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Abstract

Motivation: Characterization of regulatory elements in DNA sequence is a key task in

functional genomics. CTCF exhibits specific binding patterns in the genome of cancer

cells and has a non-canonical function to facilitate oncogenic transcription program by

cooperating with transcription factors bound at flanking distal regions. Identification of

sequence motifs from a broad genomic region surrounding cancer-specific CTCF binding

sites can help find active transcription factors in a cancer type. However, the long DNA

sequences without localization information makes it difficult to perform conventional

motif enrichment analysis.

Results: We present DNAResDualNet (DARDN), a computational method that

utilizes convolutional neural networks (CNNs) coupled with feature discovery using

DeepLIFT, for identifying DNA sequence features that can differentiate two sets of

lengthy DNA sequences. Evaluation on DNA sequences associated with CTCF binding

sites in T-cell acute lymphoblastic leukemia (T-ALL) and other cancer types

demonstrates DARDN’s ability in classifying DNA sequences surrounding

cancer-specific CTCF binding from control constitutive CTCF binding and identifying
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sequence motifs for transcription factors potentially active in each specific cancer type.

We identified motifs for potential oncogenic transcription factors in T-ALL, acute

myeloid leukemia (AML), breast cancer (BRCA), colorectal cancer (CRC), lung

adenocarcinoma (LUAD), and prostate cancer (PRAD). Our work demonstrates the

power of advanced machine learning and feature discovery approach in finding

biologically meaningful information from complex DNA sequence data.

Author summary

We present DNAResDualNet (DARDN), a deep learning model designed for identifying

DNA sequence motifs in long DNA sequences, particularly for revealing oncogenic

transcription factors in various cancers. Building on our previous work (Fang et al.,

Genome Biol. 2020), which uncovered the non-canonical role of cancer-specific CTCF

binding in oncogenesis, DARDN uses a dual convolutional neural network with residual

connections and the DeepLIFT method to discern complex patterns in DNA. We

successfully applied DARDN to identify unique sequence motifs in T-cell acute

lymphoblastic leukemia and other cancers like AML, BRCA, CRC, LUAD, and PRAD,

showcasing its capability in cancer genomics research. This work underscores the

potential of deep learning in functional genomics, especially in interpreting biological

data and discovering new insights in gene regulation and cancer genomics.

Introduction 1

Identification of cis-regulatory elements in the non-coding genome is a key task in 2

functional and regulatory genomics research. Active cis-regulatory elements usually 3

function as transcription factor (TF) binding sites, containing specific DNA sequence 4

recognized and bound by the TF(s) that regulate gene expression. Most TF binding 5

sites are located in distal enhancer regions in the genome that can be far away from 6

their regulatory target genes. This makes it difficult to identify regulatory sequence 7

motifs from a long DNA sequence. Distal enhancer-binding TFs interact with co-factors 8

to execute their regulatory functions. One such example is CCCTC-binding factor 9

(CTCF), a zinc finger protein that binds to DNA and can induce DNA looping, 10
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functioning by anchoring at topologically associating domain (TAD) boundaries and 11

blocking cross-domain interactions [1]. Disruption of individual CTCF binding in the 12

genome causing aberrant chromatin interaction and differential gene expression has 13

been observed in many cellular systems [2,3]. We previously showed that specific CTCF 14

binding patterns frequently occur in many cancer types, and such aberrant CTCF 15

binding events are induced by oncogenic TF binding at distal regions [4]. Therefore, the 16

wide genomic regions flanking cancer-specific CTCF binding sites should contain 17

sequence features for specific oncogenic TFs, and knowing the oncogenic factors is 18

important for understanding the mechanisms of cancer development. We aim to find 19

DNA sequence features enriched at genomic regions associated with cancer-specific 20

CTCF binding sites but not at regions near constitutive CTCF binding sites that exist 21

in most cell types. 22

Conventional TF motif search methods are not feasible for this problem because the 23

relative genomic location of the target oncogenic TF binding site relative to the 24

cancer-specific CTCF site is unknown and can be very far, and it varies across different 25

cancer-specific CTCF sites. Conventional DNA sequence motif search methods are not 26

feasible also because the search space is huge and without appropriate control sequences. 27

In fact, direct DNA sequence motif search in the gained sites was unable to yield any 28

motifs unambiguously enriched other than CTCF itself [4]. TF-binding ChIP-seq 29

data-based methods like BART [6] are potentially feasible but are limited to 30

pre-identified cis-regulatory element repertoire such as the union open chromatin 31

regions. Therefore, new computational methods need to be developed for tackling this 32

unique but important problem with significant biological meaning. 33

Advanced machine learning approaches such as deep convolutional neural networks 34

(CNN) have been popular for applications in genomics and cancer research [8–11]. In 35

addition to solving a classification problem using deep learning, we also focus on the 36

interpretation of the CNN model to make biologically meaningful discoveries. 37

Specifically, with a well-trained deep neural network classifier, one can use feature 38

discovery tools such as DeepLIFT (Deep Learning Important FeaTures) [12] to identify 39

features from the model that imply functionally important biological insights. Compared 40

with traditional bioinformatics algorithms, deep learning models are specifically suitable 41

for this task because of the complexity of the problem, i.e., ultra-long DNA sequences 42
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with a huge number of features and relatively rare cancer-specific CTCF binding events. 43

To address this problem, we introduce DNAResDualNet (DARDN), a computational 44

method that utilizes convolutional neural networks (CNNs) coupled with feature 45

discovery using DeepLIFT, to identify DNA sequence features enriched in a set of long 46

