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Abstract

Motivation: Characterization of regulatory elements in DNA sequence is a key task in
functional genomics. CTCF exhibits specific binding patterns in the genome of cancer
cells and has a non-canonical function to facilitate oncogenic transcription program by
cooperating with transcription factors bound at flanking distal regions. Identification of
sequence motifs from a broad genomic region surrounding cancer-specific CTCF binding
sites can help find active transcription factors in a cancer type. However, the long DNA
sequences without localization information makes it difficult to perform conventional
motif enrichment analysis.

Results: We present DNAResDualNet (DARDN), a computational method that
utilizes convolutional neural networks (CNNs) coupled with feature discovery using
DeepLIFT, for identifying DNA sequence features that can differentiate two sets of
lengthy DNA sequences. Evaluation on DNA sequences associated with CTCF binding
sites in T-cell acute lymphoblastic leukemia (T-ALL) and other cancer types
demonstrates DARDN’s ability in classifying DNA sequences surrounding

cancer-specific CTCF binding from control constitutive CTCF binding and identifying
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sequence motifs for transcription factors potentially active in each specific cancer type.
We identified motifs for potential oncogenic transcription factors in T-ALL, acute
myeloid leukemia (AML), breast cancer (BRCA), colorectal cancer (CRC), lung
adenocarcinoma (LUAD), and prostate cancer (PRAD). Our work demonstrates the
power of advanced machine learning and feature discovery approach in finding

biologically meaningful information from complex DNA sequence data.

Author summary

We present DNAResDualNet (DARDN), a deep learning model designed for identifying
DNA sequence motifs in long DNA sequences, particularly for revealing oncogenic
transcription factors in various cancers. Building on our previous work (Fang et al.,
Genome Biol. 2020), which uncovered the non-canonical role of cancer-specific CTCF
binding in oncogenesis, DARDN uses a dual convolutional neural network with residual
connections and the DeepLIFT method to discern complex patterns in DNA. We
successfully applied DARDN to identify unique sequence motifs in T-cell acute
lymphoblastic leukemia and other cancers like AML, BRCA, CRC, LUAD, and PRAD,
showcasing its capability in cancer genomics research. This work underscores the
potential of deep learning in functional genomics, especially in interpreting biological

data and discovering new insights in gene regulation and cancer genomics.

Introduction

Identification of cis-regulatory elements in the non-coding genome is a key task in
functional and regulatory genomics research. Active cis-regulatory elements usually
function as transcription factor (TF) binding sites, containing specific DNA sequence
recognized and bound by the TF(s) that regulate gene expression. Most TF binding
sites are located in distal enhancer regions in the genome that can be far away from
their regulatory target genes. This makes it difficult to identify regulatory sequence
motifs from a long DNA sequence. Distal enhancer-binding TF's interact with co-factors
to execute their regulatory functions. One such example is CCCTC-binding factor

(CTCF), a zinc finger protein that binds to DNA and can induce DNA looping,
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functioning by anchoring at topologically associating domain (TAD) boundaries and
blocking cross-domain interactions [1]. Disruption of individual CTCF binding in the
genome causing aberrant chromatin interaction and differential gene expression has
been observed in many cellular systems [2}[3]. We previously showed that specific CTCF
binding patterns frequently occur in many cancer types, and such aberrant CTCF
binding events are induced by oncogenic TF binding at distal regions [4]. Therefore, the
wide genomic regions flanking cancer-specific CTCF binding sites should contain
sequence features for specific oncogenic TFs, and knowing the oncogenic factors is
important for understanding the mechanisms of cancer development. We aim to find
DNA sequence features enriched at genomic regions associated with cancer-specific
CTCF binding sites but not at regions near constitutive CTCF binding sites that exist
in most cell types.

Conventional TF motif search methods are not feasible for this problem because the
relative genomic location of the target oncogenic TF binding site relative to the
cancer-specific CTCF site is unknown and can be very far, and it varies across different

cancer-specific CTCF sites. Conventional DNA sequence motif search methods are not

feasible also because the search space is huge and without appropriate control sequences.

In fact, direct DNA sequence motif search in the gained sites was unable to yield any
motifs unambiguously enriched other than CTCF itself [4]. TF-binding ChIP-seq
data-based methods like BART [6] are potentially feasible but are limited to
pre-identified cis-regulatory element repertoire such as the union open chromatin
regions. Therefore, new computational methods need to be developed for tackling this
unique but important problem with significant biological meaning.

Advanced machine learning approaches such as deep convolutional neural networks
(CNN) have been popular for applications in genomics and cancer research [8-11]. In
addition to solving a classification problem using deep learning, we also focus on the
interpretation of the CNN model to make biologically meaningful discoveries.
Specifically, with a well-trained deep neural network classifier, one can use feature
discovery tools such as DeepLIFT (Deep Learning Important FeaTures) |12] to identify
features from the model that imply functionally important biological insights. Compared
with traditional bioinformatics algorithms, deep learning models are specifically suitable

for this task because of the complexity of the problem, i.e., ultra-long DNA sequences
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with a huge number of features and relatively rare cancer-specific CTCF binding events.

