

1 **Targeted deletion of Pf prophages from diverse *Pseudomonas aeruginosa*
2 isolates impacts quorum sensing and virulence traits**

3
4 Amelia K. Schmidt¹, Caleb M. Schwartzkopf¹, Julie D. Pourtois², Elizabeth Burgener³,
5 Dominick R. Faith¹, Alex Joyce¹, Tyrza Lamma¹, Geetha Kumar⁴, Paul L. Bollyky², and
6 Patrick R. Secor^{1#}

7
8 ¹ Division of Biological Sciences, University of Montana, Missoula, Montana, USA

9
10 ² Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford
University School of Medicine, Stanford, CA, USA.

11
12 ³ Department of Pediatrics, Division of Pulmonology, Children's Hospital of Los Angeles, University of
Southern California, Los Angeles, CA, USA.

13
14 ⁴ School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India

Correspondence: Patrick.secor@mso.umt.edu

15
16 **Abstract**

17 *Pseudomonas aeruginosa* is an opportunistic bacterial pathogen that commonly causes
18 medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages
19 that infect *P. aeruginosa* impact numerous bacterial virulence phenotypes. Most work on
20 Pf phages has focused on strain Pf4 and its host *P. aeruginosa* PAO1. Expanding from
21 Pf4 and PAO1, this study explores diverse Pf strains infecting *P. aeruginosa* clinical
22 isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene,
23 *pfIM* (PA0718), that enables the effective elimination of Pf prophages from diverse *P.*
24 *aeruginosa* hosts. This study also assesses the effects different Pf phages have on host
25 quorum sensing, biofilm formation, virulence factor production, and virulence.
26 Collectively, this research not only introduces a valuable tool for Pf prophage elimination
27 from diverse *P. aeruginosa* isolates, but also advances our understanding of the
28 complex relationship between *P. aeruginosa* and filamentous Pf phages.

29
30 **Importance**

31 *Pseudomonas aeruginosa* is an opportunistic bacterial pathogen that is frequently
32 infected by filamentous Pf phages (viruses) that integrate into its chromosome, affecting
33 behavior. While prior work has focused on Pf4 and PAO1, this study investigates
34 diverse Pf strains in clinical isolates. A simple method targeting the deletion of the Pf
35 lysogeny maintenance gene *pfIM* (PA0718) effectively eliminates Pf prophages from
36 clinical isolates. The research evaluates the impact Pf prophages have on bacterial
37 quorum sensing, biofilm formation, and virulence phenotypes. This work introduces a
38 valuable tool to eliminate Pf prophages from clinical isolates and advances our
39 understanding of *P. aeruginosa* and filamentous Pf phage interactions.

40 **Introduction**

41 *Pseudomonas aeruginosa* is an opportunistic bacterial pathogen that commonly
42 infects medical hardware, diabetic ulcers, burn wounds, and the airways of cystic
43 fibrosis patients (1). *P. aeruginosa* isolates are often infected by filamentous viruses
44 (phages) called Pf (2-4). Pf phages live a temperate lifestyle and integrate into the
45 bacterial chromosome as a prophage, passively replicating with each bacterial cell
46 division. When induced, the Pf prophage is excised from the chromosome forming a
47 circular double-stranded episome called the replicative form (5). Pf replicative form copy
48 numbers increase in the cytoplasm where they serve as templates for viral transcription
49 and the production of circular single-stranded DNA genomes that are packaged into
50 filamentous virions as they are extruded from the cell by a process that is analogous to
51 type IV pili assembly (3, 6).

52 Filamentous Pf virions enhance *P. aeruginosa* virulence potential by promoting
53 biofilm formation (7) and inhibiting phagocytic uptake by macrophages (8, 9). Pf virions
54 also carry a high negative charge density allowing them to sequester cationic
55 antimicrobials such as aminoglycoside antibiotics and antimicrobial peptides (7, 10, 11).
56 Additionally, Pf phages enhance the virulence potential of *P. aeruginosa* by modulating
57 the secretion of the quorum-regulated virulence factor pyocyanin (12, 13). These
58 properties may explain why the presence of Pf virions at sites of infection is associated
59 with more chronic lung infections and antibiotic resistance in cystic fibrosis patients (8)
60 and why *P. aeruginosa* strains cured of their Pf infection are less virulent in murine
61 models of pneumonia (14) and wound infection (15).

62 Most studies to date have focused on interactions between Pf strain Pf4 and its
63 host *P. aeruginosa* PAO1. (3, 9, 11, 14). Despite the clear link between Pf4 and the
64 virulence of *P. aeruginosa* PAO1, the effects diverse Pf strains that infect *P. aeruginosa*
65 clinical isolates have on virulence phenotypes remains unclear. This is in part due to the
66 significant challenge of ‘curing’ clinical isolates of their Pf prophage infections. Prior
67 efforts to delete Pf4 from PAO1 relied on the integration of a selectable marker into the
68 integration site used by Pf4 (14), which precludes complementation studies that re-
69 introduce the Pf4 prophage to the host chromosome. In prior work, we were able to
70 generate a clean Pf4 deletion strain by first deleting the *pfiTA* toxin-antitoxin module
71 encoded by Pf4 followed by deletion of the rest of the prophage (16).

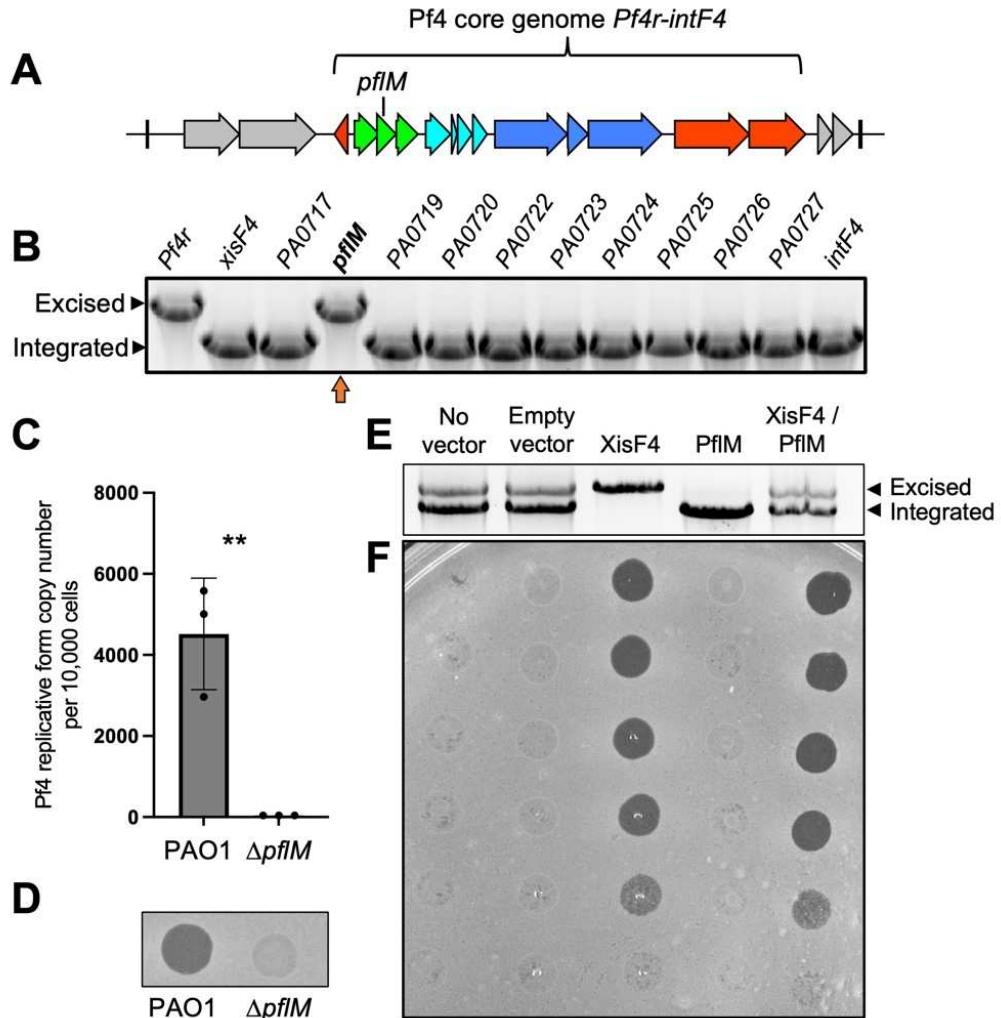
72 Here, we find that the Pf4 gene *PA0718* maintains Pf4 in a lysogenic state; we
73 therefore refer to *PA0718* as the Pf lysogeny maintenance gene *pflM*. Deletion of
74 *PA0718* or homologous alleles from Pf prophages in clinical *P. aeruginosa* isolates
75 LESB58, CPA0053, CPA0087, and the multidrug resistant strain DDRC3 resulted in the
76 complete loss of Pf prophages from each strain. Furthermore, we observe that some
77 substrains of PAO1 are lysogenized by two Pf phages, Pf4 and Pf6, and we
78 successfully cured PAO1 of both Pf4 and Pf6 prophages. We compare phenotypic
79 differences between wild-type and Δ Pf prophage mutants by assessing Las, Rhl, and

80 PQS quorum sensing activity, biofilm formation, and pyocyanin production. We also
81 examine how Pf prophages impact virulence phenotypes in a *Caenorhabditis elegans*
82 avoidance model. Overall, we present a new methodology for efficiently curing *P.*
83 *aeruginosa* strains of their resident Pf prophages and leverage this tool to gain insight
84 into the diverse impacts Pf phages have on their bacterial hosts.

