
1 

Journal name: Ecological Applications 1 

Manuscript type: Article  2 

Manuscript title: Multi-Factor Coral Disease Risk Forecasting for Early Warning and 3 

Management 4 

Author Names: *Jamie M Caldwell1,2, Gang Liu3, Erick Geiger3,4, Scott F Heron5, C Mark 5 

Eakin6, Jacqueline De La Cour3,4, Austin Greene1,7, Laurie Raymundo8, Jen Dryden9, Audrey 6 

Schlaff 9, Jessica S Stella9, Tye L Kindinger10, Courtney S Couch11,10, Douglas Fenner12, 7 

Whitney Hoot13, Derek Manzello3, and Megan J Donahue1. 8 

1. Hawaiʻi Institute of Marine Biology, Kāneʻohe, HI, USA; jamie.sziklay@gmail.com 9 

2. High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA 10 

3. NOAA/NESDIS/STAR Coral Reef Watch, 5830 University Research Court, College 11 

Park, MD, USA 12 

4. Global Science & Technology, Inc., 7501 Greenway Center Drive, Suite 1100, Greenbelt, 13 

Maryland, USA 14 

5. Physical Sciences and Marine Geophysics Laboratory, College of Science and 15 

Engineering, James Cook University, Townsville, Queensland, Australia 16 

6. Corals and Climate, USA 17 

7. Woods Hole Oceanographic Institution, Woods Hole, USA 18 

8. University of Guam Marine Laboratory, Mangilao, Guam, USA 19 

9. Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia 20 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.10.23.563632doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563632
http://creativecommons.org/licenses/by-nd/4.0/


2 

10. Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National 21 

Oceanic and Atmospheric Administration, Honolulu, HI, USA 22 

11. Cooperative Institute for Marine and Atmospheric Research, University of Hawaiʻi at 23 

Mānoa, Honolulu, HI, USA 24 

12. Lynker Technologies, LLC, Contractor, NOAA Fisheries Service, Pacific Islands 25 

Regional Office, Honolulu, HI USA 26 

13. Guam Coral Reef Initiative, Government of Guam, Hagatña, Guam, USA 27 

*Contact and corresponding author 28 

Keywords 29 

Coral reefs, disease, ecological forecasting, machine learning, quantile regression forests 30 

Open research statement: Data are already published and publicly available, with those items 31 

properly cited in this submission. All code used to create the disease models are available at: 32 

https://github.com/jms5151/Fore-C_v2/tree/main/Fore-C_v2/codes. All code and data used to 33 

create the weekly prediction updates are available at: https://github.com/jms5151/Fore-34 

C_v2/tree/main/Fore-C_v2/operational. All code and data used to create the data explorer are 35 

available at https://github.com/jms5151/uh-noaa-shiny-app. NOAA NCRMP fish survey data: 36 

https://www.fisheries.noaa.gov/inport/item/28844; 37 

https://www.fisheries.noaa.gov/inport/item/34515. NOAA NCRMP benthic survey data: 38 

https://doi.org/10.7289/v53n21q5, https://doi.org/10.7289/v579431k, 39 

https://doi.org/10.7289/v5c24trh, https://doi.org/10.7289/v5zw1j8b. Upon acceptance, all 40 

underlying data and code pertinent to the results presented in the publication will provided via 41 

Zenodo. 42 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.10.23.563632doi: bioRxiv preprint 

https://github.com/jms5151/Fore-C_v2/tree/main/Fore-C_v2/codes
https://github.com/jms5151/Fore-C_v2/tree/main/Fore-C_v2/codes
https://github.com/jms5151/Fore-C_v2/tree/main/Fore-C_v2/codes
https://github.com/jms5151/Fore-C_v2/tree/main/Fore-C_v2/operational
https://github.com/jms5151/Fore-C_v2/tree/main/Fore-C_v2/operational
https://github.com/jms5151/Fore-C_v2/tree/main/Fore-C_v2/operational
https://github.com/jms5151/uh-noaa-shiny-app
https://github.com/jms5151/uh-noaa-shiny-app
https://www.fisheries.noaa.gov/inport/item/28844
https://www.fisheries.noaa.gov/inport/item/34515
https://www.fisheries.noaa.gov/inport/item/34515
https://doi.org/10.7289/v53n21q5
https://doi.org/10.7289/v53n21q5
https://doi.org/10.7289/v53n21q5
https://doi.org/10.7289/v579431k
https://doi.org/10.7289/v579431k
https://doi.org/10.7289/v5c24trh
https://doi.org/10.7289/v5c24trh
https://doi.org/10.7289/v5c24trh
https://doi.org/10.7289/v5zw1j8b
https://doi.org/10.1101/2023.10.23.563632
http://creativecommons.org/licenses/by-nd/4.0/


3 

Abstract 43 

Ecological forecasts are becoming increasingly valuable tools for conservation and management. 44 

However, there are few examples of near real-time forecasting systems that account for the wide 45 

range of ecological complexities. We developed a new coral disease ecological forecasting 46 

system that explores a suite of ecological relationships and their uncertainty and investigates how 47 

forecast skill changes with shorter lead times. The Multi-Factor Coral Disease Risk product 48 

introduced here uses a combination of ecological and marine environmental conditions to predict 49 

risk of white syndromes and growth anomalies across reefs in the central and western Pacific and 50 

along the east coast of Australia and is available through the U.S. National Oceanic and 51 

Atmospheric Administration Coral Reef Watch program. This product produces weekly forecasts 52 

for a moving window of six months at ~5 km resolution based on quantile regression forests. The 53 

forecasts show superior skill at predicting disease risk on withheld survey data from 2012-2020 54 

compared with predecessor forecast systems, with the biggest improvements shown for 55 

predicting disease risk at mid- to high-disease levels. Most of the prediction uncertainty arises 56 

from model uncertainty and therefore prediction accuracy and precision do not improve 57 

substantially with shorter lead times. This result arises because many predictor variables cannot 58 

be accurately forecasted, which is a common challenge across ecosystems. Weekly forecasts and 59 

scenarios can be explored through an online decision support tool and data explorer, co-60 

developed with end-user groups to improve use and understanding of ecological forecasts. The 61 

models provide near real-time disease risk assessments and allow users to refine predictions and 62 

assess intervention scenarios. This work advances the field of ecological forecasting with real 63 

world complexities, and in doing so, better supports near term decision making for coral reef 64 
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ecosystem managers and stakeholders. Secondarily, we identify clear needs and provide 65 

recommendations to further enhance our ability to forecast coral disease risk.  66 

 67 

Introduction 68 

Forecasting coral disease outbreaks is critical for the timely management of reef 69 

ecosystems, but developing such early warning systems is challenging when disease dynamics 70 

are not well understood, and data are sparse and irregularly updated. Coral reefs and their 71 

associated threats are a prime example of a complex system that presents challenges for 72 

ecological forecasting. Coral reefs are dynamic, heterogeneous environments, characterized by 73 

their diversity of species and species interactions, and physical and chemical factors that can 74 

affect their health. Diseases are a major threat to coral reefs, causing up to 95% mortality in 75 

dominant coral species during outbreak events such as the white band disease epidemic in the 76 

1980s and 1990s and the Stony Coral Tissue Loss Disease outbreak in the 2010s and 2020s in 77 

Florida and the Caribbean (Aronson and Precht 2001; Walton et al. 2018; Rosales et al. 2020). 78 

Thus, innovative approaches to support effective management strategies for coral disease 79 

transmission, prevention, and mitigation are urgently needed. Modern forecasting can now 80 

combine mechanistic understanding, statistical and machine learning models, and the 81 

quantification of uncertainty to make more accurate predictions. However, developing accurate 82 

and reliable forecasts requires overcoming several key challenges, including the sparse 83 

availability of high-quality data and limited understanding of the underlying complexity of 84 

biological and environmental drivers of coral disease outcomes. 85 

Developing early warning systems for coral diseases is a relatively recent endeavor that 86 

aims to help managers and decision-makers take preventative actions and mitigative measures. 87 
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Given the widespread consensus linking coral disease to thermal condition (Burke et al. 2023), 88 

early disease forecasts focused on using temperature to predict suitable conditions for disease. 89 

