

1 **Mapping Cerebellar Anatomical Heterogeneity in Mental and Neurological**

2 **Illnesses**

3

4 **Authors:** Milin Kim^{1,2}, Esten Leonardsen^{1,2}, Saige Rutherford^{5,6,7}, Geir Selbæk^{10,11},
5 Karin Persson^{10,11}, Nils Eiel Steen^{1,12}, Olav B. Smeland¹, Torill Ueland^{1,2}, Geneviève
6 Richard¹, Christian F. Beckmann^{6,14}, Andre F. Marquand^{6,13}, For the Alzheimer's
7 Disease Neuroimaging Initiative (ADNI)*, Ole A. Andreassen^{1,3}, Lars T. Westlye^{1,2,3},
8 Thomas Wolfers^{1,8,9 **} & Torgeir Moberget^{1,4 **}.

9

10 **Affiliations:**

11 ¹Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental
12 Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine,
13 University of Oslo, Oslo, Norway; ² Department of Psychology, Faculty of Social
14 Sciences, University of Oslo, Norway; ³KG Jebsen Centre for Neurodevelopmental
15 Disorders, University of Oslo, Oslo, Norway; ⁴Department of Behavioral Science,
16 School of Health Sciences, Oslo Metropolitan University - OsloMet, Oslo, Norway; ⁵
17 Department of Cognitive Neuroscience, Radboud University Medical Centre,
18 Nijmegen, Netherlands; ⁶Donders Institute, Radboud University, Nijmegen,
19 Netherlands; ⁷Department of Psychiatry, University of Michigan, Ann Arbor, MI,
20 United States; ⁸Department of Psychiatry and Psychotherapy, Tübingen Center for
21 Mental Health, University of Tübingen, Germany; ⁹German Center for Mental Health
22 (DZPG); ¹⁰Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway;
23 ¹¹The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust,
24 Tønsberg, Norway; ¹²Department of Psychiatric Research, Diakonhjemmet Hospital,
25 Oslo, Norway, ¹³Department of Neuroimaging, Centre of Neuroimaging Sciences,

26 Institute of Psychiatry, King's College London, London, UK, ¹⁴Centre for Functional
27 MRI of the Brain, Nuffield Department of Clinical Neurosciences, Wellcome Centre
28 for Integrative Neuroimaging, University of Oxford, Oxford, UK

29

30 *Data used in preparation of this article were obtained from the Alzheimer's Disease
31 Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
32 investigators within the ADNI contributed to the design and implementation of ADNI
33 and/or provided data but did not participate in analysis or writing of this report. A
34 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

36

37 **These authors contributed equally.

38

39 Keywords: Cerebellum, Normative modelling, Magnetic Resonance Imaging,
40 Individual-level Inference, Heterogeneity Mapping, Schizophrenia, Alzheimer, Autism
41 Spectrum Disorder, Mental Disorders, & Neurological Diseases

42

43 *Corresponding authors*

44 Milin Kim, Norwegian Centre for Mental Disorders Research (NORMENT), Division
45 of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. E-mail:
46 milink@student.sv.uio.no

47

48 **Abstract**

49 The cerebellum has been linked to motor coordination, cognitive and affective
50 processing, in addition to a wide range of clinical illnesses. To enable robust
51 quantification of individual cerebellar anatomy relative to population norms, we
52 mapped the normative development and aging of the cerebellum across the lifespan
53 using brain scans of > 54k participants. We estimated normative models at voxel-wise
54 spatial precision, enabling integration with cerebellar atlases. Applying the normative
55 models in independent samples revealed substantial heterogeneity within five clinical
56 illnesses: autism spectrum disorder, mild cognitive impairment, Alzheimer's disease,
57 bipolar disorder, and schizophrenia. Notably, individuals with autism spectrum
58 disorder and mild cognitive impairment exhibited increased numbers of both positive
59 and negative extreme deviations in cerebellar anatomy, while schizophrenia and
60 Alzheimer's disease predominantly showed negative deviations. Finally, extreme
61 deviations were associated with cognitive scores. Our results provide a voxel-wise
62 mapping of cerebellar anatomy across the human lifespan and clinical illnesses,
63 demonstrating cerebellum's nuanced role in shaping human neurodiversity across the
64 lifespan and in different clinical illnesses.

65

66

67 ***Introduction***

68 The cerebellum accounts for 10 to 15% of the brain's volume¹ and contains
69 approximately 80% of all neurons². The cerebellum has long been recognized for its
70 involvement in motor functions³, but has also been linked to human cognitive
71 capacities such as language and social intelligence^{4–7}. In line with this expanded view
72 of cerebellar function, the cerebellum has also been implicated in a wide range of
73 mental and neurological illnesses characterized by both motor and cognitive deficits⁸.
74 However, empirical findings on cerebellar structure and function in different mental
75 and neurological illnesses are varied^{9,10}. A growing literature^{11,12} suggests a key role
76 for cerebellum in autism spectrum disorder (ASD). However, a meta-analysis¹³ of
77 human MRI studies revealed no significant group differences in cerebellar volume
78 between individuals with ASD and individuals without diagnosis, suggesting the
79 importance of replication and the inherent uncertainty that comes with small studies¹⁴.
80 Such inconsistent findings may also be due to the high degree of heterogeneity within
81 clinical groups, a feature which can be explicitly investigated through the construction
82 of normative models.

83 Normative modelling draws its inspiration from paediatric growth charts, which
84 chart key aspects of a child's development, such as weight or height, over the early
85 years of life. As a machine learning framework, normative modelling is designed to
86 estimate a prototypical and representative developmental trajectory, by mapping
87 different types of variables onto each other, e.g. such as mapping age and sex onto
88 different brain measures¹⁵. Once such models are established, individuals can be
89 placed in reference to the resulting norms, from which individual-level normative
90 probability maps can be derived. These represent the extent to which an individual
91 deviates from the estimated norm in locations across the brain. In this respect the use

92 of the normative models enables comparison across studies, scanner sites and
93 lifespan stages by binding to a common reference framework and thus makes studies
94 more comparable¹⁶. In earlier applications of this approach, we charted the normative
95 trajectory of cortical thickness and subcortical volume¹⁷ across the lifespan. When
96 applied to clinical samples, these normative models revealed a high degree of
97 heterogeneity for individual-level profiles within same condition. This pattern has now
98 been demonstrated and replicated¹⁸ across many different clinical illnesses, such as
99 ASD^{19–21}, attention deficit hyperactivity disorder (ADHD)²², dementia including AD
100 (Alzheimer's Disease)^{23,24}, first-episode psychosis²⁵, bipolar disorder (BD) and
101 schizophrenia (SZ)^{18,26}. Of note, a recent paper demonstrated that while phenotypic
102 heterogeneity within same order may be due to heterogeneity in regional deviations,
103 phenotypic similarities can be coupled to common functional circuits and networks²⁷.
104 Together, these findings highlight the need for mapping heterogeneity of complex
105 clinical illnesses using voxel-wise, regional, and network-based approaches.

106 In the current study, we chart the normative development and aging of the
107 human cerebellum at lobular and voxel-wise spatial precision in a sample of > 54k
108 individuals. We map the heterogeneity of five distinct clinical phenotypes accounting
109 for 132 scanning sites (Table 1 and Supplementary Table 1) and > 143k voxels,
110 providing a generalisable and state-of-the-art reference model for cerebellar measures
111 across the lifespan. Further, and based on cytoarchitectonic, functional and regional
112 parcellations of the cerebellum, we link percentage of extreme deviations to cognitive
113 measures and symptom scores across the groups and in this way shed light on the
114 role of individual-level deviations from normative cerebellar anatomy across five
115 mental and neurological illnesses.

