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Abstract

Ecological forecasts are becoming increasingly valuable tools for conservation and management.
However, there are few examples of near real-time forecasting systems that account for the wide
range of ecological complexities. We developed a new coral disease ecological forecasting
system that explores a suite of ecological relationships and their uncertainty and investigates how
forecast skill changes with shorter lead times. The Multi-Factor Coral Disease Risk product
introduced here uses a combination of ecological and marine environmental conditions to predict
risk of white syndromes and growth anomalies across reefs in the central and western Pacific and
along the east coast of Australia and is available through the U.S. National Oceanic and
Atmospheric Administration Coral Reef Watch program. This product produces weekly forecasts
for a moving window of six months at ~5 km resolution based on quantile regression forests. The
forecasts show superior skill at predicting disease risk on withheld survey data from 2012-2020
compared with predecessor forecast systems, with the biggest improvements shown for
predicting disease risk at mid- to high-disease levels. Most of the prediction uncertainty arises
from model uncertainty and therefore prediction accuracy and precision do not improve
substantially with shorter lead times. This result arises because many predictor variables cannot
be accurately forecasted, which is a common challenge across ecosystems. Weekly forecasts and
scenarios can be explored through an online decision support tool and data explorer, co-
developed with end-user groups to improve use and understanding of ecological forecasts. The
models provide near real-time disease risk assessments and allow users to refine predictions and
assess intervention scenarios. This work advances the field of ecological forecasting with real

world complexities, and in doing so, better supports near term decision making for coral reef
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ecosystem managers and stakeholders. Secondarily, we identify clear needs and provide

recommendations to further enhance our ability to forecast coral disease risk.

Introduction

Forecasting coral disease outbreaks is critical for the timely management of reef
ecosystems, but developing such early warning systems is challenging when disease dynamics
are not well understood, and data are sparse and irregularly updated. Coral reefs and their
associated threats are a prime example of a complex system that presents challenges for
ecological forecasting. Coral reefs are dynamic, heterogeneous environments, characterized by
their diversity of species and species interactions, and physical and chemical factors that can
affect their health. Diseases are a major threat to coral reefs, causing up to 95% mortality in
dominant coral species during outbreak events such as the white band disease epidemic in the
1980s and 1990s and the Stony Coral Tissue Loss Disease outbreak in the 2010s and 2020s in
Florida and the Caribbean (Aronson and Precht 2001; Walton et al. 2018; Rosales et al. 2020).
Thus, innovative approaches to support effective management strategies for coral disease
transmission, prevention, and mitigation are urgently needed. Modern forecasting can now
combine mechanistic understanding, statistical and machine learning models, and the
quantification of uncertainty to make more accurate predictions. However, developing accurate
and reliable forecasts requires overcoming several key challenges, including the sparse
availability of high-quality data and limited understanding of the underlying complexity of
biological and environmental drivers of coral disease outcomes.

Developing early warning systems for coral diseases is a relatively recent endeavor that

aims to help managers and decision-makers take preventative actions and mitigative measures.
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88  Given the widespread consensus linking coral disease to thermal condition (Burke et al. 2023),
89 early disease forecasts focused on using temperature to predict suitable conditions for disease.
90 The U.S. National Oceanic and Atmospheric Administration Coral Reef Watch (NOAA CRW)
91  program developed the first coral disease forecast in 2010 for white syndromes on the Great
92  Barrier Reef (GBR) in Australia (hereafter V1), which uses a decision tree framework based on a
93  series of anomalous thermal metrics (Heron et al., 2010). This system leveraged NOAA CRW’s
94  established satellite sea surface temperature (SST) monitoring data (~50 km resolution, twice-
95  weekly) refining previous information about the relationship between thermal condition and
96  disease (Bruno et al., 2007; Selig et al., 2006). Subsequently, NOAA CRW adapted the thermal
97  condition metrics from the GBR to produce a complementary, experimental predictive tool for
98 coral disease in the Hawaiian archipelago (incorporated into V1). V1 was further developed to
99  incorporate finer resolution (~5 km, daily) SST data (hereafter V2). A retrospective analysis of
100 V2 demonstrated that machine learning algorithms that used the product metrics (i.e., summer
101 Hot Snaps) combined with additional biotic data could robustly reproduce disease prevalence
102  patterns for two coral diseases across three host species (Caldwell, Heron, et al., 2016). The
103  ability to nowcast and forecast some of these reef stressors has led to new and innovative
104  conservation practices and provided clarity to managers seeking to set priorities. While we know
105 of no examples yet where management officials have taken action in response to disease
106  forecasts, we have seen responses to NOAA CRW bleaching forecasts (Raymundo et al., 2022)
107  and we expect complementary actions (Beeden et al., 2012; Neely et al., 2021) will be taken in
108 response to disease forecasts as managers become more familiar with the system. Managers
109  could mitigate disease risk and impacts with a variety of local scale actions such as

110  implementing fishing and fishing gear restrictions, reducing land-based pollution runoff, or
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111 reducing the abundance of known disease vectors (eg., corallivorous gastropods) or predators
112 (e.g., Acanthaster planci) from vulnerable reefs. Other experimental approaches could be

113  effective, including probiotics, phage therapy, or temporarily relocating at-risk colonies to

114  aquaria.

115 Moving beyond thermal conditions, the next generation of coral disease early warning
116  systems needs to better incorporate an expanded suite of conditions known or hypothesized to
117  affect disease dynamics. Previous research has statistically linked a range of conditions with
118  impaired coral health, including colony size and density, thermal condition, water quality, human
119  population density and land use, and fish densities and predation (Aeby, Williams, Franklin,
120  Haapkyla, et al., 2011; Aeby, Williams, Franklin, Kenyon, et al., 2011; Bruno et al., 2003;

121 Caldwell et al., 2020; Carlson et al., 2019; Greene et al., 2020; Haapkyli et al., 2011; Pollock et
122 al., 2014; Redding et al., 2013; Renzi et al., 2022). However, the mechanistic underpinnings of
123  these multiple contributing factors are often poorly understood due to their complex and non-
124  linear behavior, which can vary by host species and disease type (Clemens & Brandt, 2015;

125  Shore & Caldwell, 2019; Vega Thurber et al., 2014). An additional challenge for any early

126  warning system is whether the predictor variables themselves can be forecasted (Clark et al.,
127 2001; Oliver & Roy, 2015), and this is especially true for the diverse drivers of coral disease.
128  These challenges must be addressed to incorporate a wider range of putative disease drivers into
129  forecasting models.

