

1 **TITLE**

2 **Preclinical Characterization of the Omicron XBB.1.5-Adapted BNT162b2**

3 **COVID-19 Vaccine**

4

5 **AUTHORS**

6 Kayvon Modjarrad^{1*}, Ye Che¹, Wei Chen^{1†}, Huixian Wu², Carla I. Cadima³, Alexander Muik³,
7 Mohan S. Maddur¹, Kristin R. Tompkins¹, Lyndsey T. Martinez¹, Hui Cai¹, Minah Hong¹, Sonia
8 Mensah¹, Brittney Cumbia¹, Larissa Falcao¹, Jeanne S. Chang², Kimberly F. Fennell², Kevin
9 Huynh², Thomas J. McLellan², Parag V. Sahasrabudhe², Wei Chen^{1‡}, Michael Cerswell¹, Miguel
10 A. Garcia¹, Shilong Li¹, Rahul Sharma¹, Weiqiang Li¹, Kristianne P. Dizon¹, Stacy Duarte¹, Frank
11 Gillett¹, Rachel Smith¹, Deanne M. Illenberger¹, Kari E. Sweeney¹, Annette B. Vogel³, Annaliesa
12 S. Anderson¹, Ugur Sahin³, Kena A. Swanson^{1*}

13

14 **AFFILIATIONS**

15 ¹Pfizer Vaccine Research and Development; Pearl River, NY, USA.

16 ²Pfizer Discovery Sciences; Groton, CT, USA.

17 ³BioNTech; Mainz, Germany.

18 [†]Viral Vaccines, Pfizer Vaccine Research and Development; Pearl River, NY, USA.

19 [‡]Early Bioprocess Development; Pfizer Vaccine Research and Development; Pearl River, NY,
20 USA.

21 *Corresponding authors. kayvon.modjarrad@pfizer.com, kena.swanson@pfizer.com

22

23

24

25 **ABSTRACT**

26 As SARS-CoV-2 continues to evolve, increasing in its potential for greater transmissibility and
27 immune escape, updated vaccines are needed to boost adaptive immunity to protect against
28 COVID-19 caused by circulating strains. Here, we report features of the monovalent Omicron
29 XBB.1.5-adapted BNT162b2 vaccine, which contains the same mRNA backbone as the original
30 BNT162b2 vaccine, modified by the incorporation of XBB.1.5-specific sequence changes in the
31 encoded prefusion-stabilized SARS-CoV-2 spike protein (S(P2)). Biophysical characterization of
32 Omicron XBB.1.5 S(P2) demonstrated that it maintains a prefusion conformation that adopts a
33 flexible and predominantly open one-RBD-up state, with high affinity binding to the human
34 ACE-2 receptor. When administered as a 4th dose in BNT162b2-experienced mice, the
35 monovalent Omicron XBB.1.5 vaccine elicited substantially higher serum neutralizing titers
36 against pseudotyped viruses of Omicron XBB.1.5, XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1 and
37 HV.1 sublineages and the phylogenetically distant BA.2.86 lineage than the bivalent Wild Type +
38 Omicron BA.4/5 vaccine. Similar trends were observed against Omicron XBB sublineage
39 pseudoviruses when the vaccine was administered as a 2-dose primary series in naïve mice.
40 Strong S-specific Th1 CD4⁺ and IFN γ ⁺ CD8⁺ T cell responses were also observed. These findings,
41 together with prior experience with variant-adapted vaccine responses in preclinical and clinical
42 studies, suggest that the monovalent Omicron XBB.1.5-adapted BNT162b2 vaccine is anticipated
43 to confer protective immunity against dominant SARS-CoV-2 strains.

44

45 **ONE-SENTENCE SUMMARY**

46 The monovalent Omicron XBB.1.5-adapted BNT162b2 mRNA vaccine encodes a prefusion-
47 stabilized spike immunogen that elicits more potent neutralizing antibody responses against
48 homologous XBB.1.5 and other circulating sublineage pseudoviruses compared to the bivalent

49 Wild Type + Omicron BA.4/5 BNT162b2 vaccine, thus demonstrating the importance of annual
50 strain changes to the COVID-19 vaccine.

51

52 **MAIN TEXT**

53 **INTRODUCTION**

54 The evolution of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the cause of
55 coronavirus disease 2019 (COVID-19), has been marked by sustained periods of genetic and
56 antigenic drift, best exemplified by the continual emergence of new variants since the appearance
57 of the Omicron variant of concern (VOC) in November 2021 (1). The initial antigenic shift to
58 Omicron BA.1, followed by the dominance of Omicron BA.4/5, prompted updates to COVID-19
59 vaccines to better match prevalent circulating virus strains. Bivalent formulations of the
60 BNT162b2 vaccine, encoding the spike (S) protein of the Wuhan-Hu-1 wild type (WT) strain
61 (GenBank MN908947.3) and either Omicron BA.1 (GISAID EPI_ISL_8880082) or BA.4/5
62 (GISAID EPI_ISL_15030644) sublineages, subsequently demonstrated effectiveness against
63 COVID-19 in the season after their introduction (2-5). The later emergence of recombinant
64 Omicron XBB sublineages, which have dominated the epidemiologic landscape throughout 2023,
65 has since shown that SARS-CoV-2 is able to evolve toward greater transmissibility and to occupy
66 pockets of antigenic space that evade previously established host immunity (6). The Omicron
67 XBB.1.5 sublineage exhibits greater antigenic distance from Omicron BA.1 than the latter does
68 from the WT strain (3, 7). Waning immunity conferred by prior vaccination or infection with
69 XBB sublineages and the ineffectiveness of nearly all licensed monoclonal antibody therapies
70 against XBB.1.5 (8) reflect this immunologic trend (9, 10). As such, updating COVID-19
71 vaccines to more closely matched circulating strains is essential to boosting relevant immunity
72 and maintaining effectiveness against a range of clinical outcomes. Accumulating evidence shows

73 that this principle, well-established for vaccines against influenza and other pathogens, also
74 applies to COVID-19 vaccines (9, 10).

75 BNT162b2 RNA encodes the full-length (FL) S protein stabilized in the prefusion
76 conformation through the substitution of amino acid (aa) positions 986 and 987 to proline
77 residues (S(P2)) (11-14), a modification that has increased the antigen's immunogenicity and
78 expression, as compared to the postfusion state (15). To address the increasing dominance of the
79 antigenically distant Omicron XBB sublineages, we modified the original COMIRNATY®
80 vaccine—using the same mRNA backbone as the BNT162b2 that encoded WT S(P2)—to encode
81 an Omicron XBB.1.5 FL S(P2). As the structure of the Omicron XBB.1.5 S(P2) has not been
82 resolved, we sought to characterize the structural and biophysical properties of the mRNA
83 encoded prefusion-stabilized S on this strain-adapted background; including its thermostability
84 profile, human angiotensin converting enzyme-2 (ACE-2) receptor affinity, glycosylation pattern
85 and overall structure and receptor binding domain (RBD) conformational dynamics.

86 Omicron XBB.1.5-adapted BNT162b2 vaccine formulations were also evaluated in
87 preclinical immunogenicity studies in vaccine-experienced and naïve mice and included the
88 assessment of neutralizing antibody responses against a panel of pseudoviruses of varying
89 phylogenetic proximity and measurement of antigen-specific CD4⁺ and CD8⁺ T cell responses.
90 These studies sought to inform the optimal vaccine valency and composition for eliciting
91 protective immunity. The data presented here provide a basis for understanding the key
92 biophysical and immunologic features of an Omicron XBB.1.5-adapted vaccine in the dynamic
93 landscape of SARS-CoV-2.

94

95 RESULTS

96 Omicron XBB.1.5 S(P2) biophysical and structural characterization

97 The S(P2) antigen of Omicron XBB.1.5 was expressed from DNA corresponding to the XBB.1.5-
98 adapted BNT162b2 RNA coding sequence using similar methods, as previously reported (13).
99 After affinity purification, Omicron XBB.1.5 S(P2) eluted as a single peak by size exclusion
100 chromatography (SEC), similar to the WT S(P2) (Fig. 1A). Peak fractions of Omicron XBB.1.5
101 S(P2) mostly contained cleaved S1 and S2 subunits, as was also observed for WT S(P2) (Fig. S1)
102 (13). The SEC peak fraction was then assayed by thermal shift assay (TSA) and biolayer
103 interferometry (BLI). The Omicron XBB.1.5 S(P2) had a melting temperature (T_m) of 63.0 ± 0.2
104 °C, approximately 4 °C lower than the T_m of the WT S(P2) ($n = 3$) (Fig. 1B). Omicron XBB.1.5
105 S(P2) bound to the human ACE-2 peptidase domain (ACE-2-PD) with an affinity (K_D 4.84 nM)
106 that was slightly less potent than that observed for WT S(P2) (K_D 1.24 nM), primarily due to the
107 faster binding off rate of Omicron XBB.1.5 S(P2) (Fig. 1C). The binding affinity of purified
108 monomeric RBD to ACE-2-PD binding affinity was also measured. In this case, Omicron
109 XBB.1.5 RBD exhibited an affinity (K_D 1.30 nM) that was 24-fold more potent than that observed
110 for WT RBD (K_D 31.3 nM).

