 6-15%89. Two recent studies from TOPMed performed WGS 

rare-variant analysis for lipid-levels10 (N = 66,000), where they identified suggestive 

associations with variants in DNA hypersensitivity sites proximal to PCSK9 altering lipids, 

and in blood pressure11 (N = 51,456), where genomic aggregate signals at KIF3B were 

identified.  
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Identifying associations between rare variants and complex traits has several advantages over 

common variant associations. Firstly, rare causal variants are likely to have larger effect sizes 

and so potentially be of greater clinical relevance. Secondly, rare variants are less likely to be 

in linkage disequilibrium with other variants and so provide more direct information about 

likely causal regulatory regions and genes involved. Finally, rare variant aggregate 

associations, where genetic variants of similar predicted consequence and location are tested 

in aggregate, can also provide strong evidence for specific non-coding elements that are 

responsible for an association compared to single variant associations.  

We performed an analysis of height, a model complex trait, focussed on identifying novel 

rare variant associations from large-scale WGS data. We performed a discovery analysis 

using WGS data on 200,003 individuals from UK Biobank (UKB) and replicated our results 

in 133,097 individuals from All of Us12 and TOPMed13. We show that our approach can 

identify new rare single variant and aggregate associations in the non-coding genome. 

Importantly, our analytical approach to WGS-based association analyses can be applied to 

other complex phenotypes. 

Methods Summary 

We performed discovery association analyses using WGS data on 200,003 individuals from 

the UKB, a population cohort from the United Kingdom14. We analysed rank inverse-

normalised standing height, a model polygenic trait, with genomic data on 789,700,118 

genetic variants including single nucleotide variants (SNVs), small insertions/deletions 

(indels) and large structural variants (SVs) including copy number deletions and duplications. 

To identify novel rare non-coding genetic associations that have not previously been 

identified, we conditioned our analyses on 12,661 variants from the latest GIANT height 

consortium analysis of 5.4 million people2 based on imputed genotype array data, an exome-

array analysis of height15, and genome-wide significant (P<5 � 10��) variants from an 

exome-wide association study of height16. Our primary discovery analysis was performed in 

183,078 individuals of genetically-inferred European ancestry. We also performed the same 

analyses in individuals with genetically-inferred South Asian (N = 4,439) and African 

(N=3,077) ancestry. We replicated our results in a cross-ancestry analysis using 87,652 

individuals with WGS from TOPMed, and 45,445, 20,548 and 13,683 individuals with 

genetically-inferred European, African and self-reported Hispanic ancestry/ethnicity with 

WGS data in All of Us respectively (refer to ST1 for a breakdown of ancestries and cohort 
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demographics). Statistical significance was defined as P<6.3 � 10��� based on 20 simulated 

randomly generated phenotypes (see Methods). 

Single Variant Association Testing 

We tested all genetic variants with a minor allele count (MAC) ≥20, excluding variants with a 

low-quality genotype calling score (graphTyper AA score<0.5), using REGENIE17. Variants 

which were associated at our threshold were then clumped using PLINK18, and a sequential 

variant conditioning procedure was applied to determine the variant most likely to be 

responsible for the signal (see Methods). 

Genomic Aggregate Association Testing 

After annotating each variant using the Ensembl Variant Effect Predictor19, we segmented 

variants in the genome into classification groups, including gene-centric (i.e. coding and 

splicing; or proximal regulatory, including 5kb upstream and 5kb downstream - +/-5kbp from 

the 5/3’ UTR’s) and non-gene-centric potentially regulatory variation (intergenic and intronic 

based on any transcript), as well as a sliding window test that covered the whole genome, 

excluding exons. We performed genomic unit aggregate testing limited to rare (within-sample 

minor allele frequency, MAF <0.1%) genetic variants in functionally annotated regions based 

on three published weights representing in silico predicted deleteriousness (Combined 

Annotation Dependent Depletion, CADD20), conservation (Genomic Evolutionary Rate 

Profiling, GERP21) and non-coding constraint (Junk Annotation Residual Variation 

Intolerance Score, JARVIS22). Variants that were classified as coding in any transcript were 

excluded from regions we defined as proximal (within 5kbp of the 5/3’ UTR19), and variants 

in proximal regions were subsequently excluded from regions defined as non-proximal 

potentially regulatory regions – see the Methods section for precise definitions. We refer to 

proximal-regulatory regions and non-proximal regulatory regions as “proximal” and 

“regulatory” respectively for the remainder of the manuscript.  