The U.S. National Oceanic and Atmospheric Administration Coral Reef Watch (NOAA CRW) 90 

program developed the first coral disease forecast in 2010 for white syndromes on the Great 91 

Barrier Reef (GBR) in Australia (hereafter V1), which uses a decision tree framework based on a 92 

series of anomalous thermal metrics (Heron et al., 2010). This system leveraged NOAA CRW9s 93 

established satellite sea surface temperature (SST) monitoring data (~50 km resolution, twice-94 

weekly) refining previous information about the relationship between thermal condition and 95 

disease (Bruno et al., 2007; Selig et al., 2006). Subsequently, NOAA CRW adapted the thermal 96 

condition metrics from the GBR to produce a complementary, experimental predictive tool for 97 

coral disease in the Hawaiian archipelago (incorporated into V1). V1 was further developed to 98 

incorporate finer resolution (~5 km, daily) SST data (hereafter V2). A retrospective analysis of 99 

V2 demonstrated that machine learning algorithms that used the product metrics (i.e., summer 100 

Hot Snaps) combined with additional biotic data could robustly reproduce disease prevalence 101 

patterns for two coral diseases across three host species (Caldwell, Heron, et al., 2016). The 102 

ability to nowcast and forecast some of these reef stressors has led to new and innovative 103 

conservation practices and provided clarity to managers seeking to set priorities. While we know 104 

of no examples yet where management officials have taken action in response to disease 105 

forecasts, we have seen responses to NOAA CRW bleaching forecasts (Raymundo et al., 2022) 106 

and we expect complementary actions (Beeden et al., 2012; Neely et al., 2021) will be taken in 107 

response to disease forecasts as managers become more familiar with the system. Managers 108 

could mitigate disease risk and impacts with a variety of local scale actions such as 109 

implementing fishing and fishing gear restrictions, reducing land-based pollution runoff, or 110 
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reducing the abundance of known disease vectors (eg., corallivorous gastropods) or predators 111 

(e.g., Acanthaster planci) from vulnerable reefs. Other experimental approaches could be 112 

effective, including probiotics, phage therapy, or temporarily relocating at-risk colonies to 113 

aquaria. 114 

Moving beyond thermal conditions, the next generation of coral disease early warning 115 

systems needs to better incorporate an expanded suite of conditions known or hypothesized to 116 

affect disease dynamics. Previous research has statistically linked a range of conditions with 117 

impaired coral health, including colony size and density, thermal condition, water quality, human 118 

population density and land use, and fish densities and predation (Aeby, Williams, Franklin, 119 

Haapkyla, et al., 2011; Aeby, Williams, Franklin, Kenyon, et al., 2011; Bruno et al., 2003; 120 

Caldwell et al., 2020; Carlson et al., 2019; Greene et al., 2020; Haapkylä et al., 2011; Pollock et 121 

al., 2014; Redding et al., 2013; Renzi et al., 2022). However, the mechanistic underpinnings of 122 

these multiple contributing factors are often poorly understood due to their complex and non-123 

linear behavior, which can vary by host species and disease type (Clemens & Brandt, 2015; 124 

Shore & Caldwell, 2019; Vega Thurber et al., 2014). An additional challenge for any early 125 

warning system is whether the predictor variables themselves can be forecasted (Clark et al., 126 

2001; Oliver & Roy, 2015), and this is especially true for the diverse drivers of coral disease. 127 

These challenges must be addressed to incorporate a wider range of putative disease drivers into 128 

forecasting models.  129 

Over the last decade, ecological forecasting and monitoring tools have advanced 130 

considerably, making it possible to integrate multiple data streams and more robustly consider 131 

various scenarios and sources of uncertainty (Clark et al., 2001; Dietze et al., 2018). Machine 132 

learning algorithms are particularly useful in this context, as they can identify complex non-133 
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linear relationships between variables and make predictions in data-poor environments (Jordan & 134 

Mitchell, 2015). These advancements have enhanced the capability of  identifying relationships 135 

that should be tested further, allowing incremental improvements in forecasting efforts (Dietze et 136 

al., 2018). Exploring likely scenarios within a forecasting framework can help create more robust 137 

approaches for managing ecosystems. Plausible scenarios with alternate conditions are 138 

developed using a combination of scientific information and models, stakeholder input, and 139 

expert opinion. Scenarios can then be used to explore the potential impacts of different 140 

management strategies, account for additional spatial variation in predictor variables, and/or 141 

refine predictions to a specific set of conditions. By incorporating scenarios into ecological 142 

forecasts and management plans, managers and decision-makers can better understand the 143 

potential outcomes of different decisions and identify strategies that are more likely to be 144 

effective under a range of possible futures (Clark et al., 2001). These models also need to be 145 

incorporated into easy-to-use tools for managers to test and compare different management 146 

actions.  147 

In this paper, we present the next-generation NOAA CRW coral disease forecasting 148 

product (i.e., V3) that addresses some of these challenges and applies new, innovative 149 

approaches to ecological forecasting. By integrating data from multiple sources and using 150 

machine learning algorithms to identify patterns and make predictions, the system provides early 151 

warnings of coral disease risk and could help managers and decision-makers take proactive 152 

measures to protect reefs across much of the Pacific Ocean. This new Multi-Factor Coral Disease 153 

Risk product expands the previous product in several ways through: 1) a broader geographic 154 

scope; 2) consideration of two distinct groups of diseases; 3) inclusion of a suite of disease 155 

drivers; 4) generation of weekly forecasts with up to three-month lead time; 5) provision of 156 
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measures of uncertainty; 6) consideration of multiple scenarios; and 7) capacity for users to 157 

visualize forecasts and modify scenarios through an interactive online dashboard used to explore 158 

management strategies. The results of this study have broader implications for making 159 

predictions in other complex, data-poor systems and highlight the need for continued research 160 

and innovation in the field of ecological forecasting.  161 

 162 

Methods 163 

The Multi-Factor Coral Disease Risk product (i.e., V3) is an experimental regional 164 

product, currently providing ecological forecasts for multiple locations in the Pacific Ocean. 165 

Areas include American Samoa, Guam and the Commonwealth of the Northern Mariana Islands 166 

(CNMI), Australia9s Great Barrier Reef (GBR), Hawaii, and the U.S. Pacific Remote Islands 167 

Marine National Monument (PRIMNM, also called the Pacific Remote Island Area, PRIA) 168 

encompassing seven islands and atolls: Baker, Howland, and Jarvis Island; Johnston, Wake, and 169 

Palmyra Atolls; and Kingman Reef. In this product, we assess disease risk based on satellite 170 

remotely-sensed, modeled, and in situ data to provide nowcasts and near-term forecasts based on 171 

current conditions, recent conditions, and subseasonal-to-seasonal forecasts from NOAA 172 

operational climate models. We defined disease risk separately as a density (number of diseased 173 

colonies/75m2 ranging from 0 to infinity) in Australia and as a prevalence (percent of colonies 174 

affected ranging from 0 to 100%) in the U.S. Pacific (more details below), which maps to 175 

different NOAA CRW warning levels ranging from Low Risk to Alert Level 2 for visualization 176 

purposes in the decision support tool. We determined the thresholds separating warning levels 177 

based on historical disease observations and expert elicitation; the thresholds vary by disease 178 
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type and region (Appendix S1: Table S1). We optimized the modeling system using a Pacific-179 

wide dataset of over 42,000 coral disease surveys (more detail below).  180 

 181 

Data 182 

We identified a suite of potential predictor variables to forecast coral disease risk based 183 

on prior observational, experimental, and modeling efforts for two disease types: white 184 

syndromes and growth anomalies (Table 1, Appendix S1: Table S2).. White syndromes refer to a 185 

suite of tissue loss diseases that cause coral mortality and range from acute to chronic based on 186 

the speed at which the infection progresses (Bourne et al., 2015). Growth anomalies are chronic 187 

diseases that persist at low levels year round and manifest as changes in skeletal morphology, 188 

usually through abnormal increases in skeleton secretion and disorganization of corallites, 189 

affecting colony growth and fecundity (Palmer & Baird, 2018). The etiological agents of both 190 

groups of diseases are unknown. Across a variety of host species, disease types, and regions, 191 

some factors such as coral cover, coral colony size, and specific ranges of temperature have been 192 

consistently associated with certain coral diseases, although the functional relationships may 193 

differ slightly (Bruno et al., 2007; Caldwell et al., 2020; Greene et al., 2020; Heron et al., 2010; 194 

