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Abstract

The cerebellum has been linked to motor coordination, cognitive and affective
processing, in addition to a wide range of clinical illnesses. To enable robust
quantification of individual cerebellar anatomy relative to population norms, we
mapped the normative development and aging of the cerebellum across the lifespan
using brain scans of > 54k participants. We estimated normative models at voxel-wise
spatial precision, enabling integration with cerebellar atlases. Applying the normative
models in independent samples revealed substantial heterogeneity within five clinical
illnesses: autism spectrum disorder, mild cognitive impairment, Alzheimer’s disease,
bipolar disorder, and schizophrenia. Notably, individuals with autism spectrum
disorder and mild cognitive impairment exhibited increased numbers of both positive
and negative extreme deviations in cerebellar anatomy, while schizophrenia and
Alzheimer’s disease predominantly showed negative deviations. Finally, extreme
deviations were associated with cognitive scores. Our results provide a voxel-wise
mapping of cerebellar anatomy across the human lifespan and clinical illnesses,
demonstrating cerebellum's nuanced role in shaping human neurodiversity across the

lifespan and in different clinical illnesses.
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Introduction

The cerebellum accounts for 10 to 15% of the brain’s volume' and contains
approximately 80% of all neurons?. The cerebellum has long been recognized for its
involvement in motor functions®, but has also been linked to human cognitive
capacities such as language and social intelligence*’. In line with this expanded view
of cerebellar function, the cerebellum has also been implicated in a wide range of
mental and neurological ilinesses characterized by both motor and cognitive deficits®.
However, empirical findings on cerebellar structure and function in different mental
and neurological illnesses are varied®'0. A growing literature''-'2 suggests a key role
for cerebellum in autism spectrum disorder (ASD). However, a meta-analysis'® of
human MRI studies revealed no significant group differences in cerebellar volume
between individuals with ASD and individuals without diagnosis, suggesting the
importance of replication and the inherent uncertainty that comes with small studies.
Such inconsistent findings may also be due to the high degree of heterogeneity within
clinical groups, a feature which can be explicitly investigated through the construction
of normative models.

Normative modelling draws its inspiration from paediatric growth charts, which
chart key aspects of a child's development, such as weight or height, over the early
years of life. As a machine learning framework, normative modelling is designed to
estimate a prototypical and representative developmental trajectory, by mapping
different types of variables onto each other, e.g. such as mapping age and sex onto
different brain measures’®. Once such models are established, individuals can be
placed in reference to the resulting norms, from which individual-level normative
probability maps can be derived. These represent the extent to which an individual

deviates from the estimated norm in locations across the brain. In this respect the use
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92 of the normative models enables comparison across studies, scanner sites and
93 lifespan stages by binding to a common reference framework and thus makes studies
94  more comparable'®. In earlier applications of this approach, we charted the normative
95 trajectory of cortical thickness and subcortical volume'” across the lifespan. When
96 applied to clinical samples, these normative models revealed a high degree of
97  heterogeneity for individual-level profiles within same condition. This pattern has now
98  been demonstrated and replicated'® across many different clinical ilinesses, such as
99  ASD'"-?" attention deficit hyperactivity disorder (ADHD)?2, dementia including AD
100  (Alzheimer's Disease)?*?4, first-episode psychosis?®, bipolar disorder (BD) and
101  schizophrenia (SZ)'®2%. Of note, a recent paper demonstrated that while phenotypic
102 heterogeneity within same order may be due to heterogeneity in regional deviations,
103  phenotypic similarities can be coupled to common functional circuits and networks?’.
104  Together, these findings highlight the need for mapping heterogeneity of complex
105  clinical illnesses using voxel-wise, regional, and network-based approaches.

106 In the current study, we chart the normative development and aging of the
107  human cerebellum at lobular and voxel-wise spatial precision in a sample of > 54k
108 individuals. We map the heterogeneity of five distinct clinical phenotypes accounting
109 for 132 scanning sites (Table 1 and Supplementary Table 1) and > 143k voxels,
110  providing a generalisable and state-of-the-art reference model for cerebellar measures
111 across the lifespan. Further, and based on cytoarchitectonic, functional and regional
112 parcellations of the cerebellum, we link percentage of extreme deviations to cognitive
113 measures and symptom scores across the groups and in this way shed light on the
114  role of individual-level deviations from normative cerebellar anatomy across five
115  mental and neurological illnesses.