111 Purified Omicron XBB.1.5 S(P2) was analyzed by liquid chromatography mass
112 spectrometry (LCMS) to identify N-linked glycosylation sites. Twenty-seven N-linked
113 glycosylation sites were detected in S(P2) over a total protein sequence coverage of 92%. The
114 glycosylation pattern was generally similar to that observed for WT S(P2) (16) (Fig. S2).
115 However, several new glycosylation sites were also identified in XBB.1.5 S(P2), including N164,
116 N536, N824, N856, N907 and N1119. Two glycosylation sites, N17 and N282, that were reported
117 in WT S(P2) (16), were not detected in Omicron XBB1.5 S(P2).

118 The structure of purified Omicron XBB.1.5 S(P2) was resolved by cryogenic electron
119 microscopy (cryo-EM). Two-dimensional (2D) classification of particles from cryo-EM data
120 revealed a particle population that closely resembled the prefusion conformation of WT S (Fig.
121 2). Processing and refinement of the dataset (Fig. S3) yielded a high-quality three-dimensional

122 (3D) map with a nominal resolution of 2.98 Å (Fig. 2, Table S1), into which a previously
123 published atomic model (PDB ID: 7TGW) was fitted and rebuilt. The structure revealed that
124 prefusion S(P2) in a 1-RBD-up conformation accounted for the majority (70%) of the high-
125 resolution particles, contrasting with the WT S(P2) all-RBD-down (79.6%) conformation (13).
126 The diminished resolution of the RBD-up conformation, as compared to the other parts of the S
127 structure, suggests a conformational flexibility and dynamic equilibrium between RBD ‘up’ and
128 RBD ‘down’ states that is consistent with other reports of SARS-CoV-2 Omicron S structures
129 (17, 18). This resolved structure of Omicron XBB.1.5 S(P2), therefore, closely resembles the
130 more open form and flexibility of the S protein of earlier Omicron sublineages (19).

131

132 **BNT162b2 Omicron XBB.1.5 immunogenicity**

133 Humoral immune response – booster vaccination

134 Omicron-adapted BNT162b2 formulations were evaluated in two murine studies that varied by
135 prior immune exposure (Fig. S4). In a booster study, female BALB/c mice were experienced with
136 two doses of the monovalent WT BNT162b2 vaccine on Day 0 and Day 21, followed by a single
137 dose of the BNT162b2 bivalent WT + Omicron BA.4/5 vaccine three months later (Fig. S4A).
138 This regimen approximates the relevant immune background of the vaccinated human population
139 that was exposed to S of the ancestral strain and Omicron lineage through vaccination. One month
140 later, animals received one of four BNT162b2 vaccine formulations: monovalent Omicron
141 BA.4/5, bivalent WT + Omicron BA.4/5, monovalent Omicron XBB.1.5 or bivalent Omicron
142 XBB.1.5 + BA.4/5. Sera were collected prior to and one month after the administration of the last
143 dose for assessment of pseudovirus neutralization; splenocytes were collected one month after the
144 last dose to assess T cell responses.

145 The fifty percent neutralization geometric mean titers (GMTs) at one-month post-4th dose
146 were substantially different across the vaccine groups (Fig. 3A). Neutralizing activity against
147 XBB.1.5 and other circulating XBB sublineages (XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1 and
148 HV.1) was highest among animals that received the monovalent Omicron XBB.1.5 booster,
149 particularly compared to the bivalent WT + Omicron BA.4/5 group. GMT values were similar
150 across the Omicron XBB sublineages tested. Neutralizing activity against the genetically
151 divergent BA.2.86 pseudovirus was also highest in the monovalent Omicron XBB.1.5 group,
152 reaching a GMT that was statistically equivalent to the titers for the Omicron XBB pseudoviruses
153 (p > 0.1). Overall, the one-month post-boost GMTs elicited by the monovalent Omicron XBB.1.5
154 vaccine against the Omicron XBB sublineages were five-to-eight-fold higher than those elicited
155 by the bivalent WT + Omicron BA.4/5 vaccine, while the response against the BA.2.86 lineage
156 was three-fold higher in the monovalent Omicron XBB.1.5 group (Fig. 3B). Two versions of
157 BA.2.86 pseudoviruses were generated and tested because of the variability in spike sequences
158 from early isolates (20). These two pseudoviruses, which differed by one amino acid substitution
159 in the subdomain of the S1 subunit (I670V), were equally sensitive to neutralization. As such,
160 data shown for BA.2.86 in Fig. 3 represent the current consensus sequence that does not contain
161 the I670V mutation. Overall, neutralizing antibody responses were highest against WT and
162 Omicron BA.4/5 irrespective of the vaccine group, reflective of prior exposures to WT and
163 Omicron BA.4/5 S.

164 The geometric mean titer fold rise (GMFR) in neutralizing activity against Omicron
165 XBB.1.5 pseudovirus from the pre- to post-boost time points were highest in the monovalent
166 XBB.1.5 and bivalent XBB.1.5 + BA.4/5 vaccine groups (GMFR 14.1 and 12.1, respectively)
167 followed by the monovalent Omicron BA.4/5 group (GMFR 10.3) (Fig. S5).

168

169 Humoral immune response – primary series vaccination

170 In a primary series study the same vaccine formulations used in the booster study were
171 administered on Days 0 and 21 in naïve female BALB/c mice (Fig. S4B). Sera collected one
172 month after the second dose were tested against the same pseudovirus panel used in the booster
173 study. Similar to the findings of the booster study, the monovalent Omicron XBB.1.5 vaccine
174 elicited substantially higher neutralizing titers against all tested XBB sublineages (XBB.1.5,
175 XBB.1.16, XBB.1.16.1, XBB.2.3 and EG.5.1) (Fig. 4A, 4B) compared to the bivalent WT +
176 Omicron BA.4/5 vaccine, though at much higher titers than those observed in the booster study.
177 Responses were equivalent across the XBB pseudoviruses in the monovalent XBB.1.5 vaccine
178 group ($p > 0.1$). The BA.2.86 pseudovirus, however, almost completely escaped neutralization in
179 all vaccine groups, except for the bivalent Omicron XBB.1.5 + BA.4/5 where neutralizing
180 responses were an order of magnitude higher than in the other groups.

181 Cellular immune response

182 T cell responses were measured following XBB.1.5-adapted vaccine administration in both the
183 booster and primary series dosing regimens. Spleens collected one month following the 4th and
184 last vaccine dose were analyzed for frequencies of S-specific T cells, using a flow cytometry-
185 based intracellular cytokine staining (ICS) assay (Fig. S6). Splenocytes were stimulated with S
186 peptide pools representing the amino acid sequence of the WT strain or the Omicron BA.4/5 and
187 Omicron XBB.1.5 sublineages. In the booster study, all vaccine formulations induced high
188 frequencies of S-specific CD4⁺ and CD8⁺ T cells, with a trend toward slightly higher responses in
189 the monovalent Omicron XBB.1.5 group (Fig. 5). The magnitude of IFN- γ -producing T cell
190 responses was higher for CD8⁺ T cells than for CD4⁺ T cells (Fig. 5A, 5B). The frequency of IL-
191 2- and TNF- α -expressing CD4⁺ T cells trended slightly higher than the frequency of CD4⁺ T cells
192 producing IFN- γ (Fig. 5B-D). Very low levels of IL-4- and IL-10-expressing CD4⁺ T cells were

193 observed (Fig. 5E, 5F), thus supporting a Th1-biased response profile that was consistent with
194 prior preclinical and clinical data for BNT162b2 (13, 21). T cell responses in the primary series
195 study were similar to those in the booster study, despite the overall magnitude of responses being
196 lower (Fig. 6A-E). Notably, the magnitude of T cell response to each of the strains (WT, Omicron
197 BA.4/5 and Omicron XBB.1.5) was similar within each vaccine group in both booster and
198 primary series studies. These results suggest that polyclonal T cell responses are maintained in
199 mice after primary or booster vaccination and are not significantly impacted by the mutational
200 differences of the Omicron XBB.1.5 sublineage as compared to earlier strains.

201

202 **DISCUSSION**

203 The evolution of SARS-CoV-2 has prompted an adaptive approach to the continued development
204 of updated vaccines to maintain optimal protection against COVID-19. Since early 2020, when
205 public health crises were declared by multiple national agencies and international normative
206 authorities (22), more than 3,400 SARS-CoV-2 unique lineages and sublineages have been
207 identified (23). Despite this large genetic diversity, few strains have gained significant advantage
208 to successfully dominate the epidemiologic landscape for extended periods. The most recent
209 strain to exceed a global proportion of 50% is the recombinant Omicron XBB.1.5 sublineage.

210 Omicron XBB sublineages and their derivatives continue to account for the overwhelming
211 majority of new infections globally (24). The descendants of this recombinant lineage cluster
212 consistently exhibit significant immune escape from approved monoclonal antibodies (8, 25, 26)
213 The large antigenic distance of these sublineages from earlier SARS-CoV-2 strains, together with
214 waning effectiveness of earlier vaccine iterations based on strains that are no longer circulating
215 and the induction of a more broadly relevant polyclonal antibody response, has necessitated
216 updates to the COVID-19 vaccine.