DNA sequences compared with another set of DNA sequences as control. DARDN trains 47

a pair of deep CNN models, alongside residual connections, to enhance classification 48

accuracy for extended input DNA sequences. It is designed to rely exclusively on DNA 49

sequences for training without integrating other data types, making it simple to train 50

and become versatile to be applied to similar sequence data from other biological 51

scenarios. We demonstrate the effectiveness of DARDN in finding the simulated 52

sequence motif from synthetic sequence data and finding the sequence motif for known 53

oncogenic TFs such as Notch1 for T-cell acute lymphoblastic leukemia (T-ALL) data. 54

We then applied DARDN to identify sequence motifs for potential oncogenic 55

transcription factors for acute myeloid leukemia (AML), breast cancer (BRCA), 56

colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate cancer (PRAD). 57

Materials and methods 58

0.1 Data and Its Representation 59

Genomic DNA sequences used in this study are from human hg38 genome version. 60

Foreground cancer-specific CTCF sites and constitutive CTCF sites data are from our 61

previous work [4], which identified cancer specific CTCF binding patterns by integrative 62

analysis of over 771 high-quality CTCF ChIP-seq datasets across a variety of different 63

human cell types including both normal and cancer [4]. For each of the six cancer types 64

included in this work, tens to thousands of cancer-type-specific CTCF binding sites are 65

identified in each cancer type, while 22,097 constitutive sites in the genome are 66

conserved across cell types. 67

To alleviate the problem of data imbalance between the 72 T-ALL-specific CTCF 68

sites and 22,097 constitutive CTCF sites, we performed data augmentation by reverse 69

complementing and shifting the gained sites. Specifically, we shift the original sequences 70

and their reverse complements to the left and to the right stochastically between 1 to 5 71
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base pairs (bps) (Figure 1a). 72

Each DNA sequence containing a CTCF binding site is then represented as a 73

one-hot encoding in order to be processed by the deep neural network model. The 74

matrix consisting of one-hot encoded DNAs is passed to a deep neural network to train 75

the model (Figure 1b). The dimension of the matrix is 4× L, where L is the length of 76

the DNA sequence. Hence, the model is flexible with DNA sequences with various 77

length. The model produces a binary prediction of whether there is a cancer-specific 78

CTCF binding site for each input sequence (0- or 1-labelled). We generated 10 kilo-base 79

(kb) genomic DNA sequence centered at each T-ALL-specific CTCF site as positive 80

signal with label 1 and those centered at constitutive CTCF sites with label 0 and 81

trained our model to classify any 10kb DNA sequence as either 0 or 1. 82

0.2 Evaluation Metrics 83

We use the Matthew’s correlation coefficient (MCC) to evaluate DARDN’s classification 84

accuracy for predicting CTCF gained versus constitutive sites. MCC measures the 85

correlation between the true labels and predicted labels, ranging from -1 to +1. A value 86

of +1 indicates perfect prediction, -1 indicates total disagreement between prediction 87

and truth, and 0 is the expected value for random guessing. MCC is calculated by 88

dividing the covariance of the true and predicted labels by the product of their standard 89

deviations, which is represented as: 90

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP is the number of true positives, TN is the number of true negatives, FP is 91

the number of false positives, and FN is the number of false negatives. 92

Using HOMER [7], we identified enriched motifs on CTCF gained sites in T-ALL, 93

guided by prior findings of oncogenic motifs. We evaluated DeepLIFT’s performance by 94

examining the ranking of the RBPJ motif, associated with an oncogene in T-ALL. For 95

other cancer types, we relied on literature to identify highly ranked oncogenic motifs. 96

Our pipeline was tested for robustness using varying input sequence lengths, sampling 97

gained sites, and sampling constitutive sites. 98
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2. Apply DeepLIFT.

3. Identify subsequences(
with highest DeepLIFT 

scores within gained 
sites.

1. Input one-hot 
encoded sequences to 

train model.

4. Input subsequences for 
motif enrichment analysis 

software such as HOMER.

a

b

c

d

Fig 1. Schematic of overall computational framework design. a. data augmentation:
original sequence, its left/right shifts, the reverse complement, and its left/right shifts.
b. DARDN Model: uses two deep convolutional networks to process a 2D one-hot
encoded sequence for binary classification. c. DeepLIFT is applied for sequence feature
selection. Subsequences with the highest moving average DeepLIFT scores are selected
for motif analysis. d. HOMER motif analysis result.

0.3 Model 99

Thanks to its exceptional capability in hierarchical feature extraction and the 100

characteristic of being location invariant, convolutional neural networks (CNNs) have 101

been used as a promising approach for generating informative latent feature maps as 102

well as for various tasks using DNA sequences [8–11,13–17]. However, while plain CNN 103

models are typically location-invariant and can be effective for certain types of DNA 104

sequences, we found that they are ineffective for our purposes, as shown in Table 1. 105

To tackle the limitations of plain CNN models, we have developed DARDN 106

(DNAResDualNet), a CNN-based model that is capable of learning of intricate 107

relationships among distant DNA sequences even in the existence of deep convolutional 108

layers. DARDN, as the name suggests, employs two CNNs with distinct initial kernel 109

sizes for DNA sequence classification and residual connections in it to preserve complex 110
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Model True Positives True Negatives False Positives False Negatives MCC
CNN 47 5067 31 62 0.5