116
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117 [Table 1]

118

119 Results

120  Lifespan trajectories of cerebellar morphology

121 Normative models were trained on MRI-derived cerebellar features from the
122 training portion of the overall dataset (Table 1), comprising more than 27k individuals
123 without diagnosis across the lifespan (Fig. 1A). All normative models included age and
124  sex as covariates, while controlling for scanning sites related variability. Cerebellar
125  morphology was quantified as lobular volumes, or voxel-wise grey matter probability
126  values (multiplied by the Jacobian of the transformation matrix to preserve volumetric
127  information after normalization) (see Online Methods and Supplementary Fig. 2 and 3
128  for details). Figure 1B shows selected normative trajectories of cerebellar lobules.
129  Most of the lobules exhibit a pattern of volume increase until around age 19, followed
130 by a gradual decrease. Notably, we observed flatter trajectories in specific lobules,
131 namely Left X, Left VIIIB, Corpus Medullare, Right VIIIB, Vermis VI, and Vermis VIII.
132  To validate our model fit, we report the performance of these models, in terms of
133 explained variance, plotted on the cerebellar flat maps (Figure 1B and 1C). The lobule
134 with the best model fit was in Right V, while the worst fit was found in Vermis X.
135  Additional evaluation metrics such as kurtosis, skew, and mean squared logarithmic
136  loss (MSLL) are shown in Supplementary Figure 1. Additionally, Figure 1C presents
137  voxel-wise trajectories, as chosen from the 143k models estimated for individual
138  cerebellar grey matter voxels.

139

140 [Figure 1]

141
142
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143  Altered cerebellar morphology across clinical groups

144 Figure 2A display nonparametric comparison, Mann-Whitney U-test, of voxel-
145  wise model-derived z-scores between patient groups and individuals without diagnosis
146 in the test datasets (for lobule-wise results, see Supplementary Figure 4A and
147  Supplementary Table 3). All reported effects in the result section are corrected for
148  multiple comparisons using Bonferroni correction (across regions of interest or voxels,
149  number of clinical groups and directions) and only significant results are shown in the
150  figures (corrected p < 0.05). Of note, we replicated previous reports of reduced
151 cerebellar volumes in SZ by observing significant negative effect sizes (rank biserial
152 correlations) of deviations in the negative direction, indicating greater strength of SZ
153  than individuals without diagnosis. Similar patterns were seen for SZ in lobular
154  volumes, while AD and MCI exhibited a notably different pattern of negative deviations
155 inlobular volumes compared to voxel-wise maps and furthermore in uncorrected maps
156  (Supplementary Fig. 5). Significant negative effects were observed in Right V for MCI
157 and AD in addition to Right Crus | for AD when corrected. ASD showed negative
158  deviations in the anterior regions for lobular volumes while showed small negative
159 effects in voxel-wise maps in the posterior regions. BD did not show noticeable effects
160 in terms of z-scores with the individuals without diagnosis after multiple comparisons.
161

162 [Figure 2]

163

164  Individual-level extreme deviations are patient specific and transdiagnostic

165 The normative modelling approach allows us to quantify extreme positive and
166  negative deviations, here defined as |z| > 1.96, at the voxel-wise and lobular levels for

167 each individual. Figures 2B-C show examples of normative probability maps for
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168  different individuals across clinical diagnostic groups. These maps reveal high
169  cerebellar heterogeneity within and across groups, especially when we look at the
170  overlaps of these individual-level probability maps. The overlap maps calculate the
171  percentage of extreme deviations within the same group for each voxel. Even within
172 the same diagnostic group only a marginal percentage of individuals show extreme
173  deviations in the same cerebellar regions. Moreover, some cerebellar regions (e.g., in
174  posterior lobules) show increased numbers of extreme deviations across several
175  diagnostic groups (e.g., SZ, ASD and AD). Analyses of lobular volumes yielded similar
176  results (see Supplementary Fig. 4B-C).