To address this problem, we introduce DNAResDualNet (DARDN), a computational
method that utilizes convolutional neural networks (CNNs) coupled with feature
discovery using DeepLIFT, to identify DNA sequence features enriched in a set of long
DNA sequences compared with another set of DNA sequences as control. DARDN trains
a pair of deep CNN models, alongside residual connections, to enhance classification
accuracy for extended input DNA sequences. It is designed to rely exclusively on DNA
sequences for training without integrating other data types, making it simple to train
and become versatile to be applied to similar sequence data from other biological
scenarios. We demonstrate the effectiveness of DARDN in finding the simulated
sequence motif from synthetic sequence data and finding the sequence motif for known
oncogenic TFs such as Notchl for T-cell acute lymphoblastic leukemia (T-ALL) data.
We then applied DARDN to identify sequence motifs for potential oncogenic
transcription factors for acute myeloid leukemia (AML), breast cancer (BRCA),

colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate cancer (PRAD).

Materials and methods

0.1 Data and Its Representation

Genomic DNA sequences used in this study are from human hg38 genome version.
Foreground cancer-specific CTCF sites and constitutive CTCF sites data are from our
previous work [4], which identified cancer specific CTCF binding patterns by integrative
analysis of over 771 high-quality CTCF ChIP-seq datasets across a variety of different
human cell types including both normal and cancer |4]. For each of the six cancer types
included in this work, tens to thousands of cancer-type-specific CTCF binding sites are
identified in each cancer type, while 22,097 constitutive sites in the genome are
conserved across cell types.

To alleviate the problem of data imbalance between the 72 T-ALL-specific CTCF
sites and 22,097 constitutive CTCF sites, we performed data augmentation by reverse
complementing and shifting the gained sites. Specifically, we shift the original sequences

and their reverse complements to the left and to the right stochastically between 1 to 5
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base pairs (bps) (Figure [Th).

Each DNA sequence containing a CTCF binding site is then represented as a
one-hot encoding in order to be processed by the deep neural network model. The
matrix consisting of one-hot encoded DNAs is passed to a deep neural network to train
the model (Figure ) The dimension of the matrix is 4 x L, where L is the length of
the DNA sequence. Hence, the model is flexible with DNA sequences with various
length. The model produces a binary prediction of whether there is a cancer-specific
CTCF binding site for each input sequence (0- or 1-labelled). We generated 10 kilo-base
(kb) genomic DNA sequence centered at each T-ALL-specific CTCF site as positive
signal with label 1 and those centered at constitutive CTCF sites with label 0 and

trained our model to classify any 10kb DNA sequence as either 0 or 1.

0.2 Evaluation Metrics

We use the Matthew’s correlation coefficient (MCC) to evaluate DARDN’s classification
accuracy for predicting CTCF gained versus constitutive sites. MCC measures the
correlation between the true labels and predicted labels, ranging from -1 to +1. A value
of 4+1 indicates perfect prediction, -1 indicates total disagreement between prediction
and truth, and 0 is the expected value for random guessing. MCC is calculated by
dividing the covariance of the true and predicted labels by the product of their standard

deviations, which is represented as:

TP xTN —-FP x FN

MCC =
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

where TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and FN is the number of false negatives.

Using HOMER 7], we identified enriched motifs on CTCF gained sites in T-ALL,
guided by prior findings of oncogenic motifs. We evaluated DeepLIFT’s performance by
examining the ranking of the RBPJ motif, associated with an oncogene in T-ALL. For
other cancer types, we relied on literature to identify highly ranked oncogenic motifs.
Our pipeline was tested for robustness using varying input sequence lengths, sampling

gained sites, and sampling constitutive sites.
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Fig 1. Schematic of overall computational framework design. a. data augmentation:
original sequence, its left/right shifts, the reverse complement, and its left/right shifts.
b. DARDN Model: uses two deep convolutional networks to process a 2D one-hot
encoded sequence for binary classification. c. DeepLIFT is applied for sequence feature
selection. Subsequences with the highest moving average DeepLIFT scores are selected
for motif analysis. d. HOMER motif analysis result.

0.3 Model

Thanks to its exceptional capability in hierarchical feature extraction and the
characteristic of being location invariant, convolutional neural networks (CNNs) have
been used as a promising approach for generating informative latent feature maps as
well as for various tasks using DNA sequences . However, while plain CNN
models are typically location-invariant and can be effective for certain types of DNA
sequences, we found that they are ineffective for our purposes, as shown in Table
To tackle the limitations of plain CNN models, we have developed DARDN
(DNAResDualNet), a CNN-based model that is capable of learning of intricate
relationships among distant DNA sequences even in the existence of deep convolutional
layers. DARDN, as the name suggests, employs two CNNs with distinct initial kernel

sizes for DNA sequence classification and residual connections in it to preserve complex
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Model True Positives | True Negatives | False Positives | False Negatives | MCC
CNN 47 5067 31 62 0.5
DARDN 76 5108 2 21 0.87