130 Over the last decade, ecological forecasting and monitoring tools have advanced

131  considerably, making it possible to integrate multiple data streams and more robustly consider
132  various scenarios and sources of uncertainty (Clark et al., 2001; Dietze et al., 2018). Machine

133  learning algorithms are particularly useful in this context, as they can identify complex non-
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134  linear relationships between variables and make predictions in data-poor environments (Jordan &
135  Mitchell, 2015). These advancements have enhanced the capability of identifying relationships
136  that should be tested further, allowing incremental improvements in forecasting efforts (Dietze et
137  al., 2018). Exploring likely scenarios within a forecasting framework can help create more robust
138  approaches for managing ecosystems. Plausible scenarios with alternate conditions are

139  developed using a combination of scientific information and models, stakeholder input, and

140  expert opinion. Scenarios can then be used to explore the potential impacts of different

141 management strategies, account for additional spatial variation in predictor variables, and/or

142  refine predictions to a specific set of conditions. By incorporating scenarios into ecological

143  forecasts and management plans, managers and decision-makers can better understand the

144  potential outcomes of different decisions and identify strategies that are more likely to be

145  effective under a range of possible futures (Clark et al., 2001). These models also need to be

146  incorporated into easy-to-use tools for managers to test and compare different management

147  actions.

148 In this paper, we present the next-generation NOAA CRW coral disease forecasting

149  product (i.e., V3) that addresses some of these challenges and applies new, innovative

150  approaches to ecological forecasting. By integrating data from multiple sources and using

151  machine learning algorithms to identify patterns and make predictions, the system provides early
152  warnings of coral disease risk and could help managers and decision-makers take proactive

153  measures to protect reefs across much of the Pacific Ocean. This new Multi-Factor Coral Disease
154  Risk product expands the previous product in several ways through: 1) a broader geographic

155  scope; 2) consideration of two distinct groups of diseases; 3) inclusion of a suite of disease

156  drivers; 4) generation of weekly forecasts with up to three-month lead time; 5) provision of
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157  measures of uncertainty; 6) consideration of multiple scenarios; and 7) capacity for users to

158  visualize forecasts and modify scenarios through an interactive online dashboard used to explore
159  management strategies. The results of this study have broader implications for making

160  predictions in other complex, data-poor systems and highlight the need for continued research
161  and innovation in the field of ecological forecasting.

162

163  Methods

164 The Multi-Factor Coral Disease Risk product (i.e., V3) is an experimental regional

165  product, currently providing ecological forecasts for multiple locations in the Pacific Ocean.
166  Areas include American Samoa, Guam and the Commonwealth of the Northern Mariana Islands
167  (CNMI), Australia’s Great Barrier Reef (GBR), Hawaii, and the U.S. Pacific Remote Islands
168  Marine National Monument (PRIMNM, also called the Pacific Remote Island Area, PRIA)

169  encompassing seven islands and atolls: Baker, Howland, and Jarvis Island; Johnston, Wake, and
170  Palmyra Atolls; and Kingman Reef. In this product, we assess disease risk based on satellite

171 remotely-sensed, modeled, and in situ data to provide nowcasts and near-term forecasts based on
172  current conditions, recent conditions, and subseasonal-to-seasonal forecasts from NOAA

173  operational climate models. We defined disease risk separately as a density (number of diseased
174 colonies/75m?2 ranging from O to infinity) in Australia and as a prevalence (percent of colonies
175  affected ranging from O to 100%) in the U.S. Pacific (more details below), which maps to

176  different NOAA CRW warning levels ranging from Low Risk to Alert Level 2 for visualization
177  purposes in the decision support tool. We determined the thresholds separating warning levels

178  based on historical disease observations and expert elicitation; the thresholds vary by disease
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179  type and region (Appendix S1: Table S1). We optimized the modeling system using a Pacific-
180  wide dataset of over 42,000 coral disease surveys (more detail below).

181

182  Data

183 We identified a suite of potential predictor variables to forecast coral disease risk based
184  on prior observational, experimental, and modeling efforts for two disease types: white

185  syndromes and growth anomalies (Table 1, Appendix S1: Table S2).. White syndromes refer to a
186  suite of tissue loss diseases that cause coral mortality and range from acute to chronic based on
187  the speed at which the infection progresses (Bourne et al., 2015). Growth anomalies are chronic
188  diseases that persist at low levels year round and manifest as changes in skeletal morphology,
189  usually through abnormal increases in skeleton secretion and disorganization of corallites,

190  affecting colony growth and fecundity (Palmer & Baird, 2018). The etiological agents of both
191  groups of diseases are unknown. Across a variety of host species, disease types, and regions,
192  some factors such as coral cover, coral colony size, and specific ranges of temperature have been
193  consistently associated with certain coral diseases, although the functional relationships may
194  differ slightly (Bruno et al., 2007; Caldwell et al., 2020; Greene et al., 2020; Heron et al., 2010;
195  Ruiz-Moreno et al., 2012). Thus, we considered appropriate derivations of these variables for all
196  diseases and regions, based on data availability. For instance, we considered accumulation of
197  anomalous temperatures for white syndromes because of statistical associations across multiple
198  large scale studies (Bruno et al., 2007; Burke et al., 2023; Heron et al., 2010; Howells et al.,

199  2020; Maynard et al., 2011), but focused on seasonal mean temperature for growth anomalies
200  because it has been experimentally associated with lesion development and growth (Stimson,

201  2011). Additionally, there were several potential predictor variables that were unique to each
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202  disease type, because the ecologies of white syndromes and growth anomalies differ

203  substantially. White syndromes often exhibit strong seasonality due to ocean conditions, notably
204  winter and summertime thermal stress and changes in water quality (Haapkyla et al., 2011;

205  Heron et al., 2010; Maynard et al., 2011; Ruiz-Moreno et al., 2012). White syndromes have also
206  been associated with fish densities, but the effects are not consistent across studies and the

207  underlying hypothesis for this effect varies by fish functional group (Aeby, Williams, Franklin,
208  Kenyon, et al., 2011; Caldwell et al., 2020; Clemens & Brandt, 2015; Greene et al., 2020; Renzi
209 etal., 2022; Williams et al., 2010). Thus, we included available metrics of fish density for

210  multiple fish types and water quality (turbidity) in the white syndromes models. For growth

211 anomalies, previous studies indicate an association with low fish abundance, limited water

212  motion, and poor water quality via nutrient enrichment, coastal development, and proximity to
213  dense human populations (Aeby, Williams, Franklin, Haapkyla, et al., 2011; Caldwell et al.,
214 2020; Yoshioka et al., 2016). Therefore, we included metrics of fish populations, turbidity, and
215  coastal development in the growth anomalies models.

216 From a forecasting perspective, the predictor variables, or environmental conditions, that
217  we considered in this study can be roughly divided into three types based on their variabilities
218  through time: 1) time-invariant; 2) seasonally-changing; and 3) regularly-changing. We consider
219  time-invariant conditions as any predictor variable that does not change regularly through time,
220  or information about such change is unavailable or sparsely updated. We consider seasonally-
221  changing conditions as predictor variables that depend on time of year but are not date-specific.
222  Most of these variables have been developed in a way that represents repeated seasonal patterns
223  developed from multi-year datasets (i.e., climatologies). Finally, we consider regularly-changing

224  conditions as predictor variables that change, and can be measured and evaluated, over some

10
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225  regular time interval. We used point estimate predictor variable data for model development

226  based on the time and location of coral disease surveys whereas we use gridded predictor

227  variable data for forecasts.