85

86 **Results**

87 PA0718 (PfIM) maintains Pf4 integration in *P. aeruginosa* PAO1

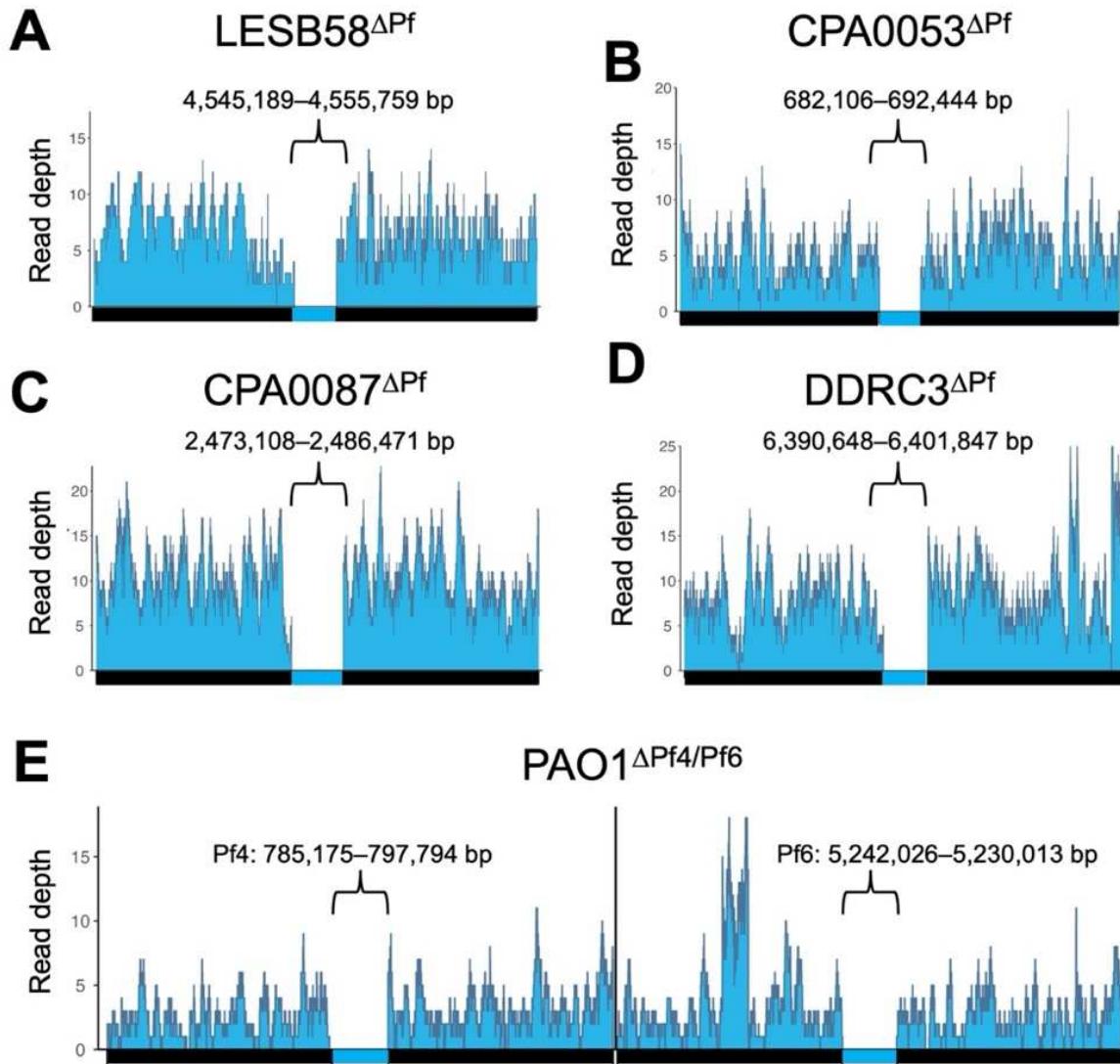

88 While making single gene deletions from the core Pf4 genome (*pf4r-intF4*) in *P.*
89 *aeruginosa* PAO1 (**Fig. 1A**), we noted that deleting either the *Pf4r* repressor or the
90 *PA0718* gene results in the complete excision of the Pf4 prophage from the *P.*
91 *aeruginosa* chromosome (**Fig. 1B**, upper bands). Prior work demonstrates that deletion
92 of the *Pf4r* repressor induces Pf4 prophage excision and virion replication (17), but how
93 *PA0718* is involved in Pf4 excision is not known.

94 After excision, Pf4 replicates as a circular episome called the replicative form (5).
95 We used qPCR to measure circular Pf4 replicative form copy number in wild-type and
96 Δ *PA0718* cells. In wild-type cells, approximately 4,400 replicative form copies were
97 detected for every 10,000 cells; however, the Pf4 replicative form was not detected in
98 Δ *PA0718* cells (**Fig. 1C**), indicating that Pf4 genome replication is not initiated, and the
99 replicative form is lost as cells divide. Consistently, infectious Pf4 virions are detected in
100 supernatants collected from wild-type cultures but not in supernatants collected from
101 Δ *PA0718* (**Fig. 1D**). These results indicate that PA0718 maintains the Pf4 prophage in a
102 lysogenic state and that deleting *PA0718* induces Pf4 prophage excision, but not
103 replication, curing PAO1 of its Pf4 infection. Herein, we refer to *PA0718* as the Pf
104 lysogeny maintenance gene *pfIM*.

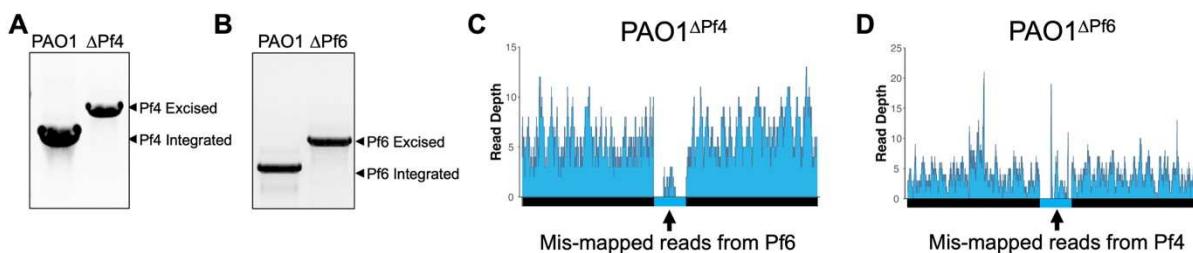
105 The observation that 4,400 Pf4 replicative form copies are detected for every
106 10,000 wild-type cells (**Fig. 1C**) indicates Pf4 is actively replicating in a subpopulation of
107 cells. We used a multiplex PCR excision assay to measure Pf4 prophage excision and
108 integration in *P. aeruginosa* populations. In PAO1 populations with no expression vector
109 or those carrying an empty expression vector, both Pf4 prophage integration and
110 excision are observed (**Fig. 1E**, two bands are present); however, infectious virions
111 were not detected in supernatants by plaque assay (**Fig. 1F**), suggesting that Pf4 is
112 replicating at low levels during planktonic growth in LB broth, consistent with prior
113 results (18).

114 The Pf4 excisionase XisF4 regulates Pf4 prophage excision (17) and expressing
115 XisF4 in *trans* induces complete Pf4 prophage excision (**Fig 1E**) and robust virion
116 replication (**Fig. 1F**). In contrast, expressing PfIM in *trans* maintains the entire
117 population in a lysogenic state (**Fig. 1E**) and virion replication is not detected (**Fig. 1F**).
118 When PfIM and XisF4 are expressed together, both Pf4 integration and excision
119 products are observed (**Fig. 1E**) and infectious virions are produced at titers

120 comparable to cells where XisF4 was expressed by itself (Fig. 1F). These results
121 indicate that expressing PflM is not sufficient to inhibit XisF4-mediated Pf4 prophage
122 excision and replication, but that PflM can maintain some cells in a lysogenic state
123 during active viral replication.