177

178  Norms summed across existing cerebellar atlases aid functional interpretation
179 Voxel-wise normative models can be projected onto any existing - or future -
180  cerebellar atlas morphed into Montreal Neurological Institute (MNI) space (Fig. 3A).
181 Here, the voxel-wise normative probability maps are summed across 28 lobules
182  (anatomical atlas), 10 functionally defined cerebellar regions (task-based atlas)??, and
183 17 regions defined by their resting-state connectivity with functional networks of the
184  cerebral cortex (resting-state atlas)?®3°. Percentage of deviations for each region is
185 calculated across parcellations for each individual. The figures (Fig. 3B-C and
186  Supplementary Table 4-6) show effect sizes (rank biserial correlation) of percentage
187  of both positive and negative extreme deviations for various clinical cohorts compared
188 to the individuals without diagnosis. As the percentage of negative deviations
189 increases, the strength of the clinical groups also increases. SZ, mild cognitive
190 impairment (MCI) and AD groups showed small to medium effects in the negative
191 deviations compared to the individuals without diagnosis globally across all three

192  atlases. For all three groups, the effects are visibly greater in the posterior regions of
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193  the cerebellum and display consistent patterns across the atlases. However, ASD and
194  MCI groups reveal significant small effects in positive deviations across numerous
195 regions. For ASD, the medium effects in the negative deviations are seen in the region
196 related to action observation and divided attention (region 4) in the task-based atlas
197  and linked to the dorsal attention network region (network 6) in the resting state atlas.
198

199 [Figure 3]

200

201  Extreme deviations are associated with intelligence

202 Figure 4 shows correlations obtained from three distinct atlases when
203  examining the relationship between intelligence scores. In ASD, regions associated
204  with Right IV-VI in anatomical atlas and somatomotor B (network 4) in resting state
205  atlas showed positive correlations between percentage of extreme positive deviations
206 per participant and performance 1Q (PIQ) (Supplementary Table 7-9) that survived
207  multiple comparisons of number of tests, regions of interest and directions. Weak
208 positive correlations between the percentage of extreme positive deviations per
209  participant and intelligence scores were shown in patients with SZ across three atlases
210  and vice versa for negative deviations (Figure 4B and Supplementary Table 13-15).
211  However, symptom scores Autism Diagnostic Observation Schedule (ADOS) for ASD
212 and Positive and Negative Syndrome Scale (PANSS) for SZ did not show significant
213  associations with percentage of extreme deviations per participant after correcting for
214 multiple comparisons (Supplementary Table 10-12 and 16-18).

215

216 [Figure 4]

217
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218 Discussion

219 Leveraging brain MRI data from > 54k individuals, we chart cerebellar lifespan
220  trajectories with voxel-wise precision using normative modelling. These models are
221  estimated across 132 scanning sites and contribute to the field by: i) providing > 143k
222 normative models of the cerebellar lobules and voxels across the lifespan, ii)
223 confirming and extending previous reports of altered cerebellar structure in various
224  mental and neurological illnesses, iii) demonstrating considerable structural cerebellar
225  heterogeneity within all clinical groups, iv) coupling normative models with existing
226  cerebellar atlases to enhance interpretability and v) demonstrating functional
227  significance of extreme deviations in terms of associations with measures of cognitive
228 function. Conditions marked by cognitive deficits, like schizophrenia, ASD, and
229  dementia, exhibit cerebellar differences, although not universally across all individuals
230  with such illnesses. The substantial individual differences even within the same
231 diagnostic groups underscore the multifaceted role of the cerebellum in these clinical
232 phenotypes and highlight the need for fine grained analytical procedures at scale.
233 As prolonged developmental and aging windows may render the cerebellum
234  susceptible to cellular, morphological and circuit abnormalities?®, understanding
235 normal and abnormal development of the cerebellum is a major research priority. The
236 lifespan normative models developed here allow us to combine datasets and perform
237 analyses in reference to a common population cohort, making further structural
238 investigations of the cerebellum more comparable. Our results are generally in line
239  with previous reports on cerebellar aging?®3® showing a rapid growth of most
240  cerebellar regions during childhood (with volumes typically peaking in late
241 adolescence), followed by a more gradual decline In addition to boosting the sample

242  size relative to these previous studies about 10-fold, we also increase the spatial

10
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243  precision by analysing lifespan trajectories at voxel-wise spatial resolution. This allows
244  for a more fine-grained understanding of cerebellar structure and more precise
245  delineation of functional units. Importantly, these voxel-wise models can readily be
246 integrated with any existing or future cerebellar atlas, and may thus be sensitive to
247  structural deviations that do not necessarily align well with traditional anatomical
248  borders (i.e., lobules)3".