DARDN 76 5108 2 21 0.87

Table 1. Evaluation on hold-out data consisting of 78 T-ALL-specific CTCF gained
sites and 5,129 constitutive CTCF sites of length 10,000 base pairs. The number of
hold-out gained sites includes augmented sites. A plain CNN model is unable to make
accurate classification due to class imbalance and sequence length while our model,
DARDN, can achieve significantly superior performance. MCC stands for Matthew’s
Correlation Coefficient.

relationships between distant DNA sequences. Having two input kernels of different 111

sizes leverages the variability in gene sequence lengths to enable the CNNs to learn 112

important features at different levels of granularity. We use 4 and 8 base pair input 113

kernel sizes, which are hyperparameters that may need to be optimized depending on 114

the input DNA sequences’ lengths and types. We have tried various different input 115

kernel sizes, and 4 and 8 base pair-long initial kernel sizes together worked well. 116

We compared the performance of models with one, two, and three deep CNN 117

networks, and found that all converged to similar classification performance. However, 118

models with one or two CNN networks converged faster than the model with three 119

networks due to having fewer parameters. Furthermore, models with two and three 120

networks produced significantly higher logits at the output neurons than the model with 121

a single deep convolutional network, suggesting higher confidence in their predictions. 122

Given the faster convergence and higher confidence of models with multiple CNN 123

networks, we chose to implement our DNA sequence classifier with two networks. The 124

two-channel CNN model yielded superior classification performance, demonstrating the 125

benefits of our approach for accurately classifying DNA sequences. 126

Furthermore, a skip (residual) connection [18] is established from the input of the 127

first CNN layer to the second non-linear activation to maintain important signals across 128

sequential convolutional layers. DARDN’s architecture is visualized in Figure 1b. 129

Finally, the binary classification prediction of gained and constitutive CTCF sites is 130

generated by merging the outputs from each deep CNN and passing them through a 131

fully connected layer. To train the DARDN model, the binary cross entropy (BCE) loss 132

is computed between the predicted probability of each sample being a CTCF gained site 133

pi and the true label yi for each input sequence i: 134
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BCELoss = −

1

N

N
∑

i=1

[yi · log(pi) + (1− yi) · log(1− pi)]

where N is the number of input sequences. By minimizing the binary cross entropy 135

loss, DARDN can learn to make accurate predictions on whether a CTCF site is gained 136

or constitutive. 137

In this work, we demonstrate the effectiveness of our model DARDN 138

(DNAResDualNet) in identifying oncogenic transcription factors (TFs) associated with 139

T cell lymphoblastic leukemia (T-ALL). Specifically, we show that DARDN is capable 140

of accurately identifying TFs that bind to known cancer-specific CTCF binding sites in 141

long DNA sequences. 142

Applying DeepLIFT and Motif Analysis 143

DeepLIFT requires a reference value, serving as a null input. It compares the differences 144

in output values obtained by running the actual and reference inputs. This difference is 145

allocated to each base pair through backward propagation, assigning input contribution 146

scores. The resulting scores reflect the extent to which each base pair is responsible for 147

the output difference from the reference. We randomly sampled 80% of the constitutive 148

sites and used the averaged frequency at each index as the reference value. In our 149

approach, we processed sites to be in the shape of 4× L, where 4 corresponds to the 150

four nucleotides and L represents the sequence length. Once we allocated contribution 151

scores to each base, we then performed gating to retrieve the specific nucleotide that 152

exists in the sequence at the intended location. 153

After obtaining DeepLIFT scores for each gained site, we applied a sliding window of 154

length w bps with a 1 base pair stride across the scores associated with each gained 155

CTCF site. Each base pair was assigned a DeepLIFT score, and w base pair 156

subsequences were assigned a score by averaging their individual base pair scores. The 157

sliding window method produces a total of L− w + 1 subsequences. We explored using 158

10 and 20 window sizes to determine the optimal size for identifying enriched motifs. 159

While the resulting motif enrichments varied slightly across the different window sizes, 160

ultimately decided to use w = 20 and 20 bp subsequences to use as HOMER input, as 161

this size yielded more superior results. This process of subsequence selection is 162
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demonstrated in Figure 1c. 163

After obtaining the list of subsequences and their corresponding DeepLIFT scores, 164

we filtered them for further analysis using motif enrichment software through two 165

approaches. The first approach is to select a fixed number of subsequences with either 166

the highest positive mean contribution scores for each gained site. The second approach 167

entails aggregating all subsequences from each gained site and then selecting a fixed 168

number of subsequences with the highest positive mean DeepLIFT scores. The first 169

approach may be more suitable when dominant oncogene occurrences around each 170

CTCF gained site are consistent, while the second approach may be more advantageous 171

when oncogene occurrences vary across CTCF gained sites. Although both approaches 172

are viable, we chose to implement the second approach and selected 1000 subsequences 173

with the highest positive scores. Those subsequences were fed into HOMER, with which 174

we perform known motif analysis using the findMotifsGenome.pl module and 200 base 175

pair search space. This resulted in the list of most highly enriched motifs, as 176

summarized in Figure 1d. 177

Results 178

Performance Evaluation through Simulation 179

To evaluate the validity of our method and DARDN’s classification ability in detecting 180

crucial features in DNA sequences, we conducted a preliminary test using 25,762 real 181