116

117

[Table 1]

118

119 **Results**

120 ***Lifespan trajectories of cerebellar morphology***

121 Normative models were trained on MRI-derived cerebellar features from the
122 training portion of the overall dataset (Table 1), comprising more than 27k individuals
123 without diagnosis across the lifespan (Fig. 1A). All normative models included age and
124 sex as covariates, while controlling for scanning sites related variability. Cerebellar
125 morphology was quantified as lobular volumes, or voxel-wise grey matter probability
126 values (multiplied by the Jacobian of the transformation matrix to preserve volumetric
127 information after normalization) (see Online Methods and Supplementary Fig. 2 and 3
128 for details). Figure 1B shows selected normative trajectories of cerebellar lobules.
129 Most of the lobules exhibit a pattern of volume increase until around age 19, followed
130 by a gradual decrease. Notably, we observed flatter trajectories in specific lobules,
131 namely Left X, Left VIIIB, Corpus Medullare, Right VIIIB, Vermis VI, and Vermis VIII.
132 To validate our model fit, we report the performance of these models, in terms of
133 explained variance, plotted on the cerebellar flat maps (Figure 1B and 1C). The lobule
134 with the best model fit was in Right V, while the worst fit was found in Vermis X.
135 Additional evaluation metrics such as kurtosis, skew, and mean squared logarithmic
136 loss (MSLL) are shown in Supplementary Figure 1. Additionally, Figure 1C presents
137 voxel-wise trajectories, as chosen from the 143k models estimated for individual
138 cerebellar grey matter voxels.

139

140 **[Figure 1]**

141

142

143 ***Altered cerebellar morphology across clinical groups***

144 Figure 2A display nonparametric comparison, Mann-Whitney U-test, of voxel-
145 wise model-derived z-scores between patient groups and individuals without diagnosis
146 in the test datasets (for lobule-wise results, see Supplementary Figure 4A and
147 Supplementary Table 3). All reported effects in the result section are corrected for
148 multiple comparisons using Bonferroni correction (across regions of interest or voxels,
149 number of clinical groups and directions) and only significant results are shown in the
150 figures (corrected $p < 0.05$). Of note, we replicated previous reports of reduced
151 cerebellar volumes in SZ by observing significant negative effect sizes (rank biserial
152 correlations) of deviations in the negative direction, indicating greater strength of SZ
153 than individuals without diagnosis. Similar patterns were seen for SZ in lobular
154 volumes, while AD and MCI exhibited a notably different pattern of negative deviations
155 in lobular volumes compared to voxel-wise maps and furthermore in uncorrected maps
156 (Supplementary Fig. 5). Significant negative effects were observed in Right V for MCI
157 and AD in addition to Right Crus I for AD when corrected. ASD showed negative
158 deviations in the anterior regions for lobular volumes while showed small negative
159 effects in voxel-wise maps in the posterior regions. BD did not show noticeable effects
160 in terms of z-scores with the individuals without diagnosis after multiple comparisons.

161

162 **[Figure 2]**

163

164 ***Individual-level extreme deviations are patient specific and transdiagnostic***

165 The normative modelling approach allows us to quantify extreme positive and
166 negative deviations, here defined as $|z| > 1.96$, at the voxel-wise and lobular levels for
167 each individual. Figures 2B-C show examples of normative probability maps for

168 different individuals across clinical diagnostic groups. These maps reveal high
169 cerebellar heterogeneity within and across groups, especially when we look at the
170 overlaps of these individual-level probability maps. The overlap maps calculate the
171 percentage of extreme deviations within the same group for each voxel. Even within
172 the same diagnostic group only a marginal percentage of individuals show extreme
173 deviations in the same cerebellar regions. Moreover, some cerebellar regions (e.g., in
174 posterior lobules) show increased numbers of extreme deviations across several
175 diagnostic groups (e.g., SZ, ASD and AD). Analyses of lobular volumes yielded similar
176 results (see Supplementary Fig. 4B-C).

177

178 ***Norms summed across existing cerebellar atlases aid functional interpretation***

179 Voxel-wise normative models can be projected onto any existing - or future -
180 cerebellar atlas morphed into Montreal Neurological Institute (MNI) space (Fig. 3A).
181 Here, the voxel-wise normative probability maps are summed across 28 lobules
182 (anatomical atlas), 10 functionally defined cerebellar regions (task-based atlas)²⁸, and
183 17 regions defined by their resting-state connectivity with functional networks of the
184 cerebral cortex (resting-state atlas)^{29,30}. Percentage of deviations for each region is
185 calculated across parcellations for each individual. The figures (Fig. 3B-C and
186 Supplementary Table 4-6) show effect sizes (rank biserial correlation) of percentage
187 of both positive and negative extreme deviations for various clinical cohorts compared
188 to the individuals without diagnosis. As the percentage of negative deviations
189 increases, the strength of the clinical groups also increases. SZ, mild cognitive
190 impairment (MCI) and AD groups showed small to medium effects in the negative
191 deviations compared to the individuals without diagnosis globally across all three
192 atlases. For all three groups, the effects are visibly greater in the posterior regions of

193 the cerebellum and display consistent patterns across the atlases. However, ASD and
194 MCI groups reveal significant small effects in positive deviations across numerous
195 regions. For ASD, the medium effects in the negative deviations are seen in the region
196 related to action observation and divided attention (region 4) in the task-based atlas
197 and linked to the dorsal attention network region (network 6) in the resting state atlas.

198

199 **[Figure 3]**

200

201 ***Extreme deviations are associated with intelligence***

202 Figure 4 shows correlations obtained from three distinct atlases when
203 examining the relationship between intelligence scores. In ASD, regions associated
204 with Right IV-VI in anatomical atlas and somatomotor B (network 4) in resting state
205 atlas showed positive correlations between percentage of extreme positive deviations
206 per participant and performance IQ (PIQ) (Supplementary Table 7-9) that survived
207 multiple comparisons of number of tests, regions of interest and directions. Weak
208 positive correlations between the percentage of extreme positive deviations per
209 participant and intelligence scores were shown in patients with SZ across three atlases
210 and vice versa for negative deviations (Figure 4B and Supplementary Table 13-15).
211 However, symptom scores Autism Diagnostic Observation Schedule (ADOS) for ASD
212 and Positive and Negative Syndrome Scale (PANSS) for SZ did not show significant
213 associations with percentage of extreme deviations per participant after correcting for
214 multiple comparisons (Supplementary Table 10-12 and 16-18).

215

216 **[Figure 4]**

217

218 ***Discussion***

219 Leveraging brain MRI data from > 54k individuals, we chart cerebellar lifespan
220 trajectories with voxel-wise precision using normative modelling. These models are
221 estimated across 132 scanning sites and contribute to the field by: i) providing > 143k
222 normative models of the cerebellar lobules and voxels across the lifespan, ii)
223 confirming and extending previous reports of altered cerebellar structure in various
224 mental and neurological illnesses, iii) demonstrating considerable structural cerebellar
225 heterogeneity within all clinical groups, iv) coupling normative models with existing
226 cerebellar atlases to enhance interpretability and v) demonstrating functional
227 significance of extreme deviations in terms of associations with measures of cognitive
228 function. Conditions marked by cognitive deficits, like schizophrenia, ASD, and
229 dementia, exhibit cerebellar differences, although not universally across all individuals
230 with such illnesses. The substantial individual differences even within the same
231 diagnostic groups underscore the multifaceted role of the cerebellum in these clinical
232 phenotypes and highlight the need for fine grained analytical procedures at scale.

233 As prolonged developmental and aging windows may render the cerebellum
234 susceptible to cellular, morphological and circuit abnormalities²⁸, understanding
235 normal and abnormal development of the cerebellum is a major research priority. The
236 lifespan normative models developed here allow us to combine datasets and perform
237 analyses in reference to a common population cohort, making further structural
238 investigations of the cerebellum more comparable. Our results are generally in line
239 with previous reports on cerebellar aging^{29,30} showing a rapid growth of most
240 cerebellar regions during childhood (with volumes typically peaking in late
241 adolescence), followed by a more gradual decline. In addition to boosting the sample
242 size relative to these previous studies about 10-fold, we also increase the spatial

243 precision by analysing lifespan trajectories at voxel-wise spatial resolution. This allows
244 for a more fine-grained understanding of cerebellar structure and more precise
245 delineation of functional units. Importantly, these voxel-wise models can readily be
246 integrated with any existing or future cerebellar atlas, and may thus be sensitive to
247 structural deviations that do not necessarily align well with traditional anatomical
248 borders (i.e., lobules)³¹.