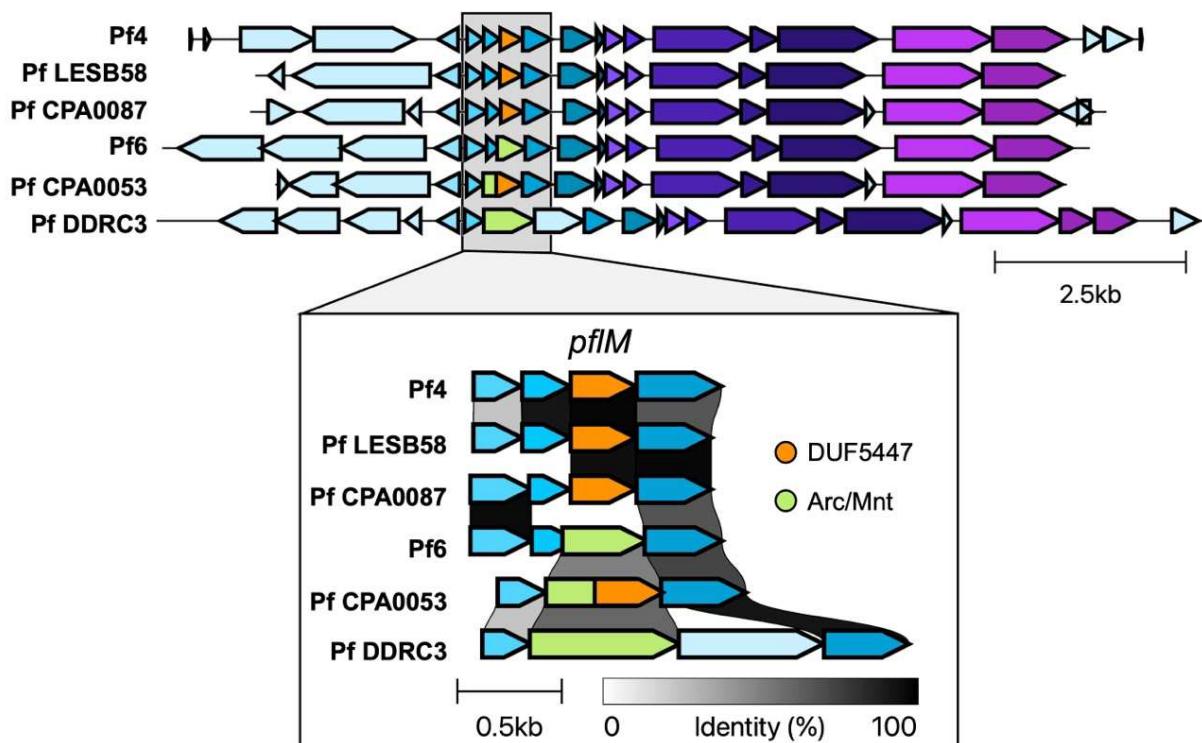

124
125
126 **Figure 1: PA0718 (PflM) maintains Pf4 lysogeny.** (A) Schematic of the Pf4 prophage (PA0715-PA0729)
127 integrated into the tRNA-Gly gene PA0729.1 in *P. aeruginosa* PAO1. The core genome that is conserved
128 amongst Pf strains is indicated. (B) Multiplex PCR was used to measure Pf4 prophage integration and
129 excision from the PAO1 chromosome in the indicated Pf4 single-gene mutants. Excision and integration
130 are differentiated by the size of the PCR product produced. Note that that deleting PA0721 (*pfsE*) from the
131 Pf4 prophage is lethal to *P. aeruginosa* (16) explaining why *pfsE* is not included in the assay. A
132 representative gel is shown. (C) Quantitative PCR (qPCR) was used to measure episomal Pf4 replicative
133 form in PAO1 or Δ PA0718 cells after 18 hours of growth in LB broth. Data are the mean of three replicate
134 experiments, Δ PA0718 values were below the limit of detection for the assay (37 copies per microliter of
135 input material). (D) Supernatants obtained from 18 hour-old cultures of PAO1 or Δ PA0718 were spotted
136 onto lawns of *P. aeruginosa* Δ Pf4. A representative image is shown. (E) PflM and/or XisF4 were expressed
137 from inducible plasmids in *P. aeruginosa* PAO1. After 18 hours of growth in LB broth, Pf4 integration and
138 excision was measured by multiplex PCR. (F) Filtered supernatants collected from the indicated strains
139 were tittered on lawns of PAO1 Δ Pf4 and imaged after 18 hours of growth.
140

141 **The targeted deletion of *pfIM* cures diverse *P. aeruginosa* isolates of their Pf prophages**
142 We hypothesized that deleting *pfIM* would provide a convenient way to cure *P.*
143 *aeruginosa* clinical isolates of their Pf prophages. To test this hypothesis, we deleted
144 *pfIM* from the Pf prophages in cystic fibrosis isolate LESB58, two cystic fibrosis isolates
145 from the Stanford Cystic Fibrosis Center (CPA0053 and CPA0087), and the multidrug-
146 resistant urine isolate DDRC3 (**Table 1**).
147

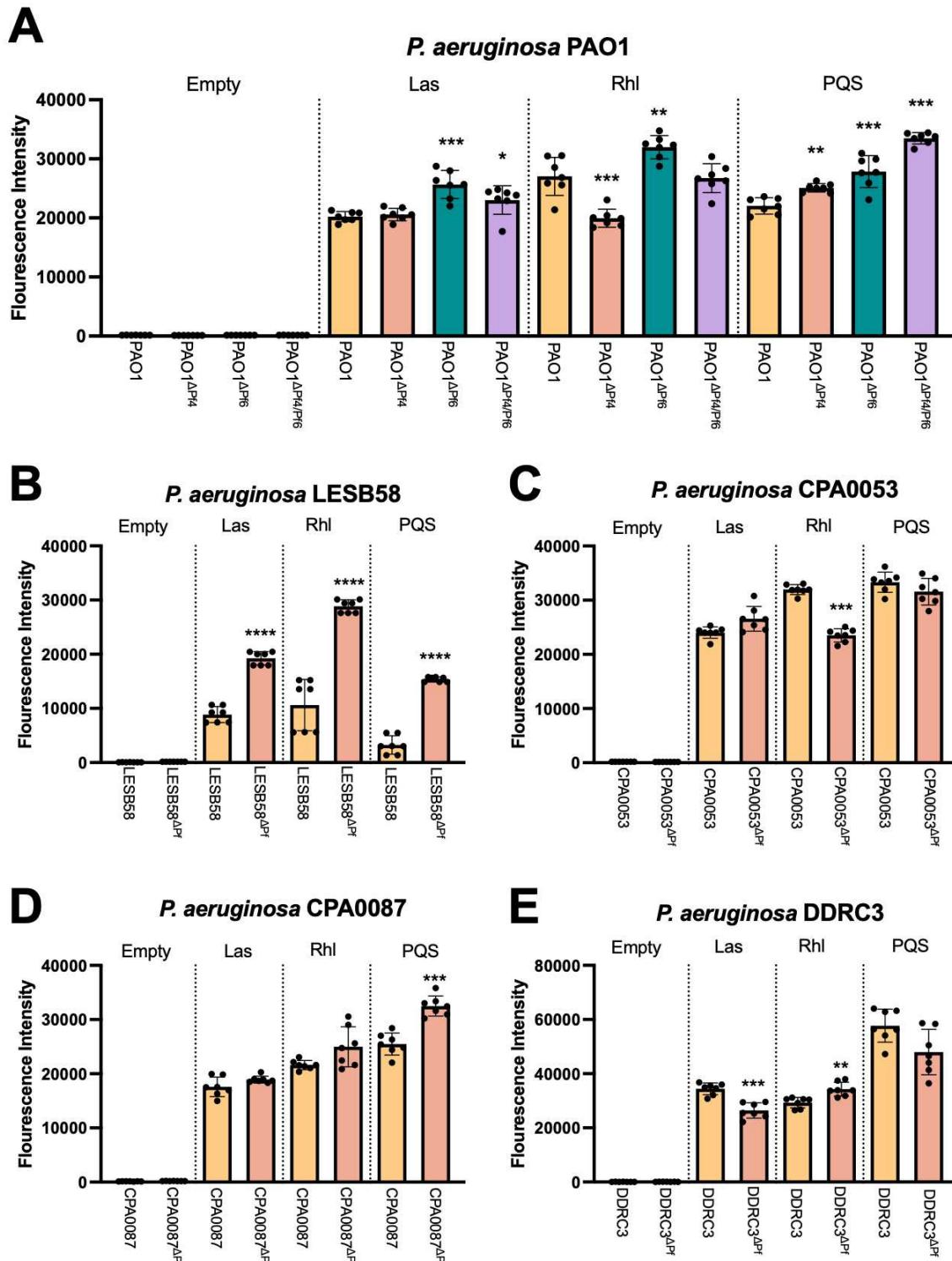

148 **Table 1. *P. aeruginosa* isolates and Pf prophage characteristics**

Strain	Accession	Source	Pf name / lineage	Pf integration site	Pf prophage length (kb)
PAO1	GCF_000006765.1	Lab strain	Pf4 / I	tRNA-Gly	12.4
			Pf6 / I	tRNA-Met	12.1
LESB58	FM209186.1	CF isolate, Liverpool, United Kingdom	Pf-LESB58 / II	Direct repeat	10.5
CPA0053	CP137561	CF isolate, Stanford, CA, USA	Pf-CPA0053/ II	Direct repeat	10.4
CPA0087	CP137562	CF isolate, Stanford, CA, USA	Pf-CPA0087/ II	tRNA-Gly	11.1
DDRC3	CP137563	Urine isolate, Trivandrum, Kerala, India	Pf-DDRC3/ II	tRNA-Gly	15.5

149
150 Pf prophage loss was confirmed by long-read whole-genome sequencing.
151 Targeting *pfIM* successfully cured all the above clinical *P. aeruginosa* isolates of their Pf
152 prophages (**Fig. 2A–D**). Of the Pf prophages we deleted, four were integrated into tRNA
153 genes (three in tRNA-Gly and one in tRNA-Met) and two were integrated into direct
154 repeats (**Table 1**). Further, Pf prophages fall into two main lineages (I and II, **Table 1**)
155 (4) and we were successful in deleting representatives from each lineage. These
156 observations indicate integration site nor lineage have no influence on *pfIM*-mediated Pf
157 prophage deletion.