Ruiz-Moreno et al., 2012). Thus, we considered appropriate derivations of these variables for all 195 

diseases and regions, based on data availability. For instance, we considered accumulation of 196 

anomalous temperatures for white syndromes because of statistical associations across multiple 197 

large scale studies (Bruno et al., 2007; Burke et al., 2023; Heron et al., 2010; Howells et al., 198 

2020; Maynard et al., 2011), but focused on seasonal mean temperature for growth anomalies 199 

because it has been experimentally associated with lesion development and growth (Stimson, 200 

2011). Additionally, there were several potential predictor variables that were unique to each 201 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.10.23.563632doi: bioRxiv preprint 

https://paperpile.com/c/kxX5Ek/9X8I
https://paperpile.com/c/kxX5Ek/mkMr
https://paperpile.com/c/kxX5Ek/7rTu+AlJK+k1WF+MP1o+mPcb
https://paperpile.com/c/kxX5Ek/7rTu+AlJK+k1WF+MP1o+mPcb
https://paperpile.com/c/kxX5Ek/vjeM+k1WF+AlJK+k7ji+WN4t
https://paperpile.com/c/kxX5Ek/vjeM+k1WF+AlJK+k7ji+WN4t
https://paperpile.com/c/kxX5Ek/9Zo4
https://paperpile.com/c/kxX5Ek/9Zo4
https://doi.org/10.1101/2023.10.23.563632
http://creativecommons.org/licenses/by-nd/4.0/


10 

disease type, because the ecologies of white syndromes and growth anomalies differ 202 

substantially. White syndromes often exhibit strong seasonality due to ocean conditions, notably 203 

winter and summertime thermal stress and changes in water quality (Haapkylä et al., 2011; 204 

Heron et al., 2010; Maynard et al., 2011; Ruiz-Moreno et al., 2012). White syndromes have also 205 

been associated with fish densities, but the effects are not consistent across studies and the 206 

underlying hypothesis for this effect varies by fish functional group (Aeby, Williams, Franklin, 207 

Kenyon, et al., 2011; Caldwell et al., 2020; Clemens & Brandt, 2015; Greene et al., 2020; Renzi 208 

et al., 2022; Williams et al., 2010). Thus, we included available metrics of fish density for 209 

multiple fish types and water quality (turbidity) in the white syndromes models. For growth 210 

anomalies, previous studies indicate an association with low fish abundance, limited water 211 

motion, and poor water quality via nutrient enrichment, coastal development, and proximity to 212 

dense human populations (Aeby, Williams, Franklin, Haapkyla, et al., 2011; Caldwell et al., 213 

2020; Yoshioka et al., 2016). Therefore, we included metrics of fish populations, turbidity, and 214 

coastal development in the growth anomalies models.  215 

From a forecasting perspective, the predictor variables, or environmental conditions, that 216 

we considered in this study can be roughly divided into three types based on their variabilities 217 

through time: 1) time-invariant; 2) seasonally-changing; and 3) regularly-changing. We consider 218 

time-invariant conditions as any predictor variable that does not change regularly through time, 219 

or information about such change is unavailable or sparsely updated. We consider seasonally-220 

changing conditions as predictor variables that depend on time of year but are not date-specific. 221 

Most of these variables have been developed in a way that represents repeated seasonal patterns 222 

developed from multi-year datasets (i.e., climatologies). Finally, we consider regularly-changing 223 

conditions as predictor variables that change, and can be measured and evaluated, over some 224 
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regular time interval. We used point estimate predictor variable data for model development 225 

based on the time and location of coral disease surveys whereas we use gridded predictor 226 

variable data for forecasts. 227 

 228 

Time-invariant data 229 

We collated time-invariant data from in situ surveys and remotely-sensed data. For each 230 

predictor variable described below, which we used in at least one of the four region-by-disease 231 

models, we provide further detail, including data sources and spatial resolution, in Appendix 1: 232 

Table S2. To characterize benthic cover, we used metrics of coral cover (0-100%), coral colony 233 

size, and population level colony size variability (based on coefficient of variation). For these 234 

metrics, we developed the models using data collected concurrently with coral disease surveys. 235 

We aggregated these metrics by host family for both U.S. Pacific models and by morphology for 236 

the GBR white syndromes models to be consistent with data collection methodology (more 237 

details below). In the forecasts, we used a combination of survey data and gridded data from 238 

long-term monitoring programs. For coral cover in the GBR and coral colony size in the U.S. 239 

Pacific, we calculated ~5 km pixel-specific mean values across the reef grid from long-term 240 

survey data (multiple sources listed in Appendix 1: Table S3) while for coral cover in the U.S. 241 

Pacific, we used sector level benthic cover data from the NOAA National Coral Reef Monitoring 242 

Program (NCRMP). As fish surveys were rarely conducted in coordination with benthic surveys, 243 

we used fish density layers from long-term monitoring programs for both model development 244 

and forecasting. We used sector-level fish data from NOAA NCRMP and ~2 km gridded fish 245 

count data based on manta tow surveys from the Australian Institute of Marine Science (AIMS) 246 

Long Term Monitoring Program (LTMP) (Sweatman et al., 2008). These long-term datasets 247 
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represent the most comprehensive current estimates of coral cover and size available for the reef 248 

grid, but inherently will not contain information about recent or future changes in these variables. 249 

Thus, periodic updates to the reef grid as data becomes available would be beneficial. As a proxy 250 

for coastal development in both model development and forecasting, we used NASA9s Black 251 

Marble product, which is a time-aggregated map of artificial light intensity (high gain) (range = 252 

0-255 where 0 = black and 255 = white) at 3 km resolution from the Visible Infrared Imaging 253 

Radiometer Suite (VIIRS) instrument aboard the Suomi-National Polar-orbiting Partnership 254 

(NPP) satellite (Román et al., 2018). To characterize chronic water quality conditions in both 255 

model development and forecasting, we aggregated the diffuse attenuation coefficient at 490 nm, 256 

Kd(490), as a proxy for turbidity from VIIRS data (Kirk, 1994). We calculated long-term 257 

Kd(490) median and variability for each reef pixel by overlaying aggregated data from 2012-258 

2020 (i.e., all data available at the time of study) within a 5-pixel buffer (750 m becomes ~8.25 259 

km resolution) following methods from Geiger et al., 2021 to increase data availability, as 260 

nearshore ocean color data are notoriously patchy. These metrics are indicative of spatial 261 

differences in water quality across reefs, providing information on locations that have 262 

chronically good or poor water quality and those that are exposed to a large range of water 263 

quality conditions throughout the year versus those with more consistent conditions.  264 

 265 

Seasonally-changing data 266 

We use month of year and two turbidity metrics (mean and variability) to capture 267 

seasonally-changing conditions that are relevant to disease risk. To characterize typical seasonal 268 

water quality patterns, we calculated mean and variability of VIIRS-derived Kd(490) for a three-269 

week moving window (resulting in new values each week) across a 9-year time span (2012-270 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.10.23.563632doi: bioRxiv preprint 

https://paperpile.com/c/kxX5Ek/vdQY
https://paperpile.com/c/kxX5Ek/jXP4
https://paperpile.com/c/kxX5Ek/sV4Q
https://doi.org/10.1101/2023.10.23.563632
http://creativecommons.org/licenses/by-nd/4.0/