249 Group comparisons using model-derived z-scores confirmed previous reports
250 of altered cerebellar morphology in certain mental and neurological illnesses, while
251  normative probability maps revealed high cerebellar heterogeneity within these same
252 ilinesses. First, patients with AD exhibited a significant reduction in lobular measures
253  compared to the individuals without diagnosis while voxel-wise did not survive multiple
254  comparison correction. In line with meta-analysis study on grey matter loss®, group
255  effects were particularly pronounced in the Right Crus | which have previously been
256  associated with cognitive processing®2. A recent study3? reported that cerebellum
257  volume is associated with cognitive decline in individuals with MCI but not in those
258  with AD. Conversely, in MCI, the presence of extreme bidirectional deviations in the
259  cerebellum might suggest a possible compensatory mechanism in some individuals
260 and decline in others during the initial phase of the disease3, potentially serving as a
261  cognitive reserve®®. Such “cerebellar reserve”®, might thus mitigate some of the
262  cognitive decline associated with neurodegeneration through compensatory
263  reorganization. Our findings further suggest that only a proportion of all diagnosed
264  individuals with AD exhibit extreme negative normative deviations in the cerebellum.
265 These findings highlight the heterogeneity in phenotypes and pathophysiology in AD%’

266 and the importance of looking into the variability of the disease.

11
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267 In line with a previous mega-analysis'®, we observed significantly lower
268 normative model z-scores (indicating lower volumes) in patients with SZ relative to
269 individuals without a diagnosis. Compared to individuals without diagnosis, some
270  patients with SZ showed evidence of smaller regional volumes in reporting small but
271  reliable reduction in cerebellar volume in SZ, particularly in areas associated with high-
272 level cognitive function. Across atlases, our analyses revealed extreme negative
273  deviations primarily in the posterior regions. Recent meta-analysis study3® found brain-
274  predicted age difference in SZ by average of +3.55 years compared to the individuals
275  without diagnosis. In this study, findings of SZ stand out as brain age study®® display
276  more pronounced changes in full brain and cerebellar subcortical in comparison to AD.
277  Moreover, disruptions in cerebello-thalamo-cortical circuit may lead to impairment in
278  synchrony of mental processes, possibly generating symptoms of schizophrenia®.
279 The present results are in line with previous findings of substantial
280 heterogeneity in ASD'34142, We observed medium effects in percentage of negative
281 deviations associated with action observation in task-based atlas and dorsal attention
282  network in resting-state atlas. This is of interest as individuals with ASD frequently
283  report difficulties with social interaction and restricted, repetitive behaviour*3. D’'Mello
284  and colleagues'' reported that reduced regional and lobular grey matter volumes in
285  right VII (Crus I/ll) correlated with the severity of social, communication and repetitive
286  behaviours, based on ADOS scores. While we observe some nominally significant
287  associations with ADOS scores om the current study, these did not survive correction
288  for multiple comparisons.

289 Previous studies have established an association between intelligence and
290 larger brain size or greater grey matter volume** as well as total brain volume®.

291 Likewise, cerebellar morphology has been associated with cognitive ability and

12
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292  psychiatric symptoms®*®. In patients with SZ, weak yet significant positive and negative
293  associations were found with FIQ across the cerebellum, clearly showing that positive
294  deviations are associated with higher scores and negative deviations with lower
295  scores. In ASD, higher performance intelligence scores were associated with positive
296 deviation in the regions related to Right IV-VI in anatomical atlas and somatomotor
297 network (network 4) in task-based atlas.