158
159 **Figure 2: Targeted deletion of *pfIM* cures diverse *P. aeruginosa* isolates of their Pf prophage
160 infections. (A-E)** Long-read whole genome sequencing was used to confirm the successful deletion of the
161 indicated Pf prophages. Reads were aligned to 50kb sequences flanking the Pf prophage insertion sites in
162 the parental chromosome. The genomic coordinates for each Pf prophage are shown above each bracket.
163

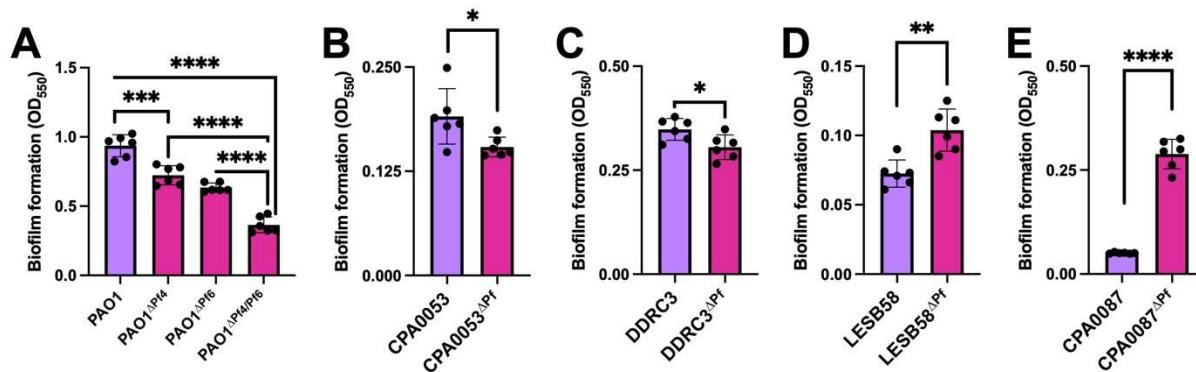
164
165 **Figure S1. Confirmation of PAO1 $^{\Delta P\!f4}$ and PAO1 $^{\Delta P\!f6}$ single prophage mutants. (A and B)** A multiplex
166 PCR assay was used to confirm excision of (A) the Pf4 prophage or (B) the Pf6 prophage from the PAO1
167 chromosome. (C and D) Pf prophage mutants were sequenced by long-read sequencing. Arrows indicate
168 mis-mapped reads from Pf6 to Pf4 in (C) and Pf4 to Pf6 in (D).


169 Many *P. aeruginosa* strains are infected by one or more Pf prophages (3). For
170 example, some *P. aeruginosa* PAO1 sub-isolates are infected by Pf4 and Pf6 (19).
171 Deleting *pflM* from Pf4 results in the loss of the Pf4 prophage, as does deleting *pflM*
172 from Pf6 (Fig .2A, B, Fig. S1). Furthermore, we were able to delete Pf6 from Δ Pf4,
173 producing a PAO1 $^{\Delta\text{Pf4/Pf6}}$ double mutant (Fig 2E). This observation indicates that *pflM*
174 from one Pf prophage is specific to that prophage and does not compensate for the loss
175 of *pflM* from another Pf prophage residing in the same host.

176 *PflM* specificity may be explained by the diversity in the operon encoding *pflM*. In
177 Pf4, *pflM* is truncated by a 5' insertion of *PA0717* (4) (Fig. 3). The truncated *pflM* allele
178 in Pf4, Pf LESB58, and Pf CPA0053 contain a predicted DUF5447 domain (pfam17525)
179 whereas the *pflM* allele in other Pf strains, such as Pf6, Pf CPA0053, and Pf DDRC3,
180 contain an additional Arc/Mnt domain (Fig. 3). Arc/Mnt proteins encoded by *Salmonella*
181 phage P22 govern lysis-lysogeny decisions by binding phage operator sequences (20,
182 21), suggesting PfIM may regulate Pf lysis-lysogeny decisions by a similar mechanism.
183

193 We find that differences in quorum sensing activity vary by Pf strain and host. In
194 PAO1^{ΔPf4}, Las signaling is not significantly affected, Rhl transcription is downregulated,
195 and PQS is upregulated (**Fig. 4A**). Pf6 differentially affects host quorum sensing—Las,
196 Rhl, and PQS signaling are all upregulated in PAO1^{ΔPf6} compared to the parental strain
197 (**Fig. 4A**). Deleting both Pf4 and Pf6 had no significant impact on Las or Rhl signaling,
198 but PQS signaling was significantly upregulated in PAO1^{ΔPf4/Pf6} compared to the parental
199 strain (**Fig. 4A**).

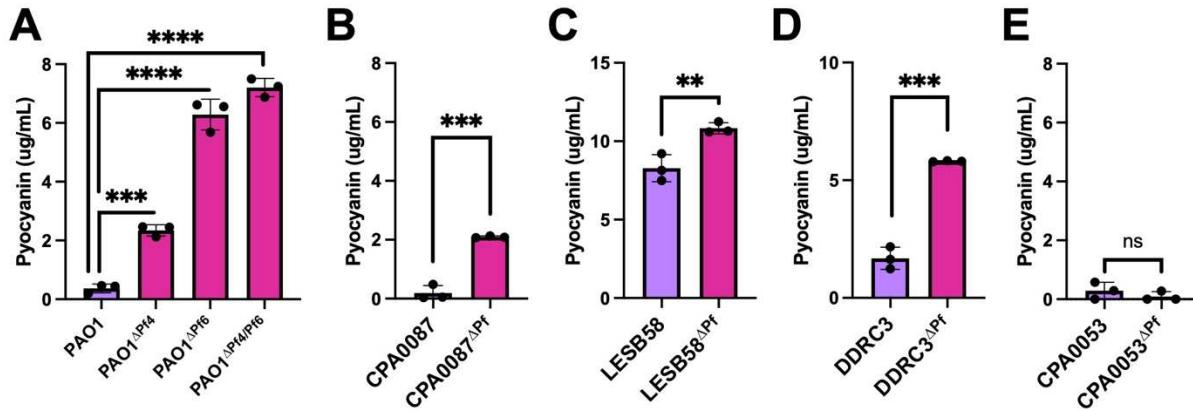
200 PQS transcriptional activity is also significantly (P<0.0001) upregulated in
201 LESB58^{ΔPf} as are Las and Rhl (**Fig 4B**). In strain CPA0053, Las and PQS signaling is
202 not significantly affected while Rhl transcription is reduced when the Pf prophage is
203 deleted (**Fig. 4C**). PQS is activated in CPA0087^{ΔPf} while Las and Rhl signaling is not
204 significantly affected (**Fig. 4D**). Finally, in DDRC3^{ΔPf}, Las is downregulated, Rhl
205 signaling is upregulated, and PQS signaling is not significantly affected compared to the
206 parental DDRC3 strain but is trending downward (**Fig. 4E**). Taken together, these data
207 indicate that Pf phages have diverse and complex relationships with host quorum
208 sensing systems that vary significantly by strain.



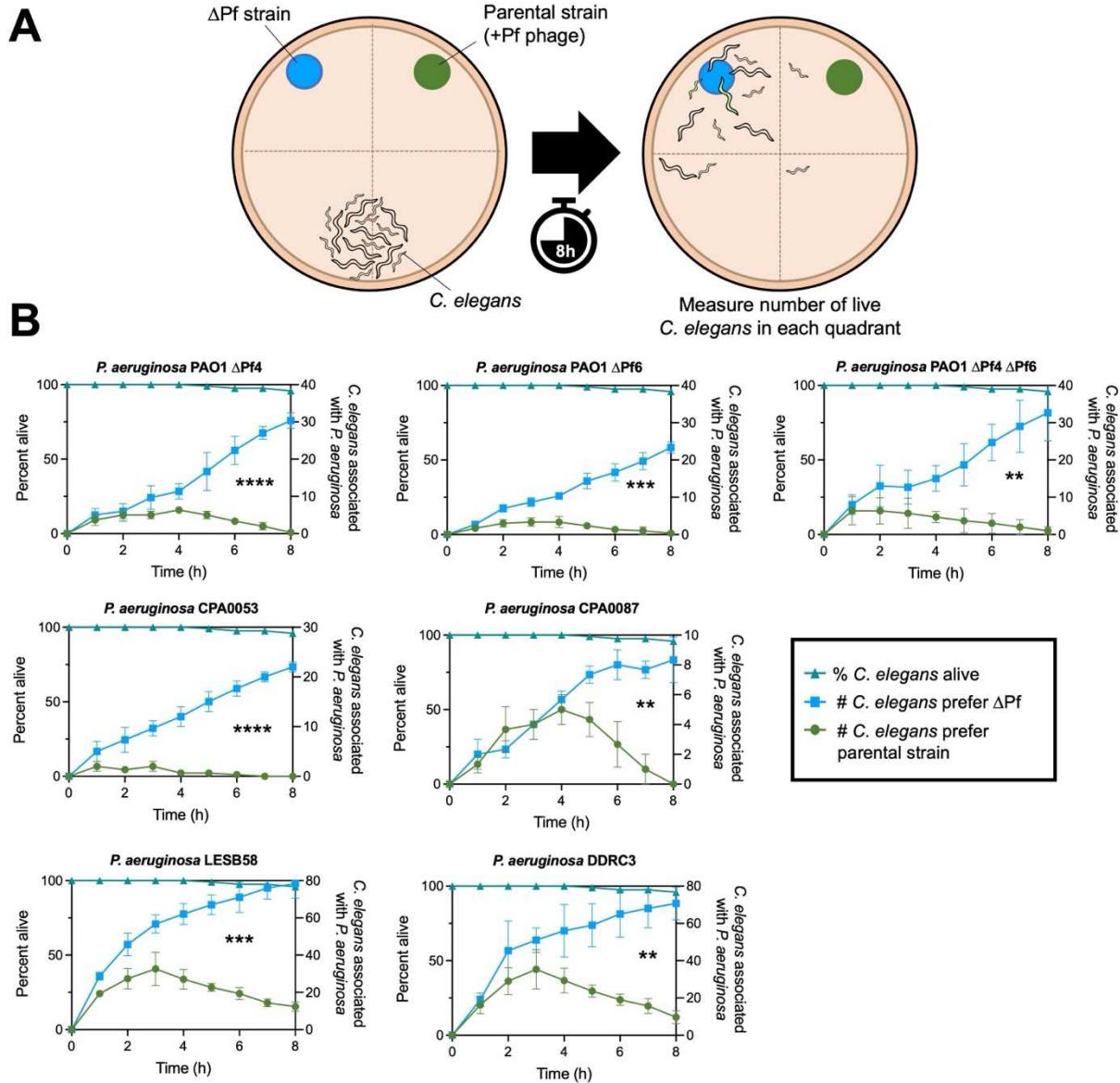
209
210
211
212
213
214

Figure 4: Pf phage differentially modulate *P. aeruginosa* quorum sensing. (A-E) GFP fluorescence from the transcriptional reporters *P_{rsaL}-gfp* (Las), *P_{rhlA}-gfp* (Rhl), or *P_{pqsA}-gfp* (PQS) was measured in the indicated strains after 18 hours of growth. GFP fluorescence intensity was normalized to cell growth (OD₆₀₀). Data are the mean \pm SEM of seven replicates. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, Student's *t*-test comparing Δ Pf strains to the wild-type parent.