Results 

We identfied 29 rare and low-frequency novel single variants, associated with human height 

in UKB 

After adjusting for published height genetic variants (ST2), 28 rare (MAF<0.1% & 

MAC>20) and low-frequency (0.1%<MAF<1%) SNVs and indels remained independently 

associated with height (Fig. 1). These variants had effect sizes ranging from -7.25cm to 
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+4.71cm (-0.79 to 0.52SD) – see ST3,4. As expected, variants with a lower minor-allele-

frequency had the largest effect estimates (Fig. 2). 

Figure 1: Manhattan plots of results split by single variant and genomic aggregate analysis. 

From top to bottom: unconditioned single variants, single variants conditioned on known 

height loci, rare (<0.1% minor-allele frequency) coding genome aggregates, followed by rare 

non-coding genome units proximal genome aggregates, regulatory genome aggregates and 

sliding window aggregates. We plot –log10(p) on the y-axis. Red horizontal lines indicate the 

position of genome-wide significance considering only that panel, whilst blue indicates 

genome-wide significance across the entire study. For the single variant, coding and proximal 

panels, loci leads are labelled by their annotated gene based on the output of Variant Effect 

Predictor.  

 

 

We additionally identified evidence of association with a 47,543bp structural deletion in the 

pseudo-autosomal region of chromosome X (X:819,814-867,357). The proximal-SHOX 
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deletion occurs 173kbp downstream of SHOX, and is present in 0.3% of the population and 

associates with lower height (β = -2.79cm [-3.33, -2.25], P = 5.01 � 10���, ST3). This exact 

deletion, downstream of SHOX, has only previously been reported in clinical cohorts with 

Leri-Weill dyschondrosteosis23, a genetic disorder characterised by shortened limbs and short 

stature. In these clinical cohorts, 15% had at least one copy of the 47.5kbp deletion. In the 

UKB population, the deletion was present in 824 individuals (0.3%) (one carrier was a 

homozygote). 

Figure 2: Variant minor-allele-frequency versus absolute effect size for the 28 genetic 

variants (red) identified after adjusting for previously published height loci, contrasted 

against the results of Yengo et al. 2022 for common variants (grey). 

 

Three rare single variant associations showed robust evidence of replication in TOPMed and 

All of Us 

Ten of the 28 rare and low-frequency SNVs/indels we identified showed nominal (p<0.05) 

evidence of replication in a meta-analysis of TOPMed and All of Us when we would expect 

1-2 (1.4 expected at P = 0.05) – ST5. Three loci replicated at Bonferroni significance 

(P<0.05/27) in a meta-analysis of the replication datasets. These variants were in the 

promoters of HMGA1 (6:34237902:G:A, β = 4.71cm [3.41, 6.01cm], P = 1.29 � 10���, 

replication P = 6.82 � 10��), GHRH (20:37261871:G:A, β = 1.82cm [1.43, 2.23cm], P = 

2.52 � 10���, replication P = 6.82 � 10��), and proximal to CUL3 (2:224492608:T:C, β = 
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2.72cm [2.24, 3.19cm], P = 4.29 � 10���, replication P = 6.82 � 10��). Chromosome X 

data was unavailable for replication. 

We did not identify any novel replicating associations in the South Asian or African ancestry 

specific analyses in the UKB. Only one genetic variant achieved genome-wide significance in 

an analysis of individuals of South Asian ancestry (X:116495780:AGTGTGTGTGT:A, 

P=1.43� 10���), but did not associate in the European (P=0.91) or African (P=0.98) 

ancestry-specific analyses (we were unable to test this variant in All of Us or TOPMed).  

We identified and replicated three rare (MAF<0.1%) non-coding regions associated with 

height 

We performed 57,608,498 genomic aggregate association tests, consisting of 5,941,548 

coding, 13,005,638 proximal regulatory, 4,861,759 intergenic/deep intronic and 33,799,553 

non-coding sliding window association tests. We performed three different types of statistical 

test: i) ‘BURDEN’, where the direction of effects for all variants is assumed to be the same, 

ii) ‘SKAT’, where there is no assumption about directionality or similarity of magnitude of 

effects, and iii) ‘ACAT’, where there is no assumption about directionality or magnitude of 

effects and not all variants need be associated with the outcome24. 