228

229  Time-invariant data

230 We collated time-invariant data from in situ surveys and remotely-sensed data. For each
231  predictor variable described below, which we used in at least one of the four region-by-disease
232  models, we provide further detail, including data sources and spatial resolution, in Appendix 1:
233  Table S2. To characterize benthic cover, we used metrics of coral cover (0-100%), coral colony
234  size, and population level colony size variability (based on coefficient of variation). For these
235  metrics, we developed the models using data collected concurrently with coral disease surveys.
236  We aggregated these metrics by host family for both U.S. Pacific models and by morphology for
237  the GBR white syndromes models to be consistent with data collection methodology (more

238  details below). In the forecasts, we used a combination of survey data and gridded data from
239  long-term monitoring programs. For coral cover in the GBR and coral colony size in the U.S.
240  Pacific, we calculated ~5 km pixel-specific mean values across the reef grid from long-term

241  survey data (multiple sources listed in Appendix 1: Table S3) while for coral cover in the U.S.
242  Pacific, we used sector level benthic cover data from the NOAA National Coral Reef Monitoring
243  Program (NCRMP). As fish surveys were rarely conducted in coordination with benthic surveys,
244  we used fish density layers from long-term monitoring programs for both model development
245  and forecasting. We used sector-level fish data from NOAA NCRMP and ~2 km gridded fish
246  count data based on manta tow surveys from the Australian Institute of Marine Science (AIMS)

247  Long Term Monitoring Program (LTMP) (Sweatman et al., 2008). These long-term datasets
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248  represent the most comprehensive current estimates of coral cover and size available for the reef
249  grid, but inherently will not contain information about recent or future changes in these variables.
250  Thus, periodic updates to the reef grid as data becomes available would be beneficial. As a proxy
251  for coastal development in both model development and forecasting, we used NASA’s Black
252  Marble product, which is a time-aggregated map of artificial light intensity (high gain) (range =
253  0-255 where 0 = black and 255 = white) at 3 km resolution from the Visible Infrared Imaging
254  Radiometer Suite (VIIRS) instrument aboard the Suomi-National Polar-orbiting Partnership

255  (NPP) satellite (Romén et al., 2018). To characterize chronic water quality conditions in both
256  model development and forecasting, we aggregated the diffuse attenuation coefficient at 490 nm,
257  Kd(490), as a proxy for turbidity from VIIRS data (Kirk, 1994). We calculated long-term

258  Kd(490) median and variability for each reef pixel by overlaying aggregated data from 2012-
259 2020 (i.e., all data available at the time of study) within a 5-pixel buffer (750 m becomes ~8.25
260  km resolution) following methods from Geiger et al., 2021 to increase data availability, as

261  nearshore ocean color data are notoriously patchy. These metrics are indicative of spatial

262  differences in water quality across reefs, providing information on locations that have

263  chronically good or poor water quality and those that are exposed to a large range of water

264  quality conditions throughout the year versus those with more consistent conditions.

265

266  Seasonally-changing data

267 We use month of year and two turbidity metrics (mean and variability) to capture

268  seasonally-changing conditions that are relevant to disease risk. To characterize typical seasonal
269  water quality patterns, we calculated mean and variability of VIIRS-derived Kd(490) for a three-

270  week moving window (resulting in new values each week) across a 9-year time span (2012-
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271 2020) using the same 5-pixel buffer described above. These metrics repeat annually and are

272  indicative of how water quality changes throughout the year at a given location. We used the
273  mean (i.e., climatology) and associated variability in Kd(490) to represent seasonal changes

274  because, to date, these values are too highly variable and too infrequently available in the coastal
275  zone to use actual, or even three-week composite, values. Additional details on the derivation of
276  these metrics and their accuracy can be found in Geiger et al., 2021. We include month in the
277  model as a proxy for all other seasonally changing conditions.

278

279  Regularly-changing data

280 We include three temperature-based metrics in the disease models that update at regular
281  intervals: 90-day SST mean, Hot Snap, and Winter Condition. In contrast to the seasonally-

282  changing data, the regularly changing data yield different values each year for the same time
283  period (e.g., the first week of January) based on observed and/or forecasted conditions. The daily
284  previous 90-day mean SST is the average daily SST values for the 90 days preceding the current
285  date. The Hot Snap and Winter Condition metrics were developed for NOAA CRW’s Coral

286  Disease Outbreak Risk Product V1 and V2 and continue to be used in V3 to represent thermal
287  conditions on time scales relevant to coral disease. The Hot Snap metric accumulates hot

288  temperature anomalies through time, relative to the locally/pixel-specific long-term expected
289  summer season temperature (summer season climatology) (Heron et al., 2010), providing an
290  indication of exposure to thermal stress. The Winter Condition metric accumulates both hot and
291  cold temperature anomalies during the winter season relative to locally-specific, long-term

292  average temperature (Heron et al., 2010), representing cold season variability. Mild winters have
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293  been linked to white syndromes (Caldwell, Heron, et al., 2016; Heron et al., 2010), potentially
294  because such conditions allow pathogens to persist and grow throughout the winter season.

295 The data underlying these three temperature metrics differ for satellite observed

296  temperatures, which we used for model development and near real-time nowcasts, and forecasted
297  temperature, which we use for disease forecasts. For observed SST, we use CoralTemp v3.1

298  (Skirving et al., 2020), which provides daily data at a global resolution of ~5 km (0.05°). For
299  forecasted SST, we use output from the NOAA National Centers for Environmental Prediction’s
300  operational Climate Forecast System Version 2 (CFSv2) (Saha et al., 2014). Each day, the

301 CFSv2 generates an ensemble of four SST forecasts out to 9 months at ~50 km (0.5°) resolution.
302  We use this output to form 28 ensemble member predictions each week (4 daily start times x 7
303  days) for each predicted temperature metric and to predict the metric for each future week up to
304  three months following the prediction date. The data are downscaled from ~50 km to ~5 km

305  using a nearest neighbor algorithm and then bias-corrected to match the 5 km satellite SST

306  measurements during the overlap between satellite observations and CFSv2 over the weekly time
307  period when the 28 ensemble members are collected. Because predicted values demonstrate

308  decreased variability with longer lead-times, predicted SST anomaly values for the metrics are
309  correspondingly adjusted to match the variability of the SST data.