217 In the current report, the preclinical data demonstrate an immune response profile that is
218 supportive of the Omicron XBB.1.5 vaccine update. Additionally, for the first time, the trimeric
219 prefusion stabilized structure of Omicron XBB.1.5 S has been resolved. Biophysical
220 characterization studies demonstrate that the Omicron XBB.1.5-adapted BNT162b2 vaccine
221 encodes an S(P2) that authentically presents an antigenically favorable prefusion conformation
222 and ACE-2 binding site. XBB.1.5 S(P2), despite having many mutations, contains biophysical
223 features that are remarkably similar to the S protein of the ancestral WT strain. However, the
224 RBD in Omicron XBB.1.5 S(P2) conforms to a more open and flexible state that contrasts with
225 the closed state of the ancestral strain and early Omicron lineages (27). A cryo-EM structure of
226 the BA.2.86 spike was recently reported and showed it adopted a more closed, all-RBD-down
227 conformation that reverts more toward the WT S (28). Prior reports have demonstrated that the S
228 of the Omicron BA.2 sublineage, of which XBB.1.5 is a recombinant, may be more compact and
229 thermostable than other variants (29). The Omicron XBB.1.5 S(P2), though exhibiting a lower
230 binding affinity for ACE-2-PD than the WT S(P2), has an RBD affinity that is substantially more
231 potent than its ancestral counterpart. The lower T_m and less compact structure of XBB.1.5 S(P2)
232 may also result in greater structural instability. These features of the XBB.1.5 S and its
233 components could translate into increased fusion efficiency and account, in part, for the
234 significant growth advantage of this Omicron sublineage. The selective advantage of one
235 conformation versus another, however, remains unclear and raises questions about the optimal
236 positioning of the RBD to best engage the human ACE-2 receptor, while potentially altering the
237 exposure of key regions of the S protein to better escape host immunity.

238 The observed differences in the N-glycosylation pattern of XBB.1.5 S(P2) compared to
239 the WT S also highlight that the evolution of SARS-CoV-2 is not only driven by amino acid
240 changes and resulting structural conformations but potentially by other post-translational
241 modifications that, for some virus fusion glycoproteins, serve to mask epitopes from antibody

242 recognition. The structural analyses described here may thus inform an understanding of the
243 evolutionary trajectory of SARS-CoV-2, in the context of newer lineages, and in relation to other
244 coronaviruses.

245 Although a correlate of protection for COVID-19 has not been definitively established,
246 neutralizing antibody titers have trended closely with estimates of vaccine efficacy and
247 effectiveness (30-32). Neutralizing antibody responses observed in preclinical animal models
248 have also associated with neutralization trends in clinical studies (33). Therefore, assessment of
249 the elicited neutralizing response by the variant adapted vaccines was a paramount objective of
250 the vaccine characterization. When administered as a booster dose or as a primary series in mice,
251 the Omicron XBB.1.5-adapted BNT162b2 vaccine elicited superior neutralizing activity against
252 XBB.1.5 and related XBB sublineage pseudoviruses, including the dominant EG.5.1 and HV.1
253 strains, compared to that elicited by the bivalent WT + Omicron BA.4/5 vaccine. The data support
254 the conclusion that variant-adapted vaccines offer the ability to maintain optimal immune
255 responses against evolving, circulating SARS-CoV-2 strains.

256 The more recently emerged Omicron BA.2.86 lineage, a descendant of Omicron BA.2, has
257 approximately sixty and thirty differences in the S amino acid sequence compared to the WT
258 strain and Omicron XBB.1.5 sublineage, respectively. A sequence change of this magnitude has
259 not been observed since the original emergence of Omicron BA.1, which contained
260 approximately thirty amino acid changes relative to Delta, the prior VOC. Despite these sequence
261 changes, the monovalent Omicron XBB.1.5-adapted booster vaccine sera neutralized BA.2.86 to
262 a similar degree as other XBB sublineages, with improved responses over bivalent WT +
263 Omicron BA.4/5 vaccine booster vaccine sera. In contrast, in a naïve background, 2-doses of
264 either the XBB.1.5-adapted or bivalent WT + Omicron BA.4/5-adapted vaccine conferred
265 similarly low neutralizing activity against the BA.2.86 pseudovirus. The bivalent Omicron
266 XBB.1.5 + BA.4/5 vaccine elicited slightly higher BA.2.86 neutralizing titers compared to the

267 other formulations, suggesting a potentially broader coverage of the antigenic space inclusive of
268 where Omicron BA.2.86 resides.

269 The large discrepancy in BA.2.86 neutralization between the booster and primary series
270 studies indicates that the genetic sequence divergence of this lineage translates into an
271 immunologic difference in a naïve background but does not confer immune escape when the host
272 has multiple prior exposures to antigens that broadly cover the SARS-CoV antigenic space. These
273 data, therefore, demonstrate a significant antigenic distance of this new lineage from preceding
274 ones, though that distance is rendered less important in a population with a diversity of prior
275 immune experience. To date, approximately 1,400 sequences of the BA.2.86 lineage and its
276 derivatives (i.e., BA.2.86.1, JN.1, JQ.1) have been deposited into GISAID since the first
277 confirmed BA.2.86 case (as of July 31, 2023). BA.2.86 remains designated as a variant under
278 monitoring (VUM) by the World Health Organization due to the substantial amino acid changes
279 in its S protein (34). However, no sublineage from the BA.2.86 cluster has been reported to cause
280 an increase in COVID-19 disease severity or deaths (35-41).

281 The variant-adapted vaccines evaluated in this study, including the monovalent Omicron
282 XBB.1.5 formulation, elicited robust Th1-type CD4⁺ and IFN- γ -secreting CD8⁺ T cell responses
283 against S peptide pools representing the FL S of WT, Omicron BA.4/5 and Omicron XBB.1.5.
284 These findings are consistent with observed trends for multiple variants where antigenic drift and
285 even major shifts to new lineages and sublineages do not substantially erode previously
286 established T cell-mediated immunity (42, 43). The likely consequence of a maintained cellular
287 immune response is more durable effectiveness against severe clinical outcomes (44).

288 The findings reported here demonstrate that the monovalent Omicron XBB.1.5-adapted
289 BNT162b2 vaccine encodes a prefusion stabilized S(P2) protein that tightly binds the ACE-2
290 receptor, maintains a relatively open and flexible conformation, and confers optimal immune
291 responses against contemporaneous SARS-CoV-2 strains. Strengths of this study include the

292 booster immunogenicity study design, which aims to approximate the vaccine-experienced
293 background of the BNT162b2-vaccinated population by pre-exposing animals to both the original
294 monovalent WT vaccine and bivalent WT + Omicron BA.4/5 vaccine. Limitations include the
295 inability to faithfully recapitulate the entire spectrum of immune experience, such as the hybrid
296 immunity gained from prior SARS-CoV-2 infection and vaccination. This immune background
297 likely reflects the majority of the vaccinated population, as seroepidemiology studies show that
298 most individuals have experienced SARS-CoV-2, even among pediatric cohorts (45). It was still
299 important to evaluate the Omicron XBB.1.5-adapted vaccine in an immune naïve setting, as there
300 remains a steady proportion of individuals, primarily among the youngest pediatric population,
301 who have not yet been exposed to SARS-CoV-2 through infection or vaccination.

302 The aggregate data reported here provide a basis for expecting a robust immune response
303 in humans, indicative of a reduction from severe disease outcomes such as hospitalization and
304 death against XBB sublineage infections and resulting COVID-19 disease from ongoing clinical
305 studies (46). Preclinical data have reliably predicted responses in humans to vaccination
306 throughout the lifecycle of the original monovalent WT and variant-adapted BNT162b2 vaccines.
307 These types of data now form the basis for regulatory authorizations and approvals of updated
308 formulations, including the bivalent WT + Omicron BA.4/5 vaccine in 2022, and more recently,
309 the monovalent Omicron XBB.1.5 vaccine. COVID-19 epidemiology and immunology continue
310 to be dynamic; as such, safe and effective vaccines will need to keep pace by remaining adaptable
311 to ensure rapid approval and broad access to at-risk populations.

312

313 MATERIALS AND METHODS

314 Study Design

315 The primary aims of the studies reported here are to characterize the biophysical, structural, and
316 immunologic features of the Omicron XBB.1.5 sublineage S(P2) and to test the hypothesis that an

317 adaptation of the BNT162b2 encoded S(P2) to Omicron XBB.1.5 will boost vaccine-elicited
318 immunity to more relevant contemporaneous SARS-CoV-2 strains. The biophysical
319 characterization studies investigated the conformational dynamics of the S RBD and the
320 thermostability profile, affinity to the human ACE-2 receptor, glycosylation patterns and cryo-EM
321 structure of XBB.1.5 FL S(P2). These data were historically compared to the same outputs for the
322 ancestral WT FL S we previously reported (13). We evaluated the immunogenicity of Omicron
323 XBB.1.5-adapted BNT162b2 vaccine formulations in both immune-experienced and naïve female
324 BALB/c mice that were vaccinated with monovalent or bivalent SARS-CoV-2 sublineage-
325 modified BNT162b2 vaccines. To evaluate humoral immune responses to the different vaccine
326 series, pseudotyped virus neutralizing serum antibody titers were measured by a pseudovirus
327 neutralization assay (pVNT). To evaluate T cell responses, intracellular cytokine staining (ICS)
328 was performed and quantified by flow cytometry on *ex vivo* S peptide-stimulated splenocytes to
329 detect S-specific, cytokine-secreting T cells.