215 Pf phages have contrasting impacts on *P. aeruginosa* biofilm formation


216 Pf4 is known to promote *P. aeruginosa* PAO1 biofilm assembly and function (3, 5,
217 7, 11, 14, 23, 24). To test if other strains of Pf affect biofilm formation, we used the
218 crystal violet biofilm assay (25) to measure biofilm formation of lysogenized *P.*
219 *aeruginosa* isolates compared to the Pf prophage deletion mutants. In PAO1, deletion
220 of either Pf4 or Pf6 significantly ($P<0.001$) reduce biofilm formation by 1.79- and 2.33-
221 fold, respectively, while deletion of both Pf4 and Pf6 reduces biofilm formation by 7.14-
222 fold (**Fig. 5A**). This result indicates both Pf4 and Pf6 contribute to PAO1 biofilm
223 formation, which is consistent with prior observations (5, 7, 11, 14, 23, 24). The clinical
224 isolates in general did not form as robust biofilms as the PAO1 laboratory strain under
225 the *in vitro* conditions tested. Even so, deleting the Pf prophage from strains CPA0053
226 and DDRC3 modestly but significantly ($P<0.05$) reduced biofilm formation (**Fig. 5B and**
227 **C**). In contrast, biofilm formation was significantly ($P<0.01$) increased in strains
228 LESB58 $^{\Delta Pf}$ and CPA0087 $^{\Delta Pf}$ compared to the parental strains (**Fig. 5D and E**). The
229 variation in biofilm formation phenotypes is perhaps not surprising given the variation in
230 quorum sensing regulation between Pf lysogens and their corresponding Pf prophage
231 mutants (**Fig 4**).

232
233 **Figure 5: Pf prophage deletion has significant but variable effects on *P. aeruginosa* biofilm**
234 **formation.** Crystal violet biofilm assays were performed to measure biofilm formation of the indicated
235 strains after 48h incubation. Data are the mean \pm SEM of six replicates. * $P<0.05$, ** $P<0.01$, *** $P<0.001$,
236 **** $P<0.0001$, Student's *t*-test.


237
238 Pf phages suppress *P. aeruginosa* pyocyanin production

239 Pyocyanin is a redox-active quorum-regulated virulence factor (26). Deleting the
240 Pf4 prophage from PAO1 enhances pyocyanin production (27). We observed increased
241 pyocyanin production in all ΔPf strains tested except CPA0053, which did not produce
242 much pyocyanin under any condition tested (**Fig. 6A-E**). These results suggest that Pf
243 prophages encode gene(s) that inhibit host pyocyanin production, which is consistent
244 with recent work indicating that the PfsE protein encoded by Pf phages inhibits PQS
245 signaling by binding to and inhibiting PqsA (13).

246
247 **Figure 6: Pyocyanin production is enhanced in Pf prophage deletion strains. (A-E)** Pyocyanin was
248 CHCl₃-HCl extracted from the supernatants of the indicated cultures after 18h of incubation. Pyocyanin
249 concentration was measured (Abs 520nm). Data are the mean ±SEM of three replicates. **P<0.01,
250 ***P<0.001, ****P<0.0001, Student's *t*-test.

251
252 Pf phages induce avoidance behavior in bacterivorous nematodes
253 In the environment, bacterivores impose high selective pressures on bacteria
254 (28, 29). Pf4 modulation of quorum-regulated virulence factors increases *P. aeruginosa*
255 fitness against the bacterivorous nematode *Caenorhabditis elegans* (12). We
256 hypothesized that Pf prophages in *P. aeruginosa* clinical isolates would similarly protect
257 *P. aeruginosa* from predation by *C. elegans*. To test this, we employed *C. elegans*
258 avoidance assays (30-33) as a metric of bacterial fitness when confronted with
259 nematode predation (**Fig. 7A**). *C. elegans* avoided all Pf lysogens, preferring to
260 associate with the ΔPf strains in every case (**Fig. 7B**). Note that nematode survival was
261 over 95% over the course of the experiment (8 hours) in all experiments (**Fig. 7B**,
262 triangles). Collectively, our results suggest that Pf modulates *P. aeruginosa* virulence
263 phenotypes in ways that repel *C. elegans*.

264
265
266
267
268
269
270
271
272

Figure 7: C. elegans actively avoids P. aeruginosa Pf lysogens. (A) Experimental design: *P. aeruginosa* and an isogenic Δ Pf mutant were spotted onto NMMG plates with wild-type N2 *C. elegans* at the indicated locations. *C. elegans* localization to the indicated quadrants was measured hourly. **(B)** *C. elegans* association with *P. aeruginosa* (circles) or isogenic Δ Pf mutants (squares) in the indicated strain backgrounds was measured hourly over eight hours (three experiments with $N=30$ per replicate [90 animals total]). P values were calculated by two-way ANOVA comparing Δ Pf strains to the parental strains using the Šidák correction (95% CI threshold), ** $P<0.01$, *** $P<0.001$, **** $P<0.0001$.

273

Discussion

274
275
276
277

This study describes a convenient method to cure *P. aeruginosa* isolates of their Pf prophage infections and explores relationships between diverse Pf phages and their *P. aeruginosa* hosts. Overall, different Pf strains exhibit varying effects on host quorum sensing and biofilm formation. One commonality between all Pf strains examined is their

278 ability to suppress pyocyanin production and repel *C. elegans* away from *P. aeruginosa*,
279 protecting their host from predation.

280 Our results indicate that PflM maintains Pf in a lysogenic state and that deleting
281 the *pflM* gene induces Pf prophage excision, but not replication. In Pf4, the site-specific
282 tyrosine recombinase IntF4 catalyzes Pf4 prophage integration into and excision from
283 the chromosome while the Pf4 excisionase XisF4 regulates Pf4 prophage excision by
284 promoting interactions between IntF4 and Pf4 attachment sites as well as inducing the
285 expression of the replication initiation protein PA0727 (4, 17). In response to stimuli
286 such as oxidative stress (34), these coordinated events induce Pf4 prophage excision
287 and initiate episomal replication, allowing Pf4 to complete its lifecycle.

288 While it is presently not known how PflM maintains Pf lysogeny, it is possible that
289 PflM promotes the integrase activity of IntF or inhibits XisF-mediated excision, causing
290 the Pf prophage to excise from the chromosome without concurrently inducing the
291 replication initiation protein PA0727 (6), thus resulting in Pf prophage excision without
292 initiating episomal Pf replication.

293 Our study highlights a role for Pf phages in manipulating *P. aeruginosa* quorum
294 sensing. Pf phages have varying effects on host quorum sensing; broadly, we determine
295 that Pf phage modulate quorum sensing activity and quorum-regulated phenotypes in all
296 strains tested. These findings imply that different Pf strains interact with host quorum
297 sensing networks in diverse ways, indicating a complex interplay between Pf phages
298 and host regulatory systems.

299 Quorum sensing regulates *P. aeruginosa* biofilm formation and Pf4 contributes to
300 biofilm formation in PAO1 (5, 7, 14, 18, 35). Consistently, we find that both Pf4 and Pf6
301 contribute to PAO1 biofilm formation. Interestingly, the impact of Pf prophage deletion
302 on biofilm formation varies among clinical isolates, which may be related to different
303 quorum sensing hierarchies present in clinical *P. aeruginosa* isolates (36).

304 Despite differences in interactions between Pf phages and host quorum sensing,
305 deleting Pf prophages from the host chromosome enhances pyocyanin production in all
306 strains tested except for strain CPA0053, which produces low levels of pyocyanin
307 compared to all other strains tested. As pyocyanin is the terminal signaling molecule in
308 *P. aeruginosa* quorum sensing networks (26), these results suggest that inhibition of
309 pyocyanin production is the ultimate goal of Pf phages and inhibition of pyocyanin
310 production may be beneficial to Pf phages during active replication. Pyocyanin and
311 other redox-active phenazines are toxic to bacteria; it is possible that stress responses
312 that are induced by pyocyanin-producing *P. aeruginosa* are detrimental to Pf replication.

313 We recently discovered that Pf phages encode a protein called PfsE (PA0721)
314 that inhibits PQS signaling by binding to the anthranilate-coenzyme A ligase PqsA and
315 that this results in enhanced Pf replication (13). It is possible that the loss of PfsE in the
316 Δ Pf strains in this study is responsible for the observed increase in pyocyanin
317 production.