Table 1. Evaluation on hold-out data consisting of 78 T-ALL-specific CTCF gained
sites and 5,129 constitutive CTCEF sites of length 10,000 base pairs. The number of
hold-out gained sites includes augmented sites. A plain CNN model is unable to make
accurate classification due to class imbalance and sequence length while our model,
DARDN, can achieve significantly superior performance. MCC stands for Matthew’s
Correlation Coefficient.

relationships between distant DNA sequences. Having two input kernels of different
sizes leverages the variability in gene sequence lengths to enable the CNNs to learn
important features at different levels of granularity. We use 4 and 8 base pair input
kernel sizes, which are hyperparameters that may need to be optimized depending on
the input DNA sequences’ lengths and types. We have tried various different input
kernel sizes, and 4 and 8 base pair-long initial kernel sizes together worked well.

We compared the performance of models with one, two, and three deep CNN
networks, and found that all converged to similar classification performance. However,
models with one or two CNN networks converged faster than the model with three
networks due to having fewer parameters. Furthermore, models with two and three
networks produced significantly higher logits at the output neurons than the model with
a single deep convolutional network, suggesting higher confidence in their predictions.
Given the faster convergence and higher confidence of models with multiple CNN
networks, we chose to implement our DNA sequence classifier with two networks. The
two-channel CNN model yielded superior classification performance, demonstrating the
benefits of our approach for accurately classifying DNA sequences.

Furthermore, a skip (residual) connection [18] is established from the input of the
first CNN layer to the second non-linear activation to maintain important signals across
sequential convolutional layers. DARDN’s architecture is visualized in Figure [Ip.

Finally, the binary classification prediction of gained and constitutive CTCF sites is
generated by merging the outputs from each deep CNN and passing them through a
fully connected layer. To train the DARDN model, the binary cross entropy (BCE) loss
is computed between the predicted probability of each sample being a CTCF gained site

p; and the true label y; for each input sequence i:
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N
[yi - log(pi) + (1 — yi) - log(1 — p;)]
=1

BCELoss = —

2=

where N is the number of input sequences. By minimizing the binary cross entropy
loss, DARDN can learn to make accurate predictions on whether a CTCF site is gained
or constitutive.

In this work, we demonstrate the effectiveness of our model DARDN
(DNAResDualNet) in identifying oncogenic transcription factors (TFs) associated with
T cell lymphoblastic leukemia (T-ALL). Specifically, we show that DARDN is capable
of accurately identifying TF's that bind to known cancer-specific CTCF binding sites in

long DNA sequences.

Applying DeepLIFT and Motif Analysis

DeepLIFT requires a reference value, serving as a null input. It compares the differences
in output values obtained by running the actual and reference inputs. This difference is
allocated to each base pair through backward propagation, assigning input contribution
scores. The resulting scores reflect the extent to which each base pair is responsible for
the output difference from the reference. We randomly sampled 80% of the constitutive
sites and used the averaged frequency at each index as the reference value. In our
approach, we processed sites to be in the shape of 4 x L, where 4 corresponds to the
four nucleotides and L represents the sequence length. Once we allocated contribution
scores to each base, we then performed gating to retrieve the specific nucleotide that
exists in the sequence at the intended location.

After obtaining DeepLIFT scores for each gained site, we applied a sliding window of
length w bps with a 1 base pair stride across the scores associated with each gained
CTCEF site. Each base pair was assigned a DeepLIFT score, and w base pair
subsequences were assigned a score by averaging their individual base pair scores. The
sliding window method produces a total of L — w + 1 subsequences. We explored using
10 and 20 window sizes to determine the optimal size for identifying enriched motifs.
While the resulting motif enrichments varied slightly across the different window sizes,
ultimately decided to use w = 20 and 20 bp subsequences to use as HOMER input, as

this size yielded more superior results. This process of subsequence selection is
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demonstrated in Figure [Tk.

After obtaining the list of subsequences and their corresponding DeepLIFT scores,
we filtered them for further analysis using motif enrichment software through two
approaches. The first approach is to select a fixed number of subsequences with either
the highest positive mean contribution scores for each gained site. The second approach
entails aggregating all subsequences from each gained site and then selecting a fixed
number of subsequences with the highest positive mean DeepLIFT scores. The first
approach may be more suitable when dominant oncogene occurrences around each
CTCF gained site are consistent, while the second approach may be more advantageous
when oncogene occurrences vary across CTCF gained sites. Although both approaches
are viable, we chose to implement the second approach and selected 1000 subsequences
with the highest positive scores. Those subsequences were fed into HOMER, with which
we perform known motif analysis using the findMotifsGenome.pl module and 200 base
pair search space. This resulted in the list of most highly enriched motifs, as

summarized in Figure [IH.