249 Group comparisons using model-derived z-scores confirmed previous reports
250 of altered cerebellar morphology in certain mental and neurological illnesses, while
251 normative probability maps revealed high cerebellar heterogeneity within these same
252 illnesses. First, patients with AD exhibited a significant reduction in lobular measures
253 compared to the individuals without diagnosis while voxel-wise did not survive multiple
254 comparison correction. In line with meta-analysis study on grey matter loss⁹, group
255 effects were particularly pronounced in the Right Crus I which have previously been
256 associated with cognitive processing³². A recent study³³ reported that cerebellum
257 volume is associated with cognitive decline in individuals with MCI but not in those
258 with AD. Conversely, in MCI, the presence of extreme bidirectional deviations in the
259 cerebellum might suggest a possible compensatory mechanism in some individuals
260 and decline in others during the initial phase of the disease³⁴, potentially serving as a
261 cognitive reserve³⁵. Such “cerebellar reserve”³⁶, might thus mitigate some of the
262 cognitive decline associated with neurodegeneration through compensatory
263 reorganization. Our findings further suggest that only a proportion of all diagnosed
264 individuals with AD exhibit extreme negative normative deviations in the cerebellum.
265 These findings highlight the heterogeneity in phenotypes and pathophysiology in AD³⁷
266 and the importance of looking into the variability of the disease.

267 In line with a previous mega-analysis¹⁰, we observed significantly lower
268 normative model z-scores (indicating lower volumes) in patients with SZ relative to
269 individuals without a diagnosis. Compared to individuals without diagnosis, some
270 patients with SZ showed evidence of smaller regional volumes in reporting small but
271 reliable reduction in cerebellar volume in SZ, particularly in areas associated with high-
272 level cognitive function. Across atlases, our analyses revealed extreme negative
273 deviations primarily in the posterior regions. Recent meta-analysis study³⁸ found brain-
274 predicted age difference in SZ by average of +3.55 years compared to the individuals
275 without diagnosis. In this study, findings of SZ stand out as brain age study³⁹ display
276 more pronounced changes in full brain and cerebellar subcortical in comparison to AD.
277 Moreover, disruptions in cerebello-thalamo-cortical circuit may lead to impairment in
278 synchrony of mental processes, possibly generating symptoms of schizophrenia⁴⁰.

279 The present results are in line with previous findings of substantial
280 heterogeneity in ASD^{13,41,42}. We observed medium effects in percentage of negative
281 deviations associated with action observation in task-based atlas and dorsal attention
282 network in resting-state atlas. This is of interest as individuals with ASD frequently
283 report difficulties with social interaction and restricted, repetitive behaviour⁴³. D'Mello
284 and colleagues¹¹ reported that reduced regional and lobular grey matter volumes in
285 right VII (Crus I/II) correlated with the severity of social, communication and repetitive
286 behaviours, based on ADOS scores. While we observe some nominally significant
287 associations with ADOS scores in the current study, these did not survive correction
288 for multiple comparisons.

289 Previous studies have established an association between intelligence and
290 larger brain size or greater grey matter volume⁴⁴ as well as total brain volume⁴⁵.
291 Likewise, cerebellar morphology has been associated with cognitive ability and

292 psychiatric symptoms⁴⁶. In patients with SZ, weak yet significant positive and negative
293 associations were found with FIQ across the cerebellum, clearly showing that positive
294 deviations are associated with higher scores and negative deviations with lower
295 scores. In ASD, higher performance intelligence scores were associated with positive
296 deviation in the regions related to Right IV-VI in anatomical atlas and somatomotor
297 network (network 4) in task-based atlas.

298 While our work represents one of the largest investigations into the cerebellar
299 structures and heterogeneity at the level of the individual, and provides a resource for
300 researchers for future investigations, some limitations require consideration. First, we
301 lack coherent and detailed behavioural, cognitive, genetic, phenotypic, and medical
302 history information for both individuals without diagnosis and clinical samples. This is
303 usually the case when combining information across multiple datasets from different
304 projects as documentation and assessment varies which may preclude certain
305 associations from being tested. Additionally, the coverages of lifespan normative
306 models in the very young age and in age range of 30 to 40 were relatively low.
307 Moreover, our data primarily represents western populations, potentially limiting its
308 generalizability to other populations. Due to its location in the posterior fossa, its
309 intricate arrangement, and motions artifacts, the cerebellum has posed challenges in
310 imaging studies and therefore inferior regions of the cerebellum may result in poorer
311 model fits. The cerebellar topography shows substantial individual differences⁴⁷, and
312 therefore does not perfectly align with existing “average” atlases. Therefore, there are
313 limitations to the interpretation of functional implications. The resource established
314 here can be used in future studies, to further elucidate the complex aetiology of mental
315 and neurological illnesses. By including comprehensive longitudinal datasets or

316 dividing the heterogeneous clinical population into subtypes, we can aim to enhance
317 biomarker development using cognitive and behavioural measures^{21,48–50}.

318

319 **Conclusion**

320 We report the largest multi-site investigation of heterochronic development and aging
321 of the cerebellum at both voxel-wise and lobular spatial precision. Through normative
322 modelling, we observe individualized patterns of deviation across five different mental
323 and neurological illnesses. Several clinical phenotypes exhibited negative deviations
324 at the group level, but with notable individual differences even within the same clinical
325 groups. Overall, this study charts cerebellar morphology across the lifespan, provides
326 evidence for the differential involvement of the cerebellum across brain illness, and
327 links extreme deviations from population norms to cognitive function.

328

329

330

331

332

333

334

335

336

337

338

339

340

341 **Online Methods**

342

343 **Population data**

344 The cohort of individuals without diagnoses was obtained from 132 scanning sites,
345 including various studies such as ABIDE, ADHD200, AOMIC ID1000, Beijing
346 Enhanced, CAMCAN, CoRR, DLBS, DS000119, DS000202, DS000222, Fcon1000,
347 HBN, HCP, MPI Lemon, NKI-Rockland, OASIS-3, PING, SALD, SLIM, and UK
348 Biobank. Data used in the preparation of this article were obtained from the
349 Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
350 ADNI was launched in 2003 as a public-private partnership, led by Principal
351 Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
352 whether serial magnetic resonance imaging (MRI), positron emission tomography
353 (PET), other biological markers, and clinical and neuropsychological assessment can
354 be combined to measure the progression of mild cognitive impairment (MCI) and early
355 Alzheimer's disease (AD). Further details about each study can be found in the
356 associated publications. (Supplementary Table 1). The total number of participants in
357 the individuals without diagnosis population was 54102 (53% females), and the clinical
358 set was 1757, encompassing > 56k in total. The age range spanned from 3 to 85 years
359 (Figure 1). Detailed descriptions of each site, including sample size, mean age,
360 standard deviation, and sex ratio, can be found in Supplementary Table 2. If
361 longitudinal scans were available in the studies, only the baseline scans were used.
362 Participants who had withdrawn from the studies or had missing demographic
363 information and T1-weighted MRI data were excluded from the analyses.

364

365 **Clinical data**

366 As for the clinical datasets, we combined data from ABIDE, ADNI, AIBL, DEMGEN,
367 and TOP (Figure 1). Apart from the requirement of having available clinical diagnoses,
368 clinical groups with more than 100 participants were included in the study. Among the
369 clinical groups, we selected AD (Alzheimer's disease), ASD (autism spectrum
370 disorder), BD (bipolar disorder), MCI (mild cognitive impairment), and SZ
371 (schizophrenia) as the clinical cohorts.

372

373 ***Lobular-level processing***

374 The T1-weighted images were skull stripped using the FreeSurfer 5.3 auto-recon
375 pipeline⁵¹ and reoriented to the standard FSL orientation using the *fs/reorient2std*⁵².
376 The linear registration was performed using *flirt*⁵³, which utilized linear interpolation
377 and the default 1 mm FSL template (version 6.0). The borders were cropped in [6:173,
378 2:214, 0:160] coordinates to minimize size while retaining the complete volume. Lastly,
379 the voxel intensity values were normalized to the range of [0,1], adjusting the intensity
380 values of each voxel to a standardized scale.