DNA sequences of length 10,000 base pairs (bps) without CTCF binding sites. We 182

replaced any occurrences of the RBPJ consensus sequence (CCTGGGAA) with a 183

random 8bp combination. Then, we inserted the RBPJ consensus sequence at ten 184

random locations in each of the 33% of the sites (25, 762× 0.33× 10 = 8500 sites). We 185

trained DARDN on the classification of RBPJ-inserted sequences and achieved 100% 186

accuracy on hold-out data. Subsequently, we used DeepLIFT to assign contribution 187

scores to each base pairs (bps) in the sequence. This approach allowed us to evaluate 188

the performance of our pipeline in accurately identifying inserted RBPJ sequences and 189

assigning relevant scores to each bp. 190

We first demonstrate the assignment of DeepLIFT scores to sequences that were 191
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c
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Fig 2. Evaluating the effectiveness of DARDN and motif discovery pipeline using
simulation. a. DeepLIFT scores for sites without RBPJ consensus sequence insertion. b.
DeepLIFT scores for sites containing 10 RBPJ consensus sequences per site, with red
dots marking the locations of the insertions. c. Highest average scoring peak for each
site in b. d. Sequence logo surrounding the highest peak from each RBPJ-inserted sites.

trained using DARDN without any RBPJ sites inserted. Since these sites were 192

randomly selected from actual DNA sequences without any specific criteria, the scores 193

do not exhibit any discernible pattern (Figure 2a). On the other hand, after DARDN 194

was trained to classify RBPJ-inserted sequences, it is evident that the DeepLIFT scores 195

at those particular locations with RBPJ insertions (indicated with red dots) are 196

significantly greater than those at other locations (Figure 2b). This provides a clear 197

evidence that DARDN and our score assignment work as expected. 198

Once the DeepLIFT score at each individual index is computed, we use a sliding 199

window to compute the average scores of the subsequences in the input sequences. 200

Specifically, the average score at index Si is computed using the formula 201

November 17, 2023 10/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567502doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567502
http://creativecommons.org/licenses/by/4.0/


1
w+1

∑i+w/2
i−w/2 Si, where w indicates the window size. Because the RBPJ consensus 202

sequence we inserted contains 8 bps (CCTGGGAA), for our simulation, we used w = 8. 203

In our primary experiments, we tested various values of w to optimize the window size 204

for motif enrichment identification. 205

Figure 2c shows the peak with the highest average DeepLIFT score for each plot in 206

Figure 2b, after re-indexing to center at 0. Lastly, in Figure 2d, we illustrate the 207

sequence logo generated by computing the Position Weight Matrix (PWM) for the 208

sequences that center at the highest peak at each RBPJ-inserted site. Evidently, the 209

inserted sequence of CCTGGGAA is displayed with the highest frequency in the center, 210

which further validates our pipeline. 211

Robustness Evaluation 212

To comprehensively evaluate the robustness of DARDN, we subjected it to four distinct 213

test conditions and observed the enrichment of RBPJ, which we noted in our previous 214

research as the most enriched motif for T-ALL [4]. The test conditions we considered 215

are 1) modifying subsequence lengths for HOMER input: this scenario involves 216

examining how changes in subsequence lengths influence motif rankings. This is 217

equivalent to the window size with which we compute the running average DeepLIFT 218

scores; 2) altering input sequence lengths: we explore how motif enrichment changes 219

with input sequences of various lengths, specifically 5,000, 10,000, and 20,000 base pairs 220

(bps); 3) sampling background control sequences from constitutive CTCF sites: this 221

entails studying the effect of sampling constitutive sites on motif rankings; 4) sampling 222

foreground sequences from cancer-specific CTCF sites: we investigate the impact on 223

motif rankings when gained sites are sampled. In our experiments, we carefully selected 224

150 most statistically significant T-ALL-specific CTCF gained sites and 22,097 225

constitutive CTCF sites, which were subsequently centered within the sequences. 226

In our investigation, we explored subsequence lengths ranging from 10 to 20 base 227

pairs (bps) and discovered that adopting a subsequence length of 20 bps consistently 228

yielded superior rankings for RBPJ, irrespective of the input sequence length (5kbps, 229

10kbps, or 20kbps). In Figure 4a, we present the percentile rank of RBPJ across various 230

combinations of input sequence length and subsequence length. The x-axis represents 231
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a b c

d e

Fig 3. The distribution of center-to-center distances between T-ALL-specific CTCF
sites and identified RBPJ sites was examined under various robustness tests. a-c. The
distributions when the input sequence lengths are 5k, 10k, 20k bps respectively. d. The
distribution obtained by independently sampling constitutive sites 5 times. This is the
aggregate distribution of the 5 sampling experiments. e. The distribution obtained by
independently sampling gained sites 5 times. This is the aggregate distribution of the 5
sampling experiments.

the sequence lengths of 5kbps, 10kbps, and 20kbps, denoted as “short,” “moderate,” 232

and “long,” respectively. 233

Using 10bp subsequences, RBPJ achieved the 91st percentile (3 out of 32 enriched 234

motifs) for the short input sequence length, the 97.3th percentile (7 out of 264 enriched 235

motifs) for the moderate input sequence length, and the 96.4th percentile (9 out of 264 236

enriched motifs) for the long input sequence length. On the other hand, when utilizing 237

20bp subsequences, RBPJ achieved the 99.7th percentile (1st out of 264 enriched motifs) 238

for the short input sequence length, 99.2th percentile (2nd rank among 264 enriched 239

motifs) for the moderate input sequence length, and 98.5th percentile (4th rank among 240