330

331 **Expression and Purification of FL S(P2) and RBD Proteins**

332 In brief, protein sequences of the Omicron XBB.1.5 sublineage and WT (Wuhan-Hu-1) FL S(P2)
333 encoded by BNT162b2 were used to generate a construct containing a C-terminal TwinStrep tag
334 to facilitate affinity purification and were cloned into a pcDNA3.1(+) vector for expression. The
335 isolated RBD constructs contain coding regions from 324-531 (Omicron XBB.1.5) and 327-528
336 (WT), respectively, of the FL S followed by a C-terminal affinity tag. The FL S(P2) recombinant
337 protein constructs made for this study are summarized in Table S1. Both FL S and RBD protein
338 expressions were conducted in Expi293F cells (ThermoFisher Scientific) grown in Expi293
339 medium. Upon cell lysis, recombinant FL S(P2) was solubilized in 1% DDM and purified using
340 StrepTactin Sepharose HP resin and size exclusion chromatography (SEC). A modified protocol,
341 based on procedures described previously (47), was used for FL S(P2) purification, as detailed in

342 the Supplementary Materials. RBD was expressed as secreted protein and purified via the
343 engineered C-terminal affinity tag.

344

345 **Binding Kinetics of Purified FL S(P2) Protein and RBD to Immobilized Human ACE-2-PD**

346 FL S(P2), with a C-terminal TwinStrep tag expressed in Expi293F cells, was detergent solubilized
347 and purified by affinity and size exclusion chromatography. The peak fraction of the purified FL
348 S(P2) and isolated RBD proteins of Omicron XBB.1.5 and WT strains were assessed by biolayer
349 interferometry (BLI) binding to immobilized human ACE-2-PD on an Octet RED384 (FortéBio)
350 at 25 °C in a running buffer that comprised 25 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, and
351 0.02% DDM, identical to the protein purification buffers. The highest concentration assessed for
352 both FL S(P2) and RBD was 300 nM, with three additional three-fold dilutions. BLI data were
353 collected with Octet Data Acquisition software (version 10.0.0.87) and processed and analyzed
354 using FortéBio Data Analysis software (version 10.0). Binding curves were reference subtracted
355 and fit to a 1:1 Langmuir model to determine binding kinetics and affinity.

356

357 **Cryo-EM of Omicron XBB.1.5 FL S(P2)**

358 Purified Omicron XBB.1.5 FL S(P2) was applied to glow discharged Quantifoil R1.2/1.3 200
359 mesh gold grids and blotted using a Vitrobot Mark IV (ThermoFisher Scientific) before being
360 plunged into liquid ethane cooled by liquid nitrogen. Datasets were collected and analyzed
361 according to details in the Supplementary Materials and as depicted in [Fig. S3](#).

362

363 **Additional *In Vitro* Characterization of Omicron XBB.1.5 FL S(P2) Protein**

364 Full details of methods used for the remainder of the *in vitro* characterization of the FL S(P2)
365 protein (*e.g.*, purification and chromatography, mass spectrometry, and thermal shift assay) are
366 provided in the Supplementary Materials.

367

368 **Animal Ethics**

369 All murine experiments were performed at Pfizer, Inc. (Pearl River, NY, USA), which is
370 accredited by the Association for Assessment and Accreditation of Laboratory Animal
371 Care (AAALAC). All procedures performed on animals were in accordance with regulations and
372 established guidelines and were reviewed and approved by an Institutional Animal Care and Use
373 Committee or through an ethical review process.

374

375 **BNT162b2 mRNA XBB.1.5. Vaccine Modification and Formulation**

376 The XBB.1.5 adapted vaccine encodes the S(P2) of XBB.1.5 (GISAID EPI_ISL_16292655) on
377 the BNT162b2 RNA backbone. Purified nucleoside-modified RNA was formulated into lipid
378 nanoparticles by mixing together an organic phase lipid mixture with an RNA aqueous phase, and
379 subsequently purifying the mix to yield a lipid nanoparticle composition similar to one previously
380 described (48).

381

382 **Immunogenicity in BNT162b2-Experienced Mice**

383 Female BALB/c mice (10 per group, age 6-8 weeks; Jackson Laboratory) were vaccinated and
384 bled as shown in [Fig. S4A](#). In brief, mice were vaccinated intramuscularly with a 2-dose series
385 (Day 0, 21) of a 0.5 μ g dose level of original BNT162b2 WT vaccine, followed by a 3rd dose
386 booster (Day 105) of bivalent WT + Omicron BA.4/5 vaccine, and a 4th dose booster (Day 134) of
387 either monovalent Omicron XBB.1.5, monovalent Omicron BA.4/5, bivalent Omicron XBB.1.5
388 + BA.4/5 or bivalent WT + Omicron BA.4/5 sublineage-modified vaccines. Bivalent formulations
389 contained equal quantities of each mRNA (0.25 μ g each) and a total dose level of 0.5 μ g. A
390 control group of ten mice received saline injections according to the same schedule in place of
391 active vaccines. A total volume of 50 μ L of vaccine or saline was administered intramuscularly to

392 the upper outer hind leg for each animal. Animals and injection sites were observed immediately
393 after vaccination. Sera were collected for evaluation of pseudovirus neutralizing antibody
394 responses prior to the 4th dose (Day 134) and at the final post-vaccination timepoint (Day 160).
395 Spleens were also collected at Day 160 to evaluate cell-mediated immune responses. When
396 evaluating neutralizing antibody responses for each pseudovirus over time, it was found that pre-
397 boost, baseline GMTs were highest overall against WT, lower against Omicron BA.4/5 and
398 minimal against Omicron XBB.1.5. These trends were similar across vaccine groups (Fig. S7).
399

400 **Immunogenicity in Naïve Mice**

401 Female BALB/c mice (10 per group, age 10-12 weeks; Jackson Laboratory) were vaccinated and
402 bled according to the illustration in Fig. S4B. In brief, mice were vaccinated intramuscularly on
403 Days 0 and 21 with either monovalent Omicron XBB.1.5, monovalent Omicron BA.4/5, bivalent
404 Omicron XBB.1.5 + BA.4/5 or bivalent WT + Omicron BA.4/5-adapted vaccines. The control
405 group received saline injections according to the same schedule as active vaccine groups. Sera
406 and spleens were collected 28 days after the second dose (day 49) for evaluation of pseudovirus
407 neutralizing antibody responses and cell-mediated immune responses, respectively.

408

409 **Pseudovirus Neutralization Assay**

410 Pseudovirus stocks were generated in HEK-293T cells (ATCC, ref.# CRL-3216) using SARS-
411 CoV-2 spike plasmid DNA and vesicular stomatitis virus (VSV; VSVΔG(G)-GFP virus: Kerafast,
412 ref.# EH1019-PM). Serial dilutions of heat-inactivated murine sera (3-fold) were incubated with
413 pseudovirus (VSVΔG(G)-GFP expressing SARS-CoV-2 S protein) for 1 h at 37 °C before
414 inoculating confluent Vero (ATCC, ref.# CCL81.2) cell monolayers in 96-well plates. Fluorescent
415 virus-infected foci were detected 19-21 h after inoculation with an anti-VSV pAb (Imanis Life
416 Sciences, ref# REA005) and Alexa488-conjugated secondary antibody (Invitrogen, ref# A-11008)

417 and enumerated using a CTL Immunospot Analyzer (Cellular Technology Limited). A 50%
418 neutralization titer (NT₅₀) was calculated as the last reciprocal serum dilution at which 50% of the
419 virus is neutralized compared to wells containing virus only. Each serum sample dilution was
420 tested in duplicate. The assay titer range was 20 to 43,740. Any serum sample that yielded a titer
421 >43,470 was prediluted and repeated to extend the upper titer limit; sera that failed to neutralize at
422 the lowest serum dilution (1:20) were reported to have a neutralizing titer of 20 (lower limit of
423 detection, LLOD). VSV-based pseudoviruses used in the assay expressed the S protein from the
424 following SARS-CoV-2 variants: WT (Wuhan-Hu-1, ancestral strain), BA.4/5, XBB.1.5,
425 XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1, HV.1 and BA.2.86. Amino acid sequence alignments
426 for all tested pseudoviruses are provided in [Fig. S8](#).

427

428 **T-cell Response Assay**

429 Details of the splenocyte isolation and T-cell response assay are provided in the Supplementary
430 Materials. In brief, antigen-specific T cell responses were analyzed from freshly isolated murine
431 splenocytes with a flow cytometry-based intracellular cytokine staining (ICS) assay, comparing
432 unstimulated (DMSO) response to those observed in splenocytes after stimulation with a peptide
433 library. Three individual peptide pools represented the FL S sequences for WT, Omicron BA.4/5,
434 and Omicron XBB.1.5 (JPT, catalog #s PM-SARS2-SMUT10-2, PM-SARS2-SMUT15-1, PM-
435 WCPV-S-1). The ICS assay detected and quantified CD154 (CD40L), IFN- γ , TNF- α , IL-2, IL-4,
436 and IL-10, positive CD4 $^{+}$ and CD8 $^{+}$ T cells. Samples were acquired on a BD LSR Fortessa flow
437 cytometer with BD FACSDiva software and analyzed using BD FlowJoTM software (Version 10.8).
438 Results are shown as a percentage of CD154 $^{+}$ and cytokine positive CD4 $^{+}$ T cells and CD8 $^{+}$ T cells.