298 While our work represents one of the largest investigations into the cerebellar
299  structures and heterogeneity at the level of the individual, and provides a resource for
300 researchers for future investigations, some limitations require consideration. First, we
301 lack coherent and detailed behavioural, cognitive, genetic, phenotypic, and medical
302 history information for both individuals without diagnosis and clinical samples. This is
303 usually the case when combining information across multiple datasets from different
304 projects as documentation and assessment varies which may preclude certain
305 associations from being tested. Additionally, the coverages of lifespan normative
306 models in the very young age and in age range of 30 to 40 were relatively low.
307 Moreover, our data primarily represents western populations, potentially limiting its
308 generalizability to other populations. Due to its location in the posterior fossa, its
309 intricate arrangement, and motions artifacts, the cerebellum has posed challenges in
310 imaging studies and therefore inferior regions of the cerebellum may result in poorer
311  model fits. The cerebellar topography shows substantial individual differences*’, and
312 therefore does not perfectly align with existing “average” atlases. Therefore, there are
313 limitations to the interpretation of functional implications. The resource established
314  here can be used in future studies, to further elucidate the complex aetiology of mental

315 and neurological illnesses. By including comprehensive longitudinal datasets or
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dividing the heterogeneous clinical population into subtypes, we can aim to enhance

biomarker development using cognitive and behavioural measures?'48-5

Conclusion

We report the largest multi-site investigation of heterochronic development and aging
of the cerebellum at both voxel-wise and lobular spatial precision. Through normative
modelling, we observe individualized patterns of deviation across five different mental
and neurological illnesses. Several clinical phenotypes exhibited negative deviations
at the group level, but with notable individual differences even within the same clinical
groups. Overall, this study charts cerebellar morphology across the lifespan, provides
evidence for the differential involvement of the cerebellum across brain illness, and

links extreme deviations from population norms to cognitive function.
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341  Online Methods

342

343  Population data

344  The cohort of individuals without diagnoses was obtained from 132 scanning sites,
345 including various studies such as ABIDE, ADHD200, AOMIC ID1000, Beijing
346  Enhanced, CAMCAN, CoRR, DLBS, DS000119, DS000202, DS000222, Fcon1000,
347  HBN, HCP, MPI Lemon, NKI-Rockland, OASIS-3, PING, SALD, SLIM, and UK
348 Biobank. Data used in the preparation of this article were obtained from the
349  Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
350 ADNI was launched in 2003 as a public-private partnership, led by Principal
351 Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
352  whether serial magnetic resonance imaging (MRI), positron emission tomography
353 (PET), other biological markers, and clinical and neuropsychological assessment can
354  be combined to measure the progression of mild cognitive impairment (MCIl) and early
355 Alzheimer’'s disease (AD). Further details about each study can be found in the
356  associated publications. (Supplementary Table 1). The total number of participants in
357  theindividuals without diagnosis population was 54102 (53% females), and the clinical
358 setwas 1757, encompassing > 56k in total. The age range spanned from 3 to 85 years
359 (Figure 1). Detailed descriptions of each site, including sample size, mean age,
360 standard deviation, and sex ratio, can be found in Supplementary Table 2. If
361 longitudinal scans were available in the studies, only the baseline scans were used.
362  Participants who had withdrawn from the studies or had missing demographic
363 information and T1-weighted MRI data were excluded from the analyses.

364

365 Clinical data
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366 As for the clinical datasets, we combined data from ABIDE, ADNI, AIBL, DEMGEN,
367 and TOP (Figure 1). Apart from the requirement of having available clinical diagnoses,
368 clinical groups with more than 100 participants were included in the study. Among the
369 clinical groups, we selected AD (Alzheimer's disease), ASD (autism spectrum
370 disorder), BD (bipolar disorder), MCI (mild cognitive impairment), and SZ
371  (schizophrenia) as the clinical cohorts.

372

373  Lobular-level processing

374 The T1-weighted images were skull stripped using the FreeSurfer 5.3 auto-recon
375 pipeline®' and reoriented to the standard FSL orientation using the fslreorient2std®?.
376  The linear registration was performed using flirt®3, which utilized linear interpolation
377 and the default 1 mm FSL template (version 6.0). The borders were cropped in [6:173,
378  2:214, 0:160] coordinates to minimize size while retaining the complete volume. Lastly,
379  the voxel intensity values were normalized to the range of [0,1], adjusting the intensity
380 values of each voxel to a standardized scale.