Results

Performance Evaluation through Simulation

To evaluate the validity of our method and DARDN’s classification ability in detecting
crucial features in DNA sequences, we conducted a preliminary test using 25,762 real
DNA sequences of length 10,000 base pairs (bps) without CTCF binding sites. We
replaced any occurrences of the RBPJ consensus sequence (CCTGGGAA) with a
random 8bp combination. Then, we inserted the RBPJ consensus sequence at ten
random locations in each of the 33% of the sites (25,762 x 0.33 x 10 = 8500 sites). We
trained DARDN on the classification of RBPJ-inserted sequences and achieved 100%
accuracy on hold-out data. Subsequently, we used DeepLIFT to assign contribution
scores to each base pairs (bps) in the sequence. This approach allowed us to evaluate
the performance of our pipeline in accurately identifying inserted RBPJ sequences and
assigning relevant scores to each bp.

We first demonstrate the assignment of DeepLIFT scores to sequences that were
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Fig 2. Evaluating the effectiveness of DARDN and motif discovery pipeline using
simulation. a. DeepLIFT scores for sites without RBPJ consensus sequence insertion. b.
DeepLIFT scores for sites containing 10 RBPJ consensus sequences per site, with red
dots marking the locations of the insertions. c. Highest average scoring peak for each
site in b. d. Sequence logo surrounding the highest peak from each RBPJ-inserted sites.

trained using DARDN without any RBPJ sites inserted. Since these sites were
randomly selected from actual DNA sequences without any specific criteria, the scores
do not exhibit any discernible pattern (Figure ) On the other hand, after DARDN
was trained to classify RBPJ-inserted sequences, it is evident that the DeepLIFT scores
at those particular locations with RBPJ insertions (indicated with red dots) are
significantly greater than those at other locations (Figure ) This provides a clear
evidence that DARDN and our score assignment work as expected.

Once the DeepLIFT score at each individual index is computed, we use a sliding
window to compute the average scores of the subsequences in the input sequences.

Specifically, the average score at index S; is computed using the formula
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i+w/2 .1 . .
%ﬂ Zii% S;, where w indicates the window size. Because the RBPJ consensus

sequence we inserted contains 8 bps (CCTGGGAA), for our simulation, we used w = 8.

In our primary experiments, we tested various values of w to optimize the window size
for motif enrichment identification.

Figure [2c shows the peak with the highest average DeepLIFT score for each plot in
Figure 2b, after re-indexing to center at 0. Lastly, in Figure 2, we illustrate the
sequence logo generated by computing the Position Weight Matrix (PWM) for the
sequences that center at the highest peak at each RBPJ-inserted site. Evidently, the
inserted sequence of CCTGGGAA is displayed with the highest frequency in the center,

which further validates our pipeline.

Robustness Evaluation

To comprehensively evaluate the robustness of DARDN, we subjected it to four distinct
test conditions and observed the enrichment of RBPJ, which we noted in our previous
research as the most enriched motif for T-ALL [4]. The test conditions we considered
are 1) modifying subsequence lengths for HOMER input: this scenario involves
examining how changes in subsequence lengths influence motif rankings. This is
equivalent to the window size with which we compute the running average DeepLIFT
scores; 2) altering input sequence lengths: we explore how motif enrichment changes
with input sequences of various lengths, specifically 5,000, 10,000, and 20,000 base pairs
(bps); 3) sampling background control sequences from constitutive CTCF sites: this
entails studying the effect of sampling constitutive sites on motif rankings; 4) sampling
foreground sequences from cancer-specific CTCF sites: we investigate the impact on
motif rankings when gained sites are sampled. In our experiments, we carefully selected
150 most statistically significant T-ALL-specific CTCF gained sites and 22,097
constitutive CTCF sites, which were subsequently centered within the sequences.

In our investigation, we explored subsequence lengths ranging from 10 to 20 base
pairs (bps) and discovered that adopting a subsequence length of 20 bps consistently
yielded superior rankings for RBPJ, irrespective of the input sequence length (5kbps,
10kbps, or 20kbps). In Figure , we present the percentile rank of RBPJ across various

combinations of input sequence length and subsequence length. The x-axis represents

November 17, 2023

115

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231


https://doi.org/10.1101/2023.11.17.567502
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.17.567502; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

a b [

RBPJ Distances from CTCF Center for Sampled Length/short Sites. RBPJ Distances from CTCF Center for Sampled Length/moderate Sites. RBPJ Distances from CTCF Center for Sampled Length/long Sites.

15

Intersections between CTCF ar
= NN @
o o 3 3% 8
Intersections between CTCF and RBPJ
IS & Y m
° 3 & 3 3
Intersections between CTCF and RBPJ
o N & o © 3 R B
||
I
I

500 1000 1500 2000 2500 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000
Distances between CTCF center and motif center Distances between CTCF center and motif center Distances between CTCF center and motif center

°

e
RBPJ Distances from CTCF Center for Sampled Constitutive Sites. RBPJ Distances from CTCF Center for Sampled Gained Sites.