439

440 **Statistical Analysis**

441 Mouse immunogenicity data were analyzed using GraphPad PRISM software. Statistical
442 comparisons were made on mouse sera GMTs across pseudoviruses within a vaccine group at the
443 last post-vaccination timepoint of each study with a one-way ANOVA on log-transformed data
444 with Dunnett's multiple comparisons test.

445

446 **List of Supplementary Materials**

447 Materials and Methods

448 **Fig. S1.** SDS-PAGE of DDM-Solubilized and Purified Prefusion Stabilized Full-length (FL)
449 Ancestral Variant and Omicron XBB.1.5 S(P2) Proteins.

450 **Fig. S2.** Glycosylation Patterns of Prefusion Stabilized Full-Length WT and XBB.1.5 Spike.

451 **Fig. S3.** Cryo-EM workflow for construct pSB6534.

452 **Fig. S4.** Schema for BNT162b2 variant-modified vaccine mouse immunogenicity studies.

453 **Fig. S5.** Geometric mean fold rise in pseudovirus neutralization titers (NT₅₀) from pre- to post-
454 boost with a BNT162b2 variant-adapted vaccine booster immunization. in immune-experienced
455 mice.

456 **Fig. S6.** Gating strategy for flow cytometry analysis of T cell responses.

457 **Fig. S7.** Baseline pseudovirus neutralization titers (NT₅₀) prior to BNT162b2 variant-adapted
458 vaccine booster immunization in immune-experienced mice.

459 **Fig. S8.** SARS-CoV-2 Spike amino acid sequence differences across lineages and sublineages for
460 generated pseudoviruses.

461 **Table S1.** Expression Constructs of FL S proteins.

462 **Table S2.** Cryo-EM Data Collection, Processing and Refinement Statistics.

463 References (47, 49-51)

464

465 **References**

466 1. W. H. Organization, "Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern,"
467 (World Health Organization, Geneva, Switzerland, 2021).

468 2. D. Y. Lin *et al.*, Effectiveness of Bivalent Boosters against Severe Omicron Infection. *N Engl J Med*
469 **388**, 764-766 (2023).

470 3. R. Link-Gelles *et al.*, Early Estimates of Bivalent mRNA Booster Dose Vaccine Effectiveness in
471 Preventing Symptomatic SARS-CoV-2 Infection Attributable to Omicron BA.5- and XBB/XBB.1.5-
472 Related Sublineages Among Immunocompetent Adults - Increasing Community Access to Testing
473 Program, United States, December 2022-January 2023. *MMWR Morb Mortal Wkly Rep* **72**, 119-
474 124 (2023).

475 4. R. Link-Gelles *et al.*, Effectiveness of Monovalent and Bivalent mRNA Vaccines in Preventing
476 COVID-19-Associated Emergency Department and Urgent Care Encounters Among Children Aged
477 6 Months-5 Years - VISION Network, United States, July 2022-June 2023. *MMWR Morb Mortal*
478 *Wkly Rep* **72**, 886-892 (2023).

479 5. M. W. Tenforde *et al.*, Early Estimates of Bivalent mRNA Vaccine Effectiveness in Preventing
480 COVID-19-Associated Emergency Department or Urgent Care Encounters and Hospitalizations
481 Among Immunocompetent Adults - VISION Network, Nine States, September-November 2022.
482 *MMWR Morb Mortal Wkly Rep* **71**, 1637-1646 (2023).

483 6. R. Uraki *et al.*, Humoral immune evasion of the omicron subvariants BQ.1.1 and XBB. *Lancet*
484 *Infect Dis* **23**, 30-32 (2023).

485 7. M. Fabiani *et al.*, Relative effectiveness of bivalent Original/Omicron BA.4-5 mRNA vaccine in
486 preventing severe COVID-19 in persons 60 years and above during SARS-CoV-2 Omicron XBB.1.5
487 and other XBB sublineages circulation, Italy, April to June 2023. *Euro Surveill* **28**, (2023).

488 8. H. Chye *et al.*, Neutralization escape of emerging subvariants XBB.1.5/1.9.1 and XBB.2.3 from
489 current therapeutic monoclonal antibodies. *J Med Virol* **95**, e29074 (2023).

490 9. L. Cao *et al.*, Rapid evaluation of COVID-19 vaccine effectiveness against symptomatic infection
491 with SARS-CoV-2 variants by analysis of genetic distance. *Nat Med* **28**, 1715-1722 (2022).

492 10. T. O. Jefferson, D. Rivetti, C. Di Pietrantonj, A. Rivetti, V. Demicheli, Vaccines for preventing
493 influenza in healthy adults. *Cochrane Database Syst Rev*, CD001269 (2007).

494 11. D. Wrapp *et al.*, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science*
495 **367**, 1260-1263 (2020).

496 12. J. Pallesen *et al.*, Immunogenicity and structures of a rationally designed prefusion MERS-CoV
497 spike antigen. *Proc Natl Acad Sci U S A* **114**, E7348-E7357 (2017).

498 13. A. B. Vogel *et al.*, BNT162b vaccines protect rhesus macaques from SARS-CoV-2. *Nature* **592**, 283-
499 289 (2021).

500 14. R. N. Kirchdoerfer *et al.*, Stabilized coronavirus spikes are resistant to conformational changes
501 induced by receptor recognition or proteolysis. *Sci Rep* **8**, 15701 (2018).

502 15. J. E. Bowen *et al.*, SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited
503 by a wide panel of human vaccines. *Sci Immunol* **7**, eadf1421 (2022).

504 16. Y. Watanabe, J. D. Allen, D. Wrapp, J. S. McLellan, M. Crispin, Site-specific glycan analysis of the
505 SARS-CoV-2 spike. *Science* **369**, 330-333 (2020).

506 17. Y. Cai *et al.*, Distinct conformational states of SARS-CoV-2 spike protein. *Science* **369**, 1586-1592
507 (2020).

508 18. R. Henderson *et al.*, Controlling the SARS-CoV-2 spike glycoprotein conformation. *Nat Struct Mol*
509 *Biol* **27**, 925-933 (2020).

510 19. Y. Cao *et al.*, BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. *Nature*
511 **608**, 593-602 (2022).

512 20. G. I. o. S. A. I. Data. (2023).

513 21. U. Sahin *et al.*, BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in
514 humans. *Nature* **595**, 572-577 (2021).

515 22. W. H. Organization, "Statement on the second meeting of the International Health Regulations
516 (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)," (2020).

517 23. G. c.-l. pango-designation. (2023).
518 24. G. I. o. S. A. I. Data. (2023).
519 25. M. Shah, H. G. Woo, Assessment of neutralization susceptibility of Omicron subvariants XBB.1.5
520 and BQ.1.1 against broad-spectrum neutralizing antibodies through epitopes mapping. *Front Mol
521 Biosci* **10**, 1236617 (2023).
522 26. Q. Zhao *et al.*, Serum neutralization of SARS-CoV-2 Omicron BA.2, BA.2.75, BA.2.76, BA.5, BF.7,
523 BQ.1.1 and XBB.1.5 in individuals receiving Evusheld. *J Med Virol* **95**, e28932 (2023).
524 27. V. Calvaresi *et al.*, Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. *Nat
525 Commun* **14**, 1421 (2023).
526 28. X. W. Yunlong Richard Cao. (2023).
527 29. V. Stalls *et al.*, Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike. *Cell Rep* **39**, 111009 (2022).
528 30. D. Cromer *et al.*, Neutralising antibody titres as predictors of protection against SARS-CoV-2
529 variants and the impact of boosting: a meta-analysis. *Lancet Microbe* **3**, e52-e61 (2022).
530 31. K. A. Earle *et al.*, Evidence for antibody as a protective correlate for COVID-19 vaccines. *Vaccine*
531 **39**, 4423-4428 (2021).
532 32. D. S. Khoury *et al.*, Neutralizing antibody levels are highly predictive of immune protection from
533 symptomatic SARS-CoV-2 infection. *Nat Med* **27**, 1205-1211 (2021).
534 33. P. J. Klasse, D. F. Nixon, J. P. Moore, Immunogenicity of clinically relevant SARS-CoV-2 vaccines in
535 nonhuman primates and humans. *Sci Adv* **7**, (2021).
536 34. WHO. (Tracking SARS-CoV-2 variants, <https://www.who.int/activities/tracking-SARS-CoV-2-variants>, 2023).
537 35. Y. Hu *et al.*, Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1.
538 *bioRxiv*, 2023.2009.2010.557047 (2023).
540 36. N. Lasrado *et al.*, Neutralization Escape by SARS-CoV-2 Omicron Subvariant BA.2.86. *bioRxiv*,
541 2023.2009.2004.556272 (2023).
542 37. P. Qu *et al.*, Immune Evasion, Infectivity, and Fusogenicity of SARS-CoV-2 Omicron BA.2.86 and
543 FLip Variants. *bioRxiv*, 2023.2009.2011.557206 (2023).
544 38. D. J. Sheward *et al.*, Sensitivity of BA.2.86 to prevailing neutralising antibody responses. *bioRxiv*,
545 2023.2009.2002.556033 (2023).
546 39. K. Uriu *et al.*, Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant.
547 *Lancet Infect Dis*, (2023).
548 40. X. Wang *et al.*, Enhanced neutralization of SARS-CoV-2 XBB sub-lineages and BA.2.86 by a
549 tetravalent COVID-19 vaccine booster. *bioRxiv*, 2023.2009.2014.557682 (2023).
550 41. S. Yang *et al.*, Antigenicity and infectivity characterization of SARS-CoV-2 BA.2.86. *bioRxiv*,
551 2023.2009.2001.555815 (2023).
552 42. K. W. Cohen *et al.*, Longitudinal analysis shows durable and broad immune memory after SARS-
553 CoV-2 infection with persisting antibody responses and memory B and T cells. *Cell Rep Med* **2**,
554 100354 (2021).
555 43. S. J. Kent *et al.*, Disentangling the relative importance of T cell responses in COVID-19: leading
556 actors or supporting cast? *Nat Rev Immunol* **22**, 387-397 (2022).
557 44. Z. Sun *et al.*, The Role of Cellular Immunity in the Protective Efficacy of the SARS-CoV-2 Vaccines.
558 *Vaccines (Basel)* **10**, (2022).
559 45. R. Naeimi *et al.*, SARS-CoV-2 seroprevalence in children worldwide: A systematic review and
560 meta-analysis. *EClinicalMedicine* **56**, 101786 (2023).
561 46. N. L. o. M. (ClinicalTrials.gov). (2023).
562 47. J. Zhang *et al.*, Structural and functional impact by SARS-CoV-2 Omicron spike mutations. *Cell Rep*
563 **39**, 110729 (2022).
564 48. M. A. Maier *et al.*, Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for
565 systemic delivery of RNAi therapeutics. *Mol Ther* **21**, 1570-1578 (2013).
566 49. G. Ye, B. Liu, F. Li, Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain. *Nat
567 Commun* **13**, 1214 (2022).