381 In our study, we utilized the ACAPULCO algorithm?°, which is a state-of-the-art
382  cerebellum parcellation algorithm based on convolutional neural networks. This
383  algorithm is part of the ENIGMA Cerebellum Volumetric Pipeline and provides speedy
384  and accurate quantitative in-vivo regional assessment of the cerebellum at the highest
385  fidelity®*. We used pre-processed T1-weighted image for better quality control and
386 alignment. The inhomogeneity of the images was corrected using the N4°° and
387 registered to the 1Tmm isotropic ICBM 2009c template in MNI space using the ANTs
388  registration suite>. The ACAPULCO algorithm was trained using 15 expert manual
389  delineations of an adult cohort>4. It performs per-voxel labelling of the cerebellum and

390 applies post-processing to remove isolated pieces, ensuring accurate segmentation.
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391 The algorithm divides the cerebellum into 28 cerebellar lobules, including bilateral
392  Lobules |I-VI; Crus | and Il; Lobules VIIB, VIIIA, VIIIB, and IX-X; Vermis VI, VII, VI,
393 IX, and X; and Corpus Medullare (CM). It also calculates the volume (mm?3) of each
394 region. The automated quality control generates segmented images for each
395 participant, and we removed the extreme outliers where the number of lobules
396  exceeded a certain threshold (e.g., n > 2).

397

398  Voxel-level processing

399  In our study, we utilized the SUIT (Spatially Unbiased Infratentorial Toolbox) toolbox
400 to perform segmentation of cerebellar grey and white matter voxel-based
401  morphometry (VBM) maps. This segmentation process involved using the outputs
402  from ACAPULCO, which include the N4 bias-corrected and MNI-aligned T1 image®”-%8,
403  as well as an averaged mask derived from randomly selected 300 individuals without
404 diagnosis. The ACAPULCO mask plays a crucial role in correcting and refining
405  overinclusion errors in the segmentation process due to variations in the segmentation
406  algorithm. Following segmentation, the grey matter maps were normalized and
407  resliced to align with a standardized space. This normalization step ensures that the
408 data can be compared across different individuals and studies. Additionally, the grey
409 matter maps were modulated by the Jacobian to preserve the value of each voxel in
410  proportion to its original volume. This modulation accounts for individual differences in
411  brain size and helps to retain the relative intensity values within the mapped brain
412 regions. By using the SUIT toolbox and incorporating the ACAPULCO outputs, we
413  were able to obtain accurate and spatially unbiased segmentation of cerebellar grey
414  and white matter, enabling further analysis and comparison of VBM maps within and

415 across individuals.
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416

417  Normative modelling

418 We split our individuals without diagnosis sample into training and test sets
419  based on scanning site, sex, and age. This split is important to account for the potential
420 confounding effects of MRI scanners on the data'”5%8% The individuals without
421 diagnosis were first stratified based on the scanning sites. This ensures that the
422  training and testing datasets include a representative distribution of participants from
423  each location. To achieve this, we evenly split the control participants from each
424  scanning site between the training and testing sets. A minimum requirement of 5
425  participants from the same scanners sites was required. However, only the test set
426  consisted of diagnostic groups (e.g., AD, ASD, BD) with minimum of 100 participants.
427  This criterion ensures that there is an adequate number of participants in each
428  diagnostic group to provide reliable statistical analyses. By employing this stratification
429  approach, we aimed to create balanced and representative training and testing
430 datasets that account for MRI scanners and sex, while also including enough
431  participants in each diagnostic group.