310

311 Coral Disease Survey Data

312 We assembled a Pacific-wide coral health monitoring dataset, which we used to develop
313  region- and disease-specific predictive models of disease risk. In total, we assembled over 42,000
314  coral health monitoring surveys between 2012 and 2020. Data came from the NOAA NCRMP,

315  University of Guam, Hawaii Coral Disease Database (Caldwell, Burns, et al., 2016), and the
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316  Great Barrier Reef Marine Park Authority (GBRMPA; referred to as Reef Authority in other
317  contexts) Reef Health and Impact Surveys (Beeden et al., 2014). The different survey protocols
318  used to collect these data have been described in detail previously (Beeden et al., 2014; Caldwell,
319  Burns, et al., 2016; Winston et al., 2020). For the research described in this paper, there are

320 notable methodological differences between surveys conducted in Australia and the U.S. Pacific;
321  therefore, we modeled disease risk in these two regions separately. Specifically, surveys in

322  Australia indicated morphology-specific disease density (i.e., number of diseased colonies in a
323  given area) while the U.S. Pacific surveys provided information to quantify family-specific

324  disease prevalence (i.e., percent of coral colonies affected by disease); therefore the risk

325  prediction is for disease density for Australia and disease prevalence in the U.S. Pacific. While
326  the U.S. Pacific models are technically generated at the family level (Acroporidae for white

327  syndromes and Poritidae for growth anomalies), in practice, the data predominantly describe
328  genus- or species-specific patterns with various genera/species represented in different regions
329  (Appendix 1: Table S4). We used these data to develop predictive models of disease risk (i.e.,
330 disease density or prevalence) rather than outbreak risk, which we believe is more appropriate as
331  the data arise from regular monitoring surveys rather than outbreak response surveys (outbreaks
332  defined in Raymundo et al., 2008). If multiple surveys were conducted in close proximity in time
333  (i.e., in the same month) and space (the same survey area), we randomly selected one of those
334  surveys to keep in the dataset to avoid artificially over-representing certain conditions.

335

336  Balancing data with SMOTE

337 To create disease models that produce reliable predictions of all levels of disease risk,

338  particularly of high disease levels, we used a synthetic sampling technique to balance the data
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339  used in model development. The observational surveys available to create the disease models
340  were highly unbalanced, with the majority of surveys reporting zero or low levels of disease

341  (Appendix 1: Table S5); using unbalanced data would optimize disease-free predictions.

342  Therefore, we balanced the dataset before model creation using the Synthetic Minority Over-
343  sampling Technique (SMOTE; Chawla et al., 2002; Fig. 1A). We used the observed disease
344  surveys with their associated predictor variables to create additional synthetic disease surveys
345  (using a k-nearest neighbor algorithm) to produce a balanced dataset (e.g., approximately equal
346  number of disease and disease-free surveys with all predictor variables). We created multiple
347  SMOTE datasets for each disease and region based on different disease level thresholds because
348 it is unknown whether the same environmental conditions that precede observed disease are

349  responsible for low and high levels of disease risk. In other words, we oversampled surveys with
350 any disease and oversampled surveys with greater than some specified level of disease allowing
351  the model selection process to determine the best threshold to use. We tested several disease
352 level thresholds: 1, 5, and 10 colonies/75m? for white syndromes in the GBR and 1, 5, and 10%
353  prevalence for white syndromes in the U.S. Pacific; 1, 5, 10, and 15 colonies/75m? for growth
354  anomalies in the GBR and 1, 5, 10, 15, and 20% prevalence for growth anomalies in the U.S.
355  Pacific. We chose these thresholds based on a combination of natural breaks in the data and

356  expert opinion. The threshold units align with the survey data collected (i.e., density or

357  prevalence) and therefore differ between the GBR and U.S. Pacific. For each SMOTE dataset of
358  disease surveys, we split the data into training and test data using a 75/25 split. We used the

359  training data for model creation and then the withheld test data for model selection and

360 assessment (described below).

361
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362  Quantile regression forests

363 We created predictive models of disease risk using quantile regression forests

364  (Meinshausen, 2006; Fig. 1B). Quantile regression forests use a decision tree framework, allow
365  for non-linear relationships between response and predictor variables, and have shown high

366  predictive skill across a range of systems. Briefly, quantile regression forests are created by

367  developing an ensemble of quantile decision trees (i.e., random forests), with each tree created
368  from a bootstrapped resample of the dataset. Quantile decision trees differ from standard

369  decision trees in that they predict the distribution of target values rather than the mean target
370  value from the training data. This approach uses an ensemble of uncorrelated decision trees,

371  which tend to outperform any individual tree, and each tree uses a random subset of predictors to
372  increase variation among trees. The result of this process is that the final predictive model is
373  more robust because it is created from many trees that are trained on different subsets of

374  response data and predictor variables.

375

376  Model selection

377 We selected the most parsimonious model for each disease and region amongst a suite of
378  candidate models based on predictive skill on a withheld portion of the data. For each disease-
379  by-region pair, we ran a model that included all hypothesized predictor variables (Table 1) from
380  atraining dataset (75% of surveys) and then used a backward selection approach to iteratively
381  remove predictor variables of least importance. We calculated the relative importance of each
382  predictor variable as the percent increase in Mean Squared Error (MSE) of out-of-bag cross-
383  validation predictions across permutations in that predictor variable, with higher values

384  indicating more important predictor variables. The exception was for the predictor variable
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385  Month, which we retained in the model regardless of its relative importance because it captures
386  additional seasonal variation. At each model iteration, we predicted disease risk from a withheld
387  test dataset (25% of the surveys) and assessed predictive skill based on the R? value that arose
388  from linearly regressing those predictions with observations. We followed this approach of

389  backward selection for each SMOTE dataset. The selected (most parsimonious) model was the
390  model with the fewest predictor variables that produced an R? value within 1% of the best model
391  (i.e., model with the highest R? overall).

392

393  Model assessment

394 To determine how well the models performed at retrospectively predicting disease risk
395  for each disease-by-region pair, we compared retrospective predictions by the models described
396  here with archived nowcasts from previous versions of the models where available (i.e., V2

397  predictions for the GBR and Hawaiian archipelago) and how forecast skill changes with different
398 lead times. For both assessments, we quantified predictive skill using the withheld test data. To
399  assess predictive skill for white syndromes, we compared retrospective disease predictions from
400  models described in this paper (V3) with models supporting V2 using predictor data available
401  from the corresponding week of observations. The V3 models predict disease density or

402  prevalence whereas the V2 models produce risk levels based on Hot Snap values (units = °C-
403  weeks, range = 1-15); therefore, we visually compared these results but did not directly compare
404  their skill quantitatively. Since there are no previous models in production for growth anomalies,
405  we assessed the retrospective model skill on the withheld test data alone. Additionally, we were
406 interested in whether and to what extent forecast prediction accuracy and precision change as we

407  getcloser to the observation date (i.e., shorter lead-times). To assess this relationship, we
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408 predicted disease risk at weekly intervals for each observation date in the withheld data, with
409 lead times ranging from 12 weeks prior (e.g., in advance of a survey) to 0 weeks (i.e., nowcast).
410  We calculated accuracy as the difference between the 75th quantile prediction and the

411  observation, resulting in zero if there was perfect accuracy, negative values if the models

412  predicted lower disease risk than observed, and positive values if the models predicted higher
413  disease risk than observed. We used the 75th quantile prediction (upper range of disease

414  likelihood) as the primary indicator of disease risk throughout this work, which was the metric
415  selected by the product end users to err on the side of potentially overpredicting disease in an
416  effort to further capture rare disease events. To assess predictive precision, we calculated the
417  difference between the 90th and 50th quantile predictions: larger differences indicate less precise
418  estimates and smaller differences indicate more precise estimates.