381 In our study, we utilized the ACAPULCO algorithm²⁹, which is a state-of-the-art
382 cerebellum parcellation algorithm based on convolutional neural networks. This
383 algorithm is part of the ENIGMA Cerebellum Volumetric Pipeline and provides speedy
384 and accurate quantitative in-vivo regional assessment of the cerebellum at the highest
385 fidelity⁵⁴. We used pre-processed T1-weighted image for better quality control and
386 alignment. The inhomogeneity of the images was corrected using the N4⁵⁵ and
387 registered to the 1mm isotropic ICBM 2009c template in MNI space using the ANTs
388 registration suite⁵⁶. The ACAPULCO algorithm was trained using 15 expert manual
389 delineations of an adult cohort⁵⁴. It performs per-voxel labelling of the cerebellum and
390 applies post-processing to remove isolated pieces, ensuring accurate segmentation.

391 The algorithm divides the cerebellum into 28 cerebellar lobules, including bilateral
392 Lobules I–VI; Crus I and II; Lobules VIIIB, VIIIA, VIIIB, and IX–X; Vermis VI, VII, VIII,
393 IX, and X; and Corpus Medullare (CM). It also calculates the volume (mm³) of each
394 region. The automated quality control generates segmented images for each
395 participant, and we removed the extreme outliers where the number of lobules
396 exceeded a certain threshold (e.g., n > 2).

397

398 ***Voxel-level processing***

399 In our study, we utilized the SUIT (Spatially Unbiased Infratentorial Toolbox) toolbox
400 to perform segmentation of cerebellar grey and white matter voxel-based
401 morphometry (VBM) maps. This segmentation process involved using the outputs
402 from ACAPULCO, which include the N4 bias-corrected and MNI-aligned T1 image^{57,58},
403 as well as an averaged mask derived from randomly selected 300 individuals without
404 diagnosis. The ACAPULCO mask plays a crucial role in correcting and refining
405 overinclusion errors in the segmentation process due to variations in the segmentation
406 algorithm. Following segmentation, the grey matter maps were normalized and
407 resliced to align with a standardized space. This normalization step ensures that the
408 data can be compared across different individuals and studies. Additionally, the grey
409 matter maps were modulated by the Jacobian to preserve the value of each voxel in
410 proportion to its original volume. This modulation accounts for individual differences in
411 brain size and helps to retain the relative intensity values within the mapped brain
412 regions. By using the SUIT toolbox and incorporating the ACAPULCO outputs, we
413 were able to obtain accurate and spatially unbiased segmentation of cerebellar grey
414 and white matter, enabling further analysis and comparison of VBM maps within and
415 across individuals.

416

417 ***Normative modelling***

418 We split our individuals without diagnosis sample into training and test sets
419 based on scanning site, sex, and age. This split is important to account for the potential
420 confounding effects of MRI scanners on the data^{17,59,60}. The individuals without
421 diagnosis were first stratified based on the scanning sites. This ensures that the
422 training and testing datasets include a representative distribution of participants from
423 each location. To achieve this, we evenly split the control participants from each
424 scanning site between the training and testing sets. A minimum requirement of 5
425 participants from the same scanners sites was required. However, only the test set
426 consisted of diagnostic groups (e.g., AD, ASD, BD) with minimum of 100 participants.
427 This criterion ensures that there is an adequate number of participants in each
428 diagnostic group to provide reliable statistical analyses. By employing this stratification
429 approach, we aimed to create balanced and representative training and testing
430 datasets that account for MRI scanners and sex, while also including enough
431 participants in each diagnostic group.

432 We used the PCN toolkit package (version 0.24)^{15,61} in Python 3.8 to estimate a
433 normative model for predicting regional cerebellar volumes and voxel-wise intensity
434 based on sex and age, while correcting for scanning site. Results that deviated more
435 than 5 standard of deviation were imputed by the mean. We employed Bayesian
436 Linear Regression (BLR) with likelihood warping approach⁶², specifically using the
437 'sinarcsinsh' transformation^{60,63}. This approach is well-suited for handling non-linear
438 basis functions and non-Gaussian predictive distributions for large datasets as well as
439 correcting for outer centiles. A detailed mathematical description on BLR for normative
440 modelling can be found in the following paper Fraza et al. (2021)⁶⁰. To account for

441 scanner effects, we treated the scanning site as a fixed effect in our analysis^{16,64}. This
442 approach has been shown to yield relatively good performance, as demonstrated in
443 previous work¹⁶. To assess how each participant's (*i*) deviate from the individuals
444 without diagnosis pattern at each lobule or voxel (*j*) in the cerebellum, we calculated
445 the z-score:

446

$$z_{ij} = \frac{y_{ij} - \widehat{y}_{ij}}{\sqrt{\sigma_{ij}^2 + \sigma_{nj}^2}}$$

447

448 The computation of the z-score includes predicted mean \widehat{y}_{ij} (lobule or voxel),
449 true response y_{ij} , predicted variance σ_{ij} and normative variance σ_{nj} . For model fit, the
450 normative model provided point estimates and evaluation metrics, including explained
451 variance, mean squared log-loss, skew, and kurtosis⁶³. These evaluation metrics were
452 computed in the test set that did not include any clinical groups. To determine
453 participants with extreme deviations, we set a threshold at $z > |1.96|$, corresponding
454 to the 95% confidence interval. For instance, deviations with z-scores greater than
455 1.96 were identified as extreme positive deviations, indicating significantly increased
456 volume compared to the control pattern and vice versa for extreme negative
457 deviations.

458

459 **Group comparisons**

460 We performed classical nonparametric test on the z-scores of clinical cohorts and
461 individuals without diagnosis. To assess the statistical significance, we performed
462 Mann-Whitney U-tests⁶⁵, a non-parametric test that is suitable for comparing two
463 independent samples that are not normally distributed. To account for multiple
464 comparisons, the resulting p-values were corrected, using Bonferroni correction⁶⁶ and

465 calculated rank biserial correlation to see its effect.

466

467 **Atlas-based analyses**

468 Additionally, the normative model can be applied to various research questions and is

469 compatible with existing atlases by using registration methods such as FSL *flirt* and

470 *fnirt*^{53,67}. This makes it an attractive versatile tool that can be utilized in different

471 studies and across different brain regions. By mapping the deviations onto specific

472 anatomical regions, such as the 28 cerebellar regions, King's 10 regions of interest

473 from the multi-domain task battery (MDTB)³¹, and 17 regions of interest from resting-

474 state connectivity^{68,69}, we gain insights into the specific areas where deviations occur.

475 We separately calculated the percentage of extreme positive and negative deviations

476 for each participant in the regions of interest in reference to the existing atlases. We

477 divided this by the size of the region and multiplied the resulting proportion by 100 (i.e.,

478 deriving a percentage of extreme positive or negative deviations per region). To

479 compare the extreme deviations observed in different cohorts to the individuals without

480 diagnosis group, we used Mann-Whitney U-tests and calculated the rank biserial

481 correlation (*r*) for significant results.

482 To investigate potential associations between measured intelligence and

483 symptom scores and clinical cohorts, Spearman correlation analyses were performed

484 using voxel-wise extreme deviation scores that were mapped onto the existing atlases.

485 The Spearman correlation coefficient is used to quantify the strength and direction of

486 the association between the variables, allowing for the examination of potential

487 relationship (see Supplementary Methods for tests used). Only correlations with a

488 corrected p-value below 0.05 (*p* < 0.05) were considered statistically significant and

489 reported.

490 ***Data availability***

491 In this study we used brain imaging from ABIDE, ADHD200, AOMIC ID1000, Beijing
492 Enhanced, CAMCAN, CoRR, DLBS, DS000119, DS000202, DS000222, Fcon1000,
493 HBN, HCP, MPI Lemon, NKI-Rockland, OASIS-3, PING, SALD, SLIM and UK
494 Biobank, ADNI, AIBL, DEMGEN, PNC, and TOP. The ROI models from this work are
495 available on via PCNportal⁷⁰: <https://pcnportal.dccn.nl/>.