432 We used the PCNtoolkit package (version 0.24)'561 in Python 3.8 to estimate a
433  normative model for predicting regional cerebellar volumes and voxel-wise intensity
434  based on sex and age, while correcting for scanning site. Results that deviated more
435 than 5 standard of deviation were imputed by the mean. We employed Bayesian
436  Linear Regression (BLR) with likelihood warping approach®?, specifically using the
437  'sinarcsinsh' transformation®63. This approach is well-suited for handling non-linear
438  basis functions and non-Gaussian predictive distributions for large datasets as well as
439  correcting for outer centiles. A detailed mathematical description on BLR for normative

440  modelling can be found in the following paper Fraza et al. (2021)%°. To account for
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441  scanner effects, we treated the scanning site as a fixed effect in our analysis'®*. This
442  approach has been shown to yield relatively good performance, as demonstrated in
443  previous work'®. To assess how each participant's (i) deviate from the individuals
444  without diagnosis pattern at each lobule or voxel (j) in the cerebellum, we calculated

445  the z-score:

446 zy = L2
alzj + aﬁj
447
448 The computation of the z-score includes predicted mean y,; (lobule or voxel),

449  true response y;;, predicted variance g;; and normative variance g, ;. For model fit, the
450  normative model provided point estimates and evaluation metrics, including explained
451  variance, mean squared log-loss, skew, and kurtosis®3. These evaluation metrics were
452  computed in the test set that did not include any clinical groups. To determine
453  participants with extreme deviations, we set a threshold at z > |1.96|, corresponding
454  to the 95% confidence interval. For instance, deviations with z-scores greater than
455  1.96 were identified as extreme positive deviations, indicating significantly increased
456 volume compared to the control pattern and vice versa for extreme negative
457  deviations.

458

459  Group comparisons

460 We performed classical nonparametric test on the z-scores of clinical cohorts and
461 individuals without diagnosis. To assess the statistical significance, we performed
462  Mann-Whitney U-tests®®, a non-parametric test that is suitable for comparing two
463 independent samples that are not normally distributed. To account for multiple

464  comparisons, the resulting p-values were corrected, using Bonferroni correction® and
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465 calculated rank biserial correlation to see its effect.

466

467  Atlas-based analyses

468  Additionally, the normative model can be applied to various research questions and is
469  compatible with existing atlases by using registration methods such as FSL flirt and
470  fnirt 5387, This makes it an attractive versatile tool that can be utilized in different
471  studies and across different brain regions. By mapping the deviations onto specific
472 anatomical regions, such as the 28 cerebellar regions, King's 10 regions of interest
473 from the multi-domain task battery (MDTB)3', and 17 regions of interest from resting-
474  state connectivity®®®° we gain insights into the specific areas where deviations occur.
475  We separately calculated the percentage of extreme positive and negative deviations
476  for each participant in the regions of interest in reference to the existing atlases. We
477  divided this by the size of the region and multiplied the resulting proportion by 100 (i.e.,
478  deriving a percentage of extreme positive or negative deviations per region). To
479  compare the extreme deviations observed in different cohorts to the individuals without
480  diagnosis group, we used Mann-Whitney U-tests and calculated the rank biserial
481  correlation (r) for significant results.

482 To investigate potential associations between measured intelligence and
483  symptom scores and clinical cohorts, Spearman correlation analyses were performed
484  using voxel-wise extreme deviation scores that were mapped onto the existing atlases.
485  The Spearman correlation coefficient is used to quantify the strength and direction of
486 the association between the variables, allowing for the examination of potential
487  relationship (see Supplementary Methods for tests used). Only correlations with a
488  corrected p-value below 0.05 (p < 0.05) were considered statistically significant and

489  reported.

20


https://doi.org/10.1101/2023.11.18.567647
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.18.567647; this version posted November 20, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

490  Data availability

491 In this study we used brain imaging from ABIDE, ADHD200, AOMIC ID1000, Beijing
492  Enhanced, CAMCAN, CoRR, DLBS, DS000119, DS000202, DS000222, Fcon1000,
493  HBN, HCP, MPI Lemon, NKI-Rockland, OASIS-3, PING, SALD, SLIM and UK
494  Biobank, ADNI, AIBL, DEMGEN, PNC, and TOP. The ROl models from this work are

495  available on via PCNportal™: https://pcnportal.dccn.nl/.