318 Pf lysogens induce avoidance behavior by *C. elegans*, which prefers to associate
319 with the Δ Pf strains. Strikingly, although strains lacking Pf prophages are less virulent in
320 a nematode infection model, the reduced virulence of Δ Pf strains contrasts with their
321 high pyocyanin virulence factor production. This discrepancy may be partly explained by
322 our prior findings that Pf4 suppresses pyocyanin and other bacterial pigment production
323 as a means to avoid detection by innate host immune responses (12) that are regulated
324 by the aryl hydrocarbon receptor (37, 38).

325 In summary, this research reveals the crucial role of the PfIM gene in maintaining
326 Pf lysogeny, demonstrates strain-specific effects on quorum sensing and biofilm
327 formation, reveals the consistent inhibition of pyocyanin production by Pf phages, and
328 suggests a role for Pf phages in protecting *P. aeruginosa* against nematode predation.

329 **Materials and Methods**

330 Strains, plasmids, primers, and growth conditions

331 Strains, plasmids, and their sources are listed in **Table 2**. Unless otherwise indicated,
 332 bacteria were grown in lysogeny broth (LB) at 37 °C with 230 rpm shaking and
 333 supplemented with gentamicin (Sigma) where appropriate, at either 10 or 30 µg ml⁻¹.
 334

335 **Table 2.** Strains and plasmids used in this study.

Strain	Description	Source
<i>Escherichia coli</i>		
DH5 α	Cloning strain	New England Biolabs
S17	Donor strain	(39)
OP50	<i>C. elegans</i> food source	PMID 4366476
<i>P. aeruginosa</i>		
PAO1	Wild type	(14)
PAO1 Δ Pf4	Deletion of Pf4 prophage from PAO1	This study
PAO1 Δ Pf4 Δ Pf6	Deletion of Pf4 and Pf6 prophage from PAO1	This study
LES B58	Liverpool Epidemic strain B58	(40)
LES B58 Δ Pf	Deletion of Pf prophage from LESB58	This study
CPA0053	CF clinical isolate	Gift from Paul Ballyky, Stanford University
CPA0053 Δ Pf	Deletion of Pf prophage from CPA0053	This study
CPA0087	CF clinical isolate	Gift from Paul Ballyky, Stanford University
CPA0087 Δ Pf	Deletion of Pf prophage from CPA0087	This study
DDRC3	MDR clinical isolate	Gift from Geetha Kumar, Amrita University
DDRC Δ Pf	Deletion of Pf prophage from DDRC3	This study
<i>C. elegans</i>		
N2	Wild type	<i>Caenorhabditis</i> Genetic Center
Plasmids		
CP59 pBBR1-MCS5 <i>rsaL</i> -gfp	GFP <i>rsaL</i> transcriptional reporter	(41)
CP57 pBBR1-MCS5 <i>rhIA</i> -gfp	GFP <i>rhIA</i> transcriptional reporter	(41)
CP53 pBBR1-MCS5 <i>pqsA</i> -gfp	GFP <i>pqsA</i> transcriptional reporter	(42)
CP1 pBBR-MCS5- Empty	GFP empty vector control	(41)
pHERD30T - <i>pfIM</i>	Expression vector with <i>pfIM</i> insert	This study
pHERD20T - <i>xisF4</i>	Expression vector with <i>xisF4</i> insert	(16)
pENTR Δ PA0718	Allelic exchange vector for the deletion of <i>pfIM</i>	(43)
pLM61	pENTR221L1L2-RFqPCRstandard	This study
pUC57- <i>rplU</i>	qPCR standard for <i>rplU</i>	(44)

336

337 **Table 3.** Primers used in this study.

Name	Tm° (C)	Sequence
Construction of pENTR Δ PA0718		
Δ <i>pfIM</i> UP <i>attB1</i> -Fwd	62.1	ggggacaaggttgtacaaaaaaggcaggctcCTAATGCCACGAATAGTGA CGG
Δ <i>pfIM</i> UP-Rev	65.3	TCAGCCCTCCAGTTGGAATGCGTAGGGACTGGCGGCCAT
Δ <i>pfIM</i> DOWN-Fwd	63.2	GCATTCAACTGGAGGGCTGA
Δ <i>pfIM</i> DOWN <i>attB2</i> -Rev	62.1	ggggaccacttgtacaagaagctggtaAAAGTGATTGTCGGCGA TCC
Δ <i>pfIM</i> Seq-Fwd	57.5	TTTTGGGGCCGATTTCTTG
Δ <i>pfIM</i> Seq-Rev	56.3	ATTGGACCGAGGCCTGA
Quantitative PCR		
RF-Fwd	60.5	TAGGCATTCAGGGCTTGG
RF-Rev	62.5	GAGCTACGGAGTAAGACGCC
<i>rplU</i> -Fwd	52.4	CAAGGTCCGCATCATCAAGTT
<i>rplU</i> -Rev	52.6	GGCCCTGACGCTTCATGT
Prophage Mutant Screening		
16SRNA-F	59.5	TGGTTCAGCAAGTTGGATGTG
16SRNA-R	59.5	GTTTGCTCCCCACGCTTTC
pfsE-F	56.3	ATGCTCCGCTATCTCTG
pfsE-R	58.4	TCAAACAGCCAGGGAGGC
Excision Assays		
Pf4-Fwd1	62.5	GGATATGGAGCGTGGTGGAG

Pf4-Fwd2	59.9	AGTGGCGGTTATCGGATGAC
Pf4-Rev	61.4	TCATTGGGAGGCCTTCAT
Pf6-Fwd1	60.5	GTGATCCACGTGCTAACAG
Pf6-Fwd2	60.5	CCCAGTGCAGATGACTTGGT
Pf6-Rev	60.5	CGCCACTGGTCATTGATCCT
LES B58-Fwd1	59.8	AGCGACAGCCGCCAGCA
LES B58-Fwd2	61.6	GCTTGCCGAAGTGCTGGTG
LES B58-Rev	62.5	CGGGTTTCTGTCGGTCATCAC
CPA0053-Fwd1	52.8	GCAGGTGAGGTAGTAG
CPA0053-Fwd2	60	TTCGTCGCTGAACATGACCA
CPA0053-Rev	51.6	CCTCGATCATGTTGAAGT
CPA0087-Fwd1	52.8	GCAGGTGAGGTAGTAG
CPA0087-Fwd2	60	TTCGTCGCTGAACATGACCA
CPA0087-Rev	51.6	CCTCGATCATGTTGAAGT
DDRC3gly-Fwd1	60.1	GCTTTCTACTCCTGAGCATGTA
DDRC3gly-Fwd2	59.8	CGCTGCGGAACACCGTG
DDRC3gly-Rev	59.5	ACCGTGAAGTACCTGCAGC

338

339 Construction of Deletion Mutants

340 We used allelic exchange to delete alleles from *P. aeruginosa* (43). Briefly, to delete
341 *pfIM* (*PA0718*) upstream and downstream homologous sequences (~500bp) were
342 amplified through PCR from PAO1 genomic DNA using the UP and DOWN primers
343 listed in **Table 3**. These amplicons were then ligated through splicing-by-overlap
344 extension (SOE)-PCR to construct a contiguous deletion allele. This amplicon was then
345 run on a 0.5% agarose gel, gel extracted (*New England Biolabs #T3010L*), and cloned
346 (Gateway, Invitrogen) into a pENTR[®]PEx18-Gm backbone to produce the deletion
347 construct. The deletion construct was then transformed into DH5 α , mini-prepped (*New
348 England Biolabs #T1010L*), and sequenced (Plasmidsaurus.com). Sequencing-
349 confirmed vectors were then transformed into *E. coli* S17 Donor cells for biparental
350 mating with the recipient *P. aeruginosa* strain. Single crossovers were isolated on
351 VBMM agar supplemented with 30 μ g/mL gentamicin followed by selection of double
352 crossovers on no salt sucrose. The final obtained mutants were confirmed by excision
353 assay (see below), Sanger sequencing of excision assay products, and whole genome
354 sequencing.

355

356 Excision Assays

357 Excision assays were designed as described previously (45). Briefly, a multiplex PCR
358 assay was designed to produce amplicons of distinct sizes if the Pf prophage was
359 integrated (primers Fwd_1 and Rev produce a smaller band) or excised (primers Fwd_2
360 and Rev produce a larger band) using Phusion Plus PCR Mastermix (Thermo Scientific
361 # F631L). Primers were used at a final concentration of 0.5 μ M and are listed in (**Table
362 3**).

363

364 Plaque assays

365 Plaque assays were performed using Δ Pf4 as the indicator strain grown on LB plates.
366 Phage in filtered supernatants were serially diluted 10x in PBS and spotted onto lawns
367 of PAO1 $^{\Delta}$ Pf4. Plaques were imaged after 18h of growth at 37 °C. PFUs/mL were then
368 calculated.