264 enriched motifs) for long input sequence length. Regarding the classification 241

accuracy, DARDN demonstrated a Matthews correlation coefficient (MCC) of 0.91 for 242

the short input sequence length, as well as 0.87 for both the moderate and long input 243

sequence lengths. 244

To further evaluate the robustness of DARDN, we conducted five samplings of the 245

background constitutive sites and five separate samplings of the foreground specific sites. 246

In each trial, we randomly selected 15,000 out of 22,097 (approximately 68%) 247

background constitutive sites and 72 out of 150 foreground specific sites. The 248
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performance of DARDN was individually evaluated on each set of sampled sites, and 249

the respective results are presented in Figure 4b. 250

a b

Fig 4. Evaluating the robustness of DARDN and our motif discovery pipeline under
varying conditions, such as subsequence length, input sequence length, sampling
constitutive CTCF, and sampling specific CTCF sites. Short, moderate, and long
indicate input sequence length of 5k, 10k, and 20k bps. a. Observing the impact of
subsequence length, ranging between 10bps and 20bps, on RBPJ rank. b. Observing
the impact of sampling constitutive and gained sites.

During one of the tests using sampled background constitutive sites (run 1 in Figure 251

4b), we observed a decline in the average rank of RBPJ compared to our previous trials 252

that involved the complete set of 22,097 constitutive sites. RBPJ achieved the following 253

percentiles and rankings in the five trials: 69 percentile (10th out of 32 enriched motifs), 254

97.3 percentile (7th out of 264 enriched motifs), 96.2 percentile (10th out of 264 255

enriched motifs), 92.1 percentile (21st out of 264 enriched motifs), and 94.7 percentile 256

(14th out of 264 enriched motifs). The corresponding MCC values for classification were 257

0.88, 0.92, 0.81, 0.80, and 0.84, respectively. This outcome was expected as reducing the 258

number of background constitutive sites not only diminishes the pool of negative 259

samples and also can weaken the robustness of DeepLIFT reference values. 260

For the first sampling of the foreground specific sites, we specifically sampled 72 261

most significant T-ALL-specific CTCF sites, measured by the specificity and the 262

enrichment of the occurrences. Samplings 2 through 5 involved random samplings of 72 263

sites from the top 150 gained sites. The MCC scores for classification and the rankings 264

of RBPJ for these trials were notably higher than those observed in the classification 265

involving sampled constitutive sites: 99.2nd percentile (2nd out of 264 enriched motifs), 266

98.9th percentile (3rd out of 264 enriched motifs), 98.1st percentile (5th out of 264 267

enriched motifs), 96.4th percentile (7th out of 264 enriched motifs), and 98.1st 268
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a b

Fig 5. Distribution of distances for the most enriched motifs for T-ALL. a. Violin plots
showing the distribution of individual motif’s distance to the CTCF center. b. Distance
distribution for the motifs in a after applying Gaussian smoothing.

percentile (3rd out of 264 enriched motifs). Both the classification accuracy as well as 269

the ranking of RBPJ reached the most significant values among the five sampling 270

experiments of the gained sites. 271

In Figure 3, we present the distributions of distances between each specific CTCF 272

site and enriched RBPJ site under the five test criteria. Figure 3a-c showcase the 273

distance variations for different input sequence lengths of 5k, 10k, and 20k bps, 274

respectively. Figure 3 d and e visualize the distances obtained by independently 275

sampling constitutive and gained sites five times. For any input sequence length, the 276

identified RBPJ sites may occur at any distance from the foreground specific CTCF 277

sites, suggesting that long-range interactions exist between cooperating transcription 278

factors and specific CTCF. 279

In Figure 5, we show the CTCF center to motif center distance distributions for the 280

most enriched motifs for T-ALL, including RBPJ. As shown in Figure 5a, individual 281

motif’s distances vary widely, while the median remains around from 3500 to 5000 bps 282

away from CTCF center. In Figure 5b, the distance distributions for the motifs in 283

Figure 5a are plotted using 1-D Gaussian smoothing. We do not observe a trend of close 284

genomic distance between the specific CTCF binding and identified motif sites for 285

transcription factor binding, indicating that the long-range interactions can occur at a 286

long distance through DNA looping. 287
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Application of DARDN to Diverse Cancer Types 288

To evaluate the adaptability of DARDN sequence feature identification method, we 289

applied them on five other cancer types where cancer-specific CTCF sites were 290

previously identified [4]: acute myeloid leukemia (AML), breast invasive carcinoma 291

(BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate 292

adenocarcinoma (PRAD), using the moderate input sequence length of 10kbps. 293

In all five cancer types, the motif for CTCF or CTCFL (a. k. a. BORIS, a paralog 294

of CTCF) are highly enriched near the CTCF center. As both the foreground and 295

background sequences are centered at specific or constitutive CTCF binding sites, 296

respectively, the enrichment of CTCF motif indicates additional CTCF occupancy near 297

these specific sites. This is consistent with the fact that CTCF binding exhibits a 298

clustered pattern in the genome to maintain the higher-order chromatin structure [5]. 299

Meanwhile, the relatively uniform distribution of the remaining motifs across the 300

sequence length shown in the Gaussian-smoothed line plots in Figures [6-10] in the 301