OIL.L_I.. - Jhﬁu

1000 2000 3000 4000 5000 3000 4000 5000
Distances between CTCF center and motif center Distances between CTCF center and motif center

g 160

R
3

g
© 140

g

5
& 120
g

< 100

a
8

IS =
& 8
N @
8 8

3

Intersections betweer
2
28
Intersections between CTCF and RBPJ
S
&

N
8

°
o

Fig 3. The distribution of center-to-center distances between T-ALL-specific CTCF
sites and identified RBPJ sites was examined under various robustness tests. a-c. The
distributions when the input sequence lengths are 5k, 10k, 20k bps respectively. d. The
distribution obtained by independently sampling constitutive sites 5 times. This is the
aggregate distribution of the 5 sampling experiments. e. The distribution obtained by
independently sampling gained sites 5 times. This is the aggregate distribution of the 5
sampling experiments.

the sequence lengths of 5kbps, 10kbps, and 20kbps, denoted as “short,” “moderate,”
and “long,” respectively.

Using 10bp subsequences, RBPJ achieved the 91st percentile (3 out of 32 enriched
motifs) for the short input sequence length, the 97.3th percentile (7 out of 264 enriched
motifs) for the moderate input sequence length, and the 96.4th percentile (9 out of 264
enriched motifs) for the long input sequence length. On the other hand, when utilizing
20bp subsequences, RBPJ achieved the 99.7th percentile (1st out of 264 enriched motifs)
for the short input sequence length, 99.2th percentile (2nd rank among 264 enriched
motifs) for the moderate input sequence length, and 98.5th percentile (4th rank among
264 enriched motifs) for long input sequence length. Regarding the classification
accuracy, DARDN demonstrated a Matthews correlation coefficient (MCC) of 0.91 for
the short input sequence length, as well as 0.87 for both the moderate and long input
sequence lengths.

To further evaluate the robustness of DARDN, we conducted five samplings of the

background constitutive sites and five separate samplings of the foreground specific sites.

In each trial, we randomly selected 15,000 out of 22,097 (approximately 68%)

background constitutive sites and 72 out of 150 foreground specific sites. The
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performance of DARDN was individually evaluated on each set of sampled sites, and
the respective results are presented in Figure [p.

a b

Subsequence Length Sample Sites
100 100

90 90
80 80
70 70
60 60

50 50

Percentile Rank
Percentile Rank

40 40
30 30
20 20

10 10

0
Short Moderate Long run 1 run 2 run 3 run 4 run5
Subsequence Length Subsequence Length
. 10 20 mmm Constitutive ~ Wwm Gained

Fig 4. Evaluating the robustness of DARDN and our motif discovery pipeline under
varying conditions, such as subsequence length, input sequence length, sampling
constitutive CTCF, and sampling specific CTCF sites. Short, moderate, and long
indicate input sequence length of 5k, 10k, and 20k bps. a. Observing the impact of
subsequence length, ranging between 10bps and 20bps, on RBPJ rank. b. Observing
the impact of sampling constitutive and gained sites.

During one of the tests using sampled background constitutive sites (run 1 in Figure
), we observed a decline in the average rank of RBPJ compared to our previous trials
that involved the complete set of 22,097 constitutive sites. RBPJ achieved the following
percentiles and rankings in the five trials: 69 percentile (10th out of 32 enriched motifs),
97.3 percentile (7th out of 264 enriched motifs), 96.2 percentile (10th out of 264
enriched motifs), 92.1 percentile (21st out of 264 enriched motifs), and 94.7 percentile
(14th out of 264 enriched motifs). The corresponding MCC values for classification were
0.88, 0.92, 0.81, 0.80, and 0.84, respectively. This outcome was expected as reducing the
number of background constitutive sites not only diminishes the pool of negative
samples and also can weaken the robustness of DeepLIFT reference values.

For the first sampling of the foreground specific sites, we specifically sampled 72
most significant T-ALL-specific CTCF sites, measured by the specificity and the
enrichment of the occurrences. Samplings 2 through 5 involved random samplings of 72
sites from the top 150 gained sites. The MCC scores for classification and the rankings
of RBPJ for these trials were notably higher than those observed in the classification
involving sampled constitutive sites: 99.2nd percentile (2nd out of 264 enriched motifs),
98.9th percentile (3rd out of 264 enriched motifs), 98.1st percentile (5th out of 264

enriched motifs), 96.4th percentile (7th out of 264 enriched motifs), and 98.1st
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Fig 5. Distribution of distances for the most enriched motifs for T-ALL. a. Violin plots
showing the distribution of individual motif’s distance to the CTCF center. b. Distance
distribution for the motifs in a after applying Gaussian smoothing.

percentile (3rd out of 264 enriched motifs). Both the classification accuracy as well as
the ranking of RBPJ reached the most significant values among the five sampling
experiments of the gained sites.

In Figure[3] we present the distributions of distances between each specific CTCF
site and enriched RBPJ site under the five test criteria. Figure [3h-c showcase the
distance variations for different input sequence lengths of 5k, 10k, and 20k bps,
respectively. Figure[3]d and e visualize the distances obtained by independently
sampling constitutive and gained sites five times. For any input sequence length, the
identified RBPJ sites may occur at any distance from the foreground specific CTCF
sites, suggesting that long-range interactions exist between cooperating transcription
factors and specific CTCEF.