419

420  Weekly-updating predictions

421 The overarching objective of this research was to develop a product that provides

422  weekly-updated, near real-time, and subseasonal-to-seasonal disease risk forecasts. The

423  workflow for this process follows. First, we developed a reef location database based on a ~5 km
424  gridded reef locations dataset currently used by NOAA CRW (Heron et al., 2016) to set the

425  spatial extent of the disease risk forecasts described in this paper. This reef location database
426  encompasses all known shallow-water reefs within the U.S. Pacific Islands and atolls and along
427  the east coast of Australia, the majority of which fall within the GBR Marine Park. To allow

428  users to assess short-term temporal evolution of disease risk at each reef pixel, we provide a

429  moving window of six months of weekly predictions: the first three months with weekly nowcast

430  predictions based on observed environmental conditions (i.e., time-invariant, seasonally-
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431  changing, and nowcast predictor variables identified in the model selection process described
432  above) up to the current calendar week, and the second three months with weekly forecast

433  predictions based on a combination of historically observed (time-invariant data and seasonally-
434  changing data) and forecasted environmental conditions. The models and environmental

435  conditions we use vary by disease and region, as described earlier and in the Results section. For
436  each week of predictions, we update the environmental input data (Fig. 1C). The nowcast

437  predictions (Fig. 1D) that we produce for each reef pixel are based on a single set of observed
438  environmental conditions and prediction uncertainty arises solely due to model uncertainty. In
439  contrast, we produce 28 ensemble forecast predictions for each reef pixel (Fig. 1D), using 28 sets
440  of SST-based metrics derived from the 28 different CFSv2 model runs, and thus, uncertainty is
441  composed of both model uncertainty and SST forecast uncertainty. In this product, we chose to
442  present predictions using the 50th, 75th, and 90th quantile predictions for the reasons stated

443  above (though any quantile(s) could be used). We also aggregate the risk predictions for different
444  management areas, which we collated from marine management agencies. We do this by

445  quantifying the 90th quantile values across all ~5 km reef pixels that fall within the specified
446  management area of the risk predictions (i.e., the 75th quantile modeled risk). The use of the
447  90th quantile to spatially summarize risk predictions is consistent with other regional summaries
448  produced by CRW (Heron et al., 2016), with this value selected to alert users to regional-level
449  risk whilst preventing potential exaggeration (e.g., by reporting the maximum value across the
450  region).

451

452  Weekly-updated scenarios

453 To allow users to customize the prediction to localized and current environmental
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454  conditions and help determine the most appropriate intervention strategies, we also produce

455  weekly-updated scenario-based disease risk predictions (Fig. 1E). The predictions for various
456  scenarios show how adjusting current environmental conditions would change current disease
457  risk predictions. We calculate the change in disease risk by re-running the models iteratively,
458  varying a single environmental condition by specified amounts and holding all other location-
459  specific, current environmental conditions constant. The resulting scenarios allow users to 1)
460 refine predictions considering local conditions (e.g., a reef of interest) known to the user that

461  may vary from the mean conditions of the entire reef pixel or management zone; and 2) consider
462  how an intervention (e.g., a program to reduce turbidity) would affect disease risk. Following the
463 format we use to present near real-time and seasonal disease risk predictions, we also calculate
464  changes in disease risk for scenarios based on the 75th quantile disease predictions and aggregate
465  the results to management areas in the same way we describe earlier.

466

467  Results

468  Performance evaluation

469 The new Multi-Factor Coral Disease Risk product (V3) described in this study predicts
470  disease risk relatively well and qualitatively demonstrates superior predictive accuracy compared
471  with V2 for both the GBR and Hawaiian archipelago (Fig. 2). All versions have difficulty

472  predicting no or very low disease levels (i.e., below the selected SMOTE thresholds). V3 is the
473  first product to calculate uncertainty and can therefore represent this lack of predictability with
474  large uncertainty values, as shown around many low disease values. The major improvement can
475  be seen at mid- and high-levels of disease (i.e., above the selected SMOTE thresholds, which

476  vary by disease and region). While the previous algorithm predicted some high disease events
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477  well, many were predicted to have no disease risk, suggesting that factors other than thermal
478  condition are key for predicting disease events.

479

480  Lead time

481 Both accuracy and precision improved as lead time decreased, but not as drastically and
482  consistently as we expected (Fig. 3), indicating that as the survey date approaches the predictions
483  improve slightly. Positive values for accuracy indicate an over-prediction of disease in the

484  forecast (as shown for white syndromes on the GBR), whilst negative values indicate under-

485  prediction (growth anomalies in both regions). Accuracy improved with shorter lead time for
486  predictions in the GBR for both diseases, while there was almost no improvement with lead time
487  for predictions in the U.S. Pacific. In contrast, precision was largely unaffected by lead time,
488  with marginal improvements for white syndromes in the GBR and growth anomalies in the U.S.
489  Pacific. Given that the variability in SST forecasts decreased with increasing lead time, these
490  results suggest that the prediction uncertainty is largely a function of model uncertainty rather
491  than SST forecast uncertainty.

492

493  Coral disease drivers

494 The most influential disease drivers were primarily time-invariant or seasonally-changing
495  predictor variables (Table 1), which may explain why the V3 product predicts disease with

496 relatively high accuracy for observations from a range of locations and years (Fig. 2), but those
497  predictions do not change substantially with changing lead-times (Fig. 3). The most

498  parsimonious models for each disease-by-region pair varied slightly from each other but broadly

499  reflected relationships found in the literature (Appendix 1: Figs. S1-4). In short, both diseases
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500  were primarily influenced by temperature and water quality, coral cover or size, and fish density.
501  White syndromes were strongly influenced by seasonal conditions while growth anomalies were
502  more strongly driven by chronic conditions. A major contribution of this study is the inclusion of
503  multiple metrics of chronic and seasonally changing water quality, which have been shown to
504  influence disease risk in both small-scale correlative and experimental studies (Haapkyli et al.
505  2011; Pollock et al. 2014; Vega Thurber et al. 2014; Yoshioka et al. 2016), but to-date, have not
506  been possible to include in large scale studies. Thus, this research demonstrates a consistent

507 influence of water quality on disease risk across a broad geographic region and two disease

508 types. Fish density and winter condition were the best predictors of white syndromes in the GBR,
509 followed by variation in seasonal turbidity, summer thermal condition, and coral cover. For

510  white syndromes in the U.S. Pacific, median colony size and chronic and seasonal turbidity

511  metrics (both median and variability for each) were most important. Predictor variables for

512  growth anomalies in both regions were similar to each other, and included 90-day SST mean,
513 fish density, benthic cover metrics, and seasonal and chronic water quality. Within-site water
514  quality variability was more important for growth anomalies in the GBR, whereas average water
515  quality conditions along with coastal development were more important in the U.S. Pacific.