Appendix indicates potential long-range interactions between CTCF and other 302

transcription factors through looping structures. The full list of cancer-specific enriched 303

motifs are presented in Tables [2-6] in the Appendix. 304

Overall, this pattern of enrichment and distribution of different sequence motifs 305

surrounding cancer-specific CTCF sites suggests that the regulatory mechanisms 306

governing gene expression are specific to each cancer types and potentially involve in 307

the specific CTCF binding events to facilitate enhancer-promoter interactions for 308

oncogenic transcription factors to regulate their target genes. 309

Conclusion 310

This work presents DARDN, a novel deep learning computational method using dual 311

CNNs and DeepLIFT for identifying enriched motifs in long DNA sequences. DARDN 312

accurately classifies sequences surrounding cancer-specific vs constitutive CTCF sites. 313

DeepLIFT selects important subsequences for motif analysis. DARDN identified 314

simulated and known cancer motifs like RBPJ in T-ALL. Application to AML, BRCA, 315

CRC, LUAD, and PRAD revealed distinct motifs, implying cancer-specific regulation. 316

DARDN provides an effective framework combining deep learning and attribution for 317
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discovering functional sequence features from long genomic data without localization, 318

addressing a key challenge in distal regulation. Our versatile approach is broadly 319

applicable for mining insights from diverse biological sequences. DARDN represents a 320

powerful methodology leveraging machine learning and feature discovery for extracting 321

biological insights from complex genomic data. 322
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8. Gökcen Eraslan, Žiga Avsec, Julien Gagneur, Fabian J. Theis. Deep learning: new

computational modelling techniques for genomics. Nature Reviews Genetics, 20(7):

389-403, 2019.

November 17, 2023 16/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567502doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567502
http://creativecommons.org/licenses/by/4.0/


9. Jian Zhou, Olga G. Troyanskaya. Predicting effects of noncoding variants with

deep learning-based sequence model. Nature Methods, 12(10): 931-934, 2015.

10. Babak Alipanahi, Andrew Delong, Matthew T. Weirauch, Brendan J. Frey.

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep

learning. Nature Biotechnology, 33(8): 831-838, 2015.

11. Khoi A. Tran, Olga Kondrashova, Alexander Bradley, et al. Deep learning in

cancer diagnosis, prognosis and treatment selection. Genome Medicine, 13(1):152,

2021.

12. Avanti Shrikumar, Peyton Greenside, Anshul Kundaje. Learning Important

Features Through Propagating Activation Differences. arXiv preprint

arXiv:1704.02685, 2017.

13. David R. Kelley, Jasper Snoek, John L. Rinn. Basset: learning the regulatory

code of the accessible genome with deep convolutional neural networks. Genome

Research, 26(7): 990-999, 2016.
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Appendix

The DARDN pipeline was tested on five additional cancer types (AML, BRCA, CRC,

LUAD, and PRAD), and the most significantly enriched motifs are listed in Tables [2, 3,

4, 5, 6]. Unlike T-ALL, the most prominent oncogenes for some of these cancers are less

studied. However, as listed in detail in the Results section of this paper, we found

existing literature support for some of the identified motifs, such as PU.1 (SPI1) [19–22],

RUNX-related genes [21–24] and MYB gene family [22, 25–27] for AML, STAT1 [28],

STAT5 [29], ASCL1 [30], for BRCA, for CRC, AP1 [31] for LUAD, and FOXA1 [32–35]

and FOXP1 [36] for PRAD.

Figures [6-10] demonstrates the distribution of distances between the CTCF-center

and the motif site-center for the most significantly enriched motifs associated with

AML, BRCA, CRC, LUAD, and PRAD, complemented by the representation of each

motif’s sequence logos.
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Rank Motif p-value q-value (BH)
1 CTCF(Zf)/CD4+-CTCF(Barski et al.) 1E-111 < 1E-4
2 SpiB(ETS)/OCILY3-SPIB(GSE56857) 1E-67 < 1E-4
3 ELF5(ETS)/T47D-ELF5(GSE30407) 1E-55 < 1E-4
4 PU.1(ETS)/ThioMac-PU.1(GSE21512) 1E-54 < 1E-4
5 ETS1(ETS)/Jurkat-ETS1(GSE17954) 1E-46 < 1E-4
6 Fli1(ETS)/CD8-FLI(GSE20898) 1E-37 < 1E-4
7 BORIS(Zf)/K562-CTCFL(GSE32465) 1E-33 < 1E-4
8 ERG(ETS)/VCaP-ERG(GSE14097) 1E-30 < 1E-4
9 ETV1(ETS)/GIST48-ETV1(GSE22441) 1E-28 < 1E-4
10 PU.1-IRF(ETS:IRF)/Bcell-PU.1(GSE21512) 1E-28 < 1E-4
11 AMYB(HTH)/Testes-AMYB(GSE44588) 1E-28 < 1E-4
12 RUNX(Runt)/HPC7-Runx1(GSE22178) 1E-22 < 1E-4
13 RUNX1(Runt)/Jurkat-RUNX1(GSE29180) 1E-21 < 1E-4
14 RUNX2(Runt)/PCa-RUNX2(GSE33889) 1E-21 < 1E-4
15 EHF(ETS)/LoVo-EHF(GSE49402) 1E-19 < 1E-4
16 Elk4(ETS)/Hela-Elk4(GSE31477) 1E-18 < 1E-4
17 JunD(bZIP)/K562-JunD 1E-16 < 1E-4
18 EWS:ERG-fusion(ETS)/CADO ES1-

EWS:ERG(SRA014231)
1E-16 < 1E-4

19 ETS:E-box(ETS,bHLH)/HPC7-Scl(GSE22178) 1E-16 < 1E-4
20 MYB(HTH)/ERMYB-Myb-ChIPSeq(GSE22095) 1E-15 < 1E-4

Table 2. 20 most significantly enriched motifs in AML. BH q-values indicate the
Benjamini-Hochberg q-values, which are multiple comparison corrected. 1301 gained
sites.