13 

2020) using the same 5-pixel buffer described above. These metrics repeat annually and are 271 

indicative of how water quality changes throughout the year at a given location. We used the 272 

mean (i.e., climatology) and associated variability in Kd(490) to represent seasonal changes 273 

because, to date, these values are too highly variable and too infrequently available in the coastal 274 

zone to use actual, or even three-week composite, values. Additional details on the derivation of 275 

these metrics and their accuracy can be found in Geiger et al., 2021. We include month in the 276 

model as a proxy for all other seasonally changing conditions.  277 

 278 

Regularly-changing data 279 

We include three temperature-based metrics in the disease models that update at regular 280 

intervals: 90-day SST mean, Hot Snap, and Winter Condition. In contrast to the seasonally-281 

changing data, the regularly changing data yield different values each year for the same time 282 

period (e.g., the first week of January) based on observed and/or forecasted conditions. The daily 283 

previous 90-day mean SST is the average daily SST values for the 90 days preceding the current 284 

date. The Hot Snap and Winter Condition metrics were developed for NOAA CRW9s Coral 285 

Disease Outbreak Risk Product V1 and V2 and continue to be used in V3 to represent thermal 286 

conditions on time scales relevant to coral disease. The Hot Snap metric accumulates hot 287 

temperature anomalies through time, relative to the locally/pixel-specific long-term expected 288 

summer season temperature (summer season climatology) (Heron et al., 2010), providing an 289 

indication of exposure to thermal stress. The Winter Condition metric accumulates both hot and 290 

cold temperature anomalies during the winter season relative to locally-specific, long-term 291 

average temperature (Heron et al., 2010), representing cold season variability. Mild winters have 292 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.10.23.563632doi: bioRxiv preprint 

https://paperpile.com/c/kxX5Ek/sV4Q
https://paperpile.com/c/kxX5Ek/AlJK
https://paperpile.com/c/kxX5Ek/AlJK
https://doi.org/10.1101/2023.10.23.563632
http://creativecommons.org/licenses/by-nd/4.0/


14 

been linked to white syndromes (Caldwell, Heron, et al., 2016; Heron et al., 2010), potentially 293 

because such conditions allow pathogens to persist and grow throughout the winter season. 294 

The data underlying these three temperature metrics differ for satellite observed 295 

temperatures, which we used for model development and near real-time nowcasts, and forecasted 296 

temperature, which we use for disease forecasts. For observed SST, we use CoralTemp v3.1 297 

(Skirving et al., 2020), which provides daily data at a global resolution of ~5 km (0.05°). For 298 

forecasted SST, we use output from the NOAA National Centers for Environmental Prediction9s 299 

operational Climate Forecast System Version 2 (CFSv2) (Saha et al., 2014). Each day, the 300 

CFSv2 generates an ensemble of four SST forecasts out to 9 months at ~50 km (0.5°) resolution. 301 

We use this output to form 28 ensemble member predictions each week (4 daily start times x 7 302 

days) for each predicted temperature metric and to predict the metric for each future week up to 303 

three months following the prediction date. The data are downscaled from ~50 km to ~5 km 304 

using a nearest neighbor algorithm and then bias-corrected to match the 5 km satellite SST 305 

measurements during the overlap between satellite observations and CFSv2 over the weekly time 306 

period when the 28 ensemble members are collected. Because predicted values demonstrate 307 

decreased variability with longer lead-times, predicted SST anomaly values for the metrics are 308 

correspondingly adjusted to match the variability of the SST data. 309 

 310 

Coral Disease Survey Data 311 

We assembled a Pacific-wide coral health monitoring dataset, which we used to develop 312 

region- and disease-specific predictive models of disease risk. In total, we assembled over 42,000 313 

coral health monitoring surveys between 2012 and 2020. Data came from the NOAA NCRMP, 314 

University of Guam, Hawaii Coral Disease Database (Caldwell, Burns, et al., 2016), and the 315 
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Great Barrier Reef Marine Park Authority (GBRMPA; referred to as Reef Authority in other 316 

contexts) Reef Health and Impact Surveys (Beeden et al., 2014). The different survey protocols 317 

used to collect these data have been described in detail previously (Beeden et al., 2014; Caldwell, 318 

Burns, et al., 2016; Winston et al., 2020). For the research described in this paper, there are 319 

notable methodological differences between surveys conducted in Australia and the U.S. Pacific; 320 

therefore, we modeled disease risk in these two regions separately. Specifically, surveys in 321 

Australia indicated morphology-specific disease density (i.e., number of diseased colonies in a 322 

given area) while the U.S. Pacific surveys provided information to quantify family-specific 323 

disease prevalence (i.e., percent of coral colonies affected by disease); therefore the risk 324 

prediction is for disease density for Australia and disease prevalence in the U.S. Pacific. While 325 

the U.S. Pacific models are technically generated at the family level (Acroporidae for white 326 

syndromes and Poritidae for growth anomalies), in practice, the data predominantly describe 327 

genus- or species-specific patterns with various genera/species represented in different regions 328 

(Appendix 1: Table S4). We used these data to develop predictive models of disease risk (i.e., 329 

disease density or prevalence) rather than outbreak risk, which we believe is more appropriate as 330 

the data arise from regular monitoring surveys rather than outbreak response surveys (outbreaks 331 

defined in Raymundo et al., 2008). If multiple surveys were conducted in close proximity in time 332 

(i.e., in the same month) and space (the same survey area), we randomly selected one of those 333 

surveys to keep in the dataset to avoid artificially over-representing certain conditions.  334 

 335 

Balancing data with SMOTE 336 

To create disease models that produce reliable predictions of all levels of disease risk, 337 

particularly of high disease levels, we used a synthetic sampling technique to balance the data 338 
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used in model development. The observational surveys available to create the disease models 339 

were highly unbalanced, with the majority of surveys reporting zero or low levels of disease 340 

(Appendix 1: Table S5); using unbalanced data would optimize disease-free predictions. 341 

Therefore, we balanced the dataset before model creation using the Synthetic Minority Over-342 

sampling Technique (SMOTE; Chawla et al., 2002; Fig. 1A). We used the observed disease 343 

surveys with their associated predictor variables to create additional synthetic disease surveys 344 

(using a k-nearest neighbor algorithm) to produce a balanced dataset (e.g., approximately equal 345 

number of disease and disease-free surveys with all predictor variables). We created multiple 346 

SMOTE datasets for each disease and region based on different disease level thresholds because 347 

it is unknown whether the same environmental conditions that precede observed disease are 348 

responsible for low and high levels of disease risk. In other words, we oversampled surveys with 349 

any disease and oversampled surveys with greater than some specified level of disease allowing 350 

the model selection process to determine the best threshold to use. We tested several disease 351 

level thresholds: 1, 5, and 10 colonies/75m2 for white syndromes in the GBR and 1, 5, and 10% 352 

prevalence for white syndromes in the U.S. Pacific; 1, 5, 10, and 15 colonies/75m2 for growth 353 

anomalies in the GBR and 1, 5, 10, 15, and 20% prevalence for growth anomalies in the U.S. 354 

Pacific. We chose these thresholds based on a combination of natural breaks in the data and 355 

expert opinion. The threshold units align with the survey data collected (i.e., density or 356 

prevalence) and therefore differ between the GBR and U.S. Pacific. For each SMOTE dataset of 357 

disease surveys, we split the data into training and test data using a 75/25 split. We used the 358 

training data for model creation and then the withheld test data for model selection and 359 

assessment (described below).  360 

 361 
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Quantile regression forests 362 

We created predictive models of disease risk using quantile regression forests 363 