369

370 Quantitative PCR (qPCR)

371 Cultures were grown overnight in LB broth with shaking at 37 °C. Following 18h

372 incubation, cultures were pelleted at 16,000xg for 5 minutes, washed 3x in 1X PBS, and
373 treated with DNase at a final concentration of 0.1 mg/mL. qPCR was performed using
374 SsoAdvanced Universal SYBR Green Supermix (BioRad #1725270) on the BioRad
375 CFX Duet. For the standard curves, the sequence targeted by the primers were inserted
376 into vectors pLM61 and pUC57-*rplU*, respectively, and 10-fold serial dilutions of the
377 standard were used in the qPCR reactions with the appropriate primers (**Table 3**) to
378 construct standard curves. Normalization to chromosomal copy number was performed
379 as previously described (44) using 50S ribosomal protein gene *rplU*.
380

381 Pyocyanin extraction and measurement

382 Pyocyanin was measured as previously described (46, 47). Briefly, 18-hour cultures
383 were treated with chloroform at 50% vol/vol. Samples were vortexed vigorously and the
384 organic phase separated by centrifuging samples at 6,000xg for 5 minutes. The
385 chloroform layer was removed to a fresh tube and 20% the volume of 0.1 N HCl was
386 added and the mixture vortexed vigorously. Once separated, the aqueous fraction was
387 aliquoted to a 96-well plate and absorbance measured at 520 nm. The concentration of
388 pyocyanin, expressed as μ g/ml, was obtained by multiplying the OD₅₂₀ nm by 17.072,
389 as described previously (47).
390

391 Quorum sensing reporters

392 Competent *P. aeruginosa* cells were prepared by washing overnight cultures in 300 mM
393 sucrose followed by transformation by electroporation (48) with the plasmids CP1
394 PBBR-MCS5 *Empty*, CP53 PBBR1-MCS5 *pqsA-gfp*, CP57 PBBR1-MCS5 *rhlA-gfp*,
395 CP59 PBBR1-MCS5 *rsaL-gfp* listed in (**Table 2**). Transformants were selected by
396 plating on the appropriate antibiotic selection media. The indicated strains were grown
397 in buffered LB containing 50 mM MOPS and 100 μ g ml⁻¹ gentamicin for 18 hours.
398 Cultures were then sub-cultured 1:100 into fresh LB MOPS buffer and grown to an
399 OD₆₀₀ of 0.3. To measure reporter fluorescence, each strain was added to a 96-well
400 plate containing 200 μ L LB MOPS with a final bacterial density of OD₆₀₀ 0.1 and
401 incubated at 37 °C in a CLARIOstar BMG LABTECH plate reader. Prior to each
402 measurement, plates were shaken at 230 rpm for a duration of two minutes. A
403 measurement was taken every 15 minutes for both growth (OD₆₀₀) or fluorescence
404 (excitation at 485–15 nm and emission at 535–15 nm). End-point measurements at 18h
405 were normalized to cell density.
406

407 *C. elegans* Growth Conditions

408 Synchronized adult N2 *C. elegans* were propagated on Normal Nematode Growth
409 Medium (NNGM) agar plates with *E. coli* OP50 as a food source.
410

411 *C. elegans* Avoidance Assays

412 *C. elegans* avoidance assays were performed as previously described (32). Briefly,
413 synchronized adult N2 worms were propagated at 24 °C on 3.5 cm NNGM agar plates
414 with *E. coli* OP50 for 48h, collected, and washed 4x to remove residual OP50. NNGM
415 agar was spotted with 20 μ L of *P. aeruginosa* (Pf lysogens and their isogenic Δ Pf
416 mutant) overnight cultures (LB broth) as shown in Fig 7A and grown for 18 hours at
417 37 °C. Worms were plated in triplicate and incubated at 24 °C. *C. elegans* migration

418 was monitored hourly for 8h.

419

420 Whole Genome Sequencing & Annotation

421 Whole genome sequencing was performed by Plasmidsaurus. Reads were filtered
422 using Filtlong (v0.2.1), assembled using Flye (v2.9.1) and/or Velvet (v7.0.4). Contigs
423 polished using Medaka (v1.8.0), and annotated using Bakta (v1.6.1), Bandage (v0.8.1),
424 and RAST (<https://rast.nmpdr.org/>). Domain analysis was performed using PfamScan
425 (<https://www.ebi.ac.uk/Tools/pfa/pfamscan/>) against the library of Pfam HMM using an
426 e-value cutoff of 0.01. Supporting domain models were obtained from Conserved
427 Domain Database, and Defense Finder (49). Raw sequencing reads and assemblies for
428 parental strains introduced in this study (**Table 2**) have been deposited as part of
429 BioProject PRJNA1031220 in the NCBI SRA database.

430

431 Statistical analyses

432 Differences between data sets were evaluated with a Student's *t*-test (unpaired, two-
433 tailed), or two-way ANOVA using the Šidák correction (95% CI threshold) where
434 appropriate. P values of < 0.05 were considered statistically significant. GraphPad
435 Prism version 9.4.1 (GraphPad Software, San Diego, CA) was used for all analyses.

436

437 **Acknowledgements**

438 This work was supported by NIH grants R01AI138981 and P20GM103546 to PRS. DRF
439 was supported by NSF GRFP grant 366502. The funders had no role in study design,
440 data collection and analysis, decision to publish, or preparation of the manuscript. The
441 authors report no conflicts of interest.

442 **References**

- 443 1. Hauser AR, Jain M, Bar-Meir M, McColley SA. 2011. Clinical significance of
444 microbial infection and adaptation in cystic fibrosis. *Clin Microbiol Rev* 24:29-70.
- 445 2. Knezevic P, Voet M, Lavigne R. 2015. Prevalence of Pf1-like (pro)phage genetic
446 elements among *Pseudomonas aeruginosa* isolates. *Virology* 483:64-71.
- 447 3. Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M,
448 Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q,
449 Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. 2020. Pf Bacteriophage and Their
450 Impact on *Pseudomonas* Virulence, Mammalian Immunity, and Chronic
451 Infections. *Front Immunol* 11:244.
- 452 4. Fiedoruk K, Zakrzewska M, Daniluk T, Piktel E, Chmielewska S, Bucki R. 2020.
453 Two Lineages of *Pseudomonas aeruginosa* Filamentous Phages: Structural
454 Uniformity over Integration Preferences. *Genome Biol Evol* 12:1765-1781.
- 455 5. Webb JS, Lau M, Kjelleberg S. 2004. Bacteriophage and phenotypic variation in
456 *Pseudomonas aeruginosa* biofilm development. *Journal of bacteriology*
457 186:8066-73.
- 458 6. Martinez E, Campos-Gomez J. 2016. Pf Filamentous Phage Requires UvrD for
459 Replication in *Pseudomonas aeruginosa*. *mSphere* 1.
- 460 7. Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D, Katznelson
461 E, Rajadas J, Birnbaum ME, Arrigoni A, Braun KR, Evanko SP, Stevens DA,
462 Kaminsky W, Singh PK, Parks WC, Bollyky PL. 2015. Filamentous
463 Bacteriophage Promote Biofilm Assembly and Function. *Cell Host Microbe*
464 18:549-59.
- 465 8. Burgener EB, Sweere JM, Bach MS, Secor PR, Haddock N, Jennings LK, Marvig
466 RL, Johansen HK, Rossi E, Cao X, Tian L, Nedelec L, Molin S, Bollyky PL, Milla
467 CE. 2019. Filamentous bacteriophages are associated with chronic
468 *Pseudomonas* lung infections and antibiotic resistance in cystic fibrosis. *Sci
469 Transl Med* 11.
- 470 9. Secor PR, Michaels LA, Smigiel KS, Rohani MG, Jennings LK, Hisert KB,
471 Arrigoni A, Braun KR, Birkland TP, Lai Y, Hallstrand TS, Bollyky PL, Singh PK,
472 Parks WC. 2017. Filamentous Bacteriophage Produced by *Pseudomonas*
473 aeruginosa Alters the Inflammatory Response and Promotes Noninvasive
474 Infection In Vivo. *Infect Immun* 85.
- 475 10. Janmey PA, Slochower DR, Wang YH, Wen Q, Cebers A. 2014. Polyelectrolyte
476 properties of filamentous biopolymers and their consequences in biological fluids.
477 *Soft Matter* 10:1439-1449.
- 478 11. Tarafder AK, von Kugelgen A, Mellul AJ, Schulze U, Aarts D, Bharat TAM. 2020.
479 Phage liquid crystalline droplets form occlusive sheaths that encapsulate and
480 protect infectious rod-shaped bacteria. *Proc Natl Acad Sci U S A* 117:4724-4731.
- 481 12. Schwartzkopf CM, Robinson AJ, Ellenbecker M, Faith DR, Schmidt AK, Brooks
482 DM, Lewerke L, Voronina E, Dandekar AA, Secor PR. 2023. Tripartite
483 interactions between filamentous Pf4 bacteriophage, *Pseudomonas aeruginosa*,
484 and bacterivorous nematodes. *PLoS Pathog* 19:e1010925.
- 485 13. Schwartzkopf CM, Taylor VL, Groleau MC, Faith DR, Schmidt AK, Lamma TL,
486 Brooks DM, Deziel E, Maxwell KL, Secor PR. 2023. Inhibition of PQS signaling

487 by the Pf bacteriophage protein PfsE enhances viral replication in *Pseudomonas*
488 *aeruginosa*. bioRxiv doi:10.1101/2023.08.25.554831.

489 14. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D,
490 Webb JS, Kjelleberg S. 2009. The biofilm life cycle and virulence of
491 *Pseudomonas aeruginosa* are dependent on a filamentous prophage. The ISME
492 journal 3:271-82.

493 15. Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M, Sunkari V, Kaber
494 G, Manasherob R, Suh GA, Cao X, de Vries CR, Lam DN, Marshall PL, Birukova
495 M, Katznelson E, Lazzareschi DV, Balaji S, Keswani SG, Hawn TR, Secor PR,
496 Bollyky PL. 2019. Bacteriophage trigger antiviral immunity and prevent clearance
497 of bacterial infection. *Science* 363.

498 16. Schmidt AK, Fitzpatrick AD, Schwartzkopf CM, Faith DR, Jennings LK, Coluccio
499 A, Hunt DJ, Michaels LA, Hargil A, Chen Q, Bollyky PL, Dorward DW, Wachter J,
500 Rosa PA, Maxwell KL, Secor PR. 2022. A Filamentous Bacteriophage Protein
501 Inhibits Type IV Pili To Prevent Superinfection of *Pseudomonas aeruginosa*. *mBio*
502 doi:10.1128/mbio.02441-21:e0244121.