496
497  Code availability

498 All code used in this work is publicly available at FreeSurfer

499  (https://surfer.nmr.mgh.harvard.edu), FSL
500  (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslinstallation), ACAPULCO
501  (https://gitlab.com/shuohan/acapulco), and SUIT

502  (https://github.com/jdiedrichsen/suit). Code for normative model is available as open-

503 source python package, Predictive Clinical Neuroscience (PCN) toolkit

504  (https://github.com/amarquand/PCNtoolkit). Further codes are available on

505 https://qithub.com/milinkim/mapping cerebellar hetereogeneity.
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734  Table 1. Sample description and demographics

N (Participants | N (Scanners) | Age (Mean, S.D.) Sex (%F:%M)
Full All 54102 132

Training set 27117 132 54.36 (20.31) 0.53:0:47

Testing set 26985 132 54.52 (20.19) 0.53:0:47

Clinical Testing set 1757 53 29.40 (20.84) 0.300.70

Alzheimer’s Disease 146 13 72.42 (7.65) 0.53:0:47

ASD 900 37 16.20 (9.00) 0.14:0:86

Bipolar Disorder 277 3 32.73 (11.67) 0.60:0:40

Mild Cognitive
122 3 67.25 (9.27) 0.42:0:58
Impairment

Schizophrenia 312 3 29.58 (9.52) 0.33:0:67
735
736
737
738
739
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Figure 1. Normative models based on MRI data from > 54k participants describe the lifespan trajectories
of cerebellar lobules and individual voxels. In panel (A), the age density distribution is displayed for each
scanning sites in the training, test, and clinical sets. Panel (B-C) showcase two of the 28 regions representing the
lobular growth charts and two of the 143k voxel-wise growth charts for each sex. The x-axis represents age, ranging
from 3 to 85, while the y-axis represents the predicted cerebellar volume and grey matter probability values.

Additionally, the figure includes the explained variance, indicating the goodness of fit.
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A) Group based nonparametric tests in voxel-wise cerebellar maps
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756 Figure 2. The voxel-wise deviations from estimated norms show high levels of heterogeneity within

755

757  diagnostic groups (A) depict Mann-Whitney U-test rank biserial correlation (rbc) of z-scores between the clinical
758 and the individuals without diagnosis in voxel-wise. The effects are corrected for multiple comparisons using
759 Bonferroni correction (corrected p < 0.05). Specifically, patients diagnosed with schizophrenia (SZ) and autism
760 spectrum disorder (ASD) exhibited significant effects compared to individuals without diagnosis (HC) in the voxel-
761 wise maps. (B-C) The z-scores of extreme positive and negative deviations (|z| > 1.96) are shown for two individuals
762 per cohort. Overlap maps calculate percentage of extreme deviations occurred in the same group. The clinical
763 groups displayed a significantly higher occurrence of percentage of extreme deviations, even in cases where the
764 group based nonparametric tests did not differ significantly. These results indicate that within the clinical groups,
765 there were individuals who exhibited significant deviations from the normative patterns, regardless of the overall

766  group effects.
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A) Parcellation of voxel-wise cerebellar volumes using distinct atlases
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Figure 3. Voxel-wise normative models can be applied to existing or future cerebellar atlases. (A) The
outputs from normative model, 143k features normative probability maps of an individual, are applied onto existing
atlases of traditional anatomical regions, task-based regions, and resting state connectivity atlases. Panel (B-C)
depict effect size of comparison of percentage of extreme positive and negative deviations of clinical cohorts to the
individuals without diagnosis in voxel-wise per participant based on the three atlases. Scale indicates Mann-
Whitney U-test rank biserial correlation (rbc) and only shows significant regions after multiple comparison

corrections.
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A) Associations between extreme deviations and intelligence scores in ASD
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Figure 4. When applied to different atlases, significant correlations were observed between the percentage
of extreme deviations per participant and 1Q scores. The panels (A-B) show significant correlations between
extreme positive (left) or negative (right) deviations per participant and intelligence or symptom scores mapped
onto three atlases. Panel (A) displays significant correlations between performance intelligence scores (PIQ) and
the percentage of extreme positive deviations per participant in autism spectrum disorder (ASD). (B) In
schizophrenia (SZ), positive associations are shown in percentage of extreme positive deviation while negative

associations in percentage of extreme negative deviations with full-scale 1Q (FIQ).
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