568 50. P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol*
569 *Crystallogr* **60**, 2126-2132 (2004).

570 51. P. V. Afonine *et al.*, Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta*
571 *Crystallogr D Struct Biol* **74**, 531-544 (2018).

572

573 **Acknowledgements:** We thank Pfizer and BioNTech colleagues for their scientific,
574 programmatic and operational support. We also thank the Pfizer Comparative Medicine
575 department and veterinary staff at Pearl River, NY for their contributions to the *in vivo* studies;
576 the Pfizer Viral Vaccines staff at Pearl River, NY, for their contributions to assay development
577 and implementation, including Marcus Bolton, and for their contributions to virus variant
578 monitoring, including Subrata Saha and Siddartha Mitra; members of Pfizer Discovery Sciences
579 in Groton, CT, specifically Tim Craig, Nicole Nedoma and Honglei Zhao, for their material and
580 technical support on recombinant protein production; and members of the Pfizer Early Bioprocess
581 Development unit in Pearl River, NY, specifically Lei Hu, Tanveer Sandhu, Mindy Wang, Qi Liu,
582 Lynn Phelan and Justin Moran, for their material and technical support. We also thank Robert G.
583 K. Donald for the comprehensive review of and helpful inputs to this manuscript and Christina
584 D'Arco for invaluable writing and editorial support.

585

586 **Funding:** This work was supported by Pfizer Inc.

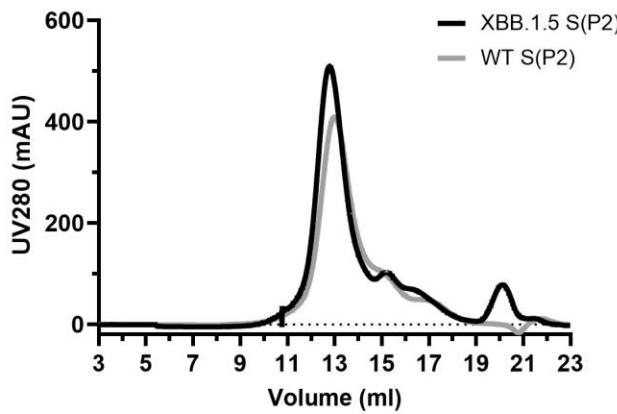
587

588 **Author contributions**

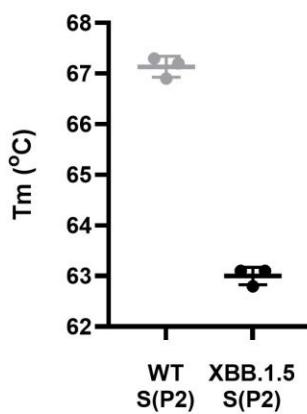
589 Conceptualization: KM, YC, KAS
590 Methodology: KM, YC, WC, HW, MSM, KRT, LTM, HC, LF, JSC, KFF, KWH, TJM, PV, WC[†],
591 MC, MAG, SL, RS, KES, KAS
592 Data generation and interpretation: KM, YC, WC, HW, CIC, AM, MSM, KRT, LM, MH, SM, BC,
593 LF, JSC, KFF, KH, TJM, PVS, WC[†], MC, MAG, SL, RS, WL, KPD, SD, FG, RS, DMI, KES,
594 KAS.

595 Investigation: KM, YC, WC, HW, MSM, KAS
596 Visualization: YC, WC, HW, MSM, LTM, MH, WL
597 Supervision: KM, KAS, AVB, ASA, U\$
598 Writing – original draft: KM, KAS, YC
599 Writing – review & editing: KM, YC, WC, HW, CIC, AM, MSM, KRT, LM, MH, SM, BC, LF,
600 JSC, KFF, KH, TJM, PVS, WC[†], MC, MAG, SL, RS, WL, KPD, SD, FG, RS, DMI, KES, AVB,
601 ASA, U\$, KAS.

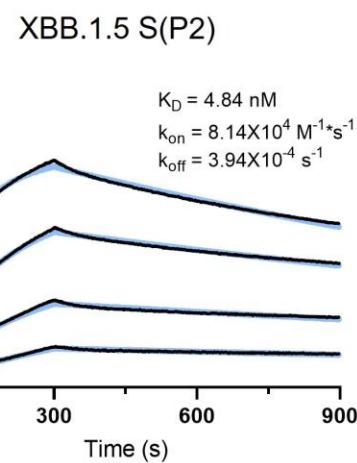
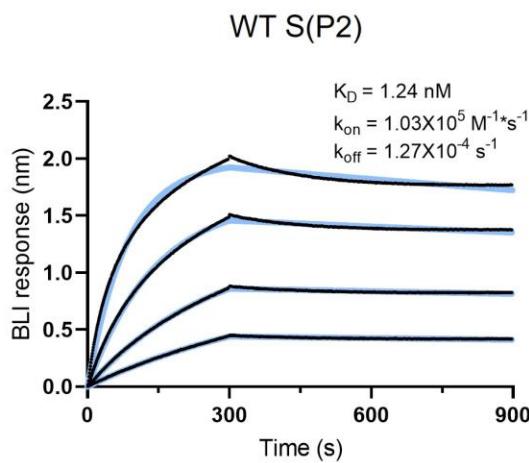
602

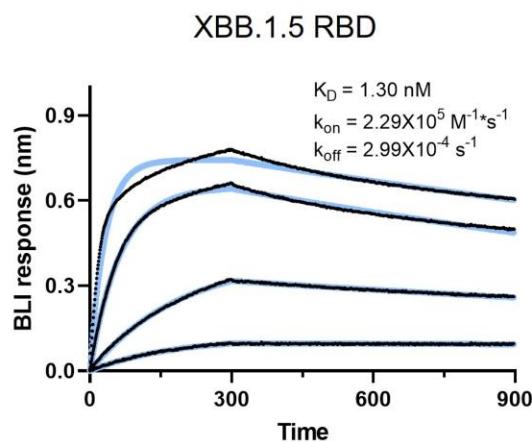
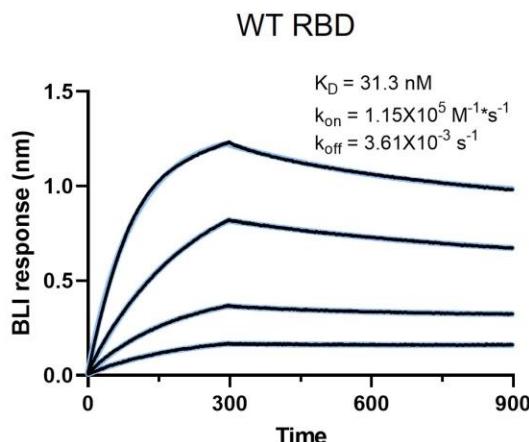

603 **Competing interests**

604 All authors are employees of Pfizer or BioNTech and may, therefore, be respective shareholders.
605 Pfizer and BioNTech participated in the design, analysis and interpretation of the data as well as
606 the writing of this report and the decision to publish. KM, YC, AM, HC, AV, U\$ and KAS are
607 inventors on patents and patent applications related to the COVID-19 vaccine. AM, AV and U\$ are
608 inventors on patents and patent applications related to RNA technology.


609

610 **Data and materials availability:** The final full-length XBB.1.5 S(P2) cryo-EM density map and
611 model are deposited in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank
612 (PDB) under accession codes EMD-42524 and PDB ID 8USZ, respectively.