496

497 ***Code availability***

498 All code used in this work is publicly available at FreeSurfer
499 (<https://surfer.nmr.mgh.harvard.edu>), FSL
500 (<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation>), ACAPULCO
501 (<https://gitlab.com/shuohan/acapulco>), and SUIT
502 (<https://github.com/jdiedrichsen/suit>). Code for normative model is available as open-
503 source python package, Predictive Clinical Neuroscience (PCN) toolkit
504 (<https://github.com/amarquand/PCNtoolkit>). Further codes are available on
505 https://github.com/milinkim/mapping_cerebellar_heterogeneity.

506

507

508

509

510

511

512

513

514

515 **References**

516 1. Hofman, M. A. Size and shape of the cerebral cortex in mammals. II. The cortical
517 volume. *Brain. Behav. Evol.* **32**, 17–26 (1988).

518 2. Lent, R., Azevedo, F. A. C., Andrade-Moraes, C. H. & Pinto, A. V. O. How many
519 neurons do you have? Some dogmas of quantitative neuroscience under revision. *Eur. J.*
520 *Neurosci.* **35**, 1–9 (2012).

521 3. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a
522 nonhuman primate. *J. Neurosci. Off. J. Soc. Neurosci.* **23**, 8432–8444 (2003).

523 4. Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great
524 apes. *Curr. Biol. CB* **24**, 2440–2444 (2014).

525 5. Leiner, H. C., Leiner, A. L. & Dow, R. S. Does the cerebellum contribute to mental
526 skills? *Behav. Neurosci.* **100**, 443–454 (1986).

527 6. Schmahmann, J. D. The Role of the Cerebellum in Cognition and Emotion: Personal
528 Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical
529 Evolution from Theory to Therapy. *Neuropsychol. Rev.* **20**, 236–260 (2010).

530 7. Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. *Annu. Rev.*
531 *Neurosci.* **32**, 413–434 (2009).

532 8. Schmahmann, J. D. The cerebellum and cognition. *Neurosci. Lett.* **688**, 62–75 (2019).

533 9. Gellersen, H. M., Guell, X. & Sami, S. Differential vulnerability of the cerebellum in
534 healthy ageing and Alzheimer's disease. *NeuroImage Clin.* **30**, 102605 (2021).

535 10. Moberget, T. *et al.* Cerebellar volume and cerebellocerebral structural covariance in
536 schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. *Mol.*
537 *Psychiatry* **23**, 1512–1520 (2018).

538 11. D'Mello, A. M., Crocetti, D., Mostofsky, S. H. & Stoodley, C. J. Cerebellar gray matter
539 and lobular volumes correlate with core autism symptoms. *NeuroImage Clin.* **7**, 631–639
540 (2015).

541 12. Wang, S. S.-H., Kloth, A. D. & Badura, A. The Cerebellum, Sensitive Periods, and
542 Autism. *Neuron* **83**, 518–532 (2014).

543 13. Traut, N. *et al.* Cerebellar Volume in Autism: Literature Meta-analysis and Analysis of
544 the Autism Brain Imaging Data Exchange Cohort. *Biol. Psychiatry* **83**, 579–588 (2018).

545 14. Wolfers, T., Buitelaar, J. K., Beckmann, C. F., Franke, B. & Marquand, A. F. From
546 estimating activation locality to predicting disorder: A review of pattern recognition for
547 neuroimaging-based psychiatric diagnostics. *Neurosci. Biobehav. Rev.* **57**, 328–349
548 (2015).

549 15. Marquand, A. F. *et al.* Conceptualizing mental disorders as deviations from normative
550 functioning. *Mol. Psychiatry* **24**, 1415–1424 (2019).

551 16. Kia, S. M. *et al.* Federated Multi-Site Normative Modeling using Hierarchical Bayesian
552 Regression. 2021.05.28.446120 Preprint at <https://doi.org/10.1101/2021.05.28.446120>
553 (2021).

554 17. Rutherford, S. *et al.* Charting brain growth and aging at high spatial precision. *eLife* **11**,
555 e72904 (2022).

556 18. Wolfers, T. *et al.* Replicating extensive brain structural heterogeneity in individuals with
557 schizophrenia and bipolar disorder. *Hum. Brain Mapp.* **42**, 2546–2555 (2021).

558 19. Floris, D. L. *et al.* *Atypical brain asymmetry in autism – a candidate for clinically*
559 *meaningful stratification.* <http://biorxiv.org/lookup/doi/10.1101/2020.03.24.000349>
560 (2020) doi:10.1101/2020.03.24.000349.

561 20. Zabih, M. *et al.* Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum
562 Disorder Using Normative Models. *Biol. Psychiatry Cogn. Neurosci. Neuroimaging* **4**,
563 567–578 (2018).

564 21. Zabih, M. *et al.* Fractionating autism based on neuroanatomical normative modeling.
565 *Transl. Psychiatry* **10**, 384 (2020).

566 22. Wolfers, T. *et al.* Individual differences v. the average patient: mapping the heterogeneity
567 in ADHD using normative models. *Psychol. Med.* **50**, 314–323 (2020).

568 23. Verdi, S., Marquand, A. F., Schott, J. M. & Cole, J. H. Beyond the average patient: how
569 neuroimaging models can address heterogeneity in dementia. *Brain* **144**, 2946–2953
570 (2021).

571 24. Verdi, S. *et al.* Revealing Individual Neuroanatomical Heterogeneity in Alzheimer
572 Disease Using Neuroanatomical Normative Modeling. *Neurology* (2023)
573 doi:10.1212/WNL.0000000000207298.

574 25. Remiszewski, N. *et al.* Contrasting Case-Control and Normative Reference Approaches
575 to Capture Clinically Relevant Structural Brain Abnormalities in Patients With First-
576 Episode Psychosis Who Are Antipsychotic Naïve. *JAMA Psychiatry* **79**, 1133–1138
577 (2022).

578 26. Wolfers, T. *et al.* Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar
579 Disorder Using Normative Models. *JAMA Psychiatry* **75**, 1146–1155 (2018).

580 27. Segal, A. *et al.* Regional, circuit and network heterogeneity of brain abnormalities in
581 psychiatric disorders. *Nat. Neurosci.* 1–17 (2023) doi:10.1038/s41593-023-01404-6.

582 28. Sathyanesan, A. *et al.* Emerging connections between cerebellar development, behaviour
583 and complex brain disorders. *Nat. Rev. Neurosci.* **20**, 298–313 (2019).

584 29. Han, S., An, Y., Carass, A., Prince, J. L. & Resnick, S. M. Longitudinal analysis of
585 regional cerebellum volumes during normal aging. *NeuroImage* **220**, 117062 (2020).

586 30. Romero, J. E. *et al.* Toward a unified analysis of cerebellum maturation and aging across
587 the entire lifespan: A MRI analysis. *Hum. Brain Mapp.* **42**, 1287–1303 (2021).

588 31. King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J.
589 Functional boundaries in the human cerebellum revealed by a multi-domain task battery.
590 *Nat. Neurosci.* **22**, 1371–1378 (2019).

591 32. Guo, C. C. *et al.* Network-selective vulnerability of the human cerebellum to Alzheimer's
592 disease and frontotemporal dementia. *Brain* **139**, 1527–1538 (2016).

593 33. Lin, C.-Y., Chen, C.-H., Tom, S. E., Kuo, S.-H., & for the Alzheimer's Disease
594 Neuroimaging Initiative. Cerebellar Volume Is Associated with Cognitive Decline in
595 Mild Cognitive Impairment: Results from ADNI. *The Cerebellum* **19**, 217–225 (2020).

596 34. Jacobs, H. I. L. *et al.* The cerebellum in Alzheimer's disease: evaluating its role in
597 cognitive decline. *Brain J. Neurol.* **141**, 37–47 (2018).

598 35. Stern, Y. Cognitive reserve in ageing and Alzheimer's disease. *Lancet Neurol.* **11**, 1006–
599 1012 (2012).