In Figure [5, we show the CTCF center to motif center distance distributions for the
most enriched motifs for T-ALL, including RBPJ. As shown in Figure [Bh, individual
motif’s distances vary widely, while the median remains around from 3500 to 5000 bps
away from CTCF center. In Figure [Bb, the distance distributions for the motifs in
Figure pp are plotted using 1-D Gaussian smoothing. We do not observe a trend of close
genomic distance between the specific CTCF binding and identified motif sites for
transcription factor binding, indicating that the long-range interactions can occur at a

long distance through DNA looping.
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Application of DARDN to Diverse Cancer Types

To evaluate the adaptability of DARDN sequence feature identification method, we
applied them on five other cancer types where cancer-specific CTCF sites were
previously identified [4]: acute myeloid leukemia (AML), breast invasive carcinoma
(BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate
adenocarcinoma (PRAD), using the moderate input sequence length of 10kbps.

In all five cancer types, the motif for CTCF or CTCFL (a. k. a. BORIS, a paralog
of CTCF) are highly enriched near the CTCF center. As both the foreground and
background sequences are centered at specific or constitutive CTCF binding sites,
respectively, the enrichment of CTCF motif indicates additional CTCF occupancy near
these specific sites. This is consistent with the fact that CTCF binding exhibits a
clustered pattern in the genome to maintain the higher-order chromatin structure [5].

Meanwhile, the relatively uniform distribution of the remaining motifs across the
sequence length shown in the Gaussian-smoothed line plots in Figures in the
Appendix indicates potential long-range interactions between CTCF and other
transcription factors through looping structures. The full list of cancer-specific enriched
motifs are presented in Tables in the Appendix.

Overall, this pattern of enrichment and distribution of different sequence motifs
surrounding cancer-specific CTCF sites suggests that the regulatory mechanisms
governing gene expression are specific to each cancer types and potentially involve in
the specific CTCF binding events to facilitate enhancer-promoter interactions for

oncogenic transcription factors to regulate their target genes.

Conclusion

This work presents DARDN;, a novel deep learning computational method using dual
CNNs and DeepLIFT for identifying enriched motifs in long DNA sequences. DARDN
accurately classifies sequences surrounding cancer-specific vs constitutive CTCF sites.
DeepLIFT selects important subsequences for motif analysis. DARDN identified
simulated and known cancer motifs like RBPJ in T-ALL. Application to AML, BRCA,
CRC, LUAD, and PRAD revealed distinct motifs, implying cancer-specific regulation.

DARDN provides an effective framework combining deep learning and attribution for
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discovering functional sequence features from long genomic data without localization,
addressing a key challenge in distal regulation. Our versatile approach is broadly
applicable for mining insights from diverse biological sequences. DARDN represents a
powerful methodology leveraging machine learning and feature discovery for extracting

biological insights from complex genomic data.
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Appendix

The DARDN pipeline was tested on five additional cancer types (AML, BRCA, CRC,
LUAD, and PRAD), and the most significantly enriched motifs are listed in Tables
@. Unlike T-ALL, the most prominent oncogenes for some of these cancers are less
studied. However, as listed in detail in the Results section of this paper, we found
existing literature support for some of the identified motifs, such as PU.1 (SPI1) [19-22],
RUNX-related genes [21}H24] and MYB gene family [22,25-27] for AML, STAT1 [28],
STATS5 [29], ASCL1 [30], for BRCA, for CRC, AP1 [31] for LUAD, and FOXA1 [3235]
and FOXP1 [36] for PRAD.

Figures demonstrates the distribution of distances between the CTCF-center
and the motif site-center for the most significantly enriched motifs associated with
AML, BRCA, CRC, LUAD, and PRAD, complemented by the representation of each

motif’s sequence logos.
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Rank Motif p-value | g-value (BH)
1 CTCF(Zf)/CD4+-CTCF(Barski et al.) 1E-111 < 1E4
2 SpiB(ETS)/OCILY 3-SPIB(GSE56857) 1E-67 < 1E-4
3 ELF5(ETS)/T47D-ELF5(GSE30407) 1E-55 < 1E-4
4 PU.1(ETS),/ThioMac-PU.1(GSE21512) 1E-54 < 1E4
5 ETS1(ETS)/Jurkat-ETS1(GSE17954) 1E-46 < 1E4
6 Flil(ETS)/CD8-FLI(GSE20898) 1E-37 < 1E-4
7 BORIS(Zf) /K562-CTCFL(GSE32465) 1E-33 < 1E-4
8 ERG(ETS)/VCaP-ERG(GSE14097) 1E-30 < 1E-4
9 ETV1(ETS)/GIST48-ETV1(GSE22441) 1E-28 < 1E4
10 PU.1-IRF(ETS:IRF)/Bcell-PU.1(GSE21512) 1E-28 < 1E-4
11 AMYB(HTH)/Testes-AMYB(GSE44588) 1E-28 < 1E4
12 RUNX(Runt) /HPC7-Runx1(GSE22178) 1E-22 < 1E-4
13 RUNX1(Runt) /Jurkat- RUNX1(GSE29180) 1E-21 < 1E4
14 RUNX2(Runt)/PCa-RUNX2(GSE33889) 1E-21 < 1E-4
15 EHF(ETS)/LoVo-EHF (GSE49402) 1E-19 < 1E-4
16 Elk4(ETS)/Hela-Elk4(GSE31477) 1E-18 < 1E-4
17 JunD(bZIP)/K562-JunD 1E-16 < 1E-4
18 EWS:ERG-fusion(ETS)/CADO_ES1- 1E-16 < 1E4