A



B

C


D

614 **Fig. 1. Biophysical Properties and ACE-2 Receptor Binding Affinities SARS-CoV-2 WT and**
615 **Omicron XBB.1.5 FL S(P2) and RBD. A.** Size exclusion chromatography (SEC) profile of the
616 purified WT and Omicron XBB.1.5 FL S(P2) proteins equivalent to the protein antigen encoded
617 by the BNT162b2 vaccines. **B.** Melting temperature (T_m) of DDM-purified S(P2) proteins at 0.35
618 mg/mL concentration. Assay was run in triplicate. **C-D.** Biolayer interferometry (BLI)
619 sensorgram showing binding of **(C)** purified S(P2) proteins and **(D)** RBD to immobilized human
620 angiotensin converting enzyme-2 peptidase domain (ACE-2-PD). Binding data are in black; 1:1
621 binding model fit to the data is in color. Apparent kinetic parameters are provided in the graph.
622 K_D = equilibrium dissociation constant; k_{on} = binding rate constant; k_{off} = dissociation rate
623 constant.

624

625

626

627

Fig. 2. Cryo-EM Structure of SARS-CoV-2 Omicron XBB.1.5 Spike Protein. A.

628

Representative 2D class averages of full-length prefusion stabilized Omicron XBB.1.5 S(P2). Box

629

size is 40.5 nm in each dimension. **B.** Maps from *ab initio* reconstruction reveals only one class

630

resembling the S(P2) protein particles with 1-RBD in the ‘up’ position. These particles were used

631

for the final reconstruction. Percentages of the particle population represented in each class are

632

indicated below the models. **C.** The overall structure of Omicron XBB.1.5 S(P2) trimer modeled

633

based on the 2.98 Å density map. Two of the three protomers with RBD in a ‘down’ conformation

634

are represented by a molecular surface colored in white and grey. The remaining protomer with

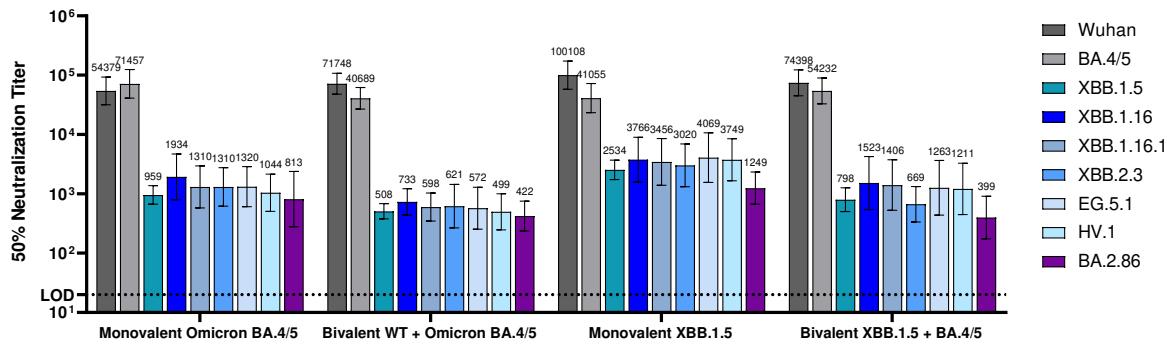
635

RBD in an ‘up’ conformation is represented by a ribbon diagram; The N-terminal domain is

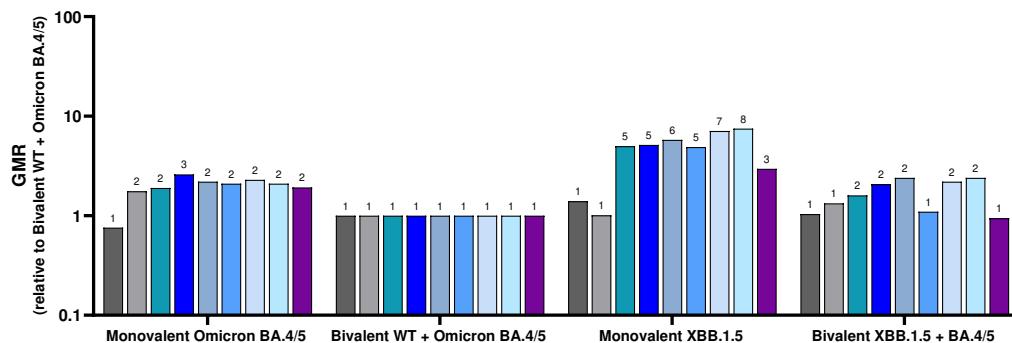
636

colored blue; the receptor binding domain is colored yellow; the remaining S1 subunit is colored

637


purple; and the S2 subunit is colored green. Amino acid residues that differ between Omicron

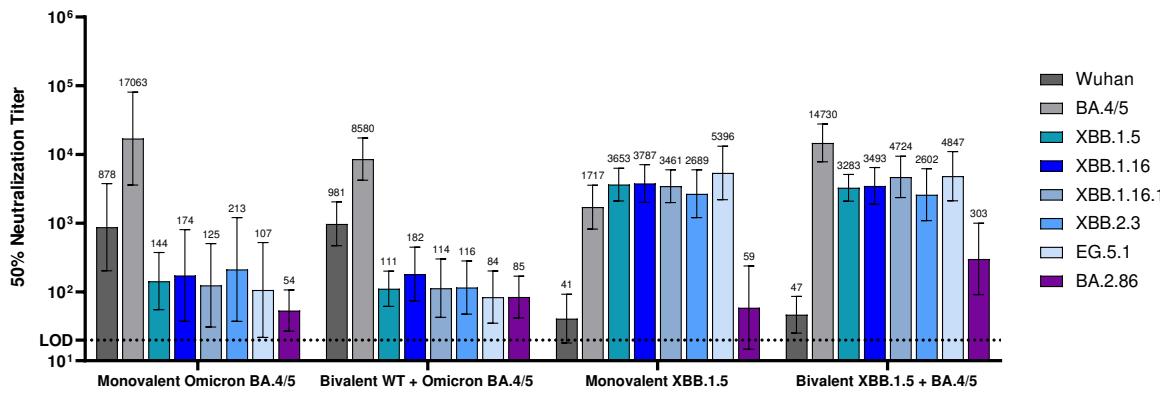
638


XBB.1.5 and the ancestral strain are represented by red spheres.