600 36. Mitoma, H. *et al.* Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to
601 Cerebellar Disorders. *The Cerebellum* **19**, 131–153 (2020).

602 37. Graff-Radford, J. *et al.* New insights into atypical Alzheimer's disease in the era of
603 biomarkers. *Lancet Neurol.* **20**, 222–234 (2021).

604 38. Constantinides, C. *et al.* Brain ageing in schizophrenia: evidence from 26 international
605 cohorts via the ENIGMA Schizophrenia consortium. *Mol. Psychiatry* **28**, 1201–1209
606 (2023).

607 39. Kaufmann, T. *et al.* Common brain disorders are associated with heritable patterns of
608 apparent aging of the brain. *Nat. Neurosci.* **22**, 1617–1623 (2019).

609 40. Andreasen, N. C. & Pierson, R. The role of the cerebellum in schizophrenia. *Biol.*
610 *Psychiatry* **64**, 81–88 (2008).

611 41. Laidi, C. *et al.* Cerebellar Atypicalities in Autism? *Biol. Psychiatry* **92**, 674–682 (2022).

612 42. Lombardo, M. V., Lai, M.-C. & Baron-Cohen, S. Big data approaches to decomposing

613 heterogeneity across the autism spectrum. *Mol. Psychiatry* **24**, 1435–1450 (2019).

614 43. Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. *Lancet Lond. Engl.* **383**, 896–

615 910 (2014).

616 44. Deary, I. J., Penke, L. & Johnson, W. The neuroscience of human intelligence

617 differences. *Nat. Rev. Neurosci.* **11**, 201–211 (2010).

618 45. Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M. & Deary, I. J. Structural

619 brain imaging correlates of general intelligence in UK Biobank. *Intelligence* **76**, 101376

620 (2019).

621 46. Moberget, T. *et al.* Cerebellar Gray Matter Volume Is Associated With Cognitive

622 Function and Psychopathology in Adolescence. *Biol. Psychiatry* **86**, 65–75 (2019).

623 47. Xue, A. *et al.* The detailed organization of the human cerebellum estimated by intrinsic

624 functional connectivity within the individual. *J. Neurophysiol.* **125**, 358–384 (2021).

625 48. Bethlehem, R. A. I. *et al.* A normative modelling approach reveals age-atypical cortical

626 thickness in a subgroup of males with autism spectrum disorder. *Commun. Biol.* **3**, 1–10

627 (2020).

628 49. Hong, S.-J. *et al.* Toward Neurosubtypes in Autism. *Biol. Psychiatry* **88**, 111–128 (2020).

629 50. Shan, X. *et al.* Mapping the Heterogeneous Brain Structural Phenotype of Autism

630 Spectrum Disorder Using the Normative Model. *Biol. Psychiatry* **91**, 967–976 (2022).

631 51. Ségonne, F. *et al.* A hybrid approach to the skull stripping problem in MRI. *NeuroImage*

632 **22**, 1060–1075 (2004).

633 52. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL.

634 *NeuroImage* **62**, 782–790 (2012).

635 53. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of
636 brain images. *Med. Image Anal.* **5**, 143–156 (2001).

637 54. Carass, A. *et al.* Comparing fully automated state-of-the-art cerebellum parcellation from
638 magnetic resonance images. *NeuroImage* **183**, 150–172 (2018).

639 55. Tustison, N. J. *et al.* N4ITK: improved N3 bias correction. *IEEE Trans. Med. Imaging*
640 **29**, 1310–1320 (2010).

641 56. Fonov, V. *et al.* Unbiased average age-appropriate atlases for pediatric studies.
642 *NeuroImage* **54**, 313–327 (2011).

643 57. Diedrichsen, J. A spatially unbiased atlas template of the human cerebellum. *NeuroImage*
644 **33**, 127–138 (2006).

645 58. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR
646 atlas of the human cerebellum. *NeuroImage* **46**, 39–46 (2009).

647 59. Bethlehem, R. A. I. *et al.* Brain charts for the human lifespan. *Nature* **604**, 525–533
648 (2022).

649 60. Fraza, C., Dinga, R., Beckmann, C. F., Marquand, A. F., & Andre Marquand. Warped
650 Bayesian Linear Regression for Normative Modelling of Big Data. *bioRxiv* (2021)
651 doi:10.1101/2021.04.05.438429.

652 61. Rutherford, S. *et al.* The normative modeling framework for computational psychiatry.
653 *Nat. Protoc.* **17**, 1711–1734 (2022).

654 62. Rios, G. & Tobar, F. Compositionally-warped Gaussian processes. *Neural Netw.* **118**,
655 235–246 (2019).

656 63. Dinga, R. *et al.* Normative modeling of neuroimaging data using generalized additive
657 models of location scale and shape. 2021.06.14.448106 Preprint at
658 <https://doi.org/10.1101/2021.06.14.448106> (2021).

659 64. Bayer, J. M. M. *et al.* Accommodating site variation in neuroimaging data using
660 normative and hierarchical Bayesian models. 2021.02.09.430363 Preprint at
661 <https://doi.org/10.1101/2021.02.09.430363> (2021).

662 65. Mann, H. B. & Whitney, D. R. On a Test of Whether one of Two Random Variables is
663 Stochastically Larger than the Other. *Ann. Math. Stat.* **18**, 50–60 (1947).

664 66. Bonferroni, C. E. *Teoria statistica delle classi e calcolo delle probabilità*. (Pubblicazioni
665 del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1936).

666 67. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved Optimization for the
667 Robust and Accurate Linear Registration and Motion Correction of Brain Images.
668 *NeuroImage* **17**, 825–841 (2002).

669 68. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The
670 organization of the human cerebellum estimated by intrinsic functional connectivity. *J.
671 Neurophysiol.* **106**, 2322–2345 (2011).

672 69. Yeo, B. T. T. *et al.* The organization of the human cerebral cortex estimated by intrinsic
673 functional connectivity. *J. Neurophysiol.* **106**, 1125–1165 (2011).

674 70. Barkema, P. *et al.* Predictive Clinical Neuroscience Portal (PCNportal): instant online
675 access to research-grade normative models for clinical neuroscientists. *Wellcome Open
676 Res.* **8**, 326 (2023).

677

678

679

680

681

682

683

684 **Acknowledgements**

685 Data collection and sharing for this project was funded by the Alzheimer's Disease
686 Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904)
687 and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI
688 is funded by the National Institute on Aging, the National Institute of Biomedical
689 Imaging and Bioengineering, and through generous contributions from the following:
690 AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon
691 Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.;
692 Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; Eurolmmun;
693 F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE
694 Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &
695 Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development
696 LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx
697 Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer
698 Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition
699 Therapeutics. The Canadian Institutes of Health Research is providing funds to
700 support ADNI clinical sites in Canada. Private sector contributions are facilitated by
701 the Foundation for the National Institutes of Health (www.fnih.org). The grantee
702 organization is the Northern California Institute for Research and Education, and the
703 study is coordinated by the Alzheimer's Therapeutic Research Institute at the
704 University of Southern California. ADNI data are disseminated by the Laboratory for
705 Neuro Imaging at the University of Southern California. Also, data used in preparation
706 of this article were obtained from the Australian Imaging Biomarkers and Lifestyle
707 Study of Ageing (AIBL) databases (adni.loni.usc.edu), and the Pediatric Imaging,
708 Neurocognition and Genetics (PING) study database (chd.ucsd.edu/research/ping-

709 study.html, now shared through the NIMH Data Archive (NDA). This publication is
710 solely the responsibility of the authors and does not necessarily represent the views
711 of the National Institutes of Health or PING investigators. The authors of this
712 manuscript gratefully acknowledge the following funding bodies. TW acknowledges
713 funding by the German Research Foundation (DFG; Projectnumber: 513851350) as
714 well as starting funding from the faculty of medicine at the University of Tübingen.

715

716 The European Research Council under the European Union's Horizon 2020 research
717 and Innovation program (ERC StG, Grant 802998), the Research Council of Norway
718 (300767, 324499), the South-Eastern Norway Regional Health Authority (2019101).