503 17. Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. 2019. Excisionase in Pf
504 filamentous prophage controls lysis-lysogeny decision-making in *Pseudomonas*
505 *aeruginosa*. *Mol Microbiol* 111:495-513.

506 18. Secor PR, Sass G, Nazik H, Stevens DA. 2017. Effect of acute predation with
507 bacteriophage on intermicrobial aggression by *Pseudomonas aeruginosa*. *PLoS*
508 One 12:e0179659.

509 19. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD,
510 Heeb S, Schock U, Pohl TM, Wiehlmann L, Tummler B. 2010. Genome diversity
511 of *Pseudomonas aeruginosa* PAO1 laboratory strains. *J Bacteriol* 192:1113-21.

512 20. Breg JN, van Opheusden JH, Burgering MJ, Boelens R, Kaptein R. 1990.
513 Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-
514 binding proteins. *Nature* 346:586-9.

515 21. Vershon AK, Youderian P, Susskind MM, Sauer RT. 1985. The bacteriophage
516 P22 arc and mnt repressors. Overproduction, purification, and properties. *J Biol*
517 *Chem* 260:12124-9.

518 22. Tortuel D, Tahrioui A, David A, Cambronel M, Nilly F, Clamens T, Maillot O,
519 Barreau M, Feuilloley MGJ, Lesouhaitier O, Filloux A, Bouffartigues E, Cornelis P,
520 Chevalier S. 2022. Pf4 Phage Variant Infection Reduces Virulence-Associated
521 Traits in *Pseudomonas aeruginosa*. *Microbiology Spectrum* 10:e01548-22.

522 23. Secor PR, Jennings LK, Michaels LA, Sweere JM, Singh PK, Parks WC, Bollyky
523 PL. 2015. Biofilm assembly becomes crystal clear - filamentous bacteriophage
524 organize the *Pseudomonas aeruginosa* biofilm matrix into a liquid crystal. *Microb*
525 *Cell* 3:49-52.

526 24. McElroy KE, Hui JG, Woo JK, Luk AW, Webb JS, Kjelleberg S, Rice SA, Thomas
527 T. 2014. Strain-specific parallel evolution drives short-term diversification during
528 *Pseudomonas aeruginosa* biofilm formation. *Proceedings of the National*
529 *Academy of Sciences of the United States of America* 111:E1419-27.

530 25. O'Toole GA. 2011. Microtiter dish biofilm formation assay. *Journal of visualized*
531 *experiments* : JoVE doi:10.3791/2437.

532 26. Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK. 2006. The
533 phenazine pyocyanin is a terminal signalling factor in the quorum sensing
534 network of *Pseudomonas aeruginosa*. *Mol Microbiol* 61:1308-21.

535 27. Schwartzkopf CM, Robinson AJ, Ellenbecker M, Faith DR, Schmidt AK, Brooks
536 DM, Lewerke L, Voronina E, Dandekar AA, Secor PR. 2023. Tripartite
537 interactions between filamentous Pf4 bacteriophage, *Pseudomonas aeruginosa*,
538 and bacterivorous nematodes. *PLOS Pathogens* 19:e1010925.

539 28. Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S. 2007. Environmental
540 predators as models for bacterial pathogenesis. *Environ Microbiol* 9:563-75.

541 29. Schulenburg H, Felix MA. 2017. The Natural Biotic Environment of
542 *Caenorhabditis elegans*. *Genetics* 206:55-86.

543 30. Filipowicz A, Lalsiamthara J, Aballay A. 2021. TRPM channels mediate learned
544 pathogen avoidance following intestinal distention. *eLife* 10:e65935.

545 31. Kaletsky R, Moore RS, Vrla GD, Parsons LR, Gitai Z, Murphy CT. 2020.
546 *C. elegans* interprets bacterial non-coding RNAs to learn pathogenic avoidance.
547 *Nature* 586:445-451.

548 32. Ghosh DD, Lee D, Jin X, Horvitz HR, Nitabach MN. 2021. *C. elegans*
549 discriminates colors to guide foraging. *Science* 371:1059-1063.

550 33. Hao Y, Yang W, Ren J, Hall Q, Zhang Y, Kaplan JM. 2018. Thioredoxin shapes
551 the *C. elegans* sensory response to *Pseudomonas* produced nitric oxide. *eLife*
552 7:e36833.

553 34. Wei Q, Minh PN, Dotsch A, Hildebrand F, Panmanee W, Elfarash A, Schulz S,
554 Plaisance S, Charlier D, Hassett D, Haussler S, Cornelis P. 2012. Global
555 regulation of gene expression by OxyR in an important human opportunistic
556 pathogen. *Nucleic Acids Res* 40:4320-33.

557 35. Mooij MJ, Drenkard E, Llamas MA, Vandenbroucke-Grauls CM, Savelkoul PH,
558 Ausubel FM, Bitter W. 2007. Characterization of the integrated filamentous phage
559 Pf5 and its involvement in small-colony formation. *Microbiology* 153:1790-8.

560 36. Asfahl KL, Smalley NE, Chang AP, Dandekar AA. 2022. Genetic and
561 Transcriptomic Characteristics of RhIR-Dependent Quorum Sensing in Cystic
562 Fibrosis Isolates of *Pseudomonas aeruginosa*. *mSystems* 7:e0011322.

563 37. Moura-Alves P, Puyskens A, Stinn A, Klemm M, Guhlich-Bornhof U, Dorhoi A,
564 Furkert J, Kreuchwig A, Protze J, Lozza L, Pei G, Saikali P, Perdomo C,
565 Mollenkopf HJ, Hurwitz R, Kirschhoefer F, Brenner-Weiss G, Weiner J, 3rd,
566 Oschkinat H, Kolbe M, Krause G, Kaufmann SHE. 2019. Host monitoring of
567 quorum sensing during *Pseudomonas aeruginosa* infection. *Science* 366.

568 38. Moura-Alves P, Fae K, Houthuys E, Dorhoi A, Kreuchwig A, Furkert J, Barison N,
569 Diehl A, Munder A, Constant P, Skrahina T, Guhlich-Bornhof U, Klemm M,
570 Koehler AB, Bandermann S, Goosmann C, Mollenkopf HJ, Hurwitz R, Brinkmann
571 V, Fillatreau S, Daffe M, Tummler B, Kolbe M, Oschkinat H, Krause G, Kaufmann
572 SH. 2014. AhR sensing of bacterial pigments regulates antibacterial defence.
573 *Nature* 512:387-92.

574 39. Castang S, Dove SL. 2012. Basis for the essentiality of H-NS family members in
575 *Pseudomonas aeruginosa*. *Journal of bacteriology* 194:5101-9.

576 40. Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C,
577 Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke

578 L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS,
579 Levesque RC. 2009. Newly introduced genomic prophage islands are critical
580 determinants of in vivo competitiveness in the Liverpool Epidemic Strain of
581 *Pseudomonas aeruginosa*. *Genome research* 19:12-23.

582 41. Feltner JB, Wolter DJ, Pope CE, Groleau MC, Smalley NE, Greenberg EP,
583 Mayer-Hamblett N, Burns J, Deziel E, Hoffman LR, Dandekar AA. 2016. LasR
584 Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy
585 in *Pseudomonas aeruginosa*. *mBio* 7.

586 42. Smalley NE, Schaefer AL, Asfahl KL, Perez C, Greenberg EP, Dandekar AA.
587 2022. Evolution of the Quorum Sensing Regulon in Cooperating Populations of
588 *Pseudomonas aeruginosa*. *mBio* 13:e00161-22.

589 43. Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, Lin C, Irie Y,
590 Storek KM, Yang JJ, Siehnel RJ, Howell PL, Singh PK, Tolker-Nielsen T, Parsek
591 MR, Schweizer HP, Harrison JJ. 2015. Precision-engineering the *Pseudomonas*
592 *aeruginosa* genome with two-step allelic exchange. *Nature protocols* 10:1820-41.

593 44. Burgener EB, Secor PR, Tracy MC, Sweere JM, Bik EM, Milla CE, Ballyky PL.
594 2020. Methods for Extraction and Detection of Pf Bacteriophage DNA from the
595 Sputum of Patients with Cystic Fibrosis. *Phage: Therapy, Applications, and*
596 *Research* 1:100-108.

597 45. McKitterick AC, Seed KD. 2018. Anti-phage islands force their target phage to
598 directly mediate island excision and spread. *Nat Commun* 9:2348.

599 46. Fiedoruk K, Zakrzewska M, Daniluk T, Piktel E, Chmielewska S, Bucki R. 2020.
600 Two Lineages of *Pseudomonas aeruginosa* Filamentous Phages: Structural
601 Uniformity over Integration Preferences. *Genome Biology and Evolution* 12:1765-
602 1781.

603 47. Essar DW, Eberly L, Hader A, Crawford IP. 1990. Identification and
604 characterization of genes for a second anthranilate synthase in *Pseudomonas*
605 *aeruginosa*: interchangeability of the two anthranilate synthases and evolutionary
606 implications. *J Bacteriol* 172:884-900.

607 48. Choi K-H, Kumar A, Schweizer HP. 2006. A 10-min method for preparation of
608 highly electrocompetent *Pseudomonas aeruginosa* cells: Application for DNA
609 fragment transfer between chromosomes and plasmid transformation. *Journal of*
610 *Microbiological Methods* 64:391-397.

611 49. Tesson F, Hervé A, Mordret E, Touchon M, d’Humières C, Cury J, Bernheim A.
612 2022. Systematic and quantitative view of the antiviral arsenal of prokaryotes.
613 *Nature Communications* 13:2561.

614