639

A

B



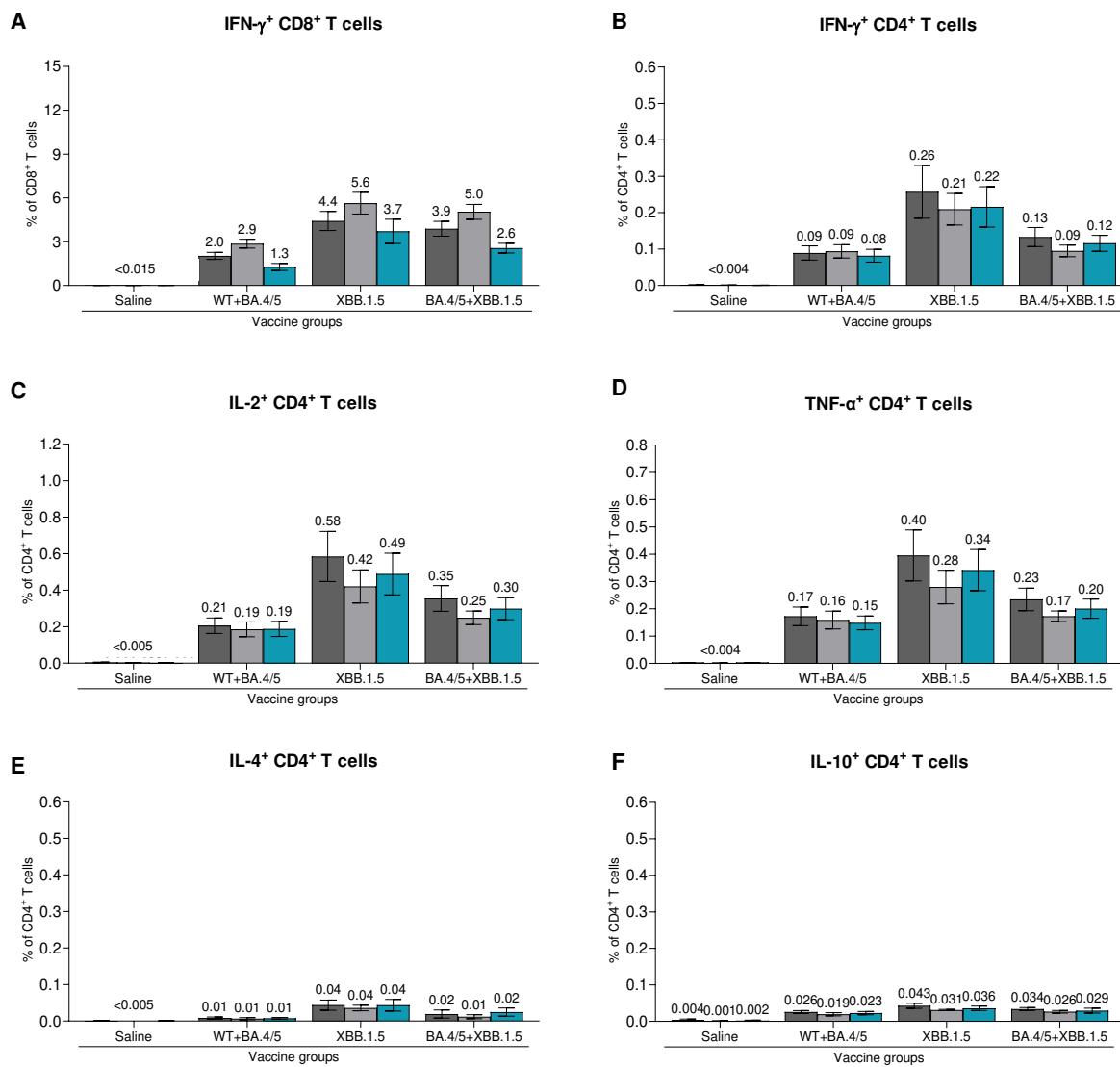
640

641 **Fig. 3. Pseudovirus neutralization titers (NT₅₀) elicited by BNT162b2 variant-adapted**
 642 **vaccines administered as a 4th dose in immune-experienced mice.** Female BALB/c mice
 643 (10/group) that were previously vaccinated (per schedule described in [Fig. S4A](#)) with two-doses
 644 of monovalent original WT BNT162b2, and one subsequent dose of bivalent WT + Omicron
 645 BA.4/5 received a single intramuscular dose of one of these vaccine regimens: monovalent
 646 Omicron BA.4/5, bivalent WT+ Omicron BA.4/5, monovalent Omicron XBB.1.5 or bivalent
 647 Omicron BA.4/5 + Omicron XBB.1.5. All vaccine formulations contained a total dose of 0.5 μ g.
 648 Fifty-percent geometric mean serum neutralizing titers were characterized in a pseudovirus
 649 neutralization assay at one-month post-4th dose against the WT reference strain, the Omicron
 650 sublineages BA.4/5, XBB.1.5, XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1, HV.1 and the lineage
 651 BA.2.86. **A.** 50% pseudovirus neutralization titers are shown as geometric mean titers (GMT) \pm
 652 95% CI of 10 mice per vaccine group. **B.** The geometric mean ratio (GMR) is the GMT of

653 individual pseudovirus responses of each vaccine group (monovalent Omicron BA.4/5,
654 monovalent Omicron XBB.1.5 or bivalent Omicron BA.4/5 + Omicron XBB.1.5) divided by the
655 GMT of analogous pseudovirus responses of the bivalent WT + Omicron BA.4/5 group. The limit
656 of detection (LOD) is the lowest serum dilution, 1:20.
657

A

B

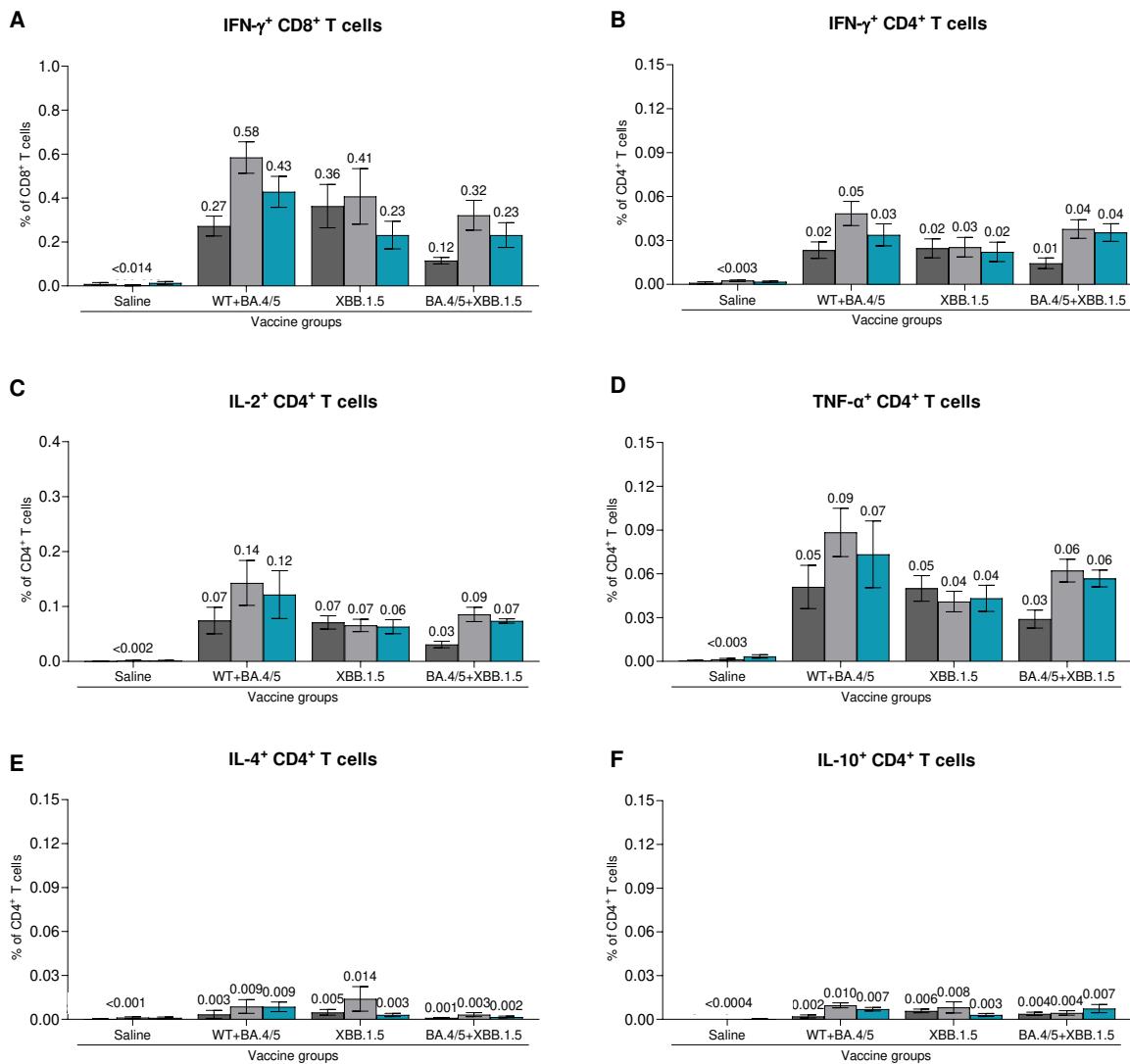


658

659 **Fig. 4. Pseudovirus neutralization titers (NT₅₀) elicited by BNT162b2 variant-adapted**
660 **vaccines administered as a primary series in naïve mice.** Female BALB/c mice (10/group)
661 vaccinated with two-doses of one of the following vaccine regimens at a twenty-one-day interval:
662 monovalent Omicron, BA.4/5, bivalent WT + Omicron BA.4/5, monovalent Omicron XBB.1.5 or
663 bivalent Omicron BA.4/5 + Omicron XBB.1.5. All vaccine formulations contained a total dose of
664 0.5 µg. Serum neutralizing antibody responses were measured by a pseudovirus neutralization
665 assay at one-month post-second dose against the WT reference strain, the Omicron sublineages
666 BA.4/5, XBB.1.5, XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1 and the lineage BA.2.86. **A.** 50%
667 pseudovirus neutralization titers are shown as geometric mean titers (GMT) ± 95% CI of 10 mice
668 per vaccine group. **B.** The geometric mean ratio (GMR) is the GMT of individual pseudovirus

669 responses of each vaccine group (monovalent Omicron BA.4/5, monovalent Omicron XBB.1.5 or
670 bivalent Omicron BA.4/5 + Omicron XBB.1.5) divided by GMTs of analogous pseudovirus
671 responses of the bivalent WT + Omicron BA.4/5 group. The limit of detection (LOD) is the
672 lowest serum dilution, 1:20.
673

Peptide pool: Wuhan BA.4/5 XBB.1.5



674

675 **Fig. 5. T cell responses elicited by BNT162b2 variant-adapted vaccines administered as a 4th**
 676 **dose in BNT162b2-experienced mice.** One-month after the 4th dose, S-specific CD4+ and CD8+
 677 splenocytes (n=5/group) were characterized by a flow cytometry-based intracellular cytokine
 678 staining assay. All samples were stimulated separately with S peptide pools from the WT
 679 reference strain, Omicron BA.4/5, or XBB.1.5 sublineages. Graphs show the frequency of CD8+
 680 T cells expressing IFN- γ (A) and the frequency of CD4+ T cells expressing IFN- γ (B), IL-2 (C),
 681 TNF- α (D), IL-4 (E) and IL-10 (F) in response to stimulation with each peptide pool across

682 vaccine groups. Each symbol represents an individual animal; bars depict mean frequency \pm
683 SEM.
684

Peptide pool: Wuhan BA.4/5 XBB.1.5

685

686 **Fig. 6. T cell immune responses elicited by BNT162b2 variant-adapted vaccines**

687 **administered as a primary series in naive mice.** At one-month post-second dose (completion of
 688 primary series), S-specific T cells from fresh spleens (n=5) were measured by intracellular
 689 cytokine staining assay. All samples were stimulated separately with S peptide pools from the WT
 690 reference strain and the Omicron BA.4/5 and XBB.1.5 sublineages. Graphs show the frequency of
 691 CD8⁺ T cells expressing IFN- γ (A) and the frequency of CD4⁺ T cells expressing IFN- γ (B), IL-2
 692 (C), IL-4 (D), TNF- α (E) and IL-10 (F) in response to stimulation with each peptide pool across

693 vaccine groups. Each symbol represents an individual animal; bars depict mean frequency \pm

694 SEM.

695