EWS:ERG(SRA014231)
19 ETS:E-box(ETS,bHLH)/HPC7-Scl(GSE22178) 1E-16 < 1E-4
20 MYB(HTH)/ERMYB-Myb-ChIPSeq(GSE22095) 1E-15 < 1E-4

Table 2. 20 most significantly enriched motifs in AML. BH g-values indicate the
Benjamini-Hochberg g-values, which are multiple comparison corrected. 1301 gained

sites.

Rank Motif p-value | g-value (BH)
1 CTCF(Zf)/CD4+-CTCF(Barski et al.) 1E-319 < 1E4
2 BORIS(Zf) /K562-CTCFL(GSE32465) 1E-318 < 1E-4
3 Tef12(bHLH)/GM12878-Tef12(GSE32465) 1E-39 < 1E4
4 NeuroD1(bHLH)/Islet-NeuroD1(GSE30298) 1E-24 < 1E-4
5 Olig2(bHLH) /Neuron-Olig2(GSE30882) 1E-20 < 1E-4
6 MyoD(bHLH)/Myotube-MyoD(GSE21614) 1E-20 < 1E-4
7 Myf5(bHLH) /GM-Myf5(GSE24852) 1E-19 < 1E-4
8 SCL(bHLH)/HPC7-Scl(GSE13511) 1E-19 < 1E4
9 EBF1(EBF)/Near-E2A(GSE21512) 1E-14 < 1E4
10 Bcl6(Zf) /Liver-Bel6(GSE31578) 1E-14 < 1E4
11 Ap4(bHLH)/AML-Tfap4(GSE45738) 1E-14 < 1E4
12 Atoh1(bHLH)/Cerebellum-Atoh1(GSE22111) 1E-14 < 1E4
13 STAT1(Stat)/HelaS3-STAT1(GSE12782) 1E-14 < 1E4
14 Tlx(NR)/NPC-H3K4mel (GSE16256) 1E-13 < 1E4
15 Ptfla(bHLH)/Pancl-Ptfla(GSEA7459) 1E-13 < 1E4
16 STATS5(Stat) /mCD4+-Stat5(GSE12346) 1E-12 < 1E4
17 Ascll(bHLH) /NeuralTubes-Ascll(GSE55840) 1E-12 < 1E4
18 E2A (bHLH),near_PU.1/Beell- PU.1(GSE21512) 1E-12 < 1E4
19 MyoG(bHLH)/C2C12-MyoG (GSE36024) 1E-11 < 1E4
20 SPDEF(ETS)/VCaP-SPDEF(SRA014231) 1E-11 < 1E-4

Table 3. 20 most significantly enriched motifs in BRCA. BH g-values indicate the
Benjamini-Hochberg g-values, which are multiple comparison corrected. 1616 gained

sites.
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Rank Motif p-value | g-value (BH)
1 Tcf3(HMG)/mES-Tcf3(GSEL1724) 1E-19 < 1E-4
2 CTCF(Zf)/CD4+-CTCF (Barski et al.) 1E-17 < 1E4
3 EWS:ERG-fusion(ETS)/CADO_ESI- 1E-14 < 1E4

EWS:ERG(SRA014231)
4 Stat3-+il21(Stat)/CD4-Stat3(GSE19198) 1E-10 < 1E4
5 BORIS(Zf) /K562-CTCFL(GSE32465) 1E-10 < 1E4
6 EWS:FLI1-fusion(ETS)/SK_N_MC- 1E-10 < 1E-4
EWS:FLI1(SRA014231)
7 Elk4(ETS)/Hela-Elk4(GSE31477) 1E-09 < 1E4
8 Elk1(ETS)/Hela-Elk1(GSE31477) 1E-09 < 1E-4
9 Flil(ETS)/CD8-FLI(GSE20898) 1E-09 < 1E-4
10 ETV1(ETS)/GIST48-ETV1(GSE22441) 1E-09 < 1E4
11 NF1:FOXA1(CTF,Forkhead)/LNCAP- 1E-08 < 1E-4
FOXA1(GSE27824)
12 Pit1+1bp(Homeobox)/GCrat-Pit1(GSE58009) 1E-08 < 1E4
13 AP-2gamma(AP2)/MCF7-TFAP2C(GSE21234) | 1E-08 < 1E-4
14 GABPA(ETS)/Jurkat-GABPa(GSE17954) 1E-08 < 1E-4
15 ETS(ETS)/Promoter 1E-08 < 1E-4
16 Thet(T-box)/CD8-Thet(GSE33802) 1E-07 < 1E-4
17 Etsl-distal(ETS)/CD4+-PollI(Barski et al.) 1E-07 < 1E4
18 Sp1(Zf)/Promoter 1E-07 < 1E4
19 PRDM1(Zf)/Hela-PRDM1(GSE31477) 1E-07 < 1E-4
20 ELF1(ETS)/Jurkat-ELF1(SRA014231) 1E-07 <1E-4