(Meinshausen, 2006; Fig. 1B). Quantile regression forests use a decision tree framework, allow 364 

for non-linear relationships between response and predictor variables, and have shown high 365 

predictive skill across a range of systems. Briefly, quantile regression forests are created by 366 

developing an ensemble of quantile decision trees (i.e., random forests), with each tree created 367 

from a bootstrapped resample of the dataset. Quantile decision trees differ from standard 368 

decision trees in that they predict the distribution of target values rather than the mean target 369 

value from the training data. This approach uses an ensemble of uncorrelated decision trees, 370 

which tend to outperform any individual tree, and each tree uses a random subset of predictors to 371 

increase variation among trees. The result of this process is that the final predictive model is 372 

more robust because it is created from many trees that are trained on different subsets of 373 

response data and predictor variables.  374 

 375 

Model selection 376 

We selected the most parsimonious model for each disease and region amongst a suite of 377 

candidate models based on predictive skill on a withheld portion of the data. For each disease-378 

by-region pair, we ran a model that included all hypothesized predictor variables (Table 1) from 379 

a training dataset (75% of surveys) and then used a backward selection approach to iteratively 380 

remove predictor variables of least importance. We calculated the relative importance of each 381 

predictor variable as the percent increase in Mean Squared Error (MSE) of out-of-bag cross-382 

validation predictions across permutations in that predictor variable, with higher values 383 

indicating more important predictor variables. The exception was for the predictor variable 384 
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Month, which we retained in the model regardless of its relative importance because it captures 385 

additional seasonal variation. At each model iteration, we predicted disease risk from a withheld 386 

test dataset (25% of the surveys) and assessed predictive skill based on the R2 value that arose 387 

from linearly regressing those predictions with observations. We followed this approach of 388 

backward selection for each SMOTE dataset. The selected (most parsimonious) model was the 389 

model with the fewest predictor variables that produced an R2 value within 1% of the best model 390 

(i.e., model with the highest R2 overall).  391 

 392 

Model assessment 393 

To determine how well the models performed at retrospectively predicting disease risk 394 

for each disease-by-region pair, we compared retrospective predictions by the models described 395 

here with archived nowcasts from previous versions of the models where available (i.e., V2 396 

predictions for the GBR and Hawaiian archipelago) and how forecast skill changes with different 397 

lead times. For both assessments, we quantified predictive skill using the withheld test data. To 398 

assess predictive skill for white syndromes, we compared retrospective disease predictions from 399 

models described in this paper (V3) with models supporting V2 using predictor data available 400 

from the corresponding week of observations. The V3 models predict disease density or 401 

prevalence whereas the V2 models produce risk levels based on Hot Snap values (units = ℃-402 

weeks, range = 1-15); therefore, we visually compared these results but did not directly compare 403 

their skill quantitatively. Since there are no previous models in production for growth anomalies, 404 

we assessed the retrospective model skill on the withheld test data alone. Additionally, we were 405 

interested in whether and to what extent forecast prediction accuracy and precision change as we 406 

get closer to the observation date (i.e., shorter lead-times). To assess this relationship, we 407 
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predicted disease risk at weekly intervals for each observation date in the withheld data, with 408 

lead times ranging from 12 weeks prior (e.g., in advance of a survey) to 0 weeks (i.e., nowcast). 409 

We calculated accuracy as the difference between the 75th quantile prediction and the 410 

observation, resulting in zero if there was perfect accuracy, negative values if the models 411 

predicted lower disease risk than observed, and positive values if the models predicted higher 412 

disease risk than observed. We used the 75th quantile prediction (upper range of disease 413 

likelihood) as the primary indicator of disease risk throughout this work, which was the metric 414 

selected by the product end users to err on the side of potentially overpredicting disease in an 415 

effort to further capture rare disease events. To assess predictive precision, we calculated the 416 

difference between the 90th and 50th quantile predictions: larger differences indicate less precise 417 

estimates and smaller differences indicate more precise estimates.  418 

 419 

Weekly-updating predictions 420 

The overarching objective of this research was to develop a product that provides 421 

weekly-updated, near real-time, and subseasonal-to-seasonal disease risk forecasts. The 422 

workflow for this process follows. First, we developed a reef location database based on a ~5 km 423 

gridded reef locations dataset currently used by NOAA CRW (Heron et al., 2016) to set the 424 

spatial extent of the disease risk forecasts described in this paper. This reef location database 425 

encompasses all known shallow-water reefs within the U.S. Pacific Islands and atolls and along 426 

the east coast of Australia, the majority of which fall within the GBR Marine Park. To allow 427 

users to assess short-term temporal evolution of disease risk at each reef pixel, we provide a 428 

moving window of six months of weekly predictions: the first three months with weekly nowcast 429 

predictions based on observed environmental conditions (i.e., time-invariant, seasonally-430 
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changing, and nowcast predictor variables identified in the model selection process described 431 

above) up to the current calendar week, and the second three months with weekly forecast 432 

predictions based on a combination of historically observed (time-invariant data and seasonally-433 

changing data) and forecasted environmental conditions. The models and environmental 434 

conditions we use vary by disease and region, as described earlier and in the Results section. For 435 

each week of predictions, we update the environmental input data (Fig. 1C). The nowcast 436 

predictions (Fig. 1D) that we produce for each reef pixel are based on a single set of observed 437 

environmental conditions and prediction uncertainty arises solely due to model uncertainty. In 438 

contrast, we produce 28 ensemble forecast predictions for each reef pixel (Fig. 1D), using 28 sets 439 

of SST-based metrics derived from the 28 different CFSv2 model runs, and thus, uncertainty is 440 

composed of both model uncertainty and SST forecast uncertainty. In this product, we chose to 441 

present predictions using the 50th, 75th, and 90th quantile predictions for the reasons stated 442 

above (though any quantile(s) could be used). We also aggregate the risk predictions for different 443 

management areas, which we collated from marine management agencies. We do this by 444 

quantifying the 90th quantile values across all ~5 km reef pixels that fall within the specified 445 

management area of the risk predictions (i.e., the 75th quantile modeled risk). The use of the 446 

90th quantile to spatially summarize risk predictions is consistent with other regional summaries 447 

produced by CRW (Heron et al., 2016), with this value selected to alert users to regional-level 448 

risk whilst preventing potential exaggeration (e.g., by reporting the maximum value across the 449 

region).   450 

 451 

Weekly-updated scenarios 452 

To allow users to customize the prediction to localized and current environmental 453 
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conditions and help determine the most appropriate intervention strategies, we also produce 454 

weekly-updated scenario-based disease risk predictions (Fig. 1E). The predictions for various 455 

scenarios show how adjusting current environmental conditions would change current disease 456 

risk predictions. We calculate the change in disease risk by re-running the models iteratively, 457 

varying a single environmental condition by specified amounts and holding all other location-458 

specific, current environmental conditions constant. The resulting scenarios allow users to 1) 459 

refine predictions considering local conditions (e.g., a reef of interest) known to the user that 460 

may vary from the mean conditions of the entire reef pixel or management zone; and 2) consider 461 

how an intervention (e.g., a program to reduce turbidity) would affect disease risk. Following the 462 

format we use to present near real-time and seasonal disease risk predictions, we also calculate 463 

changes in disease risk for scenarios based on the 75th quantile disease predictions and aggregate 464 

the results to management areas in the same way we describe earlier. 465 

 466 

Results 467 

Performance evaluation  468 

The new Multi-Factor Coral Disease Risk product (V3) described in this study predicts 469 

disease risk relatively well and qualitatively demonstrates superior predictive accuracy compared 470 

with V2 for both the GBR and Hawaiian archipelago (Fig. 2). All versions have difficulty 471 

predicting no or very low disease levels (i.e., below the selected SMOTE thresholds). V3 is the 472 

first product to calculate uncertainty and can therefore represent this lack of predictability with 473 

large uncertainty values, as shown around many low disease values. The major improvement can 474 

be seen at mid- and high-levels of disease (i.e., above the selected SMOTE thresholds, which 475 

vary by disease and region). While the previous algorithm predicted some high disease events 476 
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well, many were predicted to have no disease risk, suggesting that factors other than thermal 477 

condition are key for predicting disease events. 478 

 479 

Lead time 480 

Both accuracy and precision improved as lead time decreased, but not as drastically and 481 

consistently as we expected (Fig. 3), indicating that as the survey date approaches the predictions 482 

improve slightly. Positive values for accuracy indicate an over-prediction of disease in the 483 

forecast (as shown for white syndromes on the GBR), whilst negative values indicate under-484 

prediction (growth anomalies in both regions). Accuracy improved with shorter lead time for 485 

predictions in the GBR for both diseases, while there was almost no improvement with lead time 486 

for predictions in the U.S. Pacific. In contrast, precision was largely unaffected by lead time, 487 

with marginal improvements for white syndromes in the GBR and growth anomalies in the U.S. 488 