We identified six non-coding regions of interest based on aggregate tests (P<6.31� 10���; 

ST6,7). Four regions remained significant after adjusting for previously identified height loci 

(Table 1). The four regions consisted of nine genomic aggregate tests proximal to: HMGA1, 

C17orf49, GH1, CSHL1, PRR5-ARGHGAP8 and MIR6835. We did not find any novel 

genomic unit associations based on African or South Asian ancestry-specific analyses in our 

discovery analysis. The aggregate-based tests at HMGA1 and C17orf49 replicated in All of 

Us and TOPMed when combined with genetically inferred individuals of South Asian (SAS) 

and African (AFR) in the UKB, and we were unable to replicate PRR5-ARHGAP8 (Table 1). 
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Table 1. Significant rare (<0.1%) non-coding genetic aggregate associations with human 

height. Genomic aggregates which were significant after correcting for known height loci 

(‘log10p conditioned’) are assigned a loci number and appear in bold if they lie within the 

same region with evidence of correlation. The classification column denotes how variants 

were classified according to Figure 1, and the annotation column denotes how the variants 

were additionally grouped together (see methods) based on variant scores. Replication was 

calculated as a meta-analysis of TOPMed, All of Us and non-EUR analyses within UKB. * 

Indicates that the meta-analysis was calculated using the ACAT p-value combination method, 

as betas are not produced for the ACAT aggregate tests. 

 

We then performed a final analysis additionally adjusting aggregate-based tests for variants 

identified in our single variant analysis. Two non-coding aggregate associations remained 

genome-wide significant: C17orf49 (downstream, GERP>2, β =1.34cm [95% CI 0.931, 

1.66], P = 2.00 � 10���) and PRR5-ARHGAP8 (upstream, JARVIS > 0.99, P = 4.27 �

10���).  

Multiple rare variants, and a common variant, form an allelic series in a regulatory region 

upstream of HMGA1, with substantial effects on height 

There were 2,006 rare variants included in the upstream non-coding association for HMGA1 

(High-mobility group protein) in the UKB – ST8.  Several variants appeared to be 

responsible for these aggregate signals (Fig. 3). The two rare variants most strongly 

associated with increased height were 6:34237902:G:A (
=4.83cm, P = 2.00 � 10��	, MAF 

= 0.04%) and 6:34236873:C:G (β = 3.97cm, P = 1.00 � 10���, MAF=0.0470%). The five 

most-strongly associated variants, at P<5.76 � 10�
 (Fig. 3C), were statistically independent 

of each other, as determined by sequential conditional testing. Our results remained 

statistically significant after removing several low-quality indels (P = 1.45e-11).  
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Figure 3: A) UCSC genome browser window showing genomic features in the region 

upstream of HMGA1, including JARVIS score and conservation score. Custom track 

‘Common Variants’ shows the locations and –log10(P) values of variants with MAF>0.01%, 

and ‘Rare Variant Associations’ displays the locations and –log10(P) values of variants 

which contributed to the genomic aggregate (MAF<0.001%). B) Manhattan plot showing the 

distribution of log10-pvalues centred on the common GWAS signal at the HMGA1 locus. C) 

QQ-plot of –log10(P) values for variants which were included in the aggregate test.  

 

The most strongly associated rare variant alters the first base of the transcription start site of 

the MANE Select transcript (ENST00000311487.9, NM_145899.3) of HMGA125 (Fig. 3). 

This variant could result in reduced transcription of this transcript and may result in an 

alternative start site becoming dominant.  

The next four most-strongly associated variants clustered in two adjacent enhancers in the 

promoter region of HMGA1 (Fig. 3A). We also fine-mapped a previously reported GWAS 

signal to the same enhancer (6:34237688:G:GGAGCCC, MAF=10.9%, P = 6.50 � 10���	), 

with posterior probability >0.99 and 95% credible set of size 1 (Fig 3B). 

We next searched for evidence of a role for coding variation in the impact of HMGA1 in 

height. HMGA1 is a constrained gene (pLI score =0.83) and there are no predicted protein 

truncating variants in the UKB and only a single individual with a first exon frameshift in 

gnomAD. There was also no evidence of individual missense or aggregate coding association 
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with height for HMGA1 either in the UKB WGS data (min(P)=3.09e-4), or in GeneBass, 

based on 394,841 exome-sequences from UKB (min(P) = 0.284).  