516 The model selection process revealed that the predictor variables used are better suited
517  for differentiating between lower and higher levels of disease risk rather than presence-absence.
518  We found that the models were able to predict the gradient of observed disease risk best when
519  oversampling surveys in the SMOTE balancing process with relatively high levels of disease
520  risk. For white syndromes, oversampling surveys with >10 diseased colonies/75m? in the GBR

521  and >10% disease prevalence in the U.S. Pacific was optimal; for growth anomalies,
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522  oversampling surveys with >15 diseased colonies/75m? in the GBR and >20% disease

523  prevalence in the U.S. Pacific models was optimal (Appendix 1: Fig. S5).

524

525  Decision support tools

526 The experimental Multi-Factor Coral Disease Risk Forecast, a new tool within NOAA
527  CRW’s decision support system for coral reef management, provides a regional ecological

528 nowcast and forecast of white syndromes and growth anomalies for multiple locations in the
529  Pacific Ocean. Via an online interface on the CRW website

530  (https://coralreefwatch.noaa.gov/product/disease_multifactor/index.php), users can access and
531  explore coral disease forecasts for their region of study, management, and/or interest in the
532  Pacific, to prepare for, monitor, and respond to elevated coral disease risk (Appendix 1: Fig. S6).
533

534  Data explorer

535 To allow users to explore near real-time, weekly, and seasonal disease predictions more
536  closely, we produced an interactive data explorer tool to complement the NOAA CRW Multi-
537  Factor Coral Disease Risk Forecast. Users can access the data explorer through

538 https://coralreefwatch.noaa.gov/product/disease_multifactor/index.php or at

539  https://coraldisease.com. The data explorer has four components: 1) a disease risk page

540  visualizing nowcasts and forecasts across time and space (Fig. 4); 2) a scenarios page where
541  users can adjust environmental conditions to assess corresponding changes in the nowcast of
542  spatially-explicit disease risk (Appendix S1: Fig. S7); 3) a historical data page that provides

543  information about survey data used to build the models; and 4) an information page with

544  explanatory information and additional resources. Users can explore forecasts and scenarios at
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545  multiple spatial scales, ranging from an individual ~5 km reef pixel to various management

546  zones (containing multiple reef pixels).

547

548  Discussion

549 The Multi-Factor Coral Disease Risk product (V3) offers many improvements over its
550  predecessors, providing a more holistic assessment of disease risk for reefs throughout the

551  Pacific Ocean. In addition to expanding the geographic scope and types of diseases assessed, V3
552  provides weekly-updated nowcasts and forecasts with up to three months of lead time. The

553  predecessor products fundamentally differed in their forecasting approach; V1 and V2 provide
554  winter pre-conditioning risk outlooks at the end of winter based on wintertime metrics derived
555  from satellite remote sensing data, and then for pixels that are pre-conditioned for risk, refined
556  near real-time predictions are based on satellite monitoring of Hot Snap accumulation throughout
557  the summer months. Thus, within the summer, these prior products produce nowcasts and do not
558  make future predictions; the only prediction component is for the following summer and only at
559  the conclusion of a winter season based on thermal conditions from the entire winter.

560  Operationally, V3 requires constructing regular predictions of SST-based metrics from climate
561  models rather than relying entirely on near real-time satellite remote sensing (as in V1 and V2).
562  The three-month lead time in V3 aims to provide local stakeholders with more time to organize
563 and execute a response to potential elevated disease risk. The accuracy and precision of disease
564  risk forecasts demonstrate a marginal level of bias in applying the data-based model relationships
565  with predicted values, which may result from variable skill in predicting the inputs (which here
566  are the temperature-based metrics) rather than in the model itself (see further discussion below).

567  Through the online dashboard, users can vary current or predetermined environmental conditions
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568 to refine disease risk predictions to better reflect local conditions within the data grid and/or to
569  assess impacts of potential interventions. The most fundamental difference between V1/V2 and
570 V3 is that the new product assesses disease risk based on a suite of ecological conditions in

571  combination with temperature conditions, rather than temperature alone. Some of these new
572  variables such as turbidity were previously unavailable before the incorporation of VIIRS data
573 into these models. Given the relative importance of these new predictor variables (Table 1), we
574  can conclude that although suitable temperature conditions are necessary for elevating risk of
575  white syndromes and growth anomalies, other conditions like colony size and water quality are
576  important driving factors. As a result, the new models that consider a suite of conditions,

577  alongside temperature, have demonstrated better performance in retrospectively predicting

578  disease risk in both the GBR and U.S. Pacific.

579 While this analysis demonstrates that a suite of conditions are associated with white

580  syndromes and growth anomalies, challenges in forecasting these predictor conditions directly
581  limits capacity for disease prediction. The only predictor variables that are truly forecasted in the
582  Multi-Factor Coral Disease Risk product are the SST-based metrics. For all other variables, we
583 created seasonal climatologies, or rely on time-invariant layers based on long-term aggregated
584  data. For most of the time-invariant variables, such as coral cover, fish densities, and coastal
585  development, we do not expect conditions to change regularly. However, a single event can
586  drastically change biotic conditions on a reef (e.g., a mass bleaching event) and such changes
587  would not be reflected in the forecasts with the predetermined conditions, although they may be
588  assessed (at least to some degree) through adjusting scenarios based on updated information. We
589 anticipate the data may be updatable every 5 to 10 years. We foresee a similar issue for water

590  quality metrics: while we expect that the seasonal climatology and associated variability metric
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591  used in these models are fairly robust in the long-term, the current models do not capture acute
592  events caused by intense rainfall and associated runoff, which are known to influence disease
593  (Haapkyli et al., 2011). Although we attempted to measure acute events with ocean color data
594  (procedure described in Geiger et al., 2021), we found that the available data were too sparse to
595  use in the models, with no satellite coverage for ~80% of the corresponding survey data. More
596  importantly, the ocean color data unavailable during events were not random, but aggregated
597  during cloudy days; in other words, days that are most likely associated with rain events that can
598 increase disease risk. An alternative approach to forecasting water quality conditions could be to
599  create a model based on precipitation forecasts. However, precipitation forecasts are less skillful
600  than temperature forecasts and would require accurate prediction of the timing, intensity, and
601  location of rainfall at fine scales, which must be incorporated into fine-scale hydrologic models
602  with accurate topography and well-predicted initial surface conditions (i.e., soil moisture). Such
603  fine scale hydrologic modeling is generally lacking for most tropical coasts. For this reason,

604  seasonally varying water quality climatologies are the most reliable measurements currently

605 available for coastal coral reefs and applicable for our models. However, we see this process as
606 analogous to early temperature forecasts, which began as almanacs of past conditions

607  (climatologies) and now show high prediction skill through the deployment of increasingly

608  sophisticated statistical and dynamical models.