Pacific. Given that the variability in SST forecasts decreased with increasing lead time, these 489 

results suggest that the prediction uncertainty is largely a function of model uncertainty rather 490 

than SST forecast uncertainty. 491 

 492 

Coral disease drivers 493 

The most influential disease drivers were primarily time-invariant or seasonally-changing 494 

predictor variables (Table 1), which may explain why the V3 product predicts disease with 495 

relatively high accuracy for observations from a range of locations and years (Fig. 2), but those 496 

predictions do not change substantially with changing lead-times (Fig. 3). The most 497 

parsimonious models for each disease-by-region pair varied slightly from each other but broadly 498 

reflected relationships found in the literature (Appendix 1: Figs. S1-4). In short, both diseases 499 
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were primarily influenced by temperature and water quality, coral cover or size, and fish density. 500 

White syndromes were strongly influenced by seasonal conditions while growth anomalies were 501 

more strongly driven by chronic conditions. A major contribution of this study is the inclusion of 502 

multiple metrics of chronic and seasonally changing water quality, which have been shown to 503 

influence disease risk in both small-scale correlative and experimental studies (Haapkylä et al. 504 

2011; Pollock et al. 2014; Vega Thurber et al. 2014; Yoshioka et al. 2016), but to-date, have not 505 

been possible to include in large scale studies. Thus, this research demonstrates a consistent 506 

influence of water quality on disease risk across a broad geographic region and two disease 507 

types. Fish density and winter condition were the best predictors of white syndromes in the GBR, 508 

followed by variation in seasonal turbidity, summer thermal condition, and coral cover. For 509 

white syndromes in the U.S. Pacific, median colony size and chronic and seasonal turbidity 510 

metrics (both median and variability for each) were most important. Predictor variables for 511 

growth anomalies in both regions were similar to each other, and included 90-day SST mean, 512 

fish density, benthic cover metrics, and seasonal and chronic water quality. Within-site water 513 

quality variability was more important for growth anomalies in the GBR, whereas average water 514 

quality conditions along with coastal development were more important in the U.S. Pacific.  515 

The model selection process revealed that the predictor variables used are better suited 516 

for differentiating between lower and higher levels of disease risk rather than presence-absence. 517 

We found that the models were able to predict the gradient of observed disease risk best when 518 

oversampling surveys in the SMOTE balancing process with relatively high levels of disease 519 

risk. For white syndromes, oversampling surveys with >10 diseased colonies/75m2 in the GBR 520 

and >10% disease prevalence in the U.S. Pacific was optimal; for growth anomalies, 521 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.10.23.563632doi: bioRxiv preprint 

https://paperpile.com/c/kxX5Ek/vZkG+d8ve+RJ7l+NSmW
https://paperpile.com/c/kxX5Ek/vZkG+d8ve+RJ7l+NSmW
https://doi.org/10.1101/2023.10.23.563632
http://creativecommons.org/licenses/by-nd/4.0/


24 

oversampling surveys with >15 diseased colonies/75m2 in the GBR and >20% disease 522 

prevalence in the U.S. Pacific models was optimal (Appendix 1: Fig. S5).  523 

 524 

Decision support tools 525 

The experimental Multi-Factor Coral Disease Risk Forecast, a new tool within NOAA 526 

CRW9s decision support system for coral reef management, provides a regional ecological 527 

nowcast and forecast of white syndromes and growth anomalies for multiple locations in the 528 

Pacific Ocean. Via an online interface on the CRW website 529 

(https://coralreefwatch.noaa.gov/product/disease_multifactor/index.php), users can access and 530 

explore coral disease forecasts for their region of study, management, and/or interest in the 531 

Pacific, to prepare for, monitor, and respond to elevated coral disease risk (Appendix 1: Fig. S6).  532 

 533 

Data explorer 534 

To allow users to explore near real-time, weekly, and seasonal disease predictions more 535 

closely, we produced an interactive data explorer tool to complement the NOAA CRW Multi-536 

Factor Coral Disease Risk Forecast. Users can access the data explorer through 537 

https://coralreefwatch.noaa.gov/product/disease_multifactor/index.php or at 538 

https://coraldisease.com. The data explorer has four components: 1) a disease risk page 539 

visualizing nowcasts and forecasts across time and space (Fig. 4); 2) a scenarios page where 540 

users can adjust environmental conditions to assess corresponding changes in the nowcast of 541 

spatially-explicit disease risk (Appendix S1: Fig. S7); 3) a historical data page that provides 542 

information about survey data used to build the models; and 4) an information page with 543 

explanatory information and additional resources. Users can explore forecasts and scenarios at 544 
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multiple spatial scales, ranging from an individual ~5 km reef pixel to various management 545 

zones (containing multiple reef pixels).  546 

 547 

Discussion 548 

The Multi-Factor Coral Disease Risk product (V3) offers many improvements over its 549 

predecessors, providing a more holistic assessment of disease risk for reefs throughout the 550 

Pacific Ocean. In addition to expanding the geographic scope and types of diseases assessed, V3 551 

provides weekly-updated nowcasts and forecasts with up to three months of lead time. The 552 

predecessor products fundamentally differed in their forecasting approach; V1 and V2 provide 553 

winter pre-conditioning risk outlooks at the end of winter based on wintertime metrics derived 554 

from satellite remote sensing data, and then for pixels that are pre-conditioned for risk, refined 555 

near real-time predictions are based on satellite monitoring of Hot Snap accumulation throughout 556 

the summer months. Thus, within the summer, these prior products produce nowcasts and do not 557 

make future predictions; the only prediction component is for the following summer and only at 558 

the conclusion of a winter season based on thermal conditions from the entire winter. 559 

Operationally, V3 requires constructing regular predictions of SST-based metrics from climate 560 

models rather than relying entirely on near real-time satellite remote sensing (as in V1 and V2). 561 

The three-month lead time in V3 aims to provide local stakeholders with more time to organize 562 

and execute a response to potential elevated disease risk. The accuracy and precision of disease 563 

risk forecasts demonstrate a marginal level of bias in applying the data-based model relationships 564 

with predicted values, which may result from variable skill in predicting the inputs (which here 565 

are the temperature-based metrics) rather than in the model itself (see further discussion below). 566 

Through the online dashboard, users can vary current or predetermined environmental conditions 567 
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to refine disease risk predictions to better reflect local conditions within the data grid and/or to 568 

assess impacts of potential interventions. The most fundamental difference between V1/V2 and 569 

V3 is that the new product assesses disease risk based on a suite of ecological conditions in 570 

combination with temperature conditions, rather than temperature alone. Some of these new 571 

variables such as turbidity were previously unavailable before the incorporation of VIIRS data 572 

into these models. Given the relative importance of these new predictor variables (Table 1), we 573 

can conclude that although suitable temperature conditions are necessary for elevating risk of 574 

white syndromes and growth anomalies, other conditions like colony size and water quality are 575 

important driving factors. As a result, the new models that consider a suite of conditions, 576 

alongside temperature, have demonstrated better performance in retrospectively predicting 577 

disease risk in both the GBR and U.S. Pacific.  578 

While this analysis demonstrates that a suite of conditions are associated with white 579 

syndromes and growth anomalies, challenges in forecasting these predictor conditions directly 580 

limits capacity for disease prediction. The only predictor variables that are truly forecasted in the 581 

Multi-Factor Coral Disease Risk product are the SST-based metrics. For all other variables, we 582 

created seasonal climatologies, or rely on time-invariant layers based on long-term aggregated 583 

data. For most of the time-invariant variables, such as coral cover, fish densities, and coastal 584 

development, we do not expect conditions to change regularly. However, a single event can 585 

drastically change biotic conditions on a reef (e.g., a mass bleaching event) and such changes 586 

would not be reflected in the forecasts with the predetermined conditions, although they may be 587 

assessed (at least to some degree) through adjusting scenarios based on updated information. We 588 

anticipate the data may be updatable every 5 to 10 years. We foresee a similar issue for water 589 

quality metrics: while we expect that the seasonal climatology and associated variability metric 590 
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used in these models are fairly robust in the long-term, the current models do not capture acute 591 

events caused by intense rainfall and associated runoff, which are known to influence disease 592 