Table 4. 20 most significantly enriched motifs in CRC. BH g-values indicate the
Benjamini-Hochberg g-values, which are multiple comparison corrected. 377 gained

sites.
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Rank Motif p-value | g-value (BH)
1 BORIS(Zf) /K562-CTCFL(GSE32465) 1E-56 < 1E4
2 Jun-AP1(bZIP)/K562-cJun(GSE31477) 1E-38 < 1E-4
3 Fos2(bZIP)/3T3L1-Fosl2(GSE56872) 1E-30 < 1E-4
4 Reverb(NR),DR2/RAW-Reverba.biotin(GSE45914) | 1E-29 < 1E4
5 AP-1(bZIP)/ThioMac-PU.1(GSE21512) 1E-27 < 1E4
6 BATF(bZIP)/Th17-BATF(GSE39756) 1E-24 < 1E-4
7 Fral(bZIP)/BT549-Fral(GSE46166) 1E-23 < 1E-4
8 Usf2(bHLH) /C2C12-Usf2(GSE36030) 1E-17 < 1E4
9 Atf3(bZIP)/GBM-ATF3(GSE33912) 1E-16 < 1E-4
10 MITF (bHLH) /MastCells-MITF (GSE48085) 1E-14 < 1E4
11 Pit1(Homeobox)/GCrat-Pit1(GSE58000) 1E-13 < 1E-4
12 MafA (bZIP)/Islet-MafA (GSE30298) 1E-13 < 1E4
13 PRDMO(Zf) / Testis- DMC1(GSE35498) 1E-13 < 1E-4
14 ERE(NR),IR3/MCF7-ERa(Unpublished) 1E-11 < 1E-4
15 Gata4(Zf) /Heart-Gata4(GSE35151) 1E-11 < 1E-4
16 Bach2(bZIP) /OCILy7-Bach2(GSE44420) 1E-10 < 1E4
17 Gatal(Zf) /K562-GATA1(GSE18829) 1E-10 < 1E4
18 | Brachyury(T-box)/Mesoendoderm-Brachyury-ChIP- | 1E-09 < 1E4

exo(GSE54963)
19 Gata2(Zf) /K562-GATA2(GSE18829) 1E-09 < 1E-4
20 RUNX1(Runt)/Jurkat-RUNX1(GSE29180) 1E-08 < 1E4

Table 5. 20 most significantly enriched motifs in LUAD. BH g-values indicate the
Benjamini-Hochberg g-values, which are multiple comparison corrected. 357 gained

sites.

Rank Motif p-value | g-value (BH)
1 CTCF(Zf)/CD4+-CTCF (Barski et al.) 1E-135 < 1E-4
2 BORIS(Zf) /K562-CTCFL(GSE32465) 1E-72 < 1E-4
3 NF1:FOXA1(CTF,Forkhead) /LNCAP- 1E-17 < 1E4

FOXA1(GSE27824)
4 STAT5(Stat) /mCDA4-+Stat5(GSE12346) 1E-15 < 1E4
5 Pit1(Homeobox)/GCrat-Pit1(GSE58009) 1E-14 < 1E-4
6 Pdx1(Homeobox)/Islet-Pdx1(SRA008281) 1E-14 < 1E-4
7 FOXP1(Forkhead) /H9-FOXP1(GSE31006) 1E-13 < 1E-4
8 AP-2gamma(AP2)/MCF7-TFAP2C(GSE21234) | 1E-12 < 1E4
9 EKLF(Zf)/Erythrocyte-KIf1 (GSE20478) 1E-10 < 1E-4
10 Pit1+1bp(Homeobox)/GCrat-Pit1(GSE58009) 1E-09 < 1E-4
11 Maz(Zf) /HepG2-Maz(GSE31477) 1E-08 < 1E-4
12 RORgt(NR)/EL4-RORgt. Flag(GSE56019) 1E-08 < 1E4
13 FXR(NR),IR1/Liver-FXR(Chong et al.) 1E-07 < 1E4
14 STAT4(Stat)/CD4-Stat4(GSE22104) 1E-07 < 1E4
15 EHF(ETS)/LoVo-EHF (GSE49402) 1E-07 < 1E4
16 Pax7(Paired,Homeobox) /Myoblast- 1E-07 < 1E-4
Pax7(GSE25064)
17 Rbpjl/Pancl-Rbpjl1(GSE47459) 1E-07 < 1E-4
18 EBF1(EBF)/Near-E2A(GSE21512) 1E-06 < 1E4
19 NF-E2(bZIP) /K562-NFE2(GSE31477) 1E-06 < 1E4
20 STAT1(Stat)/HelaS3-STAT1(GSE12782) 1E-06 < 1E4

Table 6. 20 most significantly enriched motifs in PRAD. BH g-values indicate the
Benjamini-Hochberg g-values, which are multiple comparison corrected. 309 gained

sites.
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