719 We performed this work on the *Services for sensitive data* (TSD), University of Oslo,
720 Norway, with resources provided by UNINETT Sigma2 - the National Infrastructure for
721 High-Performance Computing and Data Storage in Norway. We want to acknowledge
722 the Norwegian registry of persons assessed for cognitive symptoms (NorCog), for
723 providing access to patient data. We conducted this research using the UK Biobank
724 Resource under Application Number 27412.

725

726 ***Authorship Contributions***

727 T.M., T.W., and M.K. originally conceived of the project. M.K., T.W., T.M., and E.L.
728 performed the analyses. M.K. wrote the initial draft of the manuscript. O.A., G.R.,
729 K.P., G.S., N.E.S., O.B.S., A.F.M., C.F.B., T.U., and L.W. contributed to data
730 curation. All authors discussed the results and contributed to the final manuscript.

731

732 ***Ethics declarations***

733 The authors declare no competing interests.

734 **Table 1.** Sample description and demographics

		N (Participants)	N (Scanners)	Age (Mean, S.D.)	Sex (%F:%M)
Full	All	54102	132		
	Training set	27117	132	54.36 (20.31)	0.53:0:47
	Testing set	26985	132	54.52 (20.19)	0.53:0:47
Clinical	Testing set	1757	53	29.40 (20.84)	0.30 0.70
	Alzheimer's Disease	146	13	72.42 (7.65)	0.53:0:47
	ASD	900	37	16.20 (9.00)	0.14:0:86
	Bipolar Disorder	277	3	32.73 (11.67)	0.60:0:40
	Mild Cognitive Impairment	122	3	67.25 (9.27)	0.42:0:58
	Schizophrenia	312	3	29.58 (9.52)	0.33:0:67

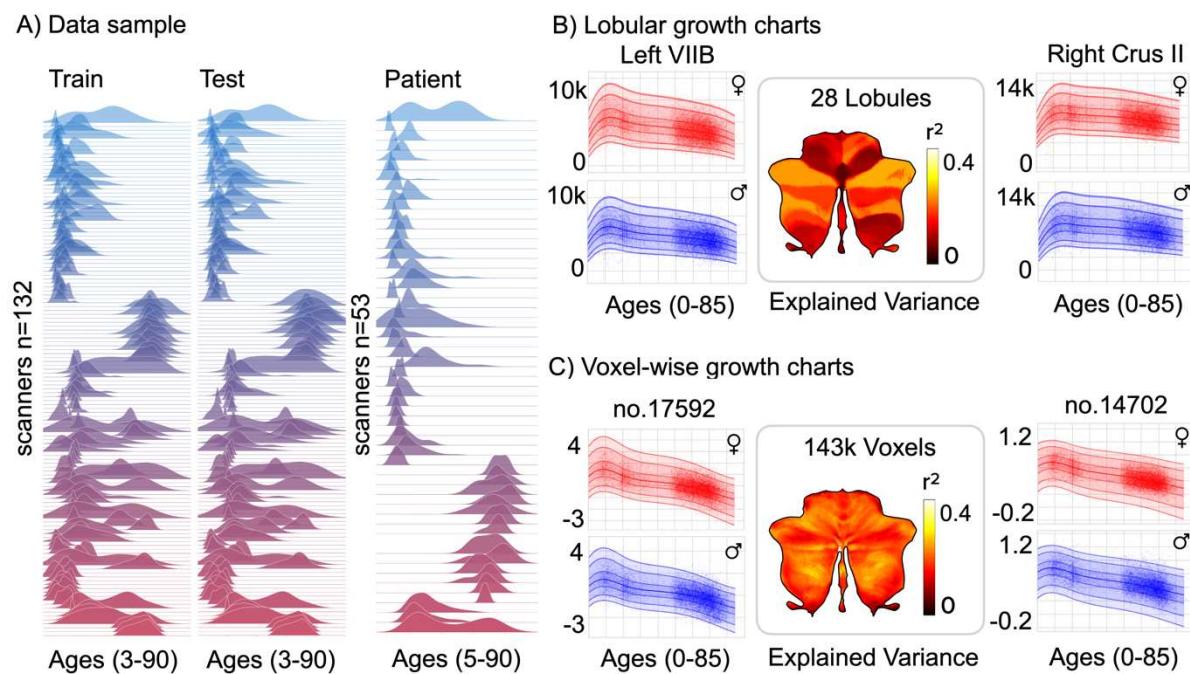
735

736

737

738

739



740
741 **Figure 1. Normative models based on MRI data from > 54k participants describe the lifespan trajectories**
742 **of cerebellar lobules and individual voxels.** In panel (A), the age density distribution is displayed for each
743 scanning sites in the training, test, and clinical sets. Panel (B-C) showcase two of the 28 regions representing the
744 lobular growth charts and two of the 143k voxel-wise growth charts for each sex. The x-axis represents age, ranging
745 from 3 to 85, while the y-axis represents the predicted cerebellar volume and grey matter probability values.
746 Additionally, the figure includes the explained variance, indicating the goodness of fit.