Rank Motif p-value q-value (BH)
1 CTCF(Zf)/CD4+-CTCF(Barski et al.) 1E-319 < 1E-4
2 BORIS(Zf)/K562-CTCFL(GSE32465) 1E-318 < 1E-4
3 Tcf12(bHLH)/GM12878-Tcf12(GSE32465) 1E-39 < 1E-4
4 NeuroD1(bHLH)/Islet-NeuroD1(GSE30298) 1E-24 < 1E-4
5 Olig2(bHLH)/Neuron-Olig2(GSE30882) 1E-20 < 1E-4
6 MyoD(bHLH)/Myotube-MyoD(GSE21614) 1E-20 < 1E-4
7 Myf5(bHLH)/GM-Myf5(GSE24852) 1E-19 < 1E-4
8 SCL(bHLH)/HPC7-Scl(GSE13511) 1E-19 < 1E-4
9 EBF1(EBF)/Near-E2A(GSE21512) 1E-14 < 1E-4
10 Bcl6(Zf)/Liver-Bcl6(GSE31578) 1E-14 < 1E-4
11 Ap4(bHLH)/AML-Tfap4(GSE45738) 1E-14 < 1E-4
12 Atoh1(bHLH)/Cerebellum-Atoh1(GSE22111) 1E-14 < 1E-4
13 STAT1(Stat)/HelaS3-STAT1(GSE12782) 1E-14 < 1E-4
14 Tlx(NR)/NPC-H3K4me1(GSE16256) 1E-13 < 1E-4
15 Ptf1a(bHLH)/Panc1-Ptf1a(GSE47459) 1E-13 < 1E-4
16 STAT5(Stat)/mCD4+-Stat5(GSE12346) 1E-12 < 1E-4
17 Ascl1(bHLH)/NeuralTubes-Ascl1(GSE55840) 1E-12 < 1E-4
18 E2A(bHLH),near PU.1/Bcell-PU.1(GSE21512) 1E-12 < 1E-4
19 MyoG(bHLH)/C2C12-MyoG(GSE36024) 1E-11 < 1E-4
20 SPDEF(ETS)/VCaP-SPDEF(SRA014231) 1E-11 < 1E-4

Table 3. 20 most significantly enriched motifs in BRCA. BH q-values indicate the
Benjamini-Hochberg q-values, which are multiple comparison corrected. 1616 gained
sites.
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Rank Motif p-value q-value (BH)
1 Tcf3(HMG)/mES-Tcf3(GSE11724) 1E-19 < 1E-4
2 CTCF(Zf)/CD4+-CTCF(Barski et al.) 1E-17 < 1E-4
3 EWS:ERG-fusion(ETS)/CADO ES1-

EWS:ERG(SRA014231)
1E-14 < 1E-4

4 Stat3+il21(Stat)/CD4-Stat3(GSE19198) 1E-10 < 1E-4
5 BORIS(Zf)/K562-CTCFL(GSE32465) 1E-10 < 1E-4
6 EWS:FLI1-fusion(ETS)/SK N MC-

EWS:FLI1(SRA014231)
1E-10 < 1E-4

7 Elk4(ETS)/Hela-Elk4(GSE31477) 1E-09 < 1E-4
8 Elk1(ETS)/Hela-Elk1(GSE31477) 1E-09 < 1E-4
9 Fli1(ETS)/CD8-FLI(GSE20898) 1E-09 < 1E-4
10 ETV1(ETS)/GIST48-ETV1(GSE22441) 1E-09 < 1E-4
11 NF1:FOXA1(CTF,Forkhead)/LNCAP-

FOXA1(GSE27824)
1E-08 < 1E-4

12 Pit1+1bp(Homeobox)/GCrat-Pit1(GSE58009) 1E-08 < 1E-4
13 AP-2gamma(AP2)/MCF7-TFAP2C(GSE21234) 1E-08 < 1E-4
14 GABPA(ETS)/Jurkat-GABPa(GSE17954) 1E-08 < 1E-4
15 ETS(ETS)/Promoter 1E-08 < 1E-4
16 Tbet(T-box)/CD8-Tbet(GSE33802) 1E-07 < 1E-4
17 Ets1-distal(ETS)/CD4+-PolII(Barski et al.) 1E-07 < 1E-4
18 Sp1(Zf)/Promoter 1E-07 < 1E-4
19 PRDM1(Zf)/Hela-PRDM1(GSE31477) 1E-07 < 1E-4
20 ELF1(ETS)/Jurkat-ELF1(SRA014231) 1E-07 <1E-4

Table 4. 20 most significantly enriched motifs in CRC. BH q-values indicate the
Benjamini-Hochberg q-values, which are multiple comparison corrected. 377 gained
sites.