609 The extent to which temperature-based metrics are influential in the models determines
610  how well predictions reflect spatial and temporal variability in disease risk. For white syndromes
611  on the GBR for example, both Winter Condition and Hot Snaps are relatively influential

612  variables. As a result, in the retrospective analysis, accuracy and precision varied

613  spatiotemporally — and improved with shorter lead times (consistent with the performance of
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614  predicted temperature). In contrast, white syndromes in the U.S. Pacific are less strongly driven
615 by any of the temperature metrics tested in this study, and therefore variability in disease risk is
616  more apparent spatially than temporally. It is worthwhile to note that several white syndromes
617  outbreaks in the U.S. Pacific have occurred in winter (Aeby et al., 2016; Caldwell et al., 2018;
618  Greene et al., 2023; Williams et al., 2011), suggesting that other factors may be more important
619  than temperature in this region and/or that some aspect of temperature not captured by the

620  metrics used in this study is important. For all disease-region pairs, particularly those with less
621  reliance on temperature-based metrics, developing and/or improving climatologies and forecast
622  variables other than temperature would be the most effective way to improve predictability

623  within this forecasting system. A complementary and useful way of leveraging information from
624 V3 is to explore the spatial variability in disease risk to identify locations that are most promising
625  for interventions to improve reef health and target interventions to the most influential variables.
626  For instance, for white syndromes on the GBR, fish density and seasonal turbidity variability
627  were identified as some of the most important predictor variables, indicating that interventions
628  directed at those factors may be most effective for improving reef health. From this perspective,
629  users can explore spatial variability in disease risk and then track any intervention-associated
630 improvements through time without concern over ephemeral conditions that will elapse with

631  weekly updating.

632 Ecological forecasting presents a variety of ways scientists, managers, and decision-

633  makers can address the rising number of ecological challenges. We provide multiple pathways to
634  explore model predictions and suggest that major improvements going forward will be as

635  dependent on understanding the biological relationships as they are on additional monitoring and

636  surveillance data. The model outputs and associated online Multi-Factor Coral Disease Risk
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637  product and data explorer were co-developed with many relevant management agencies and

638  scientists. Through multiple focus groups with stakeholders in Australia, American Samoa,

639  Hawaii, and Guam, planning meetings, and workshop demonstrations at several scientific

640 conferences over the course of six years, we created an online decision support tool that provides
641  regional overviews aligned with other NOAA CRW tools with which our intended audience is
642  already familiar. The method of delivering regional overviews is also preferred by users with
643  slow or intermittent internet connection, as is common in some Pacific islands. The data explorer
644  complements this tool in several ways. First, it provides predictions aggregated to relevant

645 management zones and allows users to explore forecasts at these various spatial scales through
646  time. This addresses two key concerns of our users as they need to distill information at scales
647  relevant to their respective agencies or work mandates, and to understand trends through time in
648  those specific locations. We addressed a suite of other concerns through the use of scenarios.
649  Broadly, users who interacted with the tools as they were being developed and tested found it
650  difficult to translate mean conditions at the finest spatial scale (~5 km) available to an individual
651  reef of interest, especially when they knew conditions at that one location were different from the
652  surrounding region. Thus, we made it possible for users to change individual input conditions in
653  the scenarios page of the interactive tool to see how predicted disease risk may correspondingly
654  change in a specified area of interest. The same scenarios tool can alternatively be used as an
655  exercise to assess the predicted impacts of an intervention that would affect the relevant input
656  conditions (e.g., an intervention to reduce resuspended sediments via turbidity) to determine how
657  that might affect disease risk.

658 Going forward, the forecasting models could be substantially improved by replacing

659  phenomenological relationships with biological ones and potentially by calibrating the models
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660 differently. Ideally, biological relationships could replace phenomenological ones by using a
661  combination of lab and natural experiments. This approach would ultimately help reduce

662  uncertainty, particularly for undersampled conditions. In terms of calibration, we made several
663  decisions that increased the likelihood of false positives (i.e., predicting higher disease levels
664  than would be observed). Specifically, using SMOTE to compensate for scarce data on the

665  conditions associated with elevated disease risk resulted in an overrepresentation of those

666  conditions in the model data. Further, we used the 75th percentile when communicating the
667  model results in an effort to guard against missing a major disease event. The impact of these
668  decisions plays out as expected with a large number of false positives in the validation exercise
669  (Fig. 2). While we made these choices based on stakeholder input, it might be preferable in
670  future work to calibrate the models in a way that systematically assesses a broader suite of

671  assumptions and allows for optimization of those decisions. For instance, future efforts might
672  include performing a formal parameter sweep across a broader range of SMOTE data

673  frequencies and prediction quantiles. Alternatively, if enough information is known about the
674  disease system, one could use informative priors in a Bayesian analysis or consider adding a base
675  rate correction.

676 The overall modeling approach we used to create V3 could be replicated to predict

677  disease risk for other reef regions and diseases, with appropriate consideration given to the

678 transferability of input variables to these model systems. To expand this framework, a model
679  would need to be developed tailored to the new location and/or disease. This would require the
680  collation of coral health survey data and concurrent environmental conditions for model

681  development, and collating gridded environmental covariates, including climatologies and SST

682  forecasts, for the appropriate reef grid for forecasting. Diseases most suited for a forecasting
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683  framework like the one described in this study are those impacting widely distributed hosts,

684  where the burden shifts seasonally between endemic and epizootic states. For example, Stony
685  Coral Tissue Loss Disease has caused widespread mortality in multiple species in the Caribbean
686  and would be an ideal candidate disease for expanding the current framework if it were

687  introduced to the Pacific basin or through the expansion of this tool to the western Atlantic.

688 Many of the issues that make it challenging to forecast coral disease risk are issues that
689  encumber ecological forecasts more broadly. In many ecological systems, the greatest obstacle is
690  data limitation. For example, while we had extensive coral disease survey data that spanned a
691  large geographic range in the Pacific Ocean and a broad time horizon, very few of the data points
692  contained useful information about disease density or prevalence, as most surveys exhibited low
693  or disease-free conditions. This problem is likely to arise in other attempts to forecast low

694  occurrence events such as infestations, invasive species, tipping points, and extreme events.

695  While the historical low occurrence of disease is good ecologically, these data limitations inhibit
696  both our ability to develop initial ecological forecasts and to create a workflow with continual
697  validation and updates, which has been key to improving forecasts in other systems such as

698  weather, storm, and fire forecasting (Dietze et al., 2018). A complementary issue is the reliance
699  on forecasted data as inputs to an ecological forecasting model, which may have their own set of
700  uncertainties and challenges. An important question then arises from these shared obstacles

701 across systems: is there something inherently different and currently unknown about developing
702  forecasts in systems where data cannot be regularly updated and validated? Thus, this ecological
703  forecast and many others will benefit from community-wide progress in the field of ecological
704  forecasting.