(Haapkylä et al., 2011). Although we attempted to measure acute events with ocean color data 593 

(procedure described in Geiger et al., 2021), we found that the available data were too sparse to 594 

use in the models, with no satellite coverage for ~80% of the corresponding survey data. More 595 

importantly, the ocean color data unavailable during events were not random, but aggregated 596 

during cloudy days; in other words, days that are most likely associated with rain events that can 597 

increase disease risk. An alternative approach to forecasting water quality conditions could be to 598 

create a model based on precipitation forecasts. However, precipitation forecasts are less skillful 599 

than temperature forecasts and would require accurate prediction of the timing, intensity, and 600 

location of rainfall at fine scales, which must be incorporated into fine-scale hydrologic models 601 

with accurate topography and well-predicted initial surface conditions (i.e., soil moisture). Such 602 

fine scale hydrologic modeling is generally lacking for most tropical coasts. For this reason, 603 

seasonally varying water quality climatologies are the most reliable measurements currently 604 

available for coastal coral reefs and applicable for our models. However, we see this process as 605 

analogous to early temperature forecasts, which began as almanacs of past conditions 606 

(climatologies) and now show high prediction skill through the deployment of increasingly 607 

sophisticated statistical and dynamical models.  608 

The extent to which temperature-based metrics are influential in the models determines 609 

how well predictions reflect spatial and temporal variability in disease risk. For white syndromes 610 

on the GBR for example, both Winter Condition and Hot Snaps are relatively influential 611 

variables. As a result, in the retrospective analysis, accuracy and precision varied 612 

spatiotemporally – and improved with shorter lead times (consistent with the performance of 613 
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predicted temperature). In contrast, white syndromes in the U.S. Pacific are less strongly driven 614 

by any of the temperature metrics tested in this study, and therefore variability in disease risk is 615 

more apparent spatially than temporally. It is worthwhile to note that several white syndromes 616 

outbreaks in the U.S. Pacific have occurred in winter (Aeby et al., 2016; Caldwell et al., 2018; 617 

Greene et al., 2023; Williams et al., 2011), suggesting that other factors may be more important 618 

than temperature in this region and/or that some aspect of temperature not captured by the 619 

metrics used in this study is important. For all disease-region pairs, particularly those with less 620 

reliance on temperature-based metrics, developing and/or improving climatologies and forecast 621 

variables other than temperature would be the most effective way to improve predictability 622 

within this forecasting system. A complementary and useful way of leveraging information from 623 

V3 is to explore the spatial variability in disease risk to identify locations that are most promising 624 

for interventions to improve reef health and target interventions to the most influential variables. 625 

For instance, for white syndromes on the GBR, fish density and seasonal turbidity variability 626 

were identified as some of the most important predictor variables, indicating that interventions 627 

directed at those factors may be most effective for improving reef health. From this perspective, 628 

users can explore spatial variability in disease risk and then track any intervention-associated 629 

improvements through time without concern over ephemeral conditions that will elapse with 630 

weekly updating.  631 

Ecological forecasting presents a variety of ways scientists, managers, and decision-632 

makers can address the rising number of ecological challenges. We provide multiple pathways to 633 

explore model predictions and suggest that major improvements going forward will be as 634 

dependent on understanding the biological relationships as they are on additional monitoring and 635 

surveillance data. The model outputs and associated online Multi-Factor Coral Disease Risk 636 
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product and data explorer were co-developed with many relevant management agencies and 637 

scientists. Through multiple focus groups with stakeholders in Australia, American Samoa, 638 

Hawaii, and Guam, planning meetings, and workshop demonstrations at several scientific 639 

conferences over the course of six years, we created an online decision support tool that provides 640 

regional overviews aligned with other NOAA CRW tools with which our intended audience is 641 

already familiar. The method of delivering regional overviews is also preferred by users with 642 

slow or intermittent internet connection, as is common in some Pacific islands. The data explorer 643 

complements this tool in several ways. First, it provides predictions aggregated to relevant 644 

management zones and allows users to explore forecasts at these various spatial scales through 645 

time. This addresses two key concerns of our users as they need to distill information at scales 646 

relevant to their respective agencies or work mandates, and to understand trends through time in 647 

those specific locations. We addressed a suite of other concerns through the use of scenarios. 648 

Broadly, users who interacted with the tools as they were being developed and tested found it 649 

difficult to translate mean conditions at the finest spatial scale (~5 km) available to an individual 650 

reef of interest, especially when they knew conditions at that one location were different from the 651 

surrounding region. Thus, we made it possible for users to change individual input conditions in 652 

the scenarios page of the interactive tool to see how predicted disease risk may correspondingly 653 

change in a specified area of interest. The same scenarios tool can alternatively be used as an 654 

exercise to assess the predicted impacts of an intervention that would affect the relevant input 655 

conditions (e.g., an intervention to reduce resuspended sediments via turbidity) to determine how 656 

that might affect disease risk.  657 

Going forward, the forecasting models could be substantially improved by replacing 658 

phenomenological relationships with biological ones and potentially by calibrating the models 659 
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differently. Ideally, biological relationships could replace phenomenological ones by using a 660 

combination of lab and natural experiments. This approach would ultimately help reduce 661 

uncertainty, particularly for undersampled conditions. In terms of calibration, we made several 662 

decisions that increased the likelihood of false positives (i.e., predicting higher disease levels 663 

than would be observed). Specifically, using SMOTE to compensate for scarce data on the 664 

conditions associated with elevated disease risk resulted in an overrepresentation of those 665 

conditions in the model data. Further, we used the 75th percentile when communicating the 666 

model results in an effort to guard against missing a major disease event. The impact of these 667 

decisions plays out as expected with a large number of false positives in the validation exercise 668 

(Fig. 2). While we made these choices based on stakeholder input, it might be preferable in 669 

future work to calibrate the models in a way that systematically assesses a broader suite of 670 

assumptions and allows for optimization of those decisions. For instance, future efforts might 671 

include performing a formal parameter sweep across a broader range of SMOTE data 672 

frequencies and prediction quantiles. Alternatively, if enough information is known about the 673 

disease system, one could use informative priors in a Bayesian analysis or consider adding a base 674 

rate correction.  675 

The overall modeling approach we used to create V3 could be replicated to predict 676 

disease risk for other reef regions and diseases, with appropriate consideration given to the 677 

transferability of input variables to these model systems. To expand this framework, a model 678 

would need to be developed tailored to the new location and/or disease. This would require the 679 

collation of coral health survey data and concurrent environmental conditions for model 680 

development, and collating gridded environmental covariates, including climatologies and SST 681 

forecasts, for the appropriate reef grid for forecasting. Diseases most suited for a forecasting 682 
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framework like the one described in this study are those impacting widely distributed hosts, 683 

where the burden shifts seasonally between endemic and epizootic states. For example, Stony 684 

Coral Tissue Loss Disease has caused widespread mortality in multiple species in the Caribbean 685 

and would be an ideal candidate disease for expanding the current framework if it were 686 

introduced to the Pacific basin or through the expansion of this tool to the western Atlantic.  687 

Many of the issues that make it challenging to forecast coral disease risk are issues that 688 

encumber ecological forecasts more broadly. In many ecological systems, the greatest obstacle is 689 

data limitation. For example, while we had extensive coral disease survey data that spanned a 690 

large geographic range in the Pacific Ocean and a broad time horizon, very few of the data points 691 

contained useful information about disease density or prevalence, as most surveys exhibited low 692 

or disease-free conditions. This problem is likely to arise in other attempts to forecast low 693 

occurrence events such as infestations, invasive species, tipping points, and extreme events. 694 