Rare variants of microRNA host-gene MIR497HG affect height 

There were 235 highly conserved (GERP>2) rare variants which contributed to the non-

coding C17orf49 (Chromosome 17 Open Reading Frame 49) genomic aggregate result in the 

UKB, cumulatively associated with a 1.36cm reduction in height (95% CI 1.11, 1.48cm, P = 

1.26 � 10���) – see ST9. Of the 235 variants that contributed to the aggregate signal, 152 

(64.7%) had an effect estimate with the same direction of effect as the aggregate (binomial P 

= 7.96 � 10�
), suggesting that multiple variants are responsible.  

The proximal region of C17or49 overlaps with microRNA host cluster MIR497HG, from 

which microRNAs MIR195 and MIR497 are derived (Fig. 4A). We thus re-analysed the 

C17orf49 proximal region excluding miRNA variants, and additionally tested the microRNA 

as independent genome units (Fig. 4B). The strength of association between the identified 

C17orf49 proximal aggregate and height was reduced after removing any variant overlapping 

miRNA (β = 1.11cm, P = 3.98 � 10��) – ST10. Further, the association between a genomic 

aggregate of miRNA variants in MIR195 and height was more than double that of the primary 

C17orf49 signal (
 = 3.05cm [95% CI 1.44, 4.65cm, P = 1.97 � 10��]), showing nominal 

evidence of heterogeneity (P=0.0454) to the primary signal.  

Figure 4: A) UCSC genome browser window showing genomic features in the region of the 

region upstream of C17orf49, including JARVIS score and conservation score. –log10(P) 

values of rare (<0.01%) variants which contributed to the aggregate association are 

highlighted in a custom track. The vertical blue, red and green lines show the boundaries of 

MIR195, MIR497 and MIR497-HG respectively. B) Forest plot demonstrating how the effect 

estimate for the association between the proximal and miRNA aggregates, depending on how 

variants are allocated. C) QQ plot for variants in the C17orf49 proximal aggregate.  
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The variants contributing to the MIR497HG signal occurred in the promoter region and in the 

two 2 miRNA products, MIR195 and MIR497. This suggests the possibility of two 

mechanisms that contribute to the association – variants altering the expression of the host 

gene MIR497HG, and variants specifically affecting the miRNA sequence.  

There is extensive literature on the genes that MIR195 and MIR497 bind and affect 

expression of, while there is little previous literature referencing C17orf49, except for a small 

number of studies of cancer phenotypes26. MIR497 and MIR195 expression have been 

associated with a range of genes that influence cancer27, and both have been implicated in 

quiescence of skeletal muscle cells28. Reduced expression of MIR497 has also been shown to 

promote osteoblast proliferation and collagen synthesis29. Zhao et al. also reported an 

association between down-regulation of MIR497, one of the three miRNA which overlapped 

with the proximal aggregate, and idiopathic short stature in a clinical cohort of Chinese 

children with short stature30 (P<0.05). Zhang et al.31 have additionally implicated MIR497 in 

chondrogenesis (cartilage development), and shown that the miRNA impacts IHH (Indian 

Hedgehog Homolog), which is essential for bone formation32.  

MIR195 has also been shown to interact with HMGA1 and affect expression. For example, it 

has been shown that MIR195 and MIR497 repress HMGA1, which in turn downregulates one 

of the HMGA1 downstream targets Id3, which has an inhibitory effect on myogenic 

differentiation33. We therefore tested interaction of the common HMGA1 variant and the 
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miRNA, but did not detect an association either at the aggregate (min(P) = 0.541) or single 

variant (min(P) = 3.09 � 10�	) level. 

Promoter variants of GH1 have substantial effects on height 

Nine rare highly conserved (GERP>2) variants contributed to the upstream non-coding 

aggregate for GH1 (Growth Hormone 1) in the UKB – see ST11. The aggregate signal was 

associated with a 0.34SD (3.11cm) reduction in height. One of the 9 variants, which 

replicated, was independently associated with height (17:63918961:A:G, β = -4.24cm [95% 

CI -5.53, -2.94cm], P = 1.46 � 10���, MAF = 0.04%), and has previously been reported as a 

variant of unknown significance in multiple clinical cohorts for idiopathic short stature as 

NM_000515.5_c.185T > C.  These findings in clinical cohorts of idiopathic short stature 

include: three carriers of the variant we identified (c.185T > C) were previously identified in 

a Sri Lankan cohort of patients with Isolated Growth Hormone deficiency34 (IGHD) ; three 

siblings with consanguineous parents with IGHD35. The variant was originally identified in a 

cohort of 41 unrelated children with short stature, and 11 unrelated patients with IGHD36 (as -

123T>C). That study showed that that the variant occurs in a distal binding site for 

POU1F136 (Pituitary-specific positive transcription factor 1), which might regulate GH137.  

Discussion 

By conducting one of the largest whole-genome sequence-based analyses to date with a focus 

on rare non-coding variation, we have provided novel insights into the genetic architecture of 

height not previously detected by standard array-based GWAS or exome sequencing 

approaches. Our results clearly demonstrate that our approach to analysing whole-genome 

sequencing data has revealed a largely untapped potential for linking rare non-coding genetic 

variation to complex, common human phenotypes.  

We identified six non-coding regions based on genomic aggregate testing, four of which 

contained at least one genomic aggregate that survived adjustment for genetic variation 

known to impact height. We presented evidence for replication of three of these non-coding 

genomic aggregates, proximal to C17orf49, GH1 and HMGA1. These loci implicated novel 

highly-conserved miRNA regulating gene expression, an altered transcription start site, 

pituitary growth factor co-gene regulation, multiple proximal enhancers, and conservation 

and constraint of genetic variation in the biology of human growth via height.  
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We additionally found evidence of 23 low-frequency (0.1%<MAF<1%) and 5 rare (MAC>20 

and MAF<0.1%) single variants, after conditioning on all previously published variants. 

Three of the variants identified were proximal, non-coding associations (CUL3, HMGA1, 

GHRH) that showed strong evidence of replication in the All of Us and TOPMed studies.  

Our work further highlights the importance of adjusting for common variants in rare and low 

frequency variant discovery analyses to circumvent linkage-driven associations. Before 

adjustment for common variants, we observed 319 rare and low frequency variants, which 

dropped to 80 (non-independent) after adjusting. We observed no additional rare variant 

associations after adjusting for common variation, despite some recent claims to the 

contrary38, although we did not explicitly test adjusting for a polygenic risk score, as the 

study suggested. 

We chose to report genetic aggregate results after correcting for known variation only, 

despite some genes (e.g. HMGA1) containing genetic variants that were independently 

significant in our analysis. Although conditioning upon independent variants within the 

aggregates often decreased the strength of association, we do not interpret this as a suggestion 

that the association at the locus is driven entirely by a single variant. This is a topical point 

for rare variant analyses: at sufficiently high sample sizes, we predict that a large proportion 

of genetic variants within an identified genetic aggregate will be independently associated. 

We propose that this does not imply, however, that the association itself is not aggregate.  

There are some limitations to our study. First, we acknowledge that our study is currently 

limited by sample size: a maximum allele frequency cut-off of 0.1% for genomic aggregate 

restricts our analysis to approximately 183 carriers per variant. Upcoming releases of whole-

genome sequencing data from UKB (500,000 total by early 2024), All of Us and TOPMed 

will substantially increase the identification of novel findings. Sample sizes for analysis of 

individuals not of inferred-European genetic ancestry were particularly limited, restricting 

rare variant analysis and reducing statistical power more so than for common variant analysis. 

We were additionally limited to replication in non-UKB datasets: future methodological 

advances will allow individual-level meta-analysis, substantially increasing statistical power. 

However, this should not understate the significance of replication of our findings in 

independent cohorts with differing different ancestral backgrounds. Further, there is a lack of 

high-quality tissue-based functional data available for the non-coding genome, which will 

improve as more non-coding sequencing data becomes available.  
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In conclusion, we have identified several non-coding single variant and genomic aggregate 

genetic loci associated with human height using generalised annotation criteria. Our approach 

provides a template for future rare-variant analyses of whole-genome sequencing data of 

other complex phenotypes. 

Methods 

UK Biobank and Whole Genome Sequencing 

The whole genome sequencing performed for UKB had an average coverage of 32.5X, with a 

minimum of 23.5X, using Illumina NovaSeq sequencing machines provided by deCODE39. 

The genome build used for sequencing was GRCh38: single variant nucleotide 

polymorphisms and short ‘indels’ were jointly called using GraphTypher40. deCODE found 

that the number of variants identified per individual was 40 times larger than that found using 

WES in the initial 150,000 release of whole genome sequences. Structural variants were 

called using the same process. 

Of the 200,000 individuals whose genomes were sequenced, we found, using genetic 

principal components as previously described41, there were 183,078 individuals of European 

ancestry in this subset of the UK Biobank.  

Genetic Data Format 

We performed a multi-allele splitting procedure on each of the 60,648 pVCF whole genome 

sequencing files provided by the UK Biobank using bcftools42 and then converted those 

pVCFs to PLINK18 (v1.9) .bed/bim/fam format. We then grouped multiple PLINK files 

together, to produce 1,196 non-overlapping PLINK files each covering approximately 

2.5Mbp of the genome, which we use as input to REGENIE17 (v3.1) to perform both single 

variant and genome unit testing. 

Common Variant Conditioning 

We adjusted for all known loci at most 5Mbp from each variant by further grouping each of 

the 1,196 PLINK format files into triplets, with the two genotype files up- and downstream of 

the central PLINK file, to ensure that a genetic variant which was close to the beginning of an 

individual genome chunk was conditioned on sufficiently distant loci. We merged genome 

chunks at the beginning and end of a chromosome, and at either end of the centromere with 

only one chunk, be it downstream or upstream as appropriate.  
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Genetic Variant Exclusion 

We excluded all variants from our association analyses if GraphTypher, the software used to 

by the UK Biobank to perform genotype calling, assigned an AAScore which was less than 

0.539, denoting variant quality.  

Single Variant Association Testing 

We performed single variant association testing on any variant with at least 20 carriers in the 

population (MAC�20). We conditioned our association tests on all common variants 

identified in the most recently published GWAS2 as well as published exome array variants15, 

and significant (P<5.00 � 10��) exome variants published by Regeneron for standing 

height16, to minimise the likelihood that novel non-coding associations were driven by known 

common GWAS or coding loci – ST2. 

Null Association Model 

We randomly generated and performed association testing for 20 normally distributed (mean 

zero and unit standard deviation) ‘dummy’ phenotypes, with an N matching that of our 

European ancestry analysis, in order to estimate the number of independent tests, because 

Bonferroni correction is known to be over-conservative for highly correlated tests. To 

determine a significance threshold, we took the minimum p-value across all single variant 

and genomic unit tests across any of the 20 simulated phenotypes, representing a 95% 

significance level relative to the null.  

Defining independent variants 

Single variants which passed genome-wide significance were analysed using PLINK’s 

clumping procedure, based on ��<0.001 (linkage disequilibrium) and a minimum clump 

distance of 250kb. Variants classified as independent by PLINK then underwent a formal 

conditional analysis step. For each window (as defined above) containing more than one 

‘clumped’ variant, we conditioned on the top variant in the window, which we classify as an 

independent variant.  

LocusZoom 

We generated a LocusZoom43 plot for each genetic variant which passed our clumping 

procedure, based on statistical linkage disequilibrium derived from the UK Biobank whole 

genome sequencing data. In these cases, all variants with MAC�1 within +/- 750kbp of the 
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lead variant were tested for association with height, and the lead variant within the locus was 

determined using the PLINK clumping procedure with a maximum r2<=0.001 and distance 

of at least 250kbp. If a variant passed only one of these criteria, we performed a bespoke 

independence test, where significant variants are conditioned on one-by-one until no 

association remains. 

Genetic Variant Annotation 

We annotated all genetic variants using Variant Effect Predictor (VEP)19. Where possible, we 

assigned each variant to one of three classifications: coding, proximal-regulatory or 

intergenic-regulatory. A variant was classified as coding if it had an impact on an exon of 

any transcript; proximal-regulatory if the variant lay within a 5kbp window around a 

transcript, and was not already a coding variant in any transcript, and finally intergenic-

regulatory if the variant fell within a conserved, constrained, intronic or non-coding exon 

region (details below), and was neither proximal-regulatory or coding. We additionally tested 

variants in sliding windows of size 2000 base pairs, regardless of the number of variants in 

each window, with proximal and coding variants excluded to minimise hypothesis overlap. 

We then assigned each variant to groupings, which we refer to as masks, according to their 

predicted consequence and location. We used five published variant scores to group variants 

by consequence: 

1. Genomic Evolutionary Rate Profiling (GERP) 

The GERP score is a measure of conservation at the variant level21. We classified a 

variant if it had a GERP score >2. 

2. phastCons score 

phastCon is a window-based measure of conservation across species44: either strictly 

mammalian (phastCon 30), or for all species (phast_100). We tested non-coding 

genome windows, i.e. excluding any window containing an exon, that had a phastCon 

score in the top percentile. 

 

3. Constrained Score 

Constraint was calculated in windows of size 1kbp8 based on the local mutability and 

observed mutation rate of each window. We tested windows with a constraint z-score 

greater than or equal to four.  
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4. Splice AI (AI) score  

The splice AI score45 is a measure of how well predicted each variant within a pre-

mRNA region is of being a splice donor/acceptor, or neither. A variant was classified 

as a splice site with high confidence if it had an AI>70. 

 

5. Combined Annotation Dependent Deletion score (CADD) 

The CADD score20 predicts how deleterious a variant is likely to be. We applied the 

CADD score only to coding variants, and considered loss-of-function variants only if 

tagged as high confidence by VEP. Missense variants with CADD>25 were 

segregated for testing in a separate mask. 

 

6. JARVIS Score  

The JARVIS score was derived to better prioritise non-coding genetic variation for 

association study, based on a machine learning model derived from measures of 

constraint22. 

Each genome mask consisted of a number of variants with different consequences, based on 

their location, one of the above scores and/or predicted coding consequences. For example, 

for a variant to be classified as missense CADD>25, it must change a codon of an exon of a 

gene transcript, and be predicted to be highly deleterious. 

In Table 2 we present the full list of consequences assigned to each mask and 

classification. 

Table 2 Genetic variants included in each grouping. UTR = Untranslated Region, 3` = 

variants at the 3` end of a transcript, 5` = variants at the 5` end of a transcript, GERP = 

Genomic Evolutionary Rate Profiling score (a measure of conservation), Start Gained/Lost = 

the inclusion or removal of a start codon, Downstream = downstream of a transcript, CADD 

= Combined Annotation Dependent Deletion score, AI = Splice AI (AI) score. 

CLASSIFICATION MASK CONSEQUENCES 

Proximal-Regulatory 

3`UTR 3` UTR 

3` UTR (GERP>2) 3` UTR (GERP>2) 

5` UTR 
5` Start Gained, 5` Start Lost, 5` Start 

Rest 
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5` Start Gained 5` Start Gained 

5` Start Lost 5` Start Lost 

Conserved 

(GERP>4) and 

Intronic 

Conserved (GERP>4) and Intragenic 

Conserved and 

Intronic 
Constrained 

Downstream Any Downstream 

Downstream and 

Conserved 
Downstream with GERP>2 

Intron Splice Variant 

with AI>70 

Intron Splice Acceptor gain/loss with 

AI>70, Intron Splice Donor gain/loss 

with AI>70 

Splice Variant Splice Region Variant 

Upstream Variant 

with GERP>2 
Upstream Variant (GERP>2) 

Upstream Variant Upstream Variant 

Intergenic-Regulatory 

 

Conserved, 

Constrained and 

Intergenic 

Constrained and Conserved 

Conserved (GERP 

>2) Constrained and 

Intergenic 

Constrained and conserved with GERP 

>2 

Regulatory Region 

Variant 
Regulatory Region Variant 

Conserved 

(phastCon 30) 

Top 1% conserved variants in 

phastCon 30 window 

Conserved 

(phastCon 100) 

Top 1% conserved variants in 

phastCon 100 window 

Phastcon100&30 and 

Conserved 

Any phastcon variant (top 1%) for both 

phastcon 100 and 30 and conserved 

(GERP>2) 

Phastcon100 and Phastcon100 (top 1%) and conserved 
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Conserved (GERP>2) 

Phastcon30 and  

Conserved 

Phastcon100 (top 1%) and conserved 

(GERP>2) 

Phastcon100&30  
Any phastcon variant (top 1%) for both 

phastcon 100 and 30 

Phastcon100&30 and 

Conserved at any 

level  

Any phastcon variant (top 1%) for 

phastcon 100 and conserved  

Phastcon100 and 

Conserved at any 

level  

Any phastcon variant (top 1%) for 

phastcon 100 and conserved 

Phastcon30 and 

Conserved at any 

level 

Any phastcon variant (top 1%) for 

phastcon 100 and conserved 

Coding 

Synonymous Synonymous 

Missense Missense 

Missense with 

CADD>25 
Missense variant (CADD>25) 

LoF High Confidence Loss of Function 

We re-assigned variants that fulfilled two distinct criteria within a given genome unit to avoid 

duplication. In these cases, a variant was re-labelled as a combination of the two criteria, and 

were attached to any mask which selects variants from at least one of those criteria. 

Pseudo Genes 

We assigned variants to pseudo gene transcripts if they contained pseudo-exons. However, 

pseudo-exons were not excluded from proximal regions of non-pseudo gene associations, 

instead being tested as a regulatory genome unit. If a pseudo-exon overlapped with any 

significant genome unit signal, we performed a bespoke analysis.  

Association Testing 

All association analyses were corrected for age, sex, age squared, UK Biobank recruitment 

centre (as a proxy for geography) and the first forty genetic principal components.  

Genome Unit Testing 
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Genome unit testing was performed for variants with a maximum allele frequency threshold 

of 0.1%, using REGENIE, based on the genetic units specified in Table 2. REGENIE 

performs four types of genome unit tests: 

1. Standard BURDEN tests, under the assumption that each variant in a given gene unit 

mask has approximately the same effect size and sign on the phenotype 

2. SKAT tests, where the sign of association of each variant in the unit is allowed to 

vary 

3. ACAT tests, where the sign of association of each variant in the unit can differ, and 

only a small number of variants in the mask need be associated at all 

4. ACAT-O, which is an omnibus test of BURDEN, SKAT and ACAT to maximise the 

statistical power across the three tests 

We performed each of the four statistical tests above for each mask for which a genome unit 

has at least one variant. Additionally, a singleton association test was performed for all 

variants with MAC=1 in each unit. REGENIE also estimated an `all-mask` association 

strength for each genome unit, which is an aggregation of the test statistics of the individual 

masks. To ensure that this did not result in a mixing of non-coding and coding association 

statistics, we split each gene transcript into a coding transcript, which we tested for all coding 

masks, and a proximal transcript that we tested for all proximal masks. Regulatory genome 

units were either classified by their ENSR assignment, by the extent of a 1kb constrained 

window, or a phastCon conserved window. We named sliding windows by the range of 

chromosome which they covered. 

Signal Classification 

We determined whether a genomic unit signal was the result of the net effect of many 

variants of similar consequence or driven by one variant/a single loci of variants, by 

performing a second batch of genomic unit association testing corrected for single variants 

that passed the significance threshold in the single variant analysis.  

Fine Mapping 

To calculate the credible set for any common variant which lay within our rare-variant loci 

(single variant or aggregate), we performed a fine-mapping procedure using the recently-

released SuSiEx46 software. SuSiEx leverages linkage-disequilibrium information across 
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ancestries. R2 between all variants was calculated directly from UKB WGS data, stratified by 

genetically determined ancestry. 

Heterogeneity Calculations 

We used the R-package metafor47 to calculate all heterogeneity p-values between effect 

estimates, under the assumption of a fixed-effects model.  

Replication within non-European UKBB ancestries 

We first attempted to replicate our results by repeating our analysis for individuals of South 

Asian (SAS) and African (AFR) ancestry, with samples sizes of 4,439 and 3,077 respectively. 

Replication using TOPMed 

We have conducted a mutual-replication analysis with TOPMed (“Trans-Omics for Precision 

Medicine”), who have analysed TOPMed WGS data using the STAARpipeline48–50 program. 

The National Institutes of Health and the National Heart Lung and Blood in the US sponsored 

the creation TOPMed. The WGS was performed at a target depth of >30x using DNA 

extracted from blood. We analysed 87,652 multi-population samples from 33 studies in the 

freeze 8 TOPMed (ST1). Population group was defined by self-reported information from 

participant questionnaires in each study (Supplementary Note). For individuals who had 

unreported or non-specific population memberships (e.g., “Multiple” or “Other”), we applied 

the Harmonized Ancestry and Race/Ethnicity (HARE) method (Fang et al. 2019; Zhang et al. 

2023) to infer their group memberships using genetic data. The population groups were thus 

labelled by their self-identified or primary inferred population group. Among the 87,652 

participants, 52,519 (60%) were female and 44,846 (51%) were non-European. Additional 

descriptive tables of the participants are presented in ST1. 

Replication using All of Us 

We have also conducted a mutual-replication analysis with short read WGS data from All of 

Us freeze 6, stratified by continental genetic ancestries European (EUR), AFR, and Admixed 

American (AMR). The AllofUs team pre-computed principal components by projecting 

AllofUs into the same PC space as the Human Genome Diversity Project and 1000 Genomes. 

These PCs were then used as input into a random forest classifier to derive continental 

ancestry classifications. Low quality variants were removed from the dataset before 

association analyses were performed using REGENIE17.   
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