747

748

749

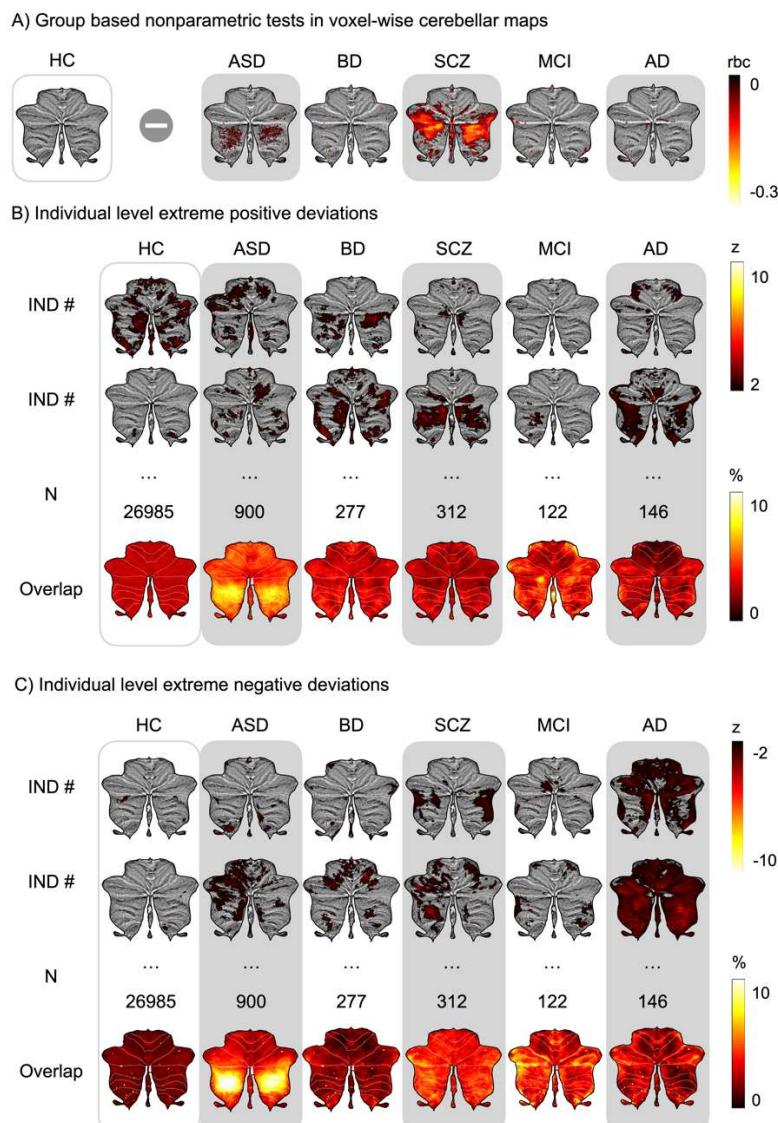
750

751

752

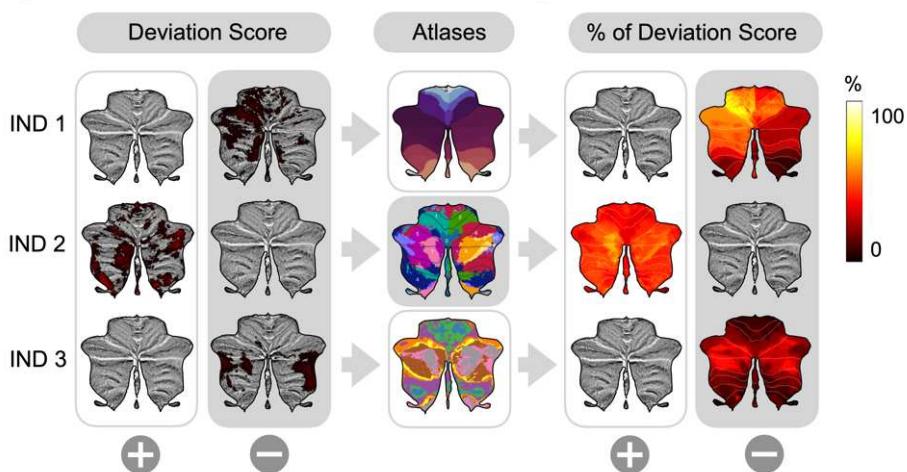
753

754

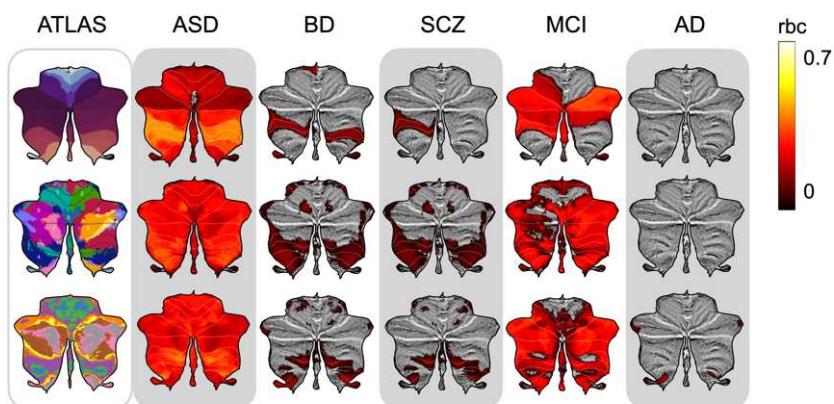


756 **Figure 2. The voxel-wise deviations from estimated norms show high levels of heterogeneity within**
757 **diagnostic groups** (A) depict Mann-Whitney U-test rank biserial correlation (rbc) of z-scores between the clinical
758 and the individuals without diagnosis in voxel-wise. The effects are corrected for multiple comparisons using
759 Bonferroni correction (corrected $p < 0.05$). Specifically, patients diagnosed with schizophrenia (SZ) and autism
760 spectrum disorder (ASD) exhibited significant effects compared to individuals without diagnosis (HC) in the voxel-
761 wise maps. (B-C) The z-scores of extreme positive and negative deviations ($|z| > 1.96$) are shown for two individuals
762 per cohort. Overlap maps calculate percentage of extreme deviations occurred in the same group. The clinical
763 groups displayed a significantly higher occurrence of percentage of extreme deviations, even in cases where the
764 group based nonparametric tests did not differ significantly. These results indicate that within the clinical groups,
765 there were individuals who exhibited significant deviations from the normative patterns, regardless of the overall
766 group effects.

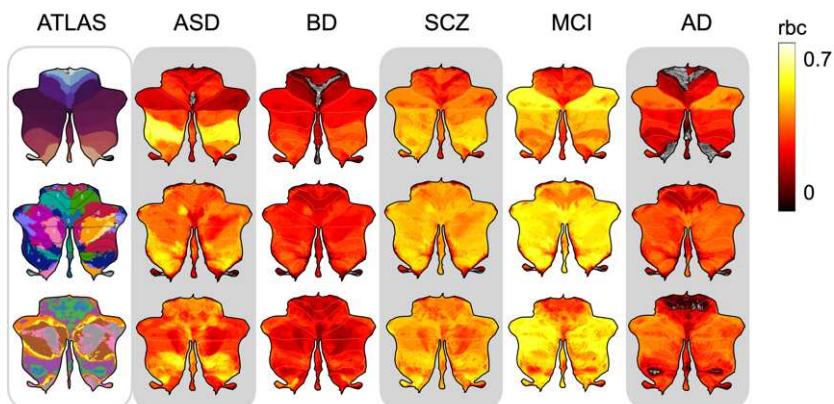
A) Parcellation of voxel-wise cerebellar volumes using distinct atlases



B) Atlas based case-control analyses of extreme positive deviations



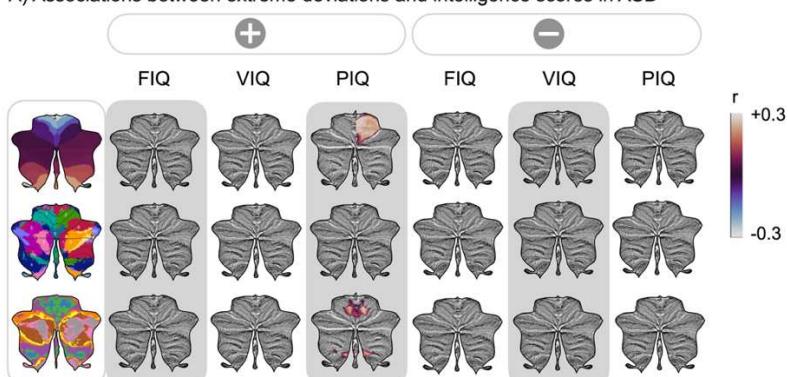
C) Atlas based case-control analyses of extreme negative deviations



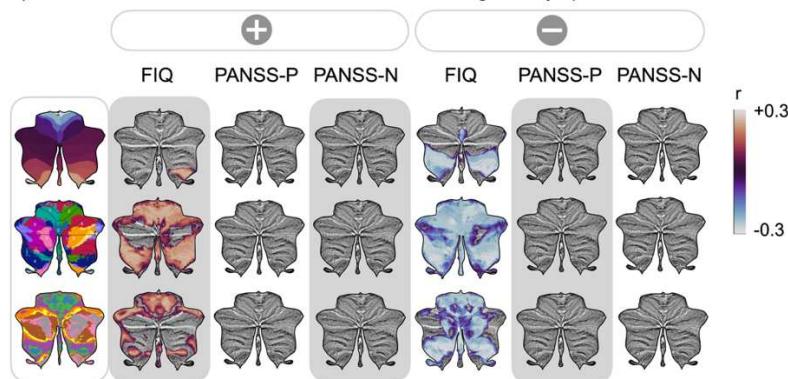
767

768 **Figure 3. Voxel-wise normative models can be applied to existing or future cerebellar atlases.** (A) The
769 outputs from normative model, 143k features normative probability maps of an individual, are applied onto existing
770 atlases of traditional anatomical regions, task-based regions, and resting state connectivity atlases. Panel (B-C)
771 depict effect size of comparison of percentage of extreme positive and negative deviations of clinical cohorts to the
772 individuals without diagnosis in voxel-wise per participant based on the three atlases. Scale indicates Mann-
773 Whitney U-test rank biserial correlation (rbc) and only shows significant regions after multiple comparison
774 corrections.

A) Associations between extreme deviations and intelligence scores in ASD



B) Associations between extreme deviations and intelligence/symptom scores in SZ



775

776 **Figure 4. When applied to different atlases, significant correlations were observed between the percentage**
777 **of extreme deviations per participant and IQ scores.** The panels (A-B) show significant correlations between
778 extreme positive (left) or negative (right) deviations per participant and intelligence or symptom scores mapped
779 onto three atlases. Panel (A) displays significant correlations between performance intelligence scores (PIQ) and
780 the percentage of extreme positive deviations per participant in autism spectrum disorder (ASD). (B) In
781 schizophrenia (SZ), positive associations are shown in percentage of extreme positive deviation while negative
782 associations in percentage of extreme negative deviations with full-scale IQ (FIQ).

783

784