While the historical low occurrence of disease is good ecologically, these data limitations inhibit 695 

both our ability to develop initial ecological forecasts and to create a workflow with continual 696 

validation and updates, which has been key to improving forecasts in other systems such as 697 

weather, storm, and fire forecasting (Dietze et al., 2018). A complementary issue is the reliance 698 

on forecasted data as inputs to an ecological forecasting model, which may have their own set of 699 

uncertainties and challenges. An important question then arises from these shared obstacles 700 

across systems: is there something inherently different and currently unknown about developing 701 

forecasts in systems where data cannot be regularly updated and validated? Thus, this ecological 702 

forecast and many others will benefit from community-wide progress in the field of ecological 703 

forecasting.  704 

 705 
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Conclusions 706 

Herein, we present the next-generation NOAA CRW coral disease forecasting product 707 

and an associated data explorer tool. It provides many advantages over its predecessors, 708 

including near-term forecasts of coral disease risk in many major reefs in the Pacific Ocean. The 709 

Multi-Factor Coral Disease Risk product predicts disease risk for white syndromes and growth 710 

anomalies with greater precision and accuracy than previous products based on temperature 711 

alone, and provides information for more diseases and regions. Co-developing the user interface 712 

with the intended user base of scientists and managers resulted in a user-friendly online data 713 

explorer tool that includes assessment of disease risk at different scales, quantification of 714 

uncertainty in predictions, and the ability to adjust input conditions to assess effects on disease 715 

outcomes. While this iteration is a major improvement to the NOAA CRW coral disease 716 

forecasting products, largely thanks to numerous advances in the ecological forecasting 717 

community and data availability, there are still numerous limitations for forecasting coral disease 718 

risk. As data availability, forecasting capabilities, and our biological understanding of the system 719 

improves, so can future versions of this product.  720 
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Table 1: Variable inclusion and importance differs for each disease-region model. The 912 

variables tested and selected, as well as their importance, differ for each region (Great Barrier 913 

Reef or U.S. Pacific) and disease type (white syndrome or growth anomalies). A cell with a 914 

value indicates that the variable was selected for the model and the value represents the percent 915 

increase in Mean Squared Error (MSE) of out-of-bag cross-validation predictions across 916 

permutations in that predictor variable, with higher values indicating more important predictor 917 

variables. (Note that MSE is sensitive to units even though the percent increase in MSE is 918 

unitless; thus values for the GBR models that predict disease density will typically be much 919 

larger than values for the U.S. Pacific models that predict disease prevalence). x indicates a 920 

variable was tested but not selected; a blank cell indicates that the variable was not tested for that 921 

model because it is not a hypothesized predictor variable whereas ∅ indicates that a variable was 922 

not tested because data were not available. Metrics that measure Kd(490) are a proxy for 923 

turbidity. 924 

 925 

 926 
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 928 
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Predictor variable White syndromes Growth anomalies 

GBR U.S. Pac GBR U.S. Pac 

 Time-invariant predictors 

Coral cover 51 0.8 487 x 

Median colony size ∅ 2.3 ∅ 5.3 

Colony size variability   ∅ x 

Herbivorous fish density 68 1.2 641 2.3 

Parrotfish density ∅ 0.6   

Butterflyfish density ∅ x   

Long term Kd(490) median x 2.2 x 1.9 

Long term Kd(490) variability x 1.9 399 x 

Coastal development   x 3.1 

Seasonally-changing predictors 

Three-week Kd(490) median x 1.3 350 1.8 

Three-week Kd(490) variability 59 1.7 345 x 

Month 37 1.1 310 2.5 

Regularly-changing predictors 

90-day SST mean   413 5.6 

Hot Snap 53 x   

Winter Condition 62 0.8   

 935 

 936 

 937 

 938 
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Fig 1. Methodological overview for model development and weekly update for each disease-939 

by-region model. A) Graphical illustration of Synthetic Minority Over-sampling Technique 940 

(SMOTE) where the minority class (i.e., surveys with disease; large gray circles) are used to 941 

create synthetic surveys of predictor and response data (i.e., small gray circles) based on k-942 

nearest neighbors (i.e., black lines connecting surveys in n-dimensional parameter space), 943 

resulting in approximately equal numbers of surveys with (gray) and without (green) disease 944 

present. In this study, we tested different thresholds for inclusion in the minority class. B) We 945 

built the model using quantile regression forests, an algorithm that creates many decision trees 946 

based on a subsample of predictor variables (example shows each tree using 2 of 3 possible 947 

predictor variables), and produces a distribution of target values rather than a mean value. We 948 

selected the most parsimonious model across the different SMOTE datasets and quantile 949 

regression forests (i.e., with different combinations of predictor variables) based on a withheld 950 

portion of the data, using the models with the fewest number of predictor variables with superior 951 

predictive skill. The selected models are used in the weekly update for C-E. C) Each week, we 952 

update predictor variables for the reef grid. Time-invariant predictor variables are held constant, 953 

seasonal predictor variables update each week or month, near-real-time data reflect recent 954 

satellite observations, and forecasted data come from 28-member ensemble CFSv2 SST 955 

forecasts. D) Using the updated predictor data, we re-run the model to produce a new near real-956 

time prediction and 12 weeks of forecasted data, which we amend to the prior 11 weeks of 957 

historical nowcast predictions for a total of six continuous months of disease risk assessments. E) 958 

We also vary the predictor data across a gradient of values to produce scenarios, to explore how 959 

disease risk changes with different input variable values.  960 

 961 
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Fig. 2 Accuracy of disease nowcast predictions demonstrate improved predictive 962 

capabilities for V3 compared with its predecessor. We show comparisons of disease 963 

observations (x-axes) with disease predictions (y-axes) for the current model (V3). Points that 964 

fall on the gray line indicate a perfect fit between observations and predictions. For white 965 

syndromes (left column), we compare disease predictions from V3 with V2 (note that predictions 966 

are only available for Hawaii in the U.S. Pacific). For growth anomalies, where no predecessor 967 

product exists, we show results for V3 only. V3 predicts disease density (colonies/75m2) for the 968 

GBR (top row) and disease prevalence (percent of host colonies exhibiting signs of disease) for 969 

the entire U.S. Pacific (bottom row). The V3 product shows the 75th quantile predicted risk 970 

(points) and 50th - 90th quantile predictions (lines). V2 predicts risk levels based on Hot Snap 971 

values (units = ℃-weeks, range = 1-15). The validation data shown in these plots were not used 972 

in model creation or training.  973 

 974 

Fig. 3. Lead time-dependent predictive accuracy and precision of forecasts. Barplots show 975 

predictive accuracy (left column; calculated as difference between 75th quantile prediction and 976 

observation) and predictive precision (right column; calculated as difference between 90th and 977 

50th quantile predictions) with different lead times (0-12 weeks prior to observation date). In 978 

these plots, perfect accuracy and precision marked by horizontal dashed lines indicate zero 979 

difference. Results are shown in eight panels for each of the paired disease types (white 980 

syndromes and growth anomalies) and regions (GBR, Australia and U.S. Pacific). Predictions (y-981 

axes) calculated as disease density (colonies/75m2) for the GBR and disease prevalence (percent 982 

of host colonies exhibiting signs of disease ranging from 0-100%) for the U.S. Pacific. For 983 

example, a median value of 10 for the GBR would indicate that, on average, the model predicts 984 
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10 more colonies as diseased than were observed. Similarly, a median value of -20 in the Pacific 985 

would indicate that, on average, the model underpredicts disease prevalence by 20%. The 986 

validation data shown in these plots were not used in model creation. Month, seasonal turbidity, 987 

and SST metrics varied with lead time (in weeks), while all other predictor variables stayed the 988 

same (e.g., benthic characteristics of site).  989 

 990 

Fig 4. Data explorer for Multi-factor Coral Disease Risk product, accessed on 23 May 2022. 991 

A) Spatial view of overall color-coded disease risk nowcast for the Main Hawaiian Islands. The 992 

thresholds that separate disease risk levels vary by region and disease type (Appendix S1: Table 993 

S1). B) Nowcast risk summary for geographic regions and diseases assessed. C) Pixel-specific 994 

time-series of nowcasted and forecasted risk on the south coast of Lanai (white arrow in panel A) 995 

for growth anomalies and white syndromes, over a 5-month time period. 996 

 997 
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