November 17, 2023 22/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567502doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567502
http://creativecommons.org/licenses/by/4.0/


Rank Motif p-value q-value (BH)
1 BORIS(Zf)/K562-CTCFL(GSE32465) 1E-56 < 1E-4
2 Jun-AP1(bZIP)/K562-cJun(GSE31477) 1E-38 < 1E-4
3 Fosl2(bZIP)/3T3L1-Fosl2(GSE56872) 1E-30 < 1E-4
4 Reverb(NR),DR2/RAW-Reverba.biotin(GSE45914) 1E-29 < 1E-4
5 AP-1(bZIP)/ThioMac-PU.1(GSE21512) 1E-27 < 1E-4
6 BATF(bZIP)/Th17-BATF(GSE39756) 1E-24 < 1E-4
7 Fra1(bZIP)/BT549-Fra1(GSE46166) 1E-23 < 1E-4
8 Usf2(bHLH)/C2C12-Usf2(GSE36030) 1E-17 < 1E-4
9 Atf3(bZIP)/GBM-ATF3(GSE33912) 1E-16 < 1E-4
10 MITF(bHLH)/MastCells-MITF(GSE48085) 1E-14 < 1E-4
11 Pit1(Homeobox)/GCrat-Pit1(GSE58009) 1E-13 < 1E-4
12 MafA(bZIP)/Islet-MafA(GSE30298) 1E-13 < 1E-4
13 PRDM9(Zf)/Testis-DMC1(GSE35498) 1E-13 < 1E-4
14 ERE(NR),IR3/MCF7-ERa(Unpublished) 1E-11 < 1E-4
15 Gata4(Zf)/Heart-Gata4(GSE35151) 1E-11 < 1E-4
16 Bach2(bZIP)/OCILy7-Bach2(GSE44420) 1E-10 < 1E-4
17 Gata1(Zf)/K562-GATA1(GSE18829) 1E-10 < 1E-4
18 Brachyury(T-box)/Mesoendoderm-Brachyury-ChIP-

exo(GSE54963)
1E-09 < 1E-4

19 Gata2(Zf)/K562-GATA2(GSE18829) 1E-09 < 1E-4
20 RUNX1(Runt)/Jurkat-RUNX1(GSE29180) 1E-08 < 1E-4

Table 5. 20 most significantly enriched motifs in LUAD. BH q-values indicate the
Benjamini-Hochberg q-values, which are multiple comparison corrected. 357 gained
sites.

Rank Motif p-value q-value (BH)
1 CTCF(Zf)/CD4+-CTCF(Barski et al.) 1E-135 < 1E-4
2 BORIS(Zf)/K562-CTCFL(GSE32465) 1E-72 < 1E-4
3 NF1:FOXA1(CTF,Forkhead)/LNCAP-

FOXA1(GSE27824)
1E-17 < 1E-4

4 STAT5(Stat)/mCD4+-Stat5(GSE12346) 1E-15 < 1E-4
5 Pit1(Homeobox)/GCrat-Pit1(GSE58009) 1E-14 < 1E-4
6 Pdx1(Homeobox)/Islet-Pdx1(SRA008281) 1E-14 < 1E-4
7 FOXP1(Forkhead)/H9-FOXP1(GSE31006) 1E-13 < 1E-4
8 AP-2gamma(AP2)/MCF7-TFAP2C(GSE21234) 1E-12 < 1E-4
9 EKLF(Zf)/Erythrocyte-Klf1(GSE20478) 1E-10 < 1E-4
10 Pit1+1bp(Homeobox)/GCrat-Pit1(GSE58009) 1E-09 < 1E-4
11 Maz(Zf)/HepG2-Maz(GSE31477) 1E-08 < 1E-4
12 RORgt(NR)/EL4-RORgt.Flag(GSE56019) 1E-08 < 1E-4
13 FXR(NR),IR1/Liver-FXR(Chong et al.) 1E-07 < 1E-4
14 STAT4(Stat)/CD4-Stat4(GSE22104) 1E-07 < 1E-4
15 EHF(ETS)/LoVo-EHF(GSE49402) 1E-07 < 1E-4
16 Pax7(Paired,Homeobox)/Myoblast-

Pax7(GSE25064)
1E-07 < 1E-4

17 Rbpj1/Panc1-Rbpj1(GSE47459) 1E-07 < 1E-4
18 EBF1(EBF)/Near-E2A(GSE21512) 1E-06 < 1E-4
19 NF-E2(bZIP)/K562-NFE2(GSE31477) 1E-06 < 1E-4
20 STAT1(Stat)/HelaS3-STAT1(GSE12782) 1E-06 < 1E-4

Table 6. 20 most significantly enriched motifs in PRAD. BH q-values indicate the
Benjamini-Hochberg q-values, which are multiple comparison corrected. 309 gained
sites.

November 17, 2023 23/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567502doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567502
http://creativecommons.org/licenses/by/4.0/


Fig 6. The distribution of center-to-center distances between cancer-specific CTCF
sites and sites of enriched motifs for AML. a. Violin plot for AML. b.
Gaussian-smoothed line plot for AML.

Fig 7. The distribution of center-to-center distances between cancer-specific CTCF
sites and sites of enriched motifs for BRCA. a. Violin plot for BRCA. b.
Gaussian-smoothed line plot for BRCA.
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Fig 8. The distribution of center-to-center distances between cancer-specific CTCF
sites and sites of enriched motifs for CRC. a. Violin plot for CRC. b.
Gaussian-smoothed line plot for CRC.

Fig 9. The distribution of center-to-center distances between cancer-specific CTCF
sites and sites of enriched motifs for LUAD. a. Violin plot for LUAD. b.
Gaussian-smoothed line plot for LUAD.

Fig 10. The distribution of center-to-center distances between cancer-specific CTCF
sites and sites of enriched motifs for PRAD. a. Violin plot for PRAD. b.
Gaussian-smoothed line plot for PRAD.
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