705
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706  Conclusions

707 Herein, we present the next-generation NOAA CRW coral disease forecasting product
708  and an associated data explorer tool. It provides many advantages over its predecessors,

709  including near-term forecasts of coral disease risk in many major reefs in the Pacific Ocean. The
710  Multi-Factor Coral Disease Risk product predicts disease risk for white syndromes and growth
711 anomalies with greater precision and accuracy than previous products based on temperature

712 alone, and provides information for more diseases and regions. Co-developing the user interface
713 with the intended user base of scientists and managers resulted in a user-friendly online data

714 explorer tool that includes assessment of disease risk at different scales, quantification of

715 uncertainty in predictions, and the ability to adjust input conditions to assess effects on disease
716 outcomes. While this iteration is a major improvement to the NOAA CRW coral disease

717  forecasting products, largely thanks to numerous advances in the ecological forecasting

718  community and data availability, there are still numerous limitations for forecasting coral disease
719  risk. As data availability, forecasting capabilities, and our biological understanding of the system
720  improves, so can future versions of this product.
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912  Table 1: Variable inclusion and importance differs for each disease-region model. The
913  variables tested and selected, as well as their importance, differ for each region (Great Barrier
914  Reef or U.S. Pacific) and disease type (white syndrome or growth anomalies). A cell with a
915  value indicates that the variable was selected for the model and the value represents the percent
916  increase in Mean Squared Error (MSE) of out-of-bag cross-validation predictions across

917  permutations in that predictor variable, with higher values indicating more important predictor
918  variables. (Note that MSE is sensitive to units even though the percent increase in MSE is

919  unitless; thus values for the GBR models that predict disease density will typically be much
920 larger than values for the U.S. Pacific models that predict disease prevalence). x indicates a
921 variable was tested but not selected; a blank cell indicates that the variable was not tested for that
922  model because it is not a hypothesized predictor variable whereas @ indicates that a variable was
923  not tested because data were not available. Metrics that measure Kd(490) are a proxy for

924  turbidity.
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Predictor variable White syndromes Growth anomalies

GBR U.S. Pac GBR U.S. Pac

Time-invariant predictors

Coral cover 51 0.8 487 X
Median colony size ) 2.3 1) 5.3
Colony size variability 1) X
Herbivorous fish density 68 1.2 641 2.3
Parrotfish density ) 0.6

Butterflyfish density ) X

Long term Kd(490) median X 2.2 X 1.9
Long term Kd(490) variability X 1.9 399 X
Coastal development X 3.1

Seasonally-changing predictors

Three-week Kd(490) median X 1.3 350 1.8
Three-week Kd(490) variability 59 1.7 345 X
Month 37 1.1 310 2.5
Regularly-changing predictors

90-day SST mean 413 5.6
Hot Snap 53 X
Winter Condition 62 0.8

935

936

937

938
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939 Fig 1. Methodological overview for model development and weekly update for each disease-
940  by-region model. A) Graphical illustration of Synthetic Minority Over-sampling Technique

941  (SMOTE) where the minority class (i.e., surveys with disease; large gray circles) are used to
942  create synthetic surveys of predictor and response data (i.e., small gray circles) based on k-

943  nearest neighbors (i.e., black lines connecting surveys in n-dimensional parameter space),

944  resulting in approximately equal numbers of surveys with (gray) and without (green) disease
945  present. In this study, we tested different thresholds for inclusion in the minority class. B) We
946  built the model using quantile regression forests, an algorithm that creates many decision trees
947  based on a subsample of predictor variables (example shows each tree using 2 of 3 possible

948  predictor variables), and produces a distribution of target values rather than a mean value. We
949  selected the most parsimonious model across the different SMOTE datasets and quantile

950  regression forests (i.e., with different combinations of predictor variables) based on a withheld
951  portion of the data, using the models with the fewest number of predictor variables with superior
952  predictive skill. The selected models are used in the weekly update for C-E. C) Each week, we
953  update predictor variables for the reef grid. Time-invariant predictor variables are held constant,
954  seasonal predictor variables update each week or month, near-real-time data reflect recent

955  satellite observations, and forecasted data come from 28-member ensemble CFSv2 SST

956  forecasts. D) Using the updated predictor data, we re-run the model to produce a new near real-
957  time prediction and 12 weeks of forecasted data, which we amend to the prior 11 weeks of

958 historical nowcast predictions for a total of six continuous months of disease risk assessments. E)
959  We also vary the predictor data across a gradient of values to produce scenarios, to explore how
960  disease risk changes with different input variable values.

961
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962  Fig. 2 Accuracy of disease nowcast predictions demonstrate improved predictive

963 capabilities for V3 compared with its predecessor. We show comparisons of disease

964  observations (x-axes) with disease predictions (y-axes) for the current model (V3). Points that
965 fall on the gray line indicate a perfect fit between observations and predictions. For white

966  syndromes (left column), we compare disease predictions from V3 with V2 (note that predictions
967  are only available for Hawaii in the U.S. Pacific). For growth anomalies, where no predecessor
968  product exists, we show results for V3 only. V3 predicts disease density (colonies/75m?2) for the
969 GBR (top row) and disease prevalence (percent of host colonies exhibiting signs of disease) for
970  the entire U.S. Pacific (bottom row). The V3 product shows the 75th quantile predicted risk

971  (points) and 50th - 90th quantile predictions (lines). V2 predicts risk levels based on Hot Snap
972  values (units = °C-weeks, range = 1-15). The validation data shown in these plots were not used
973  in model creation or training.

974

975  Fig. 3. Lead time-dependent predictive accuracy and precision of forecasts. Barplots show
976  predictive accuracy (left column; calculated as difference between 75th quantile prediction and
977  observation) and predictive precision (right column; calculated as difference between 90th and
978  50th quantile predictions) with different lead times (0-12 weeks prior to observation date). In
979  these plots, perfect accuracy and precision marked by horizontal dashed lines indicate zero

980  difference. Results are shown in eight panels for each of the paired disease types (white

981  syndromes and growth anomalies) and regions (GBR, Australia and U.S. Pacific). Predictions (y-
982  axes) calculated as disease density (colonies/75m2) for the GBR and disease prevalence (percent
983  of host colonies exhibiting signs of disease ranging from 0-100%) for the U.S. Pacific. For

984  example, a median value of 10 for the GBR would indicate that, on average, the model predicts
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985 10 more colonies as diseased than were observed. Similarly, a median value of -20 in the Pacific
986  would indicate that, on average, the model underpredicts disease prevalence by 20%. The

987  validation data shown in these plots were not used in model creation. Month, seasonal turbidity,
988  and SST metrics varied with lead time (in weeks), while all other predictor variables stayed the
989  same (e.g., benthic characteristics of site).

990

991  Fig 4. Data explorer for Multi-factor Coral Disease Risk product, accessed on 23 May 2022.
992  A) Spatial view of overall color-coded disease risk nowcast for the Main Hawaiian Islands. The
993  thresholds that separate disease risk levels vary by region and disease type (Appendix S1: Table
994  S1). B) Nowcast risk summary for geographic regions and diseases assessed. C) Pixel-specific
995  time-series of nowcasted and forecasted risk on the south coast of Lanai (white arrow in panel A)
996  for growth anomalies and white syndromes, over a 5-month time period.

997
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