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Abstract  48 

The cerebellum has been linked to motor coordination, cognitive and affective 49 

processing, in addition to a wide range of clinical illnesses. To enable robust 50 

quantification of individual cerebellar anatomy relative to population norms, we 51 

mapped the normative development and aging of the cerebellum across the lifespan 52 

using brain scans of > 54k participants. We estimated normative models at voxel-wise 53 

spatial precision, enabling integration with cerebellar atlases. Applying the normative 54 

models in independent samples revealed substantial heterogeneity within five clinical 55 

illnesses: autism spectrum disorder, mild cognitive impairment, Alzheimer9s disease, 56 

bipolar disorder, and schizophrenia. Notably, individuals with autism spectrum 57 

disorder and mild cognitive impairment exhibited increased numbers of both positive 58 

and negative extreme deviations in cerebellar anatomy, while schizophrenia and 59 

Alzheimer9s disease predominantly showed negative deviations. Finally, extreme 60 

deviations were associated with cognitive scores. Our results provide a voxel-wise 61 

mapping of cerebellar anatomy across the human lifespan and clinical illnesses, 62 

demonstrating cerebellum's nuanced role in shaping human neurodiversity across the 63 

lifespan and in different clinical illnesses.  64 

 65 

  66 
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Introduction 67 

The cerebellum accounts for 10 to 15% of the brain9s volume1 and contains 68 

approximately 80% of all neurons2. The cerebellum has long been recognized for its 69 

involvement in motor functions3, but has also been linked to human cognitive 70 

capacities such as language and social intelligence437. In line with this expanded view 71 

of cerebellar function, the cerebellum has also been implicated in a wide range of 72 

mental and neurological illnesses characterized by both motor and cognitive deficits8. 73 

However, empirical findings on cerebellar structure and function in different mental 74 

and neurological illnesses are varied9,10. A growing literature11,12 suggests a key role 75 

for cerebellum in autism spectrum disorder (ASD). However, a meta-analysis13 of 76 

human MRI studies revealed no significant group differences in cerebellar volume 77 

between individuals with ASD and individuals without diagnosis, suggesting the 78 

importance of replication and the inherent uncertainty that comes with small studies14. 79 

Such inconsistent findings may also be due to the high degree of heterogeneity within 80 

clinical groups, a feature which can be explicitly investigated through the construction 81 

of normative models.  82 

 Normative modelling draws its inspiration from paediatric growth charts, which 83 

chart key aspects of a child's development, such as weight or height, over the early 84 

years of life. As a machine learning framework, normative modelling is designed to 85 

estimate a prototypical and representative developmental trajectory, by mapping 86 

different types of variables onto each other, e.g. such as mapping age and sex onto 87 

different brain measures15. Once such models are established, individuals can be 88 

placed in reference to the resulting norms, from which individual-level normative 89 

probability maps can be derived. These represent the extent to which an individual 90 

deviates from the estimated norm in locations across the brain. In this respect the use 91 
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of the normative models enables comparison across studies, scanner sites and 92 

lifespan stages by binding to a common reference framework and thus makes studies 93 

more comparable16. In earlier applications of this approach, we charted the normative 94 

trajectory of cortical thickness and subcortical volume17 across the lifespan. When 95 

applied to clinical samples, these normative models revealed a high degree of 96 

heterogeneity for individual-level profiles within same condition. This pattern has now 97 

been demonstrated and replicated18 across many different clinical illnesses, such as 98 

ASD19321, attention deficit hyperactivity disorder (ADHD)22, dementia including AD 99 

(Alzheimer9s Disease)23,24, first-episode psychosis25, bipolar disorder (BD) and 100 

schizophrenia (SZ)18,26. Of note, a recent paper demonstrated that while phenotypic 101 

heterogeneity within same order may be due to heterogeneity in regional deviations, 102 

phenotypic similarities can be coupled to common functional circuits and networks27. 103 

Together, these findings highlight the need for mapping heterogeneity of complex 104 

clinical illnesses using voxel-wise, regional, and network-based approaches. 105 

In the current study, we chart the normative development and aging of the 106 

human cerebellum at lobular and voxel-wise spatial precision in a sample of > 54k 107 

individuals. We map the heterogeneity of five distinct clinical phenotypes accounting 108 

for 132 scanning sites (Table 1 and Supplementary Table 1) and > 143k voxels, 109 

providing a generalisable and state-of-the-art reference model for cerebellar measures 110 

across the lifespan. Further, and based on cytoarchitectonic, functional and regional 111 

parcellations of the cerebellum, we link percentage of extreme deviations to cognitive 112 

measures and symptom scores across the groups and in this way shed light on the 113 

role of individual-level deviations from normative cerebellar anatomy across five 114 

mental and neurological illnesses. 115 

 116 
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[Table 1] 117 

 118 

Results  119 

Lifespan trajectories of cerebellar morphology 120 

Normative models were trained on MRI-derived cerebellar features from the 121 

training portion of the overall dataset (Table 1), comprising more than 27k individuals 122 

without diagnosis across the lifespan (Fig. 1A). All normative models included age and 123 

sex as covariates, while controlling for scanning sites related variability. Cerebellar 124 

morphology was quantified as lobular volumes, or voxel-wise grey matter probability 125 

values (multiplied by the Jacobian of the transformation matrix to preserve volumetric 126 

information after normalization) (see Online Methods and Supplementary Fig. 2 and 3 127 

for details). Figure 1B shows selected normative trajectories of cerebellar lobules. 128 

Most of the lobules exhibit a pattern of volume increase until around age 19, followed 129 

by a gradual decrease. Notably, we observed flatter trajectories in specific lobules, 130 

namely Left X, Left VIIIB, Corpus Medullare, Right VIIIB, Vermis VI, and Vermis VIII. 131 

To validate our model fit, we report the performance of these models, in terms of 132 

explained variance, plotted on the cerebellar flat maps (Figure 1B and 1C). The lobule 133 

with the best model fit was in Right V, while the worst fit was found in Vermis X. 134 

Additional evaluation metrics such as kurtosis, skew, and mean squared logarithmic 135 

loss (MSLL) are shown in Supplementary Figure 1. Additionally, Figure 1C presents 136 

voxel-wise trajectories, as chosen from the 143k models estimated for individual 137 

cerebellar grey matter voxels.   138 

 139 

[Figure 1] 140 

 141 

 142 
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Altered cerebellar morphology across clinical groups  143 

Figure 2A display  nonparametric comparison, Mann-Whitney U-test, of  voxel-144 

wise model-derived z-scores between patient groups and individuals without diagnosis 145 

in the test datasets (for lobule-wise results, see Supplementary Figure 4A and 146 

Supplementary Table 3). All reported effects in the result section are corrected for 147 

multiple comparisons using Bonferroni correction (across regions of interest or voxels, 148 

number of clinical groups and directions) and only significant results are shown in the 149 

figures (corrected p < 0.05). Of note, we replicated previous reports of reduced 150 

cerebellar volumes in SZ by observing significant negative effect sizes (rank biserial 151 

correlations) of deviations in the negative direction, indicating greater strength of SZ 152 

than individuals without diagnosis. Similar patterns were seen for SZ in lobular 153 

volumes,  while AD and MCI exhibited a notably different pattern of negative deviations 154 

in lobular volumes compared to voxel-wise maps and furthermore in uncorrected maps 155 

(Supplementary Fig. 5). Significant negative effects were observed in Right V for MCI 156 

and AD in addition to Right Crus I for AD when corrected. ASD showed negative 157 

deviations in the anterior regions for lobular volumes while showed small negative 158 

effects in voxel-wise maps in the posterior regions. BD did not show noticeable effects 159 

in terms of z-scores with the individuals without diagnosis after multiple comparisons.  160 

 161 

[Figure 2] 162 

  163 

Individual-level extreme deviations are patient specific and transdiagnostic 164 

The normative modelling approach allows us to quantify extreme positive and 165 

negative deviations, here defined as |z| > 1.96, at the voxel-wise and lobular levels for 166 

each individual. Figures 2B-C show examples of normative probability maps for 167 
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different individuals across clinical diagnostic groups. These maps reveal high 168 

cerebellar heterogeneity within and across groups, especially when we look at the 169 

overlaps of these individual-level probability maps. The overlap maps calculate the 170 

percentage of extreme deviations within the same group for each voxel. Even within 171 

the same diagnostic group only a marginal percentage of individuals show extreme 172 

deviations in the same cerebellar regions. Moreover, some cerebellar regions (e.g., in 173 

posterior lobules) show increased numbers of extreme deviations across several 174 

diagnostic groups (e.g., SZ, ASD and AD). Analyses of lobular volumes yielded similar 175 

results (see Supplementary Fig. 4B-C). 176 

 177 

Norms summed across existing cerebellar atlases aid functional interpretation 178 

Voxel-wise normative models can be projected onto any existing - or future - 179 

cerebellar atlas morphed into Montreal Neurological Institute (MNI) space (Fig. 3A). 180 

Here, the voxel-wise normative probability maps are summed across 28 lobules 181 

(anatomical atlas), 10 functionally defined cerebellar regions (task-based atlas)28, and 182 

17 regions defined by their resting-state connectivity with functional networks of the 183 

cerebral cortex (resting-state atlas)29,30. Percentage of deviations for each region is 184 

calculated across parcellations for each individual. The figures (Fig. 3B-C and 185 

Supplementary Table 4-6) show effect sizes (rank biserial correlation) of percentage 186 

of both positive and negative extreme deviations for various clinical cohorts compared 187 

to the individuals without diagnosis. As the percentage of negative deviations 188 

increases, the strength of the clinical groups also increases. SZ, mild cognitive 189 

impairment (MCI) and AD groups showed small to medium effects in the negative 190 

deviations compared to the individuals without diagnosis globally across all three 191 

atlases. For all three groups, the effects are visibly greater in the posterior regions of 192 
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the cerebellum and display consistent patterns across the atlases. However, ASD and 193 

MCI groups reveal significant small effects in positive deviations across numerous 194 

regions. For ASD, the medium effects in the negative deviations are seen in the region 195 

related to action observation and divided attention (region 4) in the task-based atlas 196 

and linked to the dorsal attention network region (network 6) in the resting state atlas.  197 

 198 

[Figure 3] 199 

 200 

Extreme deviations are associated with intelligence  201 

Figure 4 shows correlations obtained from three distinct atlases when 202 

examining the relationship between intelligence scores. In ASD, regions associated 203 

with Right IV-VI in anatomical atlas and somatomotor B (network 4) in resting state 204 

atlas showed positive correlations between percentage of extreme positive deviations 205 

per participant and performance IQ (PIQ) (Supplementary Table 7-9) that survived 206 

multiple comparisons of number of tests, regions of interest and directions. Weak 207 

positive correlations between the percentage of extreme positive deviations per 208 

participant and intelligence scores were shown in patients with SZ across three atlases 209 

and vice versa for negative deviations (Figure 4B and Supplementary Table 13-15). 210 

However, symptom scores Autism Diagnostic Observation Schedule (ADOS) for ASD 211 

and Positive and Negative Syndrome Scale (PANSS) for SZ did not show significant 212 

associations with percentage of extreme deviations per participant after correcting for 213 

multiple comparisons (Supplementary Table 10-12 and 16-18).  214 

 215 

[Figure 4] 216 

 217 
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Discussion 218 

Leveraging brain MRI data from > 54k individuals, we chart cerebellar lifespan 219 

trajectories with voxel-wise precision using normative modelling. These models are 220 

estimated across 132 scanning sites and contribute to the field by: i) providing > 143k 221 

normative models of the cerebellar lobules and voxels across the lifespan, ii) 222 

confirming and extending previous reports of altered cerebellar structure in various 223 

mental and neurological illnesses, iii) demonstrating considerable structural cerebellar 224 

heterogeneity within all clinical groups, iv) coupling normative models with existing 225 

cerebellar atlases to enhance interpretability and v) demonstrating functional 226 

significance of extreme deviations in terms of associations with measures of cognitive 227 

function. Conditions marked by cognitive deficits, like schizophrenia, ASD, and 228 

dementia, exhibit cerebellar differences, although not universally across all individuals 229 

with such illnesses. The substantial individual differences even within the same 230 

diagnostic groups underscore the multifaceted role of the cerebellum in these clinical 231 

phenotypes and highlight the need for fine grained analytical procedures at scale. 232 

As prolonged developmental and aging windows may render the cerebellum 233 

susceptible to cellular, morphological and circuit abnormalities28, understanding 234 

normal and abnormal development of the cerebellum is a major research priority. The 235 

lifespan normative models developed here allow us to combine datasets and perform 236 

analyses in reference to a common population cohort, making further structural 237 

investigations of the cerebellum more comparable. Our results are generally in line 238 

with previous reports on cerebellar aging29,30 showing a rapid growth of most 239 

cerebellar regions during childhood (with volumes typically peaking in late 240 

adolescence), followed by a more gradual decline In addition to boosting the sample 241 

size relative to these previous studies about 10-fold, we also increase the spatial 242 
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precision by analysing lifespan trajectories at voxel-wise spatial resolution. This allows 243 

for a more fine-grained understanding of cerebellar structure and more precise 244 

delineation of functional units. Importantly, these voxel-wise models can readily be 245 

integrated with any existing or future cerebellar atlas, and may thus be sensitive to 246 

structural deviations that do not necessarily align well with traditional anatomical 247 

borders (i.e., lobules)31.   248 

Group comparisons using model-derived z-scores confirmed previous reports 249 

of altered cerebellar morphology in certain mental and neurological illnesses, while 250 

normative probability maps revealed high cerebellar heterogeneity within these same 251 

illnesses. First, patients with AD exhibited a significant reduction in lobular measures 252 

compared to the individuals without diagnosis while voxel-wise did not survive multiple 253 

comparison correction. In line with meta-analysis study on grey matter loss9, group 254 

effects were particularly pronounced in the Right Crus I which have previously been 255 

associated with cognitive processing32. A recent study33 reported that cerebellum 256 

volume is associated with cognitive decline in individuals with MCI but not in those 257 

with AD. Conversely, in MCI, the presence of extreme bidirectional deviations in the 258 

cerebellum might suggest a possible compensatory mechanism in some individuals 259 

and decline in others during the initial phase of the disease34, potentially serving as a 260 

cognitive reserve35. Such <cerebellar reserve=36, might thus mitigate some of the 261 

cognitive decline associated with neurodegeneration through compensatory 262 

reorganization. Our findings further suggest that only a proportion of all diagnosed 263 

individuals with AD exhibit extreme negative normative deviations in the cerebellum. 264 

These findings highlight the heterogeneity in phenotypes and pathophysiology in AD37 265 

and the importance of looking into the variability of the disease.  266 
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In line with a previous mega-analysis10, we observed significantly lower 267 

normative model z-scores (indicating lower volumes) in patients with SZ relative to 268 

individuals without a diagnosis. Compared to individuals without diagnosis, some 269 

patients with SZ showed evidence of smaller regional volumes in reporting small but 270 

reliable reduction in cerebellar volume in SZ, particularly in areas associated with high-271 

level cognitive function. Across atlases, our analyses revealed extreme negative 272 

deviations primarily in the posterior regions. Recent meta-analysis study38 found brain-273 

predicted age difference in SZ by average of +3.55 years compared to the individuals 274 

without diagnosis. In this study, findings of SZ stand out as brain age study39 display 275 

more pronounced changes in full brain and cerebellar subcortical in comparison to AD.  276 

Moreover, disruptions in cerebello-thalamo-cortical circuit may lead to impairment in 277 

synchrony of mental processes, possibly generating symptoms of schizophrenia40.  278 

The present results are in line with previous findings of substantial 279 

heterogeneity in ASD13,41,42. We observed medium effects in percentage of negative 280 

deviations associated with action observation in task-based atlas and dorsal attention 281 

network in resting-state atlas. This is of interest as individuals with ASD frequently 282 

report difficulties with social interaction and restricted, repetitive behaviour43. D9Mello 283 

and colleagues11  reported that reduced regional and lobular grey matter volumes in 284 

right VII (Crus I/II) correlated with the severity of social, communication and repetitive 285 

behaviours, based on ADOS scores. While we observe some nominally significant 286 

associations with ADOS scores om the current study, these did not survive correction 287 

for multiple comparisons.  288 

Previous studies have established an association between intelligence and 289 

larger brain size or greater grey matter volume44 as well as total brain volume45. 290 

Likewise, cerebellar morphology has been associated with cognitive ability and 291 
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psychiatric symptoms46. In patients with SZ, weak yet significant positive and negative 292 

associations were found with FIQ across the cerebellum, clearly showing that positive 293 

deviations are associated with higher scores and negative deviations with lower 294 

scores. In ASD, higher performance intelligence scores were associated with positive 295 

deviation in the regions related to Right IV-VI in anatomical atlas and somatomotor 296 

network (network 4) in task-based atlas.  297 

While our work represents one of the largest investigations into the cerebellar 298 

structures and heterogeneity at the level of the individual, and provides a resource for 299 

researchers for future investigations, some limitations require consideration. First, we 300 

lack coherent and detailed behavioural, cognitive, genetic, phenotypic, and medical 301 

history information for both individuals without diagnosis and clinical samples. This is 302 

usually the case when combining information across multiple datasets from different 303 

projects as documentation and assessment varies which may preclude certain 304 

associations from being tested. Additionally, the coverages of lifespan normative 305 

models in the very young age and in age range of 30 to 40 were relatively low. 306 

Moreover, our data primarily represents western populations, potentially limiting its 307 

generalizability to other populations. Due to its location in the posterior fossa, its 308 

intricate arrangement, and motions artifacts, the cerebellum has posed challenges in 309 

imaging studies and therefore inferior regions of the cerebellum may result in poorer 310 

model fits. The cerebellar topography shows substantial individual differences47, and 311 

therefore does not perfectly align with existing <average= atlases. Therefore, there are 312 

limitations to the interpretation of functional implications. The resource established 313 

here can be used in future studies, to further elucidate the complex aetiology of mental 314 

and neurological illnesses. By including comprehensive longitudinal datasets or 315 
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dividing the heterogeneous clinical population into subtypes, we can aim to enhance 316 

biomarker development using cognitive and behavioural measures21,48350.  317 

 318 

Conclusion 319 

We report the largest multi-site investigation of heterochronic development and aging 320 

of the cerebellum at both voxel-wise and lobular spatial precision. Through normative 321 

modelling, we observe individualized patterns of deviation across five different mental 322 

and neurological illnesses. Several clinical phenotypes exhibited negative deviations 323 

at the group level, but with notable individual differences even within the same clinical 324 

groups. Overall, this study charts cerebellar morphology across the lifespan, provides 325 

evidence for the differential involvement of the cerebellum across brain illness, and 326 

links extreme deviations from population norms to cognitive function.  327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 
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Online Methods 341 

 342 

Population data 343 

The cohort of individuals without diagnoses was obtained from 132 scanning sites, 344 

including various studies such as ABIDE, ADHD200, AOMIC ID1000, Beijing 345 

Enhanced, CAMCAN, CoRR, DLBS, DS000119, DS000202, DS000222, Fcon1000, 346 

HBN, HCP, MPI Lemon, NKI-Rockland, OASIS-3, PING, SALD, SLIM, and UK 347 

Biobank. Data used in the preparation of this article were obtained from the 348 

Alzheimer9s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 349 

ADNI was launched in 2003 as a public-private partnership, led by Principal 350 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 351 

whether serial magnetic resonance imaging (MRI), positron emission tomography 352 

(PET), other biological markers, and clinical and neuropsychological assessment can 353 

be combined to measure the progression of mild cognitive impairment (MCI) and early 354 

Alzheimer9s disease (AD). Further details about each study can be found in the 355 

associated publications. (Supplementary Table 1). The total number of participants in 356 

the individuals without diagnosis population was 54102 (53% females), and the clinical 357 

set was 1757, encompassing > 56k in total. The age range spanned from 3 to 85 years 358 

(Figure 1). Detailed descriptions of each site, including sample size, mean age, 359 

standard deviation, and sex ratio, can be found in Supplementary Table 2. If 360 

longitudinal scans were available in the studies, only the baseline scans were used. 361 

Participants who had withdrawn from the studies or had missing demographic 362 

information and T1-weighted MRI data were excluded from the analyses. 363 

 364 

Clinical data 365 
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As for the clinical datasets, we combined data from ABIDE, ADNI, AIBL, DEMGEN, 366 

and TOP (Figure 1). Apart from the requirement of having available clinical diagnoses, 367 

clinical groups with more than 100 participants were included in the study. Among the 368 

clinical groups, we selected AD (Alzheimer's disease), ASD (autism spectrum 369 

disorder), BD (bipolar disorder), MCI (mild cognitive impairment), and SZ 370 

(schizophrenia) as the clinical cohorts.  371 

 372 

Lobular-level processing  373 

The T1-weighted images were skull stripped using the FreeSurfer 5.3 auto-recon 374 

pipeline51 and reoriented to the standard FSL orientation using the fslreorient2std52. 375 

The linear registration was performed using flirt53, which utilized linear interpolation 376 

and the default 1 mm FSL template (version 6.0). The borders were cropped in [6:173, 377 

2:214, 0:160] coordinates to minimize size while retaining the complete volume. Lastly, 378 

the voxel intensity values were normalized to the range of [0,1], adjusting the intensity 379 

values of each voxel to a standardized scale. 380 

In our study, we utilized the ACAPULCO algorithm29, which is a state-of-the-art 381 

cerebellum parcellation algorithm based on convolutional neural networks. This 382 

algorithm is part of the ENIGMA Cerebellum Volumetric Pipeline and provides speedy 383 

and accurate quantitative in-vivo regional assessment of the cerebellum at the highest 384 

fidelity54. We used pre-processed T1-weighted image for better quality control and 385 

alignment. The inhomogeneity of the images was corrected using the N455 and 386 

registered to the 1mm isotropic ICBM 2009c template in MNI space using the ANTs 387 

registration suite56. The ACAPULCO algorithm was trained using 15 expert manual 388 

delineations of an adult cohort54. It performs per-voxel labelling of the cerebellum and 389 

applies post-processing to remove isolated pieces, ensuring accurate segmentation. 390 
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The algorithm divides the cerebellum into 28 cerebellar lobules, including bilateral 391 

Lobules I3VI; Crus I and II; Lobules VIIB, VIIIA, VIIIB, and IX-X; Vermis VI, VII, VIII, 392 

IX, and X; and Corpus Medullare (CM). It also calculates the volume (mm3) of each 393 

region. The automated quality control generates segmented images for each 394 

participant, and we removed the extreme outliers where the number of lobules 395 

exceeded a certain threshold (e.g., n > 2).   396 

 397 

Voxel-level processing 398 

In our study, we utilized the SUIT (Spatially Unbiased Infratentorial Toolbox) toolbox 399 

to perform segmentation of cerebellar grey and white matter voxel-based 400 

morphometry (VBM) maps. This segmentation process involved using the outputs 401 

from ACAPULCO, which include the N4 bias-corrected and MNI-aligned T1 image57,58, 402 

as well as an averaged mask derived from randomly selected 300 individuals without 403 

diagnosis. The ACAPULCO mask plays a crucial role in correcting and refining 404 

overinclusion errors in the segmentation process due to variations in the segmentation 405 

algorithm. Following segmentation, the grey matter maps were normalized and 406 

resliced to align with a standardized space. This normalization step ensures that the 407 

data can be compared across different individuals and studies. Additionally, the grey 408 

matter maps were modulated by the Jacobian to preserve the value of each voxel in 409 

proportion to its original volume. This modulation accounts for individual differences in 410 

brain size and helps to retain the relative intensity values within the mapped brain 411 

regions. By using the SUIT toolbox and incorporating the ACAPULCO outputs, we 412 

were able to obtain accurate and spatially unbiased segmentation of cerebellar grey 413 

and white matter, enabling further analysis and comparison of VBM maps within and 414 

across individuals. 415 
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 416 

Normative modelling  417 

We split our individuals without diagnosis sample into training and test sets 418 

based on scanning site, sex, and age. This split is important to account for the potential 419 

confounding effects of MRI scanners on the data17,59,60. The individuals without 420 

diagnosis were first stratified based on the scanning sites. This ensures that the 421 

training and testing datasets include a representative distribution of participants from 422 

each location. To achieve this, we evenly split the control participants from each 423 

scanning site between the training and testing sets. A minimum requirement of 5 424 

participants from the same scanners sites was required. However, only the test set 425 

consisted of diagnostic groups (e.g., AD, ASD, BD) with minimum of 100 participants. 426 

This criterion ensures that there is an adequate number of participants in each 427 

diagnostic group to provide reliable statistical analyses. By employing this stratification 428 

approach, we aimed to create balanced and representative training and testing 429 

datasets that account for MRI scanners and sex, while also including enough 430 

participants in each diagnostic group. 431 

 We used the PCNtoolkit package (version 0.24)15,61 in Python 3.8 to estimate a 432 

normative model for predicting regional cerebellar volumes and voxel-wise intensity 433 

based on sex and age, while correcting for scanning site. Results that deviated more 434 

than 5 standard of deviation were imputed by the mean. We employed Bayesian 435 

Linear Regression (BLR) with likelihood warping approach62, specifically using the 436 

'sinarcsinsh' transformation60,63. This approach is well-suited for handling non-linear 437 

basis functions and non-Gaussian predictive distributions for large datasets as well as 438 

correcting for outer centiles. A detailed mathematical description on BLR for normative 439 

modelling can be found in the following paper Fraza et al. (2021)60. To account for 440 
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scanner effects, we treated the scanning site as a fixed effect in our analysis16,64. This 441 

approach has been shown to yield relatively good performance, as demonstrated in 442 

previous work16. To assess how each participant's (�) deviate from the individuals 443 

without diagnosis pattern at each lobule or voxel (�) in the cerebellum, we calculated 444 

the z-score:    445 

�!" =	 �!" 2 �#$)
*�!"% +	�&"%

	446 

 447 

The computation of the z-score includes predicted mean �#$) (lobule or voxel), 448 

true response �!" ,	predicted variance �!" and normative variance �&". For model fit, the 449 

normative model provided point estimates and evaluation metrics, including explained 450 

variance, mean squared log-loss, skew, and kurtosis63. These evaluation metrics were 451 

computed in the test set that did not include any clinical groups. To determine 452 

participants with extreme deviations, we set a threshold at � > |1.96|, corresponding 453 

to the 95% confidence interval. For instance, deviations with z-scores greater than 454 

1.96 were identified as extreme positive deviations, indicating significantly increased 455 

volume compared to the control pattern and vice versa for extreme negative 456 

deviations.  457 

 458 

Group comparisons 459 

We performed classical nonparametric test on the z-scores of clinical cohorts and 460 

individuals without diagnosis. To assess the statistical significance, we performed 461 

Mann-Whitney U-tests65, a non-parametric test that is suitable for comparing two 462 

independent samples that are not normally distributed. To account for multiple 463 

comparisons, the resulting p-values were corrected, using Bonferroni correction66 and 464 
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calculated rank biserial correlation to see its effect.  465 

 466 

Atlas-based analyses  467 

Additionally, the normative model can be applied to various research questions and is 468 

compatible with existing atlases by using registration methods such as FSL flirt and 469 

fnirt 53,67. This makes it an attractive versatile tool that can be utilized in different 470 

studies and across different brain regions. By mapping the deviations onto specific 471 

anatomical regions, such as the 28 cerebellar regions, King's 10 regions of interest 472 

from the multi-domain task battery (MDTB)31, and  17 regions of interest from resting-473 

state connectivity68,69, we gain insights into the specific areas where deviations occur. 474 

We separately calculated the percentage of extreme positive and negative deviations 475 

for each participant in the regions of interest in reference to the existing atlases. We 476 

divided this by the size of the region and multiplied the resulting proportion by 100 (i.e., 477 

deriving a percentage of extreme positive or negative deviations per region). To 478 

compare the extreme deviations observed in different cohorts to the individuals without 479 

diagnosis group, we used Mann-Whitney U-tests and calculated the rank biserial 480 

correlation (r) for significant results. 481 

To investigate potential associations between measured intelligence and 482 

symptom scores and clinical cohorts, Spearman correlation analyses were performed 483 

using voxel-wise extreme deviation scores that were mapped onto the existing atlases. 484 

The Spearman correlation coefficient is used to quantify the strength and direction of 485 

the association between the variables, allowing for the examination of potential 486 

relationship (see Supplementary Methods for tests used). Only correlations with a 487 

corrected p-value below 0.05 (p < 0.05) were considered statistically significant and 488 

reported.  489 
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Data availability 490 

In this study we used brain imaging from ABIDE, ADHD200, AOMIC ID1000, Beijing 491 

Enhanced, CAMCAN, CoRR, DLBS, DS000119, DS000202, DS000222, Fcon1000, 492 

HBN, HCP, MPI Lemon, NKI-Rockland, OASIS-3, PING, SALD, SLIM and UK 493 

Biobank, ADNI, AIBL, DEMGEN, PNC, and TOP. The ROI models from this work are 494 

available on via PCNportal70: https://pcnportal.dccn.nl/.  495 

 496 

Code availability 497 

All code used in this work is publicly available at FreeSurfer 498 

(https://surfer.nmr.mgh.harvard.edu), FSL 499 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), ACAPULCO 500 

(https://gitlab.com/shuohan/acapulco), and SUIT 501 

(https://github.com/jdiedrichsen/suit). Code for normative model is available as open-502 

source python package, Predictive Clinical Neuroscience (PCN) toolkit 503 

(https://github.com/amarquand/PCNtoolkit). Further codes are available on 504 

https://github.com/milinkim/mapping_cerebellar_hetereogeneity.   505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 
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Table 1. Sample description and demographics   734 

  N (Participants N (Scanners) Age (Mean, S.D.) Sex (%F:%M) 

Full All 54102 132   

 Training set 27117 132 54.36 (20.31) 0.53:0:47 

 Testing set 26985 132 54.52 (20.19) 0.53:0:47 

Clinical Testing set 1757 53 29.40 (20.84) 0.30 0.70 

 Alzheimer9s Disease 146 13 72.42 (7.65) 0.53:0:47 

 ASD 900 37 16.20 (9.00) 0.14:0:86 

 Bipolar Disorder 277 3 32.73 (11.67) 0.60:0:40 

 
Mild Cognitive 

Impairment 
122 3 67.25 (9.27) 0.42:0:58 

 Schizophrenia 312 3 29.58 (9.52) 0.33:0:67 

 735 
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 740 

Figure 1. Normative models based on MRI data from > 54k participants describe the lifespan trajectories 741 

of cerebellar lobules and individual voxels. In panel (A), the age density distribution is displayed for each 742 

scanning sites in the training, test, and clinical sets. Panel (B-C) showcase two of the 28 regions representing the 743 

lobular growth charts and two of the 143k voxel-wise growth charts for each sex. The x-axis represents age, ranging 744 

from 3 to 85, while the y-axis represents the predicted cerebellar volume and grey matter probability values. 745 

Additionally, the figure includes the explained variance, indicating the goodness of fit. 746 
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 755 

Figure 2. The voxel-wise deviations from estimated norms show high levels of heterogeneity within 756 

diagnostic groups (A) depict Mann-Whitney U-test rank biserial correlation (rbc) of z-scores between the clinical 757 

and the individuals without diagnosis in voxel-wise. The effects are corrected for multiple comparisons using 758 

Bonferroni correction (corrected p < 0.05). Specifically, patients diagnosed with schizophrenia (SZ) and autism 759 

spectrum disorder (ASD) exhibited significant effects compared to individuals without diagnosis (HC) in the voxel-760 

wise maps. (B-C) The z-scores of extreme positive and negative deviations (|z| > 1.96) are shown for two individuals 761 

per cohort. Overlap maps calculate percentage of extreme deviations occurred in the same group. The clinical 762 

groups displayed a significantly higher occurrence of percentage of extreme deviations, even in cases where the 763 

group based nonparametric tests did not differ significantly. These results indicate that within the clinical groups, 764 

there were individuals who exhibited significant deviations from the normative patterns, regardless of the overall 765 

group effects. 766 
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 767 

Figure 3. Voxel-wise normative models can be applied to existing or future cerebellar atlases. (A) The 768 

outputs from normative model, 143k features normative probability maps of an individual, are applied onto existing 769 

atlases of traditional anatomical regions, task-based regions, and resting state connectivity atlases. Panel (B-C) 770 

depict effect size of comparison of percentage of extreme positive and negative deviations of clinical cohorts to the 771 

individuals without diagnosis in voxel-wise per participant based on the three atlases. Scale indicates Mann-772 

Whitney U-test rank biserial correlation (rbc) and only shows significant regions after multiple comparison 773 

corrections.  774 
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 775 

Figure 4. When applied to different atlases, significant correlations were observed between the percentage 776 

of extreme deviations per participant and IQ scores. The panels (A-B) show significant correlations between 777 

extreme positive (left) or negative (right) deviations per participant and intelligence or symptom scores mapped 778 

onto three atlases. Panel (A) displays significant correlations between performance intelligence scores (PIQ) and 779 

the percentage of extreme positive deviations per participant in autism spectrum disorder (ASD). (B) In 780 

schizophrenia (SZ), positive associations are shown in percentage of extreme positive deviation while negative 781 

associations in percentage of extreme negative deviations with full-scale IQ (FIQ). 